Science.gov

Sample records for 3d volumetric approach

  1. 3D imaging provides a high-resolution, volumetric approach for analyzing biofouling.

    PubMed

    First, Matthew R; Policastro, Steven A; Strom, Matthew J; Riley, Scott C; Robbins-Wamsley, Stephanie H; Drake, Lisa A

    2014-01-01

    A volumetric approach for determining the fouling burden on surfaces is presented, consisting of a 3D camera imaging system with fine (5 μm) resolution. Panels immersed in an estuary on the southwest coast of Florida, USA were imaged and the data were used to quantify seasonal changes in the biofouling community. Test panels, which were submerged in seawater for up to one year, were analyzed before and after gentle scrubbing to quantify the biovolume of the total fouling community (ie soft and hard organisms) and the hard fouling community. Total biofouling ranged from 0.01 to 1.16 cm(3) cm(-2) throughout the immersion period; soft fouling constituted 22-87% of the total biovolume. In the future, this approach may be used to inform numerical models of fluid-surface interfaces and to evaluate, with high resolution, the morphology of fouling organisms in response to antifouling technologies.

  2. FELIX: a volumetric 3D laser display

    NASA Astrophysics Data System (ADS)

    Bahr, Detlef; Langhans, Knut; Gerken, Martin; Vogt, Carsten; Bezecny, Daniel; Homann, Dennis

    1996-03-01

    In this paper, an innovative approach of a true 3D image presentation in a space filling, volumetric laser display will be described. The introduced prototype system is based on a moving target screen that sweeps the display volume. Net result is the optical equivalent of a 3D array of image points illuminated to form a model of the object which occupies a physical space. Wireframe graphics are presented within the display volume which a group of people can walk around and examine simultaneously from nearly any orientation and without any visual aids. Further to the detailed vector scanning mode, a raster scanned system and a combination of both techniques are under development. The volumetric 3D laser display technology for true reproduction of spatial images can tremendously improve the viewers ability to interpret data and to reliably determine distance, shape and orientation. Possible applications for this development range from air traffic control, where moving blips of light represent individual aircrafts in a true to scale projected airspace of an airport, to various medical applications (e.g. electrocardiography, computer-tomography), to entertainment and education visualization as well as imaging in the field of engineering and Computer Aided Design.

  3. Exploring interaction with 3D volumetric displays

    NASA Astrophysics Data System (ADS)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  4. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  5. Volumetric (3D) compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality. PMID:25426320

  6. Volumetric (3D) compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-11-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality.

  7. Volumetric visualization of 3D data

    NASA Technical Reports Server (NTRS)

    Russell, Gregory; Miles, Richard

    1989-01-01

    In recent years, there has been a rapid growth in the ability to obtain detailed data on large complex structures in three dimensions. This development occurred first in the medical field, with CAT (computer aided tomography) scans and now magnetic resonance imaging, and in seismological exploration. With the advances in supercomputing and computational fluid dynamics, and in experimental techniques in fluid dynamics, there is now the ability to produce similar large data fields representing 3D structures and phenomena in these disciplines. These developments have produced a situation in which currently there is access to data which is too complex to be understood using the tools available for data reduction and presentation. Researchers in these areas are becoming limited by their ability to visualize and comprehend the 3D systems they are measuring and simulating.

  8. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  9. Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object.

    PubMed

    Kim, Seung-Cheol; Park, Seok-Chan; Kim, Eun-Soo

    2009-12-01

    In this paper, we propose a novel computational integral-imaging reconstruction (CIIR)-based three-dimensional (3-D) image correlator system for the recognition of 3-D volumetric objects by employing a 3-D reference object. That is, a number of plane object images (POIs) computationally reconstructed from the 3-D reference object are used for the 3-D volumetric target recognition. In other words, simultaneous 3-D image correlations between two sets of target and reference POIs, which are depth-dependently reconstructed by using the CIIR method, are performed for effective recognition of 3-D volumetric objects in the proposed system. Successful experiments with this CIIR-based 3-D image correlator confirmed the feasibility of the proposed method.

  10. A framework for automatic construction of 3D PDM from segmented volumetric neuroradiological data sets.

    PubMed

    Fu, Yili; Gao, Wenpeng; Xiao, Yongfei; Liu, Jimin

    2010-03-01

    3D point distribution model (PDM) of subcortical structures can be applied in medical image analysis by providing priori-knowledge. However, accurate shape representation and point correspondence are still challenging for building 3D PDM. This paper presents a novel framework for the automated construction of 3D PDMs from a set of segmented volumetric images. First, a template shape is generated according to the spatial overlap. Then the corresponding landmarks among shapes are automatically identified by a novel hierarchical global-to-local approach, which combines iterative closest point based global registration and active surface model based local deformation to transform the template shape to all other shapes. Finally, a 3D PDM is constructed. Experiment results on four subcortical structures show that the proposed method is able to construct 3D PDMs with a high quality in compactness, generalization and specificity, and more efficient and effective than the state-of-art methods such as MDL and SPHARM. PMID:19631401

  11. Combining volumetric edge display and multiview display for expression of natural 3D images

    NASA Astrophysics Data System (ADS)

    Yasui, Ryota; Matsuda, Isamu; Kakeya, Hideki

    2006-02-01

    In the present paper the authors present a novel stereoscopic display method combining volumetric edge display technology and multiview display technology to realize presentation of natural 3D images where the viewers do not suffer from contradiction between binocular convergence and focal accommodation of the eyes, which causes eyestrain and sickness. We adopt volumetric display method only for edge drawing, while we adopt stereoscopic approach for flat areas of the image. Since focal accommodation of our eyes is affected only by the edge part of the image, natural focal accommodation can be induced if the edges of the 3D image are drawn on the proper depth. The conventional stereo-matching technique can give us robust depth values of the pixels which constitute noticeable edges. Also occlusion and gloss of the objects can be roughly expressed with the proposed method since we use stereoscopic approach for the flat area. We can attain a system where many users can view natural 3D objects at the consistent position and posture at the same time in this system. A simple optometric experiment using a refractometer suggests that the proposed method can give us 3-D images without contradiction between binocular convergence and focal accommodation.

  12. Real-time 3D visualization of volumetric video motion sensor data

    SciTech Connect

    Carlson, J.; Stansfield, S.; Shawver, D.; Flachs, G.M.; Jordan, J.B.; Bao, Z.

    1996-11-01

    This paper addresses the problem of improving detection, assessment, and response capabilities of security systems. Our approach combines two state-of-the-art technologies: volumetric video motion detection (VVMD) and virtual reality (VR). This work capitalizes on the ability of VVMD technology to provide three-dimensional (3D) information about the position, shape, and size of intruders within a protected volume. The 3D information is obtained by fusing motion detection data from multiple video sensors. The second component involves the application of VR technology to display information relating to the sensors and the sensor environment. VR technology enables an operator, or security guard, to be immersed in a 3D graphical representation of the remote site. VVMD data is transmitted from the remote site via ordinary telephone lines. There are several benefits to displaying VVMD information in this way. Because the VVMD system provides 3D information and because the sensor environment is a physical 3D space, it seems natural to display this information in 3D. Also, the 3D graphical representation depicts essential details within and around the protected volume in a natural way for human perception. Sensor information can also be more easily interpreted when the operator can `move` through the virtual environment and explore the relationships between the sensor data, objects and other visual cues present in the virtual environment. By exploiting the powerful ability of humans to understand and interpret 3D information, we expect to improve the means for visualizing and interpreting sensor information, allow a human operator to assess a potential threat more quickly and accurately, and enable a more effective response. This paper will detail both the VVMD and VR technologies and will discuss a prototype system based upon their integration.

  13. A volumetric sensor for real-time 3D mapping and robot navigation

    NASA Astrophysics Data System (ADS)

    Fournier, Jonathan; Ricard, Benoit; Laurendeau, Denis

    2006-05-01

    The use of robots for (semi-) autonomous operations in complex terrains such as urban environments poses difficult mobility, mapping, and perception challenges. To be able to work efficiently, a robot should be provided with sensors and software such that it can perceive and analyze the world in 3D. Real-time 3D sensing and perception in this operational context are paramount. To address these challenges, DRDC Valcartier has developed over the past years a compact sensor that combines a wide baseline stereo camera and a laser scanner with a full 360 degree azimuth and 55 degree elevation field of view allowing the robot to view and manage overhang obstacles as well as obstacles at ground level. Sensing in 3D is common but to efficiently navigate and work in complex terrain, the robot should also perceive, decide and act in three dimensions. Therefore, 3D information should be preserved and exploited in all steps of the process. To achieve this, we use a multiresolution octree to store the acquired data, allowing mapping of large environments while keeping the representation compact and memory efficient. Ray tracing is used to build and update the 3D occupancy model. This model is used, via a temporary 2.5D map, for navigation, obstacle avoidance and efficient frontier-based exploration. This paper describes the volumetric sensor concept, describes its design features and presents an overview of the 3D software framework that allows 3D information persistency through all computation steps. Simulation and real-world experiments are presented at the end of the paper to demonstrate the key elements of our approach.

  14. 3-D Volumetric Evaluation of Human Mandibular Growth

    PubMed Central

    Reynolds, Mathew; Reynolds, Michael; Adeeb, Samer; El-Bialy, Tarek

    2011-01-01

    Bone growth is a complex process that is controlled by a multitude of mechanisms that are not fully understood.Most of the current methods employed to measure the growth of bones focus on either studying cadaveric bones from different individuals of different ages, or successive two-dimensional (2D) radiographs. Both techniques have their known limitations. The purpose of this study was to explore a technique for quantifying the three dimensional (3D) growth of an adolescent human mandible over the period of one year utilizing cone beam computed tomography (CBCT) scans taken for regular orthodontic records. Three -dimensional virtual models were created from the CBCT data using mainstream medical imaging software. A comparison between computer-generated surface meshes of successive 3-D virtual models illustrates the magnitude of relative mandible growth. The results of this work are in agreement with previously reported data from human cadaveric studies and implantable marker studies. The presented method provides a new relatively simple basis (utilizing commercially available software) to visualize and evaluate individualized 3D (mandibular) growth in vivo. PMID:22046201

  15. The effect of volumetric (3D) tactile symbols within inclusive tactile maps.

    PubMed

    Gual, Jaume; Puyuelo, Marina; Lloveras, Joaquim

    2015-05-01

    Point, linear and areal elements, which are two-dimensional and of a graphic nature, are the morphological elements employed when designing tactile maps and symbols for visually impaired users. However, beyond the two-dimensional domain, there is a fourth group of elements - volumetric elements - which mapmakers do not take sufficiently into account when it comes to designing tactile maps and symbols. This study analyses the effect of including volumetric, or 3D, symbols within a tactile map. In order to do so, the researchers compared two tactile maps. One of them uses only two-dimensional elements and is produced using thermoforming, one of the most popular systems in this field, while the other includes volumetric symbols, thus highlighting the possibilities opened up by 3D printing, a new area of production. The results of the study show that including 3D symbols improves the efficiency and autonomous use of these products. PMID:25683526

  16. Average Cross-Sectional Area of DebriSat Fragments Using Volumetrically Constructed 3D Representations

    NASA Technical Reports Server (NTRS)

    Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.

    2016-01-01

    Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for

  17. Current issues on 3D volumetric positioning accuracy: measurement, compensation, and definition

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2008-10-01

    Traditionally, manufacturers have ensured part accuracy by linear calibration of each machine tool axis. The conventional definition of the 3-D volumetric positioning error is the root mean square of the three-axis displacement error. 20 years ago, the dominate error is the lead screw pitch error of 3 axes. This definition is adequate. However, now the machine accuracy has been improved with better lead screw, linear encoder and compensation, the dominate errors become the squareness errors and straightness errors. Hence the above definition is inadequate. During the past years, the industry has seen demand emerge for the "volumetric accuracy" specification on machine tools. One hurdle remains: a standard definition so that everyone measures volumetric accuracy with the same yardstick. The issue has been discussed in many Standards Committees, machine tool builders and the metrology community. Reported here are, a new 3D volumetric positioning error measurement and compensation technique, proposed definitions or measures of 3 D volumetric positioning errors of a CNC machine tool, and its verification.

  18. An interface for precise and comfortable 3D work with volumetric medical datasets.

    PubMed

    Serra, L; Hern, N; Guan, C G; Lee, E; Lee, Y H; Yeo, T T; Chan, C; Kockro, R A

    1999-01-01

    We have developed a 3D/2D paradigm of interaction that combines manipulation of precise 3D volumetric data with unambiguous widget interaction. Precise 3D interaction is ensured by a combination of resting the lower arms on an armrest and pivoting the hands around the wrist. Unambiguous 2D interaction is achieved by providing passive haptic feedback by means of a virtual control panel whose position coincides with the physical surfaces encasing the system. We have tested this interface with a neurosurgical planning application that has been clinically used for 17 skull-base cases at two local hospitals. PMID:10538381

  19. An interface for precise and comfortable 3D work with volumetric medical datasets.

    PubMed

    Serra, L; Hern, N; Guan, C G; Lee, E; Lee, Y H; Yeo, T T; Chan, C; Kockro, R A

    1999-01-01

    We have developed a 3D/2D paradigm of interaction that combines manipulation of precise 3D volumetric data with unambiguous widget interaction. Precise 3D interaction is ensured by a combination of resting the lower arms on an armrest and pivoting the hands around the wrist. Unambiguous 2D interaction is achieved by providing passive haptic feedback by means of a virtual control panel whose position coincides with the physical surfaces encasing the system. We have tested this interface with a neurosurgical planning application that has been clinically used for 17 skull-base cases at two local hospitals.

  20. A 3D Level Sets Method for Segmenting the Mouse Spleen and Follicles in Volumetric microCT Images

    SciTech Connect

    Price, Jeffery R; Aykac, Deniz; Wall, Jonathan

    2006-01-01

    We present a semi-automatic, 3D approach for segmenting the mouse spleen, and its interior follicles, in volumetric microCT imagery. Based upon previous 2D level sets work, we develop a fully 3D implementation and provide the corresponding finite difference formulas. We incorporate statistical and proximity weighting schemes to improve segmentation performance. We also note an issue with the original algorithm and propose a solution that proves beneficial in our experiments. Experimental results are provided for artificial and real data.

  1. Morphological and Volumetric Assessment of Cerebral Ventricular System with 3D Slicer Software.

    PubMed

    Gonzalo Domínguez, Miguel; Hernández, Cristina; Ruisoto, Pablo; Juanes, Juan A; Prats, Alberto; Hernández, Tomás

    2016-06-01

    We present a technological process based on the 3D Slicer software for the three-dimensional study of the brain's ventricular system with teaching purposes. It values the morphology of this complex brain structure, as a whole and in any spatial position, being able to compare it with pathological studies, where its anatomy visibly changes. 3D Slicer was also used to obtain volumetric measurements in order to provide a more comprehensive and detail representation of the ventricular system. We assess the potential this software has for processing high resolution images, taken from Magnetic Resonance and generate the three-dimensional reconstruction of ventricular system. PMID:27147517

  2. The Space {B^{-1}_{∞, ∞}} , Volumetric Sparseness, and 3D NSE

    NASA Astrophysics Data System (ADS)

    Farhat, Aseel; Grujić, Zoran; Leitmeyer, Keith

    2016-09-01

    In the context of the {L^∞} -theory of the 3D NSE, it is shown that smallness of a solution in Besov space {B^{-1}_{∞, ∞}} suffices to prevent a possible blow-up. In particular, it is revealed that the aforementioned condition implies a particular local spatial structure of the regions of high velocity magnitude, namely, the structure of local volumetric sparseness on the scale comparable to the radius of spatial analyticity measured in {L^∞}.

  3. An inverse hyper-spherical harmonics-based formulation for reconstructing 3D volumetric lung deformations

    NASA Astrophysics Data System (ADS)

    Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick

    2010-07-01

    A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.

  4. Parallel implementation of 3D FFT with volumetric decomposition schemes for efficient molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji

    2016-03-01

    Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.

  5. Extending a teleradiology system by tools for 3D-visualization and volumetric analysis through a plug-in mechanism.

    PubMed

    Evers, H; Mayer, A; Engelmann, U; Schröter, A; Baur, U; Wolsiffer, K; Meinzer, H P

    1998-01-01

    This paper describes ongoing research concerning interactive volume visualization coupled with tools for volumetric analysis. To establish an easy to use application, the 3D-visualization has been embedded in a state of the art teleradiology system, where additional functionality is often desired beyond basic image transfer and management. Major clinical requirements for deriving spatial measures are covered by the tools, in order to realize extended diagnosis support and therapy planning. Introducing the general plug-in mechanism this work exemplarily describes the useful extension of an approved application. Interactive visualization was achieved by a hybrid approach taking advantage of both the precise volume visualization based on the Heidelberg Raytracing Model and the graphics acceleration of modern workstations. Several tools for volumetric analysis extend the 3D-viewing. They offer 3D-pointing devices to select locations in the data volume, measure anatomical structures or control segmentation processes. A haptic interface provides a realistic perception while navigating within the 3D-reconstruction. The work is closely related to research work in the field of heart, liver and head surgery. In cooperation with our medical partners the development of tools as presented proceed the integration of image analysis into clinical routine. PMID:10384617

  6. Application of a 3D volumetric display for radiation therapy treatment planning I: quality assurance procedures.

    PubMed

    Gong, Xing; Kirk, Michael Collins; Napoli, Josh; Stutsman, Sandy; Zusag, Tom; Khelashvili, Gocha; Chu, James

    2009-07-17

    To design and implement a set of quality assurance tests for an innovative 3D volumetric display for radiation treatment planning applications. A genuine 3D display (Perspecta Spatial 3D, Actuality-Systems Inc., Bedford, MA) has been integrated with the Pinnacle TPS (Philips Medical Systems, Madison WI), for treatment planning. The Perspecta 3D display renders a 25 cm diameter volume that is viewable from any side, floating within a translucent dome. In addition to displaying all 3D data exported from Pinnacle, the system provides a 3D mouse to define beam angles and apertures and to measure distance. The focus of this work is the design and implementation of a quality assurance program for 3D displays and specific 3D planning issues as guided by AAPM Task Group Report 53. A series of acceptance and quality assurance tests have been designed to evaluate the accuracy of CT images, contours, beams, and dose distributions as displayed on Perspecta. Three-dimensional matrices, rulers and phantoms with known spatial dimensions were used to check Perspecta's absolute spatial accuracy. In addition, a system of tests was designed to confirm Perspecta's ability to import and display Pinnacle data consistently. CT scans of phantoms were used to confirm beam field size, divergence, and gantry and couch angular accuracy as displayed on Perspecta. Beam angles were verified through Cartesian coordinate system measurements and by CT scans of phantoms rotated at known angles. Beams designed on Perspecta were exported to Pinnacle and checked for accuracy. Dose at sampled points were checked for consistency with Pinnacle and agreed within 1% or 1 mm. All data exported from Pinnacle to Perspecta was displayed consistently. The 3D spatial display of images, contours, and dose distributions were consistent with Pinnacle display. When measured by the 3D ruler, the distances between any two points calculated using Perspecta agreed with Pinnacle within the measurement error.

  7. Volumetric CT-based segmentation of NSCLC using 3D-Slicer.

    PubMed

    Velazquez, Emmanuel Rios; Parmar, Chintan; Jermoumi, Mohammed; Mak, Raymond H; van Baardwijk, Angela; Fennessy, Fiona M; Lewis, John H; De Ruysscher, Dirk; Kikinis, Ron; Lambin, Philippe; Aerts, Hugo J W L

    2013-01-01

    Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the "gold standard". The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81-0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck. PMID:24346241

  8. Texture-based visualization of unsteady 3D flow by real-time advection and volumetric illumination.

    PubMed

    Weiskopf, Daniel; Schafhitzel, Tobias; Ertl, Thomas

    2007-01-01

    This paper presents an interactive technique for the dense texture-based visualization of unsteady 3D flow, taking into account issues of computational efficiency and visual perception. High efficiency is achieved by a 3D graphics processing unit (GPU)-based texture advection mechanism that implements logical 3D grid structures by physical memory in the form of 2D textures. This approach results in fast read and write access to physical memory, independent of GPU architecture. Slice-based direct volume rendering is used for the final display. We investigate two alternative methods for the volumetric illumination of the result of texture advection: First, gradient-based illumination that employs a real-time computation of gradients, and, second, line-based lighting based on illumination in codimension 2. In addition to the Phong model, perception-guided rendering methods are considered, such as cool/warm shading, halo rendering, or color-based depth cueing. The problems of clutter and occlusion are addressed by supporting a volumetric importance function that enhances features of the flow and reduces visual complexity in less interesting regions. GPU implementation aspects, performance measurements, and a discussion of results are included to demonstrate our visualization approach.

  9. Evaluation of feature-based 3-d registration of probabilistic volumetric scenes

    NASA Astrophysics Data System (ADS)

    Restrepo, Maria I.; Ulusoy, Ali O.; Mundy, Joseph L.

    2014-12-01

    Automatic estimation of the world surfaces from aerial images has seen much attention and progress in recent years. Among current modeling technologies, probabilistic volumetric models (PVMs) have evolved as an alternative representation that can learn geometry and appearance in a dense and probabilistic manner. Recent progress, in terms of storage and speed, achieved in the area of volumetric modeling, opens the opportunity to develop new frameworks that make use of the PVM to pursue the ultimate goal of creating an entire map of the earth, where one can reason about the semantics and dynamics of the 3-d world. Aligning 3-d models collected at different time-instances constitutes an important step for successful fusion of large spatio-temporal information. This paper evaluates how effectively probabilistic volumetric models can be aligned using robust feature-matching techniques, while considering different scenarios that reflect the kind of variability observed across aerial video collections from different time instances. More precisely, this work investigates variability in terms of discretization, resolution and sampling density, errors in the camera orientation, and changes in illumination and geographic characteristics. All results are given for large-scale, outdoor sites. In order to facilitate the comparison of the registration performance of PVMs to that of other 3-d reconstruction techniques, the registration pipeline is also carried out using Patch-based Multi-View Stereo (PMVS) algorithm. Registration performance is similar for scenes that have favorable geometry and the appearance characteristics necessary for high quality reconstruction. In scenes containing trees, such as a park, or many buildings, such as a city center, registration performance is significantly more accurate when using the PVM.

  10. DSA volumetric 3D reconstructions of intracranial aneurysms: A pictorial essay

    PubMed Central

    Cieściński, Jakub; Serafin, Zbigniew; Strześniewski, Piotr; Lasek, Władysław; Beuth, Wojciech

    2012-01-01

    Summary A gold standard of cerebral vessel imaging remains the digital subtraction angiography (DSA) performed in three projections. However, in specific clinical cases, many additional projections are required, or a complete visualization of a lesion may even be impossible with 2D angiography. Three-dimensional (3D) reconstructions of rotational angiography were reported to improve the performance of DSA significantly. In this pictorial essay, specific applications of this technique are presented in the management of intracranial aneurysms, including: preoperative aneurysm evaluation, intraoperative imaging, and follow-up. Volumetric reconstructions of 3D DSA are a valuable tool for cerebral vessels imaging. They play a vital role in the assessment of intracranial aneurysms, especially in evaluation of the aneurysm neck and the aneurysm recanalization. PMID:22844309

  11. Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution

    NASA Astrophysics Data System (ADS)

    Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.

    2015-12-01

    Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.

  12. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  13. 3D Geo: An Alternative Approach

    NASA Astrophysics Data System (ADS)

    Georgopoulos, A.

    2016-10-01

    The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information, related to monuments and artefacts, into relational data bases and its use for various purposes, other than just geometric documentation is also described and presented. In order to help the reader understand the above, several characteristic examples are presented and their methodology explained and their results evaluated.

  14. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.

    PubMed

    Li, Jia; Liu, Kang; Gao, Xiang; Yao, Bin; Huo, Kaifu; Cheng, Yongliang; Cheng, Xiaofeng; Chen, Dongchang; Wang, Bo; Sun, Wanmei; Ding, Dong; Liu, Meilin; Huang, Liang

    2015-11-11

    Efficient utilization and broader commercialization of alternative energies (e.g., solar, wind, and geothermal) hinges on the performance and cost of energy storage and conversion systems. For now and in the foreseeable future, the combination of rechargeable batteries and electrochemical capacitors remains the most promising option for many energy storage applications. Porous carbonaceous materials have been widely used as an electrode for batteries and supercapacitors. To date, however, the highest specific capacitance of an electrochemical double layer capacitor is only ∼200 F/g, although a wide variety of synthetic approaches have been explored in creating optimized porous structures. Here, we report our findings in the synthesis of porous carbon through a simple, one-step process: direct carbonization of kelp in an NH3 atmosphere at 700 °C. The resulting oxygen- and nitrogen-enriched carbon has a three-dimensional structure with specific surface area greater than 1000 m(2)/g. When evaluated as an electrode for electrochemical double layer capacitors, the porous carbon structure demonstrated excellent volumetric capacitance (>360 F/cm(3)) with excellent cycling stability. This simple approach to low-cost carbonaceous materials with unique architecture and functionality could be a promising alternative to fabrication of porous carbon structures for many practical applications, including batteries and fuel cells.

  15. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity.

    PubMed

    Li, Jia; Liu, Kang; Gao, Xiang; Yao, Bin; Huo, Kaifu; Cheng, Yongliang; Cheng, Xiaofeng; Chen, Dongchang; Wang, Bo; Sun, Wanmei; Ding, Dong; Liu, Meilin; Huang, Liang

    2015-11-11

    Efficient utilization and broader commercialization of alternative energies (e.g., solar, wind, and geothermal) hinges on the performance and cost of energy storage and conversion systems. For now and in the foreseeable future, the combination of rechargeable batteries and electrochemical capacitors remains the most promising option for many energy storage applications. Porous carbonaceous materials have been widely used as an electrode for batteries and supercapacitors. To date, however, the highest specific capacitance of an electrochemical double layer capacitor is only ∼200 F/g, although a wide variety of synthetic approaches have been explored in creating optimized porous structures. Here, we report our findings in the synthesis of porous carbon through a simple, one-step process: direct carbonization of kelp in an NH3 atmosphere at 700 °C. The resulting oxygen- and nitrogen-enriched carbon has a three-dimensional structure with specific surface area greater than 1000 m(2)/g. When evaluated as an electrode for electrochemical double layer capacitors, the porous carbon structure demonstrated excellent volumetric capacitance (>360 F/cm(3)) with excellent cycling stability. This simple approach to low-cost carbonaceous materials with unique architecture and functionality could be a promising alternative to fabrication of porous carbon structures for many practical applications, including batteries and fuel cells. PMID:26477268

  16. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  17. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  18. Formation of 3D structures in a volumetric photocurable material via a holographic method

    NASA Astrophysics Data System (ADS)

    Vorzobova, N. D.; Bulgakova, V. G.; Veselov, V. O.

    2015-12-01

    The principle of forming 3D polymer structures is considered, based on the display of the 3D intensity distribution of radiation formed by a hologram in the bulk of a photocurable material. The conditions are determined for limiting the cure depth and reproducing the projected wavefront configuration.

  19. A 3-D SAR approach to IFSAR processing

    SciTech Connect

    DOERRY,ARMIN W.; BICKEL,DOUGLAS L.

    2000-03-01

    Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super-resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.

  20. 3D SAR approach to IF SAR processing

    NASA Astrophysics Data System (ADS)

    Doerry, Armin W.; Bickel, Doug

    2000-08-01

    Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super- resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.

  1. Compression of medical volumetric datasets: physical and psychovisual performance comparison of the emerging JP3D standard and JPEG2000

    NASA Astrophysics Data System (ADS)

    Kimpe, T.; Bruylants, T.; Sneyders, Y.; Deklerck, R.; Schelkens, P.

    2007-03-01

    The size of medical data has increased significantly over the last few years. This poses severe problems for the rapid transmission of medical data across the hospital network resulting into longer access times of the images. Also longterm storage of data becomes more and more a problem. In an attempt to overcome the increasing data size often lossless or lossy compression algorithms are being used. This paper compares the existing JPEG2000 compression algorithm and the new emerging JP3D standard for compression of volumetric datasets. The main benefit of JP3D is that this algorithm truly is a 3D compression algorithm that exploits correlation not only within but also in between slices of a dataset. We evaluate both lossless and lossy modes of these algorithms. As a first step we perform an objective evaluation. Using RMSE and PSNR metrics we determine which compression algorithm performs best and this for multiple compression ratios and for several clinically relevant medical datasets. It is well known that RMSE and PSNR often do not correlate well with subjectively perceived image quality. Therefore we also perform a psycho visual analysis by means of a numerical observer. With this observer model we analyze how compression artifacts actually are perceived by a human observer. Results show superior performance of the new JP3D algorithm compared to the existing JPEG2000 algorithm.

  2. Wide-field-of-view image pickup system for multiview volumetric 3D displays using multiple RGB-D cameras

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Kakeya, Hideki

    2014-03-01

    A real-time and wide-field-of-view image pickup system for coarse integral volumetric imaging (CIVI) is realized. This system is to apply CIVI display for live action videos generated by the real-time 3D reconstruction. By using multiple RGB-D cameras from different directions, a complete surface of the objects and a wide field of views can be shown in our CIVI displays. A prototype system is constructed and it works as follows. Firstly, image features and depth data are used for a fast and accurate calibration. Secondly, 3D point cloud data are obtained by each RGB-D camera and they are all converted into the same coordinate system. Thirdly, multiview images are constructed by perspective transformation from different viewpoints. Finally, the image for each viewpoint is divided depending on the depth of each pixel for a volumetric view. The experiments show a better result than using only one RGB-D camera and the whole system works on the real-time basis.

  3. Robust volumetric change detection using mutual information with 3D fractals

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Akbari, Morris; Henning, Ronda; Pokorny, John

    2014-06-01

    We discuss a robust method for quantifying change of multi-temporal remote sensing point data in the presence of affine registration errors. Three dimensional image processing algorithms can be used to extract and model an electronic module, consisting of a self-contained assembly of electronic components and circuitry, using an ultrasound scanning sensor. Mutual information (MI) is an effective measure of change. We propose a multi-resolution 3D fractal algorithm which is a novel extension to MI or regional mutual information (RMI). Our method is called fractal mutual information (FMI). This extension efficiently takes neighborhood fractal patterns of corresponding voxels (3D pixels) into account. The goal of this system is to quantify the change in a module due to tampering and provide a method for quantitative and qualitative change detection and analysis.

  4. A 3D Approach to First Year English Education

    ERIC Educational Resources Information Center

    Zeegers, Margaret

    2013-01-01

    Purpose: The purpose of this paper is to explore the suggestive possibilities of an approach to undergraduate English teacher education that the author has called the 3D Approach--Develop professional knowledge, Display professional knowledge, Disseminate professional knowledge--in relation to a number of groups of first year pre-service teachers…

  5. Initialisation of 3D level set for hippocampus segmentation from volumetric brain MR images

    NASA Astrophysics Data System (ADS)

    Hajiesmaeili, Maryam; Dehmeshki, Jamshid; Bagheri Nakhjavanlo, Bashir; Ellis, Tim

    2014-04-01

    Shrinkage of the hippocampus is a primary biomarker for Alzheimer's disease and can be measured through accurate segmentation of brain MR images. The paper will describe the problem of initialisation of a 3D level set algorithm for hippocampus segmentation that must cope with the some challenging characteristics, such as small size, wide range of intensities, narrow width, and shape variation. In addition, MR images require bias correction, to account for additional inhomogeneity associated with the scanner technology. Due to these inhomogeneities, using a single initialisation seed region inside the hippocampus is prone to failure. Alternative initialisation strategies are explored, such as using multiple initialisations in different sections (such as the head, body and tail) of the hippocampus. The Dice metric is used to validate our segmentation results with respect to ground truth for a dataset of 25 MR images. Experimental results indicate significant improvement in segmentation performance using the multiple initialisations techniques, yielding more accurate segmentation results for the hippocampus.

  6. 3D volumetric modeling of grapevine biomass using Tripod LiDAR

    USGS Publications Warehouse

    Keightley, K.E.; Bawden, G.W.

    2010-01-01

    Tripod mounted laser scanning provides the means to generate high-resolution volumetric measures of vegetation structure and perennial woody tissue for the calculation of standing biomass in agronomic and natural ecosystems. Other than costly destructive harvest methods, no technique exists to rapidly and accurately measure above-ground perennial tissue for woody plants such as Vitis vinifera (common grape vine). Data collected from grapevine trunks and cordons were used to study the accuracy of wood volume derived from laser scanning as compared with volume derived from analog measurements. A set of 10 laser scan datasets were collected for each of 36 vines from which volume was calculated using combinations of two, three, four, six and 10 scans. Likewise, analog volume measurements were made by submerging the vine trunks and cordons in water and capturing the displaced water. A regression analysis examined the relationship between digital and non-digital techniques among the 36 vines and found that the standard error drops rapidly as additional scans are added to the volume calculation process and stabilizes at the four-view geometry with an average Pearson's product moment correlation coefficient of 0.93. Estimates of digital volumes are systematically greater than those of analog volumes and can be explained by the manner in which each technique interacts with the vine tissue. This laser scanning technique yields a highly linear relationship between vine volume and tissue mass revealing a new, rapid and non-destructive method to remotely measure standing biomass. This application shows promise for use in other ecosystems such as orchards and forests. ?? 2010 Elsevier B.V.

  7. Extraction and classification of 3D objects from volumetric CT data

    NASA Astrophysics Data System (ADS)

    Song, Samuel M.; Kwon, Junghyun; Ely, Austin; Enyeart, John; Johnson, Chad; Lee, Jongkyu; Kim, Namho; Boyd, Douglas P.

    2016-05-01

    We propose an Automatic Threat Detection (ATD) algorithm for Explosive Detection System (EDS) using our multistage Segmentation Carving (SC) followed by Support Vector Machine (SVM) classifier. The multi-stage Segmentation and Carving (SC) step extracts all suspect 3-D objects. The feature vector is then constructed for all extracted objects and the feature vector is classified by the Support Vector Machine (SVM) previously learned using a set of ground truth threat and benign objects. The learned SVM classifier has shown to be effective in classification of different types of threat materials. The proposed ATD algorithm robustly deals with CT data that are prone to artifacts due to scatter, beam hardening as well as other systematic idiosyncrasies of the CT data. Furthermore, the proposed ATD algorithm is amenable for including newly emerging threat materials as well as for accommodating data from newly developing sensor technologies. Efficacy of the proposed ATD algorithm with the SVM classifier is demonstrated by the Receiver Operating Characteristics (ROC) curve that relates Probability of Detection (PD) as a function of Probability of False Alarm (PFA). The tests performed using CT data of passenger bags shows excellent performance characteristics.

  8. The New Approach to Sport Medicine: 3-D Reconstruction

    ERIC Educational Resources Information Center

    Ince, Alparslan

    2015-01-01

    The aim of this study is to present a new approach to sport medicine. Comparative analysis of the Vertebrae Lumbales was done in sedentary group and Muay Thai athletes. It was done by acquiring three dimensional (3-D) data and models through photogrammetric methods from the Multi-detector Computerized Tomography (MDCT) images of the Vertebrae…

  9. Geospatial Modelling Approach for 3d Urban Densification Developments

    NASA Astrophysics Data System (ADS)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  10. Lattice percolation approach to 3D modeling of tissue aging

    NASA Astrophysics Data System (ADS)

    Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy

    2016-11-01

    We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.

  11. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  12. Optimized Volumetric Modulated Arc Therapy Versus 3D-CRT for Early Stage Mediastinal Hodgkin Lymphoma Without Axillary Involvement: A Comparison of Second Cancers and Heart Disease Risk

    SciTech Connect

    Filippi, Andrea Riccardo; Ragona, Riccardo; Piva, Cristina; Scafa, Davide; Fiandra, Christian; Fusella, Marco; Giglioli, Francesca Romana; Lohr, Frank; Ricardi, Umberto

    2015-05-01

    Purpose: The purpose of this study was to evaluate the risks of second cancers and cardiovascular diseases associated with an optimized volumetric modulated arc therapy (VMAT) planning solution in a selected cohort of stage I/II Hodgkin lymphoma (HL) patients treated with either involved-node or involved-site radiation therapy in comparison with 3-dimensional conformal radiation therapy (3D-CRT). Methods and Materials: Thirty-eight patients (13 males and 25 females) were included. Disease extent was mediastinum alone (n=8, 21.1%); mediastinum plus unilateral neck (n=19, 50%); mediastinum plus bilateral neck (n=11, 29.9%). Prescription dose was 30 Gy in 2-Gy fractions. Only 5 patients had mediastinal bulky disease at diagnosis (13.1%). Anteroposterior 3D-CRT was compared with a multiarc optimized VMAT solution. Lung, breast, and thyroid cancer risks were estimated by calculating a lifetime attributable risk (LAR), with a LAR ratio (LAR{sub VMAT}-to-LAR{sub 3D-CRT}) as a comparative measure. Cardiac toxicity risks were estimated by calculating absolute excess risk (AER). Results: The LAR ratio favored 3D-CRT for lung cancer induction risk in mediastinal alone (P=.004) and mediastinal plus unilateral neck (P=.02) presentations. LAR ratio for breast cancer was lower for VMAT in mediastinal plus bilateral neck presentations (P=.02), without differences for other sites. For thyroid cancer, no significant differences were observed, regardless of anatomical presentation. A significantly lower AER of cardiac (P=.038) and valvular diseases (P<.0001) was observed for VMAT regardless of disease extent. Conclusions: In a cohort of patients with favorable characteristics in terms of disease extent at diagnosis (large prevalence of nonbulky presentations without axillary involvement), optimized VMAT reduced heart disease risk with comparable risks of thyroid and breast cancer, with an increase in lung cancer induction probability. The results are however strongly influenced by

  13. Towards a 3d Spatial Urban Energy Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies

  14. Right approach to 3D modeling using CAD tools

    NASA Astrophysics Data System (ADS)

    Baddam, Mounica Reddy

    The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).

  15. Silicon-Embedding Approaches to 3-D Toroidal Inductor Fabrication

    SciTech Connect

    Yu, XH; Kim, M; Herrault, F; Ji, CH; Kim, J; Allen, MG

    2013-06-01

    This paper presents complementary-metal-oxide-semiconductor-compatible silicon-embedding techniques for on-chip integration of microelectromechanical-system devices with 3-D complex structures. By taking advantage of the "dead volume" within the bulk of the silicon wafer, functional devices with large profile can be embedded into the substrate without consuming valuable die area on the wafer surface or increasing the packaging complexity. Furthermore, through-wafer interconnects can be implemented to connect the device to the circuitry on the wafer surface. The key challenge of embedding structures within the wafer volume is processing inside deep trenches. To achieve this goal in an area-efficient manner, straight-sidewall trenches are desired, adding additional difficulty to the embedding process. Two approaches to achieve this goal are presented in this paper, i.e., a lithography-based process and a shadow-mask-based process. The lithography-based process utilizes a spray-coating technique and proximity lithography in combination with thick epoxy processing and laminated dry-film lithography. The shadow-mask-based process employs a specially designed 3-D silicon shadow mask to enable simultaneous metal patterning on both the vertical sidewall and the bottom surface of the trench during deposition, eliminating multiple lithography steps and reducing the process time. Both techniques have been demonstrated through the embedding of the topologically complex 3-D toroidal inductors into the silicon substrate for power supply on-chip (PwrSoC) applications. Embedded 3-D inductors that possess 25 turns and a diameter of 6 mm in a silicon trench of 300-mu m depth achieve overall inductances of 45-60 nH, dc resistances of 290-400 m Omega, and quality factors of 16-17.5 at 40-70 MHz.

  16. Segmentation of complex objects with non-spherical topologies from volumetric medical images using 3D livewire

    NASA Astrophysics Data System (ADS)

    Poon, Kelvin; Hamarneh, Ghassan; Abugharbieh, Rafeef

    2007-03-01

    Segmentation of 3D data is one of the most challenging tasks in medical image analysis. While reliable automatic methods are typically preferred, their success is often hindered by poor image quality and significant variations in anatomy. Recent years have thus seen an increasing interest in the development of semi-automated segmentation methods that combine computational tools with intuitive, minimal user interaction. In an earlier work, we introduced a highly-automated technique for medical image segmentation, where a 3D extension of the traditional 2D Livewire was proposed. In this paper, we present an enhanced and more powerful 3D Livewire-based segmentation approach with new features designed to primarily enable the handling of complex object topologies that are common in biological structures. The point ordering algorithm we proposed earlier, which automatically pairs up seedpoints in 3D, is improved in this work such that multiple sets of points are allowed to simultaneously exist. Point sets can now be automatically merged and split to accommodate for the presence of concavities, protrusions, and non-spherical topologies. The robustness of the method is further improved by extending the 'turtle algorithm', presented earlier, by using a turtle-path pruning step. Tests on both synthetic and real medical images demonstrate the efficiency, reproducibility, accuracy, and robustness of the proposed approach. Among the examples illustrated is the segmentation of the left and right ventricles from a T1-weighted MRI scan, where an average task time reduction of 84.7% was achieved when compared to a user performing 2D Livewire segmentation on every slice.

  17. Size-based emphysema cluster analysis on low attenuation area in 3D volumetric CT: comparison with pulmonary functional test

    NASA Astrophysics Data System (ADS)

    Lee, Minho; Kim, Namkug; Lee, Sang Min; Seo, Joon Beom; Oh, Sang Young

    2015-03-01

    To quantify low attenuation area (LAA) of emphysematous regions according to cluster size in 3D volumetric CT data of chronic obstructive pulmonary disease (COPD) patients and to compare these indices with their pulmonary functional test (PFT). Sixty patients with COPD were scanned by a more than 16-multi detector row CT scanner (Siemens Sensation 16 and 64) within 0.75mm collimation. Based on these LAA masks, a length scale analysis to estimate each emphysema LAA's size was performed as follows. At first, Gaussian low pass filter from 30mm to 1mm kernel size with 1mm interval on the mask was performed from large to small size, iteratively. Centroid voxels resistant to the each filter were selected and dilated by the size of the kernel, which was regarded as the specific size emphysema mask. The slopes of area and number of size based LAA (slope of semi-log plot) were analyzed and compared with PFT. PFT parameters including DLco, FEV1, and FEV1/FVC were significantly (all p-value< 0.002) correlated with the slopes (r-values; -0.73, 0.54, 0.69, respectively) and EI (r-values; -0.84, -0.60, -0.68, respectively). In addition, the D independently contributed regression for FEV1 and FEV1/FVC (adjust R sq. of regression study: EI only, 0.70, 0.45; EI and D, 0.71, 0.51, respectively). By the size based LAA segmentation and analysis, we evaluated the Ds of area, number, and distribution of size based LAA, which would be independent factors for predictor of PFT parameters.

  18. Urbanisation and 3d Spatial - a Geometric Approach

    NASA Astrophysics Data System (ADS)

    Duncan, E. E.; Rahman, A. Abdul

    2013-09-01

    Urbanisation creates immense competition for space, this may be attributed to an increase in population owing to domestic and external tourism. Most cities are constantly exploring all avenues in maximising its limited space. Hence, urban or city authorities need to plan, expand and use such three dimensional (3D) space above, on and below the city space. Thus, difficulties in property ownership and the geometric representation of the 3D city space is a major challenge. This research, investigates the concept of representing a geometric topological 3D spatial model capable of representing 3D volume parcels for man-made constructions above and below the 3D surface volume parcel. A review of spatial data models suggests that the 3D TIN (TEN) model is significant and can be used as a unified model. The concepts, logical and physical models of 3D TIN for 3D volumes using tetrahedrons as the base geometry is presented and implemented to show man-made constructions above and below the surface parcel within a user friendly graphical interface. Concepts for 3D topology and 3D analysis are discussed. Simulations of this model for 3D cadastre are implemented. This model can be adopted by most countries to enhance and streamline geometric 3D property ownership for urban centres. 3D TIN concept for spatial modelling can be adopted for the LA_Spatial part of the Land Administration Domain Model (LADM) (ISO/TC211, 2012), this satisfies the concept of 3D volumes.

  19. Objective 3D face recognition: Evolution, approaches and challenges.

    PubMed

    Smeets, Dirk; Claes, Peter; Vandermeulen, Dirk; Clement, John Gerald

    2010-09-10

    Face recognition is a natural human ability and a widely accepted identification and authentication method. In modern legal settings, a lot of credence is placed on identifications made by eyewitnesses. Consequently these are based on human perception which is often flawed and can lead to situations where identity is disputed. Therefore, there is a clear need to secure identifications in an objective way based on anthropometric measures. Anthropometry has existed for many years and has evolved with each advent of new technology and computing power. As a result of this, face recognition methodology has shifted from a purely 2D image-based approach to the use of 3D facial shape. However, one of the main challenges still remaining is the non-rigid structure of the face, which can change permanently over varying time-scales and briefly with facial expressions. The majority of face recognition methods have been developed by scientists with a very technical background such as biometry, pattern recognition and computer vision. This article strives to bridge the gap between these communities and the forensic science end-users. A concise review of face recognition using 3D shape is given. Methods using 3D shape applied to data embodying facial expressions are tabulated for reference. From this list a categorization of different strategies to deal with expressions is presented. The underlying concepts and practical issues relating to the application of each strategy are given, without going into technical details. The discussion clearly articulates the justification to establish archival, reference databases to compare and evaluate different strategies. PMID:20395086

  20. Objective 3D face recognition: Evolution, approaches and challenges.

    PubMed

    Smeets, Dirk; Claes, Peter; Vandermeulen, Dirk; Clement, John Gerald

    2010-09-10

    Face recognition is a natural human ability and a widely accepted identification and authentication method. In modern legal settings, a lot of credence is placed on identifications made by eyewitnesses. Consequently these are based on human perception which is often flawed and can lead to situations where identity is disputed. Therefore, there is a clear need to secure identifications in an objective way based on anthropometric measures. Anthropometry has existed for many years and has evolved with each advent of new technology and computing power. As a result of this, face recognition methodology has shifted from a purely 2D image-based approach to the use of 3D facial shape. However, one of the main challenges still remaining is the non-rigid structure of the face, which can change permanently over varying time-scales and briefly with facial expressions. The majority of face recognition methods have been developed by scientists with a very technical background such as biometry, pattern recognition and computer vision. This article strives to bridge the gap between these communities and the forensic science end-users. A concise review of face recognition using 3D shape is given. Methods using 3D shape applied to data embodying facial expressions are tabulated for reference. From this list a categorization of different strategies to deal with expressions is presented. The underlying concepts and practical issues relating to the application of each strategy are given, without going into technical details. The discussion clearly articulates the justification to establish archival, reference databases to compare and evaluate different strategies.

  1. Analysis of direct clinical consequences of MLC positional errors in volumetric-modulated arc therapy using 3D dosimetry system.

    PubMed

    Nithiyanantham, Karthikeyan; Mani, Ganesh K; Subramani, Vikraman; Mueller, Lutz; Palaniappan, Karrthick K; Kataria, Tejinder

    2015-09-08

    In advanced, intensity-modulated external radiotherapy facility, the multileaf collimator has a decisive role in the beam modulation by creating multiple segments or dynamically varying field shapes to deliver a uniform dose distribution to the target with maximum sparing of normal tissues. The position of each MLC leaf has become more critical for intensity-modulated delivery (step-and-shoot IMRT, dynamic IMRT, and VMAT) compared to 3D CRT, where it defines only field boundaries. We analyzed the impact of the MLC positional errors on the dose distribution for volumetric-modulated arc therapy, using a 3D dosimetry system. A total of 15 VMAT cases, five each for brain, head and neck, and prostate cases, were retrospectively selected for the study. All the plans were generated in Monaco 3.0.0v TPS (Elekta Corporation, Atlanta, GA) and delivered using Elekta Synergy linear accelerator. Systematic errors of +1, +0.5, +0.3, 0, -1, -0.5, -0.3 mm were introduced in the MLC bank of the linear accelerator and the impact on the dose distribution of VMAT delivery was measured using the COMPASS 3D dosim-etry system. All the plans were created using single modulated arcs and the dose calculation was performed using a Monte Carlo algorithm in a grid size of 3 mm. The clinical endpoints D95%, D50%, D2%, and Dmax,D20%, D50% were taken for the evaluation of the target and critical organs doses, respectively. A significant dosimetric effect was found for many cases even with 0.5 mm of MLC positional errors. The average change of dose D 95% to PTV for ± 1 mm, ± 0.5 mm, and ±0.3mm was 5.15%, 2.58%, and 0.96% for brain cases; 7.19%, 3.67%, and 1.56% for head and neck cases; and 8.39%, 4.5%, and 1.86% for prostate cases, respectively. The average deviation of dose Dmax was 5.4%, 2.8%, and 0.83% for brainstem in brain cases; 8.2%, 4.4%, and 1.9% for spinal cord in H&N; and 10.8%, 6.2%, and 2.1% for rectum in prostate cases, respectively. The average changes in dose followed a linear

  2. Registration of 3D spectral OCT volumes combining ICP with a graph-based approach

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.; Sonka, Milan

    2012-02-01

    The introduction of spectral Optical Coherence Tomography (OCT) scanners has enabled acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D-OCT is used to detect and manage eye diseases such as glaucoma and age-related macular degeneration. To follow-up patients over time, image registration is a vital tool to enable more precise, quantitative comparison of disease states. In this work we present a 3D registrationmethod based on a two-step approach. In the first step we register both scans in the XY domain using an Iterative Closest Point (ICP) based algorithm. This algorithm is applied to vessel segmentations obtained from the projection image of each scan. The distance minimized in the ICP algorithm includes measurements of the vessel orientation and vessel width to allow for a more robust match. In the second step, a graph-based method is applied to find the optimal translation along the depth axis of the individual A-scans in the volume to match both scans. The cost image used to construct the graph is based on the mean squared error (MSE) between matching A-scans in both images at different translations. We have applied this method to the registration of Optic Nerve Head (ONH) centered 3D-OCT scans of the same patient. First, 10 3D-OCT scans of 5 eyes with glaucoma imaged in vivo were registered for a qualitative evaluation of the algorithm performance. Then, 17 OCT data set pairs of 17 eyes with known deformation were used for quantitative assessment of the method's robustness.

  3. 3D imaging of soil pore network: two different approaches

    NASA Astrophysics Data System (ADS)

    Matrecano, M.; Di Matteo, B.; Mele, G.; Terribile, F.

    2009-04-01

    system but on less noisy images. SSAT system showed more flexibility in terms of sample size although both techniques allowed investigation on REVs (Representative Elementary Volumes) for most of macroscopic properties describing soil processes. Morover, undoubted advantages of not destructivity and ease sample preparation for the Skysan 1172 are balanced by lower overall costs for the SSAT and its potential of producing 3D representation of soil features different from the simple solid/porous phases. Both approaches allow to use exactly the same image analysis procedures on the reconstructed 3D images although require some specific pre-processing treatments.

  4. Development of a temporal multiplexed 3D beam-scanning Lissajous trajectory microscope for rapid multimodal volumetric imaging

    NASA Astrophysics Data System (ADS)

    Newman, Justin A.; Sullivan, Shane Z.; Dinh, Janny; Sarkar, Sreya; Simpson, Garth J.

    2016-03-01

    A beam-scanning microscope is described based on a temporally multiplexed Lissajous trajectory for achieving 1 kHz frame rate 3D imaging. The microscope utilizes two fast-scan resonant mirrors to direct the optical beam on a circuitous, Lissajous trajectory through the field of view. Acquisition of two simultaneous focal planes is achieved by implementation of an optical delay line, producing a second incident beam at a different focal plane relative to the initial incident beam. High frame rates are achieved by separating the full time-domain data into shorter sub-trajectories resulting in undersampling of the field of view. A model-based image reconstruction (MBIR) 3D in-painting algorithm is utilized for interpolating the missing data to recover full images. The MBIR algorithm uses a maximum a posteriori estimation with a generalized Gaussian Markov random field prior model for image interpolation. Because images are acquired using photomultiplier tubes or photodiodes, parallelization for multi-channel imaging is straightforward. Preliminary results obtained using a Lissajous trajectory beam-scanning approach coupled with temporal multiplexing by the implementation of an optical delay line demonstrate the ability to acquire 2 distinct focal planes simultaneously at frame rates >450 Hz for full 512 × 512 images. The use of multi-channel data acquisition cards allows for simultaneous multimodal image acquisition with perfect image registry between all imaging modalities. Also discussed here is the implementation of Lissajous trajectory beam-scanning on commercially available microscope hardware.

  5. An approach towards 3D sensitive AFM cantilevers

    NASA Astrophysics Data System (ADS)

    Koops, Richard; Fokkema, Vincent

    2014-04-01

    The atomic force microscope (AFM) tapping mode is a highly sensitive local probing technique that is very useful to study and measure surface properties down to the atomic scale. The tapping mode is mostly implemented using the resonance of the first bending mode of the cantilever and therefore provides sensitivity mainly along the direction of this oscillation. Driven by the semiconductor industry, there is an increasing need for accurate measurements of nanoscale structures for side wall characterization by AFM that requires additional sensitivity in the lateral direction. The conventional tapping mode has been augmented by various authors, for example by tilting the cantilever system (Cho et al 2011 Rev. Sci. Instrum. 82 023707) to access the sidewall or using a torsion mode (Dai et al 2011 Meas. Sci. Technol. 22 094009) of the cantilever to provide additional lateral sensitivity. These approaches however trade lateral sensitivity for vertical sensitivity or still lack sensitivity in the remaining lateral direction. We present an approach towards true 3D sensitivity for AFM cantilevers based on simultaneous excitation and optical detection of multiple cantilever resonance modes along three axes. Tuning the excitation of the cantilever to specific frequencies provides a mechanism to select only those cantilever modes that have the desired characteristics. Additionally, cantilever engineering has been used to design and create a substructure within the cantilever that has been optimized for specific resonance behavior around 4 MHz. In contrast to the conventional approach of using a piezo to actuate the cantilever modulation, we present results on photo-thermal excitation using an intensity modulated low-power laser source. By tightly focusing the excitation spot on the cantilever we were able to attain a deflection efficiency of 0.7 nm µW-1 for the first bending mode. The presented approach results in an efficient all optical excitation and deflection detection

  6. [Initial research of one-beam pumping up-conversion 3D volumetric display based on Er:ZBLAN glass].

    PubMed

    Chen, Xiao-bo; Li, Mei-xian; Wen, Ou; Zhang, Fu-chu; Song, Zeng-fu

    2003-06-01

    This paper investigates one-beam pumping up-conversion three-dimensional volumetric display, which is based on a Er:ZBLAN fluoride glass. The light-length of the facula of one-beam up-conversion luminescence was studied by a 966 nm semiconductor laser. The up-conversion luminescence spectrum was also obtained. It was found that the property of one-beam pumping three-dimensional volumetric display can be improved significantly by 1.52 microns LD laser multi-photon up-conversion, this finding has not been reported.

  7. True-Depth: a new type of true 3D volumetric display system suitable for CAD, medical imaging, and air-traffic control

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1998-04-01

    Floating Images, Inc. is developing a new type of volumetric monitor capable of producing a high-density set of points in 3D space. Since the points of light actually exist in space, the resulting image can be viewed with continuous parallax, both vertically and horizontally, with no headache or eyestrain. These 'real' points in space are always viewed with a perfect match between accommodation and convergence. All scanned points appear to the viewer simultaneously, making this display especially suitable for CAD, medical imaging, air-traffic control, and various military applications. This system has the potential to display imagery so accurately that a ruler could be placed within the aerial image to provide precise measurement in any direction. A special virtual imaging arrangement allows the user to superimpose 3D images on a solid object, making the object look transparent. This is particularly useful for minimally invasive surgery in which the internal structure of a patient is visible to a surgeon in 3D. Surgical procedures can be carried out through the smallest possible hole while the surgeon watches the procedure from outside the body as if the patient were transparent. Unlike other attempts to produce volumetric imaging, this system uses no massive rotating screen or any screen at all, eliminating down time due to breakage and possible danger due to potential mechanical failure. Additionally, it is also capable of displaying very large images.

  8. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy

    SciTech Connect

    Tsai, Tsung-Yuan; Lu, Tung-Wu; Chen, Chung-Ming; Kuo, Mei-Ying; Hsu, Horng-Chaung

    2010-03-15

    Purpose: Accurate measurement of the three-dimensional (3D) rigid body and surface kinematics of the natural human knee is essential for many clinical applications. Existing techniques are limited either in their accuracy or lack more realistic experimental evaluation of the measurement errors. The purposes of the study were to develop a volumetric model-based 2D to 3D registration method, called the weighted edge-matching score (WEMS) method, for measuring natural knee kinematics with single-plane fluoroscopy to determine experimentally the measurement errors and to compare its performance with that of pattern intensity (PI) and gradient difference (GD) methods. Methods: The WEMS method gives higher priority to matching of longer edges of the digitally reconstructed radiograph and fluoroscopic images. The measurement errors of the methods were evaluated based on a human cadaveric knee at 11 flexion positions. Results: The accuracy of the WEMS method was determined experimentally to be less than 0.77 mm for the in-plane translations, 3.06 mm for out-of-plane translation, and 1.13 deg. for all rotations, which is better than that of the PI and GD methods. Conclusions: A new volumetric model-based 2D to 3D registration method has been developed for measuring 3D in vivo kinematics of natural knee joints with single-plane fluoroscopy. With the equipment used in the current study, the accuracy of the WEMS method is considered acceptable for the measurement of the 3D kinematics of the natural knee in clinical applications.

  9. Metrological verification of 3D scanners: a preliminary approach

    NASA Astrophysics Data System (ADS)

    Anchini, R.; Di Leo, G.; Liguori, C.; Paolillo, A.; Pietrosanto, A.; Strazzullo, G.

    2007-01-01

    The paper deals with the metrological characterization of 3D scanners, and proposes a procedure for their experimental verification in accord with the suggestions of the ISO GUM. The procedure is based on the application of a statistical method for the evaluation of the standard uncertainty to the results of a comparison with a Coordinate Measuring Machine (CMM). Finally the results of the experimental verification of a fringe pattern system are reported and discussed in detail.

  10. Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy

    SciTech Connect

    Haertl, Petra M.; Pohl, Fabian; Weidner, Karin; Groeger, Christian; Koelbl, Oliver; Dobler, Barbara

    2013-04-01

    This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to the average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D{sub 15%} of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D{sub 15%} was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D{sub 10%} of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes.

  11. High-dose radiotherapy in inoperable nonsmall cell lung cancer: comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy.

    PubMed

    Bree, Ingrid de; van Hinsberg, Mariëlle G E; van Veelen, Lieneke R

    2012-01-01

    Conformal 3D radiotherapy (3D-CRT) combined with chemotherapy for inoperable non-small cell lung cancer (NSCLC) to the preferable high dose is often not achievable because of dose-limiting organs. This reduces the probability of regional tumor control. Therefore, the surplus value of using intensity-modulated radiation therapy (IMRT) techniques, specifically volumetric modulated arc therapy (RapidArc [RA]) and dynamic IMRT (d-IMRT) has been investigated. RA and d-IMRT plans were compared with 3D-CRT treatment plans for 20 patients eligible for concurrent high-dose chemoradiotherapy, in whom a dose of 60 Gy was not achievable. Comparison of dose delivery in the target volume and organs at risk was carried out by evaluating 3D dose distributions and dose-volume histograms. Quality of the dose distribution was assessed using the inhomogeneity and conformity index. For most patients, a higher dose to the target volume can be delivered using RA or d-IMRT; in 15% of the patients a dose ≥60 Gy was possible. Both IMRT techniques result in a better conformity of the dose (p < 0.001). There are no significant differences in homogeneity of dose in the target volume. IMRT techniques for NSCLC patients allow higher dose to the target volume, thus improving regional tumor control. PMID:22459649

  12. The effect of CT scanner parameters and 3D volume rendering techniques on the accuracy of linear, angular, and volumetric measurements of the mandible

    PubMed Central

    Whyms, B.J.; Vorperian, H.K.; Gentry, L.R.; Schimek, E.M.; Bersu, E.T.; Chung, M.K.

    2013-01-01

    Objectives This study investigates the effect of scanning parameters on the accuracy of measurements from three-dimensional multi-detector computed tomography (3D-CT) mandible renderings. A broader range of acceptable parameters can increase the availability of CT studies for retrospective analysis. Study Design Three human mandibles and a phantom object were scanned using 18 combinations of slice thickness, field of view, and reconstruction algorithm and three different threshold-based segmentations. Measurements of 3D-CT models and specimens were compared. Results Linear and angular measurements were accurate, irrespective of scanner parameters or rendering technique. Volume measurements were accurate with a slice thickness of 1.25 mm, but not 2.5 mm. Surface area measurements were consistently inflated. Conclusions Linear, angular and volumetric measurements of mandible 3D-CT models can be confidently obtained from a range of parameters and rendering techniques. Slice thickness is the primary factor affecting volume measurements. These findings should also apply to 3D rendering using cone-beam-CT. PMID:23601224

  13. Diagonal Slices of 3D Young Diagrams in the Approach of Maya Diagrams

    NASA Astrophysics Data System (ADS)

    Cai, Li-Qiang; Wang, Li-Fang; Wu, Ke; Yang, Jie

    2014-09-01

    According to the correspondence between 2D Young diagrams and Maya diagrams and the relation between 2D and 3D Young diagrams, we construct 3D Young diagrams in the approach of Maya diagrams. Moreover, we formulate the generating function of 3D Young diagrams, which is the MacMahon function in terms of Maya diagrams.

  14. SU-E-T-624: Quantitative Evaluation of 2D Versus 3D Dosimetry for Stereotactic Volumetric Modulated Arc Delivery Using COMPASS

    SciTech Connect

    Vikraman, S; Karrthick, K; Rajesh, T; Sambasivaselli, R; Senniandanvar, V; Kataria, T; Manigandan, D; Karthikeyan, N; Muthukumaran, M

    2014-06-15

    Purpose: The purpose of this study was to evaluate quantitatively 2D versus 3D dosimetry for stereotactic volumetric modulated arc delivery using COMPASS with 2D array. Methods: Twenty-five patients CT images and RT structures of different sites like brain, head and neck, thorax, abdomen and spine were taken from Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in Cyberknife. For each patient, linac based VMAT stereotactic plans were generated in Monaco TPS v 3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5-20Gy/fraction.TPS calculated VMAT plan delivery accuracy was quantitatively evaluated with COMPASS measured dose and calculated dose based on DVH metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using Multicube. Results: For each site, D{sub 9} {sub 5} was achieved with 100% of prescription dose with maximum 0.05SD. Conformity index (CI) was observed closer to 1.15 in all cases. Maximum deviation of 2.62 % was observed for D{sub 9} {sub 5} when compared TPS versus COMPASS measured. Considerable deviations were observed in head and neck cases compare to other sites. The maximum mean and standard deviation for D{sub 9} {sub 5}, average target dose and average gamma were -0.78±1.72, -1.10±1.373 and 0.39±0.086 respectively. Numbers of pixels passing 2D fluence verification were observed as a mean of 99.36% ±0.455 SD with 3% dose difference and 3mm DTA. For critical organs in head and neck cases, significant dose differences were observed in 3D dosimetry while the target doses were matched well within limit in both 2D and 3D dosimetry. Conclusion: The quantitative evaluations of 2D versus 3D dosimetry for stereotactic volumetric modulated plans showed the potential of highlighting the delivery errors. This study reveals that COMPASS 3D dosimetry is an effective tool for patient

  15. Evaluation of 3D pre-treatment verification for volumetric modulated arc therapy plan in head region

    NASA Astrophysics Data System (ADS)

    Ruangchan, S.; Oonsiri, S.; Suriyapee, S.

    2016-03-01

    The development of pre-treatment QA tools contributes to the three dimension (3D) dose verification using the calculation software with the measured planar dose distribution. This research is aimed to evaluate the Sun Nuclear 3DVH software with Thermo luminescence dosimeter (TLD) measurement. The two VMAT patient plans (2.5 arcs) of 6 MV photons with different PTV locations were transferred to the Rando phantom images. The PTV of the first plan located in homogeneous area and vice versa in the second plan. For treatment planning process, the Rando phantom images were employed in optimization and calculation with the PTV, brain stem, lens and TLD position contouring. The verification plans were created, transferred to the ArcCHECK for measurement and calculated the 3D dose using 3DVH software. The range of the percent dose differences in both PTV and organ at risk (OAR) between TLD and 3DVH software of the first and the second plans were -2.09 to 3.87% and -1.39 to 6.88%, respectively. The mean percent dose differences for the PTV were 1.62% and 3.93% for the first and the second plans, respectively. In conclusion, the 3DVH software results show good agreement with TLD when the tumor located in the homogeneous area.

  16. Combining terrestrial stereophotogrammetry, DGPS and GIS-based 3D voxel modelling in the volumetric recording of archaeological features

    NASA Astrophysics Data System (ADS)

    Orengo, Hector A.

    2013-02-01

    Archaeological recording of structures and excavations in high mountain areas is greatly hindered by the scarce availability of both space, to transport material, and time. The Madriu-Perafita-Claror, InterAmbAr and PCR Mont Lozère high mountain projects have documented hundreds of archaeological structures and carried out many archaeological excavations. These projects required the development of a technique which could record both structures and the process of an archaeological excavation in a fast and reliable manner. The combination of DGPS, close-range terrestrial stereophotogrammetry and voxel based GIS modelling offered a perfect solution since it helped in developing a strategy which would obtain all the required data on-site fast and with a high degree of precision. These data are treated off-site to obtain georeferenced orthoimages covering both the structures and the excavation process from which site and excavation plans can be created. The proposed workflow outputs also include digital surface models and volumetric models of the excavated areas from which topography and archaeological profiles were obtained by voxel-based GIS procedures. In this way, all the graphic recording required by standard archaeological practices was met.

  17. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    SciTech Connect

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  18. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    PubMed

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. PMID:25865822

  19. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    PubMed

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor.

  20. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    SciTech Connect

    Mishra, Pankaj Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H.; Li, Ruijiang

    2014-08-15

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model

  1. 3-D volumetric computed tomographic scoring as an objective outcome measure for chronic rhinosinusitis: Clinical correlations and comparison to Lund-Mackay scoring

    PubMed Central

    Pallanch, John; Yu, Lifeng; Delone, David; Robb, Rich; Holmes, David R.; Camp, Jon; Edwards, Phil; McCollough, Cynthia H.; Ponikau, Jens; Dearking, Amy; Lane, John; Primak, Andrew; Shinkle, Aaron; Hagan, John; Frigas, Evangelo; Ocel, Joseph J.; Tombers, Nicole; Siwani, Rizwan; Orme, Nicholas; Reed, Kurtis; Jerath, Nivedita; Dhillon, Robinder; Kita, Hirohito

    2014-01-01

    Background We aimed to test the hypothesis that 3-D volume-based scoring of computed tomographic (CT) images of the paranasal sinuses was superior to Lund-Mackay CT scoring of disease severity in chronic rhinosinusitis (CRS). We determined correlation between changes in CT scores (using each scoring system) with changes in other measures of disease severity (symptoms, endoscopic scoring, and quality of life) in patients with CRS treated with triamcinolone. Methods The study group comprised 48 adult subjects with CRS. Baseline symptoms and quality of life were assessed. Endoscopy and CT scans were performed. Patients received a single systemic dose of intramuscular triamcinolone and were reevaluated 1 month later. Strengths of the correlations between changes in CT scores and changes in CRS signs and symptoms and quality of life were determined. Results We observed some variability in degree of improvement for the different symptom, endoscopic, and quality-of-life parameters after treatment. Improvement of parameters was significantly correlated with improvement in CT disease score using both CT scoring methods. However, volumetric CT scoring had greater correlation with these parameters than Lund-Mackay scoring. Conclusion Volumetric scoring exhibited higher degree of correlation than Lund-Mackay scoring when comparing improvement in CT score with improvement in score for symptoms, endoscopic exam, and quality of life in this group of patients who received beneficial medical treatment for CRS. PMID:24106202

  2. Lightning Modelling: From 3D to Circuit Approach

    NASA Astrophysics Data System (ADS)

    Moussa, H.; Abdi, M.; Issac, F.; Prost, D.

    2012-05-01

    The topic of this study is electromagnetic environment and electromagnetic interferences (EMI) effects, specifically the modelling of lightning indirect effects [1] on aircraft electrical systems present on deported and highly exposed equipments, such as nose landing gear (NLG) and nacelle, through a circuit approach. The main goal of the presented work, funded by a French national project: PREFACE, is to propose a simple equivalent electrical circuit to represent a geometrical structure, taking into account mutual, self inductances, and resistances, which play a fundamental role in the lightning current distribution. Then this model is intended to be coupled to a functional one, describing a power train chain composed of: a converter, a shielded power harness and a motor or a set of resistors used as a load for the converter. The novelty here, is to provide a pre-sizing qualitative approach allowing playing on integration in pre-design phases. This tool intends to offer a user-friendly way for replying rapidly to calls for tender, taking into account the lightning constraints. Two cases are analysed: first, a NLG that is composed of tubular pieces that can be easily approximated by equivalent cylindrical straight conductors. Therefore, passive R, L, M elements of the structure can be extracted through analytical engineer formulas such as those implemented in the partial element equivalent circuit (PEEC) [2] technique. Second, the same approach is intended to be applied on an electrical de-icing nacelle sub-system.

  3. Feasibility of Using Volumetric Contrast-Enhanced Ultrasound with a 3-D Transducer to Evaluate Therapeutic Response after Targeted Therapy in Rabbit Hepatic VX2 Carcinoma.

    PubMed

    Kim, Jeehyun; Kim, Jung Hoon; Yoon, Soon Ho; Choi, Won Seok; Kim, Young Jae; Han, Joon Koo; Choi, Byung-Ihn

    2015-12-01

    The aim of this study was to assess the feasibility of using dynamic contrast-enhanced ultrasound (DCE-US) with a 3-D transducer to evaluate therapeutic responses to targeted therapy. Rabbits with hepatic VX2 carcinomas, divided into a treatment group (n = 22, 30 mg/kg/d sorafenib) and a control group (n = 13), were evaluated with DCE-US using 2-D and 3-D transducers and computed tomography (CT) perfusion imaging at baseline and 1 d after the first treatment. Perfusion parameters were collected, and correlations between parameters were analyzed. In the treatment group, both volumetric and 2-D DCE-US perfusion parameters, including peak intensity (33.2 ± 19.9 vs. 16.6 ± 10.7, 63.7 ± 20.0 vs. 30.1 ± 19.8), slope (15.3 ± 12.4 vs. 5.7 ± 4.5, 37.3 ± 20.4 vs. 15.7 ± 13.0) and area under the curve (AUC; 1004.1 ± 560.3 vs. 611.4 ± 421.1, 1332.2 ± 708.3 vs. 670.4 ± 388.3), had significantly decreased 1 d after the first treatment (p = 0.00). In the control group, 2-D DCE-US revealed that peak intensity, time to peak and slope had significantly changed (p < 0.05); however, volumetric DCE-US revealed that peak intensity, time-intensity AUC, AUC during wash-in and AUC during wash-out had significantly changed (p = 0.00). CT perfusion imaging parameters, including blood flow, blood volume and permeability of the capillary vessel surface, had significantly decreased in the treatment group (p = 0.00); however, in the control group, peak intensity and blood volume had significantly increased (p = 0.00). It is feasible to use DCE-US with a 3-D transducer to predict early therapeutic response after targeted therapy because perfusion parameters, including peak intensity, slope and AUC, significantly decreased, which is similar to the trend observed for 2-D DCE-US and CT perfusion imaging parameters. PMID:26365926

  4. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    SciTech Connect

    Walker, Amy Metcalfe, Peter; Liney, Gary; Holloway, Lois; Dowling, Jason; Rivest-Henault, David

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through

  5. 3D Lorentzian loop quantum gravity and the spinor approach

    NASA Astrophysics Data System (ADS)

    Girelli, Florian; Sellaroli, Giuseppe

    2015-12-01

    We consider the generalization of the "spinor approach" to the Lorentzian case, in the context of three-dimensional loop quantum gravity with cosmological constant Λ =0 . The key technical tool that allows this generalization is the recoupling theory between unitary infinite-dimensional representations and nonunitary finite-dimensional ones, obtained in the process of generalizing the Wigner-Eckart theorem to SU(1,1). We use SU(1,1) tensor operators to build observables and a solvable quantum Hamiltonian constraint, analogous to the one introduced by V. Bonzom and his collaborators in the Euclidean case (with both Λ =0 and Λ ≠0 ). We show that the Lorentzian Ponzano-Regge amplitude is the solution of the quantum Hamiltonian constraint by recovering the Biedenharn-Elliott relation [generalized to the case where unitary and nonunitary SU(1,1) representations are coupled to each other]. Our formalism is sufficiently general that both the Lorentzian and the Euclidean case can be recovered (with Λ =0 ).

  6. A Featureless Approach to 3D Polyhedral Building Modeling from Aerial Images

    PubMed Central

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  7. A featureless approach to 3D polyhedral building modeling from aerial images.

    PubMed

    Hammoudi, Karim; Dornaika, Fadi

    2011-01-01

    This paper presents a model-based approach for reconstructing 3D polyhedral building models from aerial images. The proposed approach exploits some geometric and photometric properties resulting from the perspective projection of planar structures. Data are provided by calibrated aerial images. The novelty of the approach lies in its featurelessness and in its use of direct optimization based on image rawbrightness. The proposed framework avoids feature extraction and matching. The 3D polyhedral model is directly estimated by optimizing an objective function that combines an image-based dissimilarity measure and a gradient score over several aerial images. The optimization process is carried out by the Differential Evolution algorithm. The proposed approach is intended to provide more accurate 3D reconstruction than feature-based approaches. Fast 3D model rectification and updating can take advantage of the proposed method. Several results and evaluations of performance from real and synthetic images show the feasibility and robustness of the proposed approach. PMID:22346575

  8. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  9. Framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms in conjunction with 3D landmark localization and registration

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Hoegen, Philipp; Liao, Wei; Müller-Eschner, Matthias; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik; Rohr, Karl

    2016-03-01

    We introduce a framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms. Phantoms are designed using a CAD system and created with a 3D printer, and comprise realistic shapes including branches and pathologies such as abdominal aortic aneurysms (AAA). To transfer ground truth information to the 3D image coordinate system, we use a landmark-based registration scheme utilizing fiducial markers integrated in the phantom design. For accurate 3D localization of the markers we developed a novel 3D parametric intensity model that is directly fitted to the markers in the images. We also performed a quantitative evaluation of different vessel segmentation approaches for a phantom of an AAA.

  10. Optimization approaches to volumetric modulated arc therapy planning

    SciTech Connect

    Unkelbach, Jan Bortfeld, Thomas; Craft, David; Alber, Markus; Bangert, Mark; Bokrantz, Rasmus; Chen, Danny; Li, Ruijiang; Xing, Lei; Men, Chunhua; Nill, Simeon; Papp, Dávid; Romeijn, Edwin; Salari, Ehsan

    2015-03-15

    Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed.

  11. A simple approach for 3D reconstruction of the spine from biplanar radiography

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Shi, Xinling; Lv, Liang; Guo, Fei; Zhang, Yufeng

    2014-04-01

    This paper proposed a simple approach for 3D spinal reconstruction from biplanar radiography. The proposed reconstruction consisted in reconstructing the 3D central curve of the spine based on the epipolar geometry and automatically aligning vertebrae under the constraint of this curve. The vertebral orientations were adjusted by matching the projections of the 3D pedicles with the 2D pedicles in biplanar radiographs. The user interaction time was within one minute for a thoracic spine. Sixteen pairs of radiographs of a thoracic spinal model were used to evaluate the precision and accuracy. The precision was within 3.1 mm for the location and 3.5° for the orientation. The accuracy was within 3.5 mm for the location and 3.9° for the orientation. These results demonstrate that this approach can be a promising tool to obtain the 3D spinal geometry with acceptable user interactions in scoliotic clinics.

  12. A new neural net approach to robot 3D perception and visuo-motor coordination

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  13. General Purpose 2D and 3D Similarity Approach to Identify hERG Blockers.

    PubMed

    Schyman, Patric; Liu, Ruifeng; Wallqvist, Anders

    2016-01-25

    Screening compounds for human ether-à-go-go-related gene (hERG) channel inhibition is an important component of early stage drug development and assessment. In this study, we developed a high-confidence (p-value < 0.01) hERG prediction model based on a combined two-dimensional (2D) and three-dimensional (3D) modeling approach. We developed a 3D similarity conformation approach (SCA) based on examining a limited fixed number of pairwise 3D similarity scores between a query molecule and a set of known hERG blockers. By combining 3D SCA with 2D similarity ensemble approach (SEA) methods, we achieved a maximum sensitivity in hERG inhibition prediction with an accuracy not achieved by either method separately. The combined model achieved 69% sensitivity and 95% specificity on an independent external data set. Further validation showed that the model correctly picked up documented hERG inhibition or interactions among the Food and Drug Administration- approved drugs with the highest similarity scores-with 18 of 20 correctly identified. The combination of ascertaining 2D and 3D similarity of compounds allowed us to synergistically use 2D fingerprint matching with 3D shape and chemical complementarity matching. PMID:26718126

  14. General Purpose 2D and 3D Similarity Approach to Identify hERG Blockers.

    PubMed

    Schyman, Patric; Liu, Ruifeng; Wallqvist, Anders

    2016-01-25

    Screening compounds for human ether-à-go-go-related gene (hERG) channel inhibition is an important component of early stage drug development and assessment. In this study, we developed a high-confidence (p-value < 0.01) hERG prediction model based on a combined two-dimensional (2D) and three-dimensional (3D) modeling approach. We developed a 3D similarity conformation approach (SCA) based on examining a limited fixed number of pairwise 3D similarity scores between a query molecule and a set of known hERG blockers. By combining 3D SCA with 2D similarity ensemble approach (SEA) methods, we achieved a maximum sensitivity in hERG inhibition prediction with an accuracy not achieved by either method separately. The combined model achieved 69% sensitivity and 95% specificity on an independent external data set. Further validation showed that the model correctly picked up documented hERG inhibition or interactions among the Food and Drug Administration- approved drugs with the highest similarity scores-with 18 of 20 correctly identified. The combination of ascertaining 2D and 3D similarity of compounds allowed us to synergistically use 2D fingerprint matching with 3D shape and chemical complementarity matching.

  15. A hybrid approach for addressing ring flexibility in 3D database searching.

    PubMed

    Sadowski, J

    1997-01-01

    A hybrid approach for flexible 3D database searching is presented that addresses the problem of ring flexibility. It combines the explicit storage of up to 25 multiple conformations of rings, with up to eight atoms, generated by the 3D structure generator CORINA with the power of a torsional fitting technique implemented in the 3D database system UNITY. A comparison with the original UNITY approach, using a database with about 130,000 entries and five different pharmacophore queries, was performed. The hybrid approach scored, on an average, 10-20% more hits than the reference run. Moreover, specific problems with unrealistic hit geometries produced by the original approach can be excluded. In addition, the influence of the maximum number of ring conformations per molecule was investigated. An optimal number of 10 conformations per molecule is recommended.

  16. Approach to Constructing 3d Virtual Scene of Irrigation Area Using Multi-Source Data

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Dou, M.; Wang, J.; Zhang, S.; Chen, X.

    2015-10-01

    For an irrigation area that is often complicated by various 3D artificial ground features and natural environment, disadvantages of traditional 2D GIS in spatial data representation, management, query, analysis and visualization is becoming more and more evident. Building a more realistic 3D virtual scene is thus especially urgent for irrigation area managers and decision makers, so that they can carry out various irrigational operations lively and intuitively. Based on previous researchers' achievements, a simple, practical and cost-effective approach was proposed in this study, by adopting3D geographic information system (3D GIS), remote sensing (RS) technology. Based on multi-source data such as Google Earth (GE) high-resolution remote sensing image, ASTER G-DEM, hydrological facility maps and so on, 3D terrain model and ground feature models were created interactively. Both of the models were then rendered with texture data and integrated under ArcGIS platform. A vivid, realistic 3D virtual scene of irrigation area that has a good visual effect and possesses primary GIS functions about data query and analysis was constructed.Yet, there is still a long way to go for establishing a true 3D GIS for the irrigation are: issues of this study were deeply discussed and future research direction was pointed out in the end of the paper.

  17. Hybrid atlas-based and image-based approach for segmenting 3D brain MRIs

    NASA Astrophysics Data System (ADS)

    Bueno, Gloria; Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2001-07-01

    This work is a contribution to the problem of localizing key cerebral structures in 3D MRIs and its quantitative evaluation. In pursuing it, the cooperation between an image-based segmentation method and a hierarchical deformable registration approach has been considered. The segmentation relies on two main processes: homotopy modification and contour decision. The first one is achieved by a marker extraction stage where homogeneous 3D regions of an image, I(s), from the data set are identified. These regions, M(I), are obtained combining information from deformable atlas, achieved by the warping of eight previous labeled maps on I(s). Then, the goal of the decision stage is to precisely locate the contours of the 3D regions set by the markers. This contour decision is performed by a 3D extension of the watershed transform. The anatomical structures taken into consideration and embedded into the atlas are brain, ventricles, corpus callosum, cerebellum, right and left hippocampus, medulla and midbrain. The hybrid method operates fully automatically and in 3D, successfully providing segmented brain structures. The quality of the segmentation has been studied in terms of the detected volume ratio by using kappa statistic and ROC analysis. Results of the method are shown and validated on a 3D MRI phantom. This study forms part of an on-going long term research aiming at the creation of a 3D probabilistic multi-purpose anatomical brain atlas.

  18. Evaluation of the sensitivity of two 3D diode array dosimetry systems to setup error for quality assurance (QA) of volumetric-modulated arc therapy (VMAT).

    PubMed

    Li, Guangjun; Bai, Sen; Chen, Nianyong; Henderson, Lansdale; Wu, Kui; Xiao, Jianghong; Zhang, Yingjie; Jiang, Qingfeng; Jiang, Xiaoqin

    2013-09-06

    The purpose of this study is to evaluate the sensitivities of 3D diode arrays to setup error for patient-specific quality assurance (QA) of volumetric-modulated arc therapy (VMAT). Translational setup errors of ± 1, ± 2, and ± 3 mm in the RL, SI, and AP directions and rotational setup errors of ± 1° and ± 2° in the pitch, roll, and yaw directions were set up in two phantom systems, ArcCHECK and Delta4, with VMAT plans for 11 patients. Cone-beam computed tomography (CBCT) followed by automatic correction using a HexaPOD 6D treatment couch ensured the position accuracy. Dose distributions of the two phantoms were compared in order to evaluate the agreement between calculated and measured values by using γ analysis with 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria. To determine the impact on setup error for VMAT QA, we evaluated the sensitivity of results acquired by both 3D diode array systems to setup errors in translation and rotation. For the VMAT QA of all patients, the pass rate with the 3%/3 mm criteria exceeded 95% using either phantom. For setup errors of 3 mm and 2°, respectively, the pass rates with the 3%/3mm criteria decreased by a maximum of 14.0% and 23.5% using ArcCHECK, and 14.4% and 5.0% using Delta4. Both systems are sensitive to setup error, and do not have mechanisms to account for setup errors in the software. The sensitivity of both VMAT QA systems was strongly dependent on the patient-specific plan. The sensitivity of ArcCHECK to the rotational error was higher than that of Delta4. In order to achieve less than 3% mean pass rate reduction of VMAT plan QA with the 3%/3 mm criteria, a setup accuracy of 2 mm/1° and 2 mm/2° is required for ArcCheck and Delta4 devices, respectively. The cumulative effect of the combined 2 mm translational and 1° rotational errors caused 3.8% and 2.4% mean pass rates reduction with 3%/3 mm criteria, respectively, for ArcCHECK and Delta4 systems. For QA of VMAT plans for nasopharyngeal cancer (NPC) using the Arc

  19. SU-E-T-105: Development of 3D Dose Verification System for Volumetric Modulated Arc Therapy Using Improved Polyacrylamide-Based Gel Dosimeter

    SciTech Connect

    Ono, K; Fujimoto, S; Akagi, Y; Hirokawa, Y; Hayashi, S; Miyazawa, M

    2014-06-01

    Purpose: The aim of this dosimetric study was to develop 3D dose verification system for volumetric modulated arc therapy (VMAT) using polyacrylamide-based gel (PAGAT) dosimeter improved the sensitivity by magnesium chloride (MgCl{sub 2}). Methods: PAGAT gel containing MgCl{sub 2} as a sensitizer was prepared in this study. Methacrylic-acid-based gel (MAGAT) was also prepared to compare the dosimetric characteristics with PAGAT gel. The cylindrical glass vials (4 cm diameter, 12 cm length) filled with each polymer gel were irradiated with 6 MV photon beam using Novalis Tx linear accelerator (Varian/BrainLAB). The irradiated polymer gel dosimeters were scanned with Signa 1.5 T MRI system (GE), and dose calibration curves were obtained using T{sub 2} relaxation rate (R{sub 2} = 1/T{sub 2}). Dose rate (100-600 MU min{sup −1}) and fractionation (1-8 fractions) were varied. In addition, a cubic acrylic phantom (10 × 10 × 10 cm{sup 3}) filled with improved PAGAT gel inserted into the IMRT phantom (IBA) was irradiated with VMAT (RapidArc). C-shape structure was used for the VMAT planning by the Varian Eclipse treatment planning system (TPS). The dose comparison of TPS and measurements with the polymer gel dosimeter was accomplished by the gamma index analysis, overlaying the dose profiles for a set of data on selected planes using in-house developed software. Results: Dose rate and fractionation dependence of improved PAGAT gel were smaller than MAGAT gel. A high similarity was found by overlaying the dose profiles measured with improved PAGAT gel dosimeter and the TPS dose, and the mean pass rate of the gamma index analysis using 3%/3 mm criteria was achieved 90% on orthogonal planes for VMAT using improved PAGAT gel dosimeter. Conclusion: In-house developed 3D dose verification system using improved polyacrylamide-based gel dosimeter had a potential as an effective tool for VMAT QA.

  20. New approach to the perception of 3D shape based on veridicality, complexity, symmetry and volume.

    PubMed

    Pizlo, Zygmunt; Sawada, Tadamasa; Li, Yunfeng; Kropatsch, Walter G; Steinman, Robert M

    2010-01-01

    This paper reviews recent progress towards understanding 3D shape perception made possible by appreciating the significant role that veridicality and complexity play in the natural visual environment. The ability to see objects as they really are "out there" is derived from the complexity inherent in the 3D object's shape. The importance of both veridicality and complexity was ignored in most prior research. Appreciating their importance made it possible to devise a computational model that recovers the 3D shape of an object from only one of its 2D images. This model uses a simplicity principle consisting of only four a priori constraints representing properties of 3D shapes, primarily their symmetry and volume. The model recovers 3D shapes from a single 2D image as well, and sometimes even better, than a human being. In the rare recoveries in which errors are observed, the errors made by the model and human subjects are very similar. The model makes no use of depth, surfaces or learning. Recent elaborations of this model include: (i) the recovery of the shapes of natural objects, including human and animal bodies with limbs in varying positions (ii) providing the model with two input images that allowed it to achieve virtually perfect shape constancy from almost all viewing directions. The review concludes with a comparison of some of the highlights of our novel, successful approach to the recovery of 3D shape from a 2D image with prior, less successful approaches. PMID:19800910

  1. Mobile 3D quality of experience evaluation: a hybrid data collection and analysis approach

    NASA Astrophysics Data System (ADS)

    Utriainen, Timo; Häyrynen, Jyrki; Jumisko-Pyykkö, Satu; Boev, Atanas; Gotchev, Atanas; Hannuksela, Miska M.

    2011-02-01

    The paper presents a hybrid approach to study the user's experienced quality of 3D visual content on mobile autostereoscopic displays. It combines extensive subjective tests with collection and objective analysis of eye-tracked data. 3D cues which are significant for mobiles are simulated in the generated 3D test content. The methodology for conducting subjective quality evaluation includes hybrid data-collection of quantitative quality preferences, qualitative impressions, and binocular eye-tracking. We present early results of the subjective tests along with eye movement reaction times, areas of interest and heatmaps obtained from raw eye-tracked data after statistical analysis. The study contributes to the question what is important to be visualized on portable auto-stereoscopic displays and how to maintain and visually enhance the quality of 3D content for such displays.

  2. Comparison Between Two Generic 3d Building Reconstruction Approaches - Point Cloud Based VS. Image Processing Based

    NASA Astrophysics Data System (ADS)

    Dahlke, D.; Linkiewicz, M.

    2016-06-01

    This paper compares two generic approaches for the reconstruction of buildings. Synthesized and real oblique and vertical aerial imagery is transformed on the one hand into a dense photogrammetric 3D point cloud and on the other hand into photogrammetric 2.5D surface models depicting a scene from different cardinal directions. One approach evaluates the 3D point cloud statistically in order to extract the hull of structures, while the other approach makes use of salient line segments in 2.5D surface models, so that the hull of 3D structures can be recovered. With orders of magnitudes more analyzed 3D points, the point cloud based approach is an order of magnitude more accurate for the synthetic dataset compared to the lower dimensioned, but therefor orders of magnitude faster, image processing based approach. For real world data the difference in accuracy between both approaches is not significant anymore. In both cases the reconstructed polyhedra supply information about their inherent semantic and can be used for subsequent and more differentiated semantic annotations through exploitation of texture information.

  3. Standards-based approaches to 3D and multiview video coding

    NASA Astrophysics Data System (ADS)

    Sullivan, Gary J.

    2009-08-01

    The extension of video applications to enable 3D perception, which typically is considered to include a stereo viewing experience, is emerging as a mass market phenomenon, as is evident from the recent prevalence of 3D major cinema title releases. For high quality 3D video to become a commonplace user experience beyond limited cinema distribution, adoption of an interoperable coded 3D digital video format will be needed. Stereo-view video can also be studied as a special case of the more general technologies of multiview and "free-viewpoint" video systems. The history of standardization work on this topic is actually richer than people may typically realize. The ISO/IEC Moving Picture Experts Group (MPEG), in particular, has been developing interoperability standards to specify various such coding schemes since the advent of digital video as we know it. More recently, the ITU-T Visual Coding Experts Group (VCEG) has been involved as well in the Joint Video Team (JVT) work on development of 3D features for H.264/14496-10 Advanced Video Coding, including Multiview Video Coding (MVC) extensions. This paper surveys the prior, ongoing, and anticipated future standardization efforts on this subject to provide an overview and historical perspective on feasible approaches to 3D and multiview video coding.

  4. Microscopic spin Hamiltonian approaches for 3d8 and 3d2 ions in a trigonal crystal field - perturbation theory methods versus complete diagonalization methods

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czeslaw; Yeung, Yau-yuen; Yang, Zi-Yuan; Qin, Jian

    2002-06-01

    In this paper, we critically review the existing microscopic spin Hamiltonian (MSH) approaches, namely the complete diagonalization method (CDM) and the perturbation theory method (PTM), for 3d8(3d2) ions in a trigonal (C3v, D3, D3d) symmetry crystal field (CF). A new CDM is presented and a CFA/MSH computer package based on our crystal-field analysis (CFA) package for 3dN ions is developed for numerical calculations. Our method takes into account the contribution to the SH parameters (D, g∥ and g⊥) from all 45 CF states for 3d8(3d2) ions and is based on the complete diagonalization of the Hamiltonian including the electrostatic interactions, the CF terms (in the intermediate CF scheme) and the spin-orbit coupling. The CFA/MSH package enables us to study not only the CF energy levels and wavefunctions but also the SH parameters as functions of the CF parameters (B20, B40 and B43 or alternatively Dq, v and v') for 3d8(3d2) ions in trigonal symmetry. Extensive comparative studies of other MSH approaches are carried out using the CFA/MSH package. First, we check the accuracy of the approximate PTM based on the `quasi-fourth-order' perturbation formulae developed by Petrosyan and Mirzakhanyan (PM). The present investigations indicate that the PM formulae for the g-factors (g∥ and g⊥) indeed work well, especially for the cases of small v and v' and large Dq, whereas the PM formula for the zero-field splitting (ZFS) exhibits serious shortcomings. Earlier criticism of the PM approach by Zhou et al (Zhou K W, Zhao S B, Wu P F and Xie J K 1990 Phys. Status Solidi b 162 193) is then revisited. Second, we carry out an extensive comparison of the results of the present CFA/MSH package and those of other CDMs based on the strong- and weak-CF schemes. The CF energy levels and the SH parameters for 3d2 and 3d8 ions at C3v symmetry sites in several crystals are calculated and analysed. Our investigations reveal serious inconsistencies in the CDM results of Zhou et al and Li

  5. Linear programming approach to optimize 3D data obtained from multiple view angiograms

    NASA Astrophysics Data System (ADS)

    Noël, Peter B.; Xu, Jinhui; Hoffmann, Kenneth R.; Singh, Vikas; Schafer, Sebastian; Walczak, Alan M.

    2007-03-01

    Three-dimensional (3D) vessel data from CTA or MRA are not always available prior to or during endovascular interventional procedures, whereas multiple 2D projection angiograms often are. Unfortunately, patient movement, table movement, and gantry sag during angiographic procedures can lead to large errors in gantry-based imaging geometries and thereby incorrect 3D. Therefore, we are developing methods for combining vessel data from multiple 2D angiographic views obtained during interventional procedures to provide 3D vessel data during these procedures. Multiple 2D projection views of carotid vessels are obtained, and the vessel centerlines are indicated. For each pair of views, endpoints of the 3D centerlines are reconstructed using triangulation based on the provided gantry geometry. Previous investigations indicated that translation errors were the primary source of error in the reconstructed 3D. Therefore, the errors in the translations relating the imaging systems are corrected by minimizing the L1 distance between the reconstructed endpoints, after which the 3D centerlines are reconstructed using epipolar constraints for every pair of views. Evaluations were performed using simulations, phantom data, and clinical cases. In simulation and phantom studies, the RMS error decreased from 6.0 mm obtained with biplane approaches to 0.5 mm with our technique. Centerlines in clinical cases are smoother and more consistent than those calculated from individual biplane pairs. The 3D centerlines are calculated in about 2 seconds. These results indicate that reliable 3D vessel data can be generated for treatment planning or revision during interventional procedures.

  6. Individualized Surgical Approach Planning for Petroclival Tumors Using a 3D Printer.

    PubMed

    Muelleman, Thomas John; Peterson, Jeremy; Chowdhury, Naweed Iffat; Gorup, Jason; Camarata, Paul; Lin, James

    2016-06-01

    Objectives To determine the utility of three-dimensional (3D) printed models in individualized petroclival tumor resection planning by measuring the fidelity of printed anatomical structures and comparing tumor exposure afforded by different approaches. Design Case series and review of the literature. Setting Tertiary care center. Participants Three patients with petroclival lesions. Main Outcome Measures Subjective opinion of access by neuro-otologists and neurosurgeons as well as surface area of tumor exposure. Results Surgeons found the 3D models of each patient's skull and tumor useful for preoperative planning. Limitations of individual surgical approaches not identified through preoperative imaging were apparent after 3D models were evaluated. Significant variability in exposure was noted between models for similar or identical approaches. A notable drawback is that our printing process did not replicate mastoid air cells. Conclusions We found that 3D modeling is useful for individualized preoperative planning for approaching petroclival tumors. Our printing techniques did produce authentic replicas of the tumors in relation to bony structures. PMID:27175320

  7. Individualized Surgical Approach Planning for Petroclival Tumors Using a 3D Printer.

    PubMed

    Muelleman, Thomas John; Peterson, Jeremy; Chowdhury, Naweed Iffat; Gorup, Jason; Camarata, Paul; Lin, James

    2016-06-01

    Objectives To determine the utility of three-dimensional (3D) printed models in individualized petroclival tumor resection planning by measuring the fidelity of printed anatomical structures and comparing tumor exposure afforded by different approaches. Design Case series and review of the literature. Setting Tertiary care center. Participants Three patients with petroclival lesions. Main Outcome Measures Subjective opinion of access by neuro-otologists and neurosurgeons as well as surface area of tumor exposure. Results Surgeons found the 3D models of each patient's skull and tumor useful for preoperative planning. Limitations of individual surgical approaches not identified through preoperative imaging were apparent after 3D models were evaluated. Significant variability in exposure was noted between models for similar or identical approaches. A notable drawback is that our printing process did not replicate mastoid air cells. Conclusions We found that 3D modeling is useful for individualized preoperative planning for approaching petroclival tumors. Our printing techniques did produce authentic replicas of the tumors in relation to bony structures.

  8. Re-thinking 3D printing: A novel approach to guided facial contouring.

    PubMed

    Darwood, Alastair; Collier, Jonathan; Joshi, Naresh; Grant, William E; Sauret-Jackson, Veronique; Richards, Robin; Dawood, Andrew; Kirkpatrick, Niall

    2015-09-01

    Rapid prototyped or three dimensional printed (3D printed) patient specific guides are of great use in many craniofacial and maxillofacial procedures and are extensively described in the literature. These guides are relatively easy to produce and cost effective. However existing designs are limited in that they are unable to be used in procedures requiring the 3D contouring of patient tissues. This paper presents a novel design and approach for the use of three dimensional printing in the production of a patient specific guide capable of fully guiding intraoperative 3D tissue contouring based on a pre-operative plan. We present a case where the technique was used on a patient suffering from an extensive osseous tumour as a result of fibrous dysplasia with encouraging results. PMID:26165757

  9. Extended 3D Approach for Quantification of Abnormal Ascending Aortic Flow

    PubMed Central

    Sigovan, Monica; Dyverfeldt, Petter; Wrenn, Jarrett; Tseng, Elaine E.; Saloner, David; Hope, Michael D.

    2015-01-01

    Background Flow displacement quantifies eccentric flow, a potential risk factor for aneurysms in the ascending aorta, but only at a single anatomic location. The aim of this study is to extend flow displacement analysis to 3D in patients with aortic and aortic valve pathologies. Methods 43 individuals were studied with 4DFlow MRI in 6 groups: healthy, tricuspid aortic valve (TAV) with aortic stenosis (AS) but no dilatation, TAV with dilatation but no AS, and TAV with both AS and dilatation, BAV without AS or dilatation, BAV without AS but with dilation. The protocol was approved by our institutional review board, and informed consent was obtained. Flow displacement was calculated for multiple planes along the ascending aorta, and 2D and 3D analyses were compared. Results Good correlation was found between 2D flow displacement and both maximum and average 3D values (r>0.8). Healthy controls had significantly lower flow displacement values with all approaches (p<0.05). The highest flow displacement was seen with stenotic TAV and aortic dilation (0.24±0.02 with maximum flow displacement). The 2D approach underestimated the maximum flow displacement by more than 20% in 13 out of 36 patients (36%). Conclusions The extended 3D flow displacement analysis offers a more comprehensive quantitative evaluation of abnormal systolic flow in the ascending aorta than 2D analysis. Differences between patient subgroups are better demonstrated, and maximum flow displacement is more reliable assessed. PMID:25721998

  10. A new approach for salt dome detection using a 3D multidirectional edge detector

    NASA Astrophysics Data System (ADS)

    Asjad, Amin; Mohamed, Deriche

    2015-09-01

    Accurate salt dome detection from 3D seismic data is crucial to different seismic data analysis applications. We present a new edge based approach for salt dome detection in migrated 3D seismic data. The proposed algorithm overcomes the drawbacks of existing edge-based techniques which only consider edges in the x (crossline) and y (inline) directions in 2D data and the x (crossline), y (inline), and z (time) directions in 3D data. The algorithm works by combining 3D gradient maps computed along diagonal directions and those computed in x, y, and z directions to accurately detect the boundaries of salt regions. The combination of x, y, and z directions and diagonal edges ensures that the proposed algorithm works well even if the dips along the salt boundary are represented only by weak reflectors. Contrary to other edge and texture based salt dome detection techniques, the proposed algorithm is independent of the amplitude variations in seismic data. We tested the proposed algorithm on the publicly available Netherlands offshore F3 block. The results suggest that the proposed algorithm can detect salt bodies with high accuracy than existing gradient based and texture-based techniques when used separately. More importantly, the proposed approach is shown to be computationally efficient allowing for real time implementation and deployment.

  11. DC-Electrical Resistivity Imaging for embankment dike investigation: A 3D extended normalisation approach

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Lopes, Sérgio Palma; Fauchard, Cyrille; François, Daniel; Côte, Philippe

    2014-04-01

    Levee, dike and earth embankment dam structures are difficult to assess because of their length and complexity. Managers often include geophysical investigations in the overall dike condition assessment and the DC-Electrical Resistivity Imaging (ERI) method is particularly applicable owing to its cost-effectiveness and its potential sensitivity to internal erosion. However, due to the truly 3D nature of embankment dikes, implementing inline longitudinal tomographies along with conventional 2D inversion is likely to yield image artefacts. 3D effects from external causes (geometry, water reservoir) can be predicted and therefore we present a new approach based on redefining the normalisation principle to derive apparent resistivities from the measured data. The aim is to provide a set of pre-processed apparent resistivities that are not contaminated by external 3D effects and that yield more reliable results when processed within a 2D conventional inversion scheme. The presented approach is successfully applied to synthetic and real data sets, proving superior to the conventional 2D approach, although data acquisition approach is the same thus keeping the same cost-effectiveness.

  12. Does shape co-variation between the skull and the mandible have functional consequences? A 3D approach for a 3D problem.

    PubMed

    Cornette, Raphaël; Baylac, Michel; Souter, Thibaud; Herrel, Anthony

    2013-10-01

    Morpho-functional patterns are important drivers of phenotypic diversity given their importance in a fitness-related context. Although modularity of the mandible and skull has been studied extensively in mammals, few studies have explored shape co-variation between these two structures. Despite being developmentally independent, the skull and mandible form a functionally integrated unit. In the present paper we use 3D surface geometric morphometric methods allowing us to explore the form of both skull and mandible in its 3D complexity using the greater white-toothed shrew as a model. This approach allows an accurate 3D description of zones devoid of anatomical landmarks that are functionally important. Two-block partial least-squares approaches were used to describe the co-variation of form between skull and mandible. Moreover, a 3D biomechanical model was used to explore the functional consequences of the observed patterns of co-variation. Our results show the efficiency of the method in investigations of complex morpho-functional patterns. Indeed, the description of shape co-variation between the skull and the mandible highlighted the location and the intensity of their functional relationships through the jaw adductor muscles linking these two structures. Our results also demonstrated that shape co-variation in form between the skull and mandible has direct functional consequences on the recruitment of muscles during biting.

  13. Does shape co-variation between the skull and the mandible have functional consequences? A 3D approach for a 3D problem

    PubMed Central

    Cornette, Raphaël; Baylac, Michel; Souter, Thibaud; Herrel, Anthony

    2013-01-01

    Morpho-functional patterns are important drivers of phenotypic diversity given their importance in a fitness-related context. Although modularity of the mandible and skull has been studied extensively in mammals, few studies have explored shape co-variation between these two structures. Despite being developmentally independent, the skull and mandible form a functionally integrated unit. In the present paper we use 3D surface geometric morphometric methods allowing us to explore the form of both skull and mandible in its 3D complexity using the greater white-toothed shrew as a model. This approach allows an accurate 3D description of zones devoid of anatomical landmarks that are functionally important. Two-block partial least-squares approaches were used to describe the co-variation of form between skull and mandible. Moreover, a 3D biomechanical model was used to explore the functional consequences of the observed patterns of co-variation. Our results show the efficiency of the method in investigations of complex morpho-functional patterns. Indeed, the description of shape co-variation between the skull and the mandible highlighted the location and the intensity of their functional relationships through the jaw adductor muscles linking these two structures. Our results also demonstrated that shape co-variation in form between the skull and mandible has direct functional consequences on the recruitment of muscles during biting. PMID:23964811

  14. A novel approach for global lung registration using 3D Markov-Gibbs appearance model.

    PubMed

    El-Baz, Ayman; Khalifa, Fahmi; Elnakib, Ahmed; Nitzken, Matthew; Soliman, Ahmed; McClure, Patrick; Abou El-Ghar, Mohamed; Gimel'farb, Georgy

    2012-01-01

    A new approach to align 3D CT data of a segmented lung object with a given prototype (reference lung object) using an affine transformation is proposed. Visual appearance of the lung from CT images, after equalizing their signals, is modeled with a new 3D Markov-Gibbs random field (MGRF) with pairwise interaction model. Similarity to the prototype is measured by a Gibbs energy of signal co-occurrences in a characteristic subset of voxel pairs derived automatically from the prototype. An object is aligned by an affine transformation maximizing the similarity by using an automatic initialization followed by a gradient search. Experiments confirm that our approach aligns complex objects better than popular conventional algorithms.

  15. 3D deformable image matching: a hierarchical approach over nested subspaces

    NASA Astrophysics Data System (ADS)

    Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    This paper presents a fast hierarchical method to perform dense deformable inter-subject matching of 3D MR Images of the brain. To recover the complex morphological variations in neuroanatomy, a hierarchy of 3D deformations fields is estimated, by minimizing a global energy function over a sequence of nested subspaces. The nested subspaces, generated from a single scaling function, consist of deformation fields constrained at different scales. The highly non linear energy function, describing the interactions between the target and the source images, is minimized using a coarse-to-fine continuation strategy over this hierarchy. The resulting deformable matching method shows low sensitivity to local minima and is able to track large non-linear deformations, with moderate computational load. The performances of the approach are assessed both on simulated 3D transformations and on a real data base of 3D brain MR Images from different individuals. The method has shown efficient in putting into correspondence the principle anatomical structures of the brain. An application to atlas-based MRI segmentation, by transporting a labeled segmentation map on patient data, is also presented.

  16. A reduced-coordinate approach to modeling RNA 3-D structures

    SciTech Connect

    Tung, Chang-Shung

    1997-09-01

    With the realization of RNA molecules capable of performing very specific functions (e.g., catalytic RNAs and RNAs that bind ligand with affinity and specificity of an anti-body) and contrary to the traditional view that structure of RNA molecules being functionally passive, it has become clear that studying the 3-dimensional (3-D) folding of RNA molecules is a very important task. In the absence of sufficient number of experimentally determined RNA structures available up-to-date, folding of RNA structures computationally provides an alternative approach in studying the 3-D structure of RNA molecules. We have developed a computational approach for folding RNA 3-D structures. The method is conceptually simple and general. It consists of two major components. The first being the arrangement of all helices in space. Once the helices are positioned and oriented in space, structures of the connecting loops are modeled and inserted between the helices. Any number of structural constraints derived either experimentally or theoretically can be used to guide the folding processes. A conformational sampling approach is developed with structural equilibration using the Metropolis Monte Carlo simulation. The lengths of various loop sizes (ranging from 1 base to 7 bases) are calculated based on a set of RNA structures deposited in PDB as well as a set of loop structures constructed using our method. The validity of using the averaged loop lengths of the connecting loops as distance constraints for arranging the helices in space is studied.

  17. A simple approach for the fabrication of 3D microelectrodes for impedimetric sensing

    NASA Astrophysics Data System (ADS)

    Tahsin Guler, Mustafa; Bilican, Ismail; Agan, Sedat; Elbuken, Caglar

    2015-09-01

    In this paper, we present a very simple method to fabricate three-dimensional (3D) microelectrodes integrated with microfluidic devices. We form the electrodes by etching a microwire placed across a microchannel. For precise control of the electrode spacing, we employ a hydrodynamic focusing microfluidic device and control the width of the etching solution stream. The focused widths of the etchant solution and the etching time determine the gap formed between the electrodes. Using the same microfluidic device, we can fabricate integrated 3D electrodes with different electrode gaps. We have demonstrated the functionality of these electrodes using an impedimetric particle counting setup. Using 3D microelectrodes with a diameter of 25 μm, we have detected 6 μm-diameter polystyrene beads in a buffer solution as well as erythrocytes in a PBS solution. We study the effect of electrode spacing on the signal-to-noise ratio of the impedance signal and we demonstrate that the smaller the electrode spacing the higher the signal obtained from a single microparticle. The sample stream is introduced to the system using the same hydrodynamic focusing device, which ensures the alignment of the sample in between the electrodes. Utilising a 3D hydrodynamic focusing approach, we force all the particles to go through the sensing region of the electrodes. This fabrication scheme not only provides a very low-cost and easy method for rapid prototyping, but which can also be used for applications requiring 3D electric field focused through a narrow section of the microchannel.

  18. Coarse integral holography approach for real 3D color video displays.

    PubMed

    Chen, J S; Smithwick, Q Y J; Chu, D P

    2016-03-21

    A colour holographic display is considered the ultimate apparatus to provide the most natural 3D viewing experience. It encodes a 3D scene as holographic patterns that then are used to reproduce the optical wavefront. The main challenge at present is for the existing technologies to cope with the full information bandwidth required for the computation and display of holographic video. We have developed a dynamic coarse integral holography approach using opto-mechanical scanning, coarse integral optics and a low space-bandwidth-product high-bandwidth spatial light modulator to display dynamic holograms with a large space-bandwidth-product at video rates, combined with an efficient rendering algorithm to reduce the information content. This makes it possible to realise a full-parallax, colour holographic video display with a bandwidth of 10 billion pixels per second, and an adequate image size and viewing angle, as well as all relevant 3D cues. Our approach is scalable and the prototype can achieve even better performance with continuing advances in hardware components. PMID:27136858

  19. Coarse integral holography approach for real 3D color video displays.

    PubMed

    Chen, J S; Smithwick, Q Y J; Chu, D P

    2016-03-21

    A colour holographic display is considered the ultimate apparatus to provide the most natural 3D viewing experience. It encodes a 3D scene as holographic patterns that then are used to reproduce the optical wavefront. The main challenge at present is for the existing technologies to cope with the full information bandwidth required for the computation and display of holographic video. We have developed a dynamic coarse integral holography approach using opto-mechanical scanning, coarse integral optics and a low space-bandwidth-product high-bandwidth spatial light modulator to display dynamic holograms with a large space-bandwidth-product at video rates, combined with an efficient rendering algorithm to reduce the information content. This makes it possible to realise a full-parallax, colour holographic video display with a bandwidth of 10 billion pixels per second, and an adequate image size and viewing angle, as well as all relevant 3D cues. Our approach is scalable and the prototype can achieve even better performance with continuing advances in hardware components.

  20. A Generalized Approach to the Modeling and Analysis of 3D Surface Morphology in Organisms

    PubMed Central

    Pappas, Janice L.; Miller, Daniel J.

    2013-01-01

    The surface geometry of an organism represents the boundary of its three-dimensional (3D) form and can be used as a proxy for the phenotype. A mathematical approach is presented that describes surface morphology using parametric 3D equations with variables expressed as x, y, z in terms of parameters u, v. Partial differentiation of variables with respect to parameters yields elements of the Jacobian representing tangent lines and planes of every point on the surface. Jacobian elements provide a compact size-free summary of the entire surface, and can be used as variables in principal components analysis to produce a morphospace. Mollusk and echinoid models are generated to demonstrate that whole organisms can be represented in a common morphospace, regardless of differences in size, geometry, and taxonomic affinity. Models can be used to simulate theoretical forms, novel morphologies, and patterns of phenotypic variation, and can also be empirically-based by designing them with reference to actual forms using reverse engineering principles. Although this study uses the Jacobian to summarize models, they can also be analyzed with 3D methods such as eigensurface, spherical harmonics, wavelet analysis, and geometric morphometrics. This general approach should prove useful for exploring broad questions regarding morphological evolution and variation. PMID:24204866

  1. Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends.

    PubMed

    Oliveira, Sara M; Reis, Rui L; Mano, João F

    2015-11-01

    The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation are achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemical control than top-down strategies, and are the main focus of this review.

  2. Sustainable approach toward synthesis of green functional carbonaceous 3-D micro/nanostructures from biomass

    PubMed Central

    2013-01-01

    This study proposes a novel technique to synthesize functional carbonaceous three-dimensional (3-D) micro/nanocompounds from agricultural by-products using femtosecond laser irradiation. Biowastes of rice husk and wheat straw are value-engineered to carbonaceous structures in a single-step process under ambient conditions. Our results demonstrate that by controlling the laser fluence, structures with a variety of different morphologies from nanostructures to microstructures can be achieved. Also, the results indicate that altering the laser processing parameters influences the chemical composition of the synthesized structures. This sustainable approach presents an important step towards synthesizing 3-D micro/nanofibrous compounds from biowaste materials. These structures, as-synthesized or as nanocomposite fillers, can have practical uses in electronic, sensing, biological, and environmental applications. PMID:23924310

  3. Sustainable approach toward synthesis of green functional carbonaceous 3-D micro/nanostructures from biomass.

    PubMed

    Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2013-01-01

    This study proposes a novel technique to synthesize functional carbonaceous three-dimensional (3-D) micro/nanocompounds from agricultural by-products using femtosecond laser irradiation. Biowastes of rice husk and wheat straw are value-engineered to carbonaceous structures in a single-step process under ambient conditions. Our results demonstrate that by controlling the laser fluence, structures with a variety of different morphologies from nanostructures to microstructures can be achieved. Also, the results indicate that altering the laser processing parameters influences the chemical composition of the synthesized structures. This sustainable approach presents an important step towards synthesizing 3-D micro/nanofibrous compounds from biowaste materials. These structures, as-synthesized or as nanocomposite fillers, can have practical uses in electronic, sensing, biological, and environmental applications. PMID:23924310

  4. Sustainable approach toward synthesis of green functional carbonaceous 3-D micro/nanostructures from biomass

    NASA Astrophysics Data System (ADS)

    Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2013-08-01

    This study proposes a novel technique to synthesize functional carbonaceous three-dimensional (3-D) micro/nanocompounds from agricultural by-products using femtosecond laser irradiation. Biowastes of rice husk and wheat straw are value-engineered to carbonaceous structures in a single-step process under ambient conditions. Our results demonstrate that by controlling the laser fluence, structures with a variety of different morphologies from nanostructures to microstructures can be achieved. Also, the results indicate that altering the laser processing parameters influences the chemical composition of the synthesized structures. This sustainable approach presents an important step towards synthesizing 3-D micro/nanofibrous compounds from biowaste materials. These structures, as-synthesized or as nanocomposite fillers, can have practical uses in electronic, sensing, biological, and environmental applications.

  5. A 3D clustering approach for point clouds to detect and quantify changes at a rock glacier front

    NASA Astrophysics Data System (ADS)

    Micheletti, Natan; Tonini, Marj; Lane, Stuart N.

    2016-04-01

    points (i) at a maximum distance (ii) around each core-point. Under this condition, seed points are said to be density-reachable by a core point delimiting a cluster around it. A chain of intermediate seed-points can connect contiguous clusters allowing clusters of arbitrary shape to be defined. The novelty of the proposed approach consists in the implementation of the DBSCAN 3D-module, where the xyz-coordinates identify each point and the density of points within a sphere is considered. This allows detecting volumetric features with a higher accuracy, depending only on actual sampling resolution. The approach is truly 3D and exploits all TLS measurements without the need of interpolation or data reduction. Using this method, enhanced geomorphological activity during the summer of 2015 in respect to the previous two years was observed. We attribute this result to the exceptionally high temperatures of that summer, which we deem responsible for accelerating the melting process at the rock glacier front and probably also increasing creep velocities. References: - Tonini, M. and Abellan, A. (2014). Rockfall detection from terrestrial LiDAR point clouds: A clustering approach using R. Journal of Spatial Information Sciences. Number 8, pp95-110 - Hennig, C. Package fpc: Flexible procedures for clustering. https://cran.r-project.org/web/packages/fpc/index.html, 2015. Accessed 2016-01-12.

  6. An approach to 3D model fusion in GIS systems and its application in a future ECDIS

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhao, Depeng; Pan, Mingyang

    2016-04-01

    Three-dimensional (3D) computer graphics technology is widely used in various areas and causes profound changes. As an information carrier, 3D models are becoming increasingly important. The use of 3D models greatly helps to improve the cartographic expression and design. 3D models are more visually efficient, quicker and easier to understand and they can express more detailed geographical information. However, it is hard to efficiently and precisely fuse 3D models in local systems. The purpose of this study is to propose an automatic and precise approach to fuse 3D models in geographic information systems (GIS). It is the basic premise for subsequent uses of 3D models in local systems, such as attribute searching, spatial analysis, and so on. The basic steps of our research are: (1) pose adjustment by principal component analysis (PCA); (2) silhouette extraction by simple mesh silhouette extraction and silhouette merger; (3) size adjustment; (4) position matching. Finally, we implement the above methods in our system Automotive Intelligent Chart (AIC) 3D Electronic Chart Display and Information Systems (ECDIS). The fusion approach we propose is a common method and each calculation step is carefully designed. This approach solves the problem of cross-platform model fusion. 3D models can be from any source. They may be stored in the local cache or retrieved from Internet, or may be manually created by different tools or automatically generated by different programs. The system can be any kind of 3D GIS system.

  7. Multiplex acquisition approach for high speed 3D measurements with a chromatic confocal microscope

    NASA Astrophysics Data System (ADS)

    Taphanel, Miro; Zink, Ralf; Längle, Thomas; Beyerer, Jürgen

    2015-05-01

    A technical realization of a multispectral camera is proposed, by multiplexing a light source with six different spectra. A monochrome line scan camera with six pixel rows is used as detector. The special feature of this acquisition approach is its high speed capability. The scan speed is as high as the frame rate of the line scan camera and not affected by the multiplexing. As application a chromatic confocal microscope was build up. From a data acquisition perspective up to 284 million 3D points per second can be measured. A real time signal processing is proposed, too.

  8. Controlled Positioning of Cells in Biomaterials-Approaches Towards 3D Tissue Printing.

    PubMed

    Wüst, Silke; Müller, Ralph; Hofmann, Sandra

    2011-01-01

    Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing.

  9. Controlled Positioning of Cells in Biomaterials—Approaches Towards 3D Tissue Printing

    PubMed Central

    Wüst, Silke; Müller, Ralph; Hofmann, Sandra

    2011-01-01

    Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing. PMID:24956301

  10. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    SciTech Connect

    Wang, Xin; Li, Guangjun; Zhang, Yingjie; Bai, Sen; Xu, Feng; Wei, Yuquan; Gong, Youling

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMAT plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.

  11. Assessment of dry-stone terrace wall degradation with a 3D approach

    NASA Astrophysics Data System (ADS)

    Djuma, Hakan; Camera, Corrado; Faka, Marina; Bruggeman, Adriana; Hermon, Sorin

    2016-04-01

    displacements between 3 and 8 cm on 1% of the middle terrace wall. High displacement values (> 8-10 cm) were associated with presence or removal of vegetation and/or data gaps. On the second site, the 3D models indicated that the collapsed terrace had lost a volume of 1.9 m3, which was restored during the communal terrace building event. This digital 3D documentation approach is more economical than laser scanning and it is a promising method for assessment of terrace wall displacement and changes after terrace wall restoration.

  12. Digital breast tomosynthesis: computerized detection of microcalcifications in reconstructed breast volume using a 3D approach

    NASA Astrophysics Data System (ADS)

    Chan, Heang-Ping; Sahiner, Berkman; Wei, Jun; Hadjiiski, Lubomir M.; Zhou, Chuan; Helvie, Mark A.

    2010-03-01

    We are developing a computer-aided detection (CAD) system for clustered microcalcifications in digital breast tomosynthesis (DBT). In this preliminary study, we investigated the approach of detecting microcalcifications in the tomosynthesized volume. The DBT volume is first enhanced by 3D multi-scale filtering and analysis of the eigenvalues of Hessian matrices with a calcification response function and signal-to-noise ratio enhancement filtering. Potential signal sites are identified in the enhanced volume and local analysis is performed to further characterize each object. A 3D dynamic clustering procedure is designed to locate potential clusters using hierarchical criteria. We collected a pilot data set of two-view DBT mammograms of 39 breasts containing microcalcification clusters (17 malignant, 22 benign) with IRB approval. A total of 74 clusters were identified by an experienced radiologist in the 78 DBT views. Our prototype CAD system achieved view-based sensitivity of 90% and 80% at an average FP rate of 7.3 and 2.0 clusters per volume, respectively. At the same levels of case-based sensitivity, the FP rates were 3.6 and 1.3 clusters per volume, respectively. For the subset of malignant clusters, the view-based detection sensitivity was 94% and 82% at an average FP rate of 6.0 and 1.5 FP clusters per volume, respectively. At the same levels of case-based sensitivity, the FP rates were 1.2 and 0.9 clusters per volume, respectively. This study demonstrated that computerized microcalcification detection in 3D is a promising approach to the development of a CAD system for DBT. Study is underway to further improve the computer-vision methods and to optimize the processing parameters using a larger data set.

  13. Virtual bronchoscopic approach for combining 3D CT and endoscopic video

    NASA Astrophysics Data System (ADS)

    Sherbondy, Anthony J.; Kiraly, Atilla P.; Austin, Allen L.; Helferty, James P.; Wan, Shu-Yen; Turlington, Janice Z.; Yang, Tao; Zhang, Chao; Hoffman, Eric A.; McLennan, Geoffrey; Higgins, William E.

    2000-04-01

    To improve the care of lung-cancer patients, we are devising a diagnostic paradigm that ties together three-dimensional (3D) high-resolution computed-tomographic (CT) imaging and bronchoscopy. The system expands upon the new concept of virtual endoscopy that has seen recent application to the chest, colon, and other anatomical regions. Our approach applies computer-graphics and image-processing tools to the analysis of 3D CT chest images and complementary bronchoscopic video. It assumes a two-stage assessment of a lung-cancer patient. During Stage 1 (CT assessment), the physician interacts with a number of visual and quantitative tools to evaluate the patient's 'virtual anatomy' (3D CT scan). Automatic analysis gives navigation paths through major airways and to pre-selected suspect sites. These paths provide useful guidance during Stage-1 CT assessment. While interacting with these paths and other software tools, the user builds a multimedia Case Study, capturing telling snapshot views, movies, and quantitative data. The Case Study contains a report on the CT scan and also provides planning information for subsequent bronchoscopic evaluation. During Stage 2 (bronchoscopy), the physician uses (1) the original CT data, (2) software graphical tools, (3) the Case Study, and (4) a standard bronchoscopy suite to have an augmented vision for bronchoscopic assessment and treatment. To use the two data sources (CT and bronchoscopic video) simultaneously, they must be registered. We perform this registration using both manual interaction and an automated matching approach based on mutual information. We demonstrate our overall progress to date using human CT cases and CT-video from a bronchoscopy- training device.

  14. Probabilistic Modeling of Conformational Space for 3D Machine Learning Approaches.

    PubMed

    Jahn, Andreas; Hinselmann, Georg; Fechner, Nikolas; Henneges, Carsten; Zell, Andreas

    2010-05-17

    We present a new probabilistic encoding of the conformational space of a molecule that allows for the integration into common similarity calculations. The method uses distance profiles of flexible atom-pairs and computes generative models that describe the distance distribution in the conformational space. The generative models permit the use of probabilistic kernel functions and, therefore, our approach can be used to extend existing 3D molecular kernel functions, as applied in support vector machines, to build QSAR models. The resulting kernels are valid 4D kernel functions and reduce the dependency of the model quality on suitable conformations of the molecules. We showed in several experiments the robust performance of the 4D kernel function, which was extended by our approach, in comparison to the original 3D-based kernel function. The new method compares the conformational space of two molecules within one kernel evaluation. Hence, the number of kernel evaluations is significantly reduced in comparison to common kernel-based conformational space averaging techniques. Additionally, the performance gain of the extended model correlates with the flexibility of the data set and enables an a priori estimation of the model improvement.

  15. Characterization of impact craters in 3D meshes using a feature lines approach

    NASA Astrophysics Data System (ADS)

    Jorda, L.; Mari, J.; Viseur, S.; Bouley, S.

    2013-12-01

    Impact craters are observed at the surface of most solar system bodies: terrestrial planets, satellites and asteroids.The measurement of their size-frequency distribution (SFD) is the only method available to estimate the age of the observed geological units, assuming a rate and velocity distributions of impactors and a crater scaling law. The age of the geological units is fundamental to establish a chronology of events explaining the global evolution of the surface. In addition, the detailed characterization of the crater properties (depth-to-diameter ratio and radial profile) yields a better understanding of the geological processes which altered the observed surfaces. Crater detection is usually performed manually directly from the acquired images. However, this method can become prohibitive when dealing with small craters extracted from very large data sets. A large number of solar system objects is being mapped at a very high spatial resolution by space probes since a few decades, emphasizing the need for new automatic methods of crater detection. Powerful computers are now available to produce and analyze huge 3D models of the surface in the form of 3D meshes containing tens to hundreds of billions of facets. This motivates the development of a new family of automatic crater detection algorithms (CDAs). The automatic CDAs developed so far were mainly based on morphological analyses and pattern recognition techniques on 2D images. Since a few years, new CDAs based on 3D models are being developed. Our objective is to develop and test against existing methods an automatic CDA using a new approach based on the discrete differential properties of 3D meshes. The method produces the feature lines (the crest and the ravine lines) lying on the surface. It is based on a double step algorithm: first, the regions of interest are flagged according to curvature properties, and then an original skeletonization approach is applied to extract the feature lines. This new

  16. Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: A 3D approach

    PubMed Central

    Sahiner, Berkman; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Wei, Jun; Zhou, Chuan; Lu, Yao

    2012-01-01

    cluster shape were used to reduce the number of FPs. Results: The prescreening stage detected a cluster seed object in 94% of the biopsied microcalcification clusters at a threshold of 100 cluster seed objects per DBT volume. After clustering, the detection sensitivity was 90% at 15 marks per DBT volume. After FP reduction, at 85% sensitivity, the average number of FPs estimated using the data set containing microcalcification clusters was 3.8 per DBT volume, and that estimated using the data set free of microcalcification clusters was 3.4. The detection performance for malignant microcalcification clusters was superior to that for benign clusters. Conclusions: Our study indicates the feasibility of the 3D approach to the detection of clustered microcalcifications in DBT and that the newly designed enhancement-modulated 3D calcification response function is promising for prescreening. Further work is needed to assess the generalizability of our approach and to improve its performance. PMID:22225272

  17. Reduced integral order 3D scalar wave integral equation Derivation and BEM approach

    NASA Astrophysics Data System (ADS)

    Lee, HyunSuk

    The Boundary Element Method (BEM) is a numerical method to solve partial differential equations (PDEs), which is derived from the integral equation (IE) that can be developed from certain PDEs. Among IEs, the 3D transient wave integral equation has a very special property which makes it distinguished from other integral equations; Dirac-delta and its derivative delta‧ appear in the fundamental-solution (or kernel-function). These delta and delta‧ generalized functions have continuity C-2 and C-3, respectively, and become a major hurdle for BEM implementation, because many numerical methods including BEM are based on the idea of continuity. More specifically, the integrands (kernel - shape function products) in the 3D transient wave IE become discontinuous (C-2 and C-3) and make numerical integration difficult. There are several existing approaches to overcome the delta difficulty, but none use the character of the Dirac-delta to cancel the integral. In this dissertation, a new method called the "Reduced order wave integral equation (Reduced IE)" is developed to deal with the difficulty in the 3D transient wave problem. In this approach, the sifting properties of delta and delta‧ are used to cancel an integration. As a result, smooth integrands are derived and the integral orders are reduced by one. Smooth integrands result in the more efficient and accurate numerical integration. In addition, there is no more coupling between the space-element size and time-step size. Non-zero initial condition (IC) can be considered also. Furthermore, space integrals need to be performed once, not per time-step. All of this reduces dramatically the computational requirement. As a result, the computation order for both time and space are reduced by 1 and one obtains an O(M N2) method, where M is the number of time steps and N is the number of spatial nodes on the boundary of the problem domain. A numerical approach to deal with the reduced IE is also suggested, and a simple

  18. 3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.

    2012-12-01

    In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward

  19. High performance computing approaches for 3D reconstruction of complex biological specimens.

    PubMed

    da Silva, M Laura; Roca-Piera, Javier; Fernández, José-Jesús

    2010-01-01

    Knowledge of the structure of specimens is crucial to determine the role that they play in cellular and molecular biology. To yield the three-dimensional (3D) reconstruction by means of tomographic reconstruction algorithms, we need the use of large projection images and high processing time. Therefore, we propose the use of the high performance computing (HPC) to cope with the huge computational demands of this problem. We have implemented a HPC strategy where the distribution of tasks follows the master-slave paradigm. The master processor distributes a slab of slices, a piece of the final 3D structure to reconstruct, among the slave processors and receives reconstructed slices of the volume. We have evaluated the performance of our HPC approach using different sizes of the slab. We have observed that it is possible to find out an optimal size of the slab for the number of processor used that minimize communications time while maintaining a reasonable grain of parallelism to be exploited by the set of processors.

  20. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach.

    PubMed

    Guerfi, Y; Doucet, J B; Larrieu, G

    2015-10-23

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  1. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach.

    PubMed

    Guerfi, Y; Doucet, J B; Larrieu, G

    2015-10-23

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness. PMID:26422697

  2. High performance computing approaches for 3D reconstruction of complex biological specimens.

    PubMed

    da Silva, M Laura; Roca-Piera, Javier; Fernández, José-Jesús

    2010-01-01

    Knowledge of the structure of specimens is crucial to determine the role that they play in cellular and molecular biology. To yield the three-dimensional (3D) reconstruction by means of tomographic reconstruction algorithms, we need the use of large projection images and high processing time. Therefore, we propose the use of the high performance computing (HPC) to cope with the huge computational demands of this problem. We have implemented a HPC strategy where the distribution of tasks follows the master-slave paradigm. The master processor distributes a slab of slices, a piece of the final 3D structure to reconstruct, among the slave processors and receives reconstructed slices of the volume. We have evaluated the performance of our HPC approach using different sizes of the slab. We have observed that it is possible to find out an optimal size of the slab for the number of processor used that minimize communications time while maintaining a reasonable grain of parallelism to be exploited by the set of processors. PMID:20865517

  3. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach

    NASA Astrophysics Data System (ADS)

    Guerfi, Y.; Doucet, J. B.; Larrieu, G.

    2015-10-01

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  4. New Approach for 3D Local Structure Refinement Using Non-Muffin-Tin XANES Analysis

    SciTech Connect

    Smolentsev, Grigory; Soldatov, Alexander V.; Feiters, Martin C.

    2007-02-02

    A new technique of 3D local structure refinement using full-potential X-ray absorption near edge structure (XANES) analysis is proposed and demonstrated in application to metalloorganic complexes of Ni. It can be applied to determine local structure in those cases where the muffin-tin approximation used in most full multiple scattering schemes fails. The method is based on the fitting of experimental XANES data using multidimensional interpolation of spectra as a function of structural parameters, recently proposed by us, and ab-initio full potential calculations of XANES using finite difference method. The small number of required ab-initio calculations is the main advantage of the approach, which allows one to use computationally time-expensive non-muffin-tin finite-difference method. The possibility to extract information on bond angles in addition to bond-lengths accessible to standard EXAFS is demonstrated and it opens new perspectives of quantitative XANES analysis as a 3D local structure probe.

  5. A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin

    NASA Astrophysics Data System (ADS)

    Ziegler, Moritz O.; Heidbach, Oliver; Reinecker, John; Przybycin, Anna M.; Scheck-Wenderoth, Magdalena

    2016-09-01

    The knowledge of the contemporary in situ stress state is a key issue for safe and sustainable subsurface engineering. However, information on the orientation and magnitudes of the stress state is limited and often not available for the areas of interest. Therefore 3-D geomechanical-numerical modelling is used to estimate the in situ stress state and the distance of faults from failure for application in subsurface engineering. The main challenge in this approach is to bridge the gap in scale between the widely scattered data used for calibration of the model and the high resolution in the target area required for the application. We present a multi-stage 3-D geomechanical-numerical approach which provides a state-of-the-art model of the stress field for a reservoir-scale area from widely scattered data records. Therefore, we first use a large-scale regional model which is calibrated by available stress data and provides the full 3-D stress tensor at discrete points in the entire model volume. The modelled stress state is used subsequently for the calibration of a smaller-scale model located within the large-scale model in an area without any observed stress data records. We exemplify this approach with two-stages for the area around Munich in the German Molasse Basin. As an example of application, we estimate the scalar values for slip tendency and fracture potential from the model results as measures for the criticality of fault reactivation in the reservoir-scale model. The modelling results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing SHmax magnitude estimates needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of available stress information rather than on the modelling technique itself or on local details of the model geometry. Any improvements in modelling and increases

  6. Volumetric Modulation Arc Radiotherapy With Flattening Filter-Free Beams Compared With Static Gantry IMRT and 3D Conformal Radiotherapy for Advanced Esophageal Cancer: A Feasibility Study

    SciTech Connect

    Nicolini, Giorgia; Ghosh-Laskar, Sarbani; Shrivastava, Shyam Kishore; Banerjee, Sushovan; Chaudhary, Suresh; Agarwal, Jai Prakash; Munshi, Anusheel; Clivio, Alessandro; Fogliata, Antonella; Mancosu, Pietro; Vanetti, Eugenio; Cozzi, Luca

    2012-10-01

    Purpose: A feasibility study was performed to evaluate RapidArc (RA), and the potential benefit of flattening filter-free beams, on advanced esophageal cancer against intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: The plans for 3D-CRT and IMRT with three to seven and five to seven fixed beams were compared against double-modulated arcs with avoidance sectors to spare the lungs for 10 patients. All plans were optimized for 6-MV photon beams. The RA plans were studied for conventional and flattening filter-free (FFF) beams. The objectives for the planning target volume were the volume receiving {>=}95% or at most 107% of the prescribed dose of <1% with a dose prescription of 59.4 Gy. For the organs at risk, the lung volume (minus the planning target volume) receiving {>=}5 Gy was <60%, that receiving 20 Gy was <20%-30%, and the mean lung dose was <15.0 Gy. The heart volume receiving 45 Gy was <20%, volume receiving 30 Gy was <50%. The spinal dose received by 1% was <45 Gy. The technical delivery parameters for RA were assessed to compare the normal and FFF beam characteristics. Results: RA and IMRT provided equivalent coverage and homogeneity, slightly superior to 3D-CRT. The conformity index was 1.2 {+-} 0.1 for RA and IMRT and 1.5 {+-} 0.2 for 3D-CRT. The mean lung dose was 12.2 {+-} 4.5 for IMRT, 11.3 {+-} 4.6 for RA, and 10.8 {+-} 4.4 for RA with FFF beams, 18.2 {+-} 8.5 for 3D-CRT. The percentage of volume receiving {>=}20 Gy ranged from 23.6% {+-} 9.1% to 21.1% {+-} 9.7% for IMRT and RA (FFF beams) and 39.2% {+-} 17.0% for 3D-CRT. The heart and spine objectives were met by all techniques. The monitor units for IMRT and RA were 457 {+-} 139, 322 {+-} 20, and 387 {+-} 40, respectively. RA with FFF beams showed, compared with RA with normal beams, a {approx}20% increase in monitor units per Gray, a 90% increase in the average dose rate, and 20% reduction in beam on time (owing to different

  7. An adaptive learning approach for 3-D surface reconstruction from point clouds.

    PubMed

    Junior, Agostinho de Medeiros Brito; Neto, Adrião Duarte Dória; de Melo, Jorge Dantas; Goncalves, Luiz Marcos Garcia

    2008-06-01

    In this paper, we propose a multiresolution approach for surface reconstruction from clouds of unorganized points representing an object surface in 3-D space. The proposed method uses a set of mesh operators and simple rules for selective mesh refinement, with a strategy based on Kohonen's self-organizing map (SOM). Basically, a self-adaptive scheme is used for iteratively moving vertices of an initial simple mesh in the direction of the set of points, ideally the object boundary. Successive refinement and motion of vertices are applied leading to a more detailed surface, in a multiresolution, iterative scheme. Reconstruction was experimented on with several point sets, including different shapes and sizes. Results show generated meshes very close to object final shapes. We include measures of performance and discuss robustness.

  8. Sexual dimorphism in human browridge volume measured from 3D models of dry crania: a new digital morphometrics approach.

    PubMed

    Shearer, Brian M; Sholts, Sabrina B; Garvin, Heather M; Wärmländer, Sebastian K T S

    2012-10-10

    Sex estimation from the human skull is often a necessary step when constructing a biological profile from unidentified human remains. Traditional methods for determining the sex of a skull require observers to rank the expression of sexually dimorphic skeletal traits by subjectively assessing their qualitative differences. One of these traits is the prominence of the glabellar region above the browridge. In this paper, the volume of the browridge region was measured from digital 3D models of 128 dry crania (65 female, 63 male). The 3D models were created with a desktop laser scanner, and the browridge region of each 3D model was isolated using geometric planes defined by cranial landmarks. Statistical analysis of browridge-to-cranium volume ratios revealed significant differences between male and female crania. Differences were also observed between geographically distinct populations, and between temporally distinct populations from the same locale. The results suggest that in the future, sex determination of human crania may be assisted by quantitative computer-based volume calculations from 3D models, which can provide increased objectivity and repeatability when compared to traditional forensic techniques. The method presented in this paper can easily be extended to other volumetric regions of the human cranium.

  9. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to

  10. Reliability of MR-Based Volumetric 3-D Analysis of Pelvic Muscles among Subjects with Low Back with Leg Pain and Healthy Volunteers

    PubMed Central

    Skorupska, Elżbieta; Keczmer, Przemysław; Łochowski, Rafał M.; Tomal, Paulina; Rychlik, Michał; Samborski, Włodzimierz

    2016-01-01

    Aim Lately, the diagnostic value of magnetic resonance imaging, Lasègue sign and classic neurological signs have been considered not accurate enough to distinguish the radicular from non-radicular low back with leg pain (LBLP) and a calculation of the symptomatic side muscle volume has been indicated as a probable valuable marker. However, only the multifidus muscle volume has been calculated so far. The main objective of the study was to verify whether LBLP subjects presented symptomatic side pelvic muscle atrophy compared to healthy volunteers. The second aim was to assess the inter-rater reliability of 3-D manual method for segmenting and measuring the volume of the gluteus maximus, gluteus medius, gluteus minimus and piriformis muscles in both LBLP patients and healthy subjects. Method Two independent raters analyzed MR images of LBLP and healthy subjects towards muscle volume of four pelvic muscles, i.e. the piriformis, gluteus minimus, gluteus medius and gluteus maximus. For both sides, the MR images of the muscles without adipose tissue infiltration were manually segmented in 3-D medical images. Results Symptomatic muscle atrophy was confirmed in only over 50% of LBLP subjects (gluteus maximus (p<0.001), gluteus minimus (p<0.01) and piriformis (p<0.05)). The ICC values indicated that the inter-rater reproducibility was greater than 0.90 for all measurements (LBLP and healthy subjects), except for the measurement of the right gluteus medius muscle in LBLP patients, which was equal to 0.848. Conclusion More than 50% of LBLP subjects presented symptomatic gluteus maximus, gluteus minimus and piriformis muscle atrophy. 3-D manual segmentation reliably measured muscle volume in all the measured pelvic muscles in both healthy and LBLP subjects. To answer the question of what kind of muscle atrophy is indicative of radicular or non-radicular pain further studies are required. PMID:27459688

  11. Viewing effects of 3-D images synthesized from a series of 2-D tomograms by VAP and HAP approaches

    NASA Astrophysics Data System (ADS)

    Zhai, H. C.; Wang, M. W.; Liu, F. M.; Hsu, Ken Y.

    We report, for the first time, the experimental result and its analysis of synthesizing a series of simulating 2-D tomograms into a 3-D monochromatic image. Our result shows clearly the advantage in monochromaticity of a vertical area-partition (VAP) approach over a horizontal area-partition (HAP) approach during the final white-light reconstruction. This monochromaticity will ensure a 3-D image synthesis without any distortion in gray level or positional recovery.

  12. Joint 3D inversion of gravity and magnetic data with geological constraints - an alternative approach

    NASA Astrophysics Data System (ADS)

    Prutkin, Ilya; Vajda, Peter; Jentzsch, Gerhard

    2016-04-01

    Quite a popular approach now by interpretation of gravity data is a linear one - an attempt is made to find a density distribution d(x,y,z) below the Earth's surface. This approach has clear disadvantages. First, we face the problem of dimensionality: one looks for 3D function based on 2D data set (measurements on the Earth's surface), the degree of non-uniqueness is extremely high, and no regularization can save the situation. The number of unknowns is many times higher than the number of observations; otherwise, we obtain a very rough model of the lower half-space. Second, the linear approach is not reasonable from the geological point of view. It implies that density varies from one point to another. Usually, we assume big volumes with nearly homogeneous density - layers, blocks, intrusions. It looks more understandable, to search for geometry of density interfaces: 3D topography of contact surfaces and shapes of restricted bodies (intrusions). Third, in the framework of the linear approach even for a synthetic field of two separate objects we obtain clouds of points with slightly increased density. It is hardly ever possible, to isolate objects, particularly when one of them is located above another one. We suggest an alternative approach for the linear one. Our approach has been successfully applied for several case histories including a local gravity anomaly Kolarovo and a bigger area of the Thuringian Basin, where both gravity and magnetic data are inverted. First, we separate sources into deep, intermediate and shallow ones, using subsequent upward and downward continuation. All components are inverted separately. We address a problem which we name the problem of low frequencies: deep objects generate long wavelengths, but the converse implication is not necessarily true. For instance, the effect of the basin structure contributes substantially into low frequencies, though it is caused by shallow sources. However, our numerical experiments with intermediate

  13. Accurate 3D point cloud comparison and volumetric change analysis of Terrestrial Laser Scan data in a hard rock coastal cliff environment

    NASA Astrophysics Data System (ADS)

    Earlie, C. S.; Masselink, G.; Russell, P.; Shail, R.; Kingston, K.

    2013-12-01

    Our understanding of the evolution of hard rock coastlines is limited due to the episodic nature and ';slow' rate at which changes occur. High-resolution surveying techniques, such as Terrestrial Laser Scanning (TLS), have just begun to be adopted as a method of obtaining detailed point cloud data to monitor topographical changes over short periods of time (weeks to months). However, the difficulties involved in comparing consecutive point cloud data sets in a complex three-dimensional plane, such as occlusion due to surface roughness and positioning of data capture point as a result of a consistently changing environment (a beach profile), mean that comparing data sets can lead to errors in the region of 10 - 20 cm. Meshing techniques are often used for point cloud data analysis for simple surfaces, but in surfaces such as rocky cliff faces, this technique has been found to be ineffective. Recession rates of hard rock coastlines in the UK are typically determined using aerial photography or airborne LiDAR data, yet the detail of the important changes occurring to the cliff face and toe are missed using such techniques. In this study we apply an algorithm (M3C2 - Multiscale Model to Model Cloud Comparison), initially developed for analysing fluvial morphological change, that directly compares point to point cloud data using surface normals that are consistent with surface roughness and measure the change that occurs along the normal direction (Lague et al., 2013). The surfaces changes are analysed using a set of user defined scales based on surface roughness and registration error. Once the correct parameters are defined, the volumetric cliff face changes are calculated by integrating the mean distance between the point clouds. The analysis has been undertaken at two hard rock sites identified for their active erosion located on the UK's south west peninsular at Porthleven in south west Cornwall and Godrevy in north Cornwall. Alongside TLS point cloud data, in

  14. Linear stratified approach using full geometric constraints for 3D scene reconstruction and camera calibration.

    PubMed

    Kim, Jae-Hean; Koo, Bon-Ki

    2013-02-25

    This paper presents a new linear framework to obtain 3D scene reconstruction and camera calibration simultaneously from uncalibrated images using scene geometry. Our strategy uses the constraints of parallelism, coplanarity, colinearity, and orthogonality. These constraints can be obtained in general man-made scenes frequently. This approach can give more stable results with fewer images and allow us to gain the results with only linear operations. In this paper, it is shown that all the geometric constraints used in the previous works performed independently up to now can be implemented easily in the proposed linear method. The study on the situations that cannot be dealt with by the previous approaches is also presented and it is shown that the proposed method being able to handle the cases is more flexible in use. The proposed method uses a stratified approach, in which affine reconstruction is performed first and then metric reconstruction. In this procedure, the additional constraints newly extracted in this paper have an important role for affine reconstruction in practical situations.

  15. A fast slam approach to freehand 3-d ultrasound reconstruction for catheter ablation guidance in the left atrium.

    PubMed

    Koolwal, Aditya B; Barbagli, Federico; Carlson, Christopher R; Liang, David H

    2011-12-01

    We present a method for real-time, freehand 3D ultrasound (3D-US) reconstruction of moving anatomy, with specific application towards guiding the catheter ablation procedure in the left atrium. Using an intracardiac echo (ICE) catheter with a pose (position/orientation) sensor mounted to its tip, we continually mosaic 2D-ICE images of a left atrium phantom model to form a 3D-US volume. Our mosaicing strategy employs a probabilistic framework based on simultaneous localization and mapping (SLAM), a technique commonly used in mobile robotics for creating maps of unexplored environments. The measured ICE catheter tip pose provides an initial estimate for compounding 2D-ICE image data into the 3D-US volume. However, we simultaneously consider the overlap-consistency shared between 2D-ICE images and the 3D-US volume, computing a "corrected" tip pose if need be to ensure spatially-consistent reconstruction. This allows us to compensate for anatomic movement and sensor drift that would otherwise cause motion artifacts in the 3D-US volume. Our approach incorporates 2D-ICE data immediately after acquisition, allowing us to continuously update the registration parameters linking sensor coordinates to 3D-US coordinates. This, in turn, enables real-time localization and display of sensorized therapeutic catheters within the 3D-US volume for facilitating procedural guidance.

  16. A fast slam approach to freehand 3-d ultrasound reconstruction for catheter ablation guidance in the left atrium.

    PubMed

    Koolwal, Aditya B; Barbagli, Federico; Carlson, Christopher R; Liang, David H

    2011-12-01

    We present a method for real-time, freehand 3D ultrasound (3D-US) reconstruction of moving anatomy, with specific application towards guiding the catheter ablation procedure in the left atrium. Using an intracardiac echo (ICE) catheter with a pose (position/orientation) sensor mounted to its tip, we continually mosaic 2D-ICE images of a left atrium phantom model to form a 3D-US volume. Our mosaicing strategy employs a probabilistic framework based on simultaneous localization and mapping (SLAM), a technique commonly used in mobile robotics for creating maps of unexplored environments. The measured ICE catheter tip pose provides an initial estimate for compounding 2D-ICE image data into the 3D-US volume. However, we simultaneously consider the overlap-consistency shared between 2D-ICE images and the 3D-US volume, computing a "corrected" tip pose if need be to ensure spatially-consistent reconstruction. This allows us to compensate for anatomic movement and sensor drift that would otherwise cause motion artifacts in the 3D-US volume. Our approach incorporates 2D-ICE data immediately after acquisition, allowing us to continuously update the registration parameters linking sensor coordinates to 3D-US coordinates. This, in turn, enables real-time localization and display of sensorized therapeutic catheters within the 3D-US volume for facilitating procedural guidance. PMID:22014856

  17. Embedding SAS approach into conjugate gradient algorithms for asymmetric 3D elasticity problems

    SciTech Connect

    Chen, Hsin-Chu; Warsi, N.A.; Sameh, A.

    1996-12-31

    In this paper, we present two strategies to embed the SAS (symmetric-and-antisymmetric) scheme into conjugate gradient (CG) algorithms to make solving 3D elasticity problems, with or without global reflexive symmetry, more efficient. The SAS approach is physically a domain decomposition scheme that takes advantage of reflexive symmetry of discretized physical problems, and algebraically a matrix transformation method that exploits special reflexivity properties of the matrix resulting from discretization. In addition to offering large-grain parallelism, which is valuable in a multiprocessing environment, the SAS scheme also has the potential for reducing arithmetic operations in the numerical solution of a reasonably wide class of scientific and engineering problems. This approach can be applied directly to problems that have global reflexive symmetry, yielding smaller and independent subproblems to solve, or indirectly to problems with partial symmetry, resulting in loosely coupled subproblems. The decomposition is achieved by separating the reflexive subspace from the antireflexive one, possessed by a special class of matrices A, A {element_of} C{sup n x n} that satisfy the relation A = PAP where P is a reflection matrix (symmetric signed permutation matrix).

  18. A Novel Multiparametric Approach to 3D Quantitative MRI of the Brain

    PubMed Central

    Palma, Giuseppe; Tedeschi, Enrico; Borrelli, Pasquale; Cocozza, Sirio; Russo, Carmela; Liu, Saifeng; Ye, Yongquan; Comerci, Marco; Alfano, Bruno; Salvatore, Marco; Haacke, E. Mark; Mancini, Marcello

    2015-01-01

    Magnetic Resonance properties of tissues can be quantified in several respects: relaxation processes, density of imaged nuclei, magnetism of environmental molecules, etc. In this paper, we propose a new comprehensive approach to obtain 3D high resolution quantitative maps of arbitrary body districts, mainly focusing on the brain. The theory presented makes it possible to map longitudinal (R1), pure transverse (R2) and free induction decay (R2*) rates, along with proton density (PD) and magnetic susceptibility (χ), from a set of fast acquisition sequences in steady-state that are highly insensitive to flow phenomena. A novel denoising scheme is described and applied to the acquired datasets to enhance the signal to noise ratio of the derived maps and an information theory approach compensates for biases from radio frequency (RF) inhomogeneities, if no direct measure of the RF field is available. Finally, the results obtained on sample brain scans of healthy controls and multiple sclerosis patients are presented and discussed. PMID:26284778

  19. Personalized Medicine Approaches in Prostate Cancer Employing Patient Derived 3D Organoids and Humanized Mice

    PubMed Central

    Bartucci, Monica; Ferrari, Anna C.; Kim, Isaac Yi; Ploss, Alexander; Yarmush, Martin; Sabaawy, Hatem E.

    2016-01-01

    Prostate cancer (PCa) is the most common malignancy and the second most common cause of cancer death in Western men. Despite its prevalence, PCa has proven very difficult to propagate in vitro. PCa represents a complex organ-like multicellular structure maintained by the dynamic interaction of tumoral cells with parenchymal stroma, endothelial and immune cells, and components of the extracellular matrix (ECM). The lack of PCa models that recapitulate this intricate system has hampered progress toward understanding disease progression and lackluster therapeutic responses. Tissue slices, monolayer cultures and genetically engineered mouse models (GEMM) fail to mimic the complexities of the PCa microenvironment or reproduce the diverse mechanisms of therapy resistance. Moreover, patient derived xenografts (PDXs) are expensive, time consuming, difficult to establish for prostate cancer, lack immune cell-tumor regulation, and often tumors undergo selective engraftments. Here, we describe an interdisciplinary approach using primary PCa and tumor initiating cells (TICs), three-dimensional (3D) tissue engineering, genetic and morphometric profiling, and humanized mice to generate patient-derived organoids for examining personalized therapeutic responses in vitro and in mice co-engrafted with a human immune system (HIS), employing adaptive T-cell- and chimeric antigen receptor- (CAR) immunotherapy. The development of patient specific therapies targeting the vulnerabilities of cancer, when combined with antiproliferative and immunotherapy approaches could help to achieve the full transformative power of cancer precision medicine. PMID:27446916

  20. Personalized Medicine Approaches in Prostate Cancer Employing Patient Derived 3D Organoids and Humanized Mice.

    PubMed

    Bartucci, Monica; Ferrari, Anna C; Kim, Isaac Yi; Ploss, Alexander; Yarmush, Martin; Sabaawy, Hatem E

    2016-01-01

    Prostate cancer (PCa) is the most common malignancy and the second most common cause of cancer death in Western men. Despite its prevalence, PCa has proven very difficult to propagate in vitro. PCa represents a complex organ-like multicellular structure maintained by the dynamic interaction of tumoral cells with parenchymal stroma, endothelial and immune cells, and components of the extracellular matrix (ECM). The lack of PCa models that recapitulate this intricate system has hampered progress toward understanding disease progression and lackluster therapeutic responses. Tissue slices, monolayer cultures and genetically engineered mouse models (GEMM) fail to mimic the complexities of the PCa microenvironment or reproduce the diverse mechanisms of therapy resistance. Moreover, patient derived xenografts (PDXs) are expensive, time consuming, difficult to establish for prostate cancer, lack immune cell-tumor regulation, and often tumors undergo selective engraftments. Here, we describe an interdisciplinary approach using primary PCa and tumor initiating cells (TICs), three-dimensional (3D) tissue engineering, genetic and morphometric profiling, and humanized mice to generate patient-derived organoids for examining personalized therapeutic responses in vitro and in mice co-engrafted with a human immune system (HIS), employing adaptive T-cell- and chimeric antigen receptor- (CAR) immunotherapy. The development of patient specific therapies targeting the vulnerabilities of cancer, when combined with antiproliferative and immunotherapy approaches could help to achieve the full transformative power of cancer precision medicine. PMID:27446916

  1. The modular approach enables a fully ab initio simulation of the contacts between 3D and 2D materials

    NASA Astrophysics Data System (ADS)

    Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2016-10-01

    Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces—for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts—metal/graphene contacts—and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.

  2. The modular approach enables a fully ab initio simulation of the contacts between 3D and 2D materials.

    PubMed

    Fediai, Artem; Ryndyk, Dmitry A; Cuniberti, Gianaurelio

    2016-10-01

    Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces-for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts-metal/graphene contacts-and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.

  3. LayTracks3D: A new approach for meshing general solids using medial axis transform

    SciTech Connect

    Quadros, William Roshan

    2015-08-22

    This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to the MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.

  4. An edge-from-focus approach to 3D inspection and metrology

    NASA Astrophysics Data System (ADS)

    Deng, Fuqin; Chen, Jia; Liu, Jianyang; Zhang, Zhijun; Deng, Jiangwen; Fung, Kenneth S. M.; Lam, Edmund Y.

    2015-02-01

    We propose an edge-based depth-from-focus technique for high-precision non-contact industrial inspection and metrology applications. In our system, an objective lens with a large numerical aperture is chosen to resolve the edge details of the measured object. By motorizing this imaging system, we capture the high-resolution edges within every narrow depth of field. We can therefore extend the measured range and keep a high resolution at the same time. Yet, on the surfaces with a large depth variation, a significant amount of data around each measured point are out of focus within the captured images. Then, it is difficult to extract the valuable information from these out-of-focus data due to the depth-variant blur. Moreover, these data impede the extraction of continuous contours for the measurement objects in high-level machine vision applications. The proposed approach however makes use of the out-of-focus data to synthesize a depth-invariant smoothed image, and then robustly locates the positions of high contrast edges based on non-maximum suppression and hysteresis thresholding. Furthermore, by focus analysis of both the in-focus and the out-of-focus data, we reconstruct the high-precision 3D edges for metrology applications.

  5. Soft computing approach to 3D lung nodule segmentation in CT.

    PubMed

    Badura, P; Pietka, E

    2014-10-01

    This paper presents a novel, multilevel approach to the segmentation of various types of pulmonary nodules in computed tomography studies. It is based on two branches of computational intelligence: the fuzzy connectedness (FC) and the evolutionary computation. First, the image and auxiliary data are prepared for the 3D FC analysis during the first stage of an algorithm - the masks generation. Its main goal is to process some specific types of nodules connected to the pleura or vessels. It consists of some basic image processing operations as well as dedicated routines for the specific cases of nodules. The evolutionary computation is performed on the image and seed points in order to shorten the FC analysis and improve its accuracy. After the FC application, the remaining vessels are removed during the postprocessing stage. The method has been validated using the first dataset of studies acquired and described by the Lung Image Database Consortium (LIDC) and by its latest release - the LIDC-IDRI (Image Database Resource Initiative) database.

  6. Approaches of National 3d Mapping: Research Results and Standardisation in Practice

    NASA Astrophysics Data System (ADS)

    Stoter, J. E.; Streilein, A.; Pla, M.; Baella, B.; Capstick, D.; Home, R.; Roensdorf, C.; Lagrange, J. P.

    2013-09-01

    Over the past ten years technologies for generating, maintaining and using 3D geo-information have matured. For national mapping agencies one of the challenges is how to best extend 2D data into 3D data, making best use of research results and available technologies. Some mapping organisations are making serious progress. The question addressed in this paper is how research results achieved in the past ten years are applied in practice and what research problems remain. In addition, the paper explores the potentials of the OGC 3D standard (i.e. CityGML) for 3D national mapping and what developments are further required to make the standard better fit for this purpose. The main conclusions of the paper are that 3D data is more and more available but still suffers from a low level of usage (mainly visualisation) and standards and formats based on CityGML have been stabilised although software support is still in the early stage. Several recommendations are made to meet these problems, including the definition of European CityGML profiles (as the INSPIRE Building profile) to harmonise 3D needs and standardise 3D implementations at international level.

  7. Metabolic alteration of HepG2 in scaffold-based 3-D culture: proteomic approach.

    PubMed

    Pruksakorn, Dumnoensun; Lirdprapamongkol, Kriengsak; Chokchaichamnankit, Daranee; Subhasitanont, Pantipa; Chiablaem, Khajeelak; Svasti, Jisnuson; Srisomsap, Chantragan

    2010-11-01

    3-D cell culture models are important in cancer biology since they provide improved understanding of tumor microenvironment. We have established a 3-D culture model using HepG2 in natural collagen-based scaffold to mimic the development of small avascular tumor in vivo. Morphological characterization showed that HepG2 colonies grew within the interior of the scaffold and showed enhanced extracellular matrix deposition. High levels of cell proliferation in the outermost regions of the scaffold created a hypoxic microenvironment in the 3-D culture system, as indicated by hypoxia-inducible factor-1α stabilization, detectable by Western blotting and immunohistochemistry. Proteomic studies showed decreased expression of several mitochondrial proteins and increased expression of proteins in anaerobic glycolysis under 3-D culture compared to monolayer culture. Creatine kinase was also upregulated in 3-D culture, indicating its possible role as an important energy buffer system under hypoxic microenvironment. Increased levels of proteins in nucleotide metabolism may relate to cellular energy. Thus, our results suggest that HepG2 cells under 3-D culture adapt their energy metabolism in response to hypoxic conditions. Metabolic alterations in the 3-D culture model may relate to physiological changes relevant to development of small avascular tumor in vivo and their study may improve future therapeutic strategies.

  8. A 2D range Hausdorff approach for 3D face recognition.

    SciTech Connect

    Koch, Mark William; Russ, Trina Denise; Little, Charles Quentin

    2005-04-01

    This paper presents a 3D facial recognition algorithm based on the Hausdorff distance metric. The standard 3D formulation of the Hausdorff matching algorithm has been modified to operate on a 2D range image, enabling a reduction in computation from O(N2) to O(N) without large storage requirements. The Hausdorff distance is known for its robustness to data outliers and inconsistent data between two data sets, making it a suitable choice for dealing with the inherent problems in many 3D datasets due to sensor noise and object self-occlusion. For optimal performance, the algorithm assumes a good initial alignment between probe and template datasets. However, to minimize the error between two faces, the alignment can be iteratively refined. Results from the algorithm are presented using 3D face images from the Face Recognition Grand Challenge database version 1.0.

  9. A 2D range Hausdorff approach to 3D facial recognition.

    SciTech Connect

    Koch, Mark William; Russ, Trina Denise; Little, Charles Quentin

    2004-11-01

    This paper presents a 3D facial recognition algorithm based on the Hausdorff distance metric. The standard 3D formulation of the Hausdorff matching algorithm has been modified to operate on a 2D range image, enabling a reduction in computation from O(N2) to O(N) without large storage requirements. The Hausdorff distance is known for its robustness to data outliers and inconsistent data between two data sets, making it a suitable choice for dealing with the inherent problems in many 3D datasets due to sensor noise and object self-occlusion. For optimal performance, the algorithm assumes a good initial alignment between probe and template datasets. However, to minimize the error between two faces, the alignment can be iteratively refined. Results from the algorithm are presented using 3D face images from the Face Recognition Grand Challenge database version 1.0.

  10. Machine learning and synthetic aperture refocusing approach for more accurate masking of fish bodies in 3D PIV data

    NASA Astrophysics Data System (ADS)

    Ford, Logan; Bajpayee, Abhishek; Techet, Alexandra

    2015-11-01

    3D particle image velocimetry (PIV) is becoming a popular technique to study biological flows. PIV images that contain fish or other animals around which flow is being studied, need to be appropriately masked in order to remove the animal body from the 3D reconstructed volumes prior to calculating particle displacement vectors. Presented here is a machine learning and synthetic aperture (SA) refocusing based approach for more accurate masking of fish from reconstructed intensity fields for 3D PIV purposes. Using prior knowledge about the 3D shape and appearance of the fish along with SA refocused images at arbitrarily oriented focal planes, the location and orientation of a fish in a reconstructed volume can be accurately determined. Once the location and orientation of a fish in a volume is determined, it can be masked out.

  11. Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach

    NASA Astrophysics Data System (ADS)

    Almeida, Nuno; Sarvari, Sebastian I.; Orderud, Fredrik; Gérard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    In this paper, we present an automatic solution for segmentation and quantification of the left atrium (LA) from 3D cardiac ultrasound. A model-based framework is applied, making use of (deformable) active surfaces to model the endocardial surfaces of cardiac chambers, allowing incorporation of a priori anatomical information in a simple fashion. A dual-chamber model (LA and left ventricle) is used to detect and track the atrio-ventricular (AV) plane, without any user input. Both chambers are represented by parametric surfaces and a Kalman filter is used to fit the model to the position of the endocardial walls detected in the image, providing accurate detection and tracking during the whole cardiac cycle. This framework was tested in 20 transthoracic cardiac ultrasound volumetric recordings of healthy volunteers, and evaluated using manual traces of a clinical expert as a reference. The 3D meshes obtained with the automatic method were close to the reference contours at all cardiac phases (mean distance of 0.03+/-0.6 mm). The AV plane was detected with an accuracy of -0.6+/-1.0 mm. The LA volumes assessed automatically were also in agreement with the reference (mean +/-1.96 SD): 0.4+/-5.3 ml, 2.1+/-12.6 ml, and 1.5+/-7.8 ml at end-diastolic, end-systolic and pre-atrial-contraction frames, respectively. This study shows that the proposed method can be used for automatic volumetric assessment of the LA, considerably reducing the analysis time and effort when compared to manual analysis.

  12. New Two-stage Approach For 3d Potential Field Data Inversion

    NASA Astrophysics Data System (ADS)

    Prutkin, I. L.

    From the author's viewpoint the main challenges for a geophysicist dealing with po- tential field data inversion are following: 1) to make really three-dimensional inversion (to avoid the assumption that the object sought is an infinite cylinder); 2) to leave the simplest bodies (prisms, ellipsoids, cylinders of finite length) for the objects of more complex geometry, 3) to take into account the non-uniqueness of the inverse problem. In our investigation we've made an attempt to solve the above-mentioned problems. We take into account the non- uniqueness of the inverse problem in the framework of the equivalence theory developed by A.V. Tsyrulsky. We have reduced 3D grav- ity and magnetic inverse problems to the non-linear integral equations of the 1st kind relative to the function determining geometry of the object sought. They include a physical parameter as a numerical factor. Substituting different values of it, we obtain the opportunity to construct the whole equivalent family of the solutions. New inte- gral equations have been derived, which integrands are algebraic relative the function sought and don't contain its derivatives. The method of local corrections has been suggested, which makes it possible to curtail the time required to solve an inverse problem approximately by an order of magnitude. The parameterization of the solu- tion sought and regularization of an inverse problem were studied. On the base of his equivalence theory A.V. Tsyrulsky had suggested two-stage approach for 2D gravity and magnetic anomalies interpretation. The aim of the first stage is to approximate the observed field by the field of a sum of the simplest sources (point sources, thin layers, etc.) of no geological sense. On the second stage the field of a sum of some sources is regarded as a field of the object sought, we are able to try different variants to unite sources and to construct the equivalent family of solutions. Sole member of the family should be chosen with taking

  13. Tracking of cracks in bridges using GPR: a 3D approach

    NASA Astrophysics Data System (ADS)

    Benedetto, A.

    2012-04-01

    Corrosion associated with reinforcing bars is the most significant contributor to bridge deficiencies. The corrosion is usually caused by moisture and chloride ion exposure. In particular, corrosion products FeO, Fe2O3, Fe3O4 and other oxides along reinforcement bars. The reinforcing bars are attacked by corrosion and yield expansive corrosion products. These oxidation products occupy a larger volume than the original intact steel and internal expansive stresses lead to cracking and debonding. There are some conventional inspection methods for detection of reinforcing bar corrosion but they can be invasive and destructive, often laborious, lane closures is required and it is difficult or unreliable any quantification of corrosion. For these reasons, bridge engineers are always more preferring to use the Ground Penetrating Radar (GPR) technique. In this work a novel numerical approach for three dimensional tracking and mapping of cracks in the bridge is proposed. The work starts from some interesting results based on the use of the 3D imaging technique in order to improve the potentiality of GPR to detect voids, cracks or buried object. The numerical approach has been tested on data acquired on some bridges using a pulse GPR system specifically designed for bridge deck and pavement inspection that is called RIS Hi Bright. The equipment integrates two arrays of Ultra Wide Band ground coupled antennas, having a main working frequency of 2 GHz. The two arrays within the RIS Hi Bright are using antennas arranged with different polarization. One array includes sensors with parallel polarization with respect to the scanning direction (VV array), the other has sensors in orthogonal polarization (HH array). Overall the system collects 16 profiles within a single scan (8 HH + 8 VV). The cracks, associated often to moisture increasing and higher values of the dielectric constant, produce a not negligible increasing of the signal amplitude. Following this, the algorithm

  14. TOBAGO — a semi-automated approach for the generation of 3-D building models

    NASA Astrophysics Data System (ADS)

    Gruen, Armin

    3-D city models are in increasing demand for a great number of applications. Photogrammetry is a relevant technology that can provide an abundance of geometric, topologic and semantic information concerning these models. The pressure to generate a large amount of data with high degree of accuracy and completeness poses a great challenge to phtogrammetry. The development of automated and semi-automated methods for the generation of those data sets is therefore a key issue in photogrammetric research. We present in this article a strategy and methodology for an efficient generation of even fairly complex building models. Within this concept we request the operator to measure the house roofs from a stereomodel in form of an unstructured point cloud. According to our experience this can be done very quickly. Even a non-experienced operator can measure several hundred roofs or roof units per day. In a second step we fit generic building models fully automatically to these point clouds. The structure information is inherently included in these building models. In such a way geometric, topologic and even semantic data can be handed over to a CAD-system, in our case AutoCad, for further visualization and manipulation. The structuring is achieved in three steps. In a first step a classifier is initiated which recognizes the class of houses a particular roof point cloud belongs to. This recognition step is primarily based on the analysis of the number of ridge points. In the second and third steps the concrete topological relations between roof points are investigated and generic building models are fitted to the point clouds. Based on the technique of constraint-based reasoning two geometrical parsers are solving this problem. We have tested the methodology under a variety of different conditions in several pilot projects. The results will indicate the good performance of our approach. In addition we will demonstrate how the results can be used for visualization (texture

  15. [A new approach to the tricuspid valve in Ebstein's anomaly by real time 3D echocardiography].

    PubMed

    Taktak, A; Acar, P; Dulac, Y; Abadir, S; Chilon, T; Roux, D; Glock, Y; Fournial, G

    2005-05-01

    Ebstein's anomaly affects the tricuspid valve with a large range of anatomical forms. Successful tricuspid valvuloplasty depends mainly on the ability to mobilise the leaflets. Evaluation of the leaflet surface is difficult with 2D echocardiography whereas 3D echocardiography provides intracardiac views of the valve. The authors used this method in 10 patients with 3 modes of imaging: biplane, real time and total volume. The study population (age: 1 day to 30 years) included: 1 prenatal diagnosis, 1 neonate with refractory cyanosis, 5 patients with mild tricuspid regurgitation, 3 patients with severe tricuspid regurgitation, 2 of whom underwent valvuloplasty. 3D echocardiography was disappointing in the foetus and neonate because of poor spatial resolution. The ventricular view of the tricuspid valve in older children and adults allowed analysis of tricuspid leaflet coaptation and of the mechanism of regurgitation. The commissures and leaflet surfaces were assessed. The results of surgical valvuloplasty could be evaluated by 3D echocardiography. 3D echocardiography is now transthoracic and a real time investigation. Technical advances are required before it comes into routine usage: a more manoeuvrable matricial probe (integrating pulsed and continuous wave Doppler) and larger volume real time 3D imaging with better resolution. Its role in the assessment of Ebstein's anomaly should be evaluated in a larger series of patients. PMID:15966604

  16. LayTracks3D: A new approach for meshing general solids using medial axis transform

    DOE PAGES

    Quadros, William Roshan

    2015-08-22

    This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to themore » MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.« less

  17. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Chen, Qian

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  18. Optimal Surface Segmentation in Volumetric Images—A Graph-Theoretic Approach

    PubMed Central

    Li, Kang; Wu, Xiaodong; Chen, Danny Z.; Sonka, Milan

    2008-01-01

    Efficient segmentation of globally optimal surfaces representing object boundaries in volumetric data sets is important and challenging in many medical image analysis applications. We have developed an optimal surface detection method capable of simultaneously detecting multiple interacting surfaces, in which the optimality is controlled by the cost functions designed for individual surfaces and by several geometric constraints defining the surface smoothness and interrelations. The method solves the surface segmentation problem by transforming it into computing a minimum s-t cut in a derived arc-weighted directed graph. The proposed algorithm has a low-order polynomial time complexity and is computationally efficient. It has been extensively validated on more than 300 computer-synthetic volumetric images, 72 CT-scanned data sets of different-sized plexiglas tubes, and tens of medical images spanning various imaging modalities. In all cases, the approach yielded highly accurate results. Our approach can be readily extended to higher-dimensional image segmentation. PMID:16402624

  19. Heads-up 3D Microscopy: An Ergonomic and Educational Approach to Microsurgery.

    PubMed

    Mendez, Bernardino M; Chiodo, Michael V; Vandevender, Darl; Patel, Parit A

    2016-05-01

    Traditional microsurgery can lead surgeons to use postures that cause musculoskeletal fatigue, leaving them more prone to work-related injuries. A new technology from TrueVision transmits the microscopic image onto a 3-dimensional (3D) monitor, allowing surgeons to operate while sitting/standing in a heads-up position. The purpose of this study was to evaluate the feasibility of performing heads-up 3D microscopy as a more ergonomic alternative to traditional microsurgery. A feasibility study was conducted comparing heads-up 3D microscopy and traditional microscopy by performing femoral artery anastomoses on 8 Sprague-Dawley rats. Operative times and patency rates for each technology were compared. The 8 microsurgeons completed a questionnaire comparing image quality, comfort, technical feasibility, and educational value of the 2 technologies. Rat femoral artery anastomoses were successfully carried out by all 8 microsurgeons with each technology. There was no significant difference in anastomosis time between heads-up 3D and traditional microscopy (average times, 34.5 and 33.8 minutes, respectively; P = 0.66). Heads-up 3D microscopy was rated superior in neck and back comfort by 75% of participants. Image resolution, field of view, and technical feasibility were found to be superior or equivalent in 75% of participants, whereas 63% evaluated depth perception to be superior or equivalent. Heads-up 3D microscopy is a new technology that improves comfort for the microsurgeon without compromising image quality or technical feasibility. Its use has become prevalent in the field of ophthalmology and may also have utility in plastic and reconstructive surgery. PMID:27579241

  20. Heads-up 3D Microscopy: An Ergonomic and Educational Approach to Microsurgery.

    PubMed

    Mendez, Bernardino M; Chiodo, Michael V; Vandevender, Darl; Patel, Parit A

    2016-05-01

    Traditional microsurgery can lead surgeons to use postures that cause musculoskeletal fatigue, leaving them more prone to work-related injuries. A new technology from TrueVision transmits the microscopic image onto a 3-dimensional (3D) monitor, allowing surgeons to operate while sitting/standing in a heads-up position. The purpose of this study was to evaluate the feasibility of performing heads-up 3D microscopy as a more ergonomic alternative to traditional microsurgery. A feasibility study was conducted comparing heads-up 3D microscopy and traditional microscopy by performing femoral artery anastomoses on 8 Sprague-Dawley rats. Operative times and patency rates for each technology were compared. The 8 microsurgeons completed a questionnaire comparing image quality, comfort, technical feasibility, and educational value of the 2 technologies. Rat femoral artery anastomoses were successfully carried out by all 8 microsurgeons with each technology. There was no significant difference in anastomosis time between heads-up 3D and traditional microscopy (average times, 34.5 and 33.8 minutes, respectively; P = 0.66). Heads-up 3D microscopy was rated superior in neck and back comfort by 75% of participants. Image resolution, field of view, and technical feasibility were found to be superior or equivalent in 75% of participants, whereas 63% evaluated depth perception to be superior or equivalent. Heads-up 3D microscopy is a new technology that improves comfort for the microsurgeon without compromising image quality or technical feasibility. Its use has become prevalent in the field of ophthalmology and may also have utility in plastic and reconstructive surgery.

  1. An approach in developing 3D fiber-deposited magnetic scaffolds for tissue engineering

    SciTech Connect

    De Santis, R.; Gloria, A.; D'Amora, U.; Zeppetelli, S.; Ambrosio, L.; Russo, T.

    2010-06-02

    Scaffolds should possess suitable properties to play their specific role. In this work, the potential of 3D fiber deposition technique to develop multifunctional and well-defined magnetic poly(epsilon-caprolactone)/iron oxide scaffolds has been highlighted, and the effect of iron oxide nanoparticles on the biological and mechanical performances has been assessed.

  2. An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows

    NASA Astrophysics Data System (ADS)

    Ren, Jinlian; Jiang, Tao; Lu, Weigang; Li, Gang

    2016-08-01

    In this paper, a corrected parallel smoothed particle hydrodynamics (C-SPH) method is proposed to simulate the 3D generalized Newtonian free surface flows with low Reynolds number, especially the 3D viscous jets buckling problems are investigated. The proposed C-SPH method is achieved by coupling an improved SPH method based on the incompressible condition with the traditional SPH (TSPH), that is, the improved SPH with diffusive term and first-order Kernel gradient correction scheme is used in the interior of the fluid domain, and the TSPH is used near the free surface. Thus the C-SPH method possesses the advantages of two methods. Meanwhile, an effective and convenient boundary treatment is presented to deal with 3D multiple-boundary problem, and the MPI parallelization technique with a dynamic cells neighbor particle searching method is considered to improve the computational efficiency. The validity and the merits of the C-SPH are first verified by solving several benchmarks and compared with other results. Then the viscous jet folding/coiling based on the Cross model is simulated by the C-SPH method and compared with other experimental or numerical results. Specially, the influences of macroscopic parameters on the flow are discussed. All the numerical results agree well with available data, and show that the C-SPH method has higher accuracy and better stability for solving 3D moving free surface flows over other particle methods.

  3. Magnetic interactions and microscopic spin Hamiltonian approaches for 3d 3 ions at trigonal symmetry sites

    NASA Astrophysics Data System (ADS)

    Yue, Hao; Zi-Yuan, Yang

    2006-04-01

    The spin-Hamiltonian (SH) parameters ( D, g //, and g ⊥) for 4A2(3d 3)-state ions at trigonal symmetry sites, taking into account the spin-spin (SS), the spin-other-orbit (SOO), the orbit-orbit (OO) magnetic interactions besides the well-known spin-orbit (SO) magnetic interaction, are studied in the intermediate-field coupling scheme using the CDM/MSH (Complete Diagonalization Method/ Microscopic Spin Hamiltonian) program recently developed. It is shown that the SH parameters arise from five microscopic mechanisms including SO coupling mechanism, SS coupling mechanism, SOO coupling mechanism, OO coupling mechanism, and SO-SS-SOO-OO combined coupling mechanism. The relative importance of the five (SO, SS, SOO, OO and combined SO-SS-SOO-OO) contributions to the SH parameters is investigated. It is shown that the SO coupling mechanism in these coupling mechanisms is the most important one. The effect of the OO coupling mechanism on the energy levels is appreciable whereas that on the SH parameters is negligible. The contribution from the SS coupling mechanism to the zero-field splitting (ZFS) parameter D is appreciable but is quite small to g-factors: g // and g ⊥. In contrast, the contribution from the SOO coupling mechanism to the ZFS parameter D is quite small but is appreciable to g-factors. Two perturbation theory method approaches have been examined using CDM/MSH program. It is found that the analytical expressions developed by Macfarlane for D, g //, and g ⊥ work well in most of the CF ranges considered whereas those developed by Zdansky for D do not work well in almost all the CF ranges considered. The illustrative evaluation is performed for typical laser material Cr 3+: Al 2O 3. The good agreements between the theoretical values and the experimental finding are obtained. It is found that the percentage difference δ (=|D-D|/|D|×100%) reaches 20.9% for laser material Cr 3+: Al 2O 3. The investigation indicates that the contribution to the ZFS parameter

  4. Intraoperative neuronavigation for transoral surgical approach: use of frameless stereotaxy with 3D rotational C-arm for image acquisition.

    PubMed

    Jackson, Garrett J; Sedney, Cara L; Fancy, Tanya; Rosen, Charles L

    2015-01-01

    The transoral route is a standard surgical approach to the anterior craniovertebral junction, where neuronavigation is difficult secondary to the mobility of the cervical spine in relation to the cranium. We describe the use of neuronavigation combined with intraoperative 3D C-arm to direct our approach and resection of two lesions of the craniovertebral junction. Neuronavigation was employed in planning of incision, bony resection, and assessment of lesion resection. Both patients underwent transoral approach without complication using this method. Frameless stereotaxy with BrainLab VectorVision and 3D C-arm is an effective method of neuronavigated approach to the anterior craniocervical junction, which may contribute to the safety of this approach.

  5. A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction.

    PubMed

    Moriya, Toshio; Acar, Erman; Cheng, R Holland; Ruotsalainen, Ulla

    2015-09-01

    In the single particle reconstruction, the initial 3D structure often suffers from the limited angular sampling artifact. Selecting 2D class averages of particle images generally improves the accuracy and efficiency of the reference-free 3D angle estimation, but causes an insufficient angular sampling to fill the information of the target object in the 3D frequency space. Similarly, the initial 3D structure by the random-conical tilt reconstruction has the well-known "missing cone" artifact. Here, we attempted to solve the limited angular sampling problem by sequentially applying maximum a posteriori estimate with expectation maximization algorithm (sMAP-EM). Using both simulated and experimental cryo-electron microscope images, the sMAP-EM was compared to the direct Fourier method on the basis of reconstruction error and resolution. To establish selection criteria of the final regularization weight for the sMAP-EM, the effects of noise level and sampling sparseness on the reconstructions were examined with evenly distributed sampling simulations. The frequency information filled in the missing cone of the conical tilt sampling simulations was assessed by developing new quantitative measurements. All the results of visual and numerical evaluations showed the sMAP-EM performed better than the direct Fourier method, regardless of the sampling method, noise level, and sampling sparseness. Furthermore, the frequency domain analysis demonstrated that the sMAP-EM can fill the meaningful information in the unmeasured angular space without detailed a priori knowledge of the objects. The current research demonstrated that the sMAP-EM has a high potential to facilitate the determination of 3D protein structures at near atomic-resolution.

  6. A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction.

    PubMed

    Moriya, Toshio; Acar, Erman; Cheng, R Holland; Ruotsalainen, Ulla

    2015-09-01

    In the single particle reconstruction, the initial 3D structure often suffers from the limited angular sampling artifact. Selecting 2D class averages of particle images generally improves the accuracy and efficiency of the reference-free 3D angle estimation, but causes an insufficient angular sampling to fill the information of the target object in the 3D frequency space. Similarly, the initial 3D structure by the random-conical tilt reconstruction has the well-known "missing cone" artifact. Here, we attempted to solve the limited angular sampling problem by sequentially applying maximum a posteriori estimate with expectation maximization algorithm (sMAP-EM). Using both simulated and experimental cryo-electron microscope images, the sMAP-EM was compared to the direct Fourier method on the basis of reconstruction error and resolution. To establish selection criteria of the final regularization weight for the sMAP-EM, the effects of noise level and sampling sparseness on the reconstructions were examined with evenly distributed sampling simulations. The frequency information filled in the missing cone of the conical tilt sampling simulations was assessed by developing new quantitative measurements. All the results of visual and numerical evaluations showed the sMAP-EM performed better than the direct Fourier method, regardless of the sampling method, noise level, and sampling sparseness. Furthermore, the frequency domain analysis demonstrated that the sMAP-EM can fill the meaningful information in the unmeasured angular space without detailed a priori knowledge of the objects. The current research demonstrated that the sMAP-EM has a high potential to facilitate the determination of 3D protein structures at near atomic-resolution. PMID:26193484

  7. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    SciTech Connect

    Cari, C. Suparmi, A.

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  8. Designing Spatial Visualisation Tasks for Middle School Students with a 3D Modelling Software: An Instrumental Approach

    ERIC Educational Resources Information Center

    Turgut, Melih; Uygan, Candas

    2015-01-01

    In this work, certain task designs to enhance middle school students' spatial visualisation ability, in the context of an instrumental approach, have been developed. 3D modelling software, SketchUp®, was used. In the design process, software tools were focused on and, thereafter, the aim was to interpret the instrumental genesis and spatial…

  9. Fatigue life estimation for different notched specimens based on the volumetric approach

    NASA Astrophysics Data System (ADS)

    Zehsaz, M.; Hassanifard, S.; Esmaeili, F.

    2010-06-01

    In this paper, the effects of notch radius for different notched specimens has been studied on the values of stress concentration factor, notch strength reduction factor, and fatigue life duration of the specimens. The material which has been selected for this investigation is Al 2024T3 . Volumetric approach has been applied to obtain the values of notch strength reduction factor and results have been compared with those obtained from the Neuber and Peterson methods. Load controlled fatigue tests of mentioned specimens have been conducted on the 250kN servo-hydraulic Zwick/Amsler fatigue testing machine with the frequency of 10Hz. The fatigue lives of the specimens have also been predicted based on the available smooth S-N curve of Al2024-T3 and also the amounts of notch strength reduction factor which have been obtained from volumetric, Neuber and Peterson methods. The values of stress and strain around the notch roots are required to predict the fatigue life of notched specimens, so Ansys finite element code has been used and non-linear analyses have been performed to obtain the stress and strain distributions around the notches. The plastic deformations of the material have been simulated using multi-linear kinematic hardening and cyclic stress-strain relation. The work here shows that the volumetric approach does a very good job for predicting the fatigue life of the notched specimens.

  10. Multiple 3D reference system analyses for Phobos grooves, a novel approach

    NASA Astrophysics Data System (ADS)

    Simioni, Emanuele; Pajola, Maurizio; Massironi, Matteo; Cremonese, Gabriele

    2015-04-01

    Grooves analysis has represented in the last decade a robust method for geomorphological study of small bodies, as is the case for asteroids 951 Gaspra (Veverka et al., 1994), 243 Ida (Belton et al., 1994), 433 Eros (Thomas et al., (2002), Buczkowski et al., 2008), 21 Lutetia (Massironi et al., 2011, *Besse et al., 2014*) and 4 Vesta (Buczkowski et al., 2*012). Hence, such source of information can be deeper used for a novel approach presented on Phobos with the aim of providing more hints on its harshly debated origin. Stereo-plots and cyclographs represent two methods, unified under the name of stereographic projections, commonly used to describe the statistic of the orientations (dip-angle and dip-direction) of different planes with respect to cardinal points and a reference horizontal plane (Bucher, 1944; Phillips, 1954; Ragan, 1985). However this reference system is ambiguous for any applications on small irregular bodies such as asteroids or comets since it does not permit to highlight systems of parallel anisotropies and to have an idea of their distribution with respect to a given surface feature (for example an impact crater). In this work we show a novel approach for stereographic projections focusing to a multi-reference system. The multi-reference system can be centered on a specific surface feature such as a crater and can alternatively use an absolute reference plane containing the center of figure of the body (to retrieve systems of parallel anisotropies) or a relative horizontal plane (to understand the distribution of the anisotropies with respect to the central feature). In this way we are able to well define the distribution of the grooves expected to be originated from a impact cratering event in a small body. Following this methodology, we have extracted 352 3D fracture planes from the attitudes of the grooves over the surface topography of Phobos and, for each plane, the local surface versor has been defined. Consequently, stereo-plots on

  11. An approach to quantifying 3D responses of cells to extreme strain

    PubMed Central

    Li, Yuhui; Huang, Guoyou; Li, Moxiao; Wang, Lin; Elson, Elliot L.; Jian Lu, Tian; Genin, Guy M.; Xu, Feng

    2016-01-01

    The tissues of hollow organs can routinely stretch up to 2.5 times their length. Although significant pathology can arise if relatively large stretches are sustained, the responses of cells are not known at these levels of sustained strain. A key challenge is presenting cells with a realistic and well-defined three-dimensional (3D) culture environment that can sustain such strains. Here, we describe an in vitro system called microscale, magnetically-actuated synthetic tissues (micro-MASTs) to quantify these responses for cells within a 3D hydrogel matrix. Cellular strain-threshold and saturation behaviors were observed in hydrogel matrix, including strain-dependent proliferation, spreading, polarization, and differentiation, and matrix adhesion retained at strains sufficient for apoptosis. More broadly, the system shows promise for defining and controlling the effects of mechanical environment upon a broad range of cells. PMID:26887698

  12. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach.

    PubMed

    de Jesus, Kelly; de Jesus, Karla; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge; Machado, Leandro José

    2015-01-01

    This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm) with 236 markers (64 above and 88 underwater control points--with 8 common points at water surface--and 92 validation points) was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.). Root Mean Square (RMS) error with homography of control and validations points was lower than without it for surface and underwater cameras (P ≤ 0.03). With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P ≥ 0.47). Without homography, RMS error of control points was greater for underwater than surface cameras (P ≤ 0.04) and the opposite was observed for validation points (P ≤ 0.04). It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy.

  13. Temporal characterization and in vitro comparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    McGarry, Conor K.; Butterworth, Karl T.; Trainor, Colman; O'Sullivan, Joe M.; Prise, Kevin M.; Hounsell, Alan R.

    2011-04-01

    A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

  14. A volumetric approach to quantifying region-to-region white matter connectivity in diffusion tensor MRI.

    PubMed

    Fletcher, P Thomas; Tao, Ran; Jeong, Won-Ki; Whitaker, Ross T

    2007-01-01

    In this paper we present a volumetric approach for quantitatively studying white matter connectivity from diffusion tensor magnetic resonance imaging (DT-MRI). The proposed method is based on a minimization of path cost between two regions, defined as the integral of local costs that are derived from the full tensor data along the path. We solve the minimal path problem using a Hamilton-Jacobi formulation of the problem and a new, fast iterative method that computes updates on the propagating front of the cost function at every point. The solutions for the fronts emanating from the two initial regions are combined, giving a voxel-wise connectivity measurement of the optimal paths between the regions that pass through those voxels. The resulting high-connectivity voxels provide a volumetric representation of the white matter pathway between the terminal regions. We quantify the tensor data along these pathways using nonparametric regression of the tensors and of derived measures as a function of path length. In this way we can obtain volumetric measures on white-matter tracts between regions without any explicit integration of tracts. We demonstrate the proposed method on several fiber tracts from DT-MRI data of the normal human brain. PMID:17633712

  15. Analysis of Approximations and Aperture Distortion for 3D Migration of Bistatic Radar Data with the Two-Step Approach

    NASA Astrophysics Data System (ADS)

    Zanzi, Luigi; Lualdi, Maurizio

    2010-12-01

    The two-step approach is a fast algorithm for 3D migration originally introduced to process zero-offset seismic data. Its application to monostatic GPR (Ground Penetrating Radar) data is straightforward. A direct extension of the algorithm for the application to bistatic radar data is possible provided that the TX-RX azimuth is constant. As for the zero-offset case, the two-step operator is exactly equivalent to the one-step 3D operator for a constant velocity medium and is an approximation of the one-step 3D operator for a medium where the velocity varies vertically. Two methods are explored for handling a heterogeneous medium; both are suitable for the application of the two-step approach, and they are compared in terms of accuracy of the final 3D operator. The aperture of the two-step operator is discussed, and a solution is proposed to optimize its shape. The analysis is of interest for any NDT application where the medium is expected to be heterogeneous, or where the antenna is not in direct contact with the medium (e.g., NDT of artworks, humanitarian demining, radar with air-launched antennas).

  16. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE PAGES

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. Anmore » analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.« less

  17. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    SciTech Connect

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.

  18. A novel and stable approach to anatomical structure morphing for enhanced intraoperative 3D visualization

    NASA Astrophysics Data System (ADS)

    Rajamani, Kumar T.; Gonzalez Ballester, Miguel A.; Nolte, Lutz-Peter; Styner, Martin

    2005-04-01

    The use of three dimensional models in planning and navigating computer assisted surgeries is now well established. These models provide intuitive visualization to the surgeons contributing to significantly better surgical outcomes. Models obtained from specifically acquired CT scans have the disadvantage that they induce high radiation dose to the patient. In this paper we propose a novel and stable method to construct a patient-specific model that provides an appropriate intra-operative 3D visualization without the need for a pre or intra-operative imaging. Patient specific data consists of digitized landmarks and surface points that are obtained intra-operatively. The 3D model is reconstructed by fitting a statistical deformable model to the minimal sparse digitized data. The statistical model is constructed using Principal Component Analysis from training objects. Our morphing scheme efficiently and accurately computes a Mahalanobis distance weighted least square fit of the deformable model to the 3D data model by solving a linear equation system. Relaxing the Mahalanobis distance term as additional points are incorporated enables our method to handle small and large sets of digitized points efficiently. Our novel incorporation of M-estimator based weighting of the digitized points enables us to effectively reject outliers and compute stable models. Normalization of the input model data and the digitized points makes our method size invariant and hence applicable directly to any anatomical shape. The method also allows incorporation of non-spatial data such as patient height and weight. The predominant applications are hip and knee surgeries.

  19. An approach to 3D magnetic field calculation using numerical and differential algebra methods

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.

    1992-07-17

    Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.

  20. A 3D DEM-LBM approach for the assessment of the quick condition for sands

    NASA Astrophysics Data System (ADS)

    Mansouri, M.; Delenne, J.-Y.; El Youssoufi, M. S.; Seridi, A.

    2009-09-01

    We present a 3D numerical model to assess the quick condition (the onset of the boiling phenomenon) in a saturated polydisperse granular material. We use the Discrete Element Method (DEM) to study the evolution of the vertical intergranular stress in a granular sample subjected to an increasing hydraulic gradient. The hydrodynamic forces on the grains of the sample are computed using the Lattice Boltzmann Method (LBM). The principal assumption used is that grains remain at rest until the boiling onset. We show that the obtained critical hydraulic gradient is close to that defined in classical soil mechanics. To cite this article: M. Mansouri et al., C. R. Mecanique 337 (2009).

  1. Interactive 3D-PDF Presentations for the Simulation and Quantification of Extended Endoscopic Endonasal Surgical Approaches.

    PubMed

    Mavar-Haramija, Marija; Prats-Galino, Alberto; Méndez, Juan A Juanes; Puigdelívoll-Sánchez, Anna; de Notaris, Matteo

    2015-10-01

    A three-dimensional (3D) model of the skull base was reconstructed from the pre- and post-dissection head CT images and embedded in a Portable Document Format (PDF) file, which can be opened by freely available software and used offline. The CT images were segmented using a specific 3D software platform for biomedical data, and the resulting 3D geometrical models of anatomical structures were used for dual purpose: to simulate the extended endoscopic endonasal transsphenoidal approaches and to perform the quantitative analysis of the procedures. The analysis consisted of bone removal quantification and the calculation of quantitative parameters (surgical freedom and exposure area) of each procedure. The results are presented in three PDF documents containing JavaScript-based functions. The 3D-PDF files include reconstructions of the nasal structures (nasal septum, vomer, middle turbinates), the bony structures of the anterior skull base and maxillofacial region and partial reconstructions of the optic nerve, the hypoglossal and vidian canals and the internal carotid arteries. Alongside the anatomical model, axial, sagittal and coronal CT images are shown. Interactive 3D presentations were created to explain the surgery and the associated quantification methods step-by-step. The resulting 3D-PDF files allow the user to interact with the model through easily available software, free of charge and in an intuitive manner. The files are available for offline use on a personal computer and no previous specialized knowledge in informatics is required. The documents can be downloaded at http://hdl.handle.net/2445/55224 . PMID:26306875

  2. Virtual Boutique: a 3D modeling and content-based management approach to e-commerce

    NASA Astrophysics Data System (ADS)

    Paquet, Eric; El-Hakim, Sabry F.

    2000-12-01

    The Virtual Boutique is made out of three modules: the decor, the market and the search engine. The decor is the physical space occupied by the Virtual Boutique. It can reproduce any existing boutique. For this purpose, photogrammetry is used. A set of pictures of a real boutique or space is taken and a virtual 3D representation of this space is calculated from them. Calculations are performed with software developed at NRC. This representation consists of meshes and texture maps. The camera used in the acquisition process determines the resolution of the texture maps. Decorative elements are added like painting, computer generated objects and scanned objects. The objects are scanned with laser scanner developed at NRC. This scanner allows simultaneous acquisition of range and color information based on white laser beam triangulation. The second module, the market, is made out of all the merchandises and the manipulators, which are used to manipulate and compare the objects. The third module, the search engine, can search the inventory based on an object shown by the customer in order to retrieve similar objects base don shape and color. The items of interest are displayed in the boutique by reconfiguring the market space, which mean that the boutique can be continuously customized according to the customer's needs. The Virtual Boutique is entirely written in Java 3D and can run in mono and stereo mode and has been optimized in order to allow high quality rendering.

  3. 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.

    PubMed

    Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio

    2014-09-22

    Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP. The peak values and the total distribution of the pressures were compared for this purpose. Results showed that the models were less robust when driven from group data and underestimated the PP in each foot subarea. In particular in the case of the neuropathic subject's model the mean errors between experimental and simulated data were around the 20% of the peak values. This knowledge is crucial in understanding the aetiology of diabetic foot.

  4. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  5. Automated Segmentation of the Right Ventricle in 3D Echocardiography: A Kalman Filter State Estimation Approach.

    PubMed

    Bersvendsen, Jorn; Orderud, Fredrik; Massey, Richard John; Fosså, Kristian; Gerard, Olivier; Urheim, Stig; Samset, Eigil

    2016-01-01

    As the right ventricle's (RV) role in cardiovascular diseases is being more widely recognized, interest in RV imaging, function and quantification is growing. However, there are currently few RV quantification methods for 3D echocardiography presented in the literature or commercially available. In this paper we propose an automated RV segmentation method for 3D echocardiographic images. We represent the RV geometry by a Doo-Sabin subdivision surface with deformation modes derived from a training set of manual segmentations. The segmentation is then represented as a state estimation problem and solved with an extended Kalman filter by combining the RV geometry with a motion model and edge detection. Validation was performed by comparing surface-surface distances, volumes and ejection fractions in 17 patients with aortic insufficiency between the proposed method, magnetic resonance imaging (MRI), and a manual echocardiographic reference. The algorithm was efficient with a mean computation time of 2.0 s. The mean absolute distances between the proposed and manual segmentations were 3.6 ± 0.7 mm. Good agreements of end diastolic volume, end systolic volume and ejection fraction with respect to MRI ( -26±24 mL , -16±26 mL and 0 ± 10%, respectively) and a manual echocardiographic reference (7 ± 30 mL, 13 ± 17 mL and -5±7% , respectively) were observed.

  6. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery

    SciTech Connect

    Li, Ruijiang; Fahimian, Benjamin P.; Xing, Lei

    2011-07-15

    Purpose: Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. Methods: First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a ''plug-and-play'' fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. Results: For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not

  7. New developments at PTB in 3D-AFM with tapping and torsion AFM mode and vector approach probing strategy

    NASA Astrophysics Data System (ADS)

    Dai, G.; Hässler-Grohne, W.; Hüser, D.; Wolff, H.; Fluegge, J.; Bosse, H.

    2011-06-01

    A new 3D-AFM for true 3D measurements of nano structures has been developed at Physikalisch Technische-Bundesanstalt, the national metrology institute of Germany. In its configuration, two piezo actuators are applied to drive the AFM cantilever near its vertical and torsional resonant frequencies. In such a way, the AFM tip can probe the surface with a vertical and/or a lateral oscillation, offering high 3D probing sensitivity. For enhancing measurement flexibility as well as reducing tip wear, a so called "vector approach probing" (VAP) method has been applied. The sample is measured point by point using this method. At each probing point, the tip is approached towards the surface in its normal direction until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Preliminary experimental results show promising performance of the developed system. The measurement of a line structure of 800 nm height employing a super sharp AFM tip is performed, showing a repeatability of its 3D profiles of better than 1 nm (p-v). A single crystal critical dimension reference material (SCCDRM) having features with almost vertical sidewall is measured using a flared AFM tip. Results show that the feature has averaged left and right sidewall angles of 88.64° and 88.67deg;, respectively. However, the feature width non-uniformity may reach 10 nm within the measurement range of 1 μm. The standard deviation of the averaged middle CD values of 7 repeated measurements reaches 0.35 nm. In addition, an investigation of long term measurement stability is performed on a PTB photomask. The results shows that the 3D-AFM has a drift rate of about 0.00033 nm per line, which confirms the high measurement stability and the very low tip wear.

  8. The role of mechanical heterogeneities during continental breakup: a 3D lithospheric-scale modelling approach

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2015-04-01

    How and why do continents break? More than two decades of analogue and 2D plane-strain numerical experiments have shown that despite the origin of the forces driving extension, the geometry of continental rifts falls into three categories - or modes: narrow rift, wide rift, or core complex. The mode of extension itself is strongly influenced by the rheology (and rheological behaviour) of the modelled layered system. In every model, an initial thermal or mechanical heterogeneity, such as a weak seed or a notch, is imposed to help localise the deformation and avoid uniform stretching of the lithosphere by pure shear. While it is widely accepted that structural inheritance is a key parameter for controlling rift localisation - as implied by the Wilson Cycle - modelling the effect of lithospheric heterogeneities on the long-term tectonic evolution of an extending plate in full 3D remains challenging. Recent progress in finite-element methods applied to computational tectonics along with the improved accessibility to high performance computers, now enable to switch from plane strain thermo-mechanical experiments to full 3D high-resolution experiments. Here we investigate the role of mechanical heterogeneities on rift opening, linkage and propagation during extension of a layered lithospheric systems with pTatin3d, a geodynamics modeling package utilising the material-point-method for tracking material composition, combined with a multigrid finite-element method to solve heterogeneous, incompressible visco-plastic Stokes problems. The initial model setup consists in a box of 1200 km horizontally by 250 km deep. It includes a 35 km layer of continental crust, underlaid by 85 km of sub-continental lithospheric mantle, and an asthenospheric mantle. Crust and mantle have visco-plastic rheologies with a pressure dependent yielding, which includes strain weakening, and a temperature, stress, strain-rate-dependent viscosity based on wet quartzite rheology for the crust, and wet

  9. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. PMID:26826637

  10. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct.

  11. 3D Modeling of Spectra and Light Curves of Hot Jupiters with PHOENIX; a First Approach

    NASA Astrophysics Data System (ADS)

    Jiménez-Torres, J. J.

    2016-04-01

    A detailed global circulation model was used to feed the PHOENIX code and calculate 3D spectra and light curves of hot Jupiters. Cloud free and dusty radiative fluxes for the planet HD179949b were modeled to show differences between them. The PHOENIX simulations can explain the broad features of the observed 8 μm light curves, including the fact that the planet-star flux ratio peaks before the secondary eclipse. The PHOENIX reflection spectrum matches the Spitzer secondary-eclipse depth at 3.6 μm and underpredicts eclipse depths at 4.5, 5.8 and 8.0 μm. These discrepancies result from the chemical composition and suggest the incorporation of different metallicities in future studies.

  12. Engineering approaches to study fibrosis in 3-D in vitro systems.

    PubMed

    Porras, Ana M; Hutson, Heather N; Berger, Anthony J; Masters, Kristyn S

    2016-08-01

    Fibrotic diseases occur in virtually every tissue of the body and are a major cause of mortality, yet they remain largely untreatable and poorly understood on a mechanistic level. The development of anti-fibrotic agents has been hampered, in part, by the insufficient fibrosis biomimicry provided by traditional in vitro platforms. This review focuses on recent advancements toward creating 3-D platforms that mimic key features of fibrosis, as well as the application of novel imaging and sensor techniques to analyze dynamic extracellular matrix remodeling. Several opportunities are highlighted to apply new tools from the fields of biomaterials, imaging, and systems biology to yield pathophysiologically relevant in vitro platforms that improve our understanding of fibrosis and may enable identification of potential treatment targets.

  13. Size-Controlled Fabrication of Polyaniline Microfibers Based on 3D Hydrodynamic Focusing Approach.

    PubMed

    Yoo, Imsung; Song, Simon; Uh, Kyungchan; Lee, Chan Woo; Kim, Jong-Man

    2015-07-01

    Owing to the relatively high conductivity and unique redox behavior, polyaniline (PANI) has been one of the most technologically promising conducting polymers. Although various methodologies have been developed, fabrication of PANI microfibers has been a challenging task owing to the poor solubility in most organic solvents. By taking advantage of a microfluidic technology and organic soluble acid labile t-Boc-protected PANI (t-Boc-PANI) as the conducting polymer precursor, fabrication of PANI microfibers in a size-controlled manner is possible. Introduction of a THF solution containing t-Boc-PANI, and dodecylbenzenesulfonic acid (DBSA) as a core flow, and water as a sheath flow into a microfluidic channel with a 3D hydrodynamic focusing effect results in crystallization of the polymer fiber. By changing the flow rate, linear PANI microfibers that range from 16.2 to 39.4 μm in diameter are readily obtained.

  14. Engineering approaches to study fibrosis in 3-D in vitro systems.

    PubMed

    Porras, Ana M; Hutson, Heather N; Berger, Anthony J; Masters, Kristyn S

    2016-08-01

    Fibrotic diseases occur in virtually every tissue of the body and are a major cause of mortality, yet they remain largely untreatable and poorly understood on a mechanistic level. The development of anti-fibrotic agents has been hampered, in part, by the insufficient fibrosis biomimicry provided by traditional in vitro platforms. This review focuses on recent advancements toward creating 3-D platforms that mimic key features of fibrosis, as well as the application of novel imaging and sensor techniques to analyze dynamic extracellular matrix remodeling. Several opportunities are highlighted to apply new tools from the fields of biomaterials, imaging, and systems biology to yield pathophysiologically relevant in vitro platforms that improve our understanding of fibrosis and may enable identification of potential treatment targets. PMID:26926460

  15. 3D geometry analysis of the medial meniscus--a statistical shape modeling approach.

    PubMed

    Vrancken, A C T; Crijns, S P M; Ploegmakers, M J M; O'Kane, C; van Tienen, T G; Janssen, D; Buma, P; Verdonschot, N

    2014-10-01

    The geometry-dependent functioning of the meniscus indicates that detailed knowledge on 3D meniscus geometry and its inter-subject variation is essential to design well functioning anatomically shaped meniscus replacements. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size- or shape-driven. Also we performed a cluster analysis to identify distinct morphological groups of medial menisci and assessed whether meniscal geometry is gender-dependent. A statistical shape model was created, containing the meniscus geometries of 35 subjects (20 females, 15 males) that were obtained from MR images. A principal component analysis was performed to determine the most important modes of geometry variation and the characteristic changes per principal component were evaluated. Each meniscus from the original dataset was then reconstructed as a linear combination of principal components. This allowed the comparison of male and female menisci, and a cluster analysis to determine distinct morphological meniscus groups. Of the variation in medial meniscus geometry, 53.8% was found to be due to primarily size-related differences and 29.6% due to shape differences. Shape changes were most prominent in the cross-sectional plane, rather than in the transverse plane. Significant differences between male and female menisci were only found for principal component 1, which predominantly reflected size differences. The cluster analysis resulted in four clusters, yet these clusters represented two statistically different meniscal shapes, as differences between cluster 1, 2 and 4 were only present for principal component 1. This study illustrates that differences in meniscal geometry cannot be explained by scaling only, but that different meniscal shapes can be distinguished. Functional analysis, e.g. through finite element modeling, is required to assess whether these distinct shapes actually influence

  16. 3D models mapping optimization through an integrated parameterization approach: cases studies from Ravenna

    NASA Astrophysics Data System (ADS)

    Cipriani, L.; Fantini, F.; Bertacchi, S.

    2014-06-01

    Image-based modelling tools based on SfM algorithms gained great popularity since several software houses provided applications able to achieve 3D textured models easily and automatically. The aim of this paper is to point out the importance of controlling models parameterization process, considering that automatic solutions included in these modelling tools can produce poor results in terms of texture utilization. In order to achieve a better quality of textured models from image-based modelling applications, this research presents a series of practical strategies aimed at providing a better balance between geometric resolution of models from passive sensors and their corresponding (u,v) map reference systems. This aspect is essential for the achievement of a high-quality 3D representation, since "apparent colour" is a fundamental aspect in the field of Cultural Heritage documentation. Complex meshes without native parameterization have to be "flatten" or "unwrapped" in the (u,v) parameter space, with the main objective to be mapped with a single image. This result can be obtained by using two different strategies: the former automatic and faster, while the latter manual and time-consuming. Reverse modelling applications provide automatic solutions based on splitting the models by means of different algorithms, that produce a sort of "atlas" of the original model in the parameter space, in many instances not adequate and negatively affecting the overall quality of representation. Using in synergy different solutions, ranging from semantic aware modelling techniques to quad-dominant meshes achieved using retopology tools, it is possible to obtain a complete control of the parameterization process.

  17. Mass Movement Susceptibility in the Western San Juan Mountains, Colorado: A Preliminary 3-D Mapping Approach

    NASA Astrophysics Data System (ADS)

    Kelkar, K. A.; Giardino, J. R.

    2015-12-01

    Mass movement is a major activity that impacts lives of humans and their infrastructure. Human activity in steep, mountainous regions is especially at risk to this potential hazard. Thus, the identification and quantification of risk by mapping and determining mass movement susceptibility are fundamental in protecting lives, resources and ensuring proper land use regulation and planning. Specific mass-movement processes including debris flows, rock falls, snow avalanches and landslides continuously modify the landscape of the San Juan Mountains. Historically, large-magnitude slope failures have repeatedly occurred in the region. Common triggers include intense, long-duration precipitation, freeze-thaw processes, human activity and various volcanic lithologies overlying weaker sedimentary formations. Predicting mass movement is challenging because of its episodic and spatially, discontinuous occurrence. Landslides in mountain terrain are characterized as widespread, highly mobile and have a long duration of activity. We developed a 3-D model for landslide susceptibility using Geographic Information Systems Technology (GIST). The study area encompasses eight USGS quadrangles: Ridgway, Dallas, Mount Sneffels, Ouray, Telluride, Ironton, Ophir and Silverton. Fieldwork consisted of field reconnaissance mapping at 1:5,000 focusing on surficial geomorphology. Field mapping was used to identify potential locations, which then received additional onsite investigation and photographic documentation of features indicative of slope failure. A GIS module was created using seven terrain spatial databases: geology, surficial geomorphology (digitized), slope aspect, slope angle, vegetation, soils and distance to infrastructure to map risk. The GIS database will help determine risk zonation for the study area. Correlations between terrain parameters leading to slope failure were determined through the GIS module. This 3-D model will provide a spatial perspective of the landscape to

  18. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    NASA Astrophysics Data System (ADS)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-06-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCFmax, spatial registration position in x-y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States.

  19. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources

    NASA Astrophysics Data System (ADS)

    Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.

    2015-08-01

    Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCity

  20. Novel 3D Approach to Flare Modeling via Interactive IDL Widget Tools

    NASA Astrophysics Data System (ADS)

    Nita, G. M.; Fleishman, G. D.; Gary, D. E.; Kuznetsov, A.; Kontar, E. P.

    2011-12-01

    Currently, and soon-to-be, available sophisticated 3D models of particle acceleration and transport in solar flares require a new level of user-friendly visualization and analysis tools allowing quick and easy adjustment of the model parameters and computation of realistic radiation patterns (images, spectra, polarization, etc). We report the current state of the art of these tools in development, already proved to be highly efficient for the direct flare modeling. We present an interactive IDL widget application intended to provide a flexible tool that allows the user to generate spatially resolved radio and X-ray spectra. The object-based architecture of this application provides full interaction with imported 3D magnetic field models (e.g., from an extrapolation) that may be embedded in a global coronal model. Various tools provided allow users to explore the magnetic connectivity of the model by generating magnetic field lines originating in user-specified volume positions. Such lines may serve as reference lines for creating magnetic flux tubes, which are further populated with user-defined analytical thermal/non thermal particle distribution models. By default, the application integrates IDL callable DLL and Shared libraries containing fast GS emission codes developed in FORTRAN and C++ and soft and hard X-ray codes developed in IDL. However, the interactive interface allows interchanging these default libraries with any user-defined IDL or external callable codes designed to solve the radiation transfer equation in the same or other wavelength ranges of interest. To illustrate the tool capacity and generality, we present a step-by-step real-time computation of microwave and X-ray images from realistic magnetic structures obtained from a magnetic field extrapolation preceding a real event, and compare them with the actual imaging data obtained by NORH and RHESSI instruments. We discuss further anticipated developments of the tools needed to accommodate

  1. Unequal-period combination approach of gray code and phase-shifting for 3-D visual measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin

    2016-09-01

    Combination of Gray code and phase-shifting is the most practical and advanced approach for the structured light 3-D measurement so far, which is able to measure objects with complex and discontinuous surface. However, for the traditional combination of the Gray code and phase-shifting, the captured Gray code images are not always sharp cut-off in the black-white conversion boundaries, which may lead to wrong decoding analog code orders. Moreover, during the actual measurement, there also exists local decoding error for the wrapped analog code obtained with the phase-shifting approach. Therefore, for the traditional approach, the wrong analog code orders and the local decoding errors will consequently introduce the errors which are equivalent to a fringe period when the analog code is unwrapped. In order to avoid one-fringe period errors, we propose an approach which combines Gray code with phase-shifting according to unequal period. With theoretical analysis, we build the measurement model of the proposed approach, determine the applicable condition and optimize the Gray code encoding period and phase-shifting fringe period. The experimental results verify that the proposed approach can offer a reliable unwrapped analog code, which can be used in 3-D shape measurement.

  2. A group center overlap based approach for "3D QSAR" studies on TIBO derivatives.

    PubMed

    Sapre, Nitin S; Gupta, Swagata; Pancholi, Nilanjana; Sapre, Neelima

    2009-04-30

    Current challenges in drug designing and lead optimization has reached a bottle neck where the main onus lies on rigorous validation to afford robust and predictive models. In the present study, we have suggested that predictive structure-activity relationship (SAR) models based on robust statistical analyses can serve as effective screening tools for large volume of compounds present either in chemical databases or in virtual libraries. 3D descriptors derived from the similarity-based alignment of molecules with respect to group center overlap from each individual template point and other "alignment averaged," but significant descriptors (ClogP, molar refractivity, connolly accessible area) were used to generate QSAR models. The results indicated that the artificial neural network method (r(2) = 0.902) proved to be superior to the multiple linear regression method (r(2) = 0.810). Cross validation of the models with an external set was reasonably satisfactory. Screening PubChem compound database based on the models obtained, yielded 14 newer modified compounds belonging to the TIBO class of inhibitors, as well as, two novel scaffolds, with enhanced binding efficacy as hits. These hits may be targeted toward potent lead-optimization and help in designing and synthesizing new compounds with potential therapeutic utility. PMID:18785154

  3. A quasi-Monte Carlo approach to efficient 3-D migration: Field data test

    SciTech Connect

    Zhou, C.; Chen, J.; Schuster, G.T.; Smith, B.A.

    1999-10-01

    The quasi-Monte Carlo migration algorithm is applied to a 3-D seismic data set from West Texas. The field data were finely sampled at approximately 220-ft intervals in the in-line direction but were sampled coarsely at approximately 1,320-ft intervals in the cross-line direction. The traces at the quasi-Monte Carlo points were obtained by an interpolation of the regularly sampled traces. The subsampled traces at the quasi-Monte Carlo points were migrated, and the resulting images were compared to those obtained by migrating both regular and uniform grids of traces. Results show that, consistent with theory, the quasi-Monte Carlo migration images contain fewer migration aliasing artifacts than the regular or uniform grid images. For these data, quasi-Monte Carlo migration apparently requires fewer than half the number of the traces needed by regular-grid or uniform-grid migration to give images of comparable quality. These results agree with related migration tests on synthetic data computed for point scatterer models. Results suggest that better migration images might result from data recorded on a coarse quasi-random grid compared to regular or uniform coarse grids.

  4. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping

    PubMed Central

    Paulus, Stefan; Dupuis, Jan; Riedel, Sebastian; Kuhlmann, Heiner

    2014-01-01

    Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0.99 for the leaf area and R2 = 0.98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored. PMID:25029283

  5. A Chemical Approach to 3-D Lithographic Patterning of Si and GeNanocrystals

    SciTech Connect

    Sharp, I.D.; Xu, Q.; Yi, D.O.; Liao, C.Y.; Ager III, J.W.; Beeman, J.W.; Yu, K.M.; Robinson, J.T.; Dubon, O.D.; Chrzan, D.C.; Haller, E.E.

    2005-12-12

    Ion implantation into silica followed by thermal annealingis an established growth method for Si and Ge nanocrystals. Wedemonstrate that growth of Group IV semiconductor nanocrystals can besuppressed by co-implantation of oxygen prior to annealing. For Sinanocrystals, at low Si/O dose ratios, oxygen co-implantation leads to areduction of the average nanocrystal size and a blue-shift of thephotoluminescence emission energy. For both Si and Ge nanocrystals, atlarger Si/O or Ge/O dose ratios, the implanted specie is oxidized andnanocrystals do not form. This chemical deactivation was utilized toachieve patterned growth of Si and Ge nanocrystals. Si was implanted intoa thin SiO2 film on a Si substrate followed by oxygen implantationthrough an electron beam lithographically defined stencil mask. Thermalannealing of the co-implanted structure yields two-dimensionallypatterned growth of Si nanocrystals under the masked regions. We applieda previously developed process to obtain exposed nanocrystals byselective HF etching of the silica matrix to these patterned structures.Atomic force microscopy (AFM) of etched structures revealed that exposednanocrystals are not laterally displaced from their original positionsduring the etching process. Therefore, this process provides a means ofachieving patterned structures of exposed nanocrystals. The possibilitiesfor scaling this chemical-based lithography process to smaller featuresand for extending it to 3-D patterning is discussed.

  6. 3D template fabrication process for the dual damascene NIL approach

    NASA Astrophysics Data System (ADS)

    Butschke, Joerg; Irmscher, Mathias; Resnick, Douglas; Sailer, Holger; Thompson, Ecron

    2007-05-01

    NIL technique enables an easy replication of three dimensional patterns. Combined with a UV printable low-k material the NIL lithography can dramatically simplify the dual damascene process. Goal of this work was to develop a template process scheme which enables the generation of high resolution pillars on top of corresponding lines for direct printing of later vias and metal lines. The process flow is based on conventional 6025 photomask blanks. Exposure was done on a variable shaped e-beam writer Vistec SB350 using a sample of an advanced negative tone CAR and Fujifilm pCAR FEP171 for the first and the second layer, respectively. Chrome and quartz etching was accomplished in an Oerlikon mask etcher Gen III and Gen IV. Assessment of the developed template process was done in terms of overlay accuracy, feature profile and resolution capability depending on aspect ratio and line duty cycle. Finally the printability of 3D templates fabricated according the developed process scheme was proved.

  7. A thermographic approach for surface crack depth evaluation through 3D finite element modeling

    NASA Astrophysics Data System (ADS)

    Basheer, Mohammed; PV, Nithin; Ravindran, Parag; Balasubramaniam, Krishnan

    2015-03-01

    Laser Thermography has been reported earlier by several researchers as a tool for detecting surface breaking cracks in metals. A high energy laser (pulsed Nd-YAG) was used to produce a highly localized thermal spot from which heat diffuses (predominantly) in the radial direction. The crack that is perpendicular to the surface and close to this thermal spot will perturb the lateral heat flow and this disturbance can be observed by an IR camera. The laser spot is then scanned over a region to map the crack; this allows remote imaging of crack morphology even in elevated temperatures. The present study involves a 3D finite element simulation using COMSOL Multiphysics as a tool to simulate the thermal flow from a pulsed laser source in the proximity of a crack. The modeling helped to understand the various parameters affecting the thermal images of laser heated spots. The influence of depth of the crack on temperature changes across the crack and the relationship between crack depth and temperature changes due to the crack was simulated and subsequently validated experimentally.

  8. Stage acoustics for musicians: A multidimensional approach using 3D ambisonic technology

    NASA Astrophysics Data System (ADS)

    Guthrie, Anne

    In this research, a method was outlined and tested for the use of 3D Ambisonic technology to inform stage acoustics research and design. Stage acoustics for musicians as a field has yet to benefit from recent advancements in auralization and spatial acoustic analysis. This research attempts to address common issues in stage acoustics: subjective requirements for performers in relation to feelings of support, quality of sound, and ease of ensemble playing in relation to measurable, objective characteristics that can be used to design better stage enclosures. While these issues have been addressed in previous work, this research attempts to use technological advancements to improve the resolution and realism of the testing and analysis procedures. Advancements include measurement of spatial impulse responses using a spherical microphone array, higher-order ambisonic encoding and playback for real-time performer auralization, high-resolution spatial beamforming for analysis of onstage impulse responses, and multidimensional scaling procedures to determine subjective musician preferences. The methodology for implementing these technologies into stage acoustics research is outlined in this document and initial observations regarding implications for stage enclosure design are proposed. This research provides a robust method for measuring and analyzing performer experiences on multiple stages without the costly and time-intensive process of physically surveying orchestras on different stages, with increased repeatability while maintaining a high level of immersive realism and spatial resolution. Along with implications for physical design, this method provides possibilities for virtual teaching and rehearsal, parametric modeling and co-located performance.

  9. Mathematical analysis of the accordion grating illusion: a differential geometry approach to introduce the 3D aperture problem.

    PubMed

    Yazdanbakhsh, Arash; Gori, Simone

    2011-12-01

    When an observer moves towards a square-wave grating display, a non-rigid distortion of the pattern occurs in which the stripes bulge and expand perpendicularly to their orientation; these effects reverse when the observer moves away. Such distortions present a new problem beyond the classical aperture problem faced by visual motion detectors, one we describe as a 3D aperture problem as it incorporates depth signals. We applied differential geometry to obtain a closed form solution to characterize the fluid distortion of the stripes. Our solution replicates the perceptual distortions and enabled us to design a nulling experiment to distinguish our 3D aperture solution from other candidate mechanisms (see Gori et al. (in this issue)). We suggest that our approach may generalize to other motion illusions visible in 2D displays. PMID:21782387

  10. Mathematical analysis of the accordion grating illusion: a differential geometry approach to introduce the 3D aperture problem.

    PubMed

    Yazdanbakhsh, Arash; Gori, Simone

    2011-12-01

    When an observer moves towards a square-wave grating display, a non-rigid distortion of the pattern occurs in which the stripes bulge and expand perpendicularly to their orientation; these effects reverse when the observer moves away. Such distortions present a new problem beyond the classical aperture problem faced by visual motion detectors, one we describe as a 3D aperture problem as it incorporates depth signals. We applied differential geometry to obtain a closed form solution to characterize the fluid distortion of the stripes. Our solution replicates the perceptual distortions and enabled us to design a nulling experiment to distinguish our 3D aperture solution from other candidate mechanisms (see Gori et al. (in this issue)). We suggest that our approach may generalize to other motion illusions visible in 2D displays.

  11. A 3-D skeleton model & SEMG approach for integrated neck and low back pain analysis test batteries.

    PubMed

    D'amico, M; D'amico, G; Frascarello, M; Paniccia, M; Roncoletta, P; Vallasciani, M

    2008-01-01

    Since several years our group is working on a project to merge into a full 3D reliable and detailed human skeleton representation various segmental biomechanical models presented in literature. The obtained 3D skeleton model is fully parametric and can be fitted to each subject anthropometric characteristics. A non-ionising approach based on 3D opto-electronic measurements of body landmarks labelled by passive markers has been chosen to build the 3D parametric biomechanical skeleton model. A special focus has been devoted to identify and model the spine with a correct degree of accuracy and reliability. In spine pain related pathologies is of major importance the evaluation of functional limitations associated. This requires to integrate morphological characteristics with information deriving from other measurements devices as force platform data, surface EMG, foot pressure maps. The aim of this study is to present a multi-factorial approach which integrates rachis morphological characteristics with full skeleton kinematic, dynamic and SEMG measurements to quantify spine function and mobility in particular for neck and low back pain. A set of clinical-biomechanical tests have been implemented. Static posture characteristics are first evaluated. After that, patient is asked to perform specific motion test batteries in order to fully measure the whole ROMs (spine angles ranges and spine shape modifications) for Axial rotations, forward-backward flexion-extension, lateral bendings per each spine functional units (Skull and neck, thoracic and lumbar districts). During forward bending also a digital Schober test is performed. Such data are correlated to simultaneous SEMG muscle activities recording to investigate motor co-ordination/dysfunction as well as the presence absence of flexion-relaxation phenomena associated to pain.

  12. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2016-04-01

    Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Archean Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Archean conditions using a plume-lid tectonics model setup. For varying crustal compositions and a mantle potential temperature increase ΔTp = 250K (compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanic and plutonic magmatism. Models show large amounts of subcrustal decompression melting and production of new crust which in turn influences the dynamics. On short-term (10 ‑ 20Myr) rising diapirs and sinking basaltic crust lead to crustal overturn and to the formation of the typical Archean dome-and-keel pattern. On long-term a long (˜ 80Myr) passive 'growth phase' with strong growth of crust and lithosphere is observed. Both crust and lithosphere thickness are regulated by thermochemical instabilities assisted by lower crustal eclogitisation and a subcrustal small-scale convection area. Delamination of lower crust and lithosphere is initiated by linear or cylindrical eclogite drips and occurs as one 'catastrophic' event within a 20Myr 'removal phase'.

  13. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2016-04-01

    Early Earth had a higher amount of radiogenic elements as well as a higher amount of leftover primordial heat. Both contribute to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature Tp that controls the dynamics of the crust and upper mantle and the predominant style of tectonics in the Archean Earth. We conduct 3D petrological-magmatic-thermomechanical numerical modelling experiments of the crust and upper mantle under Archean conditions using a plume-lid tectonics model setup. For varying crustal compositions and a mantle potential temperature increase ΔTp = 250K (compared to present day conditions), a hot lower thermal boundary layer introduces spontaneously developing mantle plumes and after repeated melt removal, depleted mantle lithosphere is formed self-consistently. New crust is produced in the form of both volcanic and plutonic magmatism. Models show large amounts of subcrustal decompression melting and production of new crust which in turn influences the dynamics. On short-term (10 - 20Myr) rising diapirs and sinking basaltic crust lead to crustal overturn and to the formation of the typical Archean dome-and-keel pattern. On long-term a long (˜ 80Myr) passive 'growth phase' with strong growth of crust and lithosphere is observed. Both crust and lithosphere thickness are regulated by thermochemical instabilities assisted by lower crustal eclogitisation and a subcrustal small-scale convection area. Delamination of lower crust and lithosphere is initiated by linear or cylindrical eclogite drips and occurs as one 'catastrophic' event within a 20Myr 'removal phase'.

  14. An optimal transport approach for seismic tomography: application to 3D full waveform inversion

    NASA Astrophysics Data System (ADS)

    Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.

    2016-11-01

    the L 2 distance, in 2D and 3D contexts.

  15. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2014-12-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp < 175 K a subduction-collision style ensues which is largely similar to present day plate tectonics. For a moderate increase in ΔTp = 175-250 K subduction can still occur, however plates are strongly weakened and buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton

  16. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  17. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions.

    PubMed

    Seidel, Thomas; Edelmann, J-C; Sachse, Frank B

    2016-05-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 µm. This allowed extensive analyzes revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control vs. infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale. PMID:26399990

  18. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions.

    PubMed

    Seidel, Thomas; Edelmann, J-C; Sachse, Frank B

    2016-05-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 µm. This allowed extensive analyzes revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control vs. infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale.

  19. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds

    PubMed Central

    Dorninger, Peter; Pfeifer, Norbert

    2008-01-01

    Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects.

  20. A general approach for time-supersampling of 3D-PIV data by the vortex-in-cell method

    NASA Astrophysics Data System (ADS)

    Scarano, Fulvio; Schneiders, Jan; Dwight, Richard; Aerospace Engineering/Aerodynamics Team

    2013-11-01

    Advancements of tomographic PIV [1] have led into 3D time-resolved experiments to study the dynamical evolution of 3D turbulent flows [2]. The known bottleneck of Tomo-PIV is the high laser power required to illuminate large volumes in airflows, which becomes critical beyond 10 kHz. Time-super-sampling is an approach to reduce the sampling rate, proven for frozen turbulence where the advection model yields a significant increase of temporal resolution [3]. Instead, in separated flows, the advection principle yields unacceptable distortions. The use of Navier-Stokes numerical calculations with the vortex-in-cell (VIC) method is proposed herein. The assumption is made of inviscid incompressible flow [4]. The spatial-resolution of the data is exploited to increase the temporal resolution. The dynamical evolution of the vorticity and velocity field between subsequent snapshots in the 3D domain is numerically evaluated. The verification with fully time resolved data of a circular jet indicates a substantial increase of temporal resolution. Interestingly, data sampled below the Nyquist limit could be reconstructed faithfully, indicating the potential of VIC in alleviating requirements on PIV measurement rate. Work supported by the European Research Council grant 202887.

  1. A Survey on Model Based Approaches for 2D and 3D Visual Human Pose Recovery

    PubMed Central

    Perez-Sala, Xavier; Escalera, Sergio; Angulo, Cecilio; Gonzàlez, Jordi

    2014-01-01

    Human Pose Recovery has been studied in the field of Computer Vision for the last 40 years. Several approaches have been reported, and significant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we define a general taxonomy to group model based approaches for Human Pose Recovery, which is composed of five main modules: appearance, viewpoint, spatial relations, temporal consistence, and behavior. Subsequently, a methodological comparison is performed following the proposed taxonomy, evaluating current SoA approaches in the aforementioned five group categories. As a result of this comparison, we discuss the main advantages and drawbacks of the reviewed literature. PMID:24594613

  2. Fully automated 3D prostate central gland segmentation in MR images: a LOGISMOS based approach

    NASA Astrophysics Data System (ADS)

    Yin, Yin; Fotin, Sergei V.; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Turkbey, Baris; Choyke, Peter

    2012-02-01

    One widely accepted classification of a prostate is by a central gland (CG) and a peripheral zone (PZ). In some clinical applications, separating CG and PZ from the whole prostate is useful. For instance, in prostate cancer detection, radiologist wants to know in which zone the cancer occurs. Another application is for multiparametric MR tissue characterization. In prostate T2 MR images, due to the high intensity variation between CG and PZ, automated differentiation of CG and PZ is difficult. Previously, we developed an automated prostate boundary segmentation system, which tested on large datasets and showed good performance. Using the results of the pre-segmented prostate boundary, in this paper, we proposed an automated CG segmentation algorithm based on Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces (LOGISMOS). The designed LOGISMOS model contained both shape and topology information during deformation. We generated graph cost by training classifiers and used coarse-to-fine search. The LOGISMOS framework guarantees optimal solution regarding to cost and shape constraint. A five-fold cross-validation approach was applied to training dataset containing 261 images to optimize the system performance and compare with a voxel classification based reference approach. After the best parameter settings were found, the system was tested on a dataset containing another 261 images. The mean DSC of 0.81 for the test set indicates that our approach is promising for automated CG segmentation. Running time for the system is about 15 seconds.

  3. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  4. A new approach for magnetic curves in 3D Riemannian manifolds

    SciTech Connect

    Bozkurt, Zehra Gök, Ismail Yaylı, Yusuf Ekmekci, F. Nejat

    2014-05-15

    A magnetic field is defined by the property that its divergence is zero in a three-dimensional oriented Riemannian manifold. Each magnetic field generates a magnetic flow whose trajectories are curves called as magnetic curves. In this paper, we give a new variational approach to study the magnetic flow associated with the Killing magnetic field in a three-dimensional oriented Riemann manifold, (M{sup 3}, g). And then, we investigate the trajectories of the magnetic fields called as N-magnetic and B-magnetic curves.

  5. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells

    PubMed Central

    Herroon, Mackenzie Katheryn; Diedrich, Jonathan Driscoll; Podgorski, Izabela

    2016-01-01

    Adipocytes are a major component of the bone marrow that can critically affect metastatic progression in bone. Understanding how the marrow fat cells influence growth, behavior, and survival of tumor cells requires utilization of in vitro cell systems that can closely mimic the physiological microenvironment. Herein, we present two new three-dimensional (3D) culture approaches to study adipocyte–tumor cell interactions in vitro. The first is a transwell-based system composed of the marrow-derived adipocytes in 3D collagen I gels and reconstituted basement membrane-overlayed prostate tumor cell spheroids. Tumor cells cultured under these 3D conditions are continuously exposed to adipocyte-derived factors, and their response can be evaluated by morphological and immunohistochemical analyses. We show via immunofluorescence analysis of metabolism-associated proteins that under 3D conditions tumor cells have significantly different metabolic response to adipocytes than tumor cells grown in 2D culture. We also demonstrate that this model allows for incorporation of other cell types, such as bone marrow macrophages, and utilization of dye-quenched collagen substrates for examination of proteolysis-driven responses to adipocyte- and macrophage-derived factors. Our second 3D culture system is designed to study tumor cell invasion toward the adipocytes and the consequent interaction between the two cell types. In this model, marrow adipocytes are separated from the fluorescently labeled tumor cells by a layer of collagen I. At designated time points, adipocytes are stained with BODIPY and confocal z-stacks are taken through the depth of the entire culture to determine the distance traveled between the two cell types over time. We demonstrate that this system can be utilized to study effects of candidate factors on tumor invasion toward the adipocytes. We also show that immunohistochemical analyses can be performed to evaluate the impact of direct interaction of prostate

  6. Separation efficiency of a hydrodynamic separator using a 3D computational fluid dynamics multiscale approach.

    PubMed

    Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine

    2014-01-01

    The aim of this study is to investigate the use of computational fluid dynamics (CFD) to predict the solid separation efficiency of a hydrodynamic separator. The numerical difficulty concerns the discretization of the geometry to simulate both the global behavior and the local phenomena that occur near the screen. In this context, a CFD multiscale approach was used: a global model (at the scale of the device) is used to observe the hydrodynamic behavior within the device; a local model (portion of the screen) is used to determine the local phenomena that occur near the screen. The Eulerian-Lagrangian approach was used to model the particle trajectories in both models. The global model shows the influence of the particles' characteristics on the trapping efficiency. A high density favors the sedimentation. In contrast, particles with small densities (1,040 kg/m(3)) are steered by the hydrodynamic behavior and can potentially be trapped by the separator. The use of the local model allows us to observe the particle trajectories near the screen. A comparison between two types of screens (perforated plate vs expanded metal) highlights the turbulent effects created by the shape of the screen.

  7. High-throughput morphometric analysis of pulmonary airways in MSCT via a mixed 3D/2D approach

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Asthma and COPD are complex airway diseases with an increased incidence estimated for the next decade. Today, the mechanisms and relationships between airway structure/physiology and the clinical phenotype and genotype are not completely understood. We thus lack the tools to predict disease progression or therapeutic responses. One of the main causes is our limited ability to assess the complexity of airway diseases in large populations of patients with appropriate controls. Multi-slice computed tomography (MSCT) imaging opened the way to the non-invasive assessment of airway physiology and structure, but the use of such technology in large cohorts requires a high degree of automation of the measurements. This paper develops an investigation framework and the associated image quantification tools for high-throughput analysis of airways in MSCT. A mixed approach is proposed, combining 3D and cross-section measurements of the airway tree where the user-interaction is limited to the choice of the desired analysis patterns. Such approach relies on the fully-automated segmentation of the 3D airway tree, caliber estimation and visualization based on morphologic granulometry, central axis computation and tree segment selection, cross-section morphometry of airway lumen and wall, and bronchus longitudinal shape analysis for stenosis/bronciectasis detection and measure validation. The developed methodology has been successfully applied to a cohort of 96 patients from a multi-center clinical study of asthma control in moderate and persistent asthma.

  8. A new approach to the learning of dental morphology, function, and esthetics: the "2D-3D-4D" concept.

    PubMed

    Magne, Pascal

    2015-01-01

    A concept is proposed for an approach to the learning of dental morphology and occlusion. Dental morphology, function, and esthetics should reflect a fundamental driving force, that is, the faithful emulation of the natural dentition's structural (functional, mechanical) and esthetic properties. The innovative part of the proposed approach is the emphasis on visual arts and the 2D-3D-4D aspect that starts with drawing (2D/3D) and continues with partial wax-up exercises that are followed by labial waxups and, finally, full wax-ups using innovative technical aids (electric waxers, prefabricated wax patterns, etc). Finally, the concept of layers (4D) and the histoanatomy of enamel/dentin and optical depth are taught through the realization of layering exercises (advanced acrylic mock-ups and composite resin restorations). All these techniques and materials are not only used to teach morphology and occlusion, but also constitute essential tools that will be of significant use for the student dentists and dental technologists in their future daily practice. The clinical significance of the presented methodology should allow not only students but also practicing dentists and dental technologists to help their youngest collaborators to develop a deep sense of morphology, function, and esthetics.

  9. One-eyed stereo: a general approach to modeling 3-d scene geometry.

    PubMed

    Strat, T M; Fischler, M A

    1986-06-01

    A single two-dimensional image is an ambiguous representation of the three-dimensional world¿many different scenes could have produced the same image¿yet the human visual system is ex-tremely successful at recovering a qualitatively correct depth model from this type of representation. Workers in the field of computational vision have devised a number of distinct schemes that attempt to emulate this human capability; these schemes are collectively known as ``shape from...'' methods (e.g., shape from shading, shape from texture, or shape from contour). In this paper we contend that the distinct assumptions made in each of these schemes is tantamount to providing a second (virtual) image of the original scene, and that each of these approaches can be translated into a conventional stereo formalism. In particular, we show that it is frequently possible to structure the problem as one of recovering depth from a stereo pair consisting of the supplied perspective image (the original image) and an hypothesized orthographic image (the virtual image). We present a new algorithm of the form required to accomplish this type of stereo reconstruction task. PMID:21869368

  10. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  11. New approach for the modeling and smoothing of scattered 3D data

    NASA Astrophysics Data System (ADS)

    Karbacher, Stefan; Haeusler, Gerd

    1998-03-01

    In order to digitize the whole surface of a three-dimensional object by means of an optical range sensor, usually multiple range images are acquired from different viewpoints and merged into a single surface description. The simplest and most accurate way is to generate a polyhedral surface. The data are usually distorted by measuring errors like noise, aliasing, outliers, calibration and registration errors, etc., so that they have to be filtered. Calibration and registration errors first appear after merging of different views. As the merged data are no longer represented on a grid, conventional filters for digital signal processing are not applicable. We introduce a new approach for modeling and smoothing scattered data based on an approximation of a mesh of circular arcs. This new method enables interpolation of curved surfaces using solely the vertex position and the associated vertex normals of a polyhedral mesh. The new smoothing filter is specifically adapted to the requirements of geometric data, as it minimizes curvature variations. In contrast to linear filters, undesired surface undulations are avoided, which is an important pre- condition for NC milling and rendering.

  12. Urban Energy Simulation Based on 3d City Models: a Service-Oriented Approach

    NASA Astrophysics Data System (ADS)

    Wate, P.; Rodrigues, P.; Duminil, E.; Coors, V.

    2016-09-01

    Recent advancements in technology has led to the development of sophisticated software tools revitalizing growth in different domains. Taking advantage of this trend, urban energy domain have developed several compute intensive physical and data driven models. These models are used in various distinct simulation softwares to simulate the whole life-cycle of energy flow in cities from supply, distribution, conversion, storage and consumption. Since some simulation software target a specific energy system, it is necessary to integrate them to predict present and future urban energy needs. However, a key drawback is that, these tools are not compatible with each other as they use custom or propriety formats. Furthermore, they are designed as desktop applications and cannot be easily integrated with third-party tools (open source or commercial). Thereby, missing out on potential model functionalities which are required for sustainable urban energy management. In this paper, we propose a solution based on Service Oriented Architecture (SOA). Our approach relies on open interfaces to offer flexible integration of modelling and computational functionality as loosely coupled distributed services.

  13. A robust and efficient approach to detect 3D rectal tubes from CT colonography

    SciTech Connect

    Yang Xiaoyun; Slabaugh, Greg

    2011-11-15

    Purpose: The rectal tube (RT) is a common source of false positives (FPs) in computer-aided detection (CAD) systems for CT colonography. A robust and efficient detection of RT can improve CAD performance by eliminating such ''obvious'' FPs and increase radiologists' confidence in CAD. Methods: In this paper, we present a novel and robust bottom-up approach to detect the RT. Probabilistic models, trained using kernel density estimation on simple low-level features, are employed to rank and select the most likely RT tube candidate on each axial slice. Then, a shape model, robustly estimated using random sample consensus (RANSAC), infers the global RT path from the selected local detections. Subimages around the RT path are projected into a subspace formed from training subimages of the RT. A quadratic discriminant analysis (QDA) provides a classification of a subimage as RT or non-RT based on the projection. Finally, a bottom-top clustering method is proposed to merge the classification predictions together to locate the tip position of the RT. Results: Our method is validated using a diverse database, including data from five hospitals. On a testing data with 21 patients (42 volumes), 99.5% of annotated RT paths have been successfully detected. Evaluated with CAD, 98.4% of FPs caused by the RT have been detected and removed without any loss of sensitivity. Conclusions: The proposed method demonstrates a high detection rate of the RT path, and when tested in a CAD system, reduces FPs caused by the RT without the loss of sensitivity.

  14. Transferring Multi-Scale Approaches from 3d City Modeling to Ifc-Based Tunnel Modeling

    NASA Astrophysics Data System (ADS)

    Borrmann, A.; Kolbe, T. H.; Donaubauer, A.; Steuer, H.; Jubierre, J. R.

    2013-09-01

    A multi-scale representation of the built environment is required to provide information with the adequate level of detail (LoD) for different use cases and objectives. This applies not only to the visualization of city and building models, but in particular to their use in the context of planning and analysis tasks. While in the field of Geographic Information Systems, the handling of multi-scale representations is well established and understood, no formal approaches for incorporating multi-scale methods exist in the field of Building Information Modeling (BIM) so far. However, these concepts are much needed to better support highly dynamic planning processes that make use of very rough information about the facility under design in the early stages and provide increasingly detailed and fine-grained information in later stages. To meet these demands, this paper presents a comprehensive concept for incorporating multi-scale representations with infrastructural building information models, with a particular focus on the representation of shield tunnels. Based on a detailed analysis of the data modeling methods used in CityGML for capturing multiscale representations and the requirements present in the context of infrastructure planning projects, we discuss potential extensions to the BIM data model Industry Foundation Classes (IFC). Particular emphasis is put on providing means for preserving the consistency of the representation across the different Levels-of-Detail (LoD). To this end we make use of a procedural geometry description which makes it possible to define explicit dependencies between geometric entities on different LoDs. The modification of an object on a coarse level consequently results in an automated update of all dependent objects on the finer levels. Finally we discuss the transformation of the IFC-based multi-scale tunnel model into a CityGML compliant tunnel representation.

  15. The AERO system: a 3D-like approach for recording gene expression patterns in the whole mouse embryo.

    PubMed

    Shimizu, Hirohito; Kubo, Atsushi; Uchibe, Kenta; Hashimoto, Megumi; Yokoyama, Shigetoshi; Takada, Shuji; Mitsuoka, Kazuhiko; Asahara, Hiroshi

    2013-01-01

    We have recently constructed a web-based database of gene expression in the mouse whole embryo, EMBRYS (http://embrys.jp/embrys/html/MainMenu.html). To allow examination of gene expression patterns to the fullest extent possible, this database provides both photo images and annotation data. However, since embryos develop via an intricate process of morphogenesis, it would be of great value to track embryonic gene expression from a three dimensional perspective. In fact, several methods have been developed to achieve this goal, but highly laborious procedures and specific operational skills are generally required. We utilized a novel microscopic technique that enables the easy capture of rotational, 3D-like images of the whole embryo. In this method, a rotary head equipped with two mirrors that are designed to obtain an image tilted at 45 degrees to the microscope stage captures serial images at 2-degree intervals. By a simple operation, 180 images are automatically collected. These 2D images obtained at multiple angles are then used to reconstruct 3D-like images, termed AERO images. By means of this system, over 800 AERO images of 191 gene expression patterns were captured. These images can be easily rotated on the computer screen using the EMBRYS database so that researchers can view an entire embryo by a virtual viewing on a computer screen in an unbiased or non-predetermined manner. The advantages afforded by this approach make it especially useful for generating data viewed in public databases. PMID:24146773

  16. Sliding slice: A novel approach for high accuracy and automatic 3D localization of seeds from CT scans

    SciTech Connect

    Tubic, Dragan; Beaulieu, Luc

    2005-01-01

    We present a conceptually novel principle for 3D reconstruction of prostate seed implants. Unlike existing methods for implant reconstruction, the proposed algorithm uses raw CT data (sinograms) instead of reconstructed CT slices. Using raw CT data solves several inevitable problems related to the reconstruction from CT slices. First, the sinograms are not affected by reconstruction artifacts in the presence of metallic objects and seeds in the patient body. Second, the scanning axis is not undersampled as in the case of CT slices; as a matter of fact the scanning axis is the most densely sampled and each seed is typically represented by several hundred samples. Moreover, the shape of a single seed in a sinogram can be modeled exactly, thus facilitating the detection. All this allows very accurate 3D reconstruction of both position and the orientation of the seeds. Preliminary results indicate that the seed position can be estimated with 0.15 mm accuracy (average), while the orientation estimate accuracy is within 3 deg. on average. Although the main contribution of the paper is to present a new principle of reconstruction, a preliminary implementation is also presented as a proof of concept. The implemented algorithm has been tested on a phantom and the obtained results are presented to validate the proposed approach.

  17. Target Based Designing of Anthracenone Derivatives as Tubulin Polymerization Inhibiting Agents: 3D QSAR and Docking Approach

    PubMed Central

    Naffaa, Moawiah M.; Bakht, Mohammed Afroz; Malhotra, Manav; Ganaie, Majid A.

    2014-01-01

    Novel anthracenone derivatives were designed through in silico studies including 3D QSAR, pharmacophore mapping, and molecular docking approaches. Tubulin protein was explored for the residues imperative for activity by analyzing the binding pattern of colchicine and selected compounds of anthracenone derivatives in the active domain. The docking methodology applied in the study was first validated by comparative evaluation of the predicted and experimental inhibitory activity. Furthermore, the essential features responsible for the activity were established by carrying out pharmacophore mapping studies. 3D QSAR studies were carried out for a series of 1,5- and 1,8-disubstituted10-benzylidene-10H-anthracen-9-ones and 10-(2-oxo-2-phenylethylidene)-10H-anthracen-9-one derivatives for their antiproliferation activity. Based on the pattern recognition studies obtained from QSAR results, ten novel compounds were designed and docked in the active domain of tubulin protein. One of the novel designed compounds “N1” exhibited binding energy −9.69 kcal/mol and predicted Ki 78.32 nM which was found to be better than colchicine. PMID:25383219

  18. 3d-modelling workflows for trans-nationally shared geological models - first approaches from the project GeoMol

    NASA Astrophysics Data System (ADS)

    Rupf, Isabel

    2013-04-01

    To meet the EU's ambitious targets for carbon emission reduction, renewable energy production has to be strongly upgraded and made more efficient for grid energy storage. Alpine Foreland Basins feature a unique geological inventory which can contribute substantially to tackle these challenges. They offer a geothermal potential and storage capacity for compressed air, as well as space for underground storage of CO2. Exploiting these natural subsurface resources will strongly compete with existing oil and gas claims and groundwater issues. The project GeoMol will provide consistent 3-dimensional subsurface information about the Alpine Foreland Basins based on a holistic and transnational approach. Core of the project GeoMol is a geological framework model for the entire Northern Molasse Basin, complemented by five detailed models in pilot areas, also in the Po Basin, which are dedicated to specific questions of subsurface use. The models will consist of up to 13 litho-stratigraphic horizons ranging from the Cenozoic basin fill down to Mesozoic and late Paleozoic sedimentary rocks and the crystalline basement. More than 5000 wells and 28 000 km seismic lines serve as input data sets for the geological subsurface model. The data have multiple sources and various acquisition dates, and their interpretations have gone through several paradigm changes. Therefore, it is necessary to standardize the data with regards to technical parameters and content prior to further analysis (cf. Capar et al. 2013, EGU2013-5349). Each partner will build its own geological subsurface model with different software solutions for seismic interpretation and 3d-modelling. Therefore, 3d-modelling follows different software- and partner-specific workflows. One of the main challenges of the project is to ensure a seamlessly fitting framework model. It is necessary to define several milestones for cross border checks during the whole modelling process. Hence, the main input data set of the

  19. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    PubMed Central

    Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711

  20. Genetic approach to reconstruct complex regional geological setting of the Baltic basin in 3D geological model

    NASA Astrophysics Data System (ADS)

    Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.

    2012-04-01

    Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer

  1. Numerical Simulation of 3D Thermo-Elastic Fatigue Crack Growth Problems Using Coupled FE-EFG Approach

    NASA Astrophysics Data System (ADS)

    Pathak, Himanshu; Singh, Akhilendra; Singh, Indra Vir

    2016-06-01

    In this work, finite element method (FEM) and element free Galerkin method (EFGM) are coupled for solving 3D crack domains subjected to cyclic thermal load of constant amplitude. Crack growth contours and fatigue life have been obtained for each of the considered numerical examples. Thermo-elastic problems are decoupled into thermal and elastic problems . Firstly, the unknown temperature field is obtained by solving heat conduction equation, then, it is used as the input load in the elastic problem to calculate the displacement and stress fields. The geometrical discontinuity across crack surface is modelled by extrinsically enriched EFGM and the remaining part of the domain is approximated by standard finite element method. At the crack interface, a ramp function based interpolation scheme has been implemented. This coupled approach combines the advantages of both EFGM and FEM. A linear successive crack increment approach is used to model crack growth. The growing crack surface is traced by level set function. Standard Paris law is used for life estimation of the three-dimensional crack models. Different cases of planar and non-planar crack problems have been solved and their results are compared with the results obtained using extended finite element method to check accuracy, efficiency and robustness of the coupled FE-EFG approach implemented in this study.

  2. Hierarchical Statistical 3D ' Atomistic' Simulation of Decanano MOSFETs: Drift-Diffusion, Hydrodynamic and Quantum Mechanical Approaches

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.

    2000-01-01

    When MOSFETs are scaled to deep submicron dimensions the discreteness and randomness of the dopant charges in the channel region introduces significant fluctuations in the device characteristics. This effect, predicted 20 year ago, has been confirmed experimentally and in simulation studies. The impact of the fluctuations on the functionality, yield, and reliability of the corresponding systems shifts the paradigm of the numerical device simulation. It becomes insufficient to simulate only one device representing one macroscopical design in a continuous charge approximation. An ensemble of macroscopically identical but microscopically different devices has to be characterized by simulation of statistically significant samples. The aims of the numerical simulations shift from predicting the characteristics of a single device with continuous doping towards estimating the mean values and the standard deviations of basic design parameters such as threshold voltage, subthreshold slope, transconductance, drive current, etc. for the whole ensemble of 'atomistically' different devices in the system. It has to be pointed out that even the mean values obtained from 'atomistic' simulations are not identical to the values obtained from continuous doping simulations. In this paper we present a hierarchical approach to the 'atomistic' simulation of aggressively scaled decanano MOSFETs. A full scale 3D drift-diffusion'atomostic' simulation approach is first described and used for verification of the more economical, but also more restricted, options. To reduce the processor time and memory requirements at high drain voltage we have developed a self-consistent option based on a thin slab solution of the current continuity equation only in the channel region. This is coupled to the Poisson's equation solution in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison with the full self-consistent solution. At low drain

  3. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  4. An approach for the calibration of a combined RGB-sensor and 3D-camera device

    NASA Astrophysics Data System (ADS)

    Schulze, M.

    2011-07-01

    The elds of application for 3d cameras are very dierent, because high image frequency and determination of 3d data. Often, 3d cameras are used for mobile robotic. They are used for obstacle detection or object recognition. So they also are interesting for applications in agriculture, in combination with mobile robots. Here, in addition to 3d data, there is often a necessity to get color information for each 3d point. Unfortunately, 3d cameras do not capture any color information. Therefore, an additional sensor is necessary, such as RGB plus possibly NIR. To combine data of two dierent sensors a reference to each other, via calibration, is important. This paper presents several calibration methods and discuss their accuracy potential. Based on a spatial resection, the algorithm determines the translation and rotation between the two sensors and the inner orientation of the used sensor.

  5. A volume of intersection approach for on-the-fly system matrix calculation in 3D PET image reconstruction

    NASA Astrophysics Data System (ADS)

    Lougovski, A.; Hofheinz, F.; Maus, J.; Schramm, G.; Will, E.; van den Hoff, J.

    2014-02-01

    The aim of this study is the evaluation of on-the-fly volume of intersection computation for system’s geometry modelling in 3D PET image reconstruction. For this purpose we propose a simple geometrical model in which the cubic image voxels on the given Cartesian grid are approximated with spheres and the rectangular tubes of response (ToRs) are approximated with cylinders. The model was integrated into a fully 3D list-mode PET reconstruction for performance evaluation. In our model the volume of intersection between a voxel and the ToR is only a function of the impact parameter (the distance between voxel centre to ToR axis) but is independent of the relative orientation of voxel and ToR. This substantially reduces the computational complexity of the system matrix calculation. Based on phantom measurements it was determined that adjusting the diameters of the spherical voxel size and the ToR in such a way that the actual voxel and ToR volumes are conserved leads to the best compromise between high spatial resolution, low noise, and suppression of Gibbs artefacts in the reconstructed images. Phantom as well as clinical datasets from two different PET systems (Siemens ECAT HR+ and Philips Ingenuity-TF PET/MR) were processed using the developed and the respective vendor-provided (line of intersection related) reconstruction algorithms. A comparison of the reconstructed images demonstrated very good performance of the new approach. The evaluation showed the respective vendor-provided reconstruction algorithms to possess 34-41% lower resolution compared to the developed one while exhibiting comparable noise levels. Contrary to explicit point spread function modelling our model has a simple straight-forward implementation and it should be easy to integrate into existing reconstruction software, making it competitive to other existing resolution recovery techniques.

  6. Modeling Semantic Emotion Space Using a 3D Hypercube-Projection: An Innovative Analytical Approach for the Psychology of Emotions.

    PubMed

    Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter

    2016-01-01

    The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model.

  7. Modeling Semantic Emotion Space Using a 3D Hypercube-Projection: An Innovative Analytical Approach for the Psychology of Emotions

    PubMed Central

    Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter

    2016-01-01

    The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model. PMID:27148130

  8. A methodological approach for 3-D Vs inversion from ambient noise tomography in a very heterogeneous crust

    NASA Astrophysics Data System (ADS)

    Macquet, M.; Paul, A.; Pedersen, H.

    2013-12-01

    A 3-D Vs model is the output of ambient noise tomography with the greatest add-on value. Computing this model is however difficult, especially in regions with very heterogeneous crustal structure. We propose here a new approach to invert group velocity data from ambient noise tomography for 3-D Vs structure, which gives good result even with strong lateral variations of the seismic structure. The study region is the Pyrenees mountain range s.l., at the border between France and Spain, as it includes 2 thick sedimentary basins surrounded by crystalline outcrops in the Pyrenees and the Massif Central. We use data of a dense temporary seismic broadband array of 49 stations installed in southwestern France at the end of 2010 in the framework of the PYROPE (PYRenean Observational Portable Experiment) project. The dataset also includes records of 70 broadband stations of the third leg of the IberArray project installed at the same time period in northern Spain. The two dense arrays with 60 km average inter-station distance make it possible to obtain high-resolution images of the lithosphere of the Pyrenees, the Ebro and Aquitaine basins and the Bay of Biscay. To complement the two temporary arrays and avoid smearing effects along their edges, we also used records of the French and Catalan permanent broadband networks. As a whole, the dataset includes records of 158 broadband stations. Using one year of data, we computed 12324 two-station correlations of ambient seismic noise records. We applied the processing in two overlapping period intervals: 5s-50s and 30s-75s, the latter to extend the subsequent measurement of group velocities to periods outside the first and secondary microseismic peak. We merged the common part of the 2 dispersion curves using a linear weighting to obtain, for each station pair, a single dispersion curve in the 5-75s period range. These group velocity curves are subsequently used to obtain 2-D group velocity maps using the tomographic method of

  9. Representing surface and subsurface hydrology at hyperresolution for Earth system models: Development of a hybrid 3-D approach

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D. J.; Lawrence, D. M.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.

    2014-12-01

    Traditionally, LSMs for use in Earth system models (ESMs) only account for one-dimensional (1-D) vertical hydrological processes at very coarse resolutions (~100 km). Recently, there has been interest in simulating lateral exchange of surface and subsurface water, as the grid resolution of ESMs increases (currently towards ~20 km) due to advances in computational power.In the current work, we present a new physically-based hydrological model capable of simulating lateral flow at a hyperresolution (1 km pixels) coupled with the vertical soil column of the Community Land Model (CLM), which has a much coarser resolution. Our new approach also uses sub-pixel topographic information to represent small scale lateral-flow processes. As input to our model, we use 1 km data of required surface and subsurface information, such depth to bedrock, hillslope width functions, fractional coverage of hillslopes/wetlands/riparian zones within each 1 km pixel, and a river network. Such data are largely derived from higher-resolution (30 m) topographic data, and will be made available to the community as global products.We have tested our model against measurements over a well instrumented, artificial hillslope at the University of Arizona's Biosphere 2 and found that both our approach and a full 3-D physically-based hydrological model can realistically simulate hydrological states and fluxes. However, computationally, our approach is 2 - 3 orders of magnitude faster than the latter. We are currently testing it for an ESM grid box that covers much of southeastern New York State, which includes the headwaters of the Delaware River, the Susquehana River, and parts of the Mohawk River Basin. Our approach improves upon the 1-D hydrological representation in CLM by representing the subgrid topographic and geomorphological variability in the grid box. The impact of representing such subgrid variability on surface water and energy fluxes will be discussed in our presentation.

  10. Automatic Reconstruction of Spacecraft 3D Shape from Imagery

    NASA Astrophysics Data System (ADS)

    Poelman, C.; Radtke, R.; Voorhees, H.

    We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.

  11. 3D Visualisation and Artistic Imagery to Enhance Interest in "Hidden Environments"--New Approaches to Soil Science

    ERIC Educational Resources Information Center

    Gilford, J.; Falconer, R. E.; Wade, R.; Scott-Brown, K. C.

    2014-01-01

    Interactive Virtual Environments (VEs) have the potential to increase student interest in soil science. Accordingly a bespoke "soil atlas" was created using Java3D as an interactive 3D VE, to show soil information in the context of (and as affected by) the over-lying landscape. To display the below-ground soil characteristics, four sets…

  12. A New Approach to Sap Flow Measurement Using 3D Printed Gauges and Open-source Electronics

    NASA Astrophysics Data System (ADS)

    Ham, J. M.; Miner, G. L.; Kluitenberg, G. J.

    2015-12-01

    A new type of sap flow gauge was developed to measure transpiration from herbaceous plants using a modified heat pulse technique. Gauges were fabricated using 3D-printing technology and low-cost electronics to keep the materials cost under $20 (U.S.) per sensor. Each gauge consisted of small-diameter needle probes fastened to a 3D-printed frame. One needle contained a resistance heater to provide a 6 to 8 second heat pulse while the other probes measured the resultant temperature increase at two distances from the heat source. The data acquisition system for the gauges was built from a low-cost Arduino microcontroller. The system read the gauges every 10 minutes and stored the results on a SD card. Different numerical techniques were evaluated for estimating sap velocity from the heat pulse data - including analytical solutions and parameter estimation approaches . Prototype gauges were tested in the greenhouse on containerized corn and sunflower. Sap velocities measured by the gauges were compared to independent gravimetric measurements of whole plant transpiration. Results showed the system could measure daily transpiration to within 3% of the gravimetric measurements. Excellent agreement was observed when two gauges were attached the same stem. Accuracy was not affected by rapidly changing transpiration rates observed under partly cloudy conditions. The gauge-based estimates of stem thermal properties suggested the system may also detect the onset of water stress. A field study showed the gauges could run for 1 to 2 weeks on a small battery pack. Sap flow measurements on multiple corn stems were scaled up by population to estimate field-scale transpiration. During full canopy cover, excellent agreement was observed between the scaled-up sap flow measurements and reference crop evapotranspiration calculated from weather data. Data also showed promise as a way to estimate real-time canopy resistance required for model verification and development. Given the low

  13. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT.

  14. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT. PMID:26011493

  15. A coupled wave-3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach

    NASA Astrophysics Data System (ADS)

    Gaeta, Maria Gabriella; Samaras, Achilleas G.; Federico, Ivan; Archetti, Renata; Maicu, Francesco; Lorenzetti, Giuliano

    2016-09-01

    The present work describes an operational strategy for the development of a multiscale modeling system, based on a multiple-nesting approach and open-source numerical models. The strategy was applied and validated for the Gulf of Taranto in southern Italy, scaling large-scale oceanographic model results to high-resolution coupled wave-3-D hydrodynamics simulations for the area of Mar Grande in the Taranto Sea. The spatial and temporal high-resolution simulations were performed using the open-source TELEMAC suite, forced by wind data from the COSMO-ME database, boundary wave spectra from the RON buoy at Crotone and results from the Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS) regarding sea levels and current fields. Model validation was carried out using data collected in the Mar Grande basin from a fixed monitoring station and during an oceanographic campaign in October 2014. The overall agreement between measurements and model results in terms of waves, sea levels, surface currents, circulation patterns and vertical velocity profiles is deemed to be satisfactory, and the methodology followed in the process can constitute a useful tool for both research and operational applications in the same field and as support of decisions for management and design of infrastructures.

  16. Free isocentric 3d imaging and a novel approach for wobble trajectories using a modified standard c-arm.

    PubMed

    Tita, Ralf; Lueth, Tim C

    2007-01-01

    In this article the authors describes the modifications of an standard c-arm for free isocentric 3d imaging. To provide an isocentric movement of the x-ray source and the x-ray detector the passive mechanism of a standard c-arm was equipped with additional motors and encoders. A robot control system moves the imaging system on an isocentric path around the patient. The acquired x-ray images are then processed with a reconstruction algorithm using the algebraic reconstruction technique. For speed issues the reconstruction algorithm is implemented on a modern PC-graphics board. To overcome the known artifacts produced by the c-arm's limited rotation of 135 degrees , the use of a novel wobble trajectory is proposed for theses systems. The presented robotic approach for the motion of the c-arm's mechanism allows it to expand the isocentric movement to the surface of a sphere. With the new wobble trajectory the reconstruction artifacts can be significantly reduced. PMID:18002984

  17. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  18. Efficient global wave propagation adapted to 3-D structural complexity: a pseudo-spectral/spectral-element approach

    NASA Astrophysics Data System (ADS)

    Leng, Kuangdai; Nissen-Meyer, Tarje; van Driel, Martin

    2016-09-01

    We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridian equations, which is then solved by a 2-D spectral element method (SEM). Computational efficiency of such a hybrid method stems from lateral smoothness of 3-D Earth models and axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. We show novel benchmarks for global wave solutions in 3-D structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period ranging from 34s down to 11s. It turns out that our method has run up to two orders of magnitude faster than the 3-D SEM, featured by a computational advantage expanding with seismic frequency.

  19. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario

    PubMed Central

    2013-01-01

    small geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the pericardium towards the kidneys, which exhibit a typical basal infolding system. Conclusions The presented approach allows a comprehensive analysis and presentation of small objects regarding both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new opportunities for understanding and communicating structural relationships within organisms and tissues. In general, the correlative use of different microscopic imaging techniques will continue to become more widespread in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination substantially, while microCT could become a key-method for complementing ultrastructural examinations. PMID:23915384

  20. Volumetric response of vertebrate hepatocytes challenged by osmotic gradients: a theoretical approach.

    PubMed

    Espelt, M V; Alleva, K; Amodeo, G; Krumschnabel, G; Rossi, R C; Schwarzbaum, P J

    2008-05-01

    In this study we use a theoretical approach to study the volumetric response of goldfish hepatocytes challenged by osmotic gradients and compared it with that of hepatocytes from another teleost (the trout) and a mammal (the rat). Particular focus was given to the multiple non-linear interactions of transport systems enabling hypotonically challenged cells to trigger a compensatory response known as volume regulatory decrease or RVD. For this purpose we employed a mathematical model which describes the rates of change of the intracellular concentrations of main diffusible ions, of the cell volume, and of the membrane potential. The model was fitted to experimental data on the kinetics of volume change of hepatocytes challenged by anisotonic media. In trout and rat hepatocytes, experimental results had shown that hypotonic cell swelling was followed by RVD, whereas goldfish cells swelled with no concomitant RVD (M.V. Espelt et al., 2003, J. Exp. Biol. 206, 513-522). A comparison between data predicted by the model and that obtained experimentally suggests that in trout and rat hepatocytes hypotonicity activates a sensor element and this, in turn, activates an otherwise silent efflux of KCl - whose kinetics could be successfully predicted - thereby leading to volume down-regulation. In contrast, with regard to the absence of RVD in goldfish hepatocytes the model proposed suggests that either a sensor element triggering RVD is absent or that the effector mechanism (the loss of KCl) remains inactive under the conditions employed. In line with this, we recently found that extracellular nucleotides may be required to induce RVD in these cells, indicating that our model could indeed lead to useful predictions. PMID:18329306

  1. A Novel Multi-Purpose Matching Representation of Local 3D Surfaces: A Rotationally Invariant, Efficient, and Highly Discriminative Approach With an Adjustable Sensitivity.

    PubMed

    Al-Osaimi, Faisal R

    2016-02-01

    In this paper, a novel approach to local 3D surface matching representation suitable for a range of 3D vision applications is introduced. Local 3D surface patches around key points on the 3D surface are represented by 2D images such that the representing 2D images enjoy certain characteristics which positively impact the matching accuracy, robustness, and speed. First, the proposed representation is complete, in the sense, there is no information loss during their computation. Second, the 3DoF 2D representations are strictly invariant to all the 3DoF rotations. To optimally avail surface information, the sensitivity of the representations to surface information is adjustable. This also provides the proposed matching representation with the means to optimally adjust to a particular class of problems/applications or an acquisition technology. Each 2D matching representation is a sequence of adjustable integral kernels, where each kernel is efficiently computed from a triple of precise 3D curves (profiles) formed by intersecting three concentric spheres with the 3D surface. Robust techniques for sampling the profiles and establishing correspondences among them were devised. Based on the proposed matching representation, two techniques for the detection of key points were presented. The first is suitable for static images, while the second is suitable for 3D videos. The approach was tested on the face recognition grand challenge v2.0, the 3D twins expression challenge, and the Bosphorus data sets, and a superior face recognition performance was achieved. In addition, the proposed approach was used in object class recognition and tested on a Kinect data set. PMID:26513787

  2. A Novel Multi-Purpose Matching Representation of Local 3D Surfaces: A Rotationally Invariant, Efficient, and Highly Discriminative Approach With an Adjustable Sensitivity.

    PubMed

    Al-Osaimi, Faisal R

    2016-02-01

    In this paper, a novel approach to local 3D surface matching representation suitable for a range of 3D vision applications is introduced. Local 3D surface patches around key points on the 3D surface are represented by 2D images such that the representing 2D images enjoy certain characteristics which positively impact the matching accuracy, robustness, and speed. First, the proposed representation is complete, in the sense, there is no information loss during their computation. Second, the 3DoF 2D representations are strictly invariant to all the 3DoF rotations. To optimally avail surface information, the sensitivity of the representations to surface information is adjustable. This also provides the proposed matching representation with the means to optimally adjust to a particular class of problems/applications or an acquisition technology. Each 2D matching representation is a sequence of adjustable integral kernels, where each kernel is efficiently computed from a triple of precise 3D curves (profiles) formed by intersecting three concentric spheres with the 3D surface. Robust techniques for sampling the profiles and establishing correspondences among them were devised. Based on the proposed matching representation, two techniques for the detection of key points were presented. The first is suitable for static images, while the second is suitable for 3D videos. The approach was tested on the face recognition grand challenge v2.0, the 3D twins expression challenge, and the Bosphorus data sets, and a superior face recognition performance was achieved. In addition, the proposed approach was used in object class recognition and tested on a Kinect data set.

  3. Morpho-geometrical approach for 3D segmentation of pulmonary vascular tree in multi-slice CT

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise J.

    2009-02-01

    The analysis of pulmonary vessels provides better insights into the lung physio-pathology and offers the basis for a functional investigation of the respiratory system. In order to be performed in clinical routine, such analysis has to be compatible with the general protocol for thorax imaging based on multi-slice CT (MSCT), which does not involve the use of contrast agent for vessels enhancement. Despite the fact that a visual assessment of the pulmonary vascular tree is facilitated by the natural contrast existing between vessels and lung parenchyma, a quantitative analysis becomes quickly tedious due to the high spatial density and subdivision complexity of these anatomical structures. In this paper, we develop an automated 3D approach for the segmentation of the pulmonary vessels in MSCT allowing further quantification facilities for the lung function. The proposed approach combines mathematical morphology and discrete geometry operators in order to reach distal small caliber blood vessels and to preserve the border with the wall of the bronchial tree which features identical intensity values. In this respect, the pulmonary field is first roughly segmented using thresholding, and the trachea and the main bronchi removed. The lung shape is then regularized by morphological alternate filtering and the high opacities (vessels, bronchi, and other eventual pathologic features) selected. After the attenuation of the bronchus wall for large and medium airways, the set of vessel candidates are obtained by morphological grayscale reconstruction and binarization. The residual bronchus wall components are then removed by means of a geometrical shape filtering which includes skeletonization and cylindrical shape estimation. The morphology of the reconstructed pulmonary vessels can be visually investigated with volume rendering, by associating a specific color code with the local vessel caliber. The complement set of the vascular tree among the high intensity structures in

  4. 3D geophysical inversion for contact surfaces

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Farquharson, Colin

    2014-05-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure volumetric inversions (performed on meshes of space-filling cells) recover smooth models inconsistent with such interpretations. There are several approaches through which geophysical inversion can help recover models with the desired characteristics. Some authors have developed iterative strategies in which several volumetric inversions are performed with regularization parameters changing to achieve sharper interfaces at automatically determined locations. Another approach is to redesign the regularization to be consistent with the desired model characteristics, e.g. L1-like norms or compactness measures. A few researchers have taken approaches that limit the recovered values to lie within particular ranges, resulting in sharp discontinuities; these include binary inversion, level set methods and clustering strategies. In most of the approaches mentioned above, the model parameterization considers the physical properties in each of the many space-filling cells within the volume of interest. The exception are level set methods, in which a higher dimensional function is parameterized and the contact surface is determined from the zero-level of that function. However, even level-set methods rely on an underlying volumetric mesh. We are researching a fundamentally different type of inversion that parameterizes the Earth in terms of the contact surfaces between rock units. 3D geological Earth models typically comprise wireframe surfaces of tessellated triangles or other polygonal planar facets. This wireframe representation allows for flexible and efficient generation of complicated geological structures. Therefore, a natural approach for representing a geophysical model in an inversion is to parameterize the wireframe contact surfaces as the coordinates of the nodes (facet vertices). The geological and

  5. A constraint logic programming approach to associate 1D and 3D structural components for large protein complexes.

    PubMed

    Dal Palù, Alessandro; Pontelli, Enrico; He, Jing; Lu, Yonggang

    2007-01-01

    The paper describes a novel framework, constructed using Constraint Logic Programming (CLP) and parallelism, to determine the association between parts of the primary sequence of a protein and alpha-helices extracted from 3D low-resolution descriptions of large protein complexes. The association is determined by extracting constraints from the 3D information, regarding length, relative position and connectivity of helices, and solving these constraints with the guidance of a secondary structure prediction algorithm. Parallelism is employed to enhance performance on large proteins. The framework provides a fast, inexpensive alternative to determine the exact tertiary structure of unknown proteins.

  6. A Bayesian 3D data fusion and unsupervised joint segmentation approach for stochastic geological modelling using Hidden Markov random fields

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian

    2016-04-01

    It is generally accepted that 3D geological models inferred from observed data will contain a certain amount of uncertainties. The uncertainty quantification and stochastic sampling methods are essential for gaining the insight into the geological variability of subsurface structures. In the community of deterministic or traditional modelling techniques, classical geo-statistical methods using boreholes (hard data sets) are still most widely accepted although suffering certain drawbacks. Modern geophysical measurements provide us regional data sets in 2D or 3D spaces either directly from sensors or indirectly from inverse problem solving using observed signal (soft data sets). We propose a stochastic modelling framework to extract subsurface heterogeneity from multiple and complementary types of data. In the presented work, subsurface heterogeneity is considered as the "hidden link" among multiple spatial data sets as well as inversion results. Hidden Markov random field models are employed to perform 3D segmentation which is the representation of the "hidden link". Finite Gaussian mixture models are adopted to characterize the statistical parameters of the multiple data sets. The uncertainties are quantified via a Gibbs sampling process under the Bayesian inferential framework. The proposed modelling framework is validated using two numerical examples. The model behavior and convergence are also well examined. It is shown that the presented stochastic modelling framework is a promising tool for the 3D data fusion in the communities of geological modelling and geophysics.

  7. A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI

    PubMed Central

    Reckfort, Julia; Wiese, Hendrik; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2015-01-01

    Structural connectivity of the brain can be conceptionalized as a multiscale organization. The present study is built on 3D-Polarized Light Imaging (3D-PLI), a neuroimaging technique targeting the reconstruction of nerve fiber orientations and therefore contributing to the analysis of brain connectivity. Spatial orientations of the fibers are derived from birefringence measurements of unstained histological sections that are interpreted by means of a voxel-based analysis. This implies that a single fiber orientation vector is obtained for each voxel, which reflects the net effect of all comprised fibers. We have utilized two polarimetric setups providing an object space resolution of 1.3 μm/px (microscopic setup) and 64 μm/px (macroscopic setup) to carry out 3D-PLI and retrieve fiber orientations of the same tissue samples, but at complementary voxel sizes (i.e., scales). The present study identifies the main sources which cause a discrepancy of the measured fiber orientations observed when measuring the same sample with the two polarimetric systems. As such sources the differing optical resolutions and diverging retardances of the implemented waveplates were identified. A methodology was implemented that enables the compensation of measured different systems' responses to the same birefringent sample. This opens up new ways to conduct multiscale analysis in brains by means of 3D-PLI and to provide a reliable basis for the transition between different scales of the nerve fiber architecture. PMID:26388744

  8. A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI.

    PubMed

    Reckfort, Julia; Wiese, Hendrik; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2015-01-01

    Structural connectivity of the brain can be conceptionalized as a multiscale organization. The present study is built on 3D-Polarized Light Imaging (3D-PLI), a neuroimaging technique targeting the reconstruction of nerve fiber orientations and therefore contributing to the analysis of brain connectivity. Spatial orientations of the fibers are derived from birefringence measurements of unstained histological sections that are interpreted by means of a voxel-based analysis. This implies that a single fiber orientation vector is obtained for each voxel, which reflects the net effect of all comprised fibers. We have utilized two polarimetric setups providing an object space resolution of 1.3 μm/px (microscopic setup) and 64 μm/px (macroscopic setup) to carry out 3D-PLI and retrieve fiber orientations of the same tissue samples, but at complementary voxel sizes (i.e., scales). The present study identifies the main sources which cause a discrepancy of the measured fiber orientations observed when measuring the same sample with the two polarimetric systems. As such sources the differing optical resolutions and diverging retardances of the implemented waveplates were identified. A methodology was implemented that enables the compensation of measured different systems' responses to the same birefringent sample. This opens up new ways to conduct multiscale analysis in brains by means of 3D-PLI and to provide a reliable basis for the transition between different scales of the nerve fiber architecture. PMID:26388744

  9. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models

    PubMed Central

    Wood, Scott T.; Dean, Brian C.; Dean, Delphine

    2013-01-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery. PMID:23395283

  10. Future Mission Concept for 3-D Aerosol Monitoring From Space Based on Fusion of Remote Sensing Approaches

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Kahn, R. A.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Cairns, B.; Torres, O.

    2006-05-01

    extinction independently along with vertically resolved estimates of microphysical properties, thus representing a significant advance relative to simpler backscatter systems such as GLAS and CALIPSO. This fusion of satellite-based approaches is aimed at observing the 3-D distribution of aerosol abundances, sizes, shapes, and absorption, and would represent a major technological advance in our ability to monitor and characterize near-surface particulate matter from space.

  11. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction

    NASA Astrophysics Data System (ADS)

    Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2011-06-01

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average

  12. A volumetric approach to path-length measurements is essential when treating radiotherapy with modulated beams

    SciTech Connect

    Forde, Elizabeth; Booth, Jeremy; Leech, Michelle

    2014-07-01

    The established dosimetric benefits of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy have lead to their increased use in prostate radiotherapy. Complimenting these techniques, volumetric image guidance has supported increased positional accuracy. In addition, 3-dimensional image guidance has also allowed for assessment of potential dosimetric variation that can be attributed to a deformation of either internal or external structures, such as rectal distension or body contour. Compounding these issues is the variation of tissue density through which the new field position passes and also the variation of dose across a modulated beam. Despite the growing level of interest in this area, there are only a limited number of articles that examine the effect of a variation in beam path length, particularly across a modulated field. IMRT and volumetric-modulated radiation therapy (VMAT) fields are dynamic in nature, and the dose gradient within these fields is variable. Assessment of variation of path length away from the beam's central axis and across the entire field is vital where there is considerable variation of dose within the field, such as IMRT and VMAT. In these cases, reliance on the traditional central axis to focus skin distances is no longer appropriate. This article discusses these more subtle challenges that may have a significant clinical effect if left unrecognized and undervalued.

  13. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  14. STXM goes 3D: digital reconstruction of focal stacks as novel approach towards confocal soft x-ray microscopy.

    PubMed

    Späth, Andreas; Scho Ll, Simon; Riess, Christian; Schmidtel, Daniel; Paradossi, Gaio; Raabe, Jo Rg; Hornegger, Joachim; Fink, Rainer H

    2014-09-01

    Fresnel zone plate based soft x-ray transmission microspectroscopy has developed into a routine technique for high-resolution elemental or chemical 2D imaging of thin film specimens. The availability of high resolution Fresnel lenses with short depth of focus offers the possibility of optical slicing (in the third dimension) by focus series with resolutions in the submicron regime. We introduce a 3D reconstruction algorithm that uses a variance-based metric to assign a focus measure as basis for volume rendering. The algorithm is applied to simulated geometries and opaque soft matter specimens thus enabling 3D visualization. These studies with z-resolution of few 100nm serve as important step towards the vision of a confocal transmission x-ray microscope.

  15. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    USGS Publications Warehouse

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  16. An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation.

    PubMed

    Wang, Lichun; Cardenas, M Bayani

    2015-08-01

    The quantitative study of transport through fractured media has continued for many decades, but has often been constrained by observational and computational challenges. Here, we developed an efficient quasi-3D random walk particle tracking (RWPT) algorithm to simulate solute transport through natural fractures based on a 2D flow field generated from the modified local cubic law (MLCL). As a reference, we also modeled the actual breakthrough curves (BTCs) through direct simulations with the 3D advection-diffusion equation (ADE) and Navier-Stokes equations. The RWPT algorithm along with the MLCL accurately reproduced the actual BTCs calculated with the 3D ADE. The BTCs exhibited non-Fickian behavior, including early arrival and long tails. Using the spatial information of particle trajectories, we further analyzed the dynamic dispersion process through moment analysis. From this, asymptotic time scales were determined for solute dispersion to distinguish non-Fickian from Fickian regimes. This analysis illustrates the advantage and benefit of using an efficient combination of flow modeling and RWPT. PMID:26042625

  17. Thermal effusivity measurement based on analysis of 3D heat flow by modulated spot heating using a phase lag matrix with a combination of thermal effusivity and volumetric heat capacity

    NASA Astrophysics Data System (ADS)

    Ohta, Hiromichi; Hatori, Kimihito; Matsui, Genzou; Yagi, Takashi; Miyake, Shugo; Okamura, Takeo; Endoh, Ryo; Okada, Ryo; Morishita, Keisuke; Yokoyama, Shinichiro; Taguchi, Kohei; Kato, Hideyuki

    2016-11-01

    The study goal was to establish a standard industrial procedure for the measurement of thermal effusivity by a thermal microscope (TM), using a periodic heating method with a thermoreflectance (TR) technique. To accomplish this goal, a working group was organized that included four research institutes. Each institute followed the same procedure: a molybdenum (Mo) film was sputtered on the surface of Pyrex, yttria-stabilized zirconia (YSZ), alumina (Al2O3), Germanium (Ge), and silicon (Si) samples, and then the phase lag of the laser intensity modulation was measured by the resultant surface temperature. A procedure was proposed to calibrate the effect of 3D heat flow, based on the analytical solution of the heat conduction equation, and thermal effusivity was measured. The derived values show good agreement with literature values. As a result, the TM calibration procedure can be recommended for practical use in measuring the thermal effusivity in a small region of the materials.

  18. 3D visualisation and artistic imagery to enhance interest in `hidden environments' - new approaches to soil science

    NASA Astrophysics Data System (ADS)

    Gilford, J.; Falconer, R. E.; Wade, R.; Scott-Brown, K. C.

    2014-09-01

    Interactive Virtual Environments (VEs) have the potential to increase student interest in soil science. Accordingly a bespoke 'soil atlas' was created using Java3D as an interactive 3D VE, to show soil information in the context of (and as affected by) the over-lying landscape. To display the below-ground soil characteristics, four sets of artistic illustrations were produced, each set showing the effects of soil organic-matter density and water content on fungal density, to determine potential for visualisations and interactivity in stimulating interest in soil and soil illustrations, interest being an important factor in facilitating learning. The illustrations were created using 3D modelling packages, and a wide range of styles were produced. This allowed a preliminary study of the relative merits of different artistic styles, scientific-credibility, scale, abstraction and 'realism' (e.g. photo-realism or realism of forms), and any relationship between these and the level of interest indicated by the study participants in the soil visualisations and VE. The study found significant differences in mean interest ratings for different soil illustration styles, as well as in the perception of scientific-credibility of these styles, albeit for both measures there was considerable difference of attitude between participants about particular styles. There was also found to be a highly significant positive correlation between participants rating styles highly for interest and highly for scientific-credibility. There was furthermore a particularly high interest rating among participants for seeing temporal soil processes illustrated/animated, suggesting this as a particularly promising method for further stimulating interest in soil illustrations and soil itself.

  19. Platelet lysate 3D scaffold supports mesenchymal stem cell chondrogenesis: an improved approach in cartilage tissue engineering.

    PubMed

    Moroz, Andrei; Bittencourt, Renata Aparecida Camargo; Almeida, Renan Padron; Felisbino, Sérgio Luis; Deffune, Elenice

    2013-01-01

    Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n = 5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1 × 10(5)) were than encapsulated inside 60 µl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI.

  20. True 3D chemical dosimetry (gels, plastics): Development and clinical role

    NASA Astrophysics Data System (ADS)

    Schreiner, L. J.

    2015-01-01

    Since the introduction of volumetric chemical dosimetry with Fricke gel dosimeters in the 1980s, three-dimensional (3D) dosimetry has been a promising technique for the clinic, since it provides a unique methodology for 3D dose measurement of the complex conformal dose distributions achieved by modern techniques such as Intensity Modulated and Volumetric Arc Radiation Therapy. In the last decade, the potential for improved clinical applicability has been advanced by the development of improved 3D dosimeters such as normoxic polymer gel systems, radiochromic plastics (such as PRESAGE) and, recently, newer radiochromic gel dosimeters. Some of these new 3D dosimetry systems were enabled by the availability of optical computed tomography imaging systems for fast dose readout. However, despite its promise, true 3D dosimetry is still not widely practiced in the community. Its use has been confined primarily to select centres of expertise and to specialised quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. In this paper I review some of the current 3D chemical dosimeters available, discuss the requirements for their use and briefly review the roles that these systems can provide to complement the other dose delivery validation approaches available in the clinic. I conclude by describing two roles that may be uniquely served by 3D chemical dosimetry in end-to-end process testing and validation in the complex environment coming into play with the development of Image Guided Adaptive Radiation Therapy.

  1. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    PubMed

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255

  2. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements

    NASA Astrophysics Data System (ADS)

    Nicolas, F.; Todoroff, V.; Plyer, A.; Le Besnerais, G.; Donjat, D.; Micheli, F.; Champagnat, F.; Cornic, P.; Le Sant, Y.

    2016-01-01

    We present a new numerical method for reconstruction of instantaneous density volume from 3D background-oriented schlieren (3DBOS) measurements, with a validation on a dedicated flexible experimental BOS bench. In contrast to previous works, we use a direct formulation where density is estimated from measured deviation fields without the intermediate step of density gradient reconstruction. Regularization techniques are implemented to deal with the ill-posed problem encountered. The resulting high-dimensional optimization is conducted by conjugate gradient techniques. A parallel algorithm, implemented on graphics processing unit, helps to speed up the calculation. The resulting software is validated on synthetic BOS images of a 3D density field issued from a numerical simulation. Then, we describe a dedicated 3DBOS experimental facility which has been built to study various BOS settings and to assess the performance of the proposed numerical reconstruction process. Results on various datasets illustrate the potential of the method for flow characterization and measurement in real-world conditions.

  3. Aorta segmentation with a 3D level set approach and quantification of aortic calcifications in non-contrast chest CT.

    PubMed

    Kurugol, Sila; San Jose Estepar, Raul; Ross, James; Washko, George R

    2012-01-01

    Automatic aorta segmentation in thoracic computed tomography (CT) scans is important for aortic calcification quantification and to guide the segmentation of other central vessels. We propose an aorta segmentation algorithm consisting of an initial boundary detection step followed by 3D level set segmentation for refinement. Our algorithm exploits aortic cross-sectional circularity: we first detect aorta boundaries with a circular Hough transform on axial slices to detect ascending and descending aorta regions, and we apply the Hough transform on oblique slices to detect the aortic arch. The centers and radii of circles detected by Hough transform are fitted to smooth cubic spline functions using least-squares fitting. From these center and radius spline functions, we reconstruct an initial aorta surface using the Frenet frame. This reconstructed tubular surface is further refined with 3D level set evolutions. The level set framework we employ optimizes a functional that depends on both edge strength and smoothness terms and evolves the surface to the position of nearby edge location corresponding to the aorta wall. After aorta segmentation, we first detect the aortic calcifications with thresholding applied to the segmented aorta region. We then filter out the false positive regions due to nearby high intensity structures. We tested the algorithm on 45 CT scans and obtained a closest point mean error of 0.52 ± 0.10 mm between the manually and automatically segmented surfaces. The true positive detection rate of calcification algorithm was 0.96 over all CT scans. PMID:23366394

  4. Comparison of different approaches of estimating effective dose from reported exposure data in 3D imaging with interventional fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Hansson, Jonny; Bâth, Magnus

    2014-03-01

    Three-dimensional (3D) imaging with interventional fluoroscopy systems is today a common examination. The examination includes acquisition of two-dimensional projection images, used to reconstruct section images of the patient. The aim of the present study was to investigate the difference in resulting effective dose obtained using different levels of complexity in calculations of effective doses from these examinations. In the study the Siemens Artis Zeego interventional fluoroscopy system (Siemens Medical Solutions, Erlangen, Germany) was used. Images of anthropomorphic chest and pelvis phantoms were acquired. The exposure values obtained were used to calculate the resulting effective doses from the examinations, using the computer software PCXMC (STUK, Helsinki, Finland). The dose calculations were performed using three different methods: 1. using individual exposure values for each projection image, 2. using the mean tube voltage and the total DAP value, evenly distributed over the projection images, and 3. using the mean kV and the total DAP value, evenly distributed over smaller selection of projection images. The results revealed that the difference in resulting effective dose between the first two methods was smaller than 5%. When only a selection of projection images were used in the dose calculations the difference increased to over 10%. Given the uncertainties associated with the effective dose concept, the results indicate that dose calculations based on average exposure values distributed over a smaller selection of projection angles can provide reasonably accurate estimations of the radiation doses from 3D imaging using interventional fluoroscopy systems.

  5. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    PubMed

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.

  6. A Multi-Resolution Approach for an Automated Fusion of Different Low-Cost 3D Sensors

    PubMed Central

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255

  7. Seasonal dynamics and stoichiometry of the planktonic community in the NW Mediterranean Sea: a 3D modeling approach

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Raybaud, Virginie; Espinasse, Boris; Carlotti, François; Queguiner, Bernard; Thouvenin, Bénédicte; Garreau, Pierre; Baklouti, Melika

    2014-01-01

    The 3D hydrodynamic Model for Applications at Regional Scale (MARS3D) was coupled with a biogeochemical model developed with the Ecological Modular Mechanistic Modelling (Eco3M) numerical tool. The three-dimensional coupled model was applied to the NW Mediterranean Sea to study the dynamics of the key biogeochemical processes in the area in relation with hydrodynamic constraints. In particular, we focused on the temporal and spatial variability of intracellular contents of living and non-living compartments. The conceptual scheme of the biogeochemical model accounts for the complex food web of the NW Mediterranean Sea (34 state variables), using flexible plankton stoichiometry. We used mechanistic formulations to describe most of the biogeochemical processes involved in the dynamics of marine pelagic ecosystems. Simulations covered the period from September 1, 2009 to January 31, 2011 (17 months), which enabled comparison of model outputs with situ measurements made during two oceanographic cruises in the region (Costeau-4: April 27-May 2, 2010 and Costeau-6: January 23-January 27, 2011).

  8. Visualization and volumetric structures from MR images of the brain

    SciTech Connect

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  9. Three Dimensional Rover/Lander/Orbiter Mission-Planning (3D-ROMPS) System: A Modern Approach to Mission Planning

    NASA Technical Reports Server (NTRS)

    Scharfe, Nathan D.

    2005-01-01

    NASA's current mission planning system is based on point design, two-dimensional display, spread sheets, and report technology. This technology does not enable engineers to analyze the results of parametric studies of missions plans. This technology will not support the increased observational complexity and data volume of missions like Cassini, Mars Reconnaissance Orbiter (MRO), Mars Science Laboratory (MSL), and Mars Sample Return (MSR). The goal of the 3D-ROMPS task has been to establish a set of operational mission planning and analysis tools in the Image Processing Laboratory (IPL) Mission Support Area (MSA) that will respond to engineering requirements for planning future Solar System Exploration (SSE) missions using a three-dimensional display.

  10. A Compressive Sensing Approach for 3D Breast Cancer Microwave Imaging With Magnetic Nanoparticles as Contrast Agent.

    PubMed

    Bevacqua, Martina T; Scapaticci, Rosa

    2016-02-01

    In microwave breast cancer imaging magnetic nanoparticles have been recently proposed as contrast agent. Due to the non-magnetic nature of human tissues, magnetic nanoparticles make possible the overcoming of some limitations of conventional microwave imaging techniques, thus providing reliable and specific diagnosis of breast cancer. In this paper, a Compressive Sensing inspired inversion technique is introduced for the reconstruction of the magnetic contrast induced within the tumor. The applicability of Compressive Sensing theory is guaranteed by the fact that the underlying inverse scattering problem is linear and the searched magnetic perturbation is sparse. From the numerical analysis, performed in realistic conditions in 3D geometry, it has been pointed out that the adoption of this new tool allows improving resolution and accuracy of the reconstructions, as well as reducing the number of required measurements.

  11. A 3-D tomographic retrieval approach with advection compensation for the air-borne limb-imager GLORIA

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Lotz, J.; Leppkes, K.; Hoffmann, L.; Guggenmoser, T.; Kaufmann, M.; Preusse, P.; Naumann, U.; Riese, M.

    2011-11-01

    Infrared limb sounding from aircraft can provide 2-D curtains of multiple trace gas species. However, conventional limb sounders view perpendicular to the aircraft axis and are unable to resolve the observed airmass along their line-of-sight. GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) is a new remote sensing instrument that is able to adjust its horizontal view angle with respect to the aircraft flight direction from 45° to 135°. This will allow for tomographic measurements of mesoscale structures for a wide variety of atmospheric constituents. Many flights of the GLORIA instrument will not follow closed curves that allow measuring an airmass from all directions. Consequently, it is examined by means of simulations, what spatial resolution can be expected under ideal conditions from tomographic evaluation of measurements made during a straight flight. It is demonstrated that the achievable horizontal resolution in the line-of-sight direction could be reduced from over 200 km to around 70 km compared to conventional retrievals and that the tomographic retrieval is also more robust against horizontal gradients in retrieved quantities in this direction. In a second step, it is shown that the incorporation of channels exhibiting different optical depth can further enhance the spatial resolution of 3-D retrievals enabling the exploitation of spectral samples usually not used for limb sounding due to their opacity. A second problem for tomographic retrievals is that advection, which can be neglected for conventional retrievals, plays an important role for the time-scales involved in a tomographic measurement flight. This paper presents a method to diagnose the effect of a time-varying atmosphere on a 3-D retrieval and demonstrates an effective way to compensate for effects of advection by incorporating wind-fields from meteorological datasets as a priori information.

  12. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  13. General fusion approaches for the age determination of latent fingerprint traces: results for 2D and 3D binary pixel feature fusion

    NASA Astrophysics Data System (ADS)

    Merkel, Ronny; Gruhn, Stefan; Dittmann, Jana; Vielhauer, Claus; Bräutigam, Anja

    2012-03-01

    Determining the age of latent fingerprint traces found at crime scenes is an unresolved research issue since decades. Solving this issue could provide criminal investigators with the specific time a fingerprint trace was left on a surface, and therefore would enable them to link potential suspects to the time a crime took place as well as to reconstruct the sequence of events or eliminate irrelevant fingerprints to ensure privacy constraints. Transferring imaging techniques from different application areas, such as 3D image acquisition, surface measurement and chemical analysis to the domain of lifting latent biometric fingerprint traces is an upcoming trend in forensics. Such non-destructive sensor devices might help to solve the challenge of determining the age of a latent fingerprint trace, since it provides the opportunity to create time series and process them using pattern recognition techniques and statistical methods on digitized 2D, 3D and chemical data, rather than classical, contact-based capturing techniques, which alter the fingerprint trace and therefore make continuous scans impossible. In prior work, we have suggested to use a feature called binary pixel, which is a novel approach in the working field of fingerprint age determination. The feature uses a Chromatic White Light (CWL) image sensor to continuously scan a fingerprint trace over time and retrieves a characteristic logarithmic aging tendency for 2D-intensity as well as 3D-topographic images from the sensor. In this paper, we propose to combine such two characteristic aging features with other 2D and 3D features from the domains of surface measurement, microscopy, photography and spectroscopy, to achieve an increase in accuracy and reliability of a potential future age determination scheme. Discussing the feasibility of such variety of sensor devices and possible aging features, we propose a general fusion approach, which might combine promising features to a joint age determination scheme

  14. 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir

    NASA Astrophysics Data System (ADS)

    Gabl, R.; Seibl, J.; Gems, B.; Aufleger, M.

    2015-12-01

    The impact of an avalanche in a reservoir induces impulse waves, which pose a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting overtopping volume over structures and dams, formulas, which are based on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. This paper presents a new approach for a 3-D numerical simulation of the avalanche impact in a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the actual hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width). There was a good agreement of the overtopping volume at the dam between the presented 3-D numerical approach and the literature equations. Nevertheless, an extended parameter variation as well as a comparison with natural data should be considered as further research topics.

  15. The SF3M approach to 3-D photo-reconstruction for non-expert users: application to a gully network

    NASA Astrophysics Data System (ADS)

    Castillo, C.; James, M. R.; Redel-Macías, M. D.; Pérez, R.; Gómez, J. A.

    2015-04-01

    3-D photo-reconstruction (PR) techniques have been successfully used to produce high resolution elevation models for different applications and over different spatial scales. However, innovative approaches are required to overcome some limitations that this technique may present in challenging scenarios. Here, we evaluate SF3M, a new graphical user interface for implementing a complete PR workflow based on freely available software (including external calls to VisualSFM and CloudCompare), in combination with a low-cost survey design for the reconstruction of a several-hundred-meters-long gully network. SF3M provided a semi-automated workflow for 3-D reconstruction requiring ~ 49 h (of which only 17% required operator assistance) for obtaining a final gully network model of > 17 million points over a gully plan area of 4230 m2. We show that a walking itinerary along the gully perimeter using two light-weight automatic cameras (1 s time-lapse mode) and a 6 m-long pole is an efficient method for 3-D monitoring of gullies, at a low cost (about EUR 1000 budget for the field equipment) and time requirements (~ 90 min for image collection). A mean error of 6.9 cm at the ground control points was found, mainly due to model deformations derived from the linear geometry of the gully and residual errors in camera calibration. The straightforward image collection and processing approach can be of great benefit for non-expert users working on gully erosion assessment.

  16. Facilitating the 3D Indoor Search and Rescue Problem: An Overview of the Problem and an Ant Colony Solution Approach

    NASA Astrophysics Data System (ADS)

    Tashakkori, H.; Rajabifard, A.; Kalantari, M.

    2016-10-01

    Search and rescue procedures for indoor environments are quite complicated due to the fact that much of the indoor information is unavailable to rescuers before physical entrance to the incident scene. Thus, decision making regarding the number of crew required and the way they should be dispatched in the building considering the various access points and complexities in the buildings in order to cover the search area in minimum time is dependent on prior knowledge and experience of the emergency commanders. Hence, this paper introduces the Search and Rescue Problem (SRP) which aims at finding best search and rescue routes that minimize the overall search time in the buildings. 3D BIM-oriented indoor GIS is integrated in the indoor route graph to find accurate routes based on the building geometric and semantic information. An Ant Colony Based Algorithm is presented that finds the number of first responders required and their individual routes to search all rooms and points of interest inside the building to minimize the overall time spent by all rescuers inside the disaster area. The evaluation of the proposed model for a case study building shows a significant improve in search and rescue time which will lead to a higher chance of saving lives and less exposure of emergency crew to danger.

  17. Global 3-D imaging of mantle electrical conductivity based on inversion of observatory C-responses - I. An approach and its verification

    NASA Astrophysics Data System (ADS)

    Kuvshinov, Alexey; Semenov, Alexey

    2012-06-01

    We present a novel frequency-domain inverse solution to recover the 3-D electrical conductivity distribution in the mantle. The solution is based on analysis of local C-responses. It exploits an iterative gradient-type method - limited-memory quasi-Newton method - for minimizing the penalty function consisting of data misfit and regularization terms. The integral equation code is used as a forward engine to calculate responses and data misfit gradients during inversion. An adjoint approach is implemented to compute misfit gradients efficiently. Further improvements in computational load come from parallelizing the scheme with respect to frequencies, and from setting the most time-consuming part of the forward calculations - calculation of Green's tensors - apart from the inversion loop. Convergence, performance, and accuracy of our 3-D inverse solution are demonstrated with a synthetic numerical example. A companion paper applies the strategy set forth here to real data.

  18. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs.

  19. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs. PMID:26202430

  20. Rapid hologram updates for real-time volumetric information displays.

    PubMed

    Munjuluri, Bala; Huebschman, Michael L; Garner, Harold R

    2005-08-20

    We have demonstrated that holograms incorporating changes in three-dimensional (3D) scenes can be recalculated in real time to present dynamic updates on information displays. This approach displays 3D information in a compatible format for fast and reliable interpretation of changes in the 3D scenes. The rapid-update algorithm has been demonstrated by real-time computation and transcription of the holograms to our digital micromirror device hologram projection system for visual validation of the reconstruction. The reported algorithm enables full parallax 1024 x 768 pixel holograms of 3D scenes to be updated at a rate of 0.8 s with a 1.8 GHz personal computer. Volumetric information displays that can enhance reliable data assimilation and decrease reaction times for applications such as air-traffic control, cockpit heads-up displays, mission crew stations, and undersea navigation can benefit from this research.

  1. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  2. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  3. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  4. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  5. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  6. A 3D nanoscale approach to nebular paleomagnetism in the Semarkona LL3.0 ordinary chondrite

    NASA Astrophysics Data System (ADS)

    Einsle, J. F.; Fu, R. R.; Weiss, B. P.; Kasama, T.; Midgley, P. A.; Harrison, R. J.

    2014-12-01

    Solar nebular models suggest that magnetic fields are central to the redistribution of mass and angular momentum in the protoplanetary disk. Using individual chondrules with patches of dusty olivine the strength of these magnetic fields can be measured due to presence of nanoscale Fe inclusions. Since chondrules formed by rapid heating and cooling in the early solar nebula, individual chondrules have the potential to record the magnetic field that was present during their formation, and retain this signal for several billion years. Recently the first robust paleointensity measurement of nebular fields was compleated by measureing dusty olivine grains from the Semarkona LL3.0 ordinary chondrite meteorite in a SQUID microscope. (Fu et al. this meeting) Extracting quantitative information from the paleomagnetic meaurements requires a full understanding of the underlying physical mechanisms producing the measured magnetic signal. Here we characterise the magnetic behaviour of the same dusty olivine chondrules, using a variety of electron microscopy techniques. Electron holography and Lorentz imaging confirm the dominance of single vortex (SV) states in the majority of the remanence carriers. In-field measurements demonstrate the high stability of this SV state, making them suitable carriers of paleomagnetic information. We present a 3D volume reconstruction of the dusty olivine using Focussed-Ion-Beam (FIB) slice-and-view tomography. Combining the selective milling properties of FIB with the high spatial resolution of the Scanning Electron Microscope we are able to capture images as we make successive slices through a selected region of the sample. For this initial study we present a collection of 400 images taken every 10 nm as we slice through an 10 μm x 10 μm x 4 μm volume of the dusty olivine patch within a single chondrule. Each image possesses resolution around 10 nm allowing us to resolve particles in both the single domain and single vortex size ranges. Once

  7. The collaboratory for MS3D: a new cyberinfrastructure for the structural elucidation of biological macromolecules and their assemblies using mass spectrometry-based approaches.

    PubMed

    Yu, Eizadora T; Hawkins, Arie; Kuntz, Irwin D; Rahn, Larry A; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M; Yang, Christine L; Pancerella, Carmen M; Fabris, Daniele

    2008-11-01

    Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies. PMID:18817429

  8. Does fluid infiltration affect the motion of sediment grains? - A 3-D numerical modelling approach using SPH

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin

    2016-04-01

    The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid

  9. Incorporation of texture-based features in optimal graph-theoretic approach with application to the 3D segmentation of intraretinal surfaces in SD-OCT volumes

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Abràmoff, Michael D.; Sonka, Milan; Kwon, Young H.; Garvin, Mona K.

    2012-02-01

    While efficient graph-theoretic approaches exist for the optimal (with respect to a cost function) and simultaneous segmentation of multiple surfaces within volumetric medical images, the appropriate design of cost functions remains an important challenge. Previously proposed methods have used simple cost functions or optimized a combination of the same, but little has been done to design cost functions using learned features from a training set, in a less biased fashion. Here, we present a method to design cost functions for the simultaneous segmentation of multiple surfaces using the graph-theoretic approach. Classified texture features were used to create probability maps, which were incorporated into the graph-search approach. The efficiency of such an approach was tested on 10 optic nerve head centered optical coherence tomography (OCT) volumes obtained from 10 subjects that presented with glaucoma. The mean unsigned border position error was computed with respect to the average of manual tracings from two independent observers and compared to our previously reported results. A significant improvement was noted in the overall means which reduced from 9.25 +/- 4.03μm to 6.73 +/- 2.45μm (p < 0.01) and is also comparable with the inter-observer variability of 8.85 +/- 3.85μm.

  10. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  11. 3D Multi-Object Segmentation of Cardiac MSCT Imaging by using a Multi-Agent Approach

    PubMed Central

    Fleureau, Julien; Garreau, Mireille; Boulmier, Dominique; Hernandez, Alfredo

    2007-01-01

    We propose a new technique for general purpose, semi-interactive and multi-object segmentation in N-dimensional images, applied to the extraction of cardiac structures in MultiSlice Computed Tomography (MSCT) imaging. The proposed approach makes use of a multi-agent scheme combined with a supervised classification methodology allowing the introduction of a priori information and presenting fast computing times. The multi-agent system is organised around a communicating agent which manages a population of situated agents which segment the image through cooperative and competitive interactions. The proposed technique has been tested on several patient data sets. Some typical results are finally presented and discussed. PMID:18003382

  12. Nd break-up process with considering 3NF at intermediate energies in a 3D approach

    NASA Astrophysics Data System (ADS)

    Radin, M.; Ghasemi, H.

    2016-01-01

    In this work we have applied a three-dimensional approach to solve the three-nucleon Faddeev equation in the Jacobi momenta space. To this end, we have considered the inhomogeneous part of the Faddeev equation as an appropriate approximation for projectile intermediate energies. As an application the Bonn-B and the Tucson-Melbourne two- and three-nucleon forces have been used for calculating the differential cross section for proton-deuteron break-up process. Finally, comparing our results with the experimental data has been performed for 197 MeV and 346 MeV projectile energies.

  13. RGB Color Calibration for Quantitative Image Analysis: The “3D Thin-Plate Spline” Warping Approach

    PubMed Central

    Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado

    2012-01-01

    In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data. PMID:22969337

  14. Computed tomography quantification of pulmonary vessels in chronic obstructive pulmonary disease as identified by 3D automated approach

    PubMed Central

    Yu, Nan; Wei, Xia; Li, Yan; Deng, Lei; Jin, Chen-wang; Guo, Youmin

    2016-01-01

    Abstract The aim of this study was to investigate the vascular alteration of the whole lung and individual lobes in patients with COPD, and assess the association between pulmonary vessels and the extent and distribution of emphysema as well as pulmonary function by a 3-dimensional automated approach. A total of 83 computed tomography images from COPD patients were analyzed. Automated computerized approach was used to measure the total number of vessels at the fifth generation. The extent of emphysema (%LAA-950) in the whole lung and individual lobes were also calculated automatically. The association between the vascular number and the extent and distribution of emphysema, as well as the pulmonary function were assessed. Both the vascular number of fifth generation in the upper lobe and in the lower lobe were significantly negatively correlated with %LAA-950 (P < 0.05). Furthermore, there were significant, yet weak correlations between the vascular number and FEV1% predicted (R = 0.556, P = 0.039) and FEV1/FVC (R = 0.538, P = 0.047). In contrast, the vascular numbers were strongly correlated with DLco (R = 0.770, P = 0.003). Finally, the vascular number correlated closer with %LAA-950 of upper lobes than with %LAA-950 of lower lobes. Pulmonary vessel alteration can be measured; it is related to the extent of emphysema rather than the distribution of emphysema. PMID:27749587

  15. A Sparsity-Based Approach to 3D Binaural Sound Synthesis Using Time-Frequency Array Processing

    NASA Astrophysics Data System (ADS)

    Cobos, Maximo; Lopez, JoseJ; Spors, Sascha

    2010-12-01

    Localization of sounds in physical space plays a very important role in multiple audio-related disciplines, such as music, telecommunications, and audiovisual productions. Binaural recording is the most commonly used method to provide an immersive sound experience by means of headphone reproduction. However, it requires a very specific recording setup using high-fidelity microphones mounted in a dummy head. In this paper, we present a novel processing framework for binaural sound recording and reproduction that avoids the use of dummy heads, which is specially suitable for immersive teleconferencing applications. The method is based on a time-frequency analysis of the spatial properties of the sound picked up by a simple tetrahedral microphone array, assuming source sparseness. The experiments carried out using simulations and a real-time prototype confirm the validity of the proposed approach.

  16. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  17. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  18. A topology-oriented and tissue-specific approach to detect pleural thickenings from 3D CT data

    NASA Astrophysics Data System (ADS)

    Buerger, C.; Chaisaowong, K.; Knepper, A.; Kraus, T.; Aach, T.

    2009-02-01

    Pleural thickenings are caused by asbestos exposure and may evolve into malignant pleural mesothelioma. The detection of pleural thickenings is today mostly done by a visual inspection of CT data, which is time-consuming and underlies the physician's subjective judgment. We propose a new detection algorithm within our computer-assisted diagnosis (CAD) system to automatically detect pleural thickenings within CT data. First, pleura contours are identified by thresholding and contour relaxation with a probabilistic model. Subsequently, the approach to automatically detect pleural thickenings is proposed as a two-step procedure. Step one; since pleural thickenings appear as fine-scale occurrences on the rather large-scale pleura contour, a surface-based smoothing algorithm is developed. Pleural thickenings are initially detected as the difference between the original contours and the resulting "healthy" model of the pleura. Step two; as pleural thickenings can expand into the surrounding thoracic tissue, a subsequent tissue-specific segmentation for the initially detected pleural thickenings is performed in order to separate pleural thickenings from the surrounding thoracic tissue. For this purpose, a probabilistic Hounsfield model for pleural thickenings as a mixture of Gaussian distributions has been constructed. The parameters were estimated by applying the Expectation-Maximization (EM) algorithm. A model fitting technique in combination with the application of a Gibbs-Markov random field (GMRF) model then allows the tissuespecific segmentation of pleural thickenings with high precision. With these methods, a new approach is presented in order to assure a precise and reproducible detection of pleural mesothelioma in its early stage.

  19. A multiscale 0-D/3-D approach to patient-specific adaptation of a cerebral autoregulation model for computational fluid dynamics studies of cardiopulmonary bypass.

    PubMed

    Neidlin, Michael; Steinseifer, Ulrich; Kaufmann, Tim A S

    2014-06-01

    Neurological complication often occurs during cardiopulmonary bypass (CPB). One of the main causes is hypoperfusion of the cerebral tissue affected by the position of the cannula tip and diminished cerebral autoregulation (CA). Recently, a lumped parameter approach could describe the baroreflex, one of the main mechanisms of cerebral autoregulation, in a computational fluid dynamics (CFD) study of CPB. However, the cerebral blood flow (CBF) was overestimated and the physiological meaning of the variables and their impact on the model was unknown. In this study, we use a 0-D control circuit representation of the Baroreflex mechanism, to assess the parameters with respect to their physiological meaning and their influence on CBF. Afterwards the parameters are transferred to 3D-CFD and the static and dynamic behavior of cerebral autoregulation is investigated. The parameters of the baroreflex mechanism can reproduce normotensive, hypertensive and impaired autoregulation behavior. Further on, the proposed model can mimic the effects of anesthetic agents and other factors controlling dynamic CA. The CFD simulations deliver similar results of static and dynamic CBF as the 0-D control circuit. This study shows the feasibility of a multiscale 0-D/3-D approach to include patient-specific cerebral autoregulation into CFD studies. PMID:24746017

  20. Personalized x-ray reconstruction of the proximal femur via a non-rigid 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Yu, Weimin; Zysset, Philippe; Zheng, Guoyan

    2015-03-01

    In this paper we present a new approach for a personalized X-ray reconstruction of the proximal femur via a non-rigid registration of a 3D volumetric template to 2D calibrated C-arm images. The 2D-3D registration is done with a hierarchical two-stage strategy: the global scaled rigid registration stage followed by a regularized deformable b-spline registration stage. In both stages, a set of control points with uniform spacing are placed over the domain of the 3D volumetric template and the registrations are driven by computing updated positions of these control points, which then allows to accurately register the 3D volumetric template to the reference space of the C-arm images. Comprehensive experiments on simulated images, on images of cadaveric femurs and on clinical datasets are designed and conducted to evaluate the performance of the proposed approach. Quantitative and qualitative evaluation results are given, which demonstrate the efficacy of the present approach.

  1. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  2. 3D integration approaches for MEMS and CMOS sensors based on a Cu through-silicon-via technology and wafer level bonding

    NASA Astrophysics Data System (ADS)

    Hofmann, L.; Dempwolf, S.; Reuter, D.; Ecke, R.; Gottfried, K.; Schulz, S. E.; Knechtel, R.; Geßner, T.

    2015-05-01

    Technologies for the 3D integration are described within this paper with respect to devices that have to retain a specific minimum wafer thickness for handling purposes (CMOS) and integrity of mechanical elements (MEMS). This implies Through-Silicon Vias (TSVs) with large dimensions and high aspect ratios (HAR). Moreover, as a main objective, the aspired TSV technology had to be universal and scalable with the designated utilization in a MEMS/CMOS foundry. Two TSV approaches are investigated and discussed, in which the TSVs were fabricated either before or after wafer thinning. One distinctive feature is an incomplete TSV Cu-filling, which avoids long processing and complex process control, while minimizing the thermomechanical stress between Cu and Si and related adverse effects in the device. However, the incomplete filling also includes various challenges regarding process integration. A method based on pattern plating is described, in which TSVs are metalized at the same time as the redistribution layer and which eliminates the need for additional planarization and patterning steps. For MEMS, the realization of a protective hermetically sealed capping is crucial, which is addressed in this paper by glass frit wafer level bonding and is discussed for hermetic sealing of MEMS inertial sensors. The TSV based 3D integration technologies are demonstrated on CMOS like test vehicle and on a MEMS device fabricated in Air Gap Insulated Microstructure (AIM) technology.

  3. Left-ventricle segmentation in real-time 3D echocardiography using a hybrid active shape model and optimal graph search approach

    NASA Astrophysics Data System (ADS)

    Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas

    2010-03-01

    Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.

  4. 3-D CFD Simulation and Validation of Oxygen-Rich Hydrocarbon Combustion in a Gas-Centered Swirl Coaxial Injector using a Flamelet-Based Approach

    NASA Technical Reports Server (NTRS)

    Richardson, Brian; Kenny, Jeremy

    2015-01-01

    Injector design is a critical part of the development of a rocket Thrust Chamber Assembly (TCA). Proper detailed injector design can maximize propulsion efficiency while minimizing the potential for failures in the combustion chamber. Traditional design and analysis methods for hydrocarbon-fuel injector elements are based heavily on empirical data and models developed from heritage hardware tests. Using this limited set of data produces challenges when trying to design a new propulsion system where the operating conditions may greatly differ from heritage applications. Time-accurate, Three-Dimensional (3-D) Computational Fluid Dynamics (CFD) modeling of combusting flows inside of injectors has long been a goal of the fluid analysis group at Marshall Space Flight Center (MSFC) and the larger CFD modeling community. CFD simulation can provide insight into the design and function of an injector that cannot be obtained easily through testing or empirical comparisons to existing hardware. However, the traditional finite-rate chemistry modeling approach utilized to simulate combusting flows for complex fuels, such as Rocket Propellant-2 (RP-2), is prohibitively expensive and time consuming even with a large amount of computational resources. MSFC has been working, in partnership with Streamline Numerics, Inc., to develop a computationally efficient, flamelet-based approach for modeling complex combusting flow applications. In this work, a flamelet modeling approach is used to simulate time-accurate, 3-D, combusting flow inside a single Gas Centered Swirl Coaxial (GCSC) injector using the flow solver, Loci-STREAM. CFD simulations were performed for several different injector geometries. Results of the CFD analysis helped guide the design of the injector from an initial concept to a tested prototype. The results of the CFD analysis are compared to data gathered from several hot-fire, single element injector tests performed in the Air Force Research Lab EC-1 test facility

  5. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  6. patGPCR: A Multitemplate Approach for Improving 3D Structure Prediction of Transmembrane Helices of G-Protein-Coupled Receptors

    PubMed Central

    Wu, Hongjie; Lü, Qiang; Quan, Lijun; Qian, Peide; Xia, Xiaoyan

    2013-01-01

    The structures of the seven transmembrane helices of G-protein-coupled receptors are critically involved in many aspects of these receptors, such as receptor stability, ligand docking, and molecular function. Most of the previous multitemplate approaches have built a “super” template with very little merging of aligned fragments from different templates. Here, we present a parallelized multitemplate approach, patGPCR, to predict the 3D structures of transmembrane helices of G-protein-coupled receptors. patGPCR, which employs a bundle-packing related energy function that extends on the RosettaMem energy, parallelizes eight pipelines for transmembrane helix refinement and exchanges the optimized helix structures from multiple templates. We have investigated the performance of patGPCR on a test set containing eight determined G-protein-coupled receptors. The results indicate that patGPCR improves the TM RMSD of the predicted models by 33.64% on average against a single-template method. Compared with other homology approaches, the best models for five of the eight targets built by patGPCR had a lower TM RMSD than that obtained from SWISS-MODEL; patGPCR also showed lower average TM RMSD than single-template and multiple-template MODELLER. PMID:23554839

  7. CROSS DRIVE: A New Interactive and Immersive Approach for Exploring 3D Time-Dependent Mars Atmospheric Data in Distributed Teams

    NASA Astrophysics Data System (ADS)

    Gerndt, Andreas M.; Engelke, Wito; Giuranna, Marco; Vandaele, Ann C.; Neary, Lori; Aoki, Shohei; Kasaba, Yasumasa; Garcia, Arturo; Fernando, Terrence; Roberts, David; CROSS DRIVE Team

    2016-10-01

    Atmospheric phenomena of Mars can be highly dynamic and have daily and seasonal variations. Planetary-scale wavelike disturbances, for example, are frequently observed in Mars' polar winter atmosphere. Possible sources of the wave activity were suggested to be dynamical instabilities and quasi-stationary planetary waves, i.e. waves that arise predominantly via zonally asymmetric surface properties. For a comprehensive understanding of these phenomena, single layers of altitude have to be analyzed carefully and relations between different atmospheric quantities and interaction with the surface of Mars have to be considered. The CROSS DRIVE project tries to address the presentation of those data with a global view by means of virtual reality techniques. Complex orbiter data from spectrometer and observation data from Earth are combined with global circulation models and high-resolution terrain data and images available from Mars Express or MRO instruments. Scientists can interactively extract features from those dataset and can change visualization parameters in real-time in order to emphasize findings. Stereoscopic views allow for perception of the actual 3D behavior of Mars's atmosphere. A very important feature of the visualization system is the possibility to connect distributed workspaces together. This enables discussions between distributed working groups. The workspace can scale from virtual reality systems to expert desktop applications to web-based project portals. If multiple virtual environments are connected, the 3D position of each individual user is captured and used to depict the scientist as an avatar in the virtual world. The appearance of the avatar can also scale from simple annotations to complex avatars using tele-presence technology to reconstruct the users in 3D. Any change of the feature set (annotations, cutplanes, volume rendering, etc.) within the VR is immediately exchanged between all connected users. This allows that everybody is always

  8. 3D laptop for defense applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  9. 3D modeling from uncalibrated color images for a complete wound assessment tool.

    PubMed

    Albouy, B; Lucas, Y; Treuillet, S

    2007-01-01

    This paper is concerned with the 3D modeling of skin wound using uncalibrated vision techniques for the volumetric assessment of the healing process. We have developed an original approach for matching two color images captured with a free-handled digital camera and generate a semi-dense 3D model. We evaluate the precision of the inferred 3D model by registration to a ground truth on artificial wounds. The method is then applied to volumetric measurements. The clinician requirements of a global 5% precision are overshot as 3% is obtained locally. The best configuration for taking photos lies between 1.2 and 1.5 for distance ratios and between 15 degrees and 30 degrees for vergence of the stereo pair. This work is part of the ESCALE project dedicated to the design of a complete 3D and color wound assessment tool using a simple free handled digital camera: a smart solution for massive diffusion in care centers as such very low cost system should be operated directly by nurses.

  10. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  11. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  12. Self consistent particles dynamics in/out of the cusp region by using back tracking technics; a global 3D PIC simulation approach

    NASA Astrophysics Data System (ADS)

    Esmaeili, A.; Cai, D.; Lembege, B.; Nishikawa, K.

    2013-12-01

    Large scale three dimensionbal PIC (particle in cell) simulations are presently used in order to analyze the global solar wind-terrestrial magnetosphere intreraction within a full self-consistent approach, and where both electrons and ions are treated as an assembly of individual particles. This 3D kinetic approach allows us to analyze in particular the dynamics and the fine structures of the cusp region when including self consistently not only its whole neighborhood (in the terrestrial magnetosphere) but also the impact of the solar wind and the interplanetary field (IMF) features. Herein, we focuss our attention on the cusp region and in particular on the acceleration and precipitation of particles (both ions and electrons) within the cusp. In present simulations, the IMF is chosen northward, (i.e. where the X -reconnection region is just above the cusp, in the meridian plane). Back-trackings of self-consistent particles are analyzed in details in order to determine (i) which particles (just above the cusp) are precipitated deeply into the cusp, (ii) which populations are injected from the cusp into the nearby tail, (iii) where the particles suffer the largest energisation along their self-consistent trajectories, (iv) where these populations accumulate, and (v) where the most energetic particles are originally coming from. This approach allows to make a traking of particles within the scenario "solar wind-magnetosheath- cusp -nearbytail"; moreover it strongly differs from the standard test particles technics and allows to provide informations not accessible when using full MHD approach. Keywords: Tracing Particles, Particle In Cell (PIC) simulation, double cusp, test particles method, IMF, Solar wind, Magnetosphere

  13. Application of automated MRI volumetric measurement techniques to the ventricular system in schizophrenics and normal controls.

    PubMed

    Shenton, M E; Kikinis, R; McCarley, R W; Metcalf, D; Tieman, J; Jolesz, F A

    1991-09-01

    As an initial approach to computer-automated segmentation of cerebral spinal fluid (CSF) vs. brain parenchyma in MR scans, and the transformation of these data sets into volumetric information and 3D display, we examined the ventricular system in a sample of ten chronic schizophrenics with primarily positive symptoms and 12 normal subjects. While no significant differences were noted between groups on volumetric measures of ventricular brain ratio or lateral ventricle size, normals showed a pattern of left greater than right lateral ventricular volume asymmetry not present in the schizophrenics. Within the schizophrenic group, departure from the normal left greater than right pattern was highly correlated with thought disorder.

  14. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  15. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  16. SU-E-J-141: Activity-Equivalent Path Length Approach for the 3D PET-Based Dose Reconstruction in Proton Therapy

    SciTech Connect

    Attili, A; Vignati, A; Giordanengo, S; Kraan, A; Dalmasso, F; Battistoni, G

    2015-06-15

    Purpose: Ion beam therapy is sensitive to uncertainties from treatment planning and dose delivery. PET imaging of induced positron emitter distributions is a practical approach for in vivo, in situ verification of ion beam treatments. Treatment verification is usually done by comparing measured activity distributions with reference distributions, evaluated in nominal conditions. Although such comparisons give valuable information on treatment quality, a proper clinical evaluation of the treatment ultimately relies on the knowledge of the actual delivered dose. Analytical deconvolution methods relating activity and dose have been studied in this context, but were not clinically applied. In this work we present a feasibility study of an alternative approach for dose reconstruction from activity data, which is based on relating variations in accumulated activity to tissue density variations. Methods: First, reference distributions of dose and activity were calculated from the treatment plan and CT data. Then, the actual measured activity data were cumulatively matched with the reference activity distributions to obtain a set of activity-equivalent path lengths (AEPLs) along the rays of the pencil beams. Finally, these AEPLs were used to deform the original dose distribution, yielding the actual delivered dose. The method was tested by simulating a proton therapy treatment plan delivering 2 Gy on a homogeneous water phantom (the reference), which was compared with the same plan delivered on a phantom containing inhomogeneities. Activity and dose distributions were were calculated by means of the FLUKA Monte Carlo toolkit. Results: The main features of the observed dose distribution in the inhomogeneous situation were reproduced using the AEPL approach. Variations in particle range were reproduced and the positions, where these deviations originated, were properly identified. Conclusions: For a simple inhomogeneous phantom the 3D dose reconstruction from PET

  17. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  18. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  19. Discovery of new inhibitors of Mycobacterium tuberculosis InhA enzyme using virtual screening and a 3D-pharmacophore-based approach.

    PubMed

    Pauli, Ivani; dos Santos, Ricardo N; Rostirolla, Diana C; Martinelli, Leonardo K; Ducati, Rodrigo G; Timmers, Luís F S M; Basso, Luiz A; Santos, Diógenes S; Guido, Rafael V C; Andricopulo, Adriano D; Norberto de Souza, Osmar

    2013-09-23

    Mycobacterium tuberculosis InhA (MtInhA) is an attractive enzyme to drug discovery efforts due to its validation as an effective biological target for tuberculosis therapy. In this work, two different virtual-ligand-screening approaches were applied in order to identify new InhA inhibitors' candidates from a library of ligands selected from the ZINC database. First, a 3-D pharmacophore model was built based on 36 available MtInhA crystal structures. By combining structure-based and ligand-based information, four pharmacophoric points were designed to select molecules able to satisfy the binding features of MtInhA substrate-binding cavity. The second approach consisted of using four well established docking programs, with different search algorithms, to compare the binding mode and score of the selected molecules from the aforementioned library. After detailed analyses of the results, six ligands were selected for in vitro analysis. Three of these molecules presented a satisfactory inhibitory activity with IC50 values ranging from 24 (±2) μM to 83 (±5) μM. The best compound presented an uncompetitive inhibition mode to NADH and 2-trans-dodecenoyl-CoA substrates, with Ki values of 24 (±3) μM and 20 (±2) μM, respectively. These molecules were not yet described as antituberculars or as InhA inhibitors, making its novelty interesting to start efforts on ligand optimization in order to identify new effective drugs against tuberculosis having InhA as a target. More studies are underway to dissect the discovered uncompetitive inhibitor interactions with MtInhA.

  20. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach.

    PubMed

    Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo

    2016-01-01

    The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue.

  1. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  2. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  3. Volumetric segmentation of range images for printed circuit board inspection

    NASA Astrophysics Data System (ADS)

    Van Dop, Erik R.; Regtien, Paul P. L.

    1996-10-01

    Conventional computer vision approaches towards object recognition and pose estimation employ 2D grey-value or color imaging. As a consequence these images contain information about projections of a 3D scene only. The subsequent image processing will then be difficult, because the object coordinates are represented with just image coordinates. Only complicated low-level vision modules like depth from stereo or depth from shading can recover some of the surface geometry of the scene. Recent advances in fast range imaging have however paved the way towards 3D computer vision, since range data of the scene can now be obtained with sufficient accuracy and speed for object recognition and pose estimation purposes. This article proposes the coded-light range-imaging method together with superquadric segmentation to approach this task. Superquadric segments are volumetric primitives that describe global object properties with 5 parameters, which provide the main features for object recognition. Besides, the principle axes of a superquadric segment determine the phase of an object in the scene. The volumetric segmentation of a range image can be used to detect missing, false or badly placed components on assembled printed circuit boards. Furthermore, this approach will be useful to recognize and extract valuable or toxic electronic components on printed circuit boards scrap that currently burden the environment during electronic waste processing. Results on synthetic range images with errors constructed according to a verified noise model illustrate the capabilities of this approach.

  4. Multi-modal 2D-3D non-rigid registration

    NASA Astrophysics Data System (ADS)

    Prümmer, M.; Hornegger, J.; Pfister, M.; Dörfler, A.

    2006-03-01

    In this paper, we propose a multi-modal non-rigid 2D-3D registration technique. This method allows a non-rigid alignment of a patient pre-operatively computed tomography (CT) to few intra operatively acquired fluoroscopic X-ray images obtained with a C-arm system. This multi-modal approach is especially focused on the 3D alignment of high contrast reconstructed volumes with intra-interventional low contrast X-ray images in order to make use of up-to-date information for surgical guidance and other interventions. The key issue of non-rigid 2D-3D registration is how to define the distance measure between high contrast 3D data and low contrast 2D projections. In this work, we use algebraic reconstruction theory to handle this problem. We modify the Euler-Lagrange equation by introducing a new 3D force. This external force term is computed from the residual of the algebraic reconstruction procedures. In the multi-modal case we replace the residual between the digitally reconstructed radiographs (DRR) and observed X-ray images with a statistical based distance measure. We integrate the algebraic reconstruction technique into a variational registration framework, so that the 3D displacement field is driven to minimize the reconstruction distance between the volumetric data and its 2D projections using mutual information (MI). The benefits of this 2D-3D registration approach are its scalability in the number of used X-ray reference images and the proposed distance that can handle low contrast fluoroscopies as well. Experimental results are presented on both artificial phantom and 3D C-arm CT images.

  5. A high capacity 3D steganography algorithm.

    PubMed

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  6. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  7. Stability of 3D Textile Composite Reinforcement Simulations: Solutions to Spurious Transverse Modes

    NASA Astrophysics Data System (ADS)

    Mathieu, S.; Hamila, N.; Dupé, F.; Descamps, C.; Boisse, P.

    2016-08-01

    The simulation of thick 3D composite reinforcement forming brings to light new modeling challenges. The specific anisotropic material behavior due to the possible slippage between fibers induces, among other phenomena, the development of spurious transverse modes in bending-dominated 3D simulations. To obtain coherent finite element responses, two solutions are proposed. The first one uses a simple assumed strain formulation usually prescribed to prevent volumetric locking. This solution avoids spurious transverse modes by stiffening of the hourglass modes. Nevertheless the deformation obtained by this approach still suffers from the inability of the standard continuum mechanics of Cauchy to describe fibrous material deformation. The second proposed approach is based on the introduction of a bending stiffness which both avoids the spurious transverse modes and also improves the global behavior of the element formulation by enriching the underlying continuum. To emphasize the differences between different formulations, element stiffnesses are explicitly calculated and compared.

  8. Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Steininger, P.; Neuner, M.; Weichenberger, H.; Sharp, G. C.; Winey, B.; Kametriser, G.; Sedlmayer, F.; Deutschmann, H.

    2012-07-01

    Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription.

  9. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  10. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  11. Realization of undistorted volumetric multiview image with multilayered integral imaging.

    PubMed

    Kakeya, Hideki

    2011-10-10

    This paper presents a 3D display based on the coarse integral volumetric imaging (CIVI) technique. Though expression of focal effect and specular light is enabled by combining volumetric and multiview solutions, the image qualities of conventional systems have stayed low. In this paper high quality 3D image is attained with the CIVI technology, which compensates distortion and discontinuity of image based on the optical calculations. In addition, compact system design by layering color and monochrome panels is proposed.

  12. A Learner-Centered Approach for Training Science Teachers through Virtual Reality and 3D Visualization Technologies: Practical Experience for Sharing

    ERIC Educational Resources Information Center

    Yeung, Yau-Yuen

    2004-01-01

    This paper presentation will report on how some science educators at the Science Department of The Hong Kong Institute of Education have successfully employed an array of innovative learning media such as three-dimensional (3D) and virtual reality (VR) technologies to create seven sets of resource kits, most of which are being placed on the…

  13. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  14. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    PubMed Central

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-01-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds. PMID:26758780

  15. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair.

    PubMed

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-12

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  16. 3D Printing for Tissue Engineering

    PubMed Central

    Jia, Jia; Yao, Hai; Mei, Ying

    2016-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host tissue integration (e.g., cellular infiltration, vascularization, and active remodeling). This review will cover several approaches that have advanced the field of 3D printing through novel fabrication methods of tissue engineering constructs. It will also discuss the applications of synthetic and natural materials for 3D printing facilitated tissue fabrication. PMID:26869728

  17. Three-dimensional volumetric object reconstruction using computational integral imaging.

    PubMed

    Hong, Seung-Hyun; Jang, Ju-Seog; Javidi, Bahram

    2004-02-01

    We propose a three-dimensional (3D) imaging technique that can sense a 3D scene and computationally reconstruct it as a 3D volumetric image. Sensing of the 3D scene is carried out by obtaining elemental images optically using a pickup microlens array and a detector array. Reconstruction of volume pixels of the scene is accomplished by computationally simulating optical reconstruction according to ray optics. The entire pixels of the recorded elemental images contribute to volumetric reconstruction of the 3D scene. Image display planes at arbitrary distances from the display microlens array are computed and reconstructed by back propagating the elemental images through a computer synthesized pinhole array based on ray optics. We present experimental results of 3D image sensing and volume pixel reconstruction to test and verify the performance of the algorithm and the imaging system. The volume pixel values can be used for 3D image surface reconstruction.

  18. Large scale 3D geometry of deformation structures in the Aar massif and overlying Helvetic nappes (Central Alps, Switzerland) - A combined remote sensing and field work approach

    NASA Astrophysics Data System (ADS)

    Baumberger, R.; Wehrens, Ph.; Herwegh, M.

    2012-04-01

    Allowing deep insight into the formation history of a rock complex, shear zones, faults and joint systems represent important sources of geological information. The granitic rocks of the Haslital valley (Switzerland) show very good outcrop conditions to study these mechanical anisotropies. Furthermore, they permit a quantitative characterisation of the above-mentioned deformation structures on the large-scale, in terms of their 3D orientation, 3D spatial distribution, kinematics and evolution in 3D. A key problem while developing valid geological 3D models is the three-dimensional spatial distribution of geological structures, particularly with increasing distance from the surface. That is especially true in regions, where only little or even no "hard" underground data (e.g. bore holes, tunnel mappings and seismics) is available. In the study area, many subsurface data are available (e.g. cross sections, tunnel and pipeline mappings, bore holes etc.). Therefore, two methods dealing with the problems mentioned are developed: (1) A data acquisition, processing and visualisation method, (2) A methodology to improve the reliability of 3D models regarding the spatial trend of geological structures with increasing depth: 1) Using aerial photographs and a high-resolution digital elevation model, a GIS-based remote-sensing structural map of large-scale structural elements (shear zones, faults) of the study area was elaborated. Based on that lineament map, (i) a shear zone map was derived and (ii) a geostatistical analysis was applied to identify sub regions applicable for serving as field areas to test the methodology presented above. During fieldwork, the shear zone map was evaluated by verifying the occurrence and spatial distribution of the structures designated by remote sensing. Additionally, the geometry of the structures (e.g. 3D orientation, width, kinematics) was characterised and parameterised accordingly. These tasks were partially done using a GPS based Slate

  19. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    PubMed

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  20. 3D non-rigid surface-based MR-TRUS registration for image-guided prostate biopsy

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Qiu, Wu; Romagnoli, Cesare; Fenster, Aaron

    2014-03-01

    Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate biopsy is the standard approach for definitive diagnosis of prostate cancer (PCa). However, due to the lack of image contrast of prostate tumors needed to clearly visualize early-stage PCa, prostate biopsy often results in false negatives, requiring repeat biopsies. Magnetic Resonance Imaging (MRI) has been considered to be a promising imaging modality for noninvasive identification of PCa, since it can provide a high sensitivity and specificity for the detection of early stage PCa. Our main objective is to develop and validate a registration method of 3D MR-TRUS images, allowing generation of volumetric 3D maps of targets identified in 3D MR images to be biopsied using 3D TRUS images. Our registration method first makes use of an initial rigid registration of 3D MR images to 3D TRUS images using 6 manually placed approximately corresponding landmarks in each image. Following the manual initialization, two prostate surfaces are segmented from 3D MR and TRUS images and then non-rigidly registered using a thin-plate spline (TPS) algorithm. The registration accuracy was evaluated using 4 patient images by measuring target registration error (TRE) of manually identified corresponding intrinsic fiducials (calcifications and/or cysts) in the prostates. Experimental results show that the proposed method yielded an overall mean TRE of 2.05 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.

  1. 3D whiteboard: collaborative sketching with 3D-tracked smart phones

    NASA Astrophysics Data System (ADS)

    Lue, James; Schulze, Jürgen P.

    2014-02-01

    We present the results of our investigation of the feasibility of a new approach for collaborative drawing in 3D, based on Android smart phones. Our approach utilizes a number of fiduciary markers, placed in the working area where they can be seen by the smart phones' cameras, in order to estimate the pose of each phone in the room. Our prototype allows two users to draw 3D objects with their smart phones by moving their phones around in 3D space. For example, 3D lines are drawn by recording the path of the phone as it is moved around in 3D space, drawing line segments on the screen along the way. Each user can see the virtual drawing space on their smart phones' displays, as if the display was a window into this space. Besides lines, our prototype application also supports 3D geometry creation, geometry transformation operations, and it shows the location of the other user's phone.

  2. Translating Response During Therapy into Ultimate Treatment Outcome: A Personalized 4-Dimensional MRI Tumor Volumetric Regression Approach in Cervical Cancer

    SciTech Connect

    Mayr, Nina A.; Wang, Jian Z.; Lo, Simon S.; Zhang Dongqing; Grecula, John C.; Lu Lanchun; Montebello, Joseph F.; Fowler, Jeffrey M.; Yuh, William T.C.

    2010-03-01

    Purpose: To assess individual volumetric tumor regression pattern in cervical cancer during therapy using serial four-dimensional MRI and to define the regression parameters' prognostic value validated with local control and survival correlation. Methods and Materials: One hundred and fifteen patients with Stage IB{sub 2}-IVA cervical cancer treated with radiation therapy (RT) underwent serial MRI before (MRI 1) and during RT, at 2-2.5 weeks (MRI 2, at 20-25 Gy), and at 4-5 weeks (MRI 3, at 40-50 Gy). Eighty patients had a fourth MRI 1-2 months post-RT. Mean follow-up was 5.3 years. Tumor volume was measured by MRI-based three-dimensional volumetry, and plotted as dose(time)/volume regression curves. Volume regression parameters were correlated with local control, disease-specific, and overall survival. Results: Residual tumor volume, slope, and area under the regression curve correlated significantly with local control and survival. Residual volumes >=20% at 40-50 Gy were independently associated with inferior 5-year local control (53% vs. 97%, p <0.001) and disease-specific survival rates (50% vs. 72%, p = 0.009) than smaller volumes. Patients with post-RT residual volumes >=10% had 0% local control and 17% disease-specific survival, compared with 91% and 72% for <10% volume (p <0.001). Conclusion: Using more accurate four-dimensional volumetric regression analysis, tumor response can now be directly translated into individual patients' outcome for clinical application. Our results define two temporal thresholds critically influencing local control and survival. In patients with >=20% residual volume at 40-50 Gy and >=10% post-RT, the risk for local failure and death are so high that aggressive intervention may be warranted.

  3. [Chaotic artificial bee colony algorithm: a new approach to the problem of minimization of energy of the 3D protein structure].

    PubMed

    Wang, Y; Guo, G D; Chen, L F

    2013-01-01

    Frediction of the three-dimensional structure of a protein from its amino acid sequence can be considered as a global optimization problem. In this paper, the Chaotic Artificial Bee Colony (CABC) algorithm was introduced and applied to 3D protein structure prediction. Based on the 3D off-lattice AB model, the CABC algorithm combines global search and local search of the Artificial Bee Colony (ABC) algorithm with the Chaotic search algorithm to avoid the problem of premature convergence and easily trapping the local optimum solution. The experiments carried out with the popular Fibonacci sequences demonstrate that the proposed algorithm provides an effective and high-performance method for protein structure prediction. PMID:25509864

  4. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  5. Full Three-Dimensional Approach: Seismic Structure of the Mantle Beneath Western Pacific Using 3-D Fréchet Kernels

    NASA Astrophysics Data System (ADS)

    Chen, L.; Zhao, L.; Jordan, T. H.

    2002-12-01

    We present a full three-dimensional (3-D) model of the shear-speed structure for the mantle beneath western Pacific Ocean. Over 800 three-component recordings of earthquakes (Mw > 5.5) from the seismic zones around the western Pacific rim to station HON/KIP in Hawaii, MIDW in Midway, MAT/MAJO and ERM in Japan, and GUMO in Mariana Island were processed to obtain ~20,000 frequency-dependent phase delays for various of seismic waves, including S, SS, upper-mantle guided and surface waves, and ScS reverberations. The 3-D Fréchet kernels for these delay times are computed by the coupled normal mode theory described by Zhao, Jordan, and Chapman (2000), and the measurements were inverted for a 3-D radially anisotropic shear-speed model using a linear Gaussian-Bayesian scheme. The model parameters include shear-speed variations throughout the mantle and perturbations to radial shear-wave anisotropy in the uppermost mantle. The resolving power of the inversion has been investigated through a series of checkerboard and other tests, which indicate that the horizontal and vertical resolving lengths of about 700 and 200 km or less in the upper mantle. Our results for the large-scale variations in the isotropic shear speeds are generally consistent with published global tomographic models. For example, the uppermost mantle (< 200 km depth) shows fast anomalies in the interior of the Pacific plate and slow anomalies in the marginal basins along the Pacific rim, while this pattern is reversed in the transition zone (400-700 km). Our model reveals greater lateral heterogeneity than the global models, especially in the 200-400 km depth range, suggesting a complex 3-D mantle flow in the western Pacific upper mantle.

  6. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  7. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  8. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained

    PubMed Central

    Zanoni, Michele; Piccinini, Filippo; Arienti, Chiara; Zamagni, Alice; Santi, Spartaco; Polico, Rolando; Bevilacqua, Alessandro; Tesei, Anna

    2016-01-01

    The potential of a spheroid tumor model composed of cells in different proliferative and metabolic states for the development of new anticancer strategies has been amply demonstrated. However, there is little or no information in the literature on the problems of reproducibility of data originating from experiments using 3D models. Our analyses, carried out using a novel open source software capable of performing an automatic image analysis of 3D tumor colonies, showed that a number of morphology parameters affect the response of large spheroids to treatment. In particular, we found that both spheroid volume and shape may be a source of variability. We also compared some commercially available viability assays specifically designed for 3D models. In conclusion, our data indicate the need for a pre-selection of tumor spheroids of homogeneous volume and shape to reduce data variability to a minimum before use in a cytotoxicity test. In addition, we identified and validated a cytotoxicity test capable of providing meaningful data on the damage induced in large tumor spheroids of up to diameter in 650 μm by different kinds of treatments. PMID:26752500

  10. Interactive initialization of 2D/3D rigid registration

    SciTech Connect

    Gong, Ren Hui; Güler, Özgür; Kürklüoglu, Mustafa; Lovejoy, John; Yaniv, Ziv

    2013-12-15

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the

  11. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  12. New approach to mudflow formation as a 3D-process of interaction for surface water and groundwater due to base alimentation in the river basin

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Arakelian, Mileta; Arakelian, Sergei

    2013-04-01

    ). Ground water is accumulated in the crack area; the mechanism of this 3D-process is connected with the inner (deep) pressure, as well as with capillary forces. For that, a certain area, called a mudflow gate, is being created in the river channel. This zone is the origin of an intensive ground feeding of the mudflow pulse (due to the pressure difference). It results in a sudden release of the ground water bringing in essential contribution to the surface phenomena. These processes are basic for forming a river basin, and have a permanent influence on the drainage network functioning. 4. Within the framework of this conception, as an example, we give a brief analysis of the possible reasons for the recent catastrophic flood in the town of Krimsk, Russia (July, 2012).

  13. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  14. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  15. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  16. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  17. Rapid mapping of volumetric errors

    SciTech Connect

    Krulewich, D.; Hale, L.; Yordy, D.

    1995-09-13

    This paper describes a relatively inexpensive, fast, and easy to execute approach to mapping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) modeling the relationship between the volumetric error and the current state of the machine; (2) acquiring error data based on length measurements throughout the work volume; and (3) optimizing the model to the particular machine.

  18. A New Approach to Improve Cognition, Muscle Strength, and Postural Balance in Community-Dwelling Elderly with a 3-D Virtual Reality Kayak Program.

    PubMed

    Park, Junhyuck; Yim, JongEun

    2016-01-01

    Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p < 0.05), muscle strength (p < 0.05), and balance (standing and sitting balance, p < 0.05) were significantly improved in kayak program group compared to the control group. We propose that the 3-D virtual reality kayak program is a promising intervention method for improving the cognitive function, muscle strength, and balance of elderly.

  19. The Neighboring Column Approximation (NCA) - A fast approach for the calculation of 3D thermal heating rates in cloud resolving models

    NASA Astrophysics Data System (ADS)

    Klinger, Carolin; Mayer, Bernhard

    2016-01-01

    Due to computational costs, radiation is usually neglected or solved in plane parallel 1D approximation in today's numerical weather forecast and cloud resolving models. We present a fast and accurate method to calculate 3D heating and cooling rates in the thermal spectral range that can be used in cloud resolving models. The parameterization considers net fluxes across horizontal box boundaries in addition to the top and bottom boundaries. Since the largest heating and cooling rates occur inside the cloud, close to the cloud edge, the method needs in first approximation only the information if a grid box is at the edge of a cloud or not. Therefore, in order to calculate the heating or cooling rates of a specific grid box, only the directly neighboring columns are used. Our so-called Neighboring Column Approximation (NCA) is an analytical consideration of cloud side effects which can be considered a convolution of a 1D radiative transfer result with a kernel or radius of 1 grid-box (5 pt stencil) and which does usually not break the parallelization of a cloud resolving model. The NCA can be easily applied to any cloud resolving model that includes a 1D radiation scheme. Due to the neglect of horizontal transport of radiation further away than one model column, the NCA works best for model resolutions of about 100 m or lager. In this paper we describe the method and show a set of applications of LES cloud field snap shots. Correction terms, gains and restrictions of the NCA are described. Comprehensive comparisons to the 3D Monte Carlo Model MYSTIC and a 1D solution are shown. In realistic cloud fields, the full 3D simulation with MYSTIC shows cooling rates up to -150 K/d (100 m resolution) while the 1D solution shows maximum coolings of only -100 K/d. The NCA is capable of reproducing the larger 3D cooling rates. The spatial distribution of the heating and cooling is improved considerably. Computational costs are only a factor of 1.5-2 higher compared to a 1D

  20. 3D active surfaces for liver segmentation in multisequence MRI images.

    PubMed

    Bereciartua, Arantza; Picon, Artzai; Galdran, Adrian; Iriondo, Pedro

    2016-08-01

    Biopsies for diagnosis can sometimes be replaced by non-invasive techniques such as CT and MRI. Surgeons require accurate and efficient methods that allow proper segmentation of the organs in order to ensure the most reliable intervention planning. Automated liver segmentation is a difficult and open problem where CT has been more widely explored than MRI. MRI liver segmentation represents a challenge due to the presence of characteristic artifacts, such as partial volumes, noise and low contrast. In this paper, we present a novel method for multichannel MRI automatic liver segmentation. The proposed method consists of the minimization of a 3D active surface by means of the dual approach to the variational formulation of the underlying problem. This active surface evolves over a probability map that is based on a new compact descriptor comprising spatial and multisequence information which is further modeled by means of a liver statistical model. This proposed 3D active surface approach naturally integrates volumetric regularization in the statistical model. The advantages of the compact visual descriptor together with the proposed approach result in a fast and accurate 3D segmentation method. The method was tested on 18 healthy liver studies and results were compared to a gold standard made by expert radiologists. Comparisons with other state-of-the-art approaches are provided by means of nine well established quality metrics. The obtained results improve these methodologies, achieving a Dice Similarity Coefficient of 98.59. PMID:27282235

  1. Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis.

    PubMed

    Gibot, Laure; Galbraith, Todd; Kloos, Bryan; Das, Suvendu; Lacroix, Dan A; Auger, François A; Skobe, Mihaela

    2016-02-01

    Regeneration of lymphatic vessels is important for treatment of various disorders of lymphatic system and for restoration of lymphatic function after surgery. We have developed a method for generating a human 3D lymphatic vascular construct. In this system, human lymphatic endothelial cells, co-cultured with fibroblasts, spontaneously organized into a stable 3D lymphatic capillary network without the use of any exogenous factors. In vitro-generated lymphatic capillaries exhibited the major molecular and ultra-structural features of native, human lymphatic microvasculature: branches in the three dimensions, wide lumen, blind ends, overlapping borders, adherens and tight junctions, anchoring filaments, lack of mural cells, and poorly developed basement membrane. Furthermore, we show that fibroblast-derived VEGF-C and HGF cooperate in the formation of lymphatic vasculature by activating ERK1/2 signaling, and demonstrate distinct functions of HGF/c-Met and VEGF-C/VEGFR-3 in lymphangiogenesis. This lymphatic vascular construct is expected to facilitate studies of lymphangiogenesis in vitro and it holds promise as a strategy for regeneration of lymphatic vessels and treatment of lymphatic disorders in various conditions.

  2. Inflammation in 3D.

    PubMed

    Kobayashi, Scott D; DeLeo, Frank R

    2012-06-14

    Our view of the response to infection is limited by current methodologies, which provide minimal spatial information on the systemic inflammatory response. In this issue, Attia et al. (2012) describe a cutting-edge approach to image the inflammatory response to infection, which includes identification of host proteins in three dimensions. PMID:22704615

  3. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in

  4. 1D-3D registration for intra-operative nuclear imaging in radio-guided surgery.

    PubMed

    Vetter, Christoph; Lasser, Tobias; Okur, Asli; Navab, Nassir

    2015-02-01

    3D functional nuclear imaging modalities like SPECT or PET provide valuable information, as small structures can be marked with radioactive tracers to be localized before surgery. This positional information is valuable during surgery as well, for example when locating potentially cancerous lymph nodes in the case of breast cancer. However, the volumetric information provided by pre-operative SPECT scans loses validity quickly due to posture changes and manipulation of the soft tissue during surgery. During the intervention, the surgeon has to rely on the acoustic feedback provided by handheld gamma-detectors in order to localize the marked structures. In this paper, we present a method that allows updating the pre-operative image with a very limited number of tracked readings. A previously acquired 3D functional volume serves as prior knowledge and a limited number of new 1D detector readings is used in order to update the prior knowledge. This update is performed by a 1D-3D registration algorithm that registers the volume to the detector readings. This enables the rapid update of the visual guidance provided to the surgeon during a radio-guided surgery without slowing down the surgical workflow. We evaluate the performance of this approach using Monte-Carlo simulations, phantom experiments and patient data, resulting in a positional error of less than 8 mm which is acceptable for surgery. The 1D-3D registration is also compared to a volumetric reconstruction using the tracked detector measurements without taking prior information into account, and achieves a comparable accuracy with significantly less measurements.

  5. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  6. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  7. Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

    PubMed Central

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G.; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H.; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  8. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    PubMed

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  9. An Approach to 3d Digital Modeling of Surfaces with Poor Texture by Range Imaging Techniques. `SHAPE from Stereo' VS. `SHAPE from Silhouette' in Digitizing Jorge Oteiza's Sculptures

    NASA Astrophysics Data System (ADS)

    García Fernández, J.; Álvaro Tordesillas, A.; Barba, S.

    2015-02-01

    Despite eminent development of digital range imaging techniques, difficulties persist in the virtualization of objects with poor radiometric information, in other words, objects consisting of homogeneous colours (totally white, black, etc.), repetitive patterns, translucence, or materials with specular reflection. This is the case for much of the Jorge Oteiza's works, particularly in the sculpture collection of the Museo Fundación Jorge Oteiza (Navarra, Spain). The present study intend to analyse and asses the performance of two digital 3D-modeling methods based on imaging techniques, facing cultural heritage in singular cases, determined by radiometric characteristics as mentioned: Shape from Silhouette and Shape from Stereo. On the other hand, the text proposes the definition of a documentation workflow and presents the results of its application in the collection of sculptures created by Oteiza.

  10. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures

    NASA Astrophysics Data System (ADS)

    Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2016-05-01

    In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.

  11. Evaluating 3D registration of CT-scan images using crest lines

    NASA Astrophysics Data System (ADS)

    Ayache, Nicholas; Gueziec, Andre P.; Thirion, Jean-Philippe; Gourdon, A.; Knoplioch, Jerome

    1993-06-01

    We consider the issue of matching 3D objects extracted from medical images. We show that crest lines computed on the object surfaces correspond to meaningful anatomical features, and that they are stable with respect to rigid transformations. We present the current chain of algorithmic modules which automatically extract the major crest lines in 3D CT-Scan images, and then use differential invariants on these lines to register together the 3D images with a high precision. The extraction of the crest lines is done by computing up to third order derivatives of the image intensity function with appropriate 3D filtering of the volumetric images, and by the 'marching lines' algorithm. The recovered lines are then approximated by splines curves, to compute at each point a number of differential invariants. Matching is finally performed by a new geometric hashing method. The whole chain is now completely automatic, and provides extremely robust and accurate results, even in the presence of severe occlusions. In this paper, we briefly describe the whole chain of processes, already presented to evaluate the accuracy of the approach on a couple of CT-scan images of a skull containing external markers.

  12. A lightweight tangible 3D interface for interactive visualization of thin fiber structures.

    PubMed

    Jackson, Bret; Lau, Tung Yuen; Schroeder, David; Toussaint, Kimani C; Keefe, Daniel F

    2013-12-01

    We present a prop-based, tangible interface for 3D interactive visualization of thin fiber structures. These data are commonly found in current bioimaging datasets, for example second-harmonic generation microscopy of collagen fibers in tissue. Our approach uses commodity visualization technologies such as a depth sensing camera and low-cost 3D display. Unlike most current uses of these emerging technologies in the games and graphics communities, we employ the depth sensing camera to create a fish-tank stereoscopic virtual reality system at the scientist's desk that supports tracking of small-scale gestures with objects already found in the work space. We apply the new interface to the problem of interactive exploratory visualization of three-dimensional thin fiber data. A critical task for the visual analysis of these data is understanding patterns in fiber orientation throughout a volume.The interface enables a new, fluid style of data exploration and fiber orientation analysis by using props to provide needed passive-haptic feedback, making 3D interactions with these fiber structures more controlled. We also contribute a low-level algorithm for extracting fiber centerlines from volumetric imaging. The system was designed and evaluated with two biophotonic experts who currently use it in their lab. As compared to typical practice within their field, the new visualization system provides a more effective way to examine and understand the 3D bioimaging datasets they collect.

  13. Identification of novel histone deacetylase 1 inhibitors by combined pharmacophore modeling, 3D-QSAR analysis, in silico screening and Density Functional Theory (DFT) approaches

    NASA Astrophysics Data System (ADS)

    Choubey, Sanjay K.; Mariadasse, Richard; Rajendran, Santhosh; Jeyaraman, Jeyakanthan

    2016-12-01

    Overexpression of HDAC1, a member of Class I histone deacetylase is reported to be implicated in breast cancer. Epigenetic alteration in carcinogenesis has been the thrust of research for few decades. Increased deacetylation leads to accelerated cell proliferation, cell migration, angiogenesis and invasion. HDAC1 is pronounced as the potential drug target towards the treatment of breast cancer. In this study, the biochemical potential of 6-aminonicotinamide derivatives was rationalized. Five point pharmacophore model with one hydrogen-bond acceptor (A3), two hydrogen-bond donors (D5, D6), one ring (R12) and one hydrophobic group (H8) was developed using 6-aminonicotinamide derivatives. The pharmacophore hypothesis yielded a 3D-QSAR model with correlation-coefficient (r2 = 0.977, q2 = 0.801) and it was externally validated with (r2pred = 0.929, r2cv = 0.850 and r2m = 0.856) which reveals the statistical significance of the model having high predictive power. The model was then employed as 3D search query for virtual screening against compound libraries (Zinc, Maybridge, Enamine, Asinex, Toslab, LifeChem and Specs) in order to identify novel scaffolds which can be experimentally validated to design future drug molecule. Density Functional Theory (DFT) at B3LYP/6-31G* level was employed to explore the electronic features of the ligands involved in charge transfer reaction during receptor ligand interaction. Binding free energy (ΔGbind) calculation was done using MM/GBSA which defines the affinity of ligands towards the receptor.

  14. Cognitive MMN and P300 in mild cognitive impairment and Alzheimer's disease: A high density EEG-3D vector field tomography approach.

    PubMed

    Papadaniil, Chrysa D; Kosmidou, Vasiliki E; Tsolaki, Anthoula; Tsolaki, Magda; Kompatsiaris, Ioannis Yiannis; Hadjileontiadis, Leontios J

    2016-10-01

    Precise preclinical detection of dementia for effective treatment and stage monitoring is of great importance. Miscellaneous types of biomarkers, e.g., biochemical, genetic, neuroimaging, and physiological, have been proposed to diagnose Alzheimer's disease (AD), the usual suspect behind manifested cognitive decline, and mild cognitive impairment (MCI), a neuropathology prior to AD that does not affect cognitive functions. Event related potential (ERP) methods constitute a non-invasive, inexpensive means of analysis and have been proposed as sensitive biomarkers of cognitive impairment; besides, various ERP components are strongly linked with working memory, attention, sensory processing and motor responses. In this study, an auditory oddball task is employed, to acquire high density electroencephalograhy recordings from healthy elderly controls, MCI and AD patients. The mismatch negativity (MMN) and P300 ERP components are then extracted and their relationship with neurodegeneration is examined. Then, the neural activation at these components is reconstructed using the 3D vector field tomography (3D-VFT) inverse solution. The results reveal a decline of both ERPs amplitude, and a statistically significant prolongation of their latency as cognitive impairment advances. For the MMN, higher brain activation is usually localized in the inferior frontal and superior temporal gyri in the controls. However, in AD, parietal sites exhibit strong activity. Stronger P300 generators are mostly found in the frontal lobe for the controls, but in AD they often shift to the temporal lobe. Reduction in inferior frontal source strength and the switch of the maximum intensity area to parietal and superior temporal sites suggest that these areas, especially the former, are of particular significance when neurodegenerative disorders are investigated. The modulation of MMN and P300 can serve to produce biomarkers of dementia and its progression, and brain imaging can further contribute

  15. Registration of 3D spectral OCT volumes using 3D SIFT feature point matching

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Garvin, Mona K.; Lee, Kyungmoo; van Ginneken, Bram; Abràmoff, Michael D.; Sonka, Milan

    2009-02-01

    The recent introduction of next generation spectral OCT scanners has enabled routine acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D OCT is used in the detection and management of serious eye diseases such as glaucoma and age-related macular degeneration. For follow-up studies, image registration is a vital tool to enable more precise, quantitative comparison of disease states. This work presents a registration method based on a recently introduced extension of the 2D Scale-Invariant Feature Transform (SIFT) framework1 to 3D.2 The SIFT feature extractor locates minima and maxima in the difference of Gaussian scale space to find salient feature points. It then uses histograms of the local gradient directions around each found extremum in 3D to characterize them in a 4096 element feature vector. Matching points are found by comparing the distance between feature vectors. We apply this method to the rigid registration of optic nerve head- (ONH) and macula-centered 3D OCT scans of the same patient that have only limited overlap. Three OCT data set pairs with known deformation were used for quantitative assessment of the method's robustness and accuracy when deformations of rotation and scaling were considered. Three-dimensional registration accuracy of 2.0+/-3.3 voxels was observed. The accuracy was assessed as average voxel distance error in N=1572 matched locations. The registration method was applied to 12 3D OCT scans (200 x 200 x 1024 voxels) of 6 normal eyes imaged in vivo to demonstrate the clinical utility and robustness of the method in a real-world environment.

  16. Snapshot Hyperspectral Volumetric Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-04-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.

  17. Snapshot Hyperspectral Volumetric Microscopy.

    PubMed

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-01-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens. PMID:27103155

  18. Snapshot Hyperspectral Volumetric Microscopy

    PubMed Central

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-01-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens. PMID:27103155

  19. Combined elasticity and 3D imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Li, Yinbo; Hossack, John A.

    2005-04-01

    A method is described for repeatably assessing elasticity and 3D extent of suspected prostate cancers. Elasticity is measured by controlled water inflation of a sheath placed over a modified transrectal ultrasound transducer. The benefit of using fluid inflation is that it should be possible to make repeatable, accurate, measurements of elasticity that are of interest in the serial assessment of prostate cancer progression or remission. The second aspect of the work uses auxiliary tracking arrays placed at each end of the central imaging array that allow the transducer to be rotated while simultaneously collected 'tracking' information thus allowing the position of successive image planes to be located with approximately 11% volumetric accuracy in 3D space. In this way, we present a technique for quantifying volumetric extent of suspected cancer in addition to making measures of elastic anomalies.

  20. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  1. How 3D immersive visualization is changing medical diagnostics

    NASA Astrophysics Data System (ADS)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  2. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  3. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  4. An efficient Volumetric Arc Therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT)

    SciTech Connect

    Shen, Jin; Bender, Edward; Yaparpalvi, Ravindra; Kuo, Hsiang-Chi; Basavatia, Amar; Hong, Linda; Bodner, William; Garg, Madhur K.; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    An efficient and simple class solution is proposed for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT) planning using the Volumetric Arc Therapy (VMAT) delivery technique following the NRG Oncology protocol NRG-CC001 treatment planning guidelines. The whole-brain planning target volume (PTV) was subdivided into subplanning volumes that lie in plane and out of plane with the hippocampal-avoidance volume. To further improve VMAT treatment plans, a partial-field dual-arc technique was developed. Both the arcs were allowed to overlap on the in-plane subtarget volume, and in addition, one arc covered the superior out-of-plane sub-PTV, while the other covered the inferior out-of-plane subtarget volume. For all plans (n = 20), the NRG-CC001 protocol dose-volume criteria were met. Mean values of volumes for the hippocampus and the hippocampal-avoidance volume were 4.1 cm{sup 3} ± 1.0 cm{sup 3} and 28.52 cm{sup 3} ± 3.22 cm{sup 3}, respectively. For the PTV, the average values of D{sub 2%} and D{sub 98%} were 36.1 Gy ± 0.8 Gy and 26.2 Gy ± 0.6 Gy, respectively. The hippocampus D{sub 100%} mean value was 8.5 Gy ± 0.2 Gy and the maximum dose was 15.7 Gy ± 0.3 Gy. The corresponding plan quality indices were 0.30 ± 0.01 (homogeneity index), 0.94 ± 0.01 (target conformality), and 0.75 ± 0.02 (confirmation number). The median total monitor unit (MU) per fraction was 806 MU (interquartile range [IQR]: 792 to 818 MU) and the average beam total delivery time was 121.2 seconds (IQR: 120.6 to 121.35 seconds). All plans passed the gamma evaluation using the 5-mm, 4% criteria, with γ > 1 of not more than 9.1% data points for all fields. An efficient and simple planning class solution for HA-WBRT using VMAT has been developed that allows all protocol constraints of NRG-CC001 to be met.

  5. 3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microscopy tomography approaches.

    PubMed

    Schmid, G; Zeitvogel, F; Hao, L; Ingino, P; Floetenmeyer, M; Stierhof, Y-D; Schroeppel, B; Burkhardt, C J; Kappler, A; Obst, M

    2014-07-01

    The formation of cell-(iron)mineral aggregates as a consequence of bacterial iron oxidation is an environmentally widespread process with a number of implications for processes such as sorption and coprecipitation of contaminants and nutrients. Whereas the overall appearance of such aggregates is easily accessible using 2-D microscopy techniques, the 3-D and internal structure remain obscure. In this study, we examined the 3-D structure of cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using a combination of advanced 3-D microscopy techniques. We obtained 3-D structural and chemical information on different cellular encrustation patterns at high spatial resolution (4-200 nm, depending on the method): more specifically, (1) cells free of iron minerals, (2) periplasm filled with iron minerals, (3) spike- or platelet-shaped iron mineral structures, (4) bulky structures on the cell surface, (5) extracellular iron mineral shell structures, (6) cells with iron mineral filled cytoplasm, and (7) agglomerations of extracellular globular structures. In addition to structural information, chemical nanotomography suggests a dominant role of extracellular polymeric substances (EPS) in controlling the formation of cell-(iron)mineral aggregates. Furthermore, samples in their hydrated state showed cell-(iron)mineral aggregates in pristine conditions free of preparation (i.e., drying/dehydration) artifacts. All these results were obtained using 3-D microscopy techniques such as focused ion beam (FIB)/scanning electron microscopy (SEM) tomography, transmission electron microscopy (TEM) tomography, scanning transmission (soft) X-ray microscopy (STXM) tomography, and confocal laser scanning microscopy (CLSM). It turned out that, due to the various different contrast mechanisms of the individual approaches, and due to the required sample preparation steps, only the combination of these techniques was able to provide a

  6. Volumetric limiting spatial resolution analysis of four-dimensional digital subtraction angiography.

    PubMed

    Davis, Brian J; Oberstar, Erick; Royalty, Kevin; Schafer, Sebastian; Mistretta, Charles

    2016-01-01

    C-Arm CT three-dimensional (3-D) digital subtraction angiography (DSA) reconstructions cannot provide temporal information to radiologists. Four-dimensional (4-D) DSA provides a time series of 3-D volumes utilizing temporal dynamics in the two-dimensional (2-D) projections using a constraining image reconstruction approach. Volumetric limiting spatial resolution (VLSR) of 4-D DSA is quantified and compared to a 3-D DSA. The effects of varying 4-D DSA parameters of 2-D projection blurring kernel size and threshold of the 3-D DSA (constraining image) of an in silico phantom (ISPH) and physical phantom (PPH) were investigated. The PPH consisted of a 76-micron tungsten wire. An [Formula: see text] scan protocol acquired the projection data. VLSR was determined from MTF curves generated from each 2-D transverse slice of every (248) 4-D temporal frame. 4-D DSA results for PPH and ISPH were compared to the 3-D DSA. 3-D DSA analysis resulted in a VLSR of 2.28 and [Formula: see text] for ISPH and PPH, respectively. Kernel sizes of either [Formula: see text] or [Formula: see text] with a 3-D DSA constraining image threshold of 10% provided 4-D DSA VLSR nearest to the 3-D DSA. 4-D DSA yielded 2.21 and [Formula: see text] with a percent error of 3.1 and 1.2% for ISPH and PPH, respectively, as compared to 3-D DSA. This research indicates 4-D DSA is capable of retaining the resolution of 3-D DSA. PMID:26835500

  7. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  8. A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images.

    PubMed

    Lin, Gang; Chawla, Monica K; Olson, Kathy; Barnes, Carol A; Guzowski, John F; Bjornsson, Christopher; Shain, William; Roysam, Badrinath

    2007-09-01

    Automated segmentation and morphometry of fluorescently labeled cell nuclei in batches of 3D confocal stacks is essential for quantitative studies. Model-based segmentation algorithms are attractive due to their robustness. Previous methods incorporated a single nuclear model. This is a limitation for tissues containing multiple cell types with different nuclear features. Improved segmentation for such tissues requires algorithms that permit multiple models to be used simultaneously. This requires a tight integration of classification and segmentation algorithms. Two or more nuclear models are constructed semiautomatically from user-provided training examples. Starting with an initial over-segmentation produced by a gradient-weighted watershed algorithm, a hierarchical fragment merging tree rooted at each object is built. Linear discriminant analysis is used to classify each candidate using multiple object models. On the basis of the selected class, a Bayesian score is computed. Fragment merging decisions are made by comparing the score with that of other candidates, and the scores of constituent fragments of each candidate. The overall segmentation accuracy was 93.7% and classification accuracy was 93.5%, respectively, on a diverse collection of images drawn from five different regions of the rat brain. The multi-model method was found to achieve high accuracy on nuclear segmentation and classification by correctly resolving ambiguities in clustered regions containing heterogeneous cell populations.

  9. Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Paradis, Hedvig; Andersson, Martin; Sundén, Bengt

    2016-08-01

    A 3D model at microscale by the lattice Boltzmann method (LBM) is proposed for part of an anode of a solid oxide fuel cell (SOFC) to analyze the interaction between the transport and reaction processes and structural parameters. The equations of charge, momentum, heat and mass transport are simulated in the model. The modeling geometry is created with randomly placed spheres to resemble the part of the anode structure close to the electrolyte. The electrochemical reaction processes are captured at specific sites where spheres representing Ni and YSZ materials are present with void space. This work focuses on analyzing the effect of structural parameters such as porosity, and percentage of active reaction sites on the ionic current density and concentration of H2 using LBM. It is shown that LBM can be used to simulate an SOFC anode at microscale and evaluate the effect of structural parameters on the transport processes to improve the performance of the SOFC anode. It was found that increasing the porosity from 30 to 50 % decreased the ionic current density due to a reduction in the number of reaction sites. Also the consumption of H2 decreased with increasing porosity. When the percentage of active reaction sites was increased while the porosity was kept constant, the ionic current density increased. However, the H2 concentration was slightly reduced when the percentage of active reaction sites was increased. The gas flow tortuosity decreased with increasing porosity.

  10. Characterization of exudates released by the marine diatom Skeletonema costatum exposed to copper stress: a 3D-fluorescence spectroscopy approach.

    PubMed

    Herzi, Faouzi; Hlaili, Asma Sakka; Le Poupon, Christophe; Mabrouk, Hassine Hadj; Mounier, Stéphane

    2013-10-01

    In a laboratory study, metal contamination experiments were conducted to investigate the effects of two free copper concentrations (10(-9) and 10(-8) M) on cell growth and on dissolved organic matter exudation by a marine diatom Skeletonema costatum. Throughout incubation, the growth kinetics and exudation of extracellular molecules (i.e. dissolved organic carbon (DOC) and the fluorescent organic matter) were determined. Results revealed an inhibition of S. costatum growth when the free copper level increased (from 10(-9) to 10(-8)). Furthermore, DOC release was more significant in cultures contaminated by 10(-9) M Cu(2+) than in control, suggesting a coping mechanism developed by this species. In this study, samples were daily analysed by 3D-fluorescence and PARAFAC algorithm, in order to compare the fluorescent material produced during growth under different contaminations. PARAFAC treatment revealed two main contributions: one related to the biological activity (C1), the other linked to the marine organic matter (C2). The third component C3 was typically protein-like. This fluorophore was considered as a tryptophan-like fluorophore, whereas the C1 and the C2 components were associated to marine production such as humic matter. PMID:23868094

  11. Morphological affinities of the proximal humerus of Epipliopithecus vindobonensis and Pliopithecus antiquus: suspensory inferences based on a 3D geometric morphometrics approach.

    PubMed

    Arias-Martorell, Julia; Alba, David M; Potau, Josep M; Bello-Hellegouarch, Gaëlle; Pérez-Pérez, Alejandro

    2015-03-01

    Suspension plays a major adaptive role in shaping primate postcranial morphology, which therefore enables this positional behavior to be inferred in extinct taxa. The proximal humerus stands as a key region for inferring forelimb suspensory capabilities because its morphology can be effectively linked, from a functional viewpoint, to differences in suspension use between primate taxa. Here we provide an assessment of the suspensory capabilities of two pliopithecoids (Epipliopithecus vindobonensis and Pliopithecus antiquus) by means of a 3D geometric morphometric analysis of proximal humeral shape. The comparative sample includes proximal humeri from eight extant anthropoid genera, as well as other extinct catarrhines (the propliopithecoid Aegyptopithecus zeuxis, the stem hominoid Nyanzapithecus vancouveringorum, and an unascribed small catarrhine, GSP 28062, from the Middle Miocene of Pakistan). Body mass estimates based on allometric regressions of humeral head superoinferior diameter are also provided. Our results support some degree of forelimb suspensory behaviors for Epipliopithecus and GSP 28062. In contrast, and unlike previous qualitative assessments, our analysis shows that P. antiquus has a distinct glenohumeral morphology, much closer to that displayed by generalized arboreal quadrupeds with no evidence of suspensory adaptations (as in Aegyptopithecus and stem hominoids from Africa).

  12. First-principles modeling of 3d-transition-metal-atom adsorption on silicene: a linear-response DFT + U approach.

    PubMed

    Le, Hung M; Pham, Tan-Tien; Dinh, Thach S; Kawazoe, Yoshiyuki; Nguyen-Manh, Duc

    2016-04-01

    By employing DFT  +  U calculations with the linear response method, we investigate the interactions between various 3d transition-metal atoms (Cr, Mn, Fe, Co) and silicene. In the cases of two-dimensional (2D) FeSi2 and CoSi2, the metal atoms tend to penetrate into the silicene layer. While CoSi2 is non-magnetic, FeSi2 exhibits a total magnetic moment of 2.21 μ(B)/cell. Upon the examination of 2D MSi6, a trend in anti-ferromagnetic (AFM) favorability in the z-direction is observed according to our DFT  +  U calculations. In the ferromagnetic (FM) states (less stable), each primary unit cell of CrSi6, MnSi6, and FeSi6 possesses different levels of total magnetization (4.01, 5.18, and 2.00 μ B/cell, respectively). The absolute magnetization given by AFM MSi6 structures varies in the range of 5.33-5.84 μ(B)/cell. A direct band gap in AFM MnSi6 (0.2 eV) is predicted, while the metastable FM FeSi6 structure has a wider band gap (0.85 eV). Interestingly, there are superexchange interactions between metal atoms in the MSi6 systems, which result in the AFM alignments. PMID:26940978

  13. The rendering context for stereoscopic 3D web

    NASA Astrophysics Data System (ADS)

    Chen, Qinshui; Wang, Wenmin; Wang, Ronggang

    2014-03-01

    3D technologies on the Web has been studied for many years, but they are basically monoscopic 3D. With the stereoscopic technology gradually maturing, we are researching to integrate the binocular 3D technology into the Web, creating a stereoscopic 3D browser that will provide users with a brand new experience of human-computer interaction. In this paper, we propose a novel approach to apply stereoscopy technologies to the CSS3 3D Transforms. Under our model, each element can create or participate in a stereoscopic 3D rendering context, in which 3D Transforms such as scaling, translation and rotation, can be applied and be perceived in a truly 3D space. We first discuss the underlying principles of stereoscopy. After that we discuss how these principles can be applied to the Web. A stereoscopic 3D browser with backward compatibility is also created for demonstration purposes. We take advantage of the open-source WebKit project, integrating the 3D display ability into the rendering engine of the web browser. For each 3D web page, our 3D browser will create two slightly different images, each representing the left-eye view and right-eye view, both to be combined on the 3D display to generate the illusion of depth. And as the result turns out, elements can be manipulated in a truly 3D space.

  14. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  15. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  16. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    SciTech Connect

    Wong, S.T.C.

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  17. JPEG2000 Part 10: volumetric imaging

    NASA Astrophysics Data System (ADS)

    Schelkens, Peter; Brislawn, Christopher M.; Barbarien, Joeri; Munteanu, Adrian; Cornelis, Jan P.

    2003-11-01

    Recently, the JPEG2000 committee (ISO/IEC JTC1/SC29/WG1) decided to start up a new standardization activity to support the encoding of volumetric and floating-point data sets: Part 10 - Coding Volumetric and Floating-point Data (JP3D). This future standard will support functionalities like resolution and quality scalability and region-of-interest coding, while exploiting the entropy in the additional third dimension to improve the rate-distortion performance. In this paper, we give an overview of the markets and application areas targeted by JP3D, the imposed requirements and the considered algorithms with a specific focus on the realization of the region-of-interest functionality.

  18. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  19. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  20. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  1. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  2. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  3. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  4. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  5. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  6. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  7. 3D dynamic roadmapping for abdominal catheterizations.

    PubMed

    Bender, Frederik; Groher, Martin; Khamene, Ali; Wein, Wolfgang; Heibel, Tim Hauke; Navab, Nassir

    2008-01-01

    Despite rapid advances in interventional imaging, the navigation of a guide wire through abdominal vasculature remains, not only for novice radiologists, a difficult task. Since this navigation is mostly based on 2D fluoroscopic image sequences from one view, the process is slowed down significantly due to missing depth information and patient motion. We propose a novel approach for 3D dynamic roadmapping in deformable regions by predicting the location of the guide wire tip in a 3D vessel model from the tip's 2D location, respiratory motion analysis, and view geometry. In a first step, the method compensates for the apparent respiratory motion in 2D space before backprojecting the 2D guide wire tip into three dimensional space, using a given projection matrix. To countervail the error connected to the projection parameters and the motion compensation, as well as the ambiguity caused by vessel deformation, we establish a statistical framework, which computes a reliable estimate of the guide wire tip location within the 3D vessel model. With this 2D-to-3D transfer, the navigation can be performed from arbitrary viewing angles, disconnected from the static perspective view of the fluoroscopic sequence. Tests on a realistic breathing phantom and on synthetic data with a known ground truth clearly reveal the superiority of our approach compared to naive methods for 3D roadmapping. The concepts and information presented in this paper are based on research and are not commercially available. PMID:18982662

  8. 3D bioprinting for engineering complex tissues.

    PubMed

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  9. 3D bioprinting for engineering complex tissues.

    PubMed

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. PMID:26724184

  10. Molecular modeling studies on series of Btk inhibitors using docking, structure-based 3D-QSAR and molecular dynamics simulation: a combined approach.

    PubMed

    Balasubramanian, Pavithra K; Balupuri, Anand; Cho, Seung Joo

    2016-03-01

    Bruton tyrosine kinase (Btk) is a non-receptor tyrosine kinase. It is a crucial component in BCR pathway and expressed only in hematopoietic cells except T cells and Natural killer cells. BTK is a promising target because of its involvement in signaling pathways and B cell diseases such as autoimmune disorders and lymphoma. In this work, a combined molecular modeling study of molecular docking, 3D-QSAR and molecular dynamic (MD) simulation were performed on a series of 2,5-diaminopyrimidine compounds as inhibitors targeting Btk kinase to understand the interaction and key residues involved in the inhibition. A structure based CoMFA (q (2) = 0.675, NOC = 5, r (2) = 0.961) and COMSIA (q (2) = 0.704, NOC = 6, r (2) = 0.962) models were developed from the conformation obtained by docking. The developed models were subjected to various validation techniques such as leave-five-out, external test set, bootstrapping, progressive sampling and rm (2) metrics and found to have a good predictive ability in both internal and external validation. Our docking results showed the important residues that interacts in the active site residues in inhibition of Btk kinase. Furthermore, molecular dynamics simulation was employed to study the stability of the docked conformation and to investigate the binding interactions in detail. The MD simulation analyses identified several important hydrogen bonds with Btk, including the gatekeeper residue Thr474 and Met477 at the hinge region. Hydrogen bond with active site residues Leu408 and Arg525 were also recognized. A good correlation between the MD results, docking studies and the contour map analysis are observed. This indicates that the developed models are reliable. Our results from this study can provide insights in the designing and development of more potent Btk kinase inhibitors.

  11. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  12. 3D volume MR temperature mapping for HIFU heating trajectory comparisons

    NASA Astrophysics Data System (ADS)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L.

    2012-10-01

    Many areas of MR-guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution that cover a large 3-D volume. This paper describes an approach to achieve these goals that is suitable for research applications where retrospective reconstruction of the temperature maps is acceptable. The method acquires undersampled data from a modified 3-D segmented EPI sequence and creates images using a temporally constrained reconstruction algorithm. The 3-D images can be zero-filled to arbitrarily small voxel spacing in all directions and then converted into temperature maps using the standard proton resonance frequency (PRF) shift technique. During HIFU heating experiments, the proposed method was used to obtain temperature maps with 1.5×1.5×3.0 mm resolution, 288×162×78 mm field of view, and 1.7 second temporal resolution. The approach is validated to demonstrate that it can accurately capture the spatial characteristics and time dynamics of rapidly changing HIFU-induced temperature distributions. An example application is presented where the method is used to analyze and compare different HIFU volumetric heating trajectories.

  13. RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.

    PubMed

    Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D

    2003-01-01

    We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220

  14. Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)

    NASA Astrophysics Data System (ADS)

    Falahatpisheh, Ahmad; Kheradvar, Arash

    2015-11-01

    Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.

  15. Recent Advances in Visualizing 3D Flow with LIC

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1998-01-01

    Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.

  16. Real time 3D and heterogeneous data fusion

    SciTech Connect

    Little, C.Q.; Small, D.E.

    1998-03-01

    This project visualizes characterization data in a 3D setting, in real time. Real time in this sense means collecting the data and presenting it before it delays the user, and processing faster than the acquisition systems so no bottlenecks occur. The goals have been to build a volumetric viewer to display 3D data, demonstrate projecting other data, such as images, onto the 3D data, and display both the 3D and projected images as fast as the data became available. The authors have examined several ways to display 3D surface data. The most effective was generating polygonal surface meshes. They have created surface maps form a continuous stream of 3D range data, fused image data onto the geometry, and displayed the data with a standard 3D rendering package. In parallel with this, they have developed a method to project real-time images onto the surface created. A key component is mapping the data on the correct surfaces, which requires a-priori positional information along with accurate calibration of the camera and lens system.

  17. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  18. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  19. Exploring Volumetrically Indexed Cups

    ERIC Educational Resources Information Center

    Jones, Dustin L.

    2011-01-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup "n" is equal to "n" times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to…

  20. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci.