The small data solutions of general 3-D quasilinear wave equations. II
NASA Astrophysics Data System (ADS)
Ding, Bingbing; Witt, Ingo; Yin, Huicheng
2016-07-01
This paper is a continuation of the work in [8], where the authors established the global existence of smooth small data solutions to the general 3-D quasilinear wave equation ∑ i , j = 0 3 gij (u , ∂ u) ∂ij2 u = 0 when the weak null condition holds. In the present paper, we show that the smooth small data solutions of equation ∑ i , j = 0 3 gij (u , ∂ u) ∂ij2 u = 0 will blow up in finite time when the weak null condition does not hold and a generic nondegenerate condition on the initial data is satisfied, moreover, a precise blowup time is completely determined. Therefore, collecting the main results in this paper and [8], we have given a basically complete study on the blowup or global existence of small data solutions to the 3-D quasilinear wave equation ∑ i , j = 0 3 gij (u , ∂ u) ∂ij2 u = 0.
NASA Astrophysics Data System (ADS)
Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.
2015-07-01
A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.
3D Elastic Seismic Wave Propagation Code
1998-09-23
E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.
Finite-difference solutions of the 3-D eikonal equation
Fei, Tong; Fehler, M.C.; Hildebrand, S.T.
1995-12-31
Prestack Kirchhoff depth migration requires the computation of traveltimes from surface source and receiver locations to subsurface image locations. In 3-D problems, computational efficiency becomes important. Finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference method for computing the first arrival traveltime by solving the eikonal equation has been developed in Cartesian coordinates. The method, which is unconditionally stable and computationally efficient, can handle instabilities due to caustics and provide information about head waves. The comparison of finite-difference solutions of the acoustic wave equation with the traveltime solutions from the eikonal equation in various structure models demonstrate that the method developed here can provide correct first arrival traveltime information even in areas of complex velocity structure.
Numerical simulation of 3D breaking waves
NASA Astrophysics Data System (ADS)
Fraunie, Philippe; Golay, Frederic
2015-04-01
Numerical methods dealing with two phase flows basically can be classified in two ways : the "interface tracking" methods when the two phases are resolved separately including boundary conditions fixed at the interface and the "interface capturing" methods when a single flow is considered with variable density. Physical and numerical properties of the two approaches are discussed, based on some numerical experiments performed concerning 3D breaking waves. Acknowledgements : This research was supported by the Modtercom program of Region PACA.
Two-equation turbulence modeling for 3-D hypersonic flows
NASA Technical Reports Server (NTRS)
Bardina, J. E.; Coakley, T. J.; Marvin, J. G.
1992-01-01
An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.
Kaltenbacher, Barbara; Kaltenbacher, Manfred; Sim, Imbo
2013-01-01
We consider the second order wave equation in an unbounded domain and propose an advanced perfectly matched layer (PML) technique for its efficient and reliable simulation. In doing so, we concentrate on the time domain case and use the finite-element (FE) method for the space discretization. Our un-split-PML formulation requires four auxiliary variables within the PML region in three space dimensions. For a reduced version (rPML), we present a long time stability proof based on an energy analysis. The numerical case studies and an application example demonstrate the good performance and long time stability of our formulation for treating open domain problems. PMID:23888085
Kaltenbacher, Barbara; Kaltenbacher, Manfred; Sim, Imbo
2013-02-15
We consider the second order wave equation in an unbounded domain and propose an advanced perfectly matched layer (PML) technique for its efficient and reliable simulation. In doing so, we concentrate on the time domain case and use the finite-element (FE) method for the space discretization. Our un-split-PML formulation requires four auxiliary variables within the PML region in three space dimensions. For a reduced version (rPML), we present a long time stability proof based on an energy analysis. The numerical case studies and an application example demonstrate the good performance and long time stability of our formulation for treating open domain problems. PMID:23888085
NASA Astrophysics Data System (ADS)
Kaltenbacher, Barbara; Kaltenbacher, Manfred; Sim, Imbo
2013-02-01
We consider the second order wave equation in an unbounded domain and propose an advanced perfectly matched layer (PML) technique for its efficient and reliable simulation. In doing so, we concentrate on the time domain case and use the finite-element (FE) method for the space discretization. Our un-split-PML formulation requires four auxiliary variables within the PML region in three space dimensions. For a reduced version (rPML), we present a long time stability proof based on an energy analysis. The numerical case studies and an application example demonstrate the good performance and long time stability of our formulation for treating open domain problems.
Derivation of new 3D discrete ordinate equations
Ahrens, C. D.
2012-07-01
The Sn equations have been the workhorse of deterministic radiation transport calculations for many years. Here we derive two new angular discretizations of the 3D transport equation. The first set of equations, derived using Lagrange interpolation and collocation, retains the classical Sn structure, with the main difference being how the scattering source is calculated. Because of the formal similarity with the classical S n equations, it should be possible to modify existing computer codes to take advantage of the new formulation. In addition, the new S n-like equations correctly capture delta function scattering. The second set of equations, derived using a Galerkin technique, does not retain the classical Sn structure because the streaming term is not diagonal. However, these equations can be cast into a form similar to existing methods developed to reduce ray effects. Numerical investigation of both sets of equations is under way. (authors)
A note on singularities of the 3-D Euler equation
NASA Technical Reports Server (NTRS)
Tanveer, S.
1994-01-01
In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.
Simulation of 3D Global Wave Propagation Through Geodynamic Models
NASA Astrophysics Data System (ADS)
Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.
2005-12-01
This project aims at a better understanding of the forward problem of global 3D wave propagation. We use the spectral element program "SPECFEM3D" (Komatitsch and Tromp, 2002a,b) with varying input models of seismic velocities derived from mantle convection simulations (Bunge et al., 2002). The purpose of this approach is to obtain seismic velocity models independently from seismological studies. In this way one can test the effects of varying parameters of the mantle convection models on the seismic wave field. In order to obtain the seismic velocities from the temperature field of the geodynamical simulations we follow a mineral physics approach. Assuming a certain mantle composition (e.g. pyrolite with CMASF composition) we compute the stable phases for each depth (i.e. pressure) and temperature by system Gibbs free energy minimization. Elastic moduli and density are calculated from the equations of state of the stable mineral phases. For this we use a mineral physics database derived from calorimetric experiments (enthalphy and entropy of formation, heat capacity) and EOS parameters.
3D Ultrasonic Wave Simulations for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.
2011-01-01
Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.
A parallel algorithm for solving the 3d Schroedinger equation
Strickland, Michael; Yager-Elorriaga, David
2010-08-20
We describe a parallel algorithm for solving the time-independent 3d Schroedinger equation using the finite difference time domain (FDTD) method. We introduce an optimized parallelization scheme that reduces communication overhead between computational nodes. We demonstrate that the compute time, t, scales inversely with the number of computational nodes as t {proportional_to} (N{sub nodes}){sup -0.95} {sup {+-} 0.04}. This makes it possible to solve the 3d Schroedinger equation on extremely large spatial lattices using a small computing cluster. In addition, we present a new method for precisely determining the energy eigenvalues and wavefunctions of quantum states based on a symmetry constraint on the FDTD initial condition. Finally, we discuss the usage of multi-resolution techniques in order to speed up convergence on extremely large lattices.
Numerical simulation of vortex breakdown via 3-D Euler equations
NASA Astrophysics Data System (ADS)
Le, T. H.; Mege, P.; Morchoisne, Y.
1990-06-01
The long term goal is the modeling of vortex breakdown that occurs in some aerodynamic configurations at high angle of attack, (i.e., fighters with highly swept delta wings or missiles). A numerical simulation was made based on solving the 3-D Euler equations for an usteady incompressible flow. Preliminary results were obtained using a pressure-velocity formulation with periodic boundary conditions, the Euler equations being discretized by 2nd order finite difference schemes. The continuation to this work by implementing more realistic boundary conditions and 4th order finite difference discretization schemes are presented.
3D Guided Wave Motion Analysis on Laminated Composites
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.
Potentially singular solutions of the 3D axisymmetric Euler equations
Luo, Guo; Hou, Thomas Y.
2014-01-01
The question of finite-time blowup of the 3D incompressible Euler equations is numerically investigated in a periodic cylinder with solid boundaries. Using rotational symmetry, the equations are discretized in the (2D) meridian plane on an adaptive (moving) mesh and is integrated in time with adaptively chosen time steps. The vorticity is observed to develop a ring-singularity on the solid boundary with a growth proportional to ∼(ts − t)−2.46, where ts ∼ 0.0035056 is the estimated singularity time. A local analysis also suggests the existence of a self-similar blowup. The simulations stop at τ2 = 0.003505 at which time the vorticity amplifies by more than (3 × 108)-fold and the maximum mesh resolution exceeds (3 × 1012)2. The vorticity vector is observed to maintain four significant digits throughout the computations. PMID:25157172
Modeling tree crown dynamics with 3D partial differential equations.
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications. PMID:25101095
Cari, C. Suparmi, A.
2014-09-30
Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.
Wave-CAIPI for Highly Accelerated 3D Imaging
Bilgic, Berkin; Gagoski, Borjan A.; Cauley, Stephen F.; Fan, Audrey P.; Polimeni, Jonathan R.; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin
2014-01-01
Purpose To introduce the Wave-CAIPI (Controlled Aliasing in Parallel Imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. Methods The Wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line, while modifying the 3D phase encoding strategy to incur inter-slice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high quality image reconstruction with Wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and Quantitative Susceptibility Mapping (QSM). Results Wave-CAIPI enables full-brain gradient echo (GRE) acquisition at 1 mm isotropic voxel size and R=3×3 acceleration with maximum g-factors of 1.08 at 3T, and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies 2D-CAIPI and Bunched Phase Encoding, Wave-CAIPI yields up to 2-fold reduction in maximum g-factor for 9-fold acceleration at both field strengths. Conclusion Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. PMID:24986223
Equations on knot polynomials and 3d/5d duality
Mironov, A.; Morozov, A.
2012-09-24
We briefly review the current situation with various relations between knot/braid polynomials (Chern-Simons correlation functions), ordinary and extended, considered as functions of the representation and of the knot topology. These include linear skein relations, quadratic Plucker relations, as well as 'differential' and (quantum) A-polynomial structures. We pay a special attention to identity between the A-polynomial equations for knots and Baxter equations for quantum relativistic integrable systems, related through Seiberg-Witten theory to 5d super-Yang-Mills models and through the AGT relation to the q-Virasoro algebra. This identity is an important ingredient of emerging a 3d- 5d generalization of the AGT relation. The shape of the Baxter equation (including the values of coefficients) depend on the choice of the knot/braid. Thus, like the case of KP integrability, where (some, so far torus) knots parameterize particular points of the Universal Grassmannian, in this relation they parameterize particular points in the moduli space of many-body integrable systems of relativistic type.
3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.
Orescanin, Marko; Wang, Yue; Insana, Michael
2011-02-01
The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity. PMID:21342824
Quasi-regular solutions to a class of 3D degenerating hyperbolic equations
NASA Astrophysics Data System (ADS)
Hristov, T. D.; Popivanov, N. I.; Schneider, M.
2012-11-01
In the fifties M. Protter stated new three-dimensional (3D) boundary value problems (BVP) for mixed type equations of first kind. For hyperbolic-elliptic equations they are multidimensional analogue of the classical two-dimensional (2D) Morawetz-Guderley transonic problem. Up to now, in this case, not a single example of nontrivial solution to the new problem, neither a general existence result is known. The difficulties appear even for BVP in the hyperbolic part of the domain, that were formulated by Protter for weakly hyperbolic equations. In that case the Protter problems are 3D analogues of the plane Darboux or Cauchy-Goursat problems. It is interesting that in contrast to the planar problems the new 3D problems are strongly ill-posed. Some of the Protter problems for degenerating hyperbolic equation without lower order terms or even for the usual wave equation have infinite-dimensional kernels. Therefore there are infinitely many orthogonality conditions for classical solvability of their adjiont problems. So it is interesting to obtain results for uniqueness of solutions adding first order terms in the equation. In the present paper we do this and find conditions for coefficients under which we prove uniqueness of quasi-regular solutions to the Protter problems.
Shao, Yan-Lin Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.
Instability and Wave Propagation in Structured 3D Composites
NASA Astrophysics Data System (ADS)
Kaynia, Narges; Fang, Nicholas X.; Boyce, Mary C.
2014-03-01
Many structured composites found in nature possess undulating and wrinkled interfacial layers that regulate mechanical, chemical, acoustic, adhesive, thermal, electrical and optical functions of the material. This research focused on the complex instability and wrinkling pattern arising in 3D structured composites and the effect of the buckling pattern on the overall structural response. The 3D structured composites consisted of stiffer plates supported by soft matrix on both sides. Compression beyond the critical strain led to complex buckling patterns in the initially straight plates. The motivation of our work is to elaborate the formation of a system of prescribed periodic scatterers (metamaterials) due to buckling, and their effect to interfere wave propagation through the metamaterial structures. Such metamaterials made from elastomers enable large reversible deformation and, as a result, significant changes of the wave propagation properties. We developed analytical and finite element models to capture various aspects of the instability mechanism. Mechanical experiments were designed to further explore the modeling results. The ability to actively alter the 3D composite structure can enable on-demand tunability of many different functions, such as active control of wave propagation to create band-gaps and waveguides.
Xiong, Z.; Tripp, A.C.
1994-12-31
This paper presents an integral equation algorithm for 3D EM modeling at high frequencies for applications in engineering an environmental studies. The integral equation method remains the same for low and high frequencies, but the dominant roles of the displacements currents complicate both numerical treatments and interpretations. With singularity extraction technique they successively extended the application of the Hankel filtering technique to the computation of Hankel integrals occurring in high frequency EM modeling. Time domain results are calculated from frequency domain results via Fourier transforms. While frequency domain data are not obvious for interpretations, time domain data show wave-like pictures that resemble seismograms. Both 1D and 3D numerical results show clearly the layer interfaces.
Protrusive waves guide 3D cell migration along nanofibers
Guetta-Terrier, Charlotte; Monzo, Pascale; Zhu, Jie; Long, Hongyan; Venkatraman, Lakshmi; Zhou, Yue; Wang, PeiPei; Chew, Sing Yian; Mogilner, Alexander
2015-01-01
In vivo, cells migrate on complex three-dimensional (3D) fibrous matrices, which has made investigation of the key molecular and physical mechanisms that drive cell migration difficult. Using reductionist approaches based on 3D electrospun fibers, we report for various cell types that single-cell migration along fibronectin-coated nanofibers is associated with lateral actin-based waves. These cyclical waves have a fin-like shape and propagate up to several hundred micrometers from the cell body, extending the leading edge and promoting highly persistent directional movement. Cells generate these waves through balanced activation of the Rac1/N-WASP/Arp2/3 and Rho/formins pathways. The waves originate from one major adhesion site at leading end of the cell body, which is linked through actomyosin contractility to another site at the back of the cell, allowing force generation, matrix deformation and cell translocation. By combining experimental and modeling data, we demonstrate that cell migration in a fibrous environment requires the formation and propagation of dynamic, actin based fin-like protrusions. PMID:26553933
3D modeling of ultrasonic wave interaction with disbonds and weak bonds
NASA Astrophysics Data System (ADS)
Leckey, C.; Hinders, M.
2012-05-01
Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.
3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds
NASA Technical Reports Server (NTRS)
Leckey, C.; Hinders, M.
2011-01-01
Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.
Analytical and numerical aspects in solving the controlled 3D Gross-Pitaevskii equation
Fedele, R.; Jovanovic, D.; De Nicola, S.; Eliasson, B.; Shukla, P. K.
2009-11-10
The results of recently developed investigations, that have been carried out within the framework of the controlling potential method (CPM), are reviewed. This method allows one to decompose a three dimensional (3D) Gross-Pitaevskii equation (GPE) into the pair of coupled Schroedinger-type equations. Under suitable mathematical conditions, the solutions of the 3D controlled GPE can be constructed from the solutions of a 2D linear Schroedinger equation (the transverse component of the GPE) coupled with a 1D nonlinear Schroedinger equation (the longitudinal component of the GPE). Such decomposition allows one to cast the solutions in the form of the product of the solutions of the transverse and the longitudinal components of the GPE. The coupling between these two equations is the functional of both the transverse and the longitudinal profiles. It is shown that the CPM can be used to obtain a new class of three-dimensional solitary waves solutions of the GPE, which governs the dynamics of Bose-Einstein condensates. By imposing an external controlling potential, the desired time-dependent shape of the localized BECs is obtained. The stability of the exact solutions was checked with direct simulations of the time -dependent, three-dimensional GPE. Our simulations show that the localized condensates are stable with respect to perturbed initial conditions.
A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations
NASA Astrophysics Data System (ADS)
Georges, Gabriel; Breil, Jérôme; Maire, Pierre-Henri
2016-01-01
Solving the gas dynamics equations under the Lagrangian formalism enables to simulate complex flows with strong shock waves. This formulation is well suited to the simulation of multi-material compressible fluid flows such as those encountered in the domain of High Energy Density Physics (HEDP). These types of flows are characterized by complex 3D structures such as hydrodynamic instabilities (Richtmyer-Meshkov, Rayleigh-Taylor, etc.). Recently, the 3D extension of different Lagrangian schemes has been proposed and appears to be challenging. More precisely, the definition of the cell geometry in the 3D space through the treatment of its non-planar faces and the limiting of a reconstructed field in 3D in the case of a second-order extension are of great interest. This paper proposes two new methods to solve these problems. A systematic and symmetric geometrical decomposition of polyhedral cells is presented. This method enables to define a discrete divergence operator leading to the respect of the Geometric Conservation Law (GCL). Moreover, a multi-dimensional minmod limiter is proposed. This new limiter constructs, from nodal gradients, a cell gradient which enables to ensure the monotonicity of the numerical solution even in presence of strong discontinuity. These new ingredients are employed into a cell-centered Lagrangian scheme. Robustness and accuracy are assessed against various representative test cases.
Numerical investigation of wave attenuation by vegetation using a 3D RANS model
NASA Astrophysics Data System (ADS)
Marsooli, Reza; Wu, Weiming
2014-12-01
Vegetation has been recognized as an important natural shoreline protection against storm surges and waves. Understanding of wave-vegetation interaction is essential for assessing the ability of vegetation patches, such as wetlands, to mitigate storm damages. In this study the wave attenuation by vegetation is investigated numerically using a 3-D model which solves the Reynolds-Averaged Navier-Stokes equations (RANS) by means of a finite-volume method based on collocated hexahedron mesh. A mixing length model is used for turbulence closure of the RANS equations. The water surface boundary is tracked using the Volume-of-Fluid (VOF) method with the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) to solve the VOF advection equation. The presence of vegetation is taken into account by adding the vegetation drag and inertia forces to the momentum equations. The model is validated by several laboratory experiments of short wave propagation through vegetation over flat and sloping beds. The comparisons show good agreement between the measured data and calculated results, but the swaying motion of flexible vegetation which is neglected in this study can influence the accuracy of the wave height predictions. The model is then applied to one of the validation tests with different vegetation properties, revealing that the wave height attenuation by vegetation depends not only on the wave conditions, but also the vegetation characteristics such as vegetation height and density.
Subduction zone guided waves: 3D modelling and attenuation effects
NASA Astrophysics Data System (ADS)
Garth, T.; Rietbrock, A.
2013-12-01
Waveform modelling is an important tool for understanding complex seismic structures such as subduction zone waveguides. These structures are often simplified to 2D structures for modelling purposes to reduce computational costs. In the case of subduction zone waveguide affects, 2D models have shown that dispersed arrivals are caused by a low velocity waveguide, inferred to be subducted oceanic crust and/or hydrated outer rise normal faults. However, due to the 2D modelling limitations the inferred seismic properties such as velocity contrast and waveguide thickness are still debated. Here we test these limitations with full 3D waveform modelling. For waveguide effects to be observable the waveform must be accurately modelled to relatively high frequencies (> 2 Hz). This requires a small grid spacing due to the high seismic velocities present in subduction zones. A large area must be modelled as well due to the long propagation distances (400 - 600 km) of waves interacting with subduction zone waveguides. The combination of the large model area and small grid spacing required means that these simulations require a large amount of computational resources, only available at high performance computational centres like the UK National super computer HECTOR (used in this study). To minimize the cost of modelling for such a large area, the width of the model area perpendicular to the subduction trench (the y-direction) is made as small as possible. This reduces the overall volume of the 3D model domain. Therefore the wave field is simulated in a model ';corridor' of the subduction zone velocity structure. This introduces new potential sources of error particularly from grazing wave side reflections in the y-direction. Various dampening methods are explored to reduce these grazing side reflections, including perfectly matched layers (PML) and more traditional exponential dampening layers. Defining a corridor model allows waveguide affects to be modelled up to at least 2
3D WKB solution for fast magnetoacoustic wave behaviour around an X-line
NASA Astrophysics Data System (ADS)
McLaughlin, J. A.; Botha, G. J. J.; Régnier, S.; Spoors, D. L.
2016-06-01
Context. We study the propagation of a fast magnetoacoustic wave in a 3D magnetic field created from two magnetic dipoles. The magnetic topology contains an X-line. Aims: We aim to contribute to the overall understanding of MHD wave propagation within inhomogeneous media, specifically around X-lines. Methods: We investigate the linearised, 3D MHD equations under the assumptions of ideal and cold plasma. We utilise the WKB approximation and Charpit's method during our investigation. Results: It is found that the behaviour of the fast magnetoacoustic wave is entirely dictated by the local, inhomogeneous, equilibrium Alfvén speed profile. All parts of the wave experience refraction during propagation, where the magnitude of the refraction effect depends on the location of an individual wave element within the inhomogeneous magnetic field. The X-line, along which the Alfvén speed is identically zero, acts as a focus for the refraction effect. There are two main types of wave behaviour: part of the wave is either trapped by the X-line or escapes the system, and there exists a critical starting region around the X-line that divides these two types of behaviour. For the set-up investigated, it is found that 15.5% of the fast wave energy is trapped by the X-line. Conclusions: We conclude that linear, β = 0 fast magnetoacoustic waves can accumulate along X-lines and thus these will be specific locations of fast wave energy deposition and thus preferential heating. The work here highlights the importance of understanding the magnetic topology of a system. We also demonstrate how the 3D WKB technique described in this paper can be applied to other magnetic configurations.
ADVANCED WAVE-EQUATION MIGRATION
L. HUANG; M. C. FEHLER
2000-12-01
Wave-equation migration methods can more accurately account for complex wave phenomena than ray-tracing-based Kirchhoff methods that are based on the high-frequency asymptotic approximation of waves. With steadily increasing speed of massively parallel computers, wave-equation migration methods are becoming more and more feasible and attractive for imaging complex 3D structures. We present an overview of several efficient and accurate wave-equation-based migration methods that we have recently developed. The methods are implemented in the frequency-space and frequency-wavenumber domains and hence they are called dual-domain methods. In the methods, we make use of different approximate solutions of the scalar-wave equation in heterogeneous media to recursively downward continue wavefields. The approximations used within each extrapolation interval include the Born, quasi-Born, and Rytov approximations. In one of our dual-domain methods, we use an optimized expansion of the square-root operator in the one-way wave equation to minimize the phase error for a given model. This leads to a globally optimized Fourier finite-difference method that is a hybrid split-step Fourier and finite-difference scheme. Migration examples demonstrate that our dual-domain migration methods provide more accurate images than those obtained using the split-step Fourier scheme. The Born-based, quasi-Born-based, and Rytov-based methods are suitable for imaging complex structures whose lateral variations are moderate, such as the Marmousi model. For this model, the computational cost of the Born-based method is almost the same as the split-step Fourier scheme, while other methods takes approximately 15-50% more computational time. The globally optimized Fourier finite-difference method significantly improves the accuracy of the split-step Fourier method for imaging structures having strong lateral velocity variations, such as the SEG/EAGE salt model, at an approximately 30% greater
An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations
NASA Astrophysics Data System (ADS)
Helzel, Christiane; Rossmanith, James A.; Taetz, Bertram
2011-05-01
Numerical methods for solving the ideal magnetohydrodynamic (MHD) equations in more than one space dimension must either confront the challenge of controlling errors in the discrete divergence of the magnetic field, or else be faced with nonlinear numerical instabilities. One approach for controlling the discrete divergence is through a so-called constrained transport method, which is based on first predicting a magnetic field through a standard finite volume solver, and then correcting this field through the appropriate use of a magnetic vector potential. In this work we develop a constrained transport method for the 3D ideal MHD equations that is based on a high-resolution wave propagation scheme. Our proposed scheme is the 3D extension of the 2D scheme developed by Rossmanith [J.A. Rossmanith, An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SIAM J. Sci. Comput. 28 (2006) 1766], and is based on the high-resolution wave propagation method of Langseth and LeVeque [J.O. Langseth, R.J. LeVeque, A wave propagation method for threedimensional hyperbolic conservation laws, J. Comput. Phys. 165 (2000) 126]. In particular, in our extension we take great care to maintain the three most important properties of the 2D scheme: (1) all quantities, including all components of the magnetic field and magnetic potential, are treated as cell-centered; (2) we develop a high-resolution wave propagation scheme for evolving the magnetic potential; and (3) we develop a wave limiting approach that is applied during the vector potential evolution, which controls unphysical oscillations in the magnetic field. One of the key numerical difficulties that is novel to 3D is that the transport equation that must be solved for the magnetic vector potential is only weakly hyperbolic. In presenting our numerical algorithm we describe how to numerically handle this problem of weak hyperbolicity, as well as how to choose an appropriate gauge condition. The
Upscaling small heterogeneities for seismic wave propagation in 3D complex media
NASA Astrophysics Data System (ADS)
Cupillard, P.; Capdeville, Y.
2012-04-01
Seismic waves propagating in the Earth are affected by different sizes of heterogeneities. When modelling these waves (using numerical methods such as the SEM), taking into account heterogeneities that are much smaller than the minimum wavelength is a challenge because meshing small heterogeneities often requires important efforts and leads to high numerical costs. In this work, we present a technique which allows to upscale the small heterogeneities that can lie in an elastic medium. This technique yields a smooth effective medium and effective equations. We describe its implementation in the 3D case and we show relevant examples.
Gravitational Wave Signals from 2D and 3D Core Collapse Supernova Explosions
NASA Astrophysics Data System (ADS)
Yakunin, Konstantin; Mezzacappa, Anthony; Marronetti, Pedro; Bruenn, Stephen; Hix, W. Raphael; Lentz, Eric J.; Messer, O. E. Bronson; Harris, J. Austin; Endeve, Eirik; Blondin, John
2016-03-01
We study two- and three-dimensional (2D and 3D) core-collapse supernovae (CCSN) using our first-principles CCSN simulations performed with the neutrino hydrodynamics code CHIMERA. The following physics is included: Newtonian hydrodynamics with a nuclear equation of state capable of describing matter in both NSE and non-NSE, MGFLD neutrino transport with realistic neutrino interactions, an effective GR gravitational potential, and a nuclear reaction network. Both our 2D and 3D models achieve explosion, which in turn enables us to determine their complete gravitational wave signals. In this talk, we present them, and we analyze the similarities and differences between the 2D and 3D signals.
Exponential Mixing of the 3D Stochastic Navier-Stokes Equations Driven by Mildly Degenerate Noises
Albeverio, Sergio; Debussche, Arnaud; Xu Lihu
2012-10-15
We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes being forced) via a Kolmogorov equation approach.
Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.
Driben, Rodislav; Meier, Torsten
2014-10-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse. PMID:25360922
On the Implementation of 3D Galerkin Boundary Integral Equations
Nintcheu Fata, Sylvain; Gray, Leonard J
2010-01-01
In this article, a reverse contribution technique is proposed to accelerate the construction of the dense influence matrices associated with a Galerkin approximation of singular and hypersingular boundary integral equations of mixed-type in potential theory. In addition, a general-purpose sparse preconditioner for boundary element methods has also been developed to successfully deal with ill-conditioned linear systems arising from the discretization of mixed boundary-value problems on non-smooth surfaces. The proposed preconditioner, which originates from the precorrected-FFT method, is sparse, easy to generate and apply in a Krylov subspace iterative solution of discretized boundary integral equations. Moreover, an approximate inverse of the preconditioner is implicitly built by employing an incomplete LU factorization. Numerical experiments involving mixed boundary-value problems for the Laplace equation are included to illustrate the performance and validity of the proposed techniques.
A dispersion minimizing scheme for the 3-D Helmholtz equation based on ray theory
NASA Astrophysics Data System (ADS)
Stolk, Christiaan C.
2016-06-01
We develop a new dispersion minimizing compact finite difference scheme for the Helmholtz equation in 2 and 3 dimensions. The scheme is based on a newly developed ray theory for difference equations. A discrete Helmholtz operator and a discrete operator to be applied to the source and the wavefields are constructed. Their coefficients are piecewise polynomial functions of hk, chosen such that phase and amplitude errors are minimal. The phase errors of the scheme are very small, approximately as small as those of the 2-D quasi-stabilized FEM method and substantially smaller than those of alternatives in 3-D, assuming the same number of gridpoints per wavelength is used. In numerical experiments, accurate solutions are obtained in constant and smoothly varying media using meshes with only five to six points per wavelength and wave propagation over hundreds of wavelengths. When used as a coarse level discretization in a multigrid method the scheme can even be used with down to three points per wavelength. Tests on 3-D examples with up to 108 degrees of freedom show that with a recently developed hybrid solver, the use of coarser meshes can lead to corresponding savings in computation time, resulting in good simulation times compared to the literature.
Study of nonlinear 3-D evolution of kinetic Alfvén wave and fluctuation spectra
NASA Astrophysics Data System (ADS)
Sharma, Prachi; Yadav, Nitin; Sharma, R. P.
2015-11-01
Waves and instabilities play a very crucial role in astrophysical plasmas e.g. solar wind, Geospace etc. The main objective of current study is to investigate the importance of nonlinear processes associated with kinetic Alfvén waves (KAWs) in order to understand the physical mechanism behind the magnetopause turbulence. Numerical simulation of the coupled equations guiding the dynamics of three dimensionally propagating kinetic Alfvén wave (KAW) and slow magnetosonic wave has been performed for intermediate beta plasma (i.e. me/mi ≪ β < 1, where β is thermal to magnetic pressure ratio) applicable to the magnetopause. A simplified semi-analytical model based on paraxial approach has also been developed. We have examined the field localization and associated power spectrum of 3-D kinetic Alfvén wave for this nonlinear interaction. Governing dynamical equations of KAW and slow magnetosonic wave get coupled when the ponderomotive force arising due to pump KAW is taken into account while studying the slow magnetosonic wave dynamics. The numerical prediction of power law scaling is just consistent with the observation of THEMIS spacecraft in the magnetopause.
Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code
Minkoff, S.E.
1999-12-01
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code
MINKOFF,SUSAN E.
1999-12-09
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
2D/1D approximations to the 3D neutron transport equation. I: Theory
Kelley, B. W.; Larsen, E. W.
2013-07-01
A new class of '2D/1D' approximations is proposed for the 3D linear Boltzmann equation. These approximate equations preserve the exact transport physics in the radial directions x and y and diffusion physics in the axial direction z. Thus, the 2D/1D equations are more accurate approximations of the 3D Boltzmann equation than the conventional 3D diffusion equation. The 2D/1D equations can be systematically discretized, to yield accurate simulation methods for 3D reactor core problems. The resulting solutions will be more accurate than 3D diffusion solutions, and less expensive to generate than standard 3D transport solutions. In this paper, we (i) show that the simplest 2D/1D equation has certain desirable properties, (ii) systematically discretize this equation, and (iii) derive a stable iteration scheme for solving the discrete system of equations. In a companion paper [1], we give numerical results that confirm the theoretical predictions of accuracy and iterative stability. (authors)
ATHENA 3D: A finite element code for ultrasonic wave propagation
NASA Astrophysics Data System (ADS)
Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.
2014-04-01
The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.
3D simulation of seismic wave propagation around a tunnel using the spectral element method
NASA Astrophysics Data System (ADS)
Lambrecht, L.; Friederich, W.
2010-05-01
We model seismic wave propagation in the environment of a tunnel for later application to reconnaissance. Elastic wave propagation can be simulated by different numerical techniques such as finite differences and pseudospectral methods. Their disadvantage is the lack of accuracy on free surfaces, numerical dispersion and inflexibility of the mesh. Here we use the software package SPECFEM3D_SESAME in an svn development version, which is based on the spectral element method (SEM) and can handle complex mesh geometries. A weak form of the elastic wave equation leads to a linear system of equations with a diagonal mass matrix, where the free surface boundary of the tunnel can be treated under realistic conditions and can be effectively implemented in parallel. We have designed a 3D external mesh including a tunnel and realistic features such as layers and holes to simulate elastic wave propagation in the zone around the tunnel. The source is acting at the tunnel surface so that we excite Rayleigh waves which propagate to the front face of the tunnel. A conversion takes place and a high amplitude S-wave is radiated in the direction of the tunnel axis. Reflections from perturbations in front of the tunnel can be measured by receivers implemented on the tunnel face. For a shallow tunnel the land surface has high influence on the wave propagation. By implementing additional receivers at this surface we intent to improve the prediction. It shows that the SEM is very capable to handle the complex geometry of the model and especially incorporates the free surfaces of the model.
Numerical homogenization for seismic wave propagation in 3D geological media
NASA Astrophysics Data System (ADS)
Cupillard, P.; Capdeville, Y.; Botella, A.
2014-12-01
Despite the important increase of the computational power in the last decades, simulating the seismic wave propagation through realistic geological models is still a challenge. By realistic models we here mean 3D media in which a broad variety (in terms of amplitude and extent) of heterogeneities lies, including discontinuities with complex geometry such as faulted and folded horizons, intrusive geological contacts and fault systems. To perform accurate numerical simulations, these discontinuities require complicated meshes which usually contain extremely small elements, yielding large, sometimes prohibitive, computation costs. Fortunately, the recent development of the non-periodic homogenization technique now enables to overcome this problem by computing smooth equivalent models for which a coarse mesh is sufficient to get an accurate wavefield. In this work, we present an efficient implementation of the technique which now allows for the homogenization of large 3D geological models. This implementation relies on a tetrahedral finite-element solution of the elasto-static equation behind the homogenization problem. Because this equation is time-independent, solving it is numerically cheaper than solving the wave equation, but it nevertheless requires some care because of the large size of the stiffness matrix arising from the fine mesh of realistic geological structures. A domain decomposition is therefore adopted. In our strategy, the obtained sub-domains overlap but they are independent so the solution within each of them can be computed either in series or in parallel. In addition, well-balanced loads, efficient search algorithms and multithreading are implemented to speed up the computation. The resulting code enables the homogenization of 3D elastic media in a time that is neglectable with respect to the simulation time of the wave propagation within. This is illustrated through a sub-surface model of the Furfooz karstic region, Belgium.
3D frequency-domain finite-difference modeling of acoustic wave propagation
NASA Astrophysics Data System (ADS)
Operto, S.; Virieux, J.
2006-12-01
We present a 3D frequency-domain finite-difference method for acoustic wave propagation modeling. This method is developed as a tool to perform 3D frequency-domain full-waveform inversion of wide-angle seismic data. For wide-angle data, frequency-domain full-waveform inversion can be applied only to few discrete frequencies to develop reliable velocity model. Frequency-domain finite-difference (FD) modeling of wave propagation requires resolution of a huge sparse system of linear equations. If this system can be solved with a direct method, solutions for multiple sources can be computed efficiently once the underlying matrix has been factorized. The drawback of the direct method is the memory requirement resulting from the fill-in of the matrix during factorization. We assess in this study whether representative problems can be addressed in 3D geometry with such approach. We start from the velocity-stress formulation of the 3D acoustic wave equation. The spatial derivatives are discretized with second-order accurate staggered-grid stencil on different coordinate systems such that the axis span over as many directions as possible. Once the discrete equations were developed on each coordinate system, the particle velocity fields are eliminated from the first-order hyperbolic system (following the so-called parsimonious staggered-grid method) leading to second-order elliptic wave equations in pressure. The second-order wave equations discretized on each coordinate system are combined linearly to mitigate the numerical anisotropy. Secondly, grid dispersion is minimized by replacing the mass term at the collocation point by its weighted averaging over all the grid points of the stencil. Use of second-order accurate staggered- grid stencil allows to reduce the bandwidth of the matrix to be factorized. The final stencil incorporates 27 points. Absorbing conditions are PML. The system is solved using the parallel direct solver MUMPS developed for distributed
A support-operator method for viscoelastic wave modelling in 3-D heterogeneous media
NASA Astrophysics Data System (ADS)
Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard
2008-01-01
We apply the method of support operators (SOM) to solve the 3-D, viscoelastic equations of motion for use in earthquake simulations. SOM is a generalized finite-difference method that can utilize meshes of arbitrary structure and incorporate irregular geometry. Our implementation uses a 3-D, logically rectangular, hexahedral mesh. Calculations are second-order in space and time. A correction term is employed for suppression of spurious zero-energy modes (hourglass oscillations). We develop a free surface boundary condition, and an absorbing boundary condition using the method of perfectly matched layers (PML). Numerical tests using a layered material model in a highly deformed mesh show good agreement with the frequency-wavenumber method, for resolutions greater than 10 nodes per wavelength. We also test a vertically incident P wave on a semi-circular canyon, for which results match boundary integral solutions at resolutions greater that 20 nodes per wavelength. We also demonstrate excellent parallel scalability of our code.
On the transition towards slow manifold in shallow-water and 3D Euler equations in a rotating frame
NASA Technical Reports Server (NTRS)
Mahalov, A.
1994-01-01
The long-time, asymptotic state of rotating homogeneous shallow-water equations is investigated. Our analysis is based on long-time averaged rotating shallow-water equations describing interactions of large-scale, horizontal, two-dimensional motions with surface inertial-gravity waves field for a shallow, uniformly rotating fluid layer. These equations are obtained in two steps: first by introducing a Poincare/Kelvin linear propagator directly into classical shallow-water equations, then by averaging. The averaged equations describe interaction of wave fields with large-scale motions on time scales long compared to the time scale 1/f(sub o) introduced by rotation (f(sub o)/2-angular velocity of background rotation). The present analysis is similar to the one presented by Waleffe (1991) for 3D Euler equations in a rotating frame. However, since three-wave interactions in rotating shallow-water equations are forbidden, the final equations describing the asymptotic state are simplified considerably. Special emphasis is given to a new conservation law found in the asymptotic state and decoupling of the dynamics of the divergence free part of the velocity field. The possible rising of a decoupled dynamics in the asymptotic state is also investigated for homogeneous turbulence subjected to a background rotation. In our analysis we use long-time expansion, where the velocity field is decomposed into the 'slow manifold' part (the manifold which is unaffected by the linear 'rapid' effects of rotation or the inertial waves) and a formal 3D disturbance. We derive the physical space version of the long-time averaged equations and consider an invariant, basis-free derivation. This formulation can be used to generalize Waleffe's (1991) helical decomposition to viscous inhomogeneous flows (e.g. problems in cylindrical geometry with no-slip boundary conditions on the cylinder surface and homogeneous in the vertical direction).
2D/1D approximations to the 3D neutron transport equation. II: Numerical comparisons
Kelley, B. W.; Collins, B.; Larsen, E. W.
2013-07-01
In a companion paper [1], (i) several new '2D/1D equations' are introduced as accurate approximations to the 3D Boltzmann transport equation, (ii) the simplest of these approximate equations is systematically discretized, and (iii) a theoretically stable iteration scheme is developed to solve the discrete equations. In this paper, numerical results are presented that confirm the theoretical predictions made in [1]. (authors)
Acoustic wave-equation-based earthquake location
NASA Astrophysics Data System (ADS)
Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry
2016-04-01
We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.
On the Dynamic Programming Approach for the 3D Navier-Stokes Equations
Manca, Luigi
2008-06-15
The dynamic programming approach for the control of a 3D flow governed by the stochastic Navier-Stokes equations for incompressible fluid in a bounded domain is studied. By a compactness argument, existence of solutions for the associated Hamilton-Jacobi-Bellman equation is proved. Finally, existence of an optimal control through the feedback formula and of an optimal state is discussed.
Joint inversion of 3D crustal structure with ambient noise and earthquake body wave travel time
NASA Astrophysics Data System (ADS)
Li, Z.; Ni, S.; Chong, J.; Wang, X.
2012-12-01
Surface wave tomography based on the noise correlation function of seismic ambient noise has been widely used in studies of crustal and mantle structure . However, the periods of surface wave dispersions in the ambient noise tomography are typically less than 40 s, which limits its resolution on the lower crust. Travel times of earthquake body waves, such as Sg and SmS, could provide additional constraints to the crustal structure, especially to the lower crust due to the ray paths of SmS traveling through the lower crust twice. Here, we proposed a joint inversion method for 3D crustal structure with ambient noise and earthquake body wave travel time data, with the goal of providing better constraints and resolutions on the whole crust. We constructed the linear equations for joint inversion of crustal S velocity structure with the surface wave dispersion and body wave travel time data, and solved the equations with LSQR algorithm. Different weighting and damping factors, together with smoothing constraints, are adopted for surface wave dispersion and body wave travel time data to fit both dataset simultaneously. Synthetics experiments showed that the joint inversion could resolve the crust structure better than sole tomography of ambient noise or body wave travel time. We conducted the joint inversion around the Yangtze block in the eastern China. Rayleigh wave dispersions are extracted from the seismic ambient noise tomography by Zheng et al (2011) in this area. The body waves (e.g., Sg, SmS, Sn) are coherent to be identified and their travel times are measured with accuracy from high quality waveforms of some recent local earthquakes in this area. In order to minimize the travel time uncertainties, the focal depth and epicenter of these local earthquakes were resolved by depth phases and temporary aftershock observations. The result from joint inversion suggests that the crustal velocity structure, especially the lower crust, was well improved, which not only
Characteristics of Oceanic Waves Caused by Landslides: Insights from 3D-Hydrocode Modeling
NASA Astrophysics Data System (ADS)
Elbeshausen, D.; Wünnemann, K.; Weiss, R.
2008-12-01
In an experimental framework, the generation of tsunami waves can be considered as a two-dimensional or three-dimensional problem by finding the respective geometry of the experimental set up. In nature, of course, it is a fully three-dimensional problem. The generation of tsunami waves caused by landslides (submarine and subaerial) must be approached as a dynamical problem. The understanding of the slide body's dynamics plays a key role in understanding the generated waves. Numerical calculations are a standard tool in tsunami science as the propagation of long waves can be tackled with depth-averaged equations. These classical models have often been used for modeling the propagation and run up of those tsunami waves caused by earthquakes. Tsunamis generated during slide motion are different. They are shorter and have larger amplitudes. It could be demonstrated in respective laboratory experiments and two dimensional numerical studies that in the initial phase the behavior of the waves is very complex, resulting in wave breaking and plunging. We conducted hydrocode simulations to model the generation of tsunami by slide in two dimensions. Results could show the complexity of the initial wave evolution as well as the development of the slide body itself. As an extension to these two-dimensional simulations, we now consider the three-dimensional problem and reveal some differences to the two-dimensional results. For this purpose we are using iSALE-3D, a multi- material, multi-rheology hydrocode capable of studying landslide processes in both two and three dimensions. iSALE-3D has been originally developed to study shock waves and high pressure scenarios like meteorite impacts or explosions and has been successfully validated against theoretical and experimental results as well as other numerical codes. Previous studies revealed differences in the formation and propagation of oceanic waves caused by meteorite impacts at different angles of incidence. Hence, for
A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation
Riyanti, C.D. . E-mail: C.D.Riyanti@tudelft.nl; Kononov, A.; Erlangga, Y.A.; Vuik, C.; Oosterlee, C.W.; Plessix, R.-E.; Mulder, W.A.
2007-05-20
We investigate the parallel performance of an iterative solver for 3D heterogeneous Helmholtz problems related to applications in seismic wave propagation. For large 3D problems, the computation is no longer feasible on a single processor, and the memory requirements increase rapidly. Therefore, parallelization of the solver is needed. We employ a complex shifted-Laplace preconditioner combined with the Bi-CGSTAB iterative method and use a multigrid method to approximate the inverse of the resulting preconditioning operator. A 3D multigrid method with 2D semi-coarsening is employed. We show numerical results for large problems arising in geophysical applications.
Mach-wave coherence in 3D media with random heterogeneities
NASA Astrophysics Data System (ADS)
Vyas, Jagdish C.; Mai, P. Martin; Galis, Martin; Dunham, Eric M.; Imperatori, Walter
2016-04-01
We investigate Mach-waves coherence for complex super-shear ruptures embedded in 3D random media that lead to seismic scattering. We simulate Mach-wave using kinematic earthquake sources that include fault-regions over which the rupture propagates at super-shear speed. The local slip rate is modeled with the regularized Yoffe function. The medium heterogeneities are characterized by Von Karman correlation function. We consider various realizations of 3D random media from combinations of different values of correlation length (0.5 km, 2 km, 5 km), standard deviation (5%, 10%, 15%) and Hurst exponent (0.2). Simulations in a homogeneous medium serve as a reference case. The ground-motion simulations (maximum resolved frequency of 5 Hz) are conducted by solving the elasto-dynamic equations of motions using a generalized finite-difference method, assuming a vertical strike-slip fault. The seismic wavefield is sampled at numerous locations within the Mach-cone region to study the properties and evolution of the Mach-waves in scattering media. We find that the medium scattering from random heterogeneities significantly diminishes the coherence of Mach-wave in terms of both amplitude and frequencies. We observe that Mach-waves are considerably scattered at distances RJB > 20 km (and beyond) for random media with standard deviation 10%. The scattering efficiency of the medium for small Hurst exponents (H <= 0.2) is mainly controlled by the standard deviation of the velocity heterogeneities, rather than their correlation length, as both theoretical considerations and numerical experiments indicate. Based on our simulations, we propose that local super-shear ruptures may be more common in nature then reported, but are very difficult to detect due to the strong seismic scattering. We suggest that if an earthquake is recorded within 10-15 km fault perpendicular distance and has high PGA, then inversion should be carried out by allowing rupture speed variations from sub
3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking
NASA Astrophysics Data System (ADS)
Zhang, Lin; Wu, Tso-Ren
2016-04-01
In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most
Solitons and nonlinear wave equations
Dodd, Roger K.; Eilbeck, J. Chris; Gibbon, John D.; Morris, Hedley C.
1982-01-01
A discussion of the theory and applications of classical solitons is presented with a brief treatment of quantum mechanical effects which occur in particle physics and quantum field theory. The subjects addressed include: solitary waves and solitons, scattering transforms, the Schroedinger equation and the Korteweg-de Vries equation, and the inverse method for the isospectral Schroedinger equation and the general solution of the solvable nonlinear equations. Also considered are: isolation of the Korteweg-de Vries equation in some physical examples, the Zakharov-Shabat/AKNS inverse method, kinks and the sine-Gordon equation, the nonlinear Schroedinger equation and wave resonance interactions, amplitude equations in unstable systems, and numerical studies of solitons. 45 references.
Optimization of one-way wave equations.
Lee, M.W.; Suh, S.Y.
1985-01-01
The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors
Simulation of 3D Seismic Wave Propagation with Volcano Topography
NASA Astrophysics Data System (ADS)
Ripperger, J.; Igel, H.; Wassermann, J.
2001-12-01
We investigate the possibilities of using three-dimensional finite difference (FD) methods for numerical simulation of the seismic wave field at active volcanoes. We put special emphasis on the implementation of the boundary conditions for free surface topography. We compare two different approaches to solve the free surface boundary conditions. The algorithms are implemented on parallel hardware and have been tested for correctness and stability. We apply them to smooth artificial topographies and to the real topography of Mount Merapi, Indonesia. We conclude, that grid stretching type methods (e.g. Hestholm & Ruud, 1994) are not well suited for realistic volcano topography as they tend to become unstable for large topographic gradients. The representation of topography through staircase shaped grids (Ohminato & Chouet, 1997) results in stable calculations, while demanding very fine gridding. The simulations show the effects of a three-dimensional surface topography on elastic wave propagation. Ground motion at the surface is severely affected by topography. If neglected, this may jeopardize attempts to determine source location by analyzing particle motion. Numerical studies like this can help to understand wave propagation phenomena observed on field recordings in volcano seismology. Future studies will aim at separating the wave effects of internal scattering, topography and sources (tremors, tectonic events, pyroclastic flows).
Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.
2000-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.
NASA Astrophysics Data System (ADS)
Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey
2016-04-01
Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT
Global regular solutions for the 3D Kawahara equation posed on unbounded domains
NASA Astrophysics Data System (ADS)
Larkin, Nikolai A.; Simões, Márcio Hiran
2016-08-01
An initial boundary value problem for the 3D Kawahara equation posed on a channel-type domain was considered. The existence and uniqueness results for global regular solutions as well as exponential decay of small solutions in the H 2-norm were established.
Global regular solutions for the 3D Zakharov-Kuznetsov equation posed on unbounded domains
NASA Astrophysics Data System (ADS)
Larkin, N. A.
2015-09-01
An initial-boundary value problem for the 3D Zakharov-Kuznetsov equation posed on unbounded domains is considered. Existence and uniqueness of a global regular solution as well as exponential decay of the H2-norm for small initial data are proven.
A research of 3D gravity inversion based on the recovery of sparse underdetermined linear equations
NASA Astrophysics Data System (ADS)
Zhaohai, M.
2014-12-01
Because of the properties of gravity data, it is made difficult to solve the problem of multiple solutions. There are two main types of 3D gravity inversion methods：One of two methods is based on the improvement of the instability of the sensitive matrix, solving the problem of multiple solutions and instability in 3D gravity inversion. Another is to join weight function into the 3D gravity inversion iteration. Through constant iteration, it can renewal density values and weight function to achieve the purpose to solve the multiple solutions and instability of the 3D gravity data inversion. Thanks to the sparse nature of the solutions of 3D gravity data inversions, we can transform it into a sparse equation. Then, through solving the sparse equations, we can get perfect 3D gravity inversion results. The main principle is based on zero norm of sparse matrix solution of the equation. Zero norm is mainly to solve the nonzero solution of the sparse matrix. However, the method of this article adopted is same as the principle of zero norm. But the method is the opposite of zero norm to obtain zero value solution. Through the form of a Gaussian fitting solution of the zero norm, we can find the solution by using regularization principle. Moreover, this method has been proved that it had a certain resistance to random noise in the mathematics, and it was more suitable than zero norm for the solution of the geophysical data. 3D gravity which is adopted in this article can well identify abnormal body density distribution characteristics, and it can also recognize the space position of abnormal distribution very well. We can take advantage of the density of the upper and lower limit penalty function to make each rectangular residual density within a reasonable range. Finally, this 3D gravity inversion is applied to a variety of combination model test, such as a single straight three-dimensional model, the adjacent straight three-dimensional model and Y three
3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy
NASA Astrophysics Data System (ADS)
Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji
2010-06-01
Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.
Ott, C D; Dimmelmeier, H; Marek, A; Janka, H-T; Hawke, I; Zink, B; Schnetter, E
2007-06-29
We present 2D and 3D simulations of the collapse of rotating stellar iron cores in general relativity employing a nuclear equation of state and an approximate treatment of deleptonization. We compare fully general relativistic and conformally flat evolutions and find that the latter treatment is sufficiently accurate for the core-collapse supernova problem. We focus on gravitational wave (GW) emission from rotating collapse, bounce, and early postbounce phases. Our results indicate that the GW signature of these phases is much more generic than previously estimated. We also track the growth of a nonaxisymmetric instability in one model, leading to strong narrow-band GW emission. PMID:17678077
Upper Semicontinuity of Pullback Attractors for the 3D Nonautonomous Benjamin-Bona-Mahony Equations
Yang, Xinguang; Wang, Xiaosong; Zhang, Lingrui
2014-01-01
We will study the upper semicontinuity of pullback attractors for the 3D nonautonomouss Benjamin-Bona-Mahony equations with external force perturbation terms. Under some regular assumptions, we can prove the pullback attractors 𝒜 ε(t) of equation ut-Δut-νΔu+∇·F→(u)=ɛg(x,t), x ∈ Ω, converge to the global attractor 𝒜 of the above-mentioned equation with ε = 0 for any t ∈ ℝ. PMID:24790585
Recasting the 3D Wigner-Liouville equation with spectral components of the force
NASA Astrophysics Data System (ADS)
van de Put, Maarten; Sorée, Bart; Magnus, Wim
The phasespace approach to many-body quantum mechanics, by means of the Wigner-function is interesting through its connection to classical mechanics. Time-evolution of any statistical distribution of states under influence of a (time-dependent) Hamiltonian is obtained through use of the Wigner-Liouville equation. The standard form of this equation contains two 3D integrals, over the entire phase space. As a result, this form emphasizes the non-locality of the interaction of the potential, but lacks simplicity and ease of understanding. Furthermore, the integrals make numerical solution of the Wigner-Liouville equation challenging. We present an alternative form to the Wigner-Liouville equation based on the force rather than the potential, in alignment with the classical Boltzmann equation. Decomposition of the force in its spectral components yields a simpler form of the Wigner-Liouville equation. This new form has only one 3D integral over the spectral force components, and is local in position, simplifying both interpretation and numerical implementation. Because of its use of the force, it straightforwardly reduces to the Boltzmann equation under classical conditions.
Equation-of-State Test Suite for the DYNA3D Code
Benjamin, Russell D.
2015-11-05
This document describes the creation and implementation of a test suite for the Equationof- State models in the DYNA3D code. A customized input deck has been created for each model, as well as a script that extracts the relevant data from the high-speed edit file created by DYNA3D. Each equation-of-state model is broken apart and individual elements of the model are tested, as well as testing the entire model. The input deck for each model is described and the results of the tests are discussed. The intent of this work is to add this test suite to the validation suite presently used for DYNA3D.
Characterizing the propagation of gravity waves in 3D nonlinear simulations of solar-like stars
NASA Astrophysics Data System (ADS)
Alvan, L.; Strugarek, A.; Brun, A. S.; Mathis, S.; Garcia, R. A.
2015-09-01
Context. The revolution of helio- and asteroseismology provides access to the detailed properties of stellar interiors by studying the star's oscillation modes. Among them, gravity (g) modes are formed by constructive interferences between progressive internal gravity waves (IGWs), propagating in stellar radiative zones. Our new 3D nonlinear simulations of the interior of a solar-like star allows us to study the excitation, propagation, and dissipation of these waves. Aims: The aim of this article is to clarify our understanding of the behavior of IGWs in a 3D radiative zone and to provide a clear overview of their properties. Methods: We use a method of frequency filtering that reveals the path of individual gravity waves of different frequencies in the radiative zone. Results: We are able to identify the region of propagation of different waves in 2D and 3D, to compare them to the linear raytracing theory and to distinguish between propagative and standing waves (g-modes). We also show that the energy carried by waves is distributed in different planes in the sphere, depending on their azimuthal wave number. Conclusions: We are able to isolate individual IGWs from a complex spectrum and to study their propagation in space and time. In particular, we highlight in this paper the necessity of studying the propagation of waves in 3D spherical geometry, since the distribution of their energy is not equipartitioned in the sphere.
NuSol - Numerical solver for the 3D stationary nuclear Schrödinger equation
NASA Astrophysics Data System (ADS)
Graen, Timo; Grubmüller, Helmut
2016-01-01
The classification of short hydrogen bonds depends on several factors including the shape and energy spacing between the nuclear eigenstates of the hydrogen. Here, we describe the NuSol program in which three classes of algorithms were implemented to solve the 1D, 2D and 3D time independent nuclear Schrödinger equation. The Schrödinger equation was solved using the finite differences based Numerov's method which was extended to higher dimensions, the more accurate pseudo-spectral Chebyshev collocation method and the sinc discrete variable representation by Colbert and Miller. NuSol can be applied to solve the Schrödinger equation for arbitrary analytical or numerical potentials with focus on nuclei bound by the potential of their molecular environment. We validated the methods against literature values for the 2D Henon-Heiles potential, the 3D linearly coupled sextic oscillators and applied them to study hydrogen bonding in the malonaldehyde derivate 4-cyano-2,2,6,6-tetramethyl-3,5-heptanedione. With NuSol, the extent of nuclear delocalization in a given molecular potential can directly be calculated without relying on linear reaction coordinates in 3D molecular space.
Propagation of Electromagnetic Waves in 3D Opal-based Magnetophotonic Crystals
NASA Astrophysics Data System (ADS)
Pardavi-Horvath, Martha; Makeeva, Galina S.; Golovanov, Oleg A.; Rinkevich, Anatolii B.
2013-03-01
Opals, a class of self-organized 3D nanostructures, are typical representatives of photonic bandgap structures. The voids inside of the opal structure of close packed SiO2 spheres can be infiltrated by a magnetic material, creating magnetically tunable magnetophotonic crystals with interesting and potentially useful properties at GHz and THz frequencies. The propagation of electromagnetic waves at microwave frequencies was investigated numerically in SiO2 opal based magnetic nanostructures, using rigorous mathematical models to solve Maxwell's equations complemented by the Landau-Lifshitz equation with electrodynamic boundary conditions. The numerical approach is based on Galerkin's projection method using the decomposition algorithm on autonomous blocks with Floquet channels. The opal structure consists of SiO2 nanospheres, with inter-sphere voids infiltrated with nanoparticles of Ni-Zn ferrites. Both the opal matrix and the ferrite are assumed to be lossy. A model, taking into account the real structure of the ferrite particles in the opal's voids was developed to simulate the measured FMR lineshape of the ferrite infiltrated opal. The numerical technique shows an excellent agreement when applied to model recent experimental data on similar ferrite opals.
Some Properties of the M3D-C1 Form of the 3D Magnetohydrodynamics Equations
J. Breslau, N. Ferraro, S. Jardin
2009-07-10
We introduce a set of scalar variables and projection operators for the vector momentum and magnetic field evolution equations that have several unique and desirable properties, making them a preferred system for solving the magnetohydrodynamics equations in a torus with a strong toroidal magnetic field. We derive a "weak form" of these equations that explicitly conserves energy and is suitable for a Galerkin finite element formulation provided the basis elements have C1 continuity. Systems of reduced equations are discussed, along with their energy conservation properties. An implicit time advance is presented that adds diagonally dominant self-adjoint energy terms to the mass matrix to obtain numerical stability.
Benchmarks of 3D Laplace Equation Solvers in a Cubic Configuration for Streamer Simulation
NASA Astrophysics Data System (ADS)
Joseph-Marie, Plewa; Olivier, Ducasse; Philippe, Dessante; Carolyn, Jacobs; Olivier, Eichwald; Nicolas, Renon; Mohammed, Yousfi
2016-05-01
The aim of this paper is to test a developed SOR R&B method using the Chebyshev accelerator algorithm to solve the Laplace equation in a cubic 3D configuration. Comparisons are made in terms of precision and computing time with other elliptic equation solvers proposed in the open source LIS library. The first results, obtained by using a single core on a HPC, show that the developed SOR R&B method is efficient when the spectral radius needed for the Chebyshev acceleration is carefully pre-estimated. Preliminary results obtained with a parallelized code using the MPI library are also discussed when the calculation is distributed over one hundred cores.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
Solution of the Skyrme HF + BCS equation on a 3D mesh
NASA Astrophysics Data System (ADS)
Bonche, P.; Flocard, H.; Heenen, P. H.
2005-09-01
Over the years, the ev8 code has been a very useful tool for the study of nuclear mean-field theory. Its main characteristic is that it solves the Hartree-Fock plus BCS equations for Skyrme type functionals via a discretization of the individual wave-functions on a three-dimensional Cartesian mesh. This allows maximal flexibility in the determination of the nuclear shape by the variational process. For instance, the same mesh can be used to describe the oblate deformed, spherical, prolate deformed, superdeformed and fission configurations of a given nucleus. The quadrupole constraining operator yielding the deformation energy curve covering all these configurations is included in ev8. This version of the code is restricted to even-even nuclei. Program summaryTitle of program:ev8 Catalogue identifier:ADWA Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWA Licensing provisions: none Computers on which the program has been tested: HP-RX4640, Compaq-Digital Alpha GS140, has run on several other platforms Computer for which the program is designed and others on which is has been tested:Unix, Linux Operating systems or monitors under which the program has been tested:FORTRAN-90 Programming language used:depends on problem; example given requires 60 MB Memory required to execute with typical data:yes No. of lines in distributed program, including test data, etc.:11 524 No. of bytes in distributed program, including test data, etc.:89 949 Distribution format:tar.gzip file Nature of the physical problem:By means of the Hartree-Fock plus BCS method using Skyrme type functionals, ev8 allows a study of the evolution of the binding energy of even-even nuclei for various shapes determined by the most general quadrupole constraint. Solution method:The program expands the single-particle wave-functions on a 3D Cartesian mesh. The nonlinear mean-field equations are solved by the
A novel numerical flux for the 3D Euler equations with general equation of state
NASA Astrophysics Data System (ADS)
Toro, Eleuterio F.; Castro, Cristóbal E.; Lee, Bok Jik
2015-12-01
Here we extend the flux vector splitting approach recently proposed in E.F. Toro and M.E. Vázquez-Cendón (2012) [42]. The scheme was originally presented for the 1D Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both space and time through application of the semi-discrete ADER methodology on general meshes. The resulting methods are systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems. Formal high accuracy is assessed through convergence rates studies for schemes of up to 4th order of accuracy in both space and time on unstructured meshes.
Seismic waves in 3-D: from mantle asymmetries to reliable seismic hazard assessment
NASA Astrophysics Data System (ADS)
Panza, Giuliano F.; Romanelli, Fabio
2014-10-01
A global cross-section of the Earth parallel to the tectonic equator (TE) path, the great circle representing the equator of net lithosphere rotation, shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins. The low-velocity layer in the upper asthenosphere, at a depth range of 120 to 200 km, is assumed to represent the decoupling between the lithosphere and the underlying mantle. Along the TE-perturbed (TE-pert) path, a ubiquitous LVZ, about 1,000-km-wide and 100-km-thick, occurs in the asthenosphere. The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth. Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis (NDSHA), using realistic and duly validated synthetic time series, and generating a data bank of several thousands of seismograms that account for source, propagation, and site effects. Accordingly, with basic self-organized criticality concepts, NDSHA permits the integration of available information provided by the most updated seismological, geological, geophysical, and geotechnical databases for the site of interest, as well as advanced physical modeling techniques, to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures. Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory, and a case-study is discussed. In order to enable a reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered, resulting in a new, very efficient, analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.
A fast rebinning algorithm for 3D positron emission tomography using John's equation
NASA Astrophysics Data System (ADS)
Defrise, Michel; Liu, Xuan
1999-08-01
Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.
Wave-equation Based Earthquake Location
NASA Astrophysics Data System (ADS)
Tong, P.; Yang, D.; Yang, X.; Chen, J.; Harris, J.
2014-12-01
Precisely locating earthquakes is fundamentally important for studying earthquake physics, fault orientations and Earth's deformation. In industry, accurately determining hypocenters of microseismic events triggered in the course of a hydraulic fracturing treatment can help improve the production of oil and gas from unconventional reservoirs. We develop a novel earthquake location method based on solving full wave equations to accurately locate earthquakes (including microseismic earthquakes) in complex and heterogeneous structures. Traveltime residuals or differential traveltime measurements with the waveform cross-correlation technique are iteratively inverted to obtain the locations of earthquakes. The inversion process involves the computation of the Fréchet derivative with respect to the source (earthquake) location via the interaction between a forward wavefield emitting from the source to the receiver and an adjoint wavefield reversely propagating from the receiver to the source. When there is a source perturbation, the Fréchet derivative not only measures the influence of source location but also the effects of heterogeneity, anisotropy and attenuation of the subsurface structure on the arrival of seismic wave at the receiver. This is essential for the accuracy of earthquake location in complex media. In addition, to reduce the computational cost, we can first assume that seismic wave only propagates in a vertical plane passing through the source and the receiver. The forward wavefield, adjoint wavefield and Fréchet derivative with respect to the source location are all computed in a 2D vertical plane. By transferring the Fréchet derivative along the horizontal direction of the 2D plane into the ones along Latitude and Longitude coordinates or local 3D Cartesian coordinates, the source location can be updated in a 3D geometry. The earthquake location obtained with this combined 2D-3D approach can then be used as the initial location for a true 3D wave-equation
Field structure of collapsing wave packets in 3D strong Langmuir turbulence
NASA Technical Reports Server (NTRS)
Newman, D. L.; Robinson, P. A.; Goldman, M. V.
1989-01-01
A simple model is constructed for the electric fields in the collapsing wave packets found in 3D simulations of driven and damped isotropic strong Langmuir turbulence. This model, based on a spherical-harmonic decomposition of the electrostatic potential, accounts for the distribution of wave-packet shapes observed in the simulations, particularly the predominance of oblate wave packets. In contrast with predictions for undamped and undriven subsonic collapse of scalar fields, oblate vector-field wave packets do not flatten during collapse but, instead, remain approximately self-similar and rigid.
Luquet, David; Marchiano, Régis; Coulouvrat, François
2015-10-28
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
NASA Astrophysics Data System (ADS)
Luquet, David; Marchiano, Régis; Coulouvrat, François
2015-10-01
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
Nonhydrostatic granular flow over 3-D terrain: New Boussinesq-type gravity waves?
NASA Astrophysics Data System (ADS)
Castro-Orgaz, Oscar; Hutter, Kolumban; Giraldez, Juan V.; Hager, Willi H.
2015-01-01
granular mass flow is a basic step in the prediction and control of natural or man-made disasters related to avalanches on the Earth. Savage and Hutter (1989) pioneered the mathematical modeling of these geophysical flows introducing Saint-Venant-type mass and momentum depth-averaged hydrostatic equations using the continuum mechanics approach. However, Denlinger and Iverson (2004) found that vertical accelerations in granular mass flows are of the same order as the gravity acceleration, requiring the consideration of nonhydrostatic modeling of granular mass flows. Although free surface water flow simulations based on nonhydrostatic depth-averaged models are commonly used since the works of Boussinesq (1872, 1877), they have not yet been applied to the modeling of debris flow. Can granular mass flow be described by Boussinesq-type gravity waves? This is a fundamental question to which an answer is required, given the potential to expand the successful Boussinesq-type water theory to granular flow over 3-D terrain. This issue is explored in this work by generalizing the basic Boussinesq-type theory used in civil and coastal engineering for more than a century to an arbitrary granular mass flow using the continuum mechanics approach. Using simple test cases, it is demonstrated that the above question can be answered in the affirmative way, thereby opening a new framework for the physical and mathematical modeling of granular mass flow in geophysics, whereby the effect of vertical motion is mathematically included without the need of ad hoc assumptions.
Efficient solution on solving 3D Maxwell equations using stable semi-implicit splitting method
NASA Astrophysics Data System (ADS)
Cen, Wei; Gu, Ning
2016-05-01
In this paper, we propose an efficient solution on solving 3-dimensional (3D) time-domain Maxwell equations using the semi-implicit Crank-Nicholson (CN) method for time domain discretization with advantage of unconditional time stability. By applying the idea of fractional steps method (FSM) to the CN scheme, the proposed method provides a much simpler and efficient implementation than a direct implementation of the CN scheme. Compared with the alternating-direction implicit (ADI) method and explicit finite-difference time-domain approach (FDTD), it significantly saves the computational resource like memory and CPU time while remains similar numerical accuracy.
Fast and Robust Sixth Order Multigrid Computation for 3D Convection Diffusion Equation.
Wang, Yin; Zhang, Jun
2010-10-15
We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined with an extrapolation technique is used to approximate the sixth order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid independent convergence rate for solving convection diffusion equation with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth order compact scheme (SOC), compared with the previously published fourth order compact scheme (FOC). PMID:21151737
A CNN-based approach to integrate the 3-D turbolent diffusion equation
NASA Astrophysics Data System (ADS)
Nunnari, G.
2003-04-01
The paper deals with the integration of the 3-D turbulent diffusion equation. This problem is relevant in several application fields including fluid dynamics, air/water pollution, volcanic ash emissions and industrial hazard assessment. As it is well known numerical solution of such a kind of equation is very time consuming even by using modern digital computers and this represents a short-coming for on-line applications. To overcome this drawback a Cellular Neural Network Approach is proposed in this paper. CNN's proposed by Chua and Yang in 1988 are massive parallel analog non-linear circuits with local interconnections between the computing elements that allow very fast distributed computations. Nowadays several producers of semiconductors such as SGS-Thomson are producing on chip CNN's so that their massive use for heavy computing applications is expected in the near future. In the paper the methodological background of the proposed approach will be outlined. Further some results both in terms of accuracy and computation time will be presented also in comparison with traditional three-dimensional computation schemes. Some results obtained to model 3-D pollution problems in the industrial area of Siracusa (Italy), characterised by a large concentration of petrol-chemical plants, will be presented.
Fast Wave Trains Associated with Solar Eruptions: Insights from 3D Thermodynamic MHD Simulations
NASA Astrophysics Data System (ADS)
Downs, C.; Liu, W.; Torok, T.; Linker, J.; Mikic, Z.; Ofman, L.
2015-12-01
EUV imaging observations during the SDO/AIA era have provided new insights into a variety of wave phenomena occurring in the low solar corona. One example is the observation of quasi-periodic, fast-propagating wave trains that are associated with solar eruptions, including flares and CMEs. While there has been considerable progress in understanding such waves from both an observational and theoretical perspective, it remains a challenge to pin down their physical origin. In this work, we detail our results from a case-study 3D thermodynamic MHD simulation of a coronal mass ejection where quasi-periodic wave trains are generated during the simulated eruption. We find a direct correlation between the onset of non-steady reconnection in the flare current sheet and the generation of quasi-periodic wave train signatures when patchy, collimated downflows interact with the flare arcade. Via forward modeling of SDO/AIA observables, we explore how the appearance of the wave trains is affected by line-of-sight integration and the multi-thermal nature of the coronal medium. We also examine how the wave trains themselves are channeled by natural waveguides formed in 3D by the non-uniform background magnetic field. While the physical association of the reconnection dynamics to the generation of quasi-periodic wave trains appears to be a compelling result, unanswered questions posed from recent observations as well as future prospects will be discussed.
New equations to calculate 3D joint centres in the lower extremities.
Sandau, Martin; Heimbürger, Rikke V; Villa, Chiara; Jensen, Karl E; Moeslund, Thomas B; Aanæs, Henrik; Alkjær, Tine; Simonsen, Erik B
2015-10-01
Biomechanical movement analysis in 3D requires estimation of joint centres in the lower extremities and this estimation is based on extrapolation from markers placed on anatomical landmarks. The purpose of the present study was to quantify the accuracy of three established set of equations and provide new improved equations to predict the joint centre locations. The 'true' joint centres of the knee and ankle joint were obtained in vivo by MRI scans on 10 male subjects whereas the 'true' hip joint centre was obtained in 10 male and 10 female cadavers by CT scans. For the hip joint the errors ranged from 26.7 (8.9) to 29.6 (7.5) mm, for the knee joint 5.8 (3.1) to 22.6 (3.3) mm and for the ankle joint 14.4 (2.2) to 27.0 (4.6) mm. This differed significantly from the improved equations by which the error for the hip joint ranged from 8.2 (3.6) to 11.6 (5.6) mm, for the knee joint from 2.9 (2.1) to 4.7 (2.5) mm and for the ankle joint from 3.4 (1.3) to 4.1 (2.0) mm. The coefficients in the new hip joint equations differed significantly between sexes. This difference depends on anatomical differences of the male and female pelvis. PMID:26320760
Vdovin V.L.
2005-08-15
In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly coupled with each
NASA Astrophysics Data System (ADS)
Chen, Duan; Cai, Wei; Zinser, Brian; Cho, Min Hyung
2016-09-01
In this paper, we develop an accurate and efficient Nyström volume integral equation (VIE) method for the Maxwell equations for a large number of 3-D scatterers. The Cauchy Principal Values that arise from the VIE are computed accurately using a finite size exclusion volume together with explicit correction integrals consisting of removable singularities. Also, the hyper-singular integrals are computed using interpolated quadrature formulae with tensor-product quadrature nodes for cubes, spheres and cylinders, that are frequently encountered in the design of meta-materials. The resulting Nyström VIE method is shown to have high accuracy with a small number of collocation points and demonstrates p-convergence for computing the electromagnetic scattering of these objects. Numerical calculations of multiple scatterers of cubic, spherical, and cylindrical shapes validate the efficiency and accuracy of the proposed method.
Importance of a 3D forward modeling tool for surface wave analysis methods
NASA Astrophysics Data System (ADS)
Pageot, Damien; Le Feuvre, Mathieu; Donatienne, Leparoux; Philippe, Côte; Yann, Capdeville
2016-04-01
Since a few years, seismic surface waves analysis methods (SWM) have been widely developed and tested in the context of subsurface characterization and have demonstrated their effectiveness for sounding and monitoring purposes, e.g., high-resolution tomography of the principal geological units of California or real time monitoring of the Piton de la Fournaise volcano. Historically, these methods are mostly developed under the assumption of semi-infinite 1D layered medium without topography. The forward modeling is generally based on Thomson-Haskell matrix based modeling algorithm and the inversion is driven by Monte-Carlo sampling. Given their efficiency, SWM have been transfered to several scale of which civil engineering structures in order to, e.g., determine the so-called V s30 parameter or assess other critical constructional parameters in pavement engineering. However, at this scale, many structures may often exhibit 3D surface variations which drastically limit the efficiency of SWM application. Indeed, even in the case of an homogeneous structure, 3D geometry can bias the dispersion diagram of Rayleigh waves up to obtain discontinuous phase velocity curves which drastically impact the 1D mean velocity model obtained from dispersion inversion. Taking advantages of high-performance computing center accessibility and wave propagation modeling algorithm development, it is now possible to consider the use of a 3D elastic forward modeling algorithm instead of Thomson-Haskell method in the SWM inversion process. We use a parallelized 3D elastic modeling code based on the spectral element method which allows to obtain accurate synthetic data with very low numerical dispersion and a reasonable numerical cost. In this study, we choose dike embankments as an illustrative example. We first show that their longitudinal geometry may have a significant effect on dispersion diagrams of Rayleigh waves. Then, we demonstrate the necessity of 3D elastic modeling as a forward
Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation
NASA Astrophysics Data System (ADS)
Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab
2015-05-01
3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.
NASA Astrophysics Data System (ADS)
Tago, J.; Cruz-Atienza, V. M.; Etienne, V.; Virieux, J.; Benjemaa, M.; Sanchez-Sesma, F. J.
2010-12-01
Simulating any realistic seismic scenario requires incorporating physical basis into the model. Considering both the dynamics of the rupture process and the anelastic attenuation of seismic waves is essential to this purpose and, therefore, we choose to extend the hp-adaptive Discontinuous Galerkin finite-element method to integrate these physical aspects. The 3D elastodynamic equations in an unstructured tetrahedral mesh are solved with a second-order time marching approach in a high-performance computing environment. The first extension incorporates the viscoelastic rheology so that the intrinsic attenuation of the medium is considered in terms of frequency dependent quality factors (Q). On the other hand, the extension related to dynamic rupture is integrated through explicit boundary conditions over the crack surface. For this visco-elastodynamic formulation, we introduce an original discrete scheme that preserves the optimal code performance of the elastodynamic equations. A set of relaxation mechanisms describes the behavior of a generalized Maxwell body. We approximate almost constant Q in a wide frequency range by selecting both suitable relaxation frequencies and anelastic coefficients characterizing these mechanisms. In order to do so, we solve an optimization problem which is critical to minimize the amount of relaxation mechanisms. Two strategies are explored: 1) a least squares method and 2) a genetic algorithm (GA). We found that the improvement provided by the heuristic GA method is negligible. Both optimization strategies yield Q values within the 5% of the target constant Q mechanism. Anelastic functions (i.e. memory variables) are introduced to efficiently evaluate the time convolution terms involved in the constitutive equations and thus to minimize the computational cost. The incorporation of anelastic functions implies new terms with ordinary differential equations in the mathematical formulation. We solve these equations using the same order
The Vajont disaster: a 3D numerical simulation for the slide and the waves
NASA Astrophysics Data System (ADS)
Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum
2016-04-01
A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.
1988-01-01
An LU implicit multigrid algorithm is developed to calculate 3-D compressible viscous flows. This scheme solves the full 3-D Reynolds-Averaged Navier-Stokes equation with a two-equation kappa-epsilon model of turbulence. The flow equations are integrated by an efficient, diagonally inverted, LU implicit multigrid scheme while the kappa-epsilon equations are solved, uncoupled from the flow equations, by a block LU implicit algorithm. The flow equations are solved within the framework of the multigrid method using a four-grid level W-cycle, while the kappa-epsilon equations are iterated only on the finest grid. This treatment of the Reynolds-Averaged Navier-Stokes equations proves to be an efficient method for calculating 3-D compressible viscous flows.
Wave equation on spherically symmetric Lorentzian metrics
Bokhari, Ashfaque H.; Al-Dweik, Ahmad Y.; Zaman, F. D.; Kara, A. H.; Karim, M.
2011-06-15
Wave equation on a general spherically symmetric spacetime metric is constructed. Noether symmetries of the equation in terms of explicit functions of {theta} and {phi} are derived subject to certain differential constraints. By restricting the metric to flat Friedman case the Noether symmetries of the wave equation are presented. Invertible transformations are constructed from a specific subalgebra of these Noether symmetries to convert the wave equation with variable coefficients to the one with constant coefficients.
Nonlinear Evolution of a 3D Inertial Alfvén Wave and Its Implication in Particle Acceleration
NASA Astrophysics Data System (ADS)
Sharma, Prachi; Yadav, Nitin; Sharma, R. P.
2016-03-01
A simulation based on a pseudo-spectral method has been performed in order to study particle acceleration. A model for the acceleration of charged particles by field localization is developed for the low-β plasma. For this purpose, a fractional diffusion approach has been employed. The nonlinear interaction between a 3D inertial Alfvén wave and a slow magnetosonic wave has been examined, and the dynamical equations of these two waves in the presence of ponderomotive nonlinearity have been solved numerically. The nonlinear evolution of the inertial Alfvén wave in the presence of slow magnetosonic wave undergoes a filamentation instability and results in field intensity localization. The results obtained show the localization and power spectrum of inertial Alfvén wave due to nonlinear coupling. The scaling obtained after the first break point of the magnetic power spectrum has been used to calculate the formation of the thermal tail of energetic particles in the solar corona.
A Self-Consistent Beam Loaded Travelling Wave Accelerator Model for use in TRACE-3D
NASA Astrophysics Data System (ADS)
Lampel, M. C.
1997-05-01
An optics model of a constant gradient traveling wave (CGTW) accelerator structure has been implemented for TRACE-3D. TRACE-3D is an envelope code including space charge that is used to model bunched beams in magnetic transport systems and radio frequency (rf) accelerators when the effects of beam current might be significant. The new matrix model has been developed to allow incorporation of particle beam loading (current) effects on the accelerator gradient and the accelerator structure's beam focusing properties in a self-consistent manner. The beam loaded electric field for a CGTW accelerator structure is constant for only a particular design current (e.g., 0 current), otherwise it can be written as a function of accelerator attenuation and axial position along the structure. The variation of the electric field through the structure has been taken into account in the new model. CGTW structures differ substantially in focusing properties and beam loading properties from standing wave structures. Examples will be presented using the new TW model, propagating electron beams with different currents through the Stanford Linear Accelerator Center's 3 m structure. The results will be compared to the zero current TW structure model in TRANSPORT and the Tank model (a standing wave structure model) in TRACE-3D. A computer demonstration of the code with the new element will also be presented.
Ocular surface temperature: a 3D FEM prediction using bioheat equation.
Ng, E Y K; Ooi, E H
2007-06-01
Computational and mathematical human eye models from previous studies which were constructed in two-dimensions (2D) did not give a precise representation of the actual human eye. This work is an extension from an earlier published work on the 2D model. In this paper, a 3D FEM model of the human eye is simulated for the steady state temperature distribution during normal condition and during electromagnetic (EM) wave radiation. Results show a discrepancy of 0.49% for a normal condition as opposed to 1.9% of a 2D model when compared to experimental results from open literatures. Investigations on the EM wave radiations found an average power absorption density of 15,151 and 22,145 Wm(-3) for the 750 and 1500 MHz radiation, respectively. A peak temperature of 38.18( composite function)C was predicted for the 750 MHz radiation while 41.19( composite function)C was computed for the 1500 MHz radiation. These temperatures are in reasonable agreement with the simulated results computed by another report in the past. PMID:17034781
NASA Astrophysics Data System (ADS)
Wang, S.; De Hoop, M. V.; Xia, J.; Li, X.
2011-12-01
We consider the modeling of elastic seismic wave propagation on a rectangular domain via the discretization and solution of the inhomogeneous coupled Helmholtz equation in 3D, by exploiting a parallel multifrontal sparse direct solver equipped with Hierarchically Semi-Separable (HSS) structure to reduce the computational complexity and storage. In particular, we are concerned with solving this equation on a large domain, for a large number of different forcing terms in the context of seismic problems in general, and modeling in particular. We resort to a parsimonious mixed grid finite differences scheme for discretizing the Helmholtz operator and Perfect Matched Layer boundaries, resulting in a non-Hermitian matrix. We make use of a nested dissection based domain decomposition, and introduce an approximate direct solver by developing a parallel HSS matrix compression, factorization, and solution approach. We cast our massive parallelization in the framework of the multifrontal method. The assembly tree is partitioned into local trees and a global tree. The local trees are eliminated independently in each processor, while the global tree is eliminated through massive communication. The solver for the inhomogeneous equation is a parallel hybrid between multifrontal and HSS structure. The computational complexity associated with the factorization is almost linear with the size of the Helmholtz matrix. Our numerical approach can be compared with the spectral element method in 3D seismic applications.
NASA Astrophysics Data System (ADS)
Belashov, Vasily
We study the formation, structure, stability and dynamics of the multidimensional soliton-like beam structures forming on the low-frequency branch of oscillation in the ionospheric and magnetospheric plasma for cases when beta=4pinT/B(2) <<1 and beta>1. In first case with the conditions omega
Implicit scheme for Maxwell equations solution in case of flat 3D domains
NASA Astrophysics Data System (ADS)
Boronina, Marina; Vshivkov, Vitaly
2016-02-01
We present a new finite-difference scheme for Maxwell's equations solution for three-dimensional domains with different scales in different directions. The stability condition of the standard leap-frog scheme requires decreasing of the time-step with decreasing of the minimal spatial step, which depends on the minimal domain size. We overcome the conditional stability by modifying the standard scheme adding implicitness in the direction of the smallest size. The new scheme satisfies the Gauss law for the electric and magnetic fields in the final- differences. The approximation order, the maintenance of the wave amplitude and propagation speed, the invariance of the wave propagation on angle with the coordinate axes are analyzed.
NASA Astrophysics Data System (ADS)
Lieske, Mike; Schlurmann, Torsten
2016-04-01
INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common
On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations
NASA Astrophysics Data System (ADS)
Coutand, Daniel; Shkoller, Steve
2014-01-01
We prove that the 3-D free-surface incompressible Euler equations with regular initial geometries and velocity fields have solutions which can form a finite-time "splash" (or "splat") singularity first introduced in Castro et al. (Splash singularity for water waves, http://arxiv.org/abs/1106.2120v2, 2011), wherein the evolving 2-D hypersurface, the moving boundary of the fluid domain, self-intersects at a point (or on surface). Such singularities can occur when the crest of a breaking wave falls unto its trough, or in the study of drop impact upon liquid surfaces. Our approach is founded upon the Lagrangian description of the free-boundary problem, combined with a novel approximation scheme of a finite collection of local coordinate charts; as such we are able to analyze a rather general set of geometries for the evolving 2-D free-surface of the fluid. We do not assume the fluid is irrotational, and as such, our method can be used for a number of other fluid interface problems, including compressible flows, plasmas, as well as the inclusion of surface tension effects.
An iterative KP1 method for solving the transport equation in 3D domains on unstructured grids
NASA Astrophysics Data System (ADS)
Kokonkov, N. I.; Nikolaeva, O. V.
2015-10-01
A two-step iterative KP1 method for solving systems of grid equations that approximate the integro-differential transport equation in 3D domains on unstructured grids using nodal SN methods is described. Results of testing the efficiency of the proposed method in solving benchmark problems of reactor protection on tetrahedral grids are presented.
3D resolution tests of two-plane wave approach using synthetic seismograms
NASA Astrophysics Data System (ADS)
Ceylan, S.; Larmat, C. S.; Sandvol, E. A.
2012-12-01
Two-plane wave tomography (TPWT) is becoming a standard approach to obtain fundamental mode Rayleigh wave phase velocities for a variety of tectonic settings. A recent study by Ceylan et al. (2012) has applied this method to eastern Tibet, using data from INDEPTH-IV and Namche-Barwa seismic experiments. The TPWT assumes that distortion of wavefronts at each station can be expressed as the sum of two plane waves. However, there is currently no robust or complete resolution test for TPWT, to address its limitations such as wavefront healing. In this study, we test the capabilities of TPWT and resolution of INDEPTH-IV seismic experiment, by performing 3D resolution tests using synthetic seismograms. Utilizing SPECFEM3D software, we compute synthetic data sets resolving periods down to ~30 s. We implement a checkerboard upper mantle (for depths between 50 and 650 km) with variable cell sizes, superimposed to PREM as the background model. We then calculate fundamental mode surface wave phase velocities using TPWT for periods between 33-143 seconds, using synthetic seismograms computed from our three dimensional hypothetical model. Assuming a constant Poisson's ratio, we use partial derivatives from Saito (1988) to invert for shear wave velocities. We show that the combination of TPWT and Saito (1988) methods is capable of retrieving anomalies down to depths of ~200 km for Rayleigh waves. Below these depths, we observe evidence of both lateral and vertical smearing. We also find that the traditional method for estimating the resolution of TPWT consistently overestimates phase velocity resolutions. Love waves exhibit adequate resolution down to depths of ~100 km. At depths greater than 100 km, smearing is more evident in SH wave results than those of SV waves. Increased smearing of SH waves is most probably due to propagation characteristics and shallower sensitivity of Love waves. Our results imply that TPWT can be applied to Love waves, making future investigations of
Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.
Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K
2012-02-01
We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred. PMID:21908011
3-D P Wave Velocity Structure of Marmara Region Using Local Earthquake Tomography
NASA Astrophysics Data System (ADS)
Işık, S. E.; Gurbuz, C.
2014-12-01
The 3D P wave velocity model of upper and lower crust of the Marmara Region between 40.200- 41.200N and 26.500- 30.500E is obtained by tomographic inversion (Simulps) of 47034 P wave arrivals of local earthquakes recorded at 90 land stations between October 2009 and December 2012 and 30 OBO stations and 14162 shot arrivals recorded at 35 OBO stations (Seismarmara Survey, 2001). We first obtained a 1D minimum model with Velest code in order to obtain an initial model for 3D inversion with 648 well located earthquakes located within the study area. After several 3D inversion trials we decided to create a more adequate initial model for 3D inversion. Choosing the initial model we estimated the 3D P wave velocity model representing the whole region both for land and sea. The results are tested by making Checkerboard , Restoring Resolution and Characteristic Tests, and the reliable areas of the resulting model is defined in terms of RDE, DWS, SF and Hit count distributions. By taking cross sections from the resulting model we observed the vertical velocity change along profiles crossing both land and sea. All the profiles crossing the basins showed that the high velocities of lower crust make extensions towards the basin area which looks like the force that gives a shape to the basins. These extensions of lower crust towards the basins appeared with an average velocity of 6.3 km/s which might be the result of the deformation due the shearing in the region. It is also interpreted that the development of these high velocities coincide with the development of the basins. Thus, both the basins and the high velocity zones around them might be resulted from the entrance of the NAF into the Marmara Sea and at the same time a shear regime was dominated due to the resistance of the northern Marmara Region (Yılmaz, 2010). The seismicity is observed between 5 km and 15 km after the 3D location of the earthquakes. The locations of the earthquakes improved and the seismogenic zone
NASA Astrophysics Data System (ADS)
Wilder, F. D.; Ergun, R.; Goodrich, K.; Malaspina, D.; Eriksson, S.; Stawarz, J. E.; Sturner, A. P.; Holmes, J.; Burch, J. L.; Torbert, R. B.; Phan, T.; Le Contel, O.; Goldman, M. V.; Newman, D. L.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Pollock, C. J.
2015-12-01
The phenomenon of magnetic reconnection, especially at electron scales, is still poorly understood. One process that warrants further investigation is the role of wave phenomenon in mediating magnetic reconnection. Previous observations have shown the presence of electrostatic solitary waves (ESWs) as well as whistler mode waves near the dayside reconnection site. Additionally, recent simulations have suggested that whistler waves might be generated by electron phase space holes associated with ESWs as they propagate along the magnetic separatrix towards the diffusion region. Other observations have shown ESWs with distinct speeds and time scales, suggesting that different instabilities generate the ESWs. NASA's recently launched Magnetospheric Multiscale (MMS) mission presents a unique opportunity to investigate the roles of wave phenomena, such as ESWs and whistlers, in asymmetric reconnection at the dayside magnetopause. We will present 3-D electric and magnetic field data from magnetopause crossings by MMS during its first dayside science phase. Burst mode wave data and electron distributions from all four spacecraft will be analyzed to investigate the origin of these wave phenomena, as well as their impact on the reconnection electric field.
Simulating Seismic Wave Propagation in 3-D Structure: A Case Study For Istanbul City
NASA Astrophysics Data System (ADS)
Yelkenci, Seda; Aktar, Mustafa
2013-04-01
Investigation of the wave propagation around the Marmara Sea, in particular for the city of Istanbul is critical because this target area is identified as one of the megacities with the highest seismic risk in the world. This study makes an attempt for creating an integrated 3D seismic/geologic model and precise understanding of 3-D wave propagation in the city of Istanbul. The approach is based on generating synthetic seismograms using realistic velocity structures as well as accurate location, focal mechanism and source parameters of reference earthquakes. The modarate size reference earthquakes occured in the Marmara Sea and were recorded by the National Seismic Network of Turkey as well as the network of Istanbul Early Warning and Rapid Response System. The seismograms are simulated by means of a 3-D finite difference method operated on parallel processing environment. In the content of creating a robust velocity model; 1D velocity models which are derived fom previous crustal studies of Marmara region such as refraction seismic and receiver functions have been conducted firstly for depths greater than 1km. Velocity structure in shallower part of the study region is then derived from recent geophysical and geotechnical surveys. To construct 3-D model from the obtained 1-D model data, a variety of interpolation methods are considered. According to the observations on amplitude and arrival time based on comparison of simulated seismograms, the considered velocity model is refined the way that S delay times are compensated. Another important task of this work is an application of the finite difference method to estimate three-dimensional seismic responses for a specified basin structure including soft sediments with low shear velocities in respect of the surrounded area in the Asian part of Istanbul. The analysis performed both in the time and frequency domain, helps in understanding of the comprehensive wave propagation characteristics and the distribution of
3D P-Wave Velocity Structure of the Deep Galicia Rifted Margin
NASA Astrophysics Data System (ADS)
Bayrakci, Gaye; Minshull, Timothy; Davy, Richard; Sawyer, Dale; Klaeschen, Dirk; Papenberg, Cord; Reston, Timothy; Shillington, Donna; Ranero, Cesar
2015-04-01
The combined wide-angle reflection-refraction and multi-channel seismic (MCS) experiment, Galicia 3D, was carried out in 2013 at the Galicia rifted margin in the northeast Atlantic Ocean, west of Spain. The main geological features within the 64 by 20 km (1280 km²) 3D box investigated by the survey are the peridotite ridge (PR), the fault bounded, rotated basement blocks and the S reflector, which has been interpreted to be a low angle detachment fault. 44 short period four-component ocean bottom seismometers and 28 ocean bottom hydrophones were deployed in the 3D box. 3D MCS profiles sampling the whole box were acquired with two airgun arrays of 3300 cu.in. fired alternately every 37.5 m. We present the results from 3D first-arrival time tomography that constrains the P-wave velocity in the 3D box, for the entire depth sampled by reflection data. Results are validated by synthetic tests and by the comparison with Galicia 3D MCS lines. The main outcomes are as follows: 1- The 3.5 km/s iso-velocity contour mimics the top of the acoustic basement observed on MCS profiles. Block bounding faults are imaged as velocity contrasts and basement blocks exhibit 3D topographic variations. 2- On the southern profiles, the top of the PR rises up to 5.5 km depth whereas, 20 km northward, its basement expression (at 6.5 km depth) nearly disappears. 3- The 6.5 km/s iso-velocity contour matches the topography of the S reflector where the latter is visible on MCS profiles. Within a depth interval of 0.6 km (in average), velocities beneath the S reflector increase from 6.5 km/s to 7 km/s, which would correspond to a decrease in the degree of serpentinization from ~45 % to ~30 % if these velocity variations are caused solely by variations in hydration. At the intersections between the block bounding normal faults and the S reflector, this decrease happens over a larger depth interval (> 1 km), suggesting that faults act as conduit for the water flow in the upper mantle.
Concealed threat detection with the IRAD sub-millimeter wave 3D imaging radar
NASA Astrophysics Data System (ADS)
Robertson, Duncan A.; Cassidy, Scott L.; Jones, Ben; Clark, Anthony
2014-06-01
Sub-millimeter wave 3D imaging radar is a promising technology for the stand-off detection of threats concealed on people. The IRAD 340 GHz 3D imaging radar uses polarization intensity information to identify signatures associated with concealed threats. We report on an extensive trials program which has been carried out involving dozens of individual subjects wearing a variety of different clothing to evaluate the detection of a wide range of threat and benign items. We have developed an automatic algorithm to run on the radar which yields a level of anomaly indication in real time. Statistical analysis of the large volume of recorded data has enabled performance metrics for the radar system to be evaluated.
Efficient 3D/1D self-consistent integral-equation analysis of ICRH antennae
NASA Astrophysics Data System (ADS)
Maggiora, R.; Vecchi, G.; Lancellotti, V.; Kyrytsya, V.
2004-08-01
This work presents a comprehensive account of the theory and implementation of a method for the self-consistent numerical analysis of plasma-facing ion-cyclotron resonance heating (ICRH) antenna arrays. The method is based on the integral-equation formulation of the boundary-value problem, solved via a weighted-residual scheme. The antenna geometry (including Faraday shield bars and a recess box) is fairly general and three-dimensional (3D), and the plasma is in the one-dimensional (1D) 'slab' approximation; finite-Larmor radius effects, as well as plasma density and temperature gradients, are considered. Feeding via the voltages in the access coaxial lines is self-consistently accounted throughout and the impedance or scattering matrix of the antenna array obtained therefrom. The problem is formulated in both the dual space (physical) and spectral (wavenumber) domains, which allows the extraction and simple handling of the terms that slow the convergence in the spectral domain usually employed. This paper includes validation tests of the developed code against measured data, both in vacuo and in the presence of plasma. An example of application to a complex geometry is also given.
NASA Astrophysics Data System (ADS)
Abdi, Daniel S.; Giraldo, Francis X.
2016-09-01
A unified approach for the numerical solution of the 3D hyperbolic Euler equations using high order methods, namely continuous Galerkin (CG) and discontinuous Galerkin (DG) methods, is presented. First, we examine how classical CG that uses a global storage scheme can be constructed within the DG framework using constraint imposition techniques commonly used in the finite element literature. Then, we implement and test a simplified version in the Non-hydrostatic Unified Model of the Atmosphere (NUMA) for the case of explicit time integration and a diagonal mass matrix. Constructing CG within the DG framework allows CG to benefit from the desirable properties of DG such as, easier hp-refinement, better stability etc. Moreover, this representation allows for regional mixing of CG and DG depending on the flow regime in an area. The different flavors of CG and DG in the unified implementation are then tested for accuracy and performance using a suite of benchmark problems representative of cloud-resolving scale, meso-scale and global-scale atmospheric dynamics. The value of our unified approach is that we are able to show how to carry both CG and DG methods within the same code and also offer a simple recipe for modifying an existing CG code to DG and vice versa.
An efficient flexible-order model for 3D nonlinear water waves
Engsig-Karup, A.P. Bingham, H.B.; Lindberg, O.
2009-04-01
The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature.
NASA Astrophysics Data System (ADS)
Woodbury, D.; Kubota, S.; Johnson, I.
2014-10-01
Computer simulations of electromagnetic wave propagation in magnetized plasmas are an important tool for both plasma heating and diagnostics. For active millimeter-wave and microwave diagnostics, accurately modeling the evolution of the beam parameters for launched, reflected or scattered waves in a toroidal plasma requires that calculations be done using the full 3-D geometry. Previously, we reported on the application of GPGPU (General-Purpose computing on Graphics Processing Units) to a 3-D vacuum Maxwell code using the FDTD (Finite-Difference Time-Domain) method. Tests were done for Gaussian beam propagation with a hard source antenna, utilizing the parallel processing capabilities of the NVIDIA K20M. In the current study, we have modified the 3-D code to include a soft source antenna and an induced current density based on the cold plasma approximation. Results from Gaussian beam propagation in an inhomogeneous anisotropic plasma, along with comparisons to ray- and beam-tracing calculations will be presented. Additional enhancements, such as advanced coding techniques for improved speedup, will also be investigated. Supported by U.S. DoE Grant DE-FG02-99-ER54527 and in part by the U.S. DoE, Office of Science, WDTS under the Science Undergraduate Laboratory Internship program.
3D Simulation of an Audible Ultrasonic Electrolarynx Using Difference Waves
Mills, Patrick; Zara, Jason
2014-01-01
A total laryngectomy removes the vocal folds which are fundamental in forming voiced sounds that make speech possible. Although implanted prosthetics are commonly used in developed countries, simple handheld vibrating electrolarynxes are still common worldwide. These devices are easy to use but suffer from many drawbacks including dedication of a hand, mechanical sounding voice, and sound leakage. To address some of these drawbacks, we introduce a novel electrolarynx that uses vibro-acoustic interference of dual ultrasonic waves to generate an audible fundamental frequency. A 3D simulation of the principles of the device is presented in this paper. PMID:25401965
3D rendering of passive millimeter-wave scenes using modified open source software
NASA Astrophysics Data System (ADS)
Murakowski, Maciej; Wilson, John; Murakowski, Janusz; Schneider, Garrett; Schuetz, Christopher; Prather, Dennis
2011-05-01
As millimeter-wave imaging technology becomes more mature, several applications are emerging for which this technology may be useful. However, effectively predicting the nuances of millimeter-wave phenomenology on the usefulness for a given application remains a challenge. To this end, an accurate millimeter-wave scene simulator would have tremendous value in predicting imager requirements for a given application. Herein, we present a passive millimeter-wave scene simulator built on the open-source 3d modeling software Blender. We describe the changes made to the Blender rendering engine to make it suitable for this purpose, including physically accurate reflections at each material interface, volumetric absorption and scattering, and tracking of both s and p polarizations. In addition, we have incorporated a mmW material database and world model that emulates the effects of cold sky profiles for varying weather conditions and frequencies of operation. The images produced by this model have been validated against calibrated experimental imagery captured by a passive scanning millimeter-wave imager for maritime, desert, and standoff detection applications.
Wave optics theory and 3-D deconvolution for the light field microscope
Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc
2013-01-01
Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383
Solving tolerancing and 3D beam shaping problems by multifunctional wave optical design
NASA Astrophysics Data System (ADS)
Buehling, Sven; Wyrowski, Frank
2000-10-01
A strategy for designing optical systems that are optimized for multiple optical functions on the basis of wave optics is presented. Each optical function is composed of an input field, a set of fixed system parameters, and a merit function. A design algorithm is proposed which is applicable for optical systems consisting of an transmission operator followed by an arbitrary linear operator. The goal is to find the transmission operator which is optimal for all optical functions simultaneously. In later design steps, the found transmission operator can be transformed to real optical elements, for instance by using the thin element approximation. It is shown that the algorithm is efficiently applicable by investigating two sample applications for multifunctional wave optical design: the design of tolerant systems and 3D beam shaping.
Does the Wave Equation Really Work?
ERIC Educational Resources Information Center
Armstead, Donald C.; Karls, Michael A.
2006-01-01
The wave equation is a classic partial differential equation that one encounters in an introductory course on boundary value problems or mathematical physics, which can be used to describe the vertical displacement of a vibrating string. Using a video camera and Wave-in-Motion software to record displacement data from a vibrating string or spring,…
NASA Astrophysics Data System (ADS)
Crosta, G.; Imposimato, S.; Roddeman, D.; Frattini, P.
2012-04-01
Fast moving landslides can be originated along slopes in mountainous terrains with natural and artificial lakes, or fjords at the slope foot. This landslides can reach extremely high speed and the impact with the immobile reservoir water can be influenced by the local topography and the landslide mass profile. The impact can generate large impulse waves and landslide tsunami. Initiation, propagation and runup are the three phases that need to be considered. The landslide evolution and the consequent wave can be controlled by the initial mass position (subaerial, partially or completely submerged), the landslide speed, the type of material, the subaerial and subaqueous slope geometry, the landslide depth and length at the impact, and the water depth. Extreme events have been caused by subaerial landslides: the 1963 Vajont rockslide (Italy), the 1958 Lituya Bay event (Alaska), the Tafjord and the Loen multiple events event (Norway), also from volcanic collapses (Hawaii and Canary islands). Various researchers completed a systematic experimental work on 2D and 3D wave generation and propagation (Kamphuis and Bowering, 1970; Huber, 1980; Müller, 1995; Huber and Hager, 1997; Fritz, 2002; Zweifel, 2004; Panizzo et al., 2005; Heller, 2007; Heller and Kinnear, 2010; Sælevik et al., 2009), using both rigid blocks and deformable granular" masses. Model data and results have been used to calibrate and validate numerical modelling tools (Harbitz, 1992; Jiang and LeBlond, 1993; Grilli et al., 2002; Grilli and Watts, 2005; Lynett and Liu, 2005; Tinti et al., 2006; Abadie et al., 2010) generally considering simplified rheologies (e.g. viscous rheologies) for subaerial subaqueous spreading. We use a FEM code (Roddeman, 2011; Crosta et al., 2006, 2009, 2010, 2011) adopting an Eulerian-Lagrangian approach to give accurate results for large deformations. We model both 2D and fully 3D events considering different settings. The material is considered as a fully deformable elasto
Development of a GPU-Accelerated 3-D Full-Wave Code for Reflectometry Simulations
NASA Astrophysics Data System (ADS)
Reuther, K. S.; Kubota, S.; Feibush, E.; Johnson, I.
2013-10-01
1-D and 2-D full-wave codes used as synthetic diagnostics in microwave reflectometry are standard tools for understanding electron density fluctuations in fusion plasmas. The accuracy of the code depends on how well the wave properties along the ignored dimensions can be pre-specified or neglected. In a toroidal magnetic geometry, such assumptions are never strictly correct and ray tracing has shown that beam propagation is inherently a 3-D problem. Previously, we reported on the application of GPGPU's (General-Purpose computing on Graphics Processing Units) to a 2-D FDTD (Finite-Difference Time-Domain) code ported to utilize the parallel processing capabilities of the NVIDIA C870 and C1060. Here, we report on the development of a FDTD code for 3-D problems. Initial tests will use NVIDIA's M2070 GPU and concentrate on the launching and propagation of Gaussian beams in free space. If available, results using a plasma target will also be presented. Performance will be compared with previous generations of GPGPU cards as well as with NVIDIA's newest K20C GPU. Finally, the possibility of utilizing multiple GPGPU cards in a cluster environment or in a single node will also be discussed. Supported by U.S. DoE Grants DE-FG02-99-ER54527 and DE-AC02-09CH11466 and the DoE National Undergraduate Fusion Fellowship.
Nondiffracting accelerating wave packets of Maxwell's equations.
Kaminer, Ido; Bekenstein, Rivka; Nemirovsky, Jonathan; Segev, Mordechai
2012-04-20
We present the nondiffracting spatially accelerating solutions of the Maxwell equations. Such beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams to the full domain of the wave equation. For both TE and TM polarizations, the beams exhibit shape-preserving bending which can have subwavelength features, and the Poynting vector of the main lobe displays a turn of more than 90°. We show that these accelerating beams are self-healing, analyze their properties, and find the new class of accelerating breathers: self-bending beams of periodically oscillating shapes. Finally, we emphasize that in their scalar form, these beams are the exact solutions for nondispersive accelerating wave packets of the most common wave equation describing time-harmonic waves. As such, this work has profound implications to many linear wave systems in nature, ranging from acoustic and elastic waves to surface waves in fluids and membranes. PMID:22680719
NASA Astrophysics Data System (ADS)
Plotnikov, Illya; Vourlidas, Angelos; Tylka, Allan J.; Pinto, Rui; Rouillard, Alexis; Tirole, Margot
2016-07-01
Identifying the physical mechanisms that produce the most energetic particles is a long-standing observational and theoretical challenge in astrophysics. Strong pressure waves have been proposed as efficient accelerators both in the solar and astrophysical contexts via various mechanisms such as diffusive-shock/shock-drift acceleration and betatron effects. In diffusive-shock acceleration, the efficacy of the process relies on shock waves being super-critical or moving several times faster than the characteristic speed of the medium they propagate through (a high Alfven Mach number) and on the orientation of the magnetic field upstream of the shock front. High-cadence, multipoint imaging using the NASA STEREO, SOHO and SDO spacecrafts now permits the 3-D reconstruction of pressure waves formed during the eruption of coronal mass ejections. Using these unprecedented capabilities, some recent studies have provided new insights on the timing and longitudinal extent of solar energetic particles, including the first derivations of the time-dependent 3-dimensional distribution of the expansion speed and Mach numbers of coronal shock waves. We will review these recent developments by focusing on particle events that occurred between 2011 and 2015. These new techniques also provide the opportunity to investigate the enigmatic long-duration gamma ray events.
3D laboratory experiments on a system of low-crested breakwaters under oblique wave attack
NASA Astrophysics Data System (ADS)
Papacharalampous, Georgia; Karantinos, Michalis; Giantsi, Theodora; Moutzouris, Constantinos
2016-04-01
Low-crested breakwaters are being increasingly used for shore protection. Hydrodynamics around coastal structures are complicated and have not been fully understood. A series of large scale (1:40) 3D laboratory experiments were carried out in the Laboratory of Harbour Works, National Technical University of Athens to investigate the wave disturbance around a system of two non-parallel to the shoreline breakwaters. The structures were of the type of low-crested, permeable and attacked by obliquely incident waves. Three different water depths were tested in the basin with a range of various different spectra. The transmission and reflection coefficients were measured in the middle of each breakwater. For this purpose, 1 gauge and 4 gauges (in line) were placed on the landward and seaward side of each breakwater respectively. The effect of diffraction is incorporate at the measured wave heights. The measured coefficients are being compared to their corresponding estimated using existing empirical formulas. Most of those formulas neglect wave obliquity.
A remark on the Beale-Kato-Majda criterion for the 3D MHD equations with zero magnetic diffusivity
NASA Astrophysics Data System (ADS)
Gala, Sadek; Ragusa, Maria Alessandra
2016-06-01
In this work, we show that a smooth solution of the 3D MHD equations with zero magnetic diffusivity in the whole space ℝ3 breaks down if and only if a certain norm of the magnetic field blows up at the same time.
NASA Technical Reports Server (NTRS)
Kwak, D.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far
3D surface-wave tomography in the central Baltic Shield
NASA Astrophysics Data System (ADS)
Bruneton, M.; Pedersen, H. A.; Farra, V.; Svekalapko Seismic Tomography Working Group
2003-04-01
The main objective of the SVEKALAPKO deep seismic experiment was to image in details the lithosphere-asthenosphere system of the central Baltic Shield, therefore enhancing our knowledge of the structure and evolution of cratonic lithosphere. During the experiment a regular 2D grid of 46 broad-band stations covered the southern part of Finland. This exceptional stations distribution made it possible to undertake a high precision surface-wave tomography. We developed a technique based on paraxial ray tracing to obtain 2D phase-velocity maps as a function of frequency which can subsequently be inverted for the 3D structure. The major improvement is that we jointly inverted for the velocity model under the array and the shape of incoming wave fronts, therefore reducing artifacts due to structure outside the study region. The data set included carefully selected fundamental mode Rayleigh wave arrival times of 69 teleseismic events, computed using Wiener filtering. An average dispersion curve was obtained imposing the phase-velocity to be quasi constant. It leads to shear-wave velocities for the lithospheric mantle 4% faster than standard Earth model ak135. The inversion of the same data set was also conducted using weaker constraints to obtain the lateral variations of the phase-velocity at each frequency and subsequently of the shear-wave velocity as a function of depth. Three Vs profiles were computed respectively in the Karelian Archean province, in the Proterozoic Svekofennia, and at the suture between the two domains. They showed significant variations, the higher lithospheric velocities were seen in the proterozoic domain, a low velocity zone was necessary only in the suture zone. Our results showed that chemical changes are maintained within the lithosphere over extended periods of time.
System-in-package LTCC platform for 3D RF to millimeter wave
NASA Astrophysics Data System (ADS)
Vähä-Heikkilä, T.; Lahti, M.
2011-04-01
This presentation shows recent trends and results in 3D Low Temperature Co-Fired Ceramics (LTCC) modules in applications from RF to millimeter waves. The system-in-package LTCC platform is a true three dimensional module technology. LTCC is a lightweight multi-layer technology having typically 6-20 ceramic layers and metallizations between. The metallization levels i.e different metal layers can be patterned and connected together with metal vias. Passive devices can also be fabricated on LTCC while active devices and other chips are connected with flip-chip, wire bonding or soldering. In addition to passives directly fabricated to LTCC, several different technologies/ chips can be hybrid integrated to the same module. LTCC platform is also well suited for the realization of antenna arrays for microwave and millimeter wave applications. Potential applications are ranging from short range communications to space and radars. VTT has designed, fabricated and characterized microwave and millimeter wave packages for Radio Frequency (RF) Micro Electro Mechanical Systems (MEMS) as well as active devices. Also, several types of system-in-package modules have been realized containing hybrid integrated CMOS and GaAs MMICs and antenna arrays.
A 3D MPI-Parallel GPU-accelerated framework for simulating ocean wave energy converters
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2015-11-01
We present an MPI-parallel GPU-accelerated computational framework for studying the interaction between ocean waves and wave energy converters (WECs). The computational framework captures the viscous effects, nonlinear fluid-structure interaction (FSI), and breaking of waves around the structure, which cannot be captured in many potential flow solvers commonly used for WEC simulations. The full Navier-Stokes equations are solved using the two-step projection method, which is accelerated by porting the pressure Poisson equation to GPUs. The FSI is captured using the numerically stable fictitious domain method. A novel three-phase interface reconstruction algorithm is used to resolve three phases in a VOF-PLIC context. A consistent mass and momentum transport approach enables simulations at high density ratios. The accuracy of the overall framework is demonstrated via an array of test cases. Numerical simulations of the interaction between ocean waves and WECs are presented. Funding from the National Science Foundation CBET-1236462 grant is gratefully acknowledged.
Electronic representation of wave equation
NASA Astrophysics Data System (ADS)
Veigend, Petr; Kunovský, Jiří; Kocina, Filip; Nečasová, Gabriela; Šátek, Václav; Valenta, Václav
2016-06-01
The Taylor series method for solving differential equations represents a non-traditional way of a numerical solution. Even though this method is not much preferred in the literature, experimental calculations done at the Department of Intelligent Systems of the Faculty of Information Technology of TU Brno have verified that the accuracy and stability of the Taylor series method exceeds the currently used algorithms for numerically solving differential equations. This paper deals with solution of Telegraph equation using modelling of a series small pieces of the wire. Corresponding differential equations are solved by the Modern Taylor Series Method.
On the Global Regularity of a Helical-Decimated Version of the 3D Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Biferale, Luca; Titi, Edriss S.
2013-06-01
We study the global regularity, for all time and all initial data in H 1/2, of a recently introduced decimated version of the incompressible 3D Navier-Stokes (dNS) equations. The model is based on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace where helicity (the L 2-scalar product of velocity and vorticity) is sign-definite. The presence of a second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent to the H 1/2-Sobolev norm, allows us to demonstrate global existence and uniqueness, of space-periodic solutions, together with continuity with respect to the initial conditions, for this decimated 3D model. This is achieved thanks to the establishment of two new estimates, for this 3D model, which show that the H 1/2 and the time average of the square of the H 3/2 norms of the velocity field remain finite. Such two additional bounds are known, in the spirit of the work of H. Fujita and T. Kato (Arch. Ration. Mech. Anal. 16:269-315, 1964; Rend. Semin. Mat. Univ. Padova 32:243-260, 1962), to be sufficient for showing well-posedness for the 3D NS equations. Furthermore, they are directly linked to the helicity evolution for the dNS model, and therefore with a clear physical meaning and consequences.
3D P and S Wave Velocity Structure and Tremor Locations in the Parkfield Region
NASA Astrophysics Data System (ADS)
Zeng, X.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Cochran, E. S.; Harrington, R. M.
2014-12-01
We have assembled a new dataset to refine the 3D seismic velocity model in the Parkfield region. The S arrivals from 184 earthquakes recorded by the Parkfield Experiment to Record MIcroseismicity and Tremor array (PERMIT) during 2010-2011 were picked by a new S wave picker, which is based on machine learning. 74 blasts have been assigned to four quarries, whose locations were identified with Google Earth. About 1000 P and S wave arrivals from these blasts at permanent seismic network were also incorporated. Low frequency earthquakes (LFEs) occurring within non-volcanic tremor (NVT) are valuable for improving the precision of NVT location and the seismic velocity model at greater depths. Based on previous work (Shelley and Hardebeck, 2010), waveforms of hundreds of LFEs in same family were stacked to improve signal qualify. In a previous study (McClement et al., 2013), stacked traces of more than 30 LFE families at the Parkfileld Array Seismic Observatory (PASO) have been picked. We expanded our work to include LFEs recorded by the PERMIT array. The time-frequency Phase Weight Stacking (tf-PWS) method was introduced to improve the stack quality, as direct stacking does not produce clear S-wave arrivals on the PERMIT stations. This technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We found that it is extremely effective for picking LFE arrivals (Thurber et al., 2014). More than 500 P and about 1000 S arrivals from 58 LFE families were picked at the PERMIT and PASO arrays. Since the depths of LFEs are much deeper than earthquakes, we are able to extend model resolution to lower crustal depths. Both P and S wave velocity structure have been obtained with the tomoDD method. The result suggests that there is a low velocity zone (LVZ) in the lower crust and the location of the LVZ is consistent with the high conductivity zone beneath the southern segment of the Rinconada fault that
NASA Astrophysics Data System (ADS)
Bayrakci, Gaye; Minshull, Timothy A.; Davy, Richard G.; Karplus, Marianne S.; Kaeschen, Dirk; Papenberg, Cord; Krabbenhoeft, Anne; Sawyer, Dale; Reston, Timothy J.; Shillington, Donna J.; Ranero, César R.
2014-05-01
Galicia 3D, a reflection-refraction and long offset seismic experiment was carried out from May through September 2013, at the Galicia rifted margin (in the northeast Atlantic Ocean, west of Spain) as a collaboration between US, UK, German and Spanish groups. The 3D multichannel seismic acquisition conducted by R/V Marcus Langseth covered a 64 km by 20 km (1280 km2) zone where the main geological features are the Peridotite Ridge (PR), composed of serpentinized peridotite and thought be upper mantle exhumed to the seafloor during rifting, and the S reflector which has been interpreted to be a low angle detachment fault overlain by fault bounded, rotated, continental crustal blocks. In the 3D box, two airgun arrays of 3300 cu.in. were fired alternately (in flip-flop configuration) every 37.5 m. All shots are recorded by 44 short period four component ocean bottom seismometers (OBS) and 26 ocean bottom hydrophones (OBH) deployed and recovered by R/V Poseidon, as well as four 6 km hydrophone streamers with 12.5 m channel spacing towed by R/V Marcus Langseth. We present the preliminary results of the first arrival time tomography study which is carried out with a subset of the wide-angle dataset, in order to generate a 3D P-wave velocity volume for the entire depth sampled by the reflection data. After the relocation of OBSs and OBHs, an automatic first-arrival time picking approach is applied to a subset of the dataset, which comprises more than 5.5 million source-receiver pairs. Then, the first-arrival times are checked visually, in 3-dimensions. The a priori model used for the first-arrival time tomography is built up using information from previous seismic surveys carried out at the Galicia margin (e.g. ISE, 1997). The FAST algorithm of Zelt and Barton (1998) is used for the first-arrival time inversion. The 3D P-wave velocity volume can be used in interpreting the reflection dataset, as a starting point for migration, to quantify the thinning of the crustal layers
Effect of spatial dispersion on transient acoustic wave propagation in 3D.
Every, A G
2006-12-22
Spatial dispersion is the variation of wave speed with wavelength. It sets in when the acoustic wavelength approaches the natural scale of length of the medium, which could, for example, be the lattice constant of a crystal, the repeat distance in a superlattice, or the grain size in a granular material. In centrosymmetric media, the first onset of dispersion is accommodated by the introduction of fourth order spatial derivatives into the wave equation. These lead to a correction to the phase velocity which is quadratic in the spatial frequency. This paper treats the effect of spatial dispersion on the point force elastodynamic Green's functions of solids. The effects of dispersion are shown to be most pronounced in the vicinity of wave arrivals. These lose their singular form, and are transformed into wave trains known as quasi-arrivals. The step and ramp function wave arrivals are treated, and it is shown that their unfolded quasi-arrival forms can be expressed in terms of integrals involving the Airy function. PMID:16828830
On Blowup in Supercritical Wave Equations
NASA Astrophysics Data System (ADS)
Donninger, Roland; Schörkhuber, Birgit
2016-03-01
We study the blowup behavior for the focusing energy-supercritical semilinear wave equation in 3 space dimensions without symmetry assumptions on the data. We prove the stability in {H^2× H^1} of the ODE blowup profile.
Finite Element Code For 3D-Hydraulic Fracture Propagation Equations (3-layer).
1992-03-24
HYFRACP3D is a finite element program for simulation of a pseudo three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and winglength over time for a hydraulic fracture propagating in a three-layered system of rocks with variable rock mechanics properties.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)
2001-01-01
For the first time, a physics based computational model has been used to provide a direct description of the effects of the TWT (Traveling Wave Tube) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept amplitude and/or swept frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW (Signal Processing Worksystem).
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
Modeling Recent Large Earthquakes Using the 3-D Global Wave Field
NASA Astrophysics Data System (ADS)
Hjörleifsdóttir, V.; Kanamori, H.; Tromp, J.
2003-04-01
We use the spectral-element method (SEM) to accurately compute waveforms at periods of 40 s and longer for three recent large earthquakes using 3D Earth models and finite source models. The M_w~7.6, Jan~26, 2001, Bhuj, India event had a small rupture area and is well modeled at long periods with a point source. We use this event as a calibration event to investigate the effects of 3-D Earth models on the waveforms. The M_w~7.9, Nov~11, 2001, Kunlun, China, event exhibits a large directivity (an asymmetry in the radiation pattern) even at periods longer than 200~s. We used the source time function determined by Kikuchi and Yamanaka (2001) and the overall pattern of slip distribution determined by Lin et al. to guide the wave-form modeling. The large directivity is consistent with a long fault, at least 300 km, and an average rupture speed of 3±0.3~km/s. The directivity at long periods is not sensitive to variations in the rupture speed along strike as long as the average rupture speed is constant. Thus, local variations in rupture speed cannot be ruled out. The rupture speed is a key parameter for estimating the fracture energy of earthquakes. The M_w~8.1, March~25, 1998, event near the Balleny Islands on the Antarctic Plate exhibits large directivity in long period surface waves, similar to the Kunlun event. Many slip models have been obtained from body waves for this earthquake (Kuge et al. (1999), Nettles et al. (1999), Antolik et al. (2000), Henry et al. (2000) and Tsuboi et al. (2000)). We used the slip model from Henry et al. to compute SEM waveforms for this event. The synthetic waveforms show a good fit to the data at periods from 40-200~s, but the amplitude and directivity at longer periods are significantly smaller than observed. Henry et al. suggest that this event comprised two subevents with one triggering the other at a distance of 100 km. To explain the observed directivity however, a significant amount of slip is required between the two subevents
NASA Astrophysics Data System (ADS)
Zhdanov, M. S.; Cuma, M.; Black, N.; Wilson, G. A.
2009-12-01
The marine controlled source electromagnetic (MCSEM) method has become widely used in offshore oil and gas exploration. Interpretation of MCSEM data is still a very challenging problem, especially if one would like to take into account the realistic 3D structure of the subsurface. The inversion of MCSEM data is complicated by the fact that the EM response of a hydrocarbon-bearing reservoir is very weak in comparison with the background EM fields generated by an electric dipole transmitter in complex geoelectrical structures formed by a conductive sea-water layer and the terranes beneath it. In this paper, we present a review of the recent developments in the area of large-scale 3D EM forward modeling and inversion. Our approach is based on using a new integral form of Maxwell’s equations allowing for an inhomogeneous background conductivity, which results in a numerically effective integral representation for 3D EM field. This representation provides an efficient tool for the solution of 3D EM inverse problems. To obtain a robust inverse model of the conductivity distribution, we apply regularization based on a focusing stabilizing functional which allows for the recovery of models with both smooth and sharp geoelectrical boundaries. The method is implemented in a fully parallel computer code, which makes it possible to run large-scale 3D inversions on grids with millions of inversion cells. This new technique can be effectively used for active EM detection and monitoring of the subsurface targets.
NASA Astrophysics Data System (ADS)
Hu, Y.; Ji, Y.; Egbert, G. D.
2015-12-01
The fictitious time domain method (FTD), based on the correspondence principle for wave and diffusion fields, has been developed and used over the past few years primarily for marine electromagnetic (EM) modeling. Here we present results of our efforts to apply the FTD approach to land and airborne TEM problems which can reduce the computer time several orders of magnitude and preserve high accuracy. In contrast to the marine case, where sources are in the conductive sea water, we must model the EM fields in the air; to allow for topography air layers must be explicitly included in the computational domain. Furthermore, because sources for most TEM applications generally must be modeled as finite loops, it is useful to solve directly for the impulse response appropriate to the problem geometry, instead of the point-source Green functions typically used for marine problems. Our approach can be summarized as follows: (1) The EM diffusion equation is transformed to a fictitious wave equation. (2) The FTD wave equation is solved with an explicit finite difference time-stepping scheme, with CPML (Convolutional PML) boundary conditions for the whole computational domain including the air and earth , with FTD domain source corresponding to the actual transmitter geometry. Resistivity of the air layers is kept as low as possible, to compromise between efficiency (longer fictitious time step) and accuracy. We have generally found a host/air resistivity contrast of 10-3 is sufficient. (3)A "Modified" Fourier Transform (MFT) allow us recover system's impulse response from the fictitious time domain to the diffusion (frequency) domain. (4) The result is multiplied by the Fourier transformation （FT） of the real source current avoiding time consuming convolutions in the time domain. (5) The inverse FT is employed to get the final full waveform and full time response of the system in the time domain. In general, this method can be used to efficiently solve most time-domain EM
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
Viscous Boussinesq equations for internal waves
NASA Astrophysics Data System (ADS)
Liu, Chi-Min
2016-04-01
In this poster, Boussinesq wave equations for internal wave propagation in a two-fluid system bounded by two impermeable plates are derived and analyzed. Using the perturbation method as well as the Padé approximation, a set of three equations accurate up to the fourth order are derived and displayed by three unknowns: the interfacial elevation, upper and lower velocity potentials at arbitrary vertical positions. No limitation on nonlinearity is made while weakly dispersive effects are originally considered in the derivation. The derived equations are examined by comparing its dispersion relation with those of existing models to verify the accuracy. The results show that present model equations provide an excellent base for simulating internal waves not only in shallower configuration but also medium configuration.
Quantitative analysis of accuracy of seismic wave-propagation codes in 3D random scattering media
NASA Astrophysics Data System (ADS)
Galis, Martin; Imperatori, Walter; Mai, P. Martin
2013-04-01
Several recent verification studies (e.g. Day et al., 2001; Bielak et al., 2010, Chaljub et al., 2010) have demonstrated the importance of assessing the accuracy of available numerical tools at low frequency in presence of large-scale features (basins, topography, etc.). The fast progress in high-performance computing, including efficient optimization of numerical codes on petascale supercomputers, has permitted the simulation of 3D seismic wave propagation at frequencies of engineering interest (up to 10Hz) in highly heterogeneous media (e.g. Hartzell et al, 2010; Imperatori and Mai, 2013). However, high frequency numerical simulations involving random scattering media, characterized by small-scale heterogeneities, are much more challenging for most numerical methods, and their verification may therefore be even more crucial than in the low-frequency case. Our goal is to quantitatively compare the accuracy and the behavior of three different numerical codes for seismic wave propagation in 3D random scattering media at high frequency. We deploy a point source with omega-squared spectrum, and focus on the near-source region, being of great interest in strong motion seismology. We use two codes based on finite-difference method (FD1 and FD2) and one code based on support-operator method (SO). Both FD1 and FD2 are 4-th order staggered-grid finite-difference codes (for FD1 see Olsen et al., 2009; for FD2 see Moczo et al., 2007). The FD1 and FD2 codes are characterized by slightly different medium representations, since FD1 uses point values of material parameters in each FD-cell, while FD2 uses the effective material parameters at each grid-point (Moczo et al., 2002). SO is 2-nd order support-operator method (Ely et al., 2008). We considered models with random velocity perturbations described by van Karman correlation function with different correlation lengths and different standard deviations. Our results show significant variability in both phase and amplitude as
Anomalously low amplitude of S waves produced by the 3D structures in the lower mantle
NASA Astrophysics Data System (ADS)
To, Akiko; Capdeville, Yann; Romanowicz, Barbara
2016-07-01
Direct S and Sdiff phases with anomalously low amplitudes are recorded for the earthquakes in Papua New Guinea by seismographs in northern America. According to the prediction by a standard 1D model, the amplitudes are the lowest at stations in southern California, at a distance and azimuth of around 95° and 55°, respectively, from the earthquake. The amplitude anomaly is more prominent at frequencies higher than 0.03 Hz. We checked and ruled out the possibility of the anomalies appearing because of the errors in the focal mechanism used in the reference synthetic waveform calculations. The observed anomaly distribution changes drastically with a relatively small shift in the location of the earthquake. The observations indicate that the amplitude reduction is likely due to the 3D shear velocity (Vs) structure, which deflects the wave energy away from the original ray paths. Moreover, some previous studies suggested that some of the S and Sdiff phases in our dataset are followed by a prominent postcursor and show a large travel time delay, which was explained by placing a large ultra-low velocity zone (ULVZ) located on the core-mantle boundary southwest of Hawaii. In this study, we evaluated the extent of amplitude anomalies that can be explained by the lower mantle structures in the existing models, including the previously proposed ULVZ. In addition, we modified and tested some models and searched for the possible causes of low amplitudes. Full 3D synthetic waveforms were calculated and compared with the observations. Our results show that while the existing models explain the trends of the observed amplitude anomalies, the size of such anomalies remain under-predicted especially at large distances. Adding a low velocity zone, which is spatially larger and has less Vs reduction than ULVZ, on the southwest side of ULVZ, contributes to explain the low amplitudes observed at distances larger than 100° from the earthquake. The newly proposed low velocity zone
NASA Astrophysics Data System (ADS)
Polkowski, Marcin; Grad, Marek
2015-04-01
The 3D P-wave seismic velocity model was obtained by combining data from multiple studies during past 50 years. Data sources included refraction seismology, reflection seismology, geological boreholes, vertical seismic profiling, magnetotellurics and gravimetry. Use of many data sources allowed creation of detailed 3D P-wave velocity model that reaches to depth of 60 km and includes 6-layers of sediments and 3-layers of the crust. Purpose of this study is to analyze how 3D model influences local (accuracy of location and source time estimation for local events), regional (identification of wide-angle seismic phases) and global (teleseismic tomography) seismic travel times. Additionally we compare results of forward seismic wave propagation with signals observed on short period and broadband stations. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
Exact and explicit solitary wave solutions to some nonlinear equations
Jiefang Zhang
1996-08-01
Exact and explicit solitary wave solutions are obtained for some physically interesting nonlinear evolutions and wave equations in physics and other fields by using a special transformation. These equations include the KdV-Burgers equation, the MKdV-Burgers equation, the combined KdV-MKdV equation, the Newell-Whitehead equation, the dissipative {Phi}{sup 4}-model equation, the generalized Fisher equation, and the elastic-medium wave equation.
3D Anisotropic structure of the south-central Mongolia from Rayleigh and Love wave tomography
NASA Astrophysics Data System (ADS)
Yu, D.; Wu, Q.; Montagner, J. P.
2014-12-01
A better understanding of the geodynamics of the crust and mantle below Baikal-Mongolia is required to identify the role of mantle processes versus that of far-field tectonic effects from India-Asia collision. Anisotropy tomography can provide new perspective to the continental growth mechanism. In order to study the 3D anisotropic structure of the upper mantle in the south-central Mongolia, we collected the vertical and transverse components of seismograms recorded at 69 broadband seismic stations. We have measured inter-station phase velocities of 7181 Rayleigh waves and 901 Love waves using the frequency-time analysis of wavelet transformation method for the fundamental mode at period range 10~80s. The lateral phase velocity variations are computed by using a regionalization method. These phase velocities have been inverted to obtain the first anisotropic model including Sv velocities, azimuthal and radial anisotropy. The Middle Gobi is associated with low velocity. Based on the distribution of the Cenozoic basalts in the Middle Gobi, it refers that the low velocity anomaly is related to the Cenozoic volcanism. In the northern domain, near to Baikal zone, the azimuthal anisotropy is normal to the Baikal rift and consistent with the fast direction of previous SKS splitting measurements. In the South Gobi, north to Main Mongolian Lineament, the azimuthal anisotropy is NEE-SWW in the crust and NW-SE in the mantle. It indicates that the crust and mantle are decoupled. We propose that the crustal deformation is related to the far-field effects of India-Asia collision and that the mantle flow is correlated with the Baikal rift activity. Further study in process will provide more evidence and insight to better understand the geodynamics in this region.
Cauchy's almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow
NASA Astrophysics Data System (ADS)
Frisch, Uriel; Villone, Barbara
2014-09-01
Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to Göttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy's formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy's invariants were only occasionally cited in the 19th century - besides Hankel, foremost by George Stokes and Maurice Lévy - and even less so in the 20th until they were rediscovered via Emmy Noether's theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.
Helical localized wave solutions of the scalar wave equation.
Overfelt, P L
2001-08-01
A right-handed helical nonorthogonal coordinate system is used to determine helical localized wave solutions of the homogeneous scalar wave equation. Introducing the characteristic variables in the helical system, i.e., u = zeta - ct and v = zeta + ct, where zeta is the coordinate along the helical axis, we can use the bidirectional traveling plane wave representation and obtain sets of elementary bidirectional helical solutions to the wave equation. Not only are these sets bidirectional, i.e., based on a product of plane waves, but they may also be broken up into right-handed and left-handed solutions. The elementary helical solutions may in turn be used to create general superpositions, both Fourier and bidirectional, from which new solutions to the wave equation may be synthesized. These new solutions, based on the helical bidirectional superposition, are members of the class of localized waves. Examples of these new solutions are a helical fundamental Gaussian focus wave mode, a helical Bessel-Gauss pulse, and a helical acoustic directed energy pulse train. Some of these solutions have the interesting feature that their shape and localization properties depend not only on the wave number governing propagation along the longitudinal axis but also on the normalized helical pitch. PMID:11488494
Characterization of an SRF gun: a 3D full wave simulation
Wang, E.; Ben-Zvi, I.; Wang, J.
2011-03-28
We characterized a BNL 1.3GHz half-cell SRF gun is tested for GaAs photocathode. The gun already was simulated several years ago via two-dimensional (2D) numerical codes (i.e., Superfish and Parmela) with and without the beam. In this paper, we discuss our investigation of its characteristics using a three dimensional (3D) full-wave code (CST STUDIO SUITE{trademark}).The input/pickup couplers are sited symmetrically on the same side of the gun at an angle of 180{sup o}. In particular, the inner conductor of the pickup coupler is considerably shorter than that of the input coupler. We evaluated the cross-talk between the beam (trajectory) and the signal on the input coupler compared our findings with published results based on analytical models. The CST STUDIO SUITE{trademark} also was used to predict the field within the cavity; particularly, a combination of transient/eigenmode solvers was employed to accurately construct the RF field for the particles, which also includes the effects of the couplers. Finally, we explored the beam's dynamics with a particle in cell (PIC) simulation, validated the results and compare them with 2D code result.
Understanding the core-halo relation of quantum wave dark matter from 3D simulations.
Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy
2014-12-31
We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22) eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60 pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars. PMID:25615301
A lattice-Boltzmann scheme of the Navier-Stokes equations on a 3D cuboid lattice
NASA Astrophysics Data System (ADS)
Min, Haoda; Peng, Cheng; Wang, Lian-Ping
2015-11-01
The standard lattice-Boltzmann method (LBM) for fluid flow simulation is based on a square (in 2D) or cubic (in 3D) lattice grids. Recently, two new lattice Boltzmann schemes have been developed on a 2D rectangular grid using the MRT (multiple-relaxation-time) collision model, by adding a free parameter in the definition of moments or by extending the equilibrium moments. Here we developed a lattice Boltzmann model on 3D cuboid lattice, namely, a lattice grid with different grid lengths in different spatial directions. We designed our MRT-LBM model by matching the moment equations from the Chapman-Enskog expansion with the Navier-Stokes equations. The model guarantees correct hydrodynamics. A second-order term is added to the equilibrium moments in order to restore the isotropy of viscosity on a cuboid lattice. The form and the coefficients of the extended equilibrium moments are determined through an inverse design process. An additional benefit of the model is that the viscosity can be adjusted independent of the stress-moment relaxation parameter, thus improving the numerical stability of the model. The resulting cuboid MRT-LBM model is then validated through benchmark simulations using laminar channel flow, turbulent channel flow, and the 3D Taylor-Green vortex flow.
The point-source method for 3D reconstructions for the Helmholtz and Maxwell equations
NASA Astrophysics Data System (ADS)
Ben Hassen, M. F.; Erhard, K.; Potthast, R.
2006-02-01
We use the point-source method (PSM) to reconstruct a scattered field from its associated far field pattern. The reconstruction scheme is described and numerical results are presented for three-dimensional acoustic and electromagnetic scattering problems. We give new proofs of the algorithms, based on the Green and Stratton-Chu formulae, which are more general than with the former use of the reciprocity relation. This allows us to handle the case of limited aperture data and arbitrary incident fields. Both for 3D acoustics and electromagnetics, numerical reconstructions of the field for different settings and with noisy data are shown. For shape reconstruction in acoustics, we develop an appropriate strategy to identify areas with good reconstruction quality and combine different such regions into one joint function. Then, we show how shapes of unknown sound-soft scatterers are found as level curves of the total reconstructed field.
Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
NASA Astrophysics Data System (ADS)
Lee, H.; Min, D.; Lim, S.; Yang, J.; Kwon, B.; Yoo, H.
2009-12-01
In a conventional marine seismic data analysis, pressure data have been usually interpreted on the basis of acoustic wave equation. The acoustic wave equation, however, only deals with P-wave propagation, and it cannot correctly describe the wave propagation in acoustic-elastic (fluid-solid) coupled media. Recently, in 4C OBC survey (4-component ocean bottom cable), it is possible to acquire both pressure and 3-component displacements (measured at the sea-bottom). Combining pressure and displacement data allows us to interpret subsurface structures more accurately. In order to accurately simulate wave propagation in fluid-solid coupled media, we need an acoustic-elastic coupled modeling algorithm, which deals with displacements in elastic region and pressure in acoustic region. For waveform inversion and reverse-time migration that require a great number of forward modeling, it is essential to develop an efficient scheme that reduces computing time and computer core memory. In this study, we present a 3D time-domain acoustic-elastic coupled modeling algorithm on the basis of the cell-based finite difference method. The cell-based method has proven to properly describe the free-surface boundary, which indicates that it will also properly describe the fluid-solid interface boundaries. In the acoustic-elastic coupled modeling, we first compose cell-based finite differences individually for the 3D acoustic and elastic media, and then combine the differences using the fluid-solid interface boundary conditions. Considering that the 2D acoustic-elastic coupled modeling algorithm gives numerical solutions comparable to analytic solutions, we expect that the 3D acoustic-elastic coupled modeling will correctly describe wave propagation in the fluid-solid coupled media. We apply our algorithm to 3D horizontal two- and three-layer models. Numerical experiments show that the cell-based coupled modeling algorithm properly describes S- and converted waves as well as P-waves. The
Scattering and coupling effects of electromagnetic waves in 3D networks of spheres
NASA Astrophysics Data System (ADS)
Defos Du Rau, M.; Pessan, F.; Ruffie, G.; Vignéras-Lefebvre, V.; Parneix, J. P.
1998-01-01
In this paper, the problem of electromagnetic scattering from a 3D system of spheres is considered and an iterative solution that accounts for multiple scattering is proposed. The Mie formalism used for a single sphere is extended to account for multiple scattered fields between several particles. The translational addition theorems for spherical wave functions are used to express the electromagnetic field scattered by a sphere S_i in terms of an incident field for a sphere S_k in a spherical coordinates system attached to the sphere S_k. In this work, the numerical convergence of the method is discussed and associated computational times are given. Numerical computations including Radar Cross Section (RCS) and radiation patterns for various 3D configurations are presented. Some of them are compared with free-space measurements made in the 8 to 100 GHz frequency band using vectorial network analyzers. 11.55.-m S-matrix theory; analytic structure of amplitudes Cet article étudie la diffusion des ondes électromagnétiques par des réseaux tridimensionnels de sphères et propose une méthode itérative pour prendre en compte les effets de multidiffusion. Le formalisme de Mie utilisé dans le cas d'une sphère est étendu pour calculer les champs "multidiffusés" entre plusieurs particules. Les théorèmes d'addition et de translation des fonctions d'onde sphériques sont utilisés pour exprimer le champ diffusé par une sphère S_i comme étant incident sur une sphère S_k, dans un système de coordonnées sphériques lié au centre de S_k. La convergence numérique de la méthode est discutée et des temps de calcul sont donnés. Des résultats numériques tels que des Surfaces Équivalentes Radar (SER) et des diagrammes de rayonnement pour différentes configurations tridimensionnelles sont montrés. Certains d'entre eux sont comparés à des mesures en espace libre faites à l'aide d'analyseurs de réseaux vectoriels dans la bande de fréquence 8{-}100 GHz.
NASA Astrophysics Data System (ADS)
Mulder, W. A.; Zhebel, E.; Minisini, S.
2014-02-01
We analyse the time-stepping stability for the 3-D acoustic wave equation, discretized on tetrahedral meshes. Two types of methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method. Combining the spatial discretization with the leap-frog time-stepping scheme, which is second-order accurate and conditionally stable, leads to a fully explicit scheme. We provide estimates of its stability limit for simple cases, namely, the reference element with Neumann boundary conditions, its distorted version of arbitrary shape, the unit cube that can be partitioned into six tetrahedra with periodic boundary conditions and its distortions. The Courant-Friedrichs-Lewy stability limit contains an element diameter for which we considered different options. The one based on the sum of the eigenvalues of the spatial operator for the first-degree mass-lumped element gives the best results. It resembles the diameter of the inscribed sphere but is slightly easier to compute. The stability estimates show that the mass-lumped continuous and the discontinuous Galerkin finite elements of degree 2 have comparable stability conditions, whereas the mass-lumped elements of degree one and three allow for larger time steps.
Gabor Wave Packet Method to Solve Plasma Wave Equations
A. Pletzer; C.K. Phillips; D.N. Smithe
2003-06-18
A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach.
Space–time fractional Zener wave equation
Atanackovic, T.M.; Janev, M.; Oparnica, Lj.; Pilipovic, S.; Zorica, D.
2015-01-01
The space–time fractional Zener wave equation, describing viscoelastic materials obeying the time-fractional Zener model and the space-fractional strain measure, is derived and analysed. This model includes waves with finite speed, as well as non-propagating disturbances. The existence and the uniqueness of the solution to the generalized Cauchy problem are proved. Special cases are investigated and numerical examples are presented. PMID:25663807
SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES
John Beecherl; Bob A. Hardage
2004-07-01
The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than do
On Energy Cascades in the Forced 3D Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Dascaliuc, R.; Grujić, Z.
2016-02-01
We show—in the framework of physical scales and (K_1,K_2) -averages—that Kolmogorov's dissipation law combined with the smallness condition on a Taylor length scale is sufficient to guarantee energy cascades in the forced Navier-Stokes equations. Moreover, in the periodic case we establish restrictive scaling laws—in terms of Grashof number—for kinetic energy, energy flux, and energy dissipation rate. These are used to improve our sufficient condition for forced cascades in physical scales.
On Energy Cascades in the Forced 3D Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Dascaliuc, R.; Grujić, Z.
2016-06-01
We show—in the framework of physical scales and (K_1,K_2)-averages—that Kolmogorov's dissipation law combined with the smallness condition on a Taylor length scale is sufficient to guarantee energy cascades in the forced Navier-Stokes equations. Moreover, in the periodic case we establish restrictive scaling laws—in terms of Grashof number—for kinetic energy, energy flux, and energy dissipation rate. These are used to improve our sufficient condition for forced cascades in physical scales.
Calculations of separated 3-D flows with a pressure-staggered Navier-Stokes equations solver
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1991-01-01
A Navier-Stokes equations solver based on a pressure correction method with a pressure-staggered mesh and calculations of separated three-dimensional flows are presented. It is shown that the velocity pressure decoupling, which occurs when various pressure correction algorithms are used for pressure-staggered meshes, is caused by the ill-conditioned discrete pressure correction equation. The use of a partial differential equation for the incremental pressure eliminates the velocity pressure decoupling mechanism by itself and yields accurate numerical results. Example flows considered are a three-dimensional lid driven cavity flow and a laminar flow through a 90 degree bend square duct. For the lid driven cavity flow, the present numerical results compare more favorably with the measured data than those obtained using a formally third order accurate quadratic upwind interpolation scheme. For the curved duct flow, the present numerical method yields a grid independent solution with a very small number of grid points. The calculated velocity profiles are in good agreement with the measured data.
NASA Astrophysics Data System (ADS)
Tong, Ping; Komatitsch, Dimitri; Tseng, Tai-Lin; Hung, Shu-Huei; Chen, Chin-Wu; Basini, Piero; Liu, Qinya
2014-10-01
We present a three-dimensional (3-D) hybrid method that interfaces the spectral-element method (SEM) with the frequency-wave number (FK) technique to model the propagation of teleseismic plane waves beneath seismic arrays. The accuracy of the resulting 3-D SEM-FK hybrid method is benchmarked against semianalytical FK solutions for 1-D models. The accuracy of 2.5-D modeling based on 2-D SEM-FK hybrid method is also investigated through comparisons to this 3-D hybrid method. Synthetic examples for structural models of the Alaska subduction zone and the central Tibet crust show that this method is capable of accurately capturing interactions between incident plane waves and local heterogeneities. This hybrid method presents an essential tool for the receiver function and scattering imaging community to verify and further improve their techniques. These numerical examples also show the promising future of the 3-D SEM-FK hybrid method in high-resolution regional seismic imaging based on waveform inversions of converted/scattered waves recorded by seismic array.
Dispersion equation of gravito-MHD waves
NASA Astrophysics Data System (ADS)
Jovanović, Gordana
2016-03-01
We derive the dispersion equation for gravito-MHD waves in an isothermal, gravitationally stratified plasma with a horizontal inhomogeneous magnetic field. In the present model the sound and the Alfvén speeds are constant. It is known that in this model analytical solutions can be obtained for linearized perturbations. There are three modes propagating in the considered plasma: the fast, the slow and the Alfvén mode, all modified by gravity. In the extreme short wavelength limit, these waves propagate in a locally uniform plasma. The waves with larger wavelengths will be affected by the nonuniformity of the medium resulting from the action of gravitational force ρg. In the case without magnetic field these waves become gravito-acoustic waves.
Singular boundary method using time-dependent fundamental solution for scalar wave equations
NASA Astrophysics Data System (ADS)
Chen, Wen; Li, Junpu; Fu, Zhuojia
2016-07-01
This study makes the first attempt to extend the meshless boundary-discretization singular boundary method (SBM) with time-dependent fundamental solution to two-dimensional and three-dimensional scalar wave equation upon Dirichlet boundary condition. The two empirical formulas are also proposed to determine the source intensity factors. In 2D problems, the fundamental solution integrating along with time is applied. In 3D problems, a time-successive evaluation approach without complicated mathematical transform is proposed. Numerical investigations show that the present SBM methodology produces the accurate results for 2D and 3D time-dependent wave problems with varied velocities c and wave numbers k.
Approximate analytical time-domain Green's functions for the Caputo fractional wave equation.
Kelly, James F; McGough, Robert J
2016-08-01
The Caputo fractional wave equation [Geophys. J. R. Astron. Soc. 13, 529-539 (1967)] models power-law attenuation and dispersion for both viscoelastic and ultrasound wave propagation. The Caputo model can be derived from an underlying fractional constitutive equation and is causal. In this study, an approximate analytical time-domain Green's function is derived for the Caputo equation in three dimensions (3D) for power law exponents greater than one. The Green's function consists of a shifted and scaled maximally skewed stable distribution multiplied by a spherical spreading factor 1/(4πR). The approximate one dimensional (1D) and two dimensional (2D) Green's functions are also computed in terms of stable distributions. Finally, this Green's function is decomposed into a loss component and a diffraction component, revealing that the Caputo wave equation may be approximated by a coupled lossless wave equation and a fractional diffusion equation. PMID:27586735
Controlled-aperture wave-equation migration
Huang, L.; Fehler, Michael C.; Sun, H.; Li, Z.
2003-01-01
We present a controlled-aperture wave-equation migration method that no1 only can reduce migration artiracts due to limited recording aperlurcs and determine image weights to balance the efl'ects of limited-aperture illumination, but also can improve thc migration accuracy by reducing the slowness perturbations within thc controlled migration regions. The method consists of two steps: migration aperture scan and controlled-aperture migration. Migration apertures for a sparse distribution of shots arc determined using wave-equation migration, and those for the other shots are obtained by interpolation. During the final controlled-aperture niigration step, we can select a reference slowness in c;ontrollecl regions of the slowness model to reduce slowncss perturbations, and consequently increase the accuracy of wave-equation migration inel hods that makc use of reference slownesses. In addition, the computation in the space domain during wavefield downward continuation is needed to be conducted only within the controlled apertures and therefore, the computational cost of controlled-aperture migration step (without including migration aperture scan) is less than the corresponding uncontrolled-aperture migration. Finally, we can use the efficient split-step Fourier approach for migration-aperture scan, then use other, more accurate though more expensive, wave-equation migration methods to perform thc final controlled-apertio.ee migration to produce the most accurate image.
NASA Astrophysics Data System (ADS)
Green, A.; Gribenko, A.; Cuma, M.; Zhdanov, M. S.
2008-12-01
In this paper we apply 3D inversion to MT data collected in Oregon as a part of the EarthScope project. We use the integral equation method as a forward modeling engine. Quasi-analytical approximation with a variable background (QAVB) method of Frechet derivative calculation is applied. This technique allows us to simplify the inversion algorithm and to use just one forward modeling on every iteration step. The receiver footprint approach considerably reduces the computational resources needed to invert the large volumes of data covering vast areas. The data set, which was used in the inversion, was obtained through the Incorporated Research Institutions for Seismology (IRIS). The long-period MT data was collected in Eastern Oregon in 2006. The inverted electrical conductivity distribution agrees reasonably well with geological features of the region as well as with 3D MT inversion results obtained by other researchers. The geoelectrical model of the Oregon deep interior produced by 3D inversion indicates several lithospheres' electrical conductivity anomalies, including a linear zone marked by low-high conductivity transition along the Klamath Blue Mountain Lineament associated with a linear trend of gravity minima. High electrical conductivity values occur in the upper crust under the accreted terrains in the Blue Mountains region.
3D Hot Test Simulations of a 220 GHz Folded Waveguide Traveling Wave Tube Using a CFDTD PIC Method
NASA Astrophysics Data System (ADS)
Lin, Ming-Chieh; Song, Heather
2015-11-01
Millimeter or sub-THz wave sources centered at 220 GHz is of interest due to the potential for its commercial and military applications including high resolution radar, remote sensing, and high-data-rate communications. It has been demonstrated via 3D cold test finite element method (FEM) simulations that a folded waveguide traveling wave tube (FWTWT) can be designed and optimized at this frequency range with a small signal gain of 18 dB over a comparatively broad (-3 dB) bandwidth of ~ 10%. On the other hand, 3D hot test simulations of a V-band ladder TWT have been successfully demonstrated using a conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method for center frequency of 50 GHz. In the present work, the 220 GHz FWTWT designs have been reviewed and studied. 3D Cold test simulations using both the CFDTD and FEM methods have been carried out and compared with each other as basis for 3D hot test CFDTD PIC simulations. The preliminary simulation result shows that the gain-bandwidth features at 220 GHz are achievable while carefully avoiding beam interceptions. Our study shows that the interaction characteristics are very sensitive to the operating beam parameters. Detail simulation results and discussions will be presented.
Local existence and Gevrey regularity of 3-D Navier-Stokes equations with ℓp initial data
NASA Astrophysics Data System (ADS)
Biswas, Animikh
We obtain local existence and Gevrey regularity of 3-D periodic Navier-Stokes equations in case the sequence of Fourier coefficients of the initial data is in ℓp (p<3/2). The ℓp norm of the sequence of Fourier coefficients of the solution and its analogous Gevrey norm remains bounded on a time interval whose length depends only on the size of the body force and the ℓp norm of the Fourier coefficient sequence of the initial data. The control on the Gevrey norm produces explicit estimates on the analyticity radius of the solution as in Foias and Temam (J. Funct. Anal. 87 (1989) 359-369). The results provide an alternate approach in estimating the space-analyticity radius of solutions to Navier-Stokes equations than the one presented by Grujić and Kukavica (J. Funct. Anal. 152 (1998) 447-466).
Recent advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Wedan, Bruce W.; Abid, Ridha
1989-01-01
A thin-layer Navier-Stokes has been developed for solving high Reynolds number, turbulent flows past aircraft components under transonic flow conditions. The computer code has been validated through data comparisons for flow past isolated wings, wing-body configurations, prolate spheroids and wings mounted inside wind-tunnels. The basic code employs an explicit Runge-Kutta time-stepping scheme to obtain steady state solution to the unsteady governing equations. Significant gain in the efficiency of the code has been obtained by implementing a multigrid acceleration technique to achieve steady-state solutions. The improved efficiency of the code has made it feasible to conduct grid-refinement and turbulence model studies in a reasonable amount of computer time. The non-equilibrium turbulence model of Johnson and King has been extended to three-dimensional flows and excellent agreement with pressure data has been obtained for transonic separated flow over a transport type of wing.
Absence of Critical Points of Solutions to the Helmholtz Equation in 3D
NASA Astrophysics Data System (ADS)
Alberti, Giovanni S.
2016-05-01
The focus of this paper is to show the absence of critical points for the solutions to the Helmholtz equation in a bounded domain {Ωsubset{R}3} , given by div(a nabla u_{ω}g)-ω qu_{ω}g=0&quad {in Ω,} u_{ω}g=g&quad{on partialΩ.} We prove that for an admissible g there exists a finite set of frequencies K in a given interval and an open cover {overline{Ω}=\\cup_{ωin K} Ω_{ω}} such that {|nabla u_{ω}g(x)| > 0} for every {ωin K} and {xinΩ_{ω}} . The set K is explicitly constructed. If the spectrum of this problem is simple, which is true for a generic domain {Ω} , the admissibility condition on g is a generic property.
Statistical shape analysis using 3D Poisson equation-A quantitatively validated approach.
Gao, Yi; Bouix, Sylvain
2016-05-01
Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. PMID:26874288
On the Helicity in 3D-Periodic Navier-Stokes Equations II: The Statistical Case
NASA Astrophysics Data System (ADS)
Foias, Ciprian; Hoang, Luan; Nicolaenko, Basil
2009-09-01
We study the asymptotic behavior of the statistical solutions to the Navier-Stokes equations using the normalization map [9]. It is then applied to the study of mean energy, mean dissipation rate of energy, and mean helicity of the spatial periodic flows driven by potential body forces. The statistical distribution of the asymptotic Beltrami flows are also investigated. We connect our mathematical analysis with the empirical theory of decaying turbulence. With appropriate mathematically defined ensemble averages, the Kolmogorov universal features are shown to be transient in time. We provide an estimate for the time interval in which those features may still be present. Our collaborator and friend Basil Nicolaenko passed away in September of 2007, after this work was completed. Honoring his contribution and friendship, we dedicate this article to him.
A Laplacian Equation Method for Numerical Generation of Boundary-Fitted 3D Orthogonal Grids
NASA Astrophysics Data System (ADS)
Theodoropoulos, T.; Bergeles, G. C.
1989-06-01
A sethod for generating boundary fitted orthogonal curvilinear grids in 3-dimensional space is described. The mapping between the curvilinear coordinates and the Cartesian coordinates is provided by a set of Laplace equations which, expressed in curvilinear coordinates, involve the components of the metric tensor and are therefore non-linear and coupled. An iterative algorithm is described, which achieves a numerical solution. Grids appropriate for the calculation of flow fields over complex topography or in complex flow passages as those found in turbomachinery, and for other engineering applications can be constructed using the proposed method. Various examples are presented and plotted in perspective, and data for the assessment of the properties of the resulting meshes is provided.
Ultra Deep Wave Equation Imaging and Illumination
Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu
2006-09-30
In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).
3D millimeter wave imaging of vertical cracks and its application for the inspection of HDPE pipes
NASA Astrophysics Data System (ADS)
Ghasr, Mohammad Tayeb; Ying, Kuang; Zoughi, Reza
2014-02-01
Robust detection of vertical cracks in high-density polyethylene (HDPE) pipes is a challenging task for the majority of nondestructive testing (NDT) techniques. Vertical cracks are specifically referred to those whose largest planar view is parallel to the signal direction of propagation, leaving very little signal to be scattered for detection. In such pipes this commonly occurs between two pipes sections when thermally or adhesively joined. This work presents the utility and efficacy of three-dimensional (3D) millimeter wave holographical imaging based on synthetic aperture radar (SAR) algorithm for imaging such cracks. Such a 3D millimeter wave image can readily represent the type, size, and location of various flaws within a structure. Two-dimensional (2D) slices of the 3D image, at different orientations, can also be readily produced showing the cross-sectional views of the structure and flaws, further aiding in identifying, and sizing a flaw or vertical crack. Imaging results for planner and curved (pipe section) specimen with machined flaws are presented. These images are produced using a novel field-portable, small, and low-cost wideband millimeter-wave reflectometer capable of rapid 3D image production.
NASA Technical Reports Server (NTRS)
Temmer, M.; Veronig, A. M.; Gopalswamy, N.; Yashiro, S.
2011-01-01
We study the kinematical characteristics and 3D geometry of a large-scale coronal wave that occurred in association with the 26 April 2008 flare-CME event. The wave was observed with the EUVI instruments aboard both STEREO spacecraft (STEREO-A and STEREO-B) with a mean speed of approx 240 km/s. The wave is more pronounced in the eastern propagation direction, and is thus, better observable in STEREO-B images. From STEREO-B observations we derive two separate initiation centers for the wave, and their locations fit with the coronal dimming regions. Assuming a simple geometry of the wave we reconstruct its 3D nature from combined STEREO-A and STEREO-B observations. We find that the wave structure is asymmetric with an inclination toward East. The associated CME has a deprojected speed of approx 750 +/- 50 km/s, and it shows a non-radial outward motion toward the East with respect to the underlying source region location. Applying the forward fitting model developed by Thernisien, Howard, and Vourlidas we derive the CME flux rope position on the solar surface to be close to the dimming regions. We conclude that the expanding flanks of the CME most likely drive and shape the coronal wave.
Calculation of a simulated 3-D high speed inlet using the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Knight, D. D.
1983-01-01
A hybrid numerical algorithm, developed to solve the full three-dimensional Navier-Stokes equations, is applied to the computation of the flowfield in a simulated three-dimensional high speed aircraft inlet at a Mach number of 2.5 and Reynolds number of 1.4 x 10 to the 7th based on inlet length. The numerical algorithm incorporates a coordinate transformation in order to handle general flow geometries, and utilizes the algebraic turbulent eddy viscosity model of Baldwin and Lomax. The hybrid algorithm has been vectorized on the CDC CYBER 203 computer using the SL/1 vector programming language developed at NASA Langley. The computed results are compared with experimental measurements of the ramp and cowl static pressures, and boundary layer pitot profiles. The results are also compared with a previous two-dimensional Navier-Stokes computation of the same configuration. The agreement with the experimental data is generally good; however, additional improvements in turbulence modeling are needed.
A New Global Model for 3-D variations in P Wave Speed in Earth's Mantle
NASA Astrophysics Data System (ADS)
Karason, H.; van der Hilst, R. D.; Li, C.
2003-12-01
In an effort to improve the resolution of mantle structure we have combined complementary data sets of short- and long period (absolute and differential) travel time residuals. Our new model is based on short period P (N\\~7.7x10**6), pP (N\\~2.3x10**5), and PKP (N\\~16x10**4) data from the catalog by Engdahl et al (BSSA, 1998), short-period PKP differential times (N\\~1600) measured by McSweeney & Creager, and long-period differential PP-P times - N\\~20,000 measured by Bolton & Masters and N\\~18,000 by Ritsema - and Pdiff-PKP (N\\~560) measured by Wysession. Inversion tests, spectral analysis, and comparison with geology indicate that the large-scale upper mantle structure is better constrained with the addition of PP-P, whereas the Pdiff and PKP data help constrain deep mantle structure (Karason & Van der Hilst, JGR, 2001). The long period data were measured by cross-correlation. We solved the system of equations using 400 iterations of the iterative algorithm LSQR For the short period (1 Hz) data we use a high frequency approximation and trace rays through a fine grid of constant slowness cells to invert for mantle structure. For low frequency Pdiff and PP data we account for sensitivity to structure away from the optical ray path with 3-D Frechet derivatives (sensitivity kernels) estimated from single forward scattering and projected onto basis functions (constant slowness blocks) used for model parameterization. With such kernels the low frequency data can constrain long wavelength heterogeneity without keeping the short period data from mapping details in densely sampled regions. In addition to finite frequency sensitivity kernels we optimized the localization by using a parameterization that adapts to spatial resolution, with small cells in regions of dense sampling and larger cells in regions where sampling is more sparse (the total number of cells was \\~ 350,000). Finally, we corrected all travel times and surface reflections for lateral variations in
NASA Astrophysics Data System (ADS)
Gabl, R.; Seibl, J.; Gems, B.; Aufleger, M.
2015-12-01
The impact of an avalanche in a reservoir induces impulse waves, which pose a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting overtopping volume over structures and dams, formulas, which are based on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. This paper presents a new approach for a 3-D numerical simulation of the avalanche impact in a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the actual hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width). There was a good agreement of the overtopping volume at the dam between the presented 3-D numerical approach and the literature equations. Nevertheless, an extended parameter variation as well as a comparison with natural data should be considered as further research topics.
NASA Astrophysics Data System (ADS)
Gumerov, Nail A.; Karavaev, Alexey V.; Surjalal Sharma, A.; Shao, Xi; Papadopoulos, Konstantinos D.
2011-04-01
Efficient spectral and pseudospectral algorithms for simulation of linear and nonlinear 3D whistler waves in a cold electron plasma are developed. These algorithms are applied to the simulation of whistler waves generated by loop antennas and spheromak-like stationary waves of considerable amplitude. The algorithms are linearly stable and show good stability properties for computations of nonlinear waves over tens of thousands of time steps. Additional speedups by factors of 10-20 (comparing single core CPU and one GPU) are achieved by using graphics processors (GPUs), which enable efficient numerical simulation of the wave propagation on relatively high resolution meshes (tens of millions nodes) in personal computing environment. Comparisons of the numerical results with analytical solutions and experiments show good agreement. The limitations of the codes and the performance of the GPU computing are discussed.
Homentcovschi, Dorel; Miles, Ronald N.
2008-01-01
An analysis is presented of the diffraction of a pressure wave by a periodic grating including the influence of the air viscosity. The direction of the incoming pressure wave is arbitrary. As opposed to the classical nonviscous case, the problem cannot be reduced to a plane problem having a definite 3-D character. The system of partial differential equations used for solving the problem consists of the compressible Navier-Stokes equations associated with no-slip boundary conditions on solid surfaces. The problem is reduced to a system of two hypersingular integral equations for determining the velocity components in the slits’ plane and a hypersingular integral equation for the normal component of velocity. These equations are solved by using Galerkin’s method with some special trial functions. The results can be applied in designing protective screens for miniature microphones realized in MEMS technology. In this case, the physical dimensions of the device are on the order of the viscous boundary layer so that the viscosity cannot be neglected. The analysis indicates that the openings in the screen should be on the order of 10 microns in order to avoid excessive attenuation of the signal. This paper also provides the variation of the transmission coefficient with frequency in the acoustical domain. PMID:19122753
NASA Astrophysics Data System (ADS)
Pankratov, Oleg; Kuvshinov, Alexey
2016-01-01
second part, we summarize modern trends in the development of efficient 3-D EM forward modelling schemes with special emphasis on recent advances in the integral equation approach.
Internal waves patterns in the wake of a 3D body towed in a two-layer fluid
NASA Astrophysics Data System (ADS)
Lacaze, Laurent; Mercier, Matthieu; Thual, Olivier; Paci, Alexandre
2014-11-01
Stratified flows over obstacles are important features in meteorology and oceanography. The characterization of these flows is crucial in order to propose models of geophysical processes such as mixing and ocean circulation or orographic drag in the atmosphere. For some specific stratification profiles, the energy of internal waves generated by the obstacle can be trapped at a given depth, at the base of the oceanic mixing layer or at the top of the atmospheric boundary layer for instance. This scenario can be modelled by a two-layer stratified fluid for which gravity waves spread at the interface between the two layers. The work presented here focuses on a two-layer flow over a 3D obstacle, or equivalently, an obstacle towed in a fluid at rest. Experiments performed both in the large-scale flume of CNRM-GAME Toulouse (METEO-FRANCE & CNRS) and in a smaller tank apparatus, are presented with a specific attention on the measurement of the 3D wave patterns. A non-hydrostatic linear analysis is used to describe the observed wave patterns. The experiments highlight the strong influence of the Froude number on the generated waves. More specifically, we investigate the nature of the wake angle obtained from the wave pattern, and discuss a transition from Kelvin to Mach angle.
Spectral element modeling of 3D wave propagation in the Earth: the graver part of the spectrum
NASA Astrophysics Data System (ADS)
Chaljub, E.; Valette, B.
2003-04-01
The Spectral Element Method (SEM) has been recently established as a new reference to compute synthetic seismograms in 3D models of the Earth. So far, all the studies involving the SEM have been performed within the Cowling approximation, i. e. neglecting the variations of the gravity field during wave propagation. For low-frequency studies (typically less than 5 mHz) the previous assumption fails and the complete treatment of self-gravitation has to be considered. This requires the introduction of the mass redistribution potential (MRP) which has to satisfy Poisson's equation everywhere in space. Unlike spherical harmonics approaches, the use of a grid based method does not provide a natural framework for the resolution of the exterior problem. However, we show that a Dirichlet-to-Neumann operator at the surface of the Earth provides a simple and efficient solution to this problem. A special attention is needed for the fluid parts to avoid spurious oscillations. To this end, we introduce a general two-potentials formulation which allows to take any density stratification into account. Contrary to other studies that considered the velocity potential, our decomposition is applied to the displacement field in order to obtain natural solid-fluid boundary conditions for the MRP. At each time step, the MRP is computed from the displacement field through a preconditioned conjugate gradient algorithm. This procedure has to be accurate enough in order to ensure a stable calculation on long time series. Some examples of synthetic seismograms computed in spherical Earth models illustrate the accuracy of our approach.
NASA Astrophysics Data System (ADS)
Shi, Jian; Zhang, Qian
2016-03-01
A uniqueness result of weak solution for the 3D viscous magneto-hydrodynamics equations in {B^1_{infty,infty}} is proved by means of the Fourier localization technique and the losing derivative estimates.
Conformally invariant wave equations for massless particles
NASA Astrophysics Data System (ADS)
McLennan, James A.
1984-07-01
The invariance of wave equations for massless particles under conformal transformations of space-time is briefly summarized. Particular attention is given to a recent paper by Bracken and Jessup in which it is claimed that results obtained by the author are in error. Their paper contains several misleading statements based on a misreading of the author's paper, and in addition an argument of theirs, intended to show error, is itself invalid. Their claims of error on the author's part are therefore unfounded.
NASA Astrophysics Data System (ADS)
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1993-01-01
The convergence characteristics of various approximate factorizations for the 3D Euler and Navier-Stokes equations are examined using the von-Neumann stability analysis method. Three upwind-difference based factorizations and several central-difference based factorizations are considered for the Euler equations. In the upwind factorizations both the flux-vector splitting methods of Steger and Warming and van Leer are considered. Analysis of the Navier-Stokes equations is performed only on the Beam and Warming central-difference scheme. The range of CFL numbers over which each factorization is stable is presented for one-, two-, and three-dimensional flow. Also presented for each factorization is the CFL number at which the maximum eigenvalue is minimized, for all Fourier components, as well as for the high frequency range only. The latter is useful for predicting the effectiveness of multigrid procedures with these schemes as smoothers. Further, local mode analysis is performed to test the suitability of using a uniform flow field in the stability analysis. Some inconsistencies in the results from previous analyses are resolved.
NASA Astrophysics Data System (ADS)
Newton, W. G.; Stone, J. R.; Mezzacappa, A.
2006-09-01
First results from a fully self-consistent, temperature-dependent equation of state that spans the density range of neutron stars and supernova cores above neutron drip density are presented. The equation of state (EoS) is calculated using a mean-field Hartree-Fock method in three dimensions (3D). The nuclear interaction is represented by the phenomenological Skyrme model in this work, but the EoS can be obtained in our framework for any suitable form of the nucleon-nucleon effective interaction. The scheme we employ naturally allows effects such as (i) neutron drip, which results in an external neutron gas, (ii) the variety of exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii) the subsequent dissolution of these nuclei into nuclear matter. In this way, the equation of state is calculated across phase transitions without recourse to interpolation techniques between density regimes described by different physical models. EoS tables are calculated in the wide range of densities, temperature and proton/neutron ratios on the ORNL NCCS XT3, using up to 2000 processors simultaneously.
NASA Astrophysics Data System (ADS)
Uhrig, Matthias P.; Kim, Jin-Yeon; Jacobs, Laurence J.
2016-02-01
This research presents a 3D numerical finite element (FE) model which, previously developed, precisely simulates non-contact, air-coupled measurements of nonlinear Rayleigh wave propagation. The commercial FE-solver ABAQUS is used to perform the simulations. First, frequency dependent pressure wave attenuation is investigated numerically to reconstruct the sound pressure distribution along the active surface of the non-contact receiver. Second, constitutive law and excitation source properties are optimized to match nonlinear ultrasonic experimental data. Finally, the FE-model data are fit with analytical solutions showing a good agreement and thus, indicating the significance of the study performed.
NASA Astrophysics Data System (ADS)
Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel
2016-07-01
In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: firstly, we evaluate the contribution of surface and body wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Secondly, we compare the lapse-time behavior in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.
An IPOT meshless method using DC PSE approximation for fluid flow equations in 2D and 3D geometries
NASA Astrophysics Data System (ADS)
Bourantas, G. C.; Loukopoulos, V. C.; Skouras, E. D.; Burganos, V. N.; Nikiforidis, G. C.
2016-06-01
Navier-Stokes (N-S) equations, in their primitive variable (u-v-p) formulation, are numerically solved using the Implicit Potential (IPOT) numerical scheme in the context of strong form Meshless Point Collocation (MPC) method. The unknown field functions are computed using the Discretization Correction Particle Strength Exchange (DC PSE) approximation method. The latter makes use of discrete moment conditions to derive the operator kernels, which leads to low condition number for the moment matrix compared to other meshless interpolation methods and increased stability for the numerical solution. The proposed meshless scheme is applied on 2D and 3D spatial domains, using uniform or irregular set of nodes to represent the domain. The numerical results obtained are compared against those obtained using well-established methods.
Prediction of Tsunami Waves and Runup Generated by 3d Granular Landslides
NASA Astrophysics Data System (ADS)
Mohammed, F.; Fritz, H. M.
2008-12-01
Subaerial and submarine landslides can trigger tsunamis with locally high amplitudes and runup, which can cause devastating effects in the near field region. The 50th anniversary of the Lituya Bay 1958 landslide impact generated mega tsunami recalls the largest tsunami runup of 524m in recorded history. In contrast to earthquake generated tsunamis, landslide generated tsunami sources are not confined to active tectonic regions and therefore are of particular importance for the Atlantic Ocean. Landslide generated tsunamis were studied in the three dimensional NEES tsunami wave basin TWB at OSU based on the generalized Froude similarity. A novel pneumatic landslide generator was deployed to control the landslide geometry and kinematics. Granular materials were used to model deformable landslides. Measurement techniques such as particle image velocimetry (PIV), multiple above and underwater video cameras, multiple acoustic transducer arrays (MTA), as well as resistance wave and runup gauges were applied. The wave generation was characterized by an extremely unsteady three phase flow consisting of the slide granulate, water and air entrained into the flow. The underwater cameras and the MTA provide data on the landslide deformation as it impacts the water surface, penetrates the water and finally deposits on the bottom of the basin. The influence of the landslide volume, shape and the impact speed on the generated tsunami wave characteristics were extensively studied. The experimental data provides prediction models for the generated tsunami wave characteristics based on the initial landslide characteristics and the final slide deposits. PIV provided instantaneous surface velocity vector fields, which gave insight into the kinematics of the landslide and wave generation process. At high impact velocities flow separation occurred on the slide shoulder resulting in a hydrodynamic impact crater. The recorded wave profiles yielded information on the wave propagation and
3D finite element modelling of guided wave scattering at delaminations in composites
NASA Astrophysics Data System (ADS)
Murat, Bibi Intan Suraya; Fromme, Paul
2016-02-01
Carbon fiber laminate composites are increasingly used for aerospace structures as they offer a number of advantages including a good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, delaminations can occur, reducing the load carrying capacity of the structure. Efficient nondestructive testing of composite panels can be achieved using guided ultrasonic waves propagating along the structure. The guided wave (A0 Lamb wave mode) scattering at delaminations was modeled using full three-dimensional Finite Element (FE) simulations. The influence of the delamination size was systematically investigated from a parameter study. A significant influence of the delamination width on the guided wave scattering was found, especially on the angular dependency of the scattered guided wave amplitude. The sensitivity of guided ultrasonic waves for the detection of delamination damage in composite panels is discussed.
WaveQ3D: Fast and accurate acoustic transmission loss (TL) eigenrays, in littoral environments
NASA Astrophysics Data System (ADS)
Reilly, Sean M.
This study defines a new 3D Gaussian ray bundling acoustic transmission loss model in geodetic coordinates: latitude, longitude, and altitude. This approach is designed to lower the computation burden of computing accurate environmental effects in sonar training application by eliminating the need to transform the ocean environment into a collection of Nx2D Cartesian radials. This approach also improves model accuracy by incorporating real world 3D effects, like horizontal refraction, into the model. This study starts with derivations for a 3D variant of Gaussian ray bundles in this coordinate system. To verify the accuracy of this approach, acoustic propagation predictions of transmission loss, time of arrival, and propagation direction are compared to analytic solutions and other models. To validate the model's ability to predict real world phenomena, predictions of transmission loss and propagation direction are compared to at-sea measurements, in an environment where strong horizontal refraction effect have been observed. This model has been integrated into U.S. Navy active sonar training system applications, where testing has demonstrated its ability to improve transmission loss calculation speed without sacrificing accuracy.
Analysis of non linear partially standing waves from 3D velocity measurements
NASA Astrophysics Data System (ADS)
Drevard, D.; Rey, V.; Svendsen, Ib; Fraunie, P.
2003-04-01
Surface gravity waves in the ocean exhibit an energy spectrum distributed in both frequency and direction of propagation. Wave data collection is of great importance in coastal zones for engineering and scientific studies. In particular, partially standing waves measurements near coastal structures and steep or barred beaches may be a requirement, for instance for morphodynamic studies. The aim of the present study is the analysis of partially standing surface waves icluding non-linear effects. According to 1st order Stokes theory, synchronous measurements of horizontal and vertical velocity components allow calculation of rate of standing waves (Drevard et al, 2003). In the present study, it is demonstrated that for deep water conditions, partially standing 2nd order Stokes waves induced velocity field is still represented by the 1st order solution for the velocity potential contrary to the surface elevation which exhibits harmonic components. For intermediate water depth, harmonic components appear not only in the surface elevation but also in the velocity fields, but their weight remains much smaller, because of the vertical decreasing wave induced motion. For irregular waves, the influence of the spectrum width on the non-linear effects in the analysis is discussed. Keywords: Wave measurements ; reflection ; non-linear effects Acknowledgements: This work was initiated during the stay of Prof. Ib Svendsen, as invited Professor, at LSEET in autumn 2002. This study is carried out in the framework of the Scientific French National Programmes PNEC ART7 and PATOM. Their financial supports are acknowledged References: Drevard, D., Meuret, A., Rey, V. Piazzola, J. And Dolle, A.. (2002). "Partially reflected waves measurements using Acoustic Doppler Velocimeter (ADV)", Submitted to ISOPE 03, Honolulu, Hawaii, May 2003.
NASA Astrophysics Data System (ADS)
Deng, Y.; Ebert-Uphoff, I.; Chen, J.
2015-12-01
Causal discovery seeks to discover potential cause-effect relationships from observational data. Here we adopt the idea of interpreting large-scale atmospheric dynamical processes, particularly those tied to propagation of large-scale waves, as information flow around the globe, which can then be calculated using causal discovery methods. We apply a well-established causal discovery algorithm - based on constraint-based structure learning of probabilistic graphical models - toward 51 years of 6-hourly, atmospheric isobaric-level geopotential height data to construct the first-ever graphs of 3D information flow in the atmosphere. These graphs are created globally for different seasons and their connection to phase/energy propagation of atmospheric waves are investigated. Specifically, we examine the information flows 1) in the topical region that represent horizontal and vertical propagations of Kelvin and Rossby-gravity waves whose associated momentum transfer are known to play a key role in the Quasi-Biennial Oscillation (QBO), and 2) in the northern extratropics that represent propagations of planetary-scale waves whose heat/momentum fluxes are responsible for vacillations in the polar stratospheric vortex and occurrences of extreme events such as the stratospheric sudden warming. The sensitivity of the constructed graphs of 3D information flow to data resolution and pre-processing methods (e.g., spatial and temporal filtering) will be discussed.
Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar
2015-01-01
Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose–response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell
Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar
2015-01-01
Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell
NASA Astrophysics Data System (ADS)
Lin, C. W.; Wu, T. R.; Chuang, M. H.; Tsai, Y. L.
2015-12-01
The wind in Taiwan Strait is strong and stable which offers an opportunity to build offshore wind farms. However, frequently visited typhoons and strong ocean current require more attentions on the wave force and local scour around the foundation of the turbine piles. In this paper, we introduce an in-house, multi-phase CFD model, Splash3D, for solving the flow field with breaking wave, strong turbulent, and scour phenomena. Splash3D solves Navier-Stokes Equation with Large-Eddy Simulation (LES) for the fluid domain, and uses volume of fluid (VOF) with piecewise linear interface reconstruction (PLIC) method to describe the break free-surface. The waves were generated inside the computational domain by internal wave maker with a mass-source function. This function is designed to adequately simulate the wave condition under observed extreme events based on JONSWAP spectrum and dispersion relationship. Dirichlet velocity boundary condition is assigned at the upper stream boundary to induce the ocean current. At the downstream face, the sponge-layer method combined with pressure Dirichlet boundary condition is specified for dissipating waves and conducting current out of the domain. Numerical pressure gauges are uniformly set on the structure surface to obtain the force distribution on the structure. As for the local scour around the foundation, we developed Discontinuous Bi-viscous Model (DBM) for the development of the scour hole. Model validations were presented as well. The force distribution under observed irregular wave condition was extracted by the irregular-surface force extraction (ISFE) method, which provides a fast and elegant way to integrate the force acting on the surface of irregular structure. From the Simulation results, we found that the total force is mainly induced by the impinging waves, and the force from the ocean current is about 2 order of magnitude smaller than the wave force. We also found the dynamic pressure, wave height, and the
NASA Astrophysics Data System (ADS)
Montiel, F.; Squire, V. A.
2013-12-01
A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive
NASA Astrophysics Data System (ADS)
Sidler, Rolf; Carcione, José M.; Holliger, Klaus
2014-02-01
We present a novel approach for the comprehensive, flexible and accurate simulation of poroelastic wave propagation in 3-D cylindrical coordinates. An important application of this method is the realistic modelling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, as of yet largely unresolved, problem in exploration geophysics. To this end, we consider a numerical mesh consisting of three concentric domains representing the borehole fluid in the centre followed by the mudcake and/or casing, and the surrounding porous formation. The spatial discretization is based on a Chebyshev expansion in the radial direction and Fourier expansions in the vertical and azimuthal directions as well as a Runge-Kutta integration scheme for the time evolution. Trigonometric interpolation and a domain decomposition method based on the method of characteristics are used to match the boundary conditions at the fluid/porous-solid and porous-solid/porous-solid interfaces as well as to reduce the number of gridpoints in the innermost domain for computational efficiency. We apply this novel modelling approach to the particularly challenging scenario of near-surface borehole environments. To this end, we compare 3-D heterogeneous and corresponding rotationally invariant simulations, assess the sensitivity of Stoneley waves to formation permeability in the presence of a casing and evaluate the effects of an excavation damage zone behind a casing on sonic log recordings. Our results indicate that only first arrival times of fast modes are reasonably well described by rotationally invariant approximations of 3-D heterogenous media. We also find that Stoneley waves are indeed remarkably sensitive to the average permeability behind a perforated PVC casing, and that the presence of an excavation damage zone behind a casing tends to dominate the overall signature of recorded seismograms.
NASA Astrophysics Data System (ADS)
Parisi, Laura; Ferreira, Ana M. G.
2016-04-01
The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ˜ 45-150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ˜ 45-150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ˜ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ˜20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ˜ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT's phase errors are smaller, notably for the shortest wave periods considered (T ˜ 45 s and
Skin-friction measurements in a 3-D, supersonic shock-wave/boundary-layer interaction
NASA Astrophysics Data System (ADS)
Wideman, Jeffrey Kenneth
An experimental study has been conducted in a three-dimensional, supersonic shockwave/boundary-layer interaction (3-D SW/BLI) with the intent of providing accurate experimental data for turbulence modeling and computational fluid dynamics (CFD) code validation. The experiment was performed in the High Reynolds Channel 1 (HRCI) wind tunnel at NASA Ames Research Center. The test was conducted at a Mach number of M(sub infinity) = 2.89 and at a Reynolds number of Re = 15 x 106/m. The model consisted of a sting-supported cylinder aligned with the tunnel axis and a 20 deg half-angle conical flare offset 1.27 cm from the cylinder centerline. The generated shock system was verified to be steady by schlieren visualization. The highlight of the study was the acquisition of 3-D skin-friction data by a laser interferometric skin friction (LISF) meter. Surface pressure measurements were obtained in 15 deg intervals around the cylinder and flare. Additional measurements included surface oil flow and laser light sheet illumination which were used to document the flow topology. Skin-friction measurements are proving to be a very challenging test of a CFD code predictive capability. However, at the present time there is a very limited amount of accurate skin-friction data in complex flows such as in 3-D SW/BLI. The LISF technique is advantageous as compared to other skin-friction measurement techniques for application in complex flows like the present since it is non-intrusive and is capable of performing measurements in flows with large shear and pressure gradients where the reliability of other techniques is questionable. Thus, the prevent skin-friction data will prove valuable to turbulence modeling and CFD code validation efforts.
Propagation of 3D nonlinear waves over complex bathymetry using a High-Order Spectral method
NASA Astrophysics Data System (ADS)
Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre
2016-04-01
Scattering of regular and irregular surface gravity waves propagating over a region of arbitrary three-dimensional varying bathymetry is considered here. The three-dimensional High-Order Spectral method (HOS) with an extension to account for a variable bathymetry is used. The efficiency of the model has been proved to be conserved even with this extension. The method is first applied to a bathymetry consisting of an elliptical lens, as used in the Vincent and Briggs (1989) experiment. Incident waves passing across the lens are transformed and a strong convergence region is observed after the elliptical mound. The wave amplification depends on the incident wave. Numerical results for regular and irregular waves are analysed and compared with other methods and experimental data demonstrating the efficiency and practical applicability of the present approach. Then the method is used to model waves propagating over a real bathymetry: the canyons of Scripps/La Jolla in California. The implementation of this complex bathymetry in the model is presented, as well as the first results achieved. They will be compared to the ones obtained with another numerical model.
NASA Astrophysics Data System (ADS)
Bennis, A.; Ardhuin, F.; Dumas, F.; Bonneton, P.
2010-12-01
The interaction of waves with three-dimensional current structure is investigated using a two-way coupled modelling system combining MARS3D (Lazure and Dumas 2008) with WAVEWATCH III (Tolman 2008, Ardhuin et al. 2009) , a wave model (NOAA/NCEP, Tolman 2008). After a basic validation in two dimensions, the flow model MARS3D was adapted with three options that solve for the total momentum (Mellor 2003, 2008) or the quasi-Eulerian momentum (Ardhuin et al. 2008b). Adiabatic model results show that, as expected from theory (Ardhuin et al. 2008a), the total momentum fluxes parameterized by Mellor are not self-consistent and can lead to very large errors (Bennis and Ardhuin 2010). We thus use the model option to solve for the quasi-Eulerian momentum, including sources of momentum and turbulent kinetic energy (TKE). The influence of these TKE sources is investigated in the case of the NSTS experiment (Thornton and Guza, 1986). The feedback of the currents on the waves is negligible in this case. The sources of TKE from wave breaking and wave bottom friction are found to have strong influence on the bottom friction, in a way consistent with the parameterizations by Longuet-Higgins (1970) and Mellor (2002). The complete model is then applied to a real case of a large rip current on the South-West coast of France (Bruneau et al., Cont. Shelf Res. 2009). The breaking of waves on the opposed current generates a strong coupling on the rip current that partially controls the strength of the current and it three-dimensional shape.
Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA
Matlick, Skip; Walsh, Patrick; Rhodes, Greg; Fercho, Steven
2015-06-30
Ormat sited 2 full-size exploration wells based on 3D seismic interpretation of fractures, prior drilling results, and temperature anomaly. The wells indicated commercial temperatures (>300 F), but almost no permeability, despite one of the wells being drilled within 820 ft of an older exploration well with reported indications of permeability. Following completion of the second well in 2012, Ormat undertook a lengthy program to 1) evaluate the lack of observed permeability, 2) estimate the likelihood of finding permeability with additional drilling, and 3) estimate resource size based on an anticipated extent of permeability.
Display depth analyses with the wave aberration for the auto-stereoscopic 3D display
NASA Astrophysics Data System (ADS)
Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Chen, Duo; Chen, Zhidong; Zhang, Wanlu; Yan, Binbin; Yuan, Jinhui; Wang, Kuiru; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan
2016-07-01
Because the aberration severely affects the display performances of the auto-stereoscopic 3D display, the diffraction theory is used to analyze the diffraction field distribution and the display depth through aberration analysis. Based on the proposed method, the display depth of central and marginal reconstructed images is discussed. The experimental results agree with the theoretical analyses. Increasing the viewing distance or decreasing the lens aperture can improve the display depth. Different viewing distances and the LCD with two lens-arrays are used to verify the conclusion.
Emergence of wave equations from quantum geometry
NASA Astrophysics Data System (ADS)
Majid, Shahn
2012-10-01
We argue that classical geometry should be viewed as a special limit of noncommutative geometry in which aspects which are inter-constrained decouple and appear arbitrary in the classical limit. In particular, the wave equation is really a partial derivative in a unified extra-dimensional noncommutative geometry and arises out of the greater rigidity of the noncommutative world not visible in the classical limit. We provide an introduction to this 'wave operator' approach to noncommutative geometry as recently used[27] to quantize any static spacetime metric admitting a spatial conformal Killing vector field, and in particular to construct the quantum Schwarzschild black hole. We also give an introduction to our related result that every classical Riemannian manifold is a shadow of a slightly noncommutative one wherein the meaning of the classical Ricci tensor becomes very natural as the square of a generalised braiding.
Emergence of wave equations from quantum geometry
Majid, Shahn
2012-09-24
We argue that classical geometry should be viewed as a special limit of noncommutative geometry in which aspects which are inter-constrained decouple and appear arbitrary in the classical limit. In particular, the wave equation is really a partial derivative in a unified extra-dimensional noncommutative geometry and arises out of the greater rigidity of the noncommutative world not visible in the classical limit. We provide an introduction to this 'wave operator' approach to noncommutative geometry as recently used[27] to quantize any static spacetime metric admitting a spatial conformal Killing vector field, and in particular to construct the quantum Schwarzschild black hole. We also give an introduction to our related result that every classical Riemannian manifold is a shadow of a slightly noncommutative one wherein the meaning of the classical Ricci tensor becomes very natural as the square of a generalised braiding.
A dispersive wave equation using nonlocal elasticity
NASA Astrophysics Data System (ADS)
Challamel, Noël; Rakotomanana, Lalaonirina; Le Marrec, Loïc
2009-08-01
Nonlocal continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with micro- or nano-structures. This Note investigates a model of wave propagation in a nonlocal elastic material. We show that a dispersive wave equation is obtained from a nonlocal elastic constitutive law, based on a mixture of a local and a nonlocal strain. This model comprises both the classical gradient model and the Eringen's integral model. The dynamic properties of the model are discussed, and corroborate well some recent theoretical studies published to unify both static and dynamics gradient elasticity theories. Moreover, an excellent matching of the dispersive curve of the Born-Kármán model of lattice dynamics is obtained with such nonlocal model. To cite this article: N. Challamel et al., C. R. Mecanique 337 (2009).
Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Auxiliary Equation Method
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet
2015-10-01
The auxiliary equation method presents wide applicability to handling nonlinear wave equations. In this article, we establish new exact travelling wave solutions of the nonlinear Zoomeron equation, coupled Higgs equation, and equal width wave equation. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions, and rational functions. It is shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Throughout the article, all calculations are made with the aid of the Maple packet program.
SAFE-3D analysis of a piezoelectric transducer to excite guided waves in a rail web
NASA Astrophysics Data System (ADS)
Ramatlo, Dineo A.; Long, Craig S.; Loveday, Philip W.; Wilke, Daniel N.
2016-02-01
Our existing Ultrasonic Broken Rail Detection system detects complete breaks and primarily uses a propagating mode with energy concentrated in the head of the rail. Previous experimental studies have demonstrated that a mode with energy concentrated in the head of the rail, is capable of detecting weld reflections at long distances. Exploiting a mode with energy concentrated in the web of the rail would allow us to effectively detect defects in the web of the rail and could also help to distinguish between reflections from welds and cracks. In this paper, we will demonstrate the analysis of a piezoelectric transducer attached to the rail web. The forced response at different frequencies is computed by the Semi-Analytical Finite Element (SAFE) method and compared to a full three-dimensional finite element method using ABAQUS. The SAFE method only requires the rail track cross-section to be meshed using two-dimensional elements. The ABAQUS model in turn requires a full three-dimensional discretisation of the rail track. The SAFE approach can yield poor predictions at cut-on frequencies associated with other modes in the rail. Problematic frequencies are identified and a suitable frequency range identified for transducer design. The forced response results of the two methods were found to be in good agreement with each other. We then use a previously developed SAFE-3D method to analyse a practical transducer over the selected frequency range. The results obtained from the SAFE-3D method are in good agreement with experimental measurements.
Rigas, Fotis; Sklavounos, Spyros
2005-05-20
Accidental blast wave generation and propagation in the surroundings poses severe threats for people and property. The prediction of overpressure maxima and its change with time at specified distances can lead to useful conclusions in quantitative risk analysis applications. In this paper, the use of a computational fluid dynamics (CFD) code CFX-5.6 on dense explosive detonation events is described. The work deals with the three-dimensional simulation of overpressure wave propagation generated by the detonation of a dense explosive within a small-scale branched tunnel. It also aids at validating the code against published experimental data as well as to study the way that the resulting shock wave propagates in a confined space configuration. Predicted overpressure histories were plotted and compared versus experimental measurements showing a reasonably good agreement. Overpressure maxima and corresponding times were found close to the measured ones confirming that CFDs may constitute a useful tool in explosion hazard assessment procedures. Moreover, it was found that blast wave propagates preserving supersonic speed along the tunnel accompanied by high overpressure levels, and indicating that space confinement favors the formation and maintenance of a shock rather than a weak pressure wave. PMID:15885402
NASA Astrophysics Data System (ADS)
Liu, Yang; Sen, Mrinal K.
2011-09-01
Most conventional finite-difference methods adopt second-order temporal and (2M)th-order spatial finite-difference stencils to solve the 3D acoustic wave equation. When spatial finite-difference stencils devised from the time-space domain dispersion relation are used to replace these conventional spatial finite-difference stencils devised from the space domain dispersion relation, the accuracy of modelling can be increased from second-order along any directions to (2M)th-order along 48 directions. In addition, the conventional high-order spatial finite-difference modelling accuracy can be improved by using a truncated finite-difference scheme. In this paper, we combine the time-space domain dispersion-relation-based finite difference scheme and the truncated finite-difference scheme to obtain optimised spatial finite-difference coefficients and thus to significantly improve the modelling accuracy without increasing computational cost, compared with the conventional space domain dispersion-relation-based finite difference scheme. We developed absorbing boundary conditions for the 3D acoustic wave equation, based on predicting wavefield values in a transition area by weighing wavefield values from wave equations and one-way wave equations. Dispersion analyses demonstrate that high-order spatial finite-difference stencils have greater accuracy than low-order spatial finite-difference stencils for high frequency components of wavefields, and spatial finite-difference stencils devised in the time-space domain have greater precision than those devised in the space domain under the same discretisation. The modelling accuracy can be improved further by using the truncated spatial finite-difference stencils. Stability analyses show that spatial finite-difference stencils devised in the time-space domain have better stability condition. Numerical modelling experiments for homogeneous, horizontally layered and Society of Exploration Geophysicists/European Association of
NASA Astrophysics Data System (ADS)
Simpson, J. J.; Taflove, A.
2005-12-01
We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A
Real-time 3D millimeter wave imaging based FMCW using GGD focal plane array as detectors
NASA Astrophysics Data System (ADS)
Levanon, Assaf; Rozban, Daniel; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir
2014-03-01
Millimeter wave (MMW) imaging systems are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is relatively low. The lack of inexpensive room temperature imaging systems makes it difficult to give a suitable MMW system for many of the above applications. 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with a Glow Discharge Detector (GDD) Focal Plane Array (FPA) of plasma based detectors. Each point on the object corresponds to a point in the image and includes the distance information. This will enable 3D MMW imaging. The radar system requires that the millimeter wave detector (GDD) will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the image. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of GDD devices. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.
NASA Astrophysics Data System (ADS)
Xie, J.; Yang, Y.; Ni, S.; Zhao, K.
2015-12-01
In the past decade, ambient noise tomography (ANT) has become an estimated method to construct the earth's interior structures thanks to its advantage in extracting surface waves from cross-correlations of ambient noise without using earthquake data. However, most of previous ambient noise tomography studies concentrate on short and intermediate periods (<50sec) due to the dominant energy of the microseism at these periods. Studies of long period surface waves from cross-correlation of ambient noise are limited. In this study, we verify the accuracy of the long period (50-250sec) surface wave (Rayleigh wave) from ambient noise by comparing both dispersion curves and seismic waveforms from ambient noise with those from earthquake records quantitatively. After that, we calculate vertical-vertical cross-correlation functions among more than1800 USArray Transportable Array stations and extract high quality interstation phase velocity dispersion curves from them at 10-200 sec periods. Then, we adopt a finite frequency ambient noise tomography method based on Born approximation to obtain high resolution phase velocity maps using the obtained dispersion measurements at 10-150 sec periods. Afterward, we extract local dispersion curves from these dispersion maps and invert them for 1D shear wave velocity profiles at individual grids using a Bayesian Monte Carlo method. Finally, a 3D shear velocity model is constructed by assembling all the 1D Vs profiles. Our 3D model is overall similar to other models constructed using earthquake surface waves and body waves. In summary, we demonstrate that the long period surface waves can be extracted from ambient noise, and the long period dispersion measurements from ambient noise are as accurate as those from earthquake data and can be used to construct 3D lithospheric structure from surface down to lithosphere/asthenosphere depths.
Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry
NASA Astrophysics Data System (ADS)
Staszewski, W. J.; Lee, B. C.; Traynor, R.
2007-03-01
The paper presents the application of ultrasonic guided waves for fatigue crack detection in metallic structures. The study involves a simple fatigue test performed to introduce a crack into an aluminium plate. Lamb waves generated by a low-profile, surface-bonded piezoceramic transducer are sensed using a tri-axis, multi-position scanning laser vibrometer. The results demonstrate the potential of laser vibrometry for simple, rapid and robust detection of fatigue cracks in metallic structures. The method could be used in quality inspection and in-service maintenance of metallic structures in aerospace, civil and mechanical engineering industries.
Non-linear 3D Born Shear Wave Tomography in Southeastern Asia
NASA Astrophysics Data System (ADS)
Cao, A.; Panning, M.; Kim, A.; Romanowicz, B.
2007-12-01
We have developed a 3D radially anisotropic shear velocity model of the upper mantle in southeastern Asia from the inversion of long period seismic multimode waveforms. Our approach is based on normal mode perturbation theory, specifically, on a recent modification of the Born approximation, which we call "N-Born", and which includes a non-linear term that allows the accurate inclusion of accumulated phase shifts which arise when the wavepath traverses a spatially extended region with a smooth velocity anomaly of constant sign. We apply the N-Born approximation in the forward modeling part and calculate linear 3D Born kernels in the inverse part. Our starting model is a 3D radially anisotropic model which we derived from a large dataset of teleseismic multimode long period waveforms in the period range 60 to 400 s, using a finite-frequency 2D approximation (NACT, Li and Romanowicz, 1995). This model covered a larger region of East Asia (longitude 30 to 150 degrees and latitude -10 to 60 degrees), while our N-Born model is restricted to a smaller subregion (longitude 75 to 150 degrees and latitude 0 to 45 degrees) for computational efficiency. In this subregion, our N-Born isotropic and anisotropic models are both parameterized at relatively short wavelengths corresponding to a spherical spline level 6 (~200km). Our N-Born model can fit waveforms as well as the NACT model, with up to ~ 83% variance reduction. While the models agree in general, the N-Born isotropic model shows a stronger fast velocity anomaly beneath the Tibetan plateau in the depth range of 150 km to 250 km, which disappears at greater depth, consistent with other studies. More importantly, the N-Born anisotropic model can recover well the downwelling structure associated with subducted slabs. Beneath the Tibet plateau, radial anisotropy shows VSH>VSV, which is indicative of horizontal rather than vertical flow and may help distinguish between end member models of the tectonics of Tibet.
NASA Astrophysics Data System (ADS)
Greenhalgh, Stewart; Zhou, Bing; Maurer, Hansruedi
2010-05-01
We have developed a modified version of the spectral element method (SEM), called the Gaussian Quadrature Grid (GQG) approach, for frequency domain 3D seismic modelling in arbitrary heterogeneous, anisotropic media. The model may incorporate an arbitrary free-surface topography and irregular subsurface interfaces. Unlike the SEM ,it does not require a powerful mesh generator such as the Delauney Triangular or TetGen. Rather, the GQG approach replaces the element mesh with Gaussian quadrature abscissae to directly sample the physical properties of the model parameters and compute the weighted residual or variational integral. This renders the model discretisation simple and easily matched to the model topography, as well as direct control of the model paramterisation for subsequent inversion. In addition, it offers high accuracy in numerical modelling provided that an appropriate density of the Gaussian quadrature abscissae is employed. The second innovation of the GQG is the incorporation of a new implementation of perfectly matched layers to suppress artificial reflections from the domain margins. We employ PML model parameters (specified complex valued density and elastic moduli) rather than explicitly solving the governing wave equation with a complex co-ordinate system as in conventional approaches. Such an implementation is simple, general, effective and easily extendable to any class of anisotropy and other numerical modelling methods. The accuracy of the GQG approach is controlled by the number of Gaussian quadrature points per minimum wavelength, the so-called sampling density. The optimal sampling density should be the one which enables high definition of geological characteristics and high precision of the variational integral evaluation and spatial differentiation. Our experiments show that satisfactory results can be obtained using sampling densities of 5 points per minimum wavelength. Efficiency of the GQG approach mainly depends on the linear
Internal wave attractors examined using laboratory experiments and 3D numerical simulations
NASA Astrophysics Data System (ADS)
Brouzet, C.; Sibgatullin, I. N.; Scolan, H.; Ermanyuk, E. V.; Dauxois, T.
2016-04-01
In the present paper, we combine numerical and experimental approaches to study the dynamics of stable and unstable internal wave attractors. The problem is considered in a classic trapezoidal setup filled with a uniformly stratified fluid. Energy is injected into the system at global scale by the small-amplitude motion of a vertical wall. Wave motion in the test tank is measured with the help of conventional synthetic schlieren and PIV techniques. The numerical setup closely reproduces the experimental one in terms of geometry and the operational range of the Reynolds and Schmidt numbers. The spectral element method is used as a numerical tool to simulate the nonlinear dynamics of a viscous salt-stratified fluid. We show that the results of three-dimensional calculations are in excellent qualitative and quantitative agreement with the experimental data, including the spatial and temporal parameters of the secondary waves produced by triadic resonance instability. Further, we explore experimentally and numerically the effect of lateral walls on secondary currents and spanwise distribution of velocity amplitudes in the wave beams. Finally, we test the assumption of a bidimensional flow and estimate the error made in synthetic schlieren measurements due to this assumption.
Summary of work on shock wave feature extraction in 3-D datasets
NASA Technical Reports Server (NTRS)
Hesselink, Lambertus (Principal Investigator)
1996-01-01
A method for extracting and visualizing shock waves from three dimensional data-sets is discussed. Issues concerning computation time, robustness to numerical perturbations, and noise introduction are considered and compared with other methods. Finally, results using this method are discussed.
NASA Astrophysics Data System (ADS)
Gainullin, I. K.; Sonkin, M. A.
2015-03-01
A parallelized three-dimensional (3D) time-dependent Schrodinger equation (TDSE) solver for one-electron systems is presented in this paper. The TDSE Solver is based on the finite-difference method (FDM) in Cartesian coordinates and uses a simple and explicit leap-frog numerical scheme. The simplicity of the numerical method provides very efficient parallelization and high performance of calculations using Graphics Processing Units (GPUs). For example, calculation of 106 time-steps on the 1000ṡ1000ṡ1000 numerical grid (109 points) takes only 16 hours on 16 Tesla M2090 GPUs. The TDSE Solver demonstrates scalability (parallel efficiency) close to 100% with some limitations on the problem size. The TDSE Solver is validated by calculation of energy eigenstates of the hydrogen atom (13.55 eV) and affinity level of H- ion (0.75 eV). The comparison with other TDSE solvers shows that a GPU-based TDSE Solver is 3 times faster for the problems of the same size and with the same cost of computational resources. The usage of a non-regular Cartesian grid or problem-specific non-Cartesian coordinates increases this benefit up to 10 times. The TDSE Solver was applied to the calculation of the resonant charge transfer (RCT) in nanosystems, including several related physical problems, such as electron capture during H+-H0 collision and electron tunneling between H- ion and thin metallic island film.
NASA Astrophysics Data System (ADS)
Zhai, Cuili; Zhang, Ting
2015-09-01
In this article, we consider the global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity. More precisely, assuming a 0 ∈ B˙ q , 1 /3 q ( R 3 ) and u 0 = ( u0 h , u0 3 ) ∈ B˙ p , 1 - 1 + /3 p ( R 3 ) for p, q ∈ (1, 6) with sup ( /1 p , /1 q ) ≤ /1 3 + inf ( /1 p , /1 q ) , we prove that if C a↑0↑ B˙q1/3 q α (↑u0 3↑ B˙ p , 1 - 1 + /3 p/μ + 1 ) ≤ 1 , /C μ (↑u0 h↑ B˙ p , 1 - 1 + /3 p + ↑u03↑ B˙ p , 1 - 1 + /3 p 1 - α ↑u0h↑ B˙ p , 1 - 1 + /3 p α) ≤ 1 , then the system has a unique global solution a ∈ C ˜ ( [ 0 , ∞ ) ; B˙ q , 1 /3 q ( R 3 ) ) , u ∈ C ˜ ( [ 0 , ∞ ) ; B˙ p , 1 - 1 + /3 p ( R 3 ) ) ∩ L 1 ( R + ; B˙ p , 1 1 + /3 p ( R 3 ) ) . It improves the recent result of M. Paicu and P. Zhang [J. Funct. Anal. 262, 3556-3584 (2012)], where the exponent form of the initial smallness condition is replaced by a polynomial form.
Miles, A R; Edwards, M J; Greenough, J A
2004-11-08
Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, results from three-dimensional numerical simulations of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams, 9(2), 209 (1991)] are presented. Using the multi-physics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J.A. Greenough, J. Comp. Phys. 184, 53 (2003)], the late nonlinear instability evolution, including transition to turbulence, is considered for various multimode perturbation spectra. The 3D post-transition state differs from the 2D result, but the process of transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results in a reduction in the growth rate of the mixing layer relative to its pre-transition value and, in the case of the bubble front, relative to the 2D result. The post-transition spike front velocity is approximately the same in 2D and 3D. Implications for hydrodynamic mixing in core-collapse supernova are discussed.
Weak concentration and wave operator for a 3D coupled nonlinear Schrödinger system
NASA Astrophysics Data System (ADS)
Pastor, Ademir
2015-02-01
Reported in this paper are results concerning the Cauchy problem and the dynamics for a cubic nonlinear Schrödinger system arising in nonlinear optics. A sharp criterion is given concerned with the dichotomy global existence versus finite time blow-up. When a radial solution blows up in finite time, we prove the concentration in the critical Lebesgue space. Sufficient condition for the scattering and the construction of the wave operator in the energy space is also provided.
Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection
Ma, Z.W.; Lee, L.C.; Otto, A.
1995-07-01
The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a large portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.
NASA Astrophysics Data System (ADS)
Xu, Feixiang; Zou, Qiushun; Zhou, Quancheng; Wang, Tongbiao; Yu, Tianbao; Liu, Nianhua
2016-05-01
We report that self-imaging effect still can be achieved in photonic quasicrystal waveguides (PtQCWs) just as it does in photonic crystal waveguides. As a possible application of the results, a new kind of compact 3 dB PtQCWs-based power splitters based on this effect for terahertz waves with symmetric interference is presented and analyzed. The finite element method is used to calculate the distributions of stable-state electric field and evaluate transmission efficiency of these structures. The calculated results show that the proposed device provides a new compact model for exporting efficiently THz wave with a broad bandwidth to two channels averagely and can be extended to new designs of PtQCW devices.
Kokeyama, Keiko; Sato, Shuichi; Nishizawa, Atsushi; Kawamura, Seiji; Chen, Yanbei; Sugamoto, Akio
2009-10-23
The displacement- and frequency-noise-free interferometer (DFI) is a multiple laser interferometer array for gravitational-wave detection free from both the displacement noise of optics and laser frequency noise. So far, partial experimental demonstrations of the DFI have been done in 2D table top experiments. In this Letter, we report the complete demonstration of a 3D DFI. The DFI consists of four Mach-Zehnder interferometers with four mirrors and two beam splitters The attained maximum suppression of the displacement noise of both mirrors and beam splitters was 40 dB at about 50 MHz. The nonvanishing DFI response to a gravitational wave was successfully confirmed using multiple electro-optic modulators and computing methods. PMID:19905742
Full 3D dispersion curve solutions for guided waves in generally anisotropic media
NASA Astrophysics Data System (ADS)
Hernando Quintanilla, F.; Lowe, M. J. S.; Craster, R. V.
2016-02-01
Dispersion curves of guided waves provide valuable information about the physical and elastic properties of waves propagating within a given waveguide structure. Algorithms to accurately compute these curves are an essential tool for engineers working in non-destructive evaluation and for scientists studying wave phenomena. Dispersion curves are typically computed for low or zero attenuation and presented in two or three dimensional plots. The former do not always provide a clear and complete picture of the dispersion loci and the latter are very difficult to obtain when high values of attenuation are involved and arbitrary anisotropy is considered in single or multi-layered systems. As a consequence, drawing correct and reliable conclusions is a challenging task in the modern applications that often utilize multi-layered anisotropic viscoelastic materials. These challenges are overcome here by using a spectral collocation method (SCM) to robustly find dispersion curves in the most complicated cases of high attenuation and arbitrary anisotropy. Solutions are then plotted in three-dimensional frequency-complex wavenumber space, thus gaining much deeper insight into the nature of these problems. The cases studied range from classical examples, which validate this approach, to new ones involving materials up to the most general triclinic class for both flat and cylindrical geometry in multi-layered systems. The apparent crossing of modes within the same symmetry family in viscoelastic media is also explained and clarified by the results. Finally, the consequences of the centre of symmetry, present in every crystal class, on the solutions are discussed.
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1994-01-01
A three-dimensional computational fluid dynamics code, RPLUS3D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for glancing shock wave-boundary layer interactions. Both laminar and turbulent flows were studied. A supersonic flow over a wedge mounted on a flat plate was numerically simulated. For the laminar case, the static pressure distribution, velocity vectors, and particle traces on the flat plate were obtained. For turbulent flow, both the Baldwin-Lomax and Chien two-equation turbulent models were used. The static pressure distributions, pitot pressure, and yaw angle profiles were computed. In addition, the velocity vectors and particle traces on the flat plate were also obtained from the computed solution. Overall, the computed results for both laminar and turbulent cases compared very well with the experimentally obtained data.
NASA Astrophysics Data System (ADS)
Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng
2015-04-01
The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain
Imaging of 3D Ocean Turbulence Microstructure Using Low Frequency Acoustic Waves
NASA Astrophysics Data System (ADS)
Minakov, Alexander; Kolyukhin, Dmitriy; Keers, Henk
2015-04-01
In the past decade the technique of imaging the ocean structure with low-frequency signal (Hz), produced by air-guns and typically employed during conventional multichannel seismic data acquisition, has emerged. The method is based on extracting and stacking the acoustic energy back-scattered by the ocean temperature and salinity micro- and meso-structure (1 - 100 meters). However, a good understanding of the link between the scattered wavefield utilized by the seismic oceanography and physical processes in the ocean is still lacking. We describe theory and the numerical implementation of a 3D time-dependent stochastic model of ocean turbulence. The velocity and temperature are simulated as homogeneous Gaussian isotropic random fields with the Kolmogorov-Obukhov energy spectrum in the inertial subrange. Numerical modeling technique is employed for sampling of realizations of random fields with a given spatial-temporal spectral tensor. The model used is shown to be representative for a wide range of scales. Using this model, we provide a framework to solve the forward and inverse acoustic scattering problem using marine seismic data. Our full-waveform inversion method is based on the ray-Born approximation which is specifically suitable for the modelling of small velocity perturbations in the ocean. This is illustrated by showing a good match between synthetic seismograms computed using ray-Born and synthetic seismograms produced with a more computationally expensive finite-difference method.
NASA Astrophysics Data System (ADS)
Huang, Qinghua; Li, Zhanhui; Wang, Yanbin
2010-12-01
We presented a parallel 3-D staggered grid pseudospectral time domain (PSTD) method for simulating ground-penetrating radar (GPR) wave propagation. We took the staggered grid method to weaken the global effect in PSTD and developed a modified fast Fourier transform (FFT) spatial derivative operator to eliminate the wraparound effect due to the implicit periodical boundary condition in FFT operator. After the above improvements, we achieved the parallel PSTD computation based on an overlap domain decomposition method without any absorbing condition for each subdomain, which can significantly reduce the required grids in each overlap subdomain comparing with other proposed algorithms. We test our parallel technique for some numerical models and obtained consistent results with the analytical ones and/or those of the nonparallel PSTD method. The above numerical tests showed that our parallel PSTD algorithm is effective in simulating 3-D GPR wave propagation, with merits of saving computation time, as well as more flexibility in dealing with complicated models without losing the accuracy. The application of our parallel PSTD method in applied geophysics and paleoseismology based on GPR data confirmed the efficiency of our algorithm and its potential applications in various subdisciplines of solid earth geophysics. This study would also provide a useful parallel PSTD approach to the simulation of other geophysical problems on distributed memory PC cluster.
NASA Astrophysics Data System (ADS)
Luo, Cong; Friederich, Wolfgang
2016-04-01
Realistic shallow seismic wave propagation simulation is an important tool for studying induced seismicity (e.g., during geothermal energy development). However over a long time, there is a significant problem which constrains computational seismologists from performing a successful simulation conveniently: pre-processing. Conventional pre-processing has often turned out to be inefficient and unrobust because of the miscellaneous operations, considerable complexity and insufficiency of available tools. An integrated web-based platform for shallow seismic wave propagation simulation has been built. It is aiming at providing a user-friendly pre-processing solution, and cloud-based simulation abilities. The main features of the platform for the user include: revised digital elevation model (DEM) retrieving and processing mechanism; generation of multi-layered 3D shallow Earth model geometry (the computational domain) with user specified surface topography based on the DEM; visualization of the geometry before the simulation; a pipeline from geometry to fully customizable hexahedral element mesh generation; customization and running the simulation on our HPC; post-processing and retrieval of the results over cloud. Regarding the computational aspect, currently the widely accepted specfem3D is chosen as the computational package; packages using different types of elements can be integrated as well in the future. According to our trial simulation experiments, this web-based platform has produced accurate waveforms while significantly simplifying and enhancing the pre-processing and improving the simulation success rate.
P-wave tomography for 3-D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones
NASA Astrophysics Data System (ADS)
Wang, Jian; Zhao, Dapeng
2013-06-01
We determined high-resolution P-wave tomography for 3-D radial and azimuthal anisotropy of the Tohoku and Kyushu subduction zones using a large number of high-quality arrival-time data of local earthquakes recorded by the dense seismic network on the Japan Islands. Trench-normal P-wave fast-velocity directions (FVDs) are revealed in the backarc mantle wedge in both Tohoku and Kyushu, which are consistent with the model of slab-driven corner flow. Trench-parallel FVDs with amplitude <4 per cent appear in the forearc mantle wedge under Tohoku and Kyushu, suggesting the existence of B-type olivine fabric there. Trench-parallel FVDs are also visible in the mantle wedge under the volcanic front in Tohoku but not in Kyushu, suggesting that 3-D flow may exist in the mantle wedge under Tohoku and the 3-D flow is affected by the subduction rate of the oceanic plate. Negative radial anisotropy (i.e. vertical velocity being faster than horizontal velocity) is revealed in the low-velocity zones in the mantle wedge under the arc volcanoes in Tohoku and Kyushu as well as in the low-velocity zones below the Philippine Sea slab under Kyushu, which may reflect hot upwelling flows and transitions of olivine fabrics with the presence of water in the upper mantle. Trench-parallel FVDs and positive radial anisotropy (i.e. horizontal velocity being faster than vertical velocity) are revealed in the subducting Pacific slab under Tohoku and the Philippine Sea slab under Kyushu, suggesting that the slabs keep their frozen-in anisotropy formed at the mid-ocean ridge or that the slab anisotropy is induced by the lattice-preferred orientation of the B-type olivine.
NASA Astrophysics Data System (ADS)
Todoriki, M.; Furumura, T.; Maeda, T.
2013-12-01
We have studied the effect of topography and a seawater layer on the propagation of seismic wave propagation towards the realization of a high-resolution 3D FDM simulation of strong ground motions expected from future large subduction zone earthquakes along the Nankai Trough. Although most of the former studies on seismic wave propagation simulation did not consider a seawater layer in their simulation model, some of the recent studies claimed the importance of topography and a seawater layer on the simulation of strong ground motions (e.g., Petukhin et al., 2010; Nakamura, 2012; Maeda et al., 2013). In this study, we examined the effect of these two features on seismic wave propagation by introducing the high-resolution topography with a seawater layer over a wide frequency band. The area of 3D FDM simulation is 1200 km x 1000 km for horizontal directions and 200 km in depth, which covers entirely the area of southwestern Japan centered at 136E and 34.8N. This model was discretized with small grid interval of 0.5 km in horizontal direction and 0.25 km in depth. We used 2400 nodes of the K-computer, which is about 2.9% of its total resources, with a total memory of 1TB. We used a 3D velocity model of Koketsu et al. (2008) and an original source-rupture model from a recent study on the expansion of source-rupture area of the 1707 Hoei earthquake (Furumura et al., 2011). The result of simulation shows that the effect of a seawater layer on ground motion is small in almost all parts of Japan Island with a change of the seismic wave amplitude of less than +-20%. However, around the Northern Kanto area characterized by a belt-shaped anomalous zone, the amplitude of ground motion grows twice as large as that without seawater. This was possibly brought about from amplification of the amplitudes of surface waves generated on the Philippine Sea plate in the Suruga Trough located in the eastern end of the Nankai Trough. It is quite likely that the amplitude of surface wave
Extracting chemical information from plane wave calculations by a 3D 'fuzzy atoms' analysis
NASA Astrophysics Data System (ADS)
Bakó, I.; Stirling, A.; Seitsonen, A. P.; Mayer, I.
2013-03-01
Bond order and valence indices have been calculated by the method of the three-dimensional 'fuzzy atoms' analysis, using the numerical molecular orbitals obtained from plane wave DFT calculations, i.e., without introducing any external atom-centered functions. Weight functions of both Hirshfeld and Becke types have been applied. The results are rather close to the similar 'fuzzy atoms' ones obtained by using atom-centered basis sets and agree well with the chemical expectations, stressing the power of the genuine chemical concepts.
A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures.
Wilm, Mikaël; Ballandras, Sylvain; Laude, Vincent; Pastureaud, Thomas
2002-09-01
The plane-wave-expansion (PWE) approach dedicated to the simulation of periodic devices has been extended to 1-3 connectivity piezoelectric composite structures. The case of simple but actual piezoelectric composite structures is addressed, taking piezoelectricity, acoustic losses, and electrical excitation conditions rigorously into account. The material distribution is represented by using a bidimensional Fourier series and the electromechanical response is simulated using a Bloch-Floquet expansion together with the Fahmy-Adler formulation of the Christoffel problem. Application of the model to 1-3 connectivity piezoelectric composites is reported and compared to previously published analyses of this problem. PMID:12243182
Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields
NASA Astrophysics Data System (ADS)
Smirnov, I. N.; Speranskiy, A. A.
2015-11-01
It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.
Wave equation modelling using Julia programming language
NASA Astrophysics Data System (ADS)
Kim, Ahreum; Ryu, Donghyun; Ha, Wansoo
2016-04-01
Julia is a young high-performance dynamic programming language for scientific computations. It provides an extensive mathematical function library, a clean syntax and its own parallel execution model. We developed 2d wave equation modeling programs using Julia and C programming languages and compared their performance. We used the same modeling algorithm for the two modeling programs. We used Julia version 0.3.9 in this comparison. We declared data type of function arguments and used inbounds macro in the Julia program. Numerical results showed that the C programs compiled with Intel and GNU compilers were faster than Julia program, about 18% and 7%, respectively. Taking the simplicity of dynamic programming language into consideration, Julia can be a novel alternative of existing statically typed programming languages.
NASA Astrophysics Data System (ADS)
Salin, B. M.; Salin, M. B.
2015-07-01
Although optical tools for measuring the surface-wave characteristics provide the best spatial and temporal resolutions compared with other methods, they face some difficulties while converting the results of indirect measurements into the absolute levels of waves. In this paper, we propose a combined optical method for measuring the 3D spectral density of the heights and the time realizations of the surface-wave profiles. The method involves, first, synchronous recording of the optical-brightness field on a rough-surface area and the surface-oscillation measurement at one or several points and, second, filtering of the spatial image spectrum, so that the filter parameters are also chosen from the condition of maximum correlation of the reconstructed and measured surface oscillations at one or two points. The second part of this work deals with the results of measuring the multi-dimensional wave spectra on the basis of the proposed method.
ERIC Educational Resources Information Center
Merchant, Zahira; Goetz, Ernest T.; Keeney-Kennicutt, Wendy; Kwok, Oi-man; Cifuentes, Lauren; Davis, Trina J.
2012-01-01
We examined a model of the impact of a 3D desktop virtual reality environment on the learner characteristics (i.e. perceptual and psychological variables) that can enhance chemistry-related learning achievements in an introductory college chemistry class. The relationships between the 3D virtual reality features and the chemistry learning test as…
Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction
NASA Technical Reports Server (NTRS)
Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.
1994-01-01
The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.
Pseudo 3-D P wave refraction seismic monitoring of permafrost in steep unstable bedrock
NASA Astrophysics Data System (ADS)
Krautblatter, Michael; Draebing, Daniel
2014-02-01
permafrost in steep rock walls can cause hazardous rock creep and rock slope failure. Spatial and temporal patterns of permafrost degradation that operate at the scale of instability are complex and poorly understood. For the first time, we used P wave seismic refraction tomography (SRT) to monitor the degradation of permafrost in steep rock walls. A 2.5-D survey with five 80 m long parallel transects was installed across an unstable steep NE-SW facing crestline in the Matter Valley, Switzerland. P wave velocity was calibrated in the laboratory for water-saturated low-porosity paragneiss samples between 20°C and -5°C and increases significantly along and perpendicular to the cleavage by 0.55-0.66 km/s (10-13%) and 2.4-2.7 km/s (>100%), respectively, when freezing. Seismic refraction is, thus, technically feasible to detect permafrost in low-porosity rocks that constitute steep rock walls. Ray densities up to 100 and more delimit the boundary between unfrozen and frozen bedrock and facilitate accurate active layer positioning. SRT shows monthly (August and September 2006) and annual active layer dynamics (August 2006 and 2007) and reveals a contiguous permafrost body below the NE face with annual changes of active layer depth from 2 to 10 m. Large ice-filled fractures, lateral onfreezing of glacierets, and a persistent snow cornice cause previously unreported permafrost patterns close to the surface and along the crestline which correspond to active seasonal rock displacements up to several mm/a. SRT provides a geometrically highly resolved subsurface monitoring of active layer dynamics in steep permafrost rocks at the scale of instability.
Capturing atmospheric effects on 3D millimeter wave radar propagation patterns
NASA Astrophysics Data System (ADS)
Cook, Richard D.; Fiorino, Steven T.; Keefer, Kevin J.; Stringer, Jeremy
2016-05-01
Traditional radar propagation modeling is done using a path transmittance with little to no input for weather and atmospheric conditions. As radar advances into the millimeter wave (MMW) regime, atmospheric effects such as attenuation and refraction become more pronounced than at traditional radar wavelengths. The DoD High Energy Laser Joint Technology Offices High Energy Laser End-to-End Operational Simulation (HELEEOS) in combination with the Laser Environmental Effects Definition and Reference (LEEDR) code have shown great promise simulating atmospheric effects on laser propagation. Indeed, the LEEDR radiative transfer code has been validated in the UV through RF. Our research attempts to apply these models to characterize the far field radar pattern in three dimensions as a signal propagates from an antenna towards a point in space. Furthermore, we do so using realistic three dimensional atmospheric profiles. The results from these simulations are compared to those from traditional radar propagation software packages. In summary, a fast running method has been investigated which can be incorporated into computational models to enhance understanding and prediction of MMW propagation through various atmospheric and weather conditions.
What's its wave? A 3D analysis of flying snake locomotion
NASA Astrophysics Data System (ADS)
Yeaton, Isaac J.; Baumgardner, Grant A.; Weiss, Talia M.; Nave, Gary; Ross, Shane D.; Socha, John J.
2015-11-01
Arboreal snakes of the genus Chrysopelea are the only known snakes to glide. To execute aerial locomotion, a snake jumps from a tree into the air while simultaneously flattening its body into an aerodynamically favorable shape. Snake gliding is distinguished by complex, three-dimensional body undulations resulting in a stable glide. However, these undulations have not been sufficiently characterized for a proper dynamical analysis. Here we ask, what is the body waveform employed during a glide, and how does this waveform enhance rotational stability? We report on recent glide experiments in which we recorded the three-dimensional body position during 8.5 m glides using a multi-camera motion-capture system. We quantify the body posture using complex modal analysis, which then serves as input in a variable-geometry rigid-body simulation of the snake while gliding. By separating the inertial and aerodynamic contributions in the equations of motion, we can now quantify the stability of the snake's `gait'. Supported by NSF 1351322.
FAST TRACK COMMUNICATION Quasi self-adjoint nonlinear wave equations
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.; Torrisi, M.; Tracinà, R.
2010-11-01
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation.
NASA Astrophysics Data System (ADS)
Jheng, Y.; Hung, S.; Zhou, Y.; Chang, Y.
2012-12-01
Surface wave travel-time tomography has been widely used as a powerful strategy to image shear wave velocity structure of the Earth's crust and upper mantle, providing comparable information other than body wave tomography. Traditionally, lateral variations of dispersive phase velocities are first obtained at multiple frequencies and then used to invert for shear wave velocity with 1-D depth-dependent sensitivity kernels. However, this approach runs short on considering the directional- and depth-dependence of scattering while surface wave propagating through laterally heterogeneous Earth. To refrain from these shortcomings, we here provide a fully 3-D finite-frequency method based on the Born scattering theory formulated with surface wave mode summation, and apply it to regional fundamental Rayleigh wave travel-time tomography in central Tibet. Our data were collected from Project Hi-CLIMB, which deployed an N-S trending linear array of over 100 broadband seismic stations with a large aperture of 800 km and very dense spacing of ~3-8 km across the Lhasa and Qiangtang terranes during 2004-2005. We follow a standard procedure of ambient noise cross correlation to extract empirical Green's functions of fundamental Rayleigh waves at 10-33 s between station pairs. A multi-taper method is employed to measure the phase differences as a function of period between observed and synthetic Rayleigh waves as well as the corresponding sensitivity kernels for the measured phase delays to 3-D shear wave velocity perturbations in a spherically-symmetric model suitable for central Tibet. A wavelet-based, multi-scale parameterization is invoked in the tomographic inversion to deal with the intrinsically multi-scale nature of unevenly distributed data and resolve the structure with data-adaptive spectral and spatial resolutions. The preliminary result shows that to the north of the Banggong-Nujiang suture (BNS), the crustal shear wave velocity beneath the Qiangtang terrane is
NASA Astrophysics Data System (ADS)
Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.; Moder, C.; Oeser, J.
2007-12-01
Our current understanding of mantle structure and dynamics is to a large part based on inversion of seismic data resulting in tomographic images and on direct analysis of a wide range of seismic phases such as Pdiff, PcP, ScS SdS etc. For solving inverse problems, forward modeling is needed to obtain a synthetic dataset for a given set of model parameters. In this respect, great progress has been made over the last years in the developement of sophisticated numerical full waveform modeling tools. However, the main limitation in the application of this new class of techniques for the forward problem of seismology is the lack of accurate predictions of mantle heterogeneity that allow us to test hypotheses about Earth's mantle. Such predictive models should be based on geodynamic and mineralogical considerations and derived independently of seismological observations. Here, we demonstrate the feasibility of joining forward simulations from geodynamics, mineral physics and seismology to obtain earth-like seismograms. 3D global wave propagation is simulated for dynamically consistent thermal structures derived from 3D mantle circulation modeling (e.g. Bunge et al. 2002), for which the temperatures are converted to seismic velocities using a recently published, thermodynamically self-consistent mineral physics approach (Piazzoni et al. 2007). Assuming a certain, fixed mantle composition (e.g. pyrolite) our mineralogic modeling algorithm computes the stable phases at mantle pressures for a wide range of temperatures by system Gibbs free energy minimization. Through the same equations of state that model the Gibbs free energy, we compute elastic moduli and density for each stable phase assemblage at the same P-T conditions. One straightforward application of this approach is the study of the seismic signature of synthetic mantle discontinuities arising in such models, as the temperature dependent phase transformations occuring at around 410 Km and 660 Km depth are
Evolution equations: Frobenius integrability, conservation laws and travelling waves
NASA Astrophysics Data System (ADS)
Prince, Geoff; Tehseen, Naghmana
2015-10-01
We give new results concerning the Frobenius integrability and solution of evolution equations admitting travelling wave solutions. In particular, we give a powerful result which explains the extraordinary integrability of some of these equations. We also discuss ‘local’ conservations laws for evolution equations in general and demonstrate all the results for the Korteweg-de Vries equation.
Detection of hidden objects using a real-time 3-D millimeter-wave imaging system
NASA Astrophysics Data System (ADS)
Rozban, Daniel; Aharon, Avihai; Levanon, Assaf; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, N. S.
2014-10-01
Millimeter (mm)and sub-mm wavelengths or terahertz (THz) band have several properties that motivate their use in imaging for security applications such as recognition of hidden objects, dangerous materials, aerosols, imaging through walls as in hostage situations, and also in bad weather conditions. There is no known ionization hazard for biological tissue, and atmospheric degradation of THz radiation is relatively low for practical imaging distances. We recently developed a new technology for the detection of THz radiation. This technology is based on very inexpensive plasma neon indicator lamps, also known as Glow Discharge Detector (GDD), that can be used as very sensitive THz radiation detectors. Using them, we designed and constructed a Focal Plane Array (FPA) and obtained recognizable2-dimensional THz images of both dielectric and metallic objects. Using THz wave it is shown here that even concealed weapons made of dielectric material can be detected. An example is an image of a knife concealed inside a leather bag and also under heavy clothing. Three-dimensional imaging using radar methods can enhance those images since it can allow the isolation of the concealed objects from the body and environmental clutter such as nearby furniture or other people. The GDDs enable direct heterodyning between the electric field of the target signal and the reference signal eliminating the requirement for expensive mixers, sources, and Low Noise Amplifiers (LNAs).We expanded the ability of the FPA so that we are able to obtain recognizable 2-dimensional THz images in real time. We show here that the THz detection of objects in three dimensions, using FMCW principles is also applicable in real time. This imaging system is also shown here to be capable of imaging objects from distances allowing standoff detection of suspicious objects and humans from large distances.
Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer
NASA Astrophysics Data System (ADS)
Kolappan Geetha, Ganesh; Roy Mahapatra, D.; Srinivasan, Gopalakrishnan
2012-04-01
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1990-01-01
The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.
Low-power 20-meter 3D ranging SPAD camera based on continuous-wave indirect time-of-flight
NASA Astrophysics Data System (ADS)
Bellisai, S.; Ferretti, L.; Villa, F.; Ruggeri, A.; Tisa, S.; Tosi, A.; Zappa, F.
2012-06-01
Three dimensional (3D) image acquisitions is the enabling technology of a great number of applications; culture heritage morphology study, industrial robotics, automotive active safety and security access control are example of applications. The most important feature is the high frame-rate, to detect very fast events within the acquired scenes. In order to reduce the computational complexity, Time-of-Flight algorithms for single sensor cameras are used. To achieve high-frame rate and high distance measurement accuracy it is important to collect the most part of the reflected light using sensor with very high sensitivity, allowing the implementation of a low-power light source. We designed and developed a single-photon detection based 3D ranging camera, capable to acquire distance image up to 22.5 m, with a resolution down to one centimeter. The light source used in this prototype employs 8 laser diodes sinusoidally modulated. The imager used in the application is based on Single-Photon Avalanche Diodes (SPADs) fabricated in a standard CMOS 0.35 μm technology. The sensor has 1024 pixels arranged in a 32x32 squared layout, with overall dimensions of 3.5mm x 3.5mm. The camera acquires 3D images through the continuous-wave indirect Time of Flight (cw-iTOF) technique. The typical frame-rate is 20 fps while the theoretical maximum frame-rate is 5 kfps. The precision is better than 5 cm within 22.5 m range, and can be effectively used in indoor applications, e.g. in industrial environment.
Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.
2006-01-01
A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.
NASA Astrophysics Data System (ADS)
Trovato, Claudio; Aochi, Hideo; De Martin, Florent
2014-05-01
Understanding the source mechanism of long-period (LP) seismic signals on volcanoes is an important key point in volcanology and for the hazard forecasting. In the last decades, moment tensor inversions have led to various descriptions of the kinematic source mechanism. These inversions suppose a relatively simple structure of the medium. However, the seismic wave propagation in a realistic 3-D volcano model should be taken into account for understanding the complicated physical processes of magma and gas behaviors at depth. We are studying Etna volcano, Italy, to understand the volcanic processes during different stages of activity. We adopt a spectral element method (SEM), a code EFISPEC3D (De Martin, BSSA, 2011), which shows a good accuracy and numerical stability in the simulations of seismic wave propagation. First we construct the geometrical model. We use a digital elevation model (DEM) to generate finite element meshes with a spacing of 50 m on the ground surface. We aim to calculate the ground motions until 3 Hz for the shallowest layer with Vs = ~500 m/s. The minimal size of the hexahedral elements is required to be around 100 m, with a total number of elements n = ~2 10 ^ 6 for the whole model. We compare different velocity structure configurations. We start with a homogeneous medium and add complexities taking in account the shallow low velocity structure. We also introduce a velocity gradient towards depth. Simulations performed in the homogeneous medium turn in approximately 20 hours for calculations parallelized on 16 CPUs. Complex velocity models should take approximately the same time of computation. We then try to simulate the ground motion from the LP sources (0.1-1.5 Hz) obtained by the inversion for the Etna volcano in 2008 (De Barros, GRL, 2009 and De Barros, JGR, 2011). Some vertical and horizontal structures can be added to reproduce injected dikes or sills respectively.
Least-squares wave-equation migration/inversion
NASA Astrophysics Data System (ADS)
Kuehl, Henning
This thesis presents an acoustic migration/inversion algorithm that inverts seismic reflection data for the angle dependent subsurface reflectivity by means of least-squares minimization. The method is based on the primary seismic data representation (single scattering approximation) and utilizes one-way wavefield propagators ('wave-equation operators') to compute the Green's functions of the problem. The Green's functions link the measured reflection seismic data to the image points in the earth's interior where an angle dependent imaging condition probes the image point's angular spectrum in depth. The proposed least-squares wave-equation migration minimizes a weighted seismic data misfit function complemented with a model space regularization term. The regularization penalizes discontinuities and rapid amplitude changes in the reflection angle dependent common image gathers---the model space of the inverse problem. 'Roughness' with respect to angle dependence is attributed to seismic data errors (e.g., incomplete and irregular wavefield sampling) which adversely affect the amplitude fidelity of the common image gathers. The least-squares algorithm fits the seismic data taking their variance into account, and, at the same time, imposes some degree of smoothness on the solution. The model space regularization increases amplitude robustness considerably. It mitigates kinematic imaging artifacts and noise while preserving the data consistent smooth angle dependence of the seismic amplitudes. In least-squares migration the seismic modelling operator and the migration operator---the adjoint of modelling---are applied iteratively to minimize the regularized objective function. Whilst least-squares migration/inversion is computationally expensive synthetic data tests show that usually a few iterations suffice for its benefits to take effect. An example from the Gulf of Mexico illustrates the application of least-squares wave-equation migration/inversion to a real
Traveling wave solutions of compressible fluid equations and orbital stability
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhang, Weiguo; Li, Zhengming
2015-11-01
In this paper, we discuss the existence of traveling wave solutions for compressible fluid equations by applying the theory and method of planar dynamical system, and obtain explicit expressions for all bounded traveling wave solutions by undetermined coefficient method, including kink and bell profile traveling wave solutions, as well as periodic wave solutions. We prove the kink profile solitary wave solution, both sides of which asymptotic values are not zero, is orbitally stable by the theory of Grillakis-Shatah-Strauss orbital stability.
Propagation estimates for dispersive wave equations: Application to the stratified wave equation
NASA Astrophysics Data System (ADS)
Pravica, David W.
1999-01-01
The plane-stratified wave equation (∂t2+H)ψ=0 with H=-c(y)2∇z2 is studied, where z=x⊕y, x∈Rk, y∈R1 and |c(y)-c∞|→0 as |y|→∞. Solutions to such an equation are solved for the propagation of waves through a layered medium and can include waves which propagate in the x-directions only (i.e., trapped modes). This leads to a consideration of the pseudo-differential wave equation (∂t2+ω(-Δx))ψ=0 such that the dispersion relation ω(ξ2) is analytic and satisfies c1⩽ω'(ξ2)⩽c2 for c*>0. Uniform propagation estimates like ∫|x|⩽|t|αE(UtP±φ0)dkx⩽Cα,β(1+|t|)-β∫E(φ0)dkx are obtained where Ut is the evolution group, P± are projection operators onto the Hilbert space of initial conditions φ∈H and E(ṡ) is the local energy density. In special cases scattering of trapped modes off a local perturbation satisfies the causality estimate ||P+ρΛjSP-ρΛk||⩽Cνρ-ν for each ν<1/2. Here P+ρΛj (P-ρΛk) are remote outgoing/detector (incoming/transmitter) projections for the jth (kth) trapped mode. Also Λ⋐R+ is compact, so the projections localize onto formally-incoming (eventually-outgoing) states.
NASA Astrophysics Data System (ADS)
Michaud, H.; Marsaleix, P.; Leredde, Y.; Estournel, C.; Bourrin, F.; Lyard, F.; Mayet, C.; Ardhuin, F.
2012-04-01
We implement the new set of equations of Bennis et al. (2011) which use the glm2z-RANS theory (Ardhuin et al., 2008) to take into account the impact of waves into the 3D circulation model SYMPHONIE (Marsaleix et al., 2008, 2009). These adiabatic equations are completed by additional parameterizations of wave breaking, bottom friction and wave-enhanced vertical mixing, making the forcing valid from the surf zone through to the open ocean. The wave forcing is performed by WAVEWATCH III® (Tolman 2008; Ardhuin et al., 2010) for the realistic cases and SWAN (Booij et al., 1999) for the academic cases. Firstly, the model is tested in two academic cases. In the first case, it is compared with other models for a plane beach test case, previously tested by Haas and Warner (2009) and Uchiyama et al. (2010). Then, a comparison is made with the laboratory measurements of Haller et al. (2002) of a barred beach with channels. Results fit with previous simulations performed by other models or with available observational data: the littoral drift and the vertical profiles of current or in the second case, the rip current are well reproduced. Finally, a realistic case of a winter storm over a coast of the Gulf of Lion (NW of the Mediterranean Sea) for which currents are available at different depths as well as an accurate bathymetric database of the 0-10m depth range, is simulated. A grid nesting approach is used to account for the different forcing acting at the different spatial scales. We use at the smaller scale a grid with a variable resolution. The model is successful to reproduce the powerful northward littoral drift in the 0-15m depth zone. More precisely, two distinct cases are identified: when waves have a normal angle of incidence with the coast, they are responsible for complex circulation cells and rip currents in the surf zone, and when they travel obliquely, they generate a northward littoral drift. These features are more complicated than in the test cases, due to
High-order rogue waves for the Hirota equation
Li, Linjing; Wu, Zhiwei; Wang, Lihong; He, Jingsong
2013-07-15
The Hirota equation is better than the nonlinear Schrödinger equation when approximating deep ocean waves. In this paper, high-order rational solutions for the Hirota equation are constructed based on the parameterized Darboux transformation. Several types of this kind of solutions are classified by their structures. -- Highlights: •The determinant representation of the N-fold Darboux transformation of the Hirota equation. •Properties of the fundamental pattern of the higher order rogue wave. •Ring structure and triangular structure of the higher order rogue waves.
Joukar, Amin; Nammakie, Erfan; Niroomand-Oscuii, Hanieh
2015-01-01
The application of laser in ophthalmology and eye surgery is so widespread that hardly can anyone deny its importance. On the other hand, since the human eye is an organ susceptible to external factors such as heat waves, laser radiation rapidly increases the temperature of the eye and therefore the study of temperature distribution inside the eye under laser irradiation is crucial; but the use of experimental and invasive methods for measuring the temperature inside the eye is typically high-risk and hazardous. In this paper, using the three-dimensional finite element method, the distribution of heat transfer inside the eye under transient condition was studied through three different lasers named Nd:Yag, Nd:Yap and ArF. Considering the metabolic heat and blood perfusion rate in various regions of the eye, numerical solution of space-time dependant Pennes bioheat transfer equation has been applied in this study. Lambert-Beer's law has been used to model the absorption of laser energy inside the eye tissues. It should also be mentioned that the effect of the ambient temperature, tear evaporation rate, laser power and the pupil diameter on the temperature distribution have been studied. Also, temperature distribution inside the eye after applying each laser and temperature variations of six optional regions as functions of time have been investigated. The results show that these radiations cause temperature rise in various regions, which will in turn causes serious damages to the eye tissues. Investigating the temperature distribution inside the eye under the laser irradiation can be a useful tool to study and predict the thermal effects of laser radiation on the human eye and evaluate the risk involved in performing laser surgery. PMID:25774029
Bifurcations of traveling wave solutions for an integrable equation
Li Jibin; Qiao Zhijun
2010-04-15
This paper deals with the following equation m{sub t}=(1/2)(1/m{sup k}){sub xxx}-(1/2)(1/m{sup k}){sub x}, which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.
A primitive pseudo wave equation formulation for solving the harmonic shallow water equations
NASA Astrophysics Data System (ADS)
Westerink, J. J.; Connor, J. J.; Stolzenbach, K. D.
A finite element method formulation for solving the harmonic shallow water equations in their primitive or unmodified form is developed and analysed. The scheme, referred to as the Primitive Pseudo Wave Equation Formulation (PPWE), involves developing a weak weighted residual form of the continuity equation and furthermore forming a pseudo wave equation by substituting the discretized form of the momentum equation into the discretized form of the continuity equation. The final set of equations to be solved, the pseudo wave equation and the primitive momentum equations, deceptively resemble the discretized equations of the wave equation formulation of Lynch and Gray. Despite this resemblance, Fourier analysis indicates that the PPWE scheme is still fundamentally primitive. However, application of the PPWE scheme to a set of stringent test problems results in very good solutions with well controlled nodal oscillations. It is shown that this low degree of spurious oscillations is due to the treatment of the boundary conditions such that elevation is taken as an essential condition and normal flux is taken as a natural condition. This particular boundary condition treatment is suggested by the formation of the pseudo wave equation. Furthermore, even though the equation re-arrangement does not in itself effect the solutions, it does make the scheme much more efficient.
NASA Astrophysics Data System (ADS)
Bustamante, Miguel D.
2014-11-01
We consider 3D Euler fluids endowed with a discrete symmetry whereby the velocity field is invariant under mirror reflections about a 2D surface known as the ``symmetry plane.'' This type of flow is widely used in numerical simulations of classical/magnetic/quantum turbulence and vortex reconnection. On the 2D symmetry plane, the governing equations are best written in terms of two scalars: vorticity and stretching rate of vorticity. These determine the velocity field on the symmetry plane. However, the governing equations are not closed, because of the contribution of a single pressure term that depends on the full 3D velocity profile. By modelling this pressure term we propose a one-parameter family of sensible models for the flow along the 2D symmetry plane. We apply the method of infinitesimal Lie symmetries and solve the governing equations analytically for the two scalars as functions of time. We show how the value of the model's parameter determines if the analytical solution has a finite-time blowup and obtain explicit formulae for the blowup time. We validate the models by showing that a particular choice of the model's parameter corresponds to a well-known exact solution of 3D Euler equations [Gibbon et al., Physica D 132, 497 (1999)]. We discuss practical applications. Supported by Science Foundation Ireland (SFI) under Grant Number 12/IP/1491.
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2010-12-01
-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.
Exchange effects in Coulomb quantum plasmas: Dispersion of waves in 2D and 3D quantum plasmas
Andreev, Pavel A.
2014-11-15
We describe quantum hydrodynamic equations with the Coulomb exchange interaction for three and two dimensional plasmas. Explicit form of the force densities are derived. We present non-linear Schrödinger equations (NLSEs) for the Coulomb quantum plasmas with the exchange interaction. We show contribution of the exchange interaction in the dispersion of the Langmuir, and ion-acoustic waves. We consider influence of the spin polarization ratio on strength of the Coulomb exchange interaction. This is important since exchange interaction between particles with same spin direction and particles with opposite spin directions are different. At small particle concentrations n{sub 0}≪10{sup 25}cm{sup −3} and small polarization the exchange interaction gives small decrease of the Fermi pressure. With increase of polarization role the exchange interaction becomes more important, so that it can overcome the Fermi pressure. The exchange interaction also decreases contribution of the Langmuir frequency. Ion-acoustic waves do not exist in limit of large polarization since the exchange interaction changes the sign of pressure. At large particle concentrations n{sub 0}≫10{sup 25}cm{sup −3} the Fermi pressure prevails over the exchange interaction for all polarizations. We obtain a similar picture for two dimensional quantum plasmas.
Kamon, M.; Phillips, J.R.
1994-12-31
In this paper techniques are presented for preconditioning equations generated by discretizing constrained vector integral equations associated with magnetoquasistatic analysis. Standard preconditioning approaches often fail on these problems. The authors present a specialized preconditioning technique and prove convergence bounds independent of the constraint equations and electromagnetic excitation frequency. Computational results from analyzing several electronic packaging examples are given to demonstrate that the new preconditioning approach can sometimes reduce the number of GMRES iterations by more than an order of magnitude.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
Single integrodifferential wave equation for a Lévy walk
NASA Astrophysics Data System (ADS)
Fedotov, Sergei
2016-02-01
We derive the single integrodifferential wave equation for the probability density function of the position of a classical one-dimensional Lévy walk with continuous sample paths. This equation involves a classical wave operator together with memory integrals describing the spatiotemporal coupling of the Lévy walk. It is valid at all times, not only in the long time limit, and it does not involve any large-scale approximations. It generalizes the well-known telegraph or Cattaneo equation for the persistent random walk with the exponential switching time distribution. Several non-Markovian cases are considered when the particle's velocity alternates at the gamma and power-law distributed random times. In the strong anomalous case we obtain the asymptotic solution to the integrodifferential wave equation. We implement the nonlinear reaction term of Kolmogorov-Petrovsky-Piskounov type into our equation and develop the theory of wave propagation in reaction-transport systems involving Lévy diffusion.
3D P-Wave Velocity Structure of the Crust and Relocation of Earthquakes in 21 the Lushan Source Area
NASA Astrophysics Data System (ADS)
Yu, X.; Wang, X.; Zhang, W.
2014-12-01
The double difference seismic tomography method is applied to the absolute first arrival P wave arrival times and high quality relative P arrival times of the Lushan seismic sequence to determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the Lushan mainshock locates at 30.28 N, 103.98 E, with the depth of 16.38 km. The leading edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12 km. In the southwest of the Lushan mainshock, the leading edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23 km. The P wave velocity structure of the Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15 km depth，while the Cenozoic rocks are correlated with low-velocity anomalies. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. An obvious high-velocity anomaly is visible in Daxing area. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10 km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20 km depth the velocity structure in southwest and northeast segment of the mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. The Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while
Periodic intermediate long wave equation: the undressing method
Lebedev, D.R.; Radul, A.O.
1987-08-01
The periodic equation of a two-layer liquid (periodic intermediate long wave equation) is studied by the undressing method using formal Volterra operators. The method is used to construct an infinite series of conservation laws; higher equations of the two-layer liquid are written down in Hamiltonian form; it is shown that the conservation laws are preserved by the higher equations; and an involution theorem is proved.
Travelling wave solutions for higher-order wave equations of kdv type (iii).
Li, Jibin; Rui, Weigou; Long, Yao; He, Bin
2006-01-01
By using the theory of planar dynamical systems to the travelling wave equation of a higher order nonlinear wave equations of KdV type, the existence of smooth solitary wave, kink wave and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some conditions, exact explicit parametric representations of these waves are obtain. PMID:20361813
Comparison of 3-D Modeling With Experimental Results on Fast Wave Antenna Loading in DIII-D
NASA Astrophysics Data System (ADS)
Pinsker, R. I.; Ryan, P. M.; Goulding, R. H.; Hanson, G. R.; Milanesio, D.; Maggiora, R.; Hosea, J. C.; Nagy, A.; Porkolab, M.; Zeng, L.
2011-10-01
In DIII-D and other tokamaks, with a fixed system voltage limit, the parameter that limits the ICRF power that can be coupled to H-mode plasmas is the antenna loading resistance RL. For a fixed antenna geometry and excitation (phasing), RL is determined by the electron density profile in the antenna near-field region. Quantitative understanding of the coupling physics is obtained by comparing the resistive (RL) and reactive components of the antenna loading, without and with plasma, to predictions of 3-D models of the antenna and the edge plasma (Microwave Studio and TOPICA). When measured density profiles from reflectometers are used, good agreement between predicted and measured values of RL is obtained without any adjustable parameters in the model. The improved understanding is applied to enhancement of RL in advanced scenarios in DIII-D to increase the coupled fast wave power. Supported in part by US DOE under DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG02-08ER54984.
Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin
2013-11-26
An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring. PMID:24168315
NASA Astrophysics Data System (ADS)
Li, Y.; Han, B.; Métivier, L.; Brossier, R.
2016-09-01
We investigate an optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling. An anti-lumped mass strategy is incorporated to minimize the numerical dispersion. The optimal finite-difference coefficients and the mass weighting coefficients are obtained by minimizing the misfit between the normalized phase velocities and the unity. An iterative damped least-squares method, the Levenberg-Marquardt algorithm, is utilized for the optimization. Dispersion analysis shows that the optimal fourth-order scheme presents less grid dispersion and anisotropy than the conventional fourth-order scheme with respect to different Poisson's ratios. Moreover, only 3.7 grid-points per minimum shear wavelength are required to keep the error of the group velocities below 1%. The memory cost is then greatly reduced due to a coarser sampling. A parallel iterative method named CARP-CG is used to solve the large ill-conditioned linear system for the frequency-domain modeling. Validations are conducted with respect to both the analytic viscoacoustic and viscoelastic solutions. Compared with the conventional fourth-order scheme, the optimal scheme generates wavefields having smaller error under the same discretization setups. Profiles of the wavefields are presented to confirm better agreement between the optimal results and the analytic solutions.
Lynn, H.B.; Campagna, D.; Simon, K.M.; Beckham, W.E.
1999-08-01
This case history is one of three field projects funded by the US Department of Energy a part of its ongoing research effort aimed to expand current levels of drilling and production efficiency in naturally-fractured tight-gas reservoirs. The original states goal for the 3-D P-wave seismic survey was to evaluate and map fracture azimuth and relative fracture density throughout a naturally-fractured gas reservoir interval. At Rulison field, this interval is the Cretaceous Mesaverde, approximately 2,500 ft (760 m) of lenticular sands, silts, and shales. Three-dimensional full-azimuth P-wave data were acquired for the evaluation of azimuthal anisotropy and the relationship of the anisotropy to commercial pay in the target interval. The methodology is based on the evaluation of two restricted-azimuth orthogonal (source receiver azimuth) 3-D P-wave volumes aligned with the natural principal axes of the azimuthal anisotropy, as estimated from velocity analysis of multiazimuth prestack gathers. The Dix interval velocity, as well as the interval amplitude variation with offset (AVO) gradient, was calculated for both azimuths for the gas-saturated Mesaverde interval. The two seismic attributes best correlated with commercial gas pay (at a 21-well control set) were (1) values greater than 4% azimuthal variation in the interval velocity ratio (source-receiver azimuth N60E/N30W) of the target interval (the gas-saturated Mesaverde), and (2) the sum of the interval AVO gradients (N60E + N30W). The sum of the interval AVO gradients is an attribute sensitive to the presence of gas, but not diagnostic of an azimuthal variation in the amplitude. The two-azimuth interval velocity anisotropy mapped over the survey area suggests spatial variations in the orientation of the maximum horizontal stress field and the open (to flow) fracture system.
Solitary Waves of the MRLW Equation by Variational Iteration Method
Hassan, Saleh M.; Alamery, D. G.
2009-09-09
In a recent publication, Soliman solved numerically the modified regularized long wave (MRLW) equation by using the variational iteration method (VIM). In this paper, corrected numerical results have been computed, plotted, tabulated, and compared with not only the exact analytical solutions but also the Adomian decomposition method results. Solitary wave solutions of the MRLW equation are exactly obtained as a convergent series with easily computable components. Propagation of single solitary wave, interaction of two and three waves, and also birth of solitons have been discussed. Three invariants of motion have been evaluated to determine the conservation properties of the problem.
Transport equations for lower hybrid waves in a turbulent plasma
NASA Astrophysics Data System (ADS)
Mendonca, J. T.; Horton, W.; Galvao, R. M. O.; Elskens, Y.
2014-10-01
Injection and control of intense lower hybrid (LH) wave spectra is required to achieve steady state tokamak operation in the new WEST tokamak at CEA France. The tungsten [W] environment [E] steadytstate [S] tokamak [T] has two high-power [20 MW] lower hybrid antennas launching 3.7 GHz polarized waves for steady fusion-grade plasmas control. The wave propagation and scattering is described in by ray equations in the presence of the drift wave turbulence. Theory for the wave transport equations for propagation of the wave momentum and energy densities are derived from the Wigner function method of QM. The limits of the diffraction and scattering for ray transport theory are established. Comparisons are made between the wave propagation in WEST and ITER tokamaks. Supported by the University of Texas at Austin; PIIM/CNRS at Aix-Marseille University and University of Sao Paulo.
NASA Astrophysics Data System (ADS)
Yu, Xiangwei; Wang, Xiaona; Zhang, Wenbo
2016-04-01
Many researchers have investigated the Lushan source area with geological and geophysical approaches since the 2013 Lushan, China, earthquake happened. Compared with the previous tomographic studies, we have used a much large data set and an updated tomographic method to determine a small scale three-dimensional P wave velocity structure with spatial resolution less than 5km, which plays the important role for understanding the deep structure and the genetic mechanism beneath the Lushan area. The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. This method takes account of the path anomaly biases explicitly by making full use of valuable information of seismic wave propagation jointly with absolute and relative arrival time data. Our results show that the Lushan mainshock locates at 30.28N, 103.98E, with the depth of 16.38km. The front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12km. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23km. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high
NASA Astrophysics Data System (ADS)
da Silva, J. C. B.; Magalhaes, J. M.; Batista, M.; Gostiaux, L.; Gerkema, T.; New, A. L.
2013-03-01
spectral range 8-12 μm. With a nominal ground resolution of approximately 1.5 meters (at an altitude of 500 meters) it is capable to detect fine structure associated to turbulence. The LiDAR system that has been used is the Leica ALS50-II (1064nm) with a hit rate greater than 1 hit per square meter and a vertical resolution of approximately 15 cm. Both systems were available simultaneously, together with the hyperspectral system and the RCD105 39Mpx digital camera, integrated with the LiDAR navigation system. We analyse the airborne data together with a comprehensive dataset of satellite Synthetic Aperture Radar (SAR) that includes ENVISAT and TerraSAR-X images. In addition, in situ observations in the near-shore zone were obtained in a previous experiment (Project SPOTIWAVE-II POCI/MAR/57836/2004 funded by the Portuguese FCT) during the summer period in 2006. These included thermistor chain measurements along the water column that captured the vertical structure of shoaling internal (tidal) waves and ISWs close to the breaking point. The SAR and airborne images were obtained in light wind conditions, in the near-shore zone, and in the presence of ISWs. The LiDAR images revealed sub-surface structures (some 1-2 m below the sea surface) that were co-located with surface films. These film slicks were induced by the convergent fields of internal waves and upwelling fronts. Some of the sub-surface features were located over the front slopes of the internal waves, which coincides with the internal wave slick band visible in the aerial photos and hyperspectral systems. Our flight measurements revealed thermal features similar to “boils” of cold water within the wake of (admittedly breaking) internal waves. These features are consistent with the previous in situ measurements of breaking ISWs. In this paper we will show coincident multi-sensor airborne and satellite SAR observations that reveal the 3D structure of air bubble entrainment in the internal wave field and frontal
Orbital stability of solitary waves for Kundu equation
NASA Astrophysics Data System (ADS)
Zhang, Weiguo; Qin, Yinghao; Zhao, Yan; Guo, Boling
In this paper, we consider the Kundu equation which is not a standard Hamiltonian system. The abstract orbital stability theory proposed by Grillakis et al. (1987, 1990) cannot be applied directly to study orbital stability of solitary waves for this equation. Motivated by the idea of Guo and Wu (1995), we construct three invariants of motion and use detailed spectral analysis to obtain orbital stability of solitary waves for Kundu equation. Since Kundu equation is more complex than the derivative Schrödinger equation, we utilize some techniques to overcome some difficulties in this paper. It should be pointed out that the results obtained in this paper are more general than those obtained by Guo and Wu (1995). We present a sufficient condition under which solitary waves are orbitally stable for 2c+sυ<0, while Guo and Wu (1995) only considered the case 2c+sυ>0. We obtain the results on orbital stability of solitary waves for the derivative Schrödinger equation given by Colin and Ohta (2006) as a corollary in this paper. Furthermore, we obtain orbital stability of solitary waves for Chen-Lee-Lin equation and Gerdjikov-Ivanov equation, respectively.
Late-time attractor for the cubic nonlinear wave equation
Szpak, Nikodem
2010-08-15
We apply our recently developed scaling technique for obtaining late-time asymptotics to the cubic nonlinear wave equation and explain the appearance and approach to the two-parameter attractor found recently by Bizon and Zenginoglu.
Optimization of a finite difference method for nonlinear wave equations
NASA Astrophysics Data System (ADS)
Chen, Miaochao
2013-07-01
Wave equations have important fluid dynamics background, which are extensively used in many fields, such as aviation, meteorology, maritime, water conservancy, etc. This paper is devoted to the explicit difference method for nonlinear wave equations. Firstly, a three-level and explicit difference scheme is derived. It is shown that the explicit difference scheme is uniquely solvable and convergent. Moreover, a numerical experiment is conducted to illustrate the theoretical results of the presented method.
A wave equation interpolating between classical and quantum mechanics
NASA Astrophysics Data System (ADS)
Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.
2015-10-01
We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.
Rogue Waves and New Multi-wave Solutions of the (2+1)-Dimensional Ito Equation
NASA Astrophysics Data System (ADS)
Tian, Ying-hui; Dai, Zheng-de
2015-06-01
A three-soliton limit method (TSLM) for seeking rogue wave solutions to nonlinear evolution equation (NEE) is proposed. The (2+1)-dimensional Ito equation is used as an example to illustrate the effectiveness of the method. As a result, two rogue waves and a family of new multi-wave solutions are obtained. The result shows that rogue wave can be obtained not only from extreme form of breather solitary wave but also from extreme form of double-breather solitary wave. This is a new and interesting discovery.
Efficient Integration of Quantum Mechanical Wave Equations by Unitary Transforms
Bauke, Heiko; Keitel, Christoph H.
2009-08-13
The integration of time dependent quantum mechanical wave equations is a fundamental problem in computational physics and computational chemistry. The energy and momentum spectrum of a wave function imposes fundamental limits on the performance of numerical algorithms for this problem. We demonstrate how unitary transforms can help to surmount these limitations.
NASA Astrophysics Data System (ADS)
Zandomeneghi, D.; Aster, R. C.; Barclay, A. H.; Chaput, J. A.; Kyle, P. R.
2011-12-01
Erebus volcano (Ross Island), the most active volcano in Antarctica, is characterized by a persistent phonolitic lava lake at its summit and a wide range of seismic signals associated with its underlying long-lived magmatic system. The magmatic structure in a 3 by 3 km area around the summit has been imaged using high-quality data from a seismic tomographic experiment carried out during the 2008-2009 austral field season (Zandomeneghi et al., 2010). An array of 78 short period, 14 broadband, and 4 permanent Mount Erebus Volcano Observatory seismic stations and a program of 12 shots were used to model the velocity structure in the uppermost kilometer over the volcano conduit. P-wave travel times were inverted for the 3-D velocity structure using the shortest-time ray tracing (50-m grid spacing) and LSQR inversion (100-m node spacing) of a tomography code (Toomey et al., 1994) that allows for the inclusion of topography. Regularization is controlled by damping and smoothing weights and smoothing lengths, and addresses complications that are inherent in a strongly heterogeneous medium featuring rough topography and a dense parameterization and distribution of receivers/sources. The tomography reveals a composite distribution of very high and low P-wave velocity anomalies (i.e., exceeding 20% in some regions), indicating a complex sub-lava-lake magmatic geometry immediately beneath the summit region and in surrounding areas, as well as the presence of significant high velocity shallow regions. The strongest and broadest low velocity zone is located W-NW of the crater rim, indicating the presence of an off-axis shallow magma body. This feature spatially corresponds to the inferred centroid source of VLP signals associated with Strombolian eruptions and lava lake refill (Aster et al., 2008). Other resolved structures correlate with the Side Crater and with lineaments of ice cave thermal anomalies extending NE and SW of the rim. High velocities in the summit area possibly
NASA Astrophysics Data System (ADS)
Lin, F. C.; Schmandt, B.
2015-12-01
Imaging the crust and lithosphere structure beneath North America is one of the primary targets for the NSF-funded EarthScope project. In this study, we apply the recently developed ambient noise and surface wave tomography methods to construct a detailed 3D crustal model across the entire contiguous US using USArray data between January 2007 and May 2015. By using both Rayleigh wave phase velocity and ellipticity measurements between 8 and 100 sec period, the shear velocity structure can be well resolved within the five crustal layers we modeled: three upper crust, one middle crust, and one lower crust. Clear correlations are observed between the resolved velocity anomalies and known geological features at all depths. In the uppermost crust, slow Vs anomalies are observed within major sedimentary environments such as the Williston Basin, Denver Basin, and Mississippi embayment, and fast Vs anomalies are observed in environments with deeply exhumed bedrock outcrops at the surface including the Laurentian Highlands, Ouachita-Ozark Interior Highlands, and Appalachian Highlands. In the deeper upper crust, slow anomalies are observed in deep sedimentary basins such as the Green River Basin, Appalachian Basin, Southern Oklahoma Aulacogen, and areas surrounding the Gulf of Mexico. Fast anomalies, on the other hand, are observed in the Colorado Plateau, within the Great Plains between the Front Ranges and Midcontinental Rift, and east of the Appalachian Mountains. At this depth, the Midcontinental Rift and Grenville Front clearly correlate well with various velocity structure boundaries. In the middle crust, slow anomalies are mostly observed in the tectonically active areas in the western US, but relatively slow anomalies are also observed southeast of the Precambrian Rift Margins. At this depth, fast anomalies are observed beneath various deep sedimentary basins such as the Southern Oklahoma Aulacogen, Appalachian Basin, and Central Valley. In the lower crust, a clear
Capillary waves in the subcritical nonlinear Schroedinger equation
Kozyreff, G.
2010-01-15
We expand recent results on the nonlinear Schroedinger equation with cubic-quintic nonlinearity to show that some solutions are described by the Bernoulli equation in the presence of surface tension. As a consequence, capillary waves are predicted and found numerically at the interface between regions of large and low amplitude.
Central Difference Interval Method for Solving the Wave Equation
Szyszka, Barbara
2010-09-30
This paper presents path of construction the interval method of second order for solving the wave equation. Taken into consideration is the central difference interval method for one-dimensional partial differential equation. Numerical results, obtained by two presented algorithms, in floating-point interval arithmetic are considered.
On Bi-Grid Local Mode Analysis of Solution Techniques for 3-D Euler and Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Ibraheem, S. O.; Demuren, A. O.
1994-01-01
A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equations. Model problems based on the convection, diffusion and Burger's equation are used to illustrate the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to the smoothing factor derived from conventional von Neumann analysis. For the Euler equations, bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Eigenvalue and Combination splits, and two central difference based factorizations, namely LU and ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analysis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid aspect ratio and flow skewness are examined. Both predictions are compared with practical multigrid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming central scheme.
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis. PMID:27347461
NASA Astrophysics Data System (ADS)
Louie, J. N.; Pancha, A.; Pullammanappallil, S. K.
2014-12-01
Refraction microtermor routinely assesses 1D and 2D velocity-depth profiles to shallow depths of approximately 100 m primarily for engineering applications. Estimation of both shallow and deep (>100 m) shear-velocity structure are key elements in the assessment of urban areas for potential earthquake ground shaking, damage, and the calibration of recorded ground motions. Three independent studies investigated the ability of the refraction microtremor technology to image deep velocity structure, to depths exceeding 1 km (Deep ReMi). In the first study, we were able to delineate basin thicknesses of up to 900 m and the deep-basin velocity structure beneath the Reno-area basin. Constraints on lateral velocity changes in 3D as well as on velocity profiles extended down to 1500 m, and show a possible fault offset. This deployment used 30 stand-alone wireless instruments mated to 4.5 Hz geophones, along each of five arrays 2.9 to 5.8 km long. Rayleigh-wave dispersion was clear at frequencies as low as 0.5 Hz using 120 sec ambient urban noise records. The results allowed construction of a 3D velocity model, vetted by agreement with gravity studies. In a second test, a 5.8 km array delimited the southern edge of the Tahoe Basin, with constraints from gravity. There, bedrock depth increased by 250 m in thickness over a distance of 1600 m, with definition of the velocity of the deeper basin sediments. The third study delineated the collapse region of an underground nuclear explosion within a thick sequence of volcanic extrusives, using a shear-wave minivibe in a radial direction, and horizontal geophones. Analysis showed the cavity extends to 620 m depth, with a width of 180 m and a height of 220 m. Our results demonstrate that deep velocity structure can be recovered using ambient noise. This technique offers the ability to define 2D and 3D structural representations essential for seismic hazard evaluation.
Imperfect Geometric Control and Overdamping for The Damped Wave Equation
NASA Astrophysics Data System (ADS)
Burq, Nicolas; Christianson, Hans
2015-05-01
We consider the damped wave equation on a manifold with imperfect geometric control. We show the sub-exponential energy decay estimate in (Christianson, J Funct Anal 258(3):1060-1065, 2010) is optimal in the case of one hyperbolic periodic geodesic. We show if the equation is overdamped, then the energy decays exponentially. Finally we show if the equation is overdamped but geometric control fails for one hyperbolic periodic geodesic, then nevertheless the energy decays exponentially.
Wave and pseudo-diffusion equations from squeezed states
NASA Technical Reports Server (NTRS)
Daboul, Jamil
1993-01-01
We show that the probability distributions P(sub n)(q,p;y) := the absolute value squared of (n(p,q;y), which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension; and as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies S(sub n)(y), and we show that they have minima at zero squeezing, y = 0.
NASA Astrophysics Data System (ADS)
Young, D. L.; Tsai, C. H.; Wu, C. S.
2015-11-01
An alternative vector potential formulation is used to solve the Navier-Stokes (N-S) equations in 3D incompressible viscous flow problems with and without through-flow boundaries. Difficulties of the vector potential formulation include the implementation of boundary conditions for through-flow boundaries and the numerical treatment of fourth-order partial differential equations. The advantages on the other hand are the automatic satisfaction of the continuity equation; and pressure is decoupled from the velocity. The objective of this paper is to introduce the appropriate gauge and boundary conditions on the vector potential formulation by a localized meshless method. To handle the divergence-free property, a Coulomb gauge condition is enforced on the vector potential to ensure its existence and uniqueness mathematically. We further improve the algorithm to through-flow problems for the boundary conditions of vector potential by introducing the concept of Stokes' theorem. Based on this innovation, there is no need to include an additional variable to tackle the through-flow fields. This process will greatly simplify the imposition of boundary conditions by the vector potential approach. Under certain conditions, the coupled fourth-order partial differential equations can be easily solved by using this meshless local differential quadrature (LDQ) method. Due to the LDQ capability to deal with the high order differential equations, this algorithm is very attractive to solve this fourth-order vector potential formulation for the N-S equations as comparing to the conventional numerical schemes such as finite element or finite difference methods. The proposed vector potential formulation is simpler and has improved accuracy and efficiency compared to other pressure-free or pressure-coupled algorithms. This investigation can be regarded as the first complete study to obtain the N-S solutions by vector potential formulation through a LDQ method. Two classic 3D benchmark
Stokes constants for a singular wave equation
Linnaeus, Staffan
2005-05-01
The Stokes constants for arbitrary-order phase-integral approximations are calculated when the square of the wave number has either two simple zeros close to a second-order pole or one simple zero close to a first-order pole. The treatment is based on uniform approximations. All parameters may assume general complex values.
On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap
NASA Astrophysics Data System (ADS)
Chen, Xuwen
2013-11-01
We consider the dynamics of the three-dimensional N-body Schrödinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N 3 β-1 V( N β x). We justify the mean-field approximation and offer a rigorous derivation of the three-dimensional cubic nonlinear Schrödinger equation (NLS) with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon (Commun Math Phys 279:169-185, 2008) for by adapting and simplifying an argument in Chen and Pavlović (Annales Henri Poincaré, 2013) which solves the problem for in the absence of a trap.
NASA Astrophysics Data System (ADS)
Yuasa, T.; Sunaguchi, N.; Ichihara, S.; Ando, M.
2013-05-01
Refraction-contrast computed tomography (CT) can image biological soft tissues and soft materials at a high contrast, which cannot be clearly depicted by contemporary CT based on absorption contrast. It reconstructs a distribution of refractive index from projections, whose data each is an angular deviation from incident direction due to refraction by an object, and is acquired by imaging methods using an angular analyzer, e.g., DEI (diffraction enhance imaging), or DFI (dark field imaging). First, a reconstruction algorithm for refraction-contrast CT is derived from the ray equation of a fundamental equation describing refraction phenomena in geometrical optics. Then, in order to demonstrate its efficacy, we performed imaging experiment using DFI-CT imaging system. A reconstructed image of human breast cancer tissue is presented.
Meng, Da; Zheng, Bin; Lin, Guang; Sushko, Maria L.
2014-08-29
We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is the number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.
Optimization of High-order Wave Equations for Multicore CPUs
2011-11-01
This is a simple benchmark to guage the performance of a high-order isotropic wave equation grid. The code is optimized for both SSE and AVX and is parallelized using OpenMP (see Optimization section). Structurally, the benchmark begins, reads a few command-line parameters, allocates and pads the four arrays (current, last, next wave fields, and the spatially varying but isotropic velocity), initializes these arrays, then runs the benchmark proper. The code then benchmarks the naive, SSEmore » (if supported), and AVX (if supported implementations) by applying the wave equation stencil 100 times and taking the average performance. Boundary conditions are ignored and would noiminally be implemented by the user. THus, the benchmark measures only the performance of the wave equation stencil and not a full simulation. The naive implementation is a quadruply (z,y,x, radius) nested loop that can handle arbitrarily order wave equations. The optimized (SSE/AVX) implentations are somewhat more complex as they operate on slabs and include a case statement to select an optimized inner loop depending on wave equation order.« less
Optimization of High-order Wave Equations for Multicore CPUs
Williams, Samuel
2011-11-01
This is a simple benchmark to guage the performance of a high-order isotropic wave equation grid. The code is optimized for both SSE and AVX and is parallelized using OpenMP (see Optimization section). Structurally, the benchmark begins, reads a few command-line parameters, allocates and pads the four arrays (current, last, next wave fields, and the spatially varying but isotropic velocity), initializes these arrays, then runs the benchmark proper. The code then benchmarks the naive, SSE (if supported), and AVX (if supported implementations) by applying the wave equation stencil 100 times and taking the average performance. Boundary conditions are ignored and would noiminally be implemented by the user. THus, the benchmark measures only the performance of the wave equation stencil and not a full simulation. The naive implementation is a quadruply (z,y,x, radius) nested loop that can handle arbitrarily order wave equations. The optimized (SSE/AVX) implentations are somewhat more complex as they operate on slabs and include a case statement to select an optimized inner loop depending on wave equation order.
Correlation equation for the marine drag coefficient and wave steepness
NASA Astrophysics Data System (ADS)
Foreman, Richard J.; Emeis, Stefan
2012-09-01
This work questions, starting from dimensional considerations, the generality of the belief that the marine drag coefficient levels off with increasing wind speed. Dimensional analysis shows that the drag coefficient scales with the wave steepness as opposed to a wave-age scaling. A correlation equation is employed here that uses wave steepness scaling at low aspect ratios (inverse wave steepnesses) and a constant drag coefficient at high aspect ratios. Invoked in support of the correlation are measurements sourced from the literature and at the FINO1 platform in the North Sea. The correlation equation is then applied to measurements recorded from buoys during the passage of hurricanes Rita, Katrina (2005) and Ike (2008). Results show that the correlation equation anticipates the expected levelling off in deeper water, but a drag coefficient more consistent with a Charnock type relation is also possible in more shallower water. Some suggestions are made for proceeding with a higher-order analysis than that conducted here.
NASA Astrophysics Data System (ADS)
Tsuzuki, Yutaka
2015-09-01
This paper is concerned with a system of heat equations with hysteresis and Navier-Stokes equations. In Tsuzuki (J Math Anal Appl 423:877-897, 2015) an existence result is obtained for the problem in a 2-dimensional domain with the Navier-Stokes equation in a weak sense. However the result does not include uniqueness for the problem due to the low regularity for solutions. This paper establishes existence and uniqueness in 2- and 3-dimensional domains with the Navier-Stokes equation in a stronger sense. Moreover this work decides required height of regularity for the initial data by introducing the fractional power of the Stokes operator.
Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1990-01-01
A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.
Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan
2013-09-01
Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods. PMID:23967912
Rogue wave spectra of the Kundu-Eckhaus equation.
Bayındır, Cihan
2016-06-01
In this paper we analyze the rogue wave spectra of the Kundu-Eckhaus equation (KEE). We compare our findings with their nonlinear Schrödinger equation (NLSE) analogs and show that the spectra of the individual rogue waves significantly differ from their NLSE analogs. A remarkable difference is the one-sided development of the triangular spectrum before the rogue wave becomes evident in time. Also we show that increasing the skewness of the rogue wave results in increased asymmetry in the triangular Fourier spectra. Additionally, the triangular spectra of the rogue waves of the KEE begin to develop at earlier stages of their development compared to their NLSE analogs, especially for larger skew angles. This feature may be used to enhance the early warning times of the rogue waves. However, we show that in a chaotic wave field with many spectral components the triangular spectra remain as the main attribute as a universal feature of the typical wave fields produced through modulation instability and characteristic features of the KEE's analytical rogue wave spectra may be suppressed in a realistic chaotic wave field. PMID:27415263
Rogue wave spectra of the Kundu-Eckhaus equation
NASA Astrophysics Data System (ADS)
Bayındır, Cihan
2016-06-01
In this paper we analyze the rogue wave spectra of the Kundu-Eckhaus equation (KEE). We compare our findings with their nonlinear Schrödinger equation (NLSE) analogs and show that the spectra of the individual rogue waves significantly differ from their NLSE analogs. A remarkable difference is the one-sided development of the triangular spectrum before the rogue wave becomes evident in time. Also we show that increasing the skewness of the rogue wave results in increased asymmetry in the triangular Fourier spectra. Additionally, the triangular spectra of the rogue waves of the KEE begin to develop at earlier stages of their development compared to their NLSE analogs, especially for larger skew angles. This feature may be used to enhance the early warning times of the rogue waves. However, we show that in a chaotic wave field with many spectral components the triangular spectra remain as the main attribute as a universal feature of the typical wave fields produced through modulation instability and characteristic features of the KEE's analytical rogue wave spectra may be suppressed in a realistic chaotic wave field.
NASA Technical Reports Server (NTRS)
Zhang, Jun; Ge, Lixin; Kouatchou, Jules
2000-01-01
A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.
NASA Astrophysics Data System (ADS)
Tian, Y.; Ritzwoller, M. H.; Shen, W.; Levshin, A. L.; Barmin, M. P.
2014-12-01
The error in the epicentral location of crustal earthquakes across the contiguous US is on the order of 10 km due to the inability of 1D seismic velocity models to capture regional body wave travel time variations. New high resolution 3D models of the crust and uppermost mantle have been constructed recently across the US by inverting surface wave dispersion from ambient noise and earthquakes, receiver functions, and Rayleigh wave H/V ratios using USArray data [e.g., Shen et al., 2013]. These are mostly S-wave models of the lithosphere, however, which are not optimal for predicting regional P-wave travel times. We explore the use of observations of surface waves to improve regional event characterization because the new 3D models are constructed explicitly to model their behavior. In particular, we use measurements of group and phase time delays and the amplitude ratio between different periods of surface waves to estimate the moment tensor, the epicentral location and the earthquake depth. Preliminary estimates of these variables are determined through a simulated annealing algorithm. Afterward, a Bayesian Monte Carlo method is applied to estimate the posterior distribution of all variables in order to assess uncertainties in source characteristics. The reliability and limitations of the location method are tested by systematic relocation of earthquakes across the contiguous US.
Waves on a vortex filament: exact solutions of dynamical equations
NASA Astrophysics Data System (ADS)
Brugarino, Tommaso; Mongiovi, Maria Stella; Sciacca, Michele
2015-06-01
In this paper, we take into account the dynamical equations of a vortex filament in superfluid helium at finite temperature (1 K < T < 2.17 K) and at very low temperature, which is called Biot-Savart law. The last equation is also valid for a vortex tube in a frictionless, unbounded, and incompressible fluid. Both the equations are approximated by the Local Induction Approximation (LIA) and Fukumoto's approximation. The obtained equations are then considered in the extrinsic frame of reference, where exact solutions (Kelvin waves) are shown. These waves are then compared one to each other in terms of their dispersion relations in the frictionless case. The same equations are then investigated for a quantized vortex line in superfluid helium at higher temperature, where friction terms are needed for a full description of the motion.
NASA Astrophysics Data System (ADS)
DeJong, Andrew
Numerical models of fluid-structure interaction have grown in importance due to increasing interest in environmental energy harvesting, airfoil-gust interactions, and bio-inspired formation flying. Powered by increasingly powerful parallel computers, such models seek to explain the fundamental physics behind the complex, unsteady fluid-structure phenomena. To this end, a high-fidelity computational model based on the high-order spectral difference method on 3D unstructured, dynamic meshes has been developed. The spectral difference method constructs continuous solution fields within each element with a Riemann solver to compute the inviscid fluxes at the element interfaces and an averaging mechanism to compute the viscous fluxes. This method has shown promise in the past as a highly accurate, yet sufficiently fast method for solving unsteady viscous compressible flows. The solver is monolithically coupled to the equations of motion of an elastically mounted 3-degree of freedom rigid bluff body undergoing flow-induced lift, drag, and torque. The mesh is deformed using 4 methods: an analytic function, Laplace equation, biharmonic equation, and a bi-elliptic equation with variable diffusivity. This single system of equations -- fluid and structure -- is advanced through time using a 5-stage, 4th-order Runge-Kutta scheme. Message Passing Interface is used to run the coupled system in parallel on up to 240 processors. The solver is validated against previously published numerical and experimental data for an elastically mounted cylinder. The effect of adding an upstream body and inducing wake galloping is observed.
NASA Astrophysics Data System (ADS)
Olsson, Peter
2016-03-01
A new directional decomposition of the acoustic 3D wave equation is derived for spherically symmetric geometries, where the wave fields do not need to possess such a symmetry. This provides an alternative basis for various applications of techniques like invariant embedding and time domain Green functions in spherically symmetric geometries. Contrary to previous results on spherical wave splittings, the new decomposition is given in a very explicit form. The wave equation considered incorporates effects from radially varying compressibility and density, but also from anisotropic density, a property of certain so called metafluids. By applying the new spherical wave splitting, we show that all spherically symmetric acoustic metafluid cloaks are diffeomorphic images of a homogeneous and isotropic spherical ball of perfect fluid.
Mahillo-Isla, R; Gonźalez-Morales, M J; Dehesa-Martínez, C
2011-06-01
The slowly varying envelope approximation is applied to the radiation problems of the Helmholtz equation with a planar single-layer and dipolar sources. The analyses of such problems provide procedures to recover solutions of the Helmholtz equation based on the evaluation of solutions of the parabolic wave equation at a given plane. Furthermore, the conditions that must be fulfilled to apply each procedure are also discussed. The relations to previous work are given as well. PMID:21643384
NASA Astrophysics Data System (ADS)
GarcíA-Yeguas, Araceli; Koulakov, Ivan; IbáñEz, Jesús M.; Rietbrock, A.
2012-09-01
We present a high resolution 3 dimensional (3D) P wave velocity model for Tenerife Island, Canaries, covering the top of Teide volcano (3,718 m a.s.l.) down to around 8 km below sea level (b.s.l). The tomographic inversion is based on a large data set of travel times obtained from a 3D active seismic experiment using offshore shots (air guns) recorded at more than 100 onshore seismic stations. The obtained seismic velocity structure is strongly heterogeneous with significant (up to 40%) lateral variations. The main volcanic structure of the Las Cañadas-Teide-Pico Viejo Complex (CTPVC) is characterized by a high P wave velocity body, similar to many other stratovolcanoes. The presence of different high P wave velocity regions inside the CTPVC may be related to the geological and volcanological evolution of the system. The presence of high P wave velocities at the center of the island is interpreted as evidence for a single central volcanic source for the formation of Tenerife. Furthermore, reduced P wave velocities are found in a small confined region in CTPVC and are more likely related to hydrothermal alteration, as indicated by the existence of fumaroles, than to the presence of a magma chamber beneath the system. In the external regions, surrounding CTPVC a few lower P wave velocity regions can be interpreted as fractured zones, hydrothermal alterations, porous materials and thick volcaniclastic deposits.
NASA Astrophysics Data System (ADS)
Miah, Khalid; Bellefleur, Gilles
2014-05-01
The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to
An Object Oriented, Finite Element Framework for Linear Wave Equations
Koning, J M
2004-08-12
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
Vorticity equation for MHD fast waves in geospace environment
NASA Technical Reports Server (NTRS)
Yamauchi, M.; Lundin, R.; Lui, A. T. Y.
1993-01-01
The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.
NASA Technical Reports Server (NTRS)
Cwik, T.; Jamnejad, V.; Zuffada, C.
1993-01-01
It is often desirable to calculate the electromagnetic fields inside and about a complicated system of scattering bodies, as well as in their far-field region. The finite element method (FE) is well suited to solving the interior problem, but the domain has to be limited to a manageable size. At the truncation of the FE mesh one can either impose approximate (absorbing) boundary conditions or set up an integral equation (IE) for the fields scattered from the bodies. The latter approach is preferable since it results in higher accuracy. Hence, the two techniques can be successfully combined by introducing a surface that encloses the scatterers, applying a FE model to the inner volume and setting up an IE for the tangential fields components on the surface. Here the continuity of the tangential fields is used bo obtain a consistent solution. A few coupled FE-IE methods have recently appeared in the literature. The approach presented here has the advantage of using edge-based finite elements, a type of finite elements with degrees of freedom associated with edges of the mesh. Because of their properties, they are better suited than the conventional node based elements to represent electromagnetic fields, particularly when inhomogeneous regions are modeled, since the node based elements impose an unnatural continuity of all field components across boundaries of mesh elements. Additionally, our approach is well suited to handle large size problems and lends itself to code parallelization. We will discuss the salient features that make our approach very efficient from the standpoint of numerical computation, and the fields and RCS of a few objects are illustrated as examples.
Blumberg, L.N.
1992-03-01
The authors have analyzed simulated magnetic measurements data for the SXLS bending magnet in a plane perpendicular to the reference axis at the magnet midpoint by fitting the data to an expansion solution of the 3-dimensional Laplace equation in curvilinear coordinates as proposed by Brown and Servranckx. The method of least squares is used to evaluate the expansion coefficients and their uncertainties, and compared to results from an FFT fit of 128 simulated data points on a 12-mm radius circle about the reference axis. They find that the FFT method gives smaller coefficient uncertainties that the Least Squares method when the data are within similar areas. The Least Squares method compares more favorably when a larger number of data points are used within a rectangular area of 30-mm vertical by 60-mm horizontal--perhaps the largest area within the 35-mm x 75-mm vacuum chamber for which data could be obtained. For a grid with 0.5-mm spacing within the 30 x 60 mm area the Least Squares fit gives much smaller uncertainties than the FFT. They are therefore in the favorable position of having two methods which can determine the multipole coefficients to much better accuracy than the tolerances specified to General Dynamics. The FFT method may be preferable since it requires only one Hall probe rather than the four envisioned for the least squares grid data. However least squares can attain better accuracy with fewer probe movements. The time factor in acquiring the data will likely be the determining factor in choice of method. They should further explore least squares analysis of a Fourier expansion of data on a circle or arc of a circle since that method gives coefficient uncertainties without need for multiple independent sets of data as needed by the FFT method.
The pulsating orb: solving the wave equation outside a ball
2016-01-01
Transient acoustic waves are generated by the oscillations of an object or are scattered by the object. This leads to initial-boundary value problems (IBVPs) for the wave equation. Basic properties of this equation are reviewed, with emphasis on characteristics, wavefronts and compatibility conditions. IBVPs are formulated and their properties reviewed, with emphasis on weak solutions and the constraints imposed by the underlying continuum mechanics. The use of the Laplace transform to treat the IBVPs is also reviewed, with emphasis on situations where the solution is discontinuous across wavefronts. All these notions are made explicit by solving simple IBVPs for a sphere in some detail. PMID:27279773
Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas
Veeresha, B. M.; Sen, A.; Kaw, P. K.
2008-09-07
A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.
NASA Astrophysics Data System (ADS)
Lin, Fan-Chi; Tsai, Victor C.; Schmandt, Brandon
2014-08-01
We present a new 3-D seismic model of the western United States crust derived from a joint inversion of Rayleigh-wave phase velocity and ellipticity measurements using periods from 8 to 100 s. Improved constraints on upper-crustal structure result from use of short-period Rayleigh-wave ellipticity, or Rayleigh-wave H/V (horizontal to vertical) amplitude ratios, measurements determined using multicomponent ambient noise cross-correlations. To retain the amplitude ratio information between vertical and horizontal components, for each station, we perform daily noise pre-processing (temporal normalization and spectrum whitening) simultaneously for all three components. For each station pair, amplitude measurements between cross-correlations of different components (radial-radial, radial-vertical, vertical-radial and vertical-vertical) are then used to determine the Rayleigh-wave H/V ratios at the two station locations. We use all EarthScope/USArray Tranportable Array data available between 2007 January and 2011 June to determine the Rayleigh-wave H/V ratios and their uncertainties at all station locations and construct new Rayleigh-wave H/V ratio maps in the western United States between periods of 8 and 24 s. Combined with previous longer period earthquake Rayleigh-wave H/V ratio measurements and Rayleigh-wave phase velocity measurements from both ambient noise and earthquakes, we invert for a new 3-D crustal and upper-mantle model in the western United States. Correlation between the inverted model and known geological features at all depths suggests good resolution in five crustal layers. Use of short-period Rayleigh-wave H/V ratio measurements based on noise cross-correlation enables resolution of distinct near surface features such as the Columbia River Basalt flows, which overlie a thick sedimentary basin.
NASA Astrophysics Data System (ADS)
Shukla, K.; Wang, Y.; Jaiswal, P.
2014-12-01
In a porous medium the seismic energy not only propagates through matrix but also through pore-fluids. The differential movement between sediment grains of the matrix and interstitial fluid generates a diffusive wave which is commonly referred to as the slow P-wave. A combined system of equation which includes both elastic and diffusive phases is known as the poroelasticity. Analyzing seismic data through poroelastic modeling results in accurate interpretation of amplitude and separation of wave modes, leading to more accurate estimation of geomehanical properties of rocks. Despite its obvious multi-scale application, from sedimentary reservoir characterization to deep-earth fractured crust, poroelasticity remains under-developed primarily due to the complex nature of its constituent equations. We present a detail formulation of poroleastic wave equations for isotropic media by combining the Biot's and Newtonian mechanics. System of poroelastic wave equation constitutes for eight time dependent hyperbolic PDEs in 2D whereas in case of 3D number goes up to thirteen. Eigen decomposition of Jacobian of these systems confirms the presence of an additional slow-P wave phase with velocity lower than shear wave, posing stability issues on numerical scheme. To circumvent the issue, we derived a numerical scheme using nodal discontinuous Galerkin approach by adopting the triangular meshes in 2D which is extended to tetrahedral for 3D problems. In our nodal DG approach the basis function over a triangular element is interpolated using Legendre-Gauss-Lobatto (LGL) function leading to a more accurate local solutions than in the case of simple DG. We have tested the numerical scheme for poroelastic media in 1D and 2D case, and solution obtained for the systems offers high accuracy in results over other methods such as finite difference , finite volume and pseudo-spectral. The nodal nature of our approach makes it easy to convert the application into a multi-threaded algorithm
NASA Astrophysics Data System (ADS)
Moulik, P.; Ekstrom, G.
2012-12-01
We have developed a framework that can be used to investigate anisotropic velocity, density and anelastic heterogeneity in the Earth's mantle using a wide spectrum (0.3-50 mHz) of seismological observables. We start with the extensive dataset of surface-wave phase anomalies, long-period waveforms, and body-wave travel times collected by Kustowski et al. (2008) for the development of the global model S362ANI. The additional data included in our analysis are splitting functions of spheroidal and toroidal modes, which are analogous to phase velocity maps at low frequencies. We include in this set of observations a new dataset containing the splitting functions of 56 spheroidal fundamental modes and overtones, measured by Deuss et al. (2011, 2012) using data from large recent earthquakes. Apart from providing unique constraints on the long-wavelength elastic and density structure in the mantle, the overtone splitting data are especially sensitive to the velocity (and anisotropic) structure in the transition zone and in the deeper mantle. The detection of anisotropy, a marker of flow, in the transition zone has implications for our understanding of mantle convection. Our forward modeling of the splitting functions, like the other types of data, includes the effects of radial anisotropy (Mochizuki, 1986). We show that the upper-mantle shear-wave anisotropy of S362ANI generates a clear contribution to the splitting functions of the modes that are sensitive to the upper-mantle structure. We explore the tradeoffs between fitting the mode splitting functions and the travel-times of body waves that turn in the transition zone or in the lower mantle (e.g. SS), while observing that the waveforms and the surface wave phase-anomalies provide complementary information about the mantle. Our experiments suggest that the splitting data are sufficiently sensitive to the anisotropy in the mantle such that their inclusion may provide a better depth resolution of the anisotropic shear
Study of nonlinear waves described by the cubic Schroedinger equation
Walstead, A.E.
1980-03-12
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.
Surface electromagnetic wave equations in a warm magnetized quantum plasma
Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.
2014-07-15
Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.
NASA Astrophysics Data System (ADS)
Xu, Hongrui; Luo, Yinhe; Chen, Chao; Xu, Yixian
2016-06-01
Eikonal tomography based on ambient noise data is one of the most effective methods to reveal shallow earth structures. By tracking surface wave phase fronts, constructing travel time surfaces, and computing the gradients of travel time surfaces to generate phase velocity maps, eikonal tomography avoids the ray tracing and matrix construction and inversion in the traditional surface wave tomography methods. In this study, we collect continuous ambient noise data recorded by a dense seismic array in Karamay, Xinjiang to construct a 3D model of shallow structures using eikonal tomography. The seismic array consists of 35 stations with shortest interstation distance close to 1 km. 890 empirical surface wave Green's functions (EGFs) between each station pair are retrieved by cross-correlating one or two months of continuous ambient noise data. From these EGFs, surface wave travel times in the frequency range of 1.8 to 4.0 Hz are measured by a frequency-time analysis technique (FTAN). Then, eikonal tomography is adopted to construct Rayleigh wave phase velocity maps and estimate the phase velocity uncertainties. Finally, we invert the obtained phase velocity dispersion curves for 1D shear velocity profiles and then assemble these 1D profiles to construct a 3D shear velocity model. Major velocity features of our 3D model are correlated well with the known geological features. A shallow east-west velocity discontinuity is observed, which clearly reflects the lithological change between Baogutu formation (C1b) and Xibeikulasi formation (C1x) of lower Carboniferous system. Low shear velocities are observed beneath the location of porphyry copper deposit (V), possibly related to stockwork fracture and hydrothermal brecciation developed during the intrusion of deep magma in forming the deposit.
Lattice Boltzmann model for generalized nonlinear wave equations
NASA Astrophysics Data System (ADS)
Lai, Huilin; Ma, Changfeng
2011-10-01
In this paper, a lattice Boltzmann model is developed to solve a class of the nonlinear wave equations. Through selecting equilibrium distribution function and an amending function properly, the governing evolution equation can be recovered correctly according to our proposed scheme, in which the Chapman-Enskog expansion is employed. We validate the algorithm on some problems where analytic solutions are available, including the second-order telegraph equation, the nonlinear Klein-Gordon equation, and the damped, driven sine-Gordon equation. It is found that the numerical results agree well with the analytic solutions, which indicates that the present algorithm is very effective and can be used to solve more general nonlinear problems.
Identification problem for a wave equation via optimal control
Lenhart, S.; Liang, M.; Protopopescu, V.
1998-11-01
The authors approximate an identification problem by applying optimal control techniques to a Tikhonov`s regularization. They seek to identify the dispersive coefficient in a wave equation and allow for the case of error or uncertainty in the observations used for the identification.
A systematic exposition of the conservation equations for blast waves.
NASA Technical Reports Server (NTRS)
Oppenheim, A. K.; Lundstrom, E. A.; Kuhl, A. L.; Kamel, M. M.
1971-01-01
In order to provide a rational background for the analysis of experimental observations of blast wave phenomena, the conservation equations governing their nonsteady flow field are formulated in a general manner, without the usual restrictions imposed by an equation of state, and with proper account taken, by means of source terms, of other effects which, besides the inertial terms that conventionally dominate these equations, can affect the flow. Taking advantage of the fact that a blast wave can be generally considered as a spatially one-dimensional flow field whose nonsteady behavior can be regarded, consequently, as a function of just two independent variables, two generalized blast wave coordinates are introduced, one associated with the front of the blast wave and the other with its flow field. The conservation equations are accordingly transformed into this coordinate system, acquiring thereby a comprehensive character, in that they refer then to any frame of reference, being applicable, in particular, to problems involving either space or time profiles of the gas-dynamic parameters in the Eulerian system, or time profiles in the Lagrangian system.
NASA Astrophysics Data System (ADS)
Porter, K.
2015-12-01
There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.
Fullwave coupling to a 3D antenna code using Green's function formulation of wave-particle response
NASA Astrophysics Data System (ADS)
Wright, John; Bonoli, P. T.; Bilato, R.; Brambilla, M.; Maggiora, R.; Lancellotti, V.
2006-10-01
Using the fullwave code, TORIC, and the 3D antenna code, TOPICA, we construct a complete linear system for the RF driven plasma. The 3D finite element antenna code, TOPICA, requires an admittance, Y, for the plasma, where B=YE. In this work, TORIC was modified to allow excitation of the (Eη, Eζ) electric field components at the plasma surface, corresponding to a single poloidal and toroidal mode number combination (m,n). This leads to the tensor response: Yn= ( ll Yηη& YηζYζη& Yζζ), where each of the Yn submatrices is Nm in size. It is shown that the admittance matrix is equivalent to a Green's function calculation for the fullwave system and the net work done is less than twice a single fullwave calculation. The admittance calculation is used with loading calculation from TOPICA to construct self consistent plasma and antenna currents.
Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.
Cooper, Fred; Khare, Avinash; Mihaila, Bogdan; Saxena, Avadh
2010-09-01
We consider the nonlinear Dirac equations (NLDE's) in 1+1 dimension with scalar-scalar self interaction g{2}/k+1(ΨΨ){k+1} , as well as a vector-vector self interaction g{2}/k+1(Ψγ{μ}ΨΨγ{μ}Ψ){1/2(k+1)} . We find the exact analytic form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the nonlinear Schrödinger equation (NLSE) and reduce to these solutions in a well defined nonrelativistic limit. We perform the nonrelativistic reduction and find the 1/2m correction to the NLSE, valid when |ω-m|<2m , where ω is the frequency of the solitary wave in the rest frame. We discuss the stability and blowup of solitary waves assuming the modified NLSE is valid and find that they should be stable for k<2 . PMID:21230200
Pollitz, F.F.
2002-01-01
I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.
NASA Astrophysics Data System (ADS)
Li, Liang; Lanteri, Stéphane; Perrussel, Ronan
2014-01-01
A Schwarz-type domain decomposition method is presented for the solution of the system of 3d time-harmonic Maxwell's equations. We introduce a hybridizable discontinuous Galerkin (HDG) scheme for the discretization of the problem based on a tetrahedrization of the computational domain. The discrete system of the HDG method on each subdomain is solved by an optimized sparse direct (LU factorization) solver. The solution of the interface system in the domain decomposition framework is accelerated by a Krylov subspace method. The formulation and the implementation of the resulting DD-HDG (Domain Decomposed-Hybridizable Discontinuous Galerkin) method are detailed. Numerical results show that the resulting DD-HDG solution strategy has an optimal convergence rate and can save both CPU time and memory cost compared to a classical upwind flux-based DD-DG (Domain Decomposed-Discontinuous Galerkin) approach.
On the Homogenization of a Damped Wave Equation
Timofte, C.
2010-11-25
The goal of this paper is to analyze the effective behavior of the solution of a wave equation with interior and boundary damping, defined in a periodically perforated medium. We deal, at the microscale, with an {epsilon}-periodic structure obtained by removing from a bounded connected open set {Omega} in R{sup n} a number of closed subsets of characteristic size {epsilon}. As a result, we obtain a perforated domain {Omega}{sup {epsilon}}, in which we consider a wave equation, with interior sources and damping and with dynamic boundary conditions imposed on the boundaries of the perforations. Assuming suitable initial conditions, we prove that the asymptotic behavior, as the small parameter e which characterizes the size of the perforations tends to zero, of the solution of such a problem is governed by a parabolic equation, defined on the entire domain {Omega}.
Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field
NASA Astrophysics Data System (ADS)
Bayindir, Cihan
2016-03-01
In this paper we study the properties of the chaotic wave fields generated in the frame of the Kundu-Eckhaus equation (KEE). Modulation instability results in a chaotic wave field which exhibits small-scale filaments with a free propagation constant, k . The average velocity of the filaments is approximately given by the average group velocity calculated from the dispersion relation for the plane-wave solution; however, direction of propagation is controlled by the β parameter, the constant in front of the Raman-effect term. We have also calculated the probabilities of the rogue wave occurrence for various values of propagation constant k and showed that the probability of rogue wave occurrence depends on k . Additionally, we have showed that the probability of rogue wave occurrence significantly depends on the quintic and the Raman-effect nonlinear terms of the KEE. Statistical comparisons between the KEE and the cubic nonlinear Schrödinger equation have also been presented.
Nonlinear Dirac equation solitary waves in external fields.
Mertens, Franz G; Quintero, Niurka R; Cooper, Fred; Khare, Avinash; Saxena, Avadh
2012-10-01
We consider nonlinear Dirac equations (NLDE's) in the 1+1 dimension with scalar-scalar self-interaction g2/κ+1(Ψ[over ¯]Ψ)κ+1 in the presence of various external electromagnetic fields. We find exact solutions for special external fields and we study the behavior of solitary-wave solutions to the NLDE in the presence of a wide variety of fields in a variational approximation depending on collective coordinates which allows the position, width, and phase of these waves to vary in time. We find that in this approximation the position q(t) of the center of the solitary wave obeys the usual behavior of a relativistic point particle in an external field. For time-independent external fields, we find that the energy of the solitary wave is conserved but not the momentum, which becomes a function of time. We postulate that, similarly to the nonlinear Schrödinger equation (NLSE), a sufficient dynamical condition for instability to arise is that dP(t)/dq[over ̇](t)<0. Here P(t) is the momentum of the solitary wave, and q[over ̇] is the velocity of the center of the wave in the collective coordinate approximation. We found for our choices of external potentials that we always have dP(t)/dq[over ̇](t)>0, so, when instabilities do occur, they are due to a different source. We investigate the accuracy of our variational approximation using numerical simulations of the NLDE and find that, when the forcing term is small and we are in a regime where the solitary wave is stable, that the behavior of the solutions of the collective coordinate equations agrees very well with the numerical simulations. We found that the time evolution of the collective coordinates of the solitary wave in our numerical simulations, namely the position of the average charge density and the momentum of the solitary wave, provide good indicators for when the solitary wave first becomes unstable. When these variables stop being smooth functions of time (t), then the solitary wave starts to distort
Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.
Masood, Waqas; Eliasson, Bengt; Shukla, Padma K
2010-06-01
A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars. PMID:20866534
Phase space lattices and integrable nonlinear wave equations
NASA Astrophysics Data System (ADS)
Tracy, Eugene; Zobin, Nahum
2003-10-01
Nonlinear wave equations in fluids and plasmas that are integrable by Inverse Scattering Theory (IST), such as the Korteweg-deVries and nonlinear Schrodinger equations, are known to be infinite-dimensional Hamiltonian systems [1]. These are of interest physically because they predict new phenomena not present in linear wave theories, such as solitons and rogue waves. The IST method provides solutions of these equations in terms of a special class of functions called Riemann theta functions. The usual approach to the theory of theta functions tends to obscure the underlying phase space structure. A theory due to Mumford and Igusa [2], however shows that the theta functions arise naturally in the study of phase space lattices. We will describe this theory, as well as potential applications to nonlinear signal processing and the statistical theory of nonlinear waves. 1] , S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of solitons: the inverse scattering method (Consultants Bureau, New York, 1984). 2] D. Mumford, Tata lectures on theta, Vols. I-III (Birkhauser); J. Igusa, Theta functions (Springer-Verlag, New York, 1972).
Data dependence for the amplitude equation of surface waves
NASA Astrophysics Data System (ADS)
Secchi, Paolo
2016-04-01
We consider the amplitude equation for nonlinear surface wave solutions of hyperbolic conservation laws. This is an asymptotic nonlocal, Hamiltonian evolution equation with quadratic nonlinearity. For example, this equation describes the propagation of nonlinear Rayleigh waves (Hamilton et al. in J Acoust Soc Am 97:891-897, 1995), surface waves on current-vortex sheets in incompressible MHD (Alì and Hunter in Q Appl Math 61(3):451-474, 2003; Alì et al. in Stud Appl Math 108(3):305-321, 2002) and on the incompressible plasma-vacuum interface (Secchi in Q Appl Math 73(4):711-737, 2015). The local-in-time existence of smooth solutions to the Cauchy problem for the amplitude equation in noncanonical variables was shown in Hunter (J Hyperbolic Differ Equ 3(2):247-267, 2006), Secchi (Q Appl Math 73(4):711-737, 2015). In the present paper we prove the continuous dependence in strong norm of solutions on the initial data. This completes the proof of the well-posedness of the problem in the classical sense of Hadamard.
NASA Astrophysics Data System (ADS)
Cunningham, G.; Tu, W.; Chen, Y.; Reeves, G. D.; Henderson, M. G.; Baker, D. N.; Blake, J. B.; Spence, H.
2013-12-01
During the interval October 8-9, 2012, the phase-space density (PSD) of high-energy electrons exhibited a dropout preceding an intense enhancement observed by the MagEIS and REPT instruments aboard the Van Allen Probes. The evolution of the PSD suggests heating by chorus waves, which were observed to have high intensities at the time of the enhancement [1]. Although intense chorus waves were also observed during the first Dst dip on October 8, no PSD enhancement was observed at this time. We demonstrate a quantitative reproduction of the entire event that makes use of three recent modifications to the LANL DREAM3D diffusion code: 1) incorporation of a time-dependent, low-energy, boundary condition from the MagEIS instrument, 2) use of a time-dependent estimate of the chorus wave intensity derived from observations of POES low-energy electron precipitation, and 3) use of an estimate of the last closed drift shell, beyond which electrons are assumed to have a lifetime that is proportional to their drift period around earth. The key features of the event are quantitatively reproduced by the simulation, including the dropout on October 8, and a rapid increase in PSD early on October 9, with a peak near L*=4.2. The DREAM3D code predicts the dropout on October 8 because this feature is dominated by magnetospheric compression and outward radial diffusion-the L* of the last closed drift-shell reaches a minimum value of 5.33 at 1026 UT on October 8. We find that a ';statistical' wave model based on historical CRRES measurements binned in AE* does not reproduce the enhancement because the peak wave amplitudes are only a few 10's of pT, whereas an ';event-specific' model reproduces both the magnitude and timing of the enhancement very well, a s shown in the Figure, because the peak wave amplitudes are 10x higher. [1] 'Electron Acceleration in the Heart of the Van Allen Radiation Belts', G. D. Reeves et al., Science 1237743, Published online 25 July 2013 [DOI:10.1126/science
Fullwave coupling to a 3D antenna code using Green's function formulation of wave-particle response.
NASA Astrophysics Data System (ADS)
Wright, John; Bonoli, Paul; Brambilla, Marco; Lancelloti, Vito; Maggiora, Riccardo; Carter, Mark
2006-04-01
Using the fullwave code, TORIC ,and the 3D antenna code, TOPICA, we construct a complete linear system for the RF driven plasma. The 3D finite element antenna code, TOPICA, requires an admittance, Y, for the plasma, where B=YE. In this work TORIC was modified to allow excitation of the (Eη, Eζ) electric field components at the plasma surface, corresponding to a single poloidal and toroidal mode number combination (m,n). This leads the tensor response: Y=( *20c Yηη & Yηζ Yζη & Yζζ ), where each of the Yn submatrices is Nm in size. It is shown that the admittance matrix is equivalent to a Greens function calculation for the fullwave system and in addition, the net work done in the calculation is on the order of twice a single fullwave calculation. After the admittance calculation is done, the response of a plasma to an antenna driven at a given frequency can be calculated by only running the TOPICA code for a new antenna geometry. In tests of loading, TOPICA has been able reproduce loading of the Alcator D antenna (S12 coefficient accurately.).
Broadband sub-millimeter wave amplifer module with 38dB gain and 8.3dB noise figure
NASA Astrophysics Data System (ADS)
Sarkozy, S.; Leong, K.; Lai, R.; Leakey, R.; Yoshida, W.; Mei, X.; Lee, J.; Liu, P.-H.; Gorospe, B.; Deal, W. R.
2011-05-01
Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter-wave systems, sub-millimeter-wave systems are hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report on the development of a sub-millimeter wave amplifier module as part of a broadband pixel operating from 300-350 GHz, biased off of a single 2V power supply. Over this frequency range, > 38 dB gain and < 8.3 dB noise figure are obtained and represent the current state-of-art performance capabilities. The prototype pixel chain consists of two WR3 waveguide amplifier blocks, and a horn antenna and diode detector. The low noise amplifier Sub-Millimeter-wave Monolithic Integrated Circuit (SMMIC) was originally developed under the DARPA SWIFT and THz Electronics programs and is based on sub 50 nm Indium Arsenide Composite Channel (IACC) transistor technology with a projected maximum oscillation frequency fmax > 1.0 THz. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brown-out problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.
Quaternion wave equations in curved space-time
NASA Technical Reports Server (NTRS)
Edmonds, J. D., Jr.
1974-01-01
The quaternion formulation of relativistic quantum theory is extended to include curvilinear coordinates and curved space-time in order to provide a framework for a unified quantum/gravity theory. Six basic quaternion fields are identified in curved space-time, the four-vector basis quaternions are identified, and the necessary covariant derivatives are obtained. Invariant field equations are derived, and a general invertable coordinate transformation is developed. The results yield a way of writing quaternion wave equations in curvilinear coordinates and curved space-time as well as a natural framework for solving the problem of second quantization for gravity.
NASA Astrophysics Data System (ADS)
Lipatov, A. S.; Sibeck, D. G.
2016-09-01
We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, wave-particle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.
Amor, Rumelo; Mahajan, Sumeet; Amos, William Bradshaw; McConnell, Gail
2014-01-01
Standing-wave excitation of fluorescence is highly desirable in optical microscopy because it improves the axial resolution. We demonstrate here that multiplanar excitation of fluorescence by a standing wave can be produced in a single-spot laser scanning microscope by placing a plane reflector close to the specimen. We report here a variation in the intensity of fluorescence of successive planes related to the Stokes shift of the dye. We show by the use of dyes specific for the cell membrane how standing-wave excitation can be exploited to generate precise contour maps of the surface membrane of red blood cells, with an axial resolution of ≈90 nm. The method, which requires only the addition of a plane mirror to an existing confocal laser scanning microscope, may well prove useful in studying diseases which involve the red cell membrane, such as malaria. PMID:25483987
NASA Astrophysics Data System (ADS)
Amor, Rumelo; Mahajan, Sumeet; Amos, William Bradshaw; McConnell, Gail
2014-12-01
Standing-wave excitation of fluorescence is highly desirable in optical microscopy because it improves the axial resolution. We demonstrate here that multiplanar excitation of fluorescence by a standing wave can be produced in a single-spot laser scanning microscope by placing a plane reflector close to the specimen. We report here a variation in the intensity of fluorescence of successive planes related to the Stokes shift of the dye. We show by the use of dyes specific for the cell membrane how standing-wave excitation can be exploited to generate precise contour maps of the surface membrane of red blood cells, with an axial resolution of ~90 nm. The method, which requires only the addition of a plane mirror to an existing confocal laser scanning microscope, may well prove useful in studying diseases which involve the red cell membrane, such as malaria.
NASA Astrophysics Data System (ADS)
Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk
2015-04-01
In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.
NASA Astrophysics Data System (ADS)
Wawerzinek, B.; Ritter, J. R. R.; Roy, C.
2013-08-01
We analyse travel times of shear waves, which were recorded at the MAGNUS network, to determine the 3D shear wave velocity (vS) structure underneath Southern Scandinavia. The travel time residuals are corrected for the known crustal structure of Southern Norway and weighted to account for data quality and pick uncertainties. The resulting residual pattern of subvertically incident waves is very uniform and simple. It shows delayed arrivals underneath Southern Norway compared to fast arrivals underneath the Oslo Graben and the Baltic Shield. The 3D upper mantle vS structure underneath the station network is determined by performing non-linear travel time tomography. As expected from the residual pattern the resulting tomographic model shows a simple and continuous vS perturbation pattern: a negative vS anomaly is visible underneath Southern Norway relative to the Baltic Shield in the east with a contrast of up to 4% vS and a sharp W-E dipping transition zone. Reconstruction tests reveal besides vertical smearing a good lateral reconstruction of the dipping vS transition zone and suggest that a deep-seated anomaly at 330-410 km depth is real and not an inversion artefact. The upper part of the reduced vS anomaly underneath Southern Norway (down to 250 km depth) might be due to an increase in lithospheric thickness from the Caledonian Southern Scandes in the west towards the Proterozoic Baltic Shield in Sweden in the east. The deeper-seated negative vS anomaly (330-410 km depth) could be caused by a temperature anomaly possibly combined with effects due to fluids or hydrous minerals. The determined simple 3D vS structure underneath Southern Scandinavia indicates that mantle processes might influence and contribute to a Neogene uplift of Southern Norway.
NASA Astrophysics Data System (ADS)
Iizuka, Keigo
2008-02-01
In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.
Modeling of Wave Spectrum and Wave Breaking Statistics Based on Balance Equation
NASA Astrophysics Data System (ADS)
Irisov, V.
2012-12-01
Surface roughness and foam coverage are the parameters determining microwave emissivity of sea surface in a wide range of wind. Existing empirical wave spectra are not associated with wave breaking statistics although physically they are closely related. We propose a model of sea surface based on the balance of three terms: wind input, dissipation, and nonlinear wave-wave interaction. It provides an insight on wave generation, interaction, and dissipation - very important parameters for understanding of wave development under changing oceanic and atmospheric conditions. The wind input term is the best known among all three. For our analysis we assume a wind input term as it was proposed by Plant [1982] and consider modification necessary to do to account for proper interaction of long fast waves with wind. For long gravity waves (longer than 15-30 cm) the dissipation term can be related to the wave breaking with whitecaps, as it was shown by Kudryavtsev et al. [2003], so we assume the cubic dependence of dissipation term on wind. It implies certain limitations on the spectrum shape. The most difficult is to estimate the term describing nonlinear wave-wave interaction. Hasselmann [1962] and Zakharov [1999] developed theory of 4-wave interaction, but the resulting equation requires at least 3-fold integration over wavenumbers at each time step of integration of balance equation, which makes it difficult for direct numerical modeling. It is desirable to use an approximation of wave-wave interaction term, which preserves wave action, energy, and momentum, and can be easily estimated during time integration of balance equation. Zakharov and Pushkarev [1999] proposed the diffusion approximation of the wave interaction term and showed that it can be used for estimate of wave spectrum. We believe their assumption that wave-wave interaction is the dominant factor in forming the wave spectrum does not agree with the observations made by Hwang and Sletten [2008]. Finally we
Electrostatic wave propagation and trapping near the magnetic equator
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1985-01-01
Results of a two-dimensional ray tracing computer code, based on Snell's law, for electrostatic wave propagation in a dipole magnetic field are discussed. A survey of possible ray paths varying a wide range of parameters is conducted for low-harmonic Bernstein modes in a high-density plasma. It is shown that the ray paths exhibit similarity with radial distance and that there exists the possibility of two classes of wave statistics of the equator: a broad emission region extending to about + or - 4 deg and a class of events restricted to the smaller region of 1-2 deg about the magnetic equator. The regulating parameter between these two types of events is the transition energy from the isotropic background electrons to the unstable distribution of superthermals. Ray paths for propagation in the magnetic equatorial plane are considered and an explanation is given for ray focusing in the equatorial plane based on electron gyroradius considerations.
Bounded Error Schemes for the Wave Equation on Complex Domains
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Ditkowski, Adi; Yefet, Amir
1998-01-01
This paper considers the application of the method of boundary penalty terms ("SAT") to the numerical solution of the wave equation on complex shapes with Dirichlet boundary conditions. A theory is developed, in a semi-discrete setting, that allows the use of a Cartesian grid on complex geometries, yet maintains the order of accuracy with only a linear temporal error-bound. A numerical example, involving the solution of Maxwell's equations inside a 2-D circular wave-guide demonstrates the efficacy of this method in comparison to others (e.g. the staggered Yee scheme) - we achieve a decrease of two orders of magnitude in the level of the L2-error.
Nonlocalized modulation of periodic reaction diffusion waves: The Whitham equation
NASA Astrophysics Data System (ADS)
Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin
2013-02-01
In a companion paper, we established nonlinear stability with detailed diffusive rates of decay of spectrally stable periodic traveling-wave solutions of reaction diffusion systems under small perturbations consisting of a nonlocalized modulation plus a localized ( L 1) perturbation. Here, we determine time-asymptotic behavior under such perturbations, showing that solutions consist of a leading order of a modulation whose parameter evolution is governed by an associated Whitham averaged equation.
Fast neural solution of a nonlinear wave equation
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1992-01-01
A neural algorithm for rapidly simulating a certain class of nonlinear wave phenomena using analog VLSI neural hardware is presented and applied to the Korteweg-de Vries partial differential equation. The corresponding neural architecture is obtained from a pseudospectral representation of the spatial dependence, along with a leap-frog scheme for the temporal evolution. Numerical simulations demonstrated the robustness of the proposed approach.
The wave equation on static singular space-times
NASA Astrophysics Data System (ADS)
Mayerhofer, Eberhard
2008-02-01
The first part of my thesis lays the foundations to generalized Lorentz geometry. The basic algebraic structure of finite-dimensional modules over the ring of generalized numbers is investigated. The motivation for this part of my thesis evolved from the main topic, the wave equation on singular space-times. The second and main part of my thesis is devoted to establishing a local existence and uniqueness theorem for the wave equation on singular space-times. The singular Lorentz metric subject to our discussion is modeled within the special algebra on manifolds in the sense of Colombeau. Inspired by an approach to generalized hyperbolicity of conical-space times due to Vickers and Wilson, we succeed in establishing certain energy estimates, which by a further elaborated equivalence of energy integrals and Sobolev norms allow us to prove existence and uniqueness of local generalized solutions of the wave equation with respect to a wide class of generalized metrics. The third part of my thesis treats three different point value resp. uniqueness questions in algebras of generalized functions
Family of electrovac colliding wave solutions of Einstein's equations
Li, W.; Ernst, F.J.
1989-03-01
Beginning with any colliding wave solution of the vacuum Einstein equations, a corresponding electrified colliding wave solution can be generated through the use of a transformation due to Harrison (J. Math. Phys. 9, 1744 (1968)). The method, long employed in the context of stationary axisymmetric fields, is equally applicable to colliding wave solutions. Here it is applied to a large family of vacuum metrics derived by applying a generalized Ehlers transformation to solutions published recently by Ernst, Garcia, and Hauser (EGH) (J. Math. Phys. 28, 2155, 2951 (1987); 29, 681 (1988)). Those EGH solutions were themselves a generalization of solutions first derived by Ferrari, Ibanez, and Bruni (Phys. Rev. D 36, 1053 (1987)). Among the electrovac solutions that are obtained is a charged version of the Nutku--Halil (Phys. Rev. Lett. 39, 1379 (1977)) metric that possesses an arbitrary complex charge parameter.
A family of electrovac colliding wave solutions of Einstein's equations
NASA Astrophysics Data System (ADS)
Li, Wei; Ernst, Frederick J.
1989-03-01
Beginning with any colliding wave solution of the vacuum Einstein equations, a corresponding electrified colliding wave solution can be generated through the use of a transformation due to Harrison [J. Math. Phys. 9, 1744 (1968)]. The method, long employed in the context of stationary axisymmetric fields, is equally applicable to colliding wave solutions. Here it is applied to a large family of vacuum metrics derived by applying a generalized Ehlers transformation to solutions published recently by Ernst, García, and Hauser (EGH) [J. Math. Phys. 28, 2155, 2951 (1987); 29, 681 (1988)]. Those EGH solutions were themselves a generalization of solutions first derived by Ferrari, Ibañez, and Bruni [Phys. Rev. D 36, 1053 (1987)]. Among the electrovac solutions that are obtained is a charged version of the Nutku-Halil [Phys. Rev. Lett. 39, 1379 (1977)] metric that possesses an arbitrary complex charge parameter.
Plasma wave interactions with energetic ions near the magnetic equator
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1976-01-01
An intense band of electromagnetic noise is frequently observed near the magnetic equatorial plane at radial distance from about 2 to 9 earth radii. Recent wide band wave form measurements with the Imp 6 and Hawkeye 1 satellites have shown that the equatorial noise consists of a complex superposition of many harmonically spaced lines. Several distinctly different frequency spacings are often evident in the same spectrum. The frequency spacing typically ranges from a few hertz to a few tens of hertz. The purpose of this paper is to suggest that these waves are interacting with energetic protons, alpha particles, and other heavy ions trapped near the magnetic equator. The possible role that these waves play in controlling the distribution of the energetic ions is considered.
Plasma wave interactions with energetic ions near the magnetic equator
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1975-01-01
An intense band of electromagnetic noise is frequently observed near the magnetic equatorial plane at radial distance from about 2 to 5 Re. Recent wideband wave-form measurements with the IMP-6 and Hawkeye-1 satellites have shown that the equatorial noise consists of a complex superposition of many harmonically spaced lines. Several distinctly different frequency spacings are often evident in the same spectrum. The frequency spacing typically ranges from a few Hz to a few tens of Hz. It is suggested that these waves are interacting with energetic protons, alpha particles, and other heavy ions trapped near the magnetic equator. The possible role these waves play in controlling the distribution of the energetic ions is considered.
NASA Technical Reports Server (NTRS)
Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.
1994-01-01
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.
Shock-wave structure using nonlinear model Boltzmann equations.
NASA Technical Reports Server (NTRS)
Segal, B. M.; Ferziger, J. H.
1972-01-01
The structure of strong plane shock waves in a perfect monatomic gas was studied using four nonlinear models of the Boltzmann equation. The models involved the use of a simplified collision operator with velocity-independent collision frequency, in place of the complicated Boltzmann collision operator. The models employed were the BGK and ellipsoidal models developed by earlier authors, and the polynomial and trimodal gain function models developed during the work. An exact set of moment equations was derived for the density, velocity, temperature, viscous stress, and heat flux within the shock. This set was reduced to a pair of coupled nonlinear integral equations and solved using specially adapted numerical techniques. A new and simple Gauss-Seidel iteration was developed during the work and found to be as efficient as the best earlier iteration methods.
Variational principle in optics II: Dissipative wave equations.
Rubinstein, Jacob; Wolansky, Gershon
2016-08-01
The problem of phase retrieval from intensity measurements is examined for the case of dissipative wave equations. Unlike the conservative case, it is not clear if and when the problem is solvable at all. We provide two solutions. First, it is shown that, for a certain class of dissipating potentials, the problem can be fully solved by converting it through a simple transformation to the framework of the weighted least action principle. Second, for all other dissipating potentials, a deep result from the theory of elliptic partial differential equations is used to show that the problem is always solvable up to a scaling of one of the measured intensities. Moreover, the solution in this general case can be obtained by solving a Monge-Ampere type differential equation. Two numerical examples are given to illustrate some of the theoretical considerations. PMID:27505643
On a class of nonlocal wave equations from applications
NASA Astrophysics Data System (ADS)
Beyer, Horst Reinhard; Aksoylu, Burak; Celiker, Fatih
2016-06-01
We study equations from the area of peridynamics, which is a nonlocal extension of elasticity. The governing equations form a system of nonlocal wave equations. We take a novel approach by applying operator theory methods in a systematic way. On the unbounded domain ℝn, we present three main results. As main result 1, we find that the governing operator is a bounded function of the governing operator of classical elasticity. As main result 2, a consequence of main result 1, we prove that the peridynamic solutions strongly converge to the classical solutions by utilizing, for the first time, strong resolvent convergence. In addition, main result 1 allows us to incorporate local boundary conditions, in particular, into peridynamics. This avenue of research is developed in companion papers, providing a remedy for boundary effects. As main result 3, employing spherical Bessel functions, we give a new practical series representation of the solution which allows straightforward numerical treatment with symbolic computation.
3D-ambient noise Rayleigh wave tomography of Snæfellsjökull volcano, Iceland
NASA Astrophysics Data System (ADS)
Obermann, Anne; Lupi, Matteo; Mordret, Aurélien; Jakobsdóttir, Steinunn S.; Miller, Stephen A.
2016-05-01
From May to September 2013, 21 seismic stations were deployed around the Snæfellsjökull volcano, Iceland. We cross-correlate the five months of seismic noise and measure the Rayleigh wave group velocity dispersion curves to gain more information about the geological structure of the Snæfellsjökull volcano. In particular, we investigate the occurrence of seismic wave anomalies in the first 6 km of crust. We regionalize the group velocity dispersion curves into 2-D velocity maps between 0.9 and 4.8 s. With a neighborhood algorithm we then locally invert the velocity maps to obtain accurate shear-velocity models down to 6 km depth. Our study highlights three seismic wave anomalies. The deepest, located between approximately 3.3 and 5.5 km depth, is a high velocity anomaly, possibly representing a solidified magma chamber. The second anomaly is also a high velocity anomaly east of the central volcano that starts at the surface and reaches approximately 2.5 km depth. It may represent a gabbroic intrusion or a dense swarm of inclined magmatic sheets (similar to the dike swarms found in the ophiolites), typical of Icelandic volcanic systems. The third anomaly is a low velocity anomaly extending up to 1.5 km depth. This anomaly, located directly below the volcanic edifice, may be interpreted either as a shallow magmatic reservoir (typical of Icelandic central volcanoes), or alternatively as a shallow hydrothermal system developed above the cooling magmatic reservoir.
NASA Astrophysics Data System (ADS)
Lampson, Alan I.; Plummer, David N.; Erkkila, John H.; Crowell, Peter G.; Helms, Charles A.
1998-05-01
This paper describes a series of analyses using the 3-d MINT Navier-Stokes and OCELOT wave optics codes to calculate beam quality in a COIL laser cavity. To make this analysis tractable, the problem was broken into two contributions to the medium quality; that associated with microscale disturbances primarily from the transverse iodine injectors, and that associated with the macroscale including boundary layers and shock-like effects. Results for both microscale and macroscale medium quality are presented for the baseline layer operating point in terms of single pass wavefront error. These results show that the microscale optical path difference effects are 1D in nature and of low spatial order. The COIL medium quality is shown to be dominated by macroscale effects; primarily pressure waves generated from flow/boundary layer interactions on the cavity shrouds.
Rational solitary wave and rogue wave solutions in coupled defocusing Hirota equation
NASA Astrophysics Data System (ADS)
Huang, Xin
2016-06-01
We derive and study a general rational solution of a coupled defocusing Hirota equation which can be used to describe evolution of light in a two-mode fiber with defocusing Kerr effect and some certain high-order effects. We find some new excitation patterns in the model, such as M-shaped soliton, W-shaped soliton, anti-eye-shaped rogue wave and four-petaled flower rogue wave. The results are compared with the solutions obtained in other coupled systems like vector nonlinear Schrödinger equation, coupled focusing Hirota and Sasa-Satsuma equations. We explain the new characters by modulational instability properties. This further indicates that rational solution does not necessarily correspond to rogue wave excitation dynamics and the quantitative relation between nonlinear excitations and modulational instability should exist.
NASA Astrophysics Data System (ADS)
Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek
2015-04-01
Geological and seismic structure under area of Poland is well studied by over one hundred thousand boreholes, over thirty deep seismic refraction and wide angle reflection profiles and by vertical seismic profiling, magnetic, gravity, magnetotelluric and thermal methods. Compilation of these studies allowed to create a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Polkowski et al. 2014). Model also provides details about the geometry of main layers of sediments (Tertiary and Quaternary, Cretaceous, Jurassic, Triassic, Permian, old Paleozoic), consolidated/crystalline crust (upper, middle and lower) and uppermost mantle. This model gives an unique opportunity for calculation synthetic receiver function and compering it with observed receiver function calculated for permanent and temporary seismic stations. Modified ray-tracing method (Langston, 1977) can be used directly to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. So, 3D P-wave velocity model has been interpolated to 2.5D P-wave velocity model beneath each seismic station and back-azimuthal sections of components of receiver function have been calculated. Vp/Vs ratio is assumed to be 1.8, 1.67, 1.73, 1.77 and 1.8 in the sediments, upper/middle/lower consolidated/crystalline crust and uppermost mantle, respectively. Densities were calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Additionally, to test a visibility of the lithosphere-asthenosphere boundary phases at receiver function sections models have been extended to 250 km depth based on P4-mantle model (Wilde-Piórko et al., 2010). National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284 and by NCN grant UMO-2011/01/B/ST10/06653.
NASA Astrophysics Data System (ADS)
Zeng, Xiangfang; Thurber, Clifford H.; Shelly, David R.; Harrington, Rebecca M.; Cochran, Elizabeth S.; Bennington, Ninfa L.; Peterson, Dana; Guo, Bin; McClement, Kara
2016-09-01
To refine the 3-D seismic velocity model in the greater Parkfield, California region, a new data set including regular earthquakes, shots, quarry blasts and low-frequency earthquakes (LFEs) was assembled. Hundreds of traces of each LFE family at two temporary arrays were stacked with time-frequency domain phase weighted stacking method to improve signal-to-noise ratio. We extend our model resolution to lower crustal depth with LFE data. Our result images not only previously identified features but also low velocity zones (LVZs) in the area around the LFEs and the lower crust beneath the southern Rinconada Fault. The former LVZ is consistent with high fluid pressure that can account for several aspects of LFE behaviour. The latter LVZ is consistent with a high conductivity zone in magnetotelluric studies. A new Vs model was developed with S picks that were obtained with a new autopicker. At shallow depth, the low Vs areas underlie the strongest shaking areas in the 2004 Parkfield earthquake. We relocate LFE families and analyse the location uncertainties with the NonLinLoc and tomoDD codes. The two methods yield similar results.
NASA Astrophysics Data System (ADS)
Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.
2011-12-01
LLNL-G3D is a global-scale model of P-wave velocity designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The underlying goal of the model is to provide enhanced seismic event location capabilities. Previous versions of LLNL-G3D (versions 1 and 2) provide substantial improvements in event location accuracy via 3-D ray tracing. The latest models are based on ~2.7 million P and Pn arrivals that are re-processed using our global multi-event locator known as BayesLoc. Bayesloc is a formulation of the joint probability distribution across multiple-event location parameters, including hypocenters, travel time corrections, pick precision, and phase labels. Modeling the whole multiple-event system results in accurate locations and an internally consistent data set that is ideal for tomography. Our recently developed inversion approach (called Progressive Multi-level Tessellation Inversion or PMTI) captures regional trends and fine details where data warrant. Using PMTI, we model multiple heterogeneity scale lengths without defining parameter grids with variable densities based on some ad hoc criteria. LLNL-G3Dv3 (version 3) is produced with data generated with the BayesLoc procedure, recently modified to account for localized travel time trends via a multiple event clustering technique. We demonstrate the significance of BayesLoc processing, the impact on the resulting tomographic images, and the application of LLNL-G3D to seismic event location. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-491805.
NASA Astrophysics Data System (ADS)
Harvey, R. W. (Bob); Petrov, Yu. V.; Jaeger, E. F.; Berry, L. A.; Bonoli, P. T.; Bader, A.
2015-11-01
A time-dependent simulation of C-Mod pulsed ICRF power is made calculating minority hydrogen ion distribution functions with the CQL3D-Hybrid-FOW finite-orbit-width Fokker-Planck code. ICRF fields are calculated with the AORSA full wave code, and RF diffusion coefficients are obtained from these fields using the DC Lorentz gyro-orbit code. Prior results with a zero-banana-width simulation using the CQL3D/AORSA/DC time-cycles showed a pronounced enhancement of the H distribution in the perpendicular velocity direction compared to results obtained from Stix's quasilinear theory, in general agreement with experiment. The present study compares the new FOW results, including relevant gyro-radius effects, to determine the importance of these effects on the the NPA synthetic diagnostic time-dependence. The new NPA results give increased agreement with experiment, particularly in the ramp-down time after the ICRF pulse. Funded, through subcontract with Massachusetts Institute of Technology, by USDOE sponsored SciDAC Center for Simulation of Wave-Plasma Interactions.
Stability analysis of an interactive system of wave equation and heat equation with memory
NASA Astrophysics Data System (ADS)
Zhang, Qiong
2014-10-01
This paper is devoted to the stability analysis of an interaction system comprised of a wave equation and a heat equation with memory, where the hereditary heat conduction is due to Gurtin-Pipkin law or Coleman-Gurtin law. First, we show the strong asymptotic stability of solutions to this system. Then, the exponential stability of the interaction system is obtained when the hereditary heat conduction is of Gurtin-Pipkin type. Further, we show the lack of uniform decay of the interaction system when the heat conduction law is of Coleman-Gurtin type.
NASA Astrophysics Data System (ADS)
Lin, F. C.; Schmandt, B.; Tsai, V. C.
2014-12-01
The EarthScope USArray Transportable Array (TA) has provided a great opportunity for imaging the detailed lithospheric structure beneath the continental US. In this presentation, we will report our recent progress on constructing detailed 3D isotropic and anisotropic crustal models of the contiguous US using Rayleigh wave phase velocity and ellipticity measurements across TA. In particular, we will discuss our recent methodology development of extracting short period Rayleigh wave ellipticity, or Rayleigh-wave H/V (horizontal to vertical) amplitude ratios, using multicomponent noise cross-correlations. To retain the amplitude ratio information between vertical and horizontal components, for each station, we perform daily noise pre-processing (temporal normalization and spectrum whitening) simultaneously for all three components. For each station pair, amplitude measurements between cross-correlations of different components (radial-radial, radial-vertical, vertical-radial and vertical-vertical) are then used to determine the Rayleigh-wave H/V ratios at the two station locations. Measurements from all available station pairs are used to determine isotropic and directionally dependent Rayleigh-wave H/V ratios at each location between 8- and 24-second period. The isotropic H/V ratio maps, combined with previous longer period Rayleigh-wave H/V ratio maps from earthquakes and Rayleigh-wave phase velocity maps from both ambient noise and earthquakes, are used to invert for a new 3-D isotropic crustal and upper-mantle model in the western United States. The new model has an outstanding vertical resolution in the upper crust and tradeoffs between different parameters are mitigated. A clear 180-degree periodicity is observed in the directionally dependent H/V ratio measurements for many locations where upper crustal anisotropy is likely strong. Across the US, good correlation is observed between the inferred fast directions in the upper crust and documented maximum
Ghosh, Aryya; Vaval, Nayana; Pal, Sourav
2015-07-14
Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. We have also calculated the lifetime of Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}D, Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}S, and Ar{sup 2+}(2p{sup −1}3s{sup −1}) {sup 1}P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.
The Wavelet Approach to Solving the Mode Conversion Wave Equation
NASA Astrophysics Data System (ADS)
Smith, S. P.; Phillips, C. K.; Valeo, E. J.; Smithe, D. N.
2006-10-01
Existing ``state of the art'' full wave radio frequency (RF) field codes utilize a Fourier expansion for the wave fields on a fixed grid. In plasmas in which both short and long wavelength modes co-exist due to mode conversion, this solution method entails the filling and subsequent inversion of very large matrices, which limits the attainable resolution and requires significant computational time, even on the largest supercomputers. An alternate approach based on wavelet expansions for solving wave equations arising in the context of mode conversion between a fast and slow wave is presented. The merits of using either Gabor or modified Morlet wavelet expansions, as well as the effects of irregularly spacing the wavelets to increase the spatial resolution, are discussed. Initial results indicate that it is possible to reduce the computational load while maintaining numerical accuracy by utilizing the wavelet expansion to avoid computing matrix elements for short wavelength modes in regions where such waves should not exist, based on a dispersion relation analysis.
Spatial and temporal compact equations for water waves
NASA Astrophysics Data System (ADS)
Dyachenko, Alexander; Kachulin, Dmitriy; Zakharov, Vladimir
2016-04-01
A one-dimensional potential flow of an ideal incompressible fluid with a free surface in a gravity field is the Hamiltonian system with the Hamiltonian: H = 1/2intdxint-∞^η |nablaφ|^2dz + g/2ont η^2dxŗφ(x,z,t) - is the potential of the fluid, g - gravity acceleration, η(x,t) - surface profile Hamiltonian can be expanded as infinite series of steepness: {Ham4} H &=& H2 + H3 + H4 + dotsŗH2 &=& 1/2int (gη2 + ψ hat kψ) dx, ŗH3 &=& -1/2int \\{(hat kψ)2 -(ψ_x)^2}η dx,ŗH4 &=&1/2int {ψxx η2 hat kψ + ψ hat k(η hat k(η hat kψ))} dx. where hat k corresponds to the multiplication by |k| in Fourier space, ψ(x,t)= φ(x,η(x,t),t). This truncated Hamiltonian is enough for gravity waves of moderate amplitudes and can not be reduced. We have derived self-consistent compact equations, both spatial and temporal, for unidirectional water waves. Equations are written for normal complex variable c(x,t), not for ψ(x,t) and η(x,t). Hamiltonian for temporal compact equation can be written in x-space as following: {SPACE_C} H = intc^*hat V c dx + 1/2int [ i/4(c2 partial/partial x {c^*}2 - {c^*}2 partial/partial x c2)- |c|2 hat K(|c|^2) ]dx Here operator hat V in K-space is so that Vk = ω_k/k. If along with this to introduce Gardner-Zakharov-Faddeev bracket (for the analytic in the upper half-plane function) {GZF} partial^+x Leftrightarrow ikθk Hamiltonian for spatial compact equation is the following: {H24} &&H=1/gint1/ω|cω|2 dω +ŗ&+&1/2g^3int|c|^2(ddot c^*c + ddot c c^*)dt + i/g^2int |c|^2hatω(dot c c* - cdot c^*)dt. equation of motion is: {t-space} &&partial /partial xc +i/g partial^2/partial t^2c =ŗ&=& 1/2g^3partial^3/partial t3 [ partial^2/partial t^2(|c|^2c) +2 |c|^2ddot c +ddot c^*c2 ]+ŗ&+&i/g3 partial^3/partial t3 [ partial /partial t( chatω |c|^2) + dot c hatω |c|2 + c hatω(dot c c* - cdot c^*) ]. It solves the spatial Cauchy problem for surface gravity wave on the deep water. Main features of the equations are: Equations are written for
Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics
NASA Astrophysics Data System (ADS)
Mirzazadeh, Mohammad; Ekici, Mehmet; Sonmezoglu, Abdullah; Ortakaya, Sami; Eslami, Mostafa; Biswas, Anjan
2016-05-01
This paper studies a few nonlinear evolution equations that appear with fractional temporal evolution and fractional spatial derivatives. These are Benjamin-Bona-Mahoney equation, dispersive long wave equation and Nizhnik-Novikov-Veselov equation. The extended Jacobi's elliptic function expansion method is implemented to obtain soliton and other periodic singular solutions to these equations. In the limiting case, when the modulus of ellipticity approaches zero or unity, these doubly periodic functions approach solitary waves or shock waves or periodic singular solutions emerge.
Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.
2016-01-01
Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1 s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.
The influence of cell geometry on the Godunov scheme applied to the linear wave equation
NASA Astrophysics Data System (ADS)
Dellacherie, Stéphane; Omnes, Pascal; Rieper, Felix
2010-08-01
By studying the structure of the discrete kernel of the linear acoustic operator discretized with a Godunov scheme, we clearly explain why the behaviour of the Godunov scheme applied to the linear wave equation deeply depends on the space dimension and, especially, on the type of mesh. This approach allows us to explain why, in the periodic case, the Godunov scheme applied to the resolution of the compressible Euler or Navier-Stokes system is accurate at low Mach number when the mesh is triangular or tetrahedral and is not accurate when the mesh is a 2D (or 3D) cartesian mesh. This approach confirms also the fact that a Godunov scheme remains accurate when it is modified by simply centering the discretization of the pressure gradient.
Konofagou, Elisa E.; Provost, Jean
2014-01-01
Cardiovascular diseases rank as America’s primary killer, claiming the lives of over 41% of more than 2.4 million Americans. One of the main reasons for this high death toll is the severe lack of effective imaging techniques for screening, early detection and localization of an abnormality detected on the electrocardiogram (ECG). The two most widely used imaging techniques in the clinic are CT angiography and echocardiography with limitations in speed of application and reliability, respectively. It has been established that the mechanical and electrical properties of the myocardium change dramatically as a result of ischemia, infarction or arrhythmia; both at their onset and after survival. Despite these findings, no imaging technique currently exists that is routinely used in the clinic and can provide reliable, non-invasive, quantitative mapping of the regional, mechanical and electrical function of the myocardium. Electromechanical Wave Imaging (EWI) is an ultrasound-based technique that utilizes the electromechanical coupling and its associated resulting strain to infer to the underlying electrical function of the myocardium. The methodology of EWI is first described and its fundamental performance is presented. Subsequent in vivo canine and human applications are provided that demonstrate the applicability of Electromechanical Wave Imaging in differentiating between sinus rhythm and induced pacing schemes as well as mapping arrhythmias. Preliminary validation with catheter mapping is also provided and transthoracic electromechanical mapping in all four chambers of the human heart is also presented demonstrating the potential of this novel methodology to noninvasively infer to both the normal and pathological electrical conduction of the heart. PMID:22284425
Bob Hardage; M.M. Backus; M.V. DeAngelo; R.J. Graebner; S.E. Laubach; Paul Murray
2004-02-01
Fractures within the producing reservoirs at McElroy Field could not be studied with the industry-provided 3C3D seismic data used as a cost-sharing contribution in this study. The signal-to-noise character of the converted-SV data across the targeted reservoirs in these contributed data was not adequate for interpreting azimuth-dependent data effects. After illustrating the low signal quality of the converted-SV data at McElroy Field, the seismic portion of this report abandons the McElroy study site and defers to 3C3D seismic data acquired across a different fractured carbonate reservoir system to illustrate how 3C3D seismic data can provide useful information about fracture systems. Using these latter data, we illustrate how fast-S and slow-S data effects can be analyzed in the prestack domain to recognize fracture azimuth, and then demonstrate how fast-S and slow-S data volumes can be analyzed in the poststack domain to estimate fracture intensity. In the geologic portion of the report, we analyze published regional stress data near McElroy Field and numerous formation multi-imager (FMI) logs acquired across McElroy to develop possible fracture models for the McElroy system. Regional stress data imply a fracture orientation different from the orientations observed in most of the FMI logs. This report culminates Phase 2 of the study, ''Combining a New 3-D Seismic S-Wave Propagation Analysis for Remote Fracture Detection with a Robust Subsurface Microfracture-Based Verification Technique''. Phase 3 will not be initiated because wells were to be drilled in Phase 3 of the project to verify the validity of fracture-orientation maps and fracture-intensity maps produced in Phase 2. Such maps cannot be made across McElroy Field because of the limitations of the available 3C3D seismic data at the depth level of the reservoir target.
3D Lithospheric Imaging by Time-Domain Full-Waveform Inversion of Teleseismic Body-Waves
NASA Astrophysics Data System (ADS)
Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Combe, L.; Metivier, L.; Virieux, J.; Nissen-Meyer, T.; Paul, A.
2014-12-01
With the deployment of dense seismic arrays and the continuous growth of computing facilities, full-waveform inversion (FWI) of teleseismic data has become a method of choice for high-resolution lithospheric imaging. FWI can be recast as a local optimization problem that seeks to estimate Earth's elastic properties by iteratively minimizing the misfit function between observed and modeled seismograms.In passive teleseismic configurations, the seismic source no longer corresponds to a point source embedded in the targeted medium but rather corresponds to a wavefront incoming from the outside of the model. We develop a 3-dimensional time-domain full-waveform inversion program that is more designed for this configuration. The gradient of the misfit function is efficiently computed with the adjoint-state method. A velocity-stress finite-difference time-domain modeling engine, which is interfaced with the so-called total-field/scattered-field method, is used to propagate in the targeted medium the incident wavefield inferred from a global Earth simulation (AxiSEM). Such interfacing is required to account for the multiple arrivals in the incoming wavefield and the sphericity of the Earth. Despite the limited number of nearly plane-wave sources, the interaction of the incident wavefield with the topography (P-Sv conversions and P-P reflections acting as secondary sources) provides a suitable framework to record both transmitted wavefields and reflected wavefields from lithospheric reflectors. These recordings of both transmitted and reflected waves makes FWI amenable to a broadband-wavenumber (i.e., high resolution) reconstruction of the lithosphere.Feasibility of the method is assessed with a realistic synthetic model representative of the Western Alps. One key issue is the estimation of the temporal source excitation, as there might be some trade-off between the source estimation and the subsurface update. To avoid being trapped in a local minimum, we follow a
An Acoustic Wave Equation for Tilted Transversely Isotropic Media
Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael
2005-03-15
A finite-difference method for computing the first arrival traveltimes by solving the Eikonal equation in the celerity domain has been developed. This algorithm incorporates the head and diffraction wave. We also adapt a fast sweeping method, which is extremely simple to implement in any number of dimensions, to obtain accurate first arrival times in complex velocity models. The method, which is stable and computationally efficient, can handle instabilities due to caustics and provide head waves traveltimes. Numerical examples demonstrate that the celerity-domain Eikonal solver provides accurate first arrival traveltimes. This new method is three times accurate more than the 2nd-order fast marching method in a linear velocity model with the same spacing.
Transport equations for linear surface waves with random underlying flows
NASA Astrophysics Data System (ADS)
Bal, Guillaume; Chou, Tom
1999-11-01
We define the Wigner distribution and use it to develop equations for linear surface capillary-gravity wave propagation in the transport regime. The energy density a(r, k) contained in waves propagating with wavevector k at field point r is given by dota(r,k) + nabla_k[U_⊥(r,z=0) \\cdotk + Ω(k)]\\cdotnabla_ra [13pt] \\: hspace1in - (nabla_r\\cdotU_⊥)a - nabla_r(k\\cdotU_⊥)\\cdotnabla_ka = Σ(δU^2) where U_⊥(r, z=0) is a slowly varying surface current, and Ω(k) = √(k^3+k)tanh kh is the free capillary-gravity dispersion relation. Note that nabla_r\\cdotU_⊥(r,z=0) neq 0, and that the surface currents exchange energy density with the propagating waves. When an additional weak random current √\\varepsilon δU(r/\\varepsilon) varying on the scale of k-1 is included, we find an additional scattering term Σ(δU^2) as a function of correlations in δU. Our results can be applied to the study of surface wave energy transport over a turbulent ocean.
Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing
2015-12-01
The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation. PMID:26723366
Modulational instability in nonlinear nonlocal equations of regularized long wave type
NASA Astrophysics Data System (ADS)
Hur, Vera Mikyoung; Pandey, Ashish Kumar
2016-06-01
We study the stability and instability of periodic traveling waves in the vicinity of the origin in the spectral plane, for equations of Benjamin-Bona-Mahony (BBM) and regularized Boussinesq types permitting nonlocal dispersion. We extend recent results for equations of Korteweg-de Vries type and derive modulational instability indices as functions of the wave number of the underlying wave. We show that a sufficiently small, periodic traveling wave of the BBM equation is spectrally unstable to long wavelength perturbations if the wave number is greater than a critical value and a sufficiently small, periodic traveling wave of the regularized Boussinesq equation is stable to square integrable perturbations.
Lallouette, Jules; De Pittà, Maurizio; Ben-Jacob, Eshel; Berry, Hugues
2014-01-01
Traditionally, astrocytes have been considered to couple via gap-junctions into a syncytium with only rudimentary spatial organization. However, this view is challenged by growing experimental evidence that astrocytes organize as a proper gap-junction mediated network with more complex region-dependent properties. On the other hand, the propagation range of intercellular calcium waves (ICW) within astrocyte populations is as well highly variable, depending on the brain region considered. This suggests that the variability of the topology of gap-junction couplings could play a role in the variability of the ICW propagation range. Since this hypothesis is very difficult to investigate with current experimental approaches, we explore it here using a biophysically realistic model of three-dimensional astrocyte networks in which we varied the topology of the astrocyte network, while keeping intracellular properties and spatial cell distribution and density constant. Computer simulations of the model suggest that changing the topology of the network is indeed sufficient to reproduce the distinct ranges of ICW propagation reported experimentally. Unexpectedly, our simulations also predict that sparse connectivity and restriction of gap-junction couplings to short distances should favor propagation while long–distance or dense connectivity should impair it. Altogether, our results provide support to recent experimental findings that point toward a significant functional role of the organization of gap-junction couplings into proper astroglial networks. Dynamic control of this topology by neurons and signaling molecules could thus constitute a new type of regulation of neuron-glia and glia-glia interactions. PMID:24795613
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Kreider, K. L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
3D Elastic Wavefield Tomography
NASA Astrophysics Data System (ADS)
Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.
2010-12-01
Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal
Equator-S observations of ion cyclotron waves outside the dawnside magnetopause
NASA Astrophysics Data System (ADS)
Dunlop, M. W.; Lucek, E. A.; Kistler, L. M.; Cargill, P.; Balogh, A.; Baumjohann, W.
2002-09-01
The Equator-S satellite often remained close to the magnetopause for long periods on the morningside of the magnetosphere. The combination of this coverage, slow magnetopause crossings (˜1-2 km/s), and high-resolution (64-128 Hz) magnetic field data allows very close inspection of the region adjacent to the magnetopause. Strong signatures consistent with mirror-like structures were observed on a large minority (30%) of the orbits. For the majority of these passes the signatures start close, or adjacent, to the magnetopause, despite a variety of upstream solar wind conditions, suggesting that in most cases the plasma depletion layer (PDL) was either narrow or absent. Without extensive plasma data the PDL cannot be observed directly. Using high-resolution magnetic field data, however, we have surveyed the occurrence of electromagnetic ion cyclotron (EMIC) waves in the magnetosheath, which have been used by previous authors as a proxy for PDL occurrence. Only a very small number (11) of the 130 documented crossings showed the presence of an ion cyclotron signature in the adjacent magnetosheath, supporting the hypothesis that the PDL is rare in this region. Two of these crossings had proton number density data available, although the wave signatures were exceptionally weak and short-lived. In these cases we find no clear evidence for a region of plasma depletion, suggesting that the relationship between a PDL and short bursts of EMIC wave occurrence may not be straightforward.
Global, uniform, asymptotic wave-equation solutions for large wavenumbers
NASA Astrophysics Data System (ADS)
Klauder, John R.
1987-11-01
For each of a large class of linear wave equations-relevant, for example, to very general acoustical or optical propagation problems-we develop within a single expression a global, uniform, asymptotic solution for large wavenumbers (small wavelengths) based on coherentstate transformation techniques. Such techniques effectively separate the configuration-space field into its orientational components, and are thus analogous to a phase-space description of rays by their position and direction. The resultant coherent-state approximation offers distinct advantages over more traditional asymptotic approximations based on direct or Fourier transform techniques. In particular, coherent-state methods lead to an everywhere well-defined approximation independent of the complexity of the caustic structure, independent of whether there are a few or a vast number of relevant rays, or even in shadow regions where no conventional rays exist. For propagation in random media it is shown that coherent-state techniques also offer certain advantages. Approximations are developed for wave equations in an arbitrary number of space dimensions for single component fields as well as multicomponent fields that, for example, can account for backscattering. It is noteworthy that the coherentstate asymptotic approximation should lend itself to numerical studies as well.
Plane wave based selfconsistent solution of the GW Dyson equation
NASA Astrophysics Data System (ADS)
Wang, Lin-Wang; Cao, Huawei
We have developed a selfconsistent procedure to calculate the full Dyson equation based on plane wave basis set. The whole formalism is based on the Greens function matrix of the plane wave G-vector. There is no truncation of the conduction band when the dielectric function is calculated. The Dyson equation is the variational minimum solution of the total energy in terms of the Greens function. The calculation uses the ''space-time'' method, with special algorithm for imaginary time integration and Fourier transformation. We have tested isolated molecules and periodic systems. The effects of selfconsistency compared to the G0W0 results will be presented. We will also discuss some special techniques used in the k-point summation for the periodic system. Massive parallelization is used to carry out such calculations. This work is supported by the Director, SC/BES/MSED of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Material Theory program at Lawrence Berkeley National Laboratory.
Construction of rogue wave and lump solutions for nonlinear evolution equations
NASA Astrophysics Data System (ADS)
Lü, Zhuosheng; Chen, Yinnan
2015-07-01
Based on symbolic computation and an ansatz, we present a constructive algorithm to seek rogue wave and lump solutions for nonlinear evolution equations. As illustrative examples, we consider the potential-YTSF equation and a variable coefficient KP equation, and obtain nonsingular rational solutions of the two equations. The solutions can be rogue wave or lump solutions under different parameter conditions. We also present graphic illustration of some special solutions which would help better understand the evolution of solution waves.
A Schamel equation for ion acoustic waves in superthermal plasmas
Williams, G. Kourakis, I.; Verheest, F.; Hellberg, M. A.; Anowar, M. G. M.
2014-09-15
An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.
A Schamel equation for ion acoustic waves in superthermal plasmas
NASA Astrophysics Data System (ADS)
Williams, G.; Verheest, F.; Hellberg, M. A.; Anowar, M. G. M.; Kourakis, I.
2014-09-01
An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u0. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.
NASA Astrophysics Data System (ADS)
Ungermann, J.; Friedl-Vallon, F.; Hoepfner, M.; Oelhaf, H.; Preusse, P.; Riese, M.
2014-12-01
The Gimballed Limb Radiance Imager of the Atmosphere (GLORIA) is a new instrument that combines a classical Fourier transform spectrometer (FTS) with a 2-D detector array. Imaging allows the spatial sampling to be improved by up to an order of magnitude when compared to a limb scanning instrument. GLORIA is designed to operate on various high altitude research platforms. The instrument is a joint development of the German Helmholtz Large Research Facilities Karlsruhe Institute of Technology (KIT) and Research Centre Juelich (FZJ). GLORIA builds upon the heritage of KIT and FZJ in developing and operating IR limb sounders (MIPAS, CRISTA). In Summer 2012, GLORIA was an integral part of the first large missions for the German research aircraft HALO dedicated to atmospheric research, TACTS and ESMVAL. The data span latitudes from 80°N to 65°S and include several tomographic flight patterns that allow the 3-D reconstruction of observed air masses. We provide an overview of the heterogeneous structure of the upper troposphere/lower stratosphere (UTLS) as observed over Europe. Retrieved water vapor and ozone are used to identify the tropospheric or stratospheric character of air masses and can thus be used to visualize the multi-species 2-D (and partly 3-D) chemical structure of the UTLS. A highly intricate structure is found consisting often of fine-scale layers extending only several hundred meters in the vertical. These horizontally large-scale structures are thus below the typical vertical resolution of current chemistry climate models. Trajectory studies reveal the origin of the filaments to be Rossby wave-breaking events over the Pacific and Atlantic that cause tropical air stemming from the general area of the Asian monsoon to be mixed across the jet-stream into the subtropical lowermost stratosphere. These results demonstrate a rich spatial structure of the UTLS region at the subtropical jet, where the tropopause break is perturbed by breaking Rossby waves. The
Wave-equation-based travel-time seismic tomography - Part 1: Method
NASA Astrophysics Data System (ADS)
Tong, P.; Zhao, D.; Yang, D.; Yang, X.; Chen, J.; Liu, Q.
2014-11-01
In this paper, we propose a wave-equation-based travel-time seismic tomography method with a detailed description of its step-by-step process. First, a linear relationship between the travel-time residual Δt = Tobs-Tsyn and the relative velocity perturbation δ c(x)/c(x) connected by a finite-frequency travel-time sensitivity kernel K(x) is theoretically derived using the adjoint method. To accurately calculate the travel-time residual Δt, two automatic arrival-time picking techniques including the envelop energy ratio method and the combined ray and cross-correlation method are then developed to compute the arrival times Tsyn for synthetic seismograms. The arrival times Tobs of observed seismograms are usually determined by manual hand picking in real applications. Travel-time sensitivity kernel K(x) is constructed by convolving a~forward wavefield u(t,x) with an adjoint wavefield q(t,x). The calculations of synthetic seismograms and sensitivity kernels rely on forward modeling. To make it computationally feasible for tomographic problems involving a large number of seismic records, the forward problem is solved in the two-dimensional (2-D) vertical plane passing through the source and the receiver by a high-order central difference method. The final model is parameterized on 3-D regular grid (inversion) nodes with variable spacings, while model values on each 2-D forward modeling node are linearly interpolated by the values at its eight surrounding 3-D inversion grid nodes. Finally, the tomographic inverse problem is formulated as a regularized optimization problem, which can be iteratively solved by either the LSQR solver or a~nonlinear conjugate-gradient method. To provide some insights into future 3-D tomographic inversions, Fréchet kernels for different seismic phases are also demonstrated in this study.
A Parabolic Equation Approach to Modeling Acousto-Gravity Waves for Local Helioseismology
NASA Astrophysics Data System (ADS)
Del Bene, Kevin; Lingevitch, Joseph; Doschek, George
2016-08-01
A wide-angle parabolic-wave-equation algorithm is developed and validated for local-helioseismic wave propagation. The parabolic equation is derived from a factorization of the linearized acousto-gravity wave equation. We apply the parabolic-wave equation to modeling acoustic propagation in a plane-parallel waveguide with physical properties derived from helioseismic data. The wavenumber power spectrum and wave-packet arrival-time structure for receivers in the photosphere with separation up to 30° is computed, and good agreement is demonstrated with measured values and a reference spectral model.
A Parabolic Equation Approach to Modeling Acousto-Gravity Waves for Local Helioseismology
NASA Astrophysics Data System (ADS)
Del Bene, Kevin; Lingevitch, Joseph; Doschek, George
2016-07-01
A wide-angle parabolic-wave-equation algorithm is developed and validated for local-helioseismic wave propagation. The parabolic equation is derived from a factorization of the linearized acousto-gravity wave equation. We apply the parabolic-wave equation to modeling acoustic propagation in a plane-parallel waveguide with physical properties derived from helioseismic data. The wavenumber power spectrum and wave-packet arrival-time structure for receivers in the photosphere with separation up to 30° is computed, and good agreement is demonstrated with measured values and a reference spectral model.
Wave-equation migration velocity inversion using passive seismic sources
NASA Astrophysics Data System (ADS)
Witten, B.; Shragge, J. C.
2015-12-01
Seismic monitoring at injection sites (e.g., CO2 sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits the fact that the P- and S-wave arrivals originate at the same time and location in the subsurface. We generate image volumes by back-propagating P- and S-wave data through initial Earth models and then applying a correlation-based extended-imaging condition. Energy focusing away from zero lag in the extended image volume is used as a (penalized) residual in an adjoint-state tomography scheme to update the P- and S-wave velocity models. We use an acousto-elastic approximation to greatly reduce the computational cost. Because the method requires neither an initial source location or origin time estimate nor picking of arrivals, it is suitable for low signal-to-noise datasets, such as microseismic data. Synthetic results show that with a realistic distribution of microseismic sources, P- and S-velocity perturbations can be recovered. Although demonstrated at an oil and gas reservoir scale, the technique can be applied to problems of all scales from geologic core samples to global seismology.
NASA Astrophysics Data System (ADS)
Wang, F.; Jordan, T. H.
2012-12-01
Seismic hazard models based on empirical ground motion prediction equations (GMPEs) employ a model-based factorization to account for source, propagation, and path effects. An alternative is to simulate these effects directly using earthquake source models combined with three-dimensional (3D) models of Earth structure. We have developed an averaging-based factorization (ABF) scheme that facilitates the geographically explicit comparison of these two types of seismic hazard models. For any fault source k with epicentral position x, slip spatial and temporal distribution f, and moment magnitude m, we calculate the excitation functions G(s, k, x, m, f) for sites s in a geographical region R, such as 5% damped spectral acceleration at a particular period. Through a sequence of weighted-averaging and normalization operations following a certain hierarchy over f, m, x, k, and s, we uniquely factorize G(s, k, x, m, f) into six components: A, B(s), C(s, k), D(s, k, x), E(s, k, x, m), and F(s, k, x, m, f). Factors for a target model can be divided by those of a reference model to obtain six corresponding factor ratios, or residual factors: a, b(s), c(s, k), d(s, k, x), e(s, k, x, m), and f(s, k, x, m, f). We show that these residual factors characterize differences in basin effects primarily through b(s), distance scaling primarily through c(s, k), and source directivity primarily through d(s, k, x). We illustrate the ABF scheme by comparing CyberShake Hazard Model (CSHM) for the Los Angeles region (Graves et. al. 2010) with the Next Generation Attenuation (NGA) GMPEs modified according to the directivity relations of Spudich and Chiou (2008). Relative to CSHM, all NGA models underestimate the directivity and basin effects. In particular, the NGA models do not account for the coupling between source directivity and basin excitation that substantially enhance the low-frequency seismic hazards in the sedimentary basins of the Los Angeles region. Assuming Cyber
Stability of negative solitary waves for an integrable modified Camassa-Holm equation
Yin Jiuli; Tian Lixin; Fan Xinghua
2010-05-15
In this paper, we prove that the modified Camassa-Holm equation is Painleve integrable. We also study the orbital stability problem of negative solitary waves for this integrable equation. It is shown that the negative solitary waves are stable for arbitrary wave speed of propagation.
NASA Astrophysics Data System (ADS)
Liang, Xiaofeng; Chen, Yun; Tian, Xiaobo; Chen, Yongshun John; Ni, James; Gallegos, Andrea; Klemperer, Simon L.; Wang, Minling; Xu, Tao; Sun, Changqing; Si, Shaokun; Lan, Haiqiang; Teng, Jiwen
2016-06-01
We perform a finite-frequency tomographic inversion to image 3D velocity structures beneath southern and central Tibet using teleseismic body-wave data recorded by the TIBET-31N passive seismic array as well as waveforms from previous temporary seismic arrays. High-velocity bodies dip ∼40° northward beneath the Himalaya and the Lhasa Terrane. We interpret these high-velocity anomalies as subducting Indian Continental Lithosphere (ICL). The ICL appears to extend further north in central Tibet than in eastern Tibet, reaching 350 km depth at ∼31°N along 85°E but at ∼30°N along 91°E. Low P- and S-wave velocity anomalies extend from the lower crust to ≥180 km depth beneath the Tangra Yum Co Rift, Yadong-Gulu Rift, and the Cona Rift, suggesting that rifting in southern Tibet may involve the entire lithosphere. The anomaly beneath Tangra Yum Co Rift extends down to about 180 km, whereas the anomalies west of the Yadong-Gulu Rift and east of the Cona Rift extend to more than 300 km depth. The low-velocity upper mantle west of the Yadong-Gulu Rift extends furthest north and appears to connect with the extensive upper-mantle low-velocity region beneath central Tibet. Thus the northward-subducting Indian Plate is fragmented along north-south breaks that permit or induce asthenospheric upwellings indistinguishable from the upper mantle of northern Tibet.
Wang, Yugang; Wu, Xinjun; Sun, Pengfei; Li, Jian
2015-01-01
Electromagnetic acoustic transducers (EMATs) can generate non-dispersive T(0,1) mode guided waves in a metallic pipe for nondestructive testing (NDT) by using a periodic permanent magnet (PPM) EMAT circular array. In order to enhance the excitation efficiency of the sensor, the effects of varying the number of elements of the array on the excitation efficiency is studied in this paper. The transduction process of the PPM EMAT array is studied based on 3-D finite element method (FEM). The passing signal amplitude of the torsional wave is obtained to represent the excitation efficiency of the sensor. Models with different numbers of elements are established and the results are compared to obtain an optimal element number. The simulation result is verified by experiments. It is shown that after optimization, the amplitudes of both the passing signal and defect signal with the optimal element number are increased by 29%, which verifies the feasibility of this optimal method. The essence of the optimization is to find the best match between the static magnetic field and the eddy current field in a limited circumferential space to obtain the maximum circumferential Lorentz force. PMID:25654722
Wang, Yugang; Wu, Xinjun; Sun, Pengfei; Li, Jian
2015-01-01
Electromagnetic acoustic transducers (EMATs) can generate non-dispersive T(0,1) mode guided waves in a metallic pipe for nondestructive testing (NDT) by using a periodic permanent magnet (PPM) EMAT circular array. In order to enhance the excitation efficiency of the sensor, the effects of varying the number of elements of the array on the excitation efficiency is studied in this paper. The transduction process of the PPM EMAT array is studied based on 3-D finite element method (FEM). The passing signal amplitude of the torsional wave is obtained to represent the excitation efficiency of the sensor. Models with different numbers of elements are established and the results are compared to obtain an optimal element number. The simulation result is verified by experiments. It is shown that after optimization, the amplitudes of both the passing signal and defect signal with the optimal element number are increased by 29%, which verifies the feasibility of this optimal method. The essence of the optimization is to find the best match between the static magnetic field and the eddy current field in a limited circumferential space to obtain the maximum circumferential Lorentz force. PMID:25654722
New Travelling Solitary Wave and Periodic Solutions of the Generalized Kawahara Equation
Chen Huaitang; Yin Huicheng
2007-09-06
A simple elliptic equation method is used for constructing exact trevelling wave solutions of nonlinear partial differential equations(PDEs) in a unified way. With the aid of Maple, more new travelling solitary wave and periodic solutions are obtained for the generalized Kawahara equation.
On an Acoustic Wave Equation Arising in Non-Equilibrium Gasdynamics. Classroom Notes
ERIC Educational Resources Information Center
Chandran, Pallath
2004-01-01
The sixth-order wave equation governing the propagation of one-dimensional acoustic waves in a viscous, heat conducting gaseous medium subject to relaxation effects has been considered. It has been reduced to a system of lower order equations corresponding to the finite speeds occurring in the equation, following a method due to Whitham. The lower…
NASA Astrophysics Data System (ADS)
Bai, Chao-Ying; Huang, Guo-Jiao; Li, Xiao-Ling; Zhou, Bing; Greenhalgh, Stewart
2013-11-01
To overcome the deficiency of some current grid-/cell-based ray tracing algorithms, which are only able to handle first arrivals or primary reflections (or conversions) in anisotropic media, we have extended the functionality of the multistage irregular shortest-path method to 2-D/3-D tilted transversely isotropic (TTI) media. The new approach is able to track multiple transmitted/reflected/converted arrivals composed of any kind of combinations of transmissions, reflections and mode conversions. The basic principle is that the seven parameters (five elastic parameters plus two polar angles defining the tilt of the symmetry axis) of the TTI media are sampled at primary nodes, and the group velocity values at secondary nodes are obtained by tri-linear interpolation of the primary nodes across each cell, from which the group velocities of the three wave modes (qP, qSV and qSH) are calculated. Finally, we conduct grid-/cell-based wave front expansion to trace multiple transmitted/reflected/converted arrivals from one region to the next. The results of calculations in uniform anisotropic media indicate that the numerical results agree with the analytical solutions except in directions of SV-wave triplications, at which only the lowest velocity value is selected at the singularity points by the multistage irregular shortest-path anisotropic ray tracing method. This verifies the accuracy of the methodology. Several simulation results show that the new method is able to efficiently and accurately approximate situations involving continuous velocity variations and undulating discontinuities, and that it is suitable for any combination of multiple transmitted/reflected/converted arrival tracking in TTI media of arbitrary strength and tilt. Crosshole synthetic traveltime tomographic tests have been performed, which highlight the importance of using such code when the medium is distinctly anisotropic.
NASA Astrophysics Data System (ADS)
Chaput, J. A.; Zandomeneghi, D.; Aster, R. C.; Knox, H. A.; Kyle, P. R.
2011-12-01
Erebus volcano, Antarctica hosts a long-lived convecting phonolitic lava lake, and produces frequent VE0 Strombolian eruptions from large gas slugs rising through the conduit system. We present a novel application of body wave seismic interferometry using Strombolian eruption seismic coda to recover a 3-D impedance contrast image of the shallow magmatic system. Exploiting the extreme scattering of volcanic media, we use correlations of equipartioned eruption coda wavefields to extract single-station multicomponent Green's functions at 31 broadband and 78 short period seismic stations deployed on the upper volcano during 2007-2009. Using a novel rotation technique, we migrated Green's function maxima into a 3-D volume to yield a scattering map of the volcano. Results suggest a complex, bifurcating shallow conduit system that transitions into a more centralized structure near ~1.2 km depth. The shape of the imaged shallow conduit system helps explain the gas slug generation mechanism at Erebus volcano, which likely requires a low angle shallow roof at which to accrete gas bubbles. Other strong scattering features are also imaged, suggesting possible multipathing of the magmatic system as well as deeper small magma chambers. Principal shallow features observed in this study are corroborated by a concurrent active source tomographic study of the upper ~1 km of the volcanic edifice (Zandomeneghi et al. 2011), thus laying credence to the success of the method as well as its future potential. This study paves the way for real time structural monitoring of persistently active volcanoes. Given sufficiently energetic and broadband sources and a sufficiently dense network of sensors, it should be possible to calculate such correlograms and associated images at many volcanoes.
Jarvis, Andrew J C; Cegla, Frederic B
2014-07-01
The challenge of accurately simulating how incident scalar waves interact with rough boundaries has made it an important area of research within many scientific disciplines. Conventional methods, which in the majority of cases focus only on scattering in two dimensions, often suffer from long simulation times or reduced accuracy, neglecting phenomena such as multiple scattering and surface self-shadowing. A simulation based on the scalar wave distributed point source method (DPSM) is presented as an alternative which is computationally more efficient than fully meshed numerical methods while obtaining greater accuracy than approximate analytical techniques. Comparison is made to simulated results obtained using the finite element method for a sinusoidally periodic surface where scattering only occurs in two dimensions, showing very good agreement (<0.2 dB). In addition to two-dimensional scattering, comparison to experimental results is also carried out for scattering in three dimensions when the surface has a Gaussian roughness distribution. Results indicate that for two-dimensional scattering and for rough surfaces with a correlation length equal to the incident wavelength (λ) and a root mean square height less than 0.2λ, the scalar wave approximation predicts reflected pulse shape change and envelope amplitudes generally to within 1 dB. Comparison between transducers within a three-element array also illustrate the sensitivity pulse amplitude can have to sensor position above a rough surface, differing by as much as 17 dB with a positional change of just 1.25λ. PMID:24960707
NASA Astrophysics Data System (ADS)
Ando, R.
2014-12-01
The boundary integral equation method formulated in the real space and time domain (BIEM-ST) has been used as a powerful tool to analyze the earthquake rupture dynamics on non-planar faults. Generally, BIEM is more accurate than volumetric methods such as the finite difference method and the finite difference method. With the recent development of the high performance computing environment, the earthquake rupture simulation studies have been conducted considering three dimensional realistic fault geometry models. However, the utility of BIEM-ST has been limited due to its heavy computational demanding increased depending on square of time steps (N2), which was needed to evaluate the historic integration. While BIEM can be efficient with the spectral domain formulation, the applications of such a method are limited to planar fault cases. In this study, we propose a new method to reduce the calculation time of BIEM-ST to linear of time step (N) without degrading the accuracy in the 3 dimensional modeling space. We extends the method proposed earlier for the case of the 2 dimensional framework, applying the asymptotic expressions of the elasto-dynamic Green's functions. This method uses the physical nature of the stress Green's function as dividing the causality cone according to the distances from the wave-fronts. The scalability of this method is shown on the parallel computing environment of the distributed memory. We demonstrate the applicability to analyses of subduction earthquake cases, suffering long time from the numerical limitations of previously available BIEMs. We analyze the dynamic rupture processes on dipping reverse faults embed in a three dimensional elastic half space.
Generalization of the Euler-type solution to the wave equation
NASA Astrophysics Data System (ADS)
Borisov, Victor V.
2001-08-01
Generalization of the Euler-type solution to the wave equation is given. Peculiarities of the space-time structure of obtained waves are considered. For some particular cases interpretation of these waves as `subliminal' and `superluminal' is discussed. The possibility of description of electromagnetic waves by means of the scalar solutions is shown.
NASA Astrophysics Data System (ADS)
Ali Akbar, M.; Norhashidah, Hj. Mohd. Ali; E. M. E., Zayed
2012-02-01
In this article, we construct abundant exact traveling wave solutions involving free parameters to the generalized Bretherton equation via the improved (G'/G)-expansion method. The traveling wave solutions are presented in terms of the trigonometric, the hyperbolic, and rational functions. When the parameters take special values, the solitary waves are derived from the traveling waves.
New compact equation for numerical simulation of freak waves on deep water
NASA Astrophysics Data System (ADS)
Dyachenko, A. I.; Kachulin, D. I.; Zakharov, V. E.
2016-02-01
Considering surface gravity waves which propagate in same direction we applied canonical transformation to a water wave equation and drastically simplify the Hamiltonian. After this transformation, corresponding equation of motion is written in x-space in a compact form. This new equation is suitable for analytical studies and numerical simulations. Localized in space breather-type solution was found numerically by using iterative Petviashvili method. Numerical simulation of breathers collision shows the stability of such solutions. We observed the freak wave formation in numerical simulations of sea surface waving in the framework of new equation.
The zero dispersion limits of nonlinear wave equations
Tso, T.
1992-01-01
In chapter 2 the author uses functional analytic methods and conservation laws to solve the initial-value problem for the Korteweg-de Vries equation, the Benjamin-Bona-Mahony equation, and the nonlinear Schroedinger equation for initial data that satisfy some suitable conditions. In chapter 3 the energy estimates are used to show that the strong convergence of the family of the solutions of the KdV equation obtained in chapter 2 in H[sup 3](R) as [epsilon] [yields] 0; also, it is shown that the strong L[sup 2](R)-limit of the solutions of the BBM equation as [epsilon] [yields] 0 before a critical time. In chapter 4 the author uses the Whitham modulation theory and averaging method to find the 2[pi]-periodic solutions and the modulation equations of the KdV equation, the BBM equation, the Klein-Gordon equation, the NLS equation, the mKdV equation, and the P-system. It is shown that the modulation equations of the KdV equation, the K-G equation, the NLS equation, and the mKdV equation are hyperbolic but those of the BBM equation and the P-system are not hyperbolic. Also, the relations are studied of the KdV equation and the mKdV equation. Finally, the author studies the complex mKdV equation to compare with the NLS equation, and then study the complex gKdV equation.
NASA Technical Reports Server (NTRS)
Hayes, E. F.; Kouri, D. J.
1971-01-01
Coupled integral equations are derived for the full scattering amplitudes for both reactive and nonreactive channels. The equations do not involve any partial wave expansion and are obtained using channel operators for reactive and nonreactive collisions. These coupled integral equations are similar in nature to equations derived for purely nonreactive collisions of structureless particles. Using numerical quadrature techniques, these equations may be reduced to simultaneous algebraic equations which may then be solved.
Ghosh, Sandip; Sahoo, Tapas; Adhikari, Satrajit; Sharma, Rahul; Varandas, António J C
2015-12-17
We implement a coupled three-dimensional (3D) time-dependent wave packet formalism for the 4D reactive scattering problem in hyperspherical coordinates on the accurate double many body expansion (DMBE) potential energy surface (PES) for the ground and first two singlet states (1(1)A', 2(1)A', and 3(1)A') to account for nonadiabatic processes in the D(+) + H2 reaction for both zero and nonzero values of the total angular momentum (J). As the long-range interactions in D(+) + H2 contribute significantly due to nonadiabatic effects, the convergence profiles of reaction probabilities for the reactive noncharge transfer (RNCT), nonreactive charge transfer (NRCT), and reactive charge transfer (RCT) processes are shown for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. The total and state-to-state cross sections are presented as a function of the collision energy for the initial rovibrational state v = 0, j = 0 of the diatom, and the calculated cross sections compared with other theoretical and experimental results. PMID:26436891
NASA Astrophysics Data System (ADS)
Bekki, Naoaki; Shintani, Seine A.
2015-12-01
We consider the Rayleigh-Lamb-type equation for propagating pulsive waves excited by aortic-valve closure at end-systole in the human heart wall. We theoretically investigate the transcendental dispersion equation of pulsive waves for the asymmetrical zero-order mode of the Lamb wave. We analytically find a simple dispersion equation with a universal constant for a small Lamb wavenumber. We show that the simple dispersion equation can qualitatively explain the myocardial noninvasive measurements in vivo of pulsive waves in the human heart wall. We can also consistently estimate the viscoelastic constant of the myocardium in the human heart wall using the simple dispersion equation for a small Lamb wavenumber instead of using a complex nonlinear optimization.
NASA Astrophysics Data System (ADS)
Yu, Fajun
2016-05-01
We study multi-rogue wave solutions of a Schro¨dinger equation with higher-order terms employing the generalized Darboux transformation. Some properties of the nonautonomous rogue waves are investigated analytically for the combined Hirota-Lakshmanan-Porsezian-Daniel (LPD) equation. We consider the controllable behaviors of this nonautonomous rogue wave solution with the nonlinearity management function and gain/loss coefficient. It is reported that there are possibilities to 'catch' rogue waves through manipulating nonlinear function and gain/loss coefficient. Our approach can provide many possibilities to manipulate rogue waves and present the potential applications for the rogue wave phenomena.
Shock wave structure using nonlinear model Boltzmann equations
NASA Technical Reports Server (NTRS)
Segal, Ben Maurice
1971-01-01
The structure of a strong plane shock wave in a monatomic rarefied perfect gas is one of the simplest problems able to be posed in kinetic theory, and one of the hardest to solve. Its simplicity lies in the absence of solid boundaries, geometrical complications, or internal molecular energy. Its difficulty arises from the great departure of the gas from equilibrium within the shock, which invalidates many of the techniques used successfully elsewhere in kinetic theory. In addition to this theoretical challenge, the modern development of ballistics and hypersonic flight has helped to stimulate extensive theoretical and experimental interest in the shock problem. The experimenters in turn have encountered great difficulties on account of the very small physical dimensions of shocks. In fact, until very recently indeed, any close comparisons of theoretical and experimental shock structure results have been rather unprofitable due to the inadequacies of both theory and experiment. During the last few years this situation has been appreciably improved by development of the Monte Carlo method. This allows idealized 'experiments' to be performed on large computers instead of in wind tunnels, using a known intermolecular force law. The most developed of these methods has been shown to be equivalent theoretically to the Boltzmann equation and to give results which agree extremely closely with measurements of high accuracy. Thus Monte Carlo results not only form the soundest basis for our present theoretical knowledge of shock wave structure, but, for purposes of developing other theories, can also be considered a very valuable experimental resource. However, such results remain very expensive to obtain. In this thesis we develop more economical kinetic theory methods for the approximate prediction of shock structure, and compare our results with those of the Monte Carlo method.
NASA Astrophysics Data System (ADS)
Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan
2016-06-01
Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.
NASA Astrophysics Data System (ADS)
Wang, Chuanjian; Dai, Zhengde; Liu, Changfu
2014-07-01
In this paper, two types of multi-parameter breather homoclinic wave solutions—including breather homoclinic wave and rational homoclinic wave solutions—are obtained by using the Hirota technique and ansätz with complexity of parameter for the coupled Schrödinger-Boussinesq equation. Rogue waves in the form of the rational homoclinic solution are derived when the periods of breather homoclinic wave go to infinite. Some novel features of homoclinic wave solutions are discussed and presented. In contrast to the normal bright rogue wave structure, a structure like a four-petaled flower in temporal-spatial distribution is exhibited. Further with the change of the wave number of the plane wave, the bright and dark rogue wave structures may change into each other. The bright rogue wave structure results from the full merger of two nearby peaks, and the dark rogue wave structure results from the full merger of two nearby holes. The dark rogue wave for the uncoupled Boussinesq equation is finally obtained. Its structural properties show that it never takes on bright rogue wave features with the change of parameter. It is hoped that these results might provide us with useful information on the dynamics of the relevant fields in physics.
NASA Astrophysics Data System (ADS)
Arroyo, I.; Husen, S.; Flueh, E.; Alvarado, G. E.
2008-12-01
The Central Pacific sector of the erosional margin in Costa Rica shows a high seismicity rate, coincident with the subduction of rough-relief ocean floor, and generates earthquakes up to Mw 7. Precise earthquake locations and detailed knowledge of the 3-D velocity structure provide key insights into the dynamics of subduction zones. To this end, we performed a 3-D Local Earthquake Tomography using P-wave traveltimes from 595 selected events recorded by a seismological network of off- and onshore stations, deployed for 6 months in the area. The results reflect the complexity associated to subduction of bathymetric highs and the transition from normal to thickened oceanic crust (Cocos Ridge). The slab is imaged as a high-velocity anomaly with a band of low velocities (LVB) on top enclosing the intraslab events deeper than ~30 km. Below the margin slope, the LVB is locally thickened by at least two seamounts. We observe an abrupt, eastward widening of the LVB, preceded by a low-velocity anomaly under the continental shelf, which we interpret as a big seamount. The thickening coincides with an inverted basin at the inner forearc and a low-velocity anomaly under it. The latter appears in a sector where blocks of inner forearc are uplifted, possibly by underplating of eroded material against the base of the crust. The anomaly promotes seismicity by high-friction with the upper plate, and could be linked to a Mw 6.4 earthquake in 2004. In the west part of the area, the interplate seismicity forms a cluster beneath the continental shelf. Its updip limit coincides with the 150° C isotherm and an increase in Vp along the plate boundary. This further supports a proposed model in which the seismicity onset along the plate interface is mainly due to a decrease in the abundance of the fluids released by subducted sediments. Higher seismicity rates locally concur with seamounts present at the seismogenic zone, while seamounts under the margin slope may shallow the onset of
NASA Astrophysics Data System (ADS)
Sabetkar, Akbar; Dorranian, Davoud
2015-08-01
In this paper, our attention is first concentrated on obliquely propagating properties of low-frequency (ω ≪ ωcd) "fast" and "slow" dust acoustic waves, in the linear regime, in dusty electronegative plasmas with Maxwellian electrons, kappa distributed positive ions, negative ions (following the combination of kappa-Schamel distribution), and negatively charged dust particles. So, an explicit expression for dispersion relation is derived by linearizing a set of dust-fluid equations. The results show that wave frequency ω in long and short-wavelengths limit is conspicuously affected by physical parameters, namely, positive to negative temperature ion ratio (βp), trapping parameter of negative ions (μ), magnitude of the magnetic field B0 (via ωcd), superthermal index ( κn,κp ), and positive ion to dust density ratio (δp). The signature of the penultimate parameter (i.e., κn) on wave frequency reveals that the frequency gap between the modes reduces (escalates) for k
NASA Astrophysics Data System (ADS)
Mascali, David; Torrisi, Giuseppe; Neri, Lorenzo; Sorbello, Gino; Castro, Giuseppe; Celona, Luigi; Gammino, Santo
2015-01-01
Electron Cyclotron Resonance (ECR) ion Sources are the most performing machines for the production of intense beams of multi-charged ions in fundamental science, applied physics and industry. Investigation of plasma dynamics in ECRIS still remains a challenge. A better comprehension of electron heating, ionization and diffusion processes, ion confinement and ion beam formation is mandatory in order to increase ECRIS performances both in terms of output beams currents, charge states, beam quality (emittance minimization, beam halos suppression, etc.). Numerical solution of Vlasov equation via kinetic codes coupled to FEM solvers is ongoing at INFN-LNS, based on a PIC strategy. Preliminary results of the modeling will be shown about wave-plasma interaction and electron-ion confinement: the obtained results are very helpful to better understand the influence of the different parameters (especially RF frequency and power) on the ion beam formation mechanism.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account.
Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Six, N. Frank (Technical Monitor)
2002-01-01
Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account. The time dependent part of the ponderomotive force is discussed.
On the solution of the generalized wave and generalized sine-Gordon equations
NASA Technical Reports Server (NTRS)
Ablowitz, M. J.; Beals, R.; Tenenblat, K.
1986-01-01
The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.
Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations
NASA Astrophysics Data System (ADS)
Liao, ShiJun
2012-12-01
It is well-known that the celebrated Camassa-Holm equation has the peaked solitary waves, which have been not reported for other mainstream models of shallow water waves. In this letter, the closed-form solutions of peaked solitary waves of the KdV equation, the BBM equation and the Boussinesq equation are given for the first time. All of them have either a peakon or an anti-peakon. Each of them exactly satisfies the corresponding Rankine-Hogoniot jump condition and could be understood as weak solution. Therefore, the peaked solitary waves might be common for most of shallow water wave models, no matter whether or not they are integrable and/or admit breaking-wave solutions.
A solution scheme for the Euler equations based on a multi-dimensional wave model
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.; Barth, Timothy J.; Parpia, Ijaz H.
1993-01-01
A scheme for the solution of scalar advection on an unstructured mesh has been developed, tested, and extended to the Euler equations. The scheme preserves a linear function exactly, and yields nearly monotone results. The flux function associated with the Euler scheme is based on a discrete 'wave model' for the system of equations. The wave model decomposes the solution gradient at a location into shear waves, entropy waves and acoustic waves and calculates the speeds, strengths and directions associated with the waves. The approach differs from typical flux-difference splitting schemes in that the waves are not assumed to propagate normal to the faces of the control volumes; directions of propagation of the waves are instead computed from solution-gradient information. Results are shown for three test cases, and two different wave models. The results are compared to those from other approaches, including MUSCL and Galerkin least squares schemes.
NASA Astrophysics Data System (ADS)
Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed
2015-02-01
The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.
PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P. G.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
Explicit Solutions and Bifurcations for a Class of Generalized Boussinesq Wave Equation
NASA Astrophysics Data System (ADS)
Ma, Zhi-Min; Sun, Yu-Huai; Liu, Fu-Sheng
2013-03-01
In this paper, the generalized Boussinesq wave equation utt — uxx + a(um)xx + buxxxx = 0 is investigated by using the bifurcation theory and the method of phase portraits analysis. Under the different parameter conditions, the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained.
Motion of Scroll Wave Filaments in the Complex Ginzburg-Landau Equation
NASA Astrophysics Data System (ADS)
Gabbay, Michael; Ott, Edward; Guzdar, Parvez N.
1997-03-01
Explicit asymptotic analytical results are derived for the motion of scroll wave filaments in the complex Ginzburg-Landau equation. Good agreement with numerical tests is obtained. The analysis highlights the necessity of allowing for previously ignored small wave-number shifts in the propagation of the waves away from the filament.
On the Stability of Self-Similar Solutions to Nonlinear Wave Equations
NASA Astrophysics Data System (ADS)
Costin, Ovidiu; Donninger, Roland; Glogić, Irfan; Huang, Min
2016-04-01
We consider an explicit self-similar solution to an energy-supercritical Yang-Mills equation and prove its mode stability. Based on earlier work by one of the authors, we obtain a fully rigorous proof of the nonlinear stability of the self-similar blowup profile. This is a large-data result for a supercritical wave equation. Our method is broadly applicable and provides a general approach to stability problems related to self-similar solutions of nonlinear wave equations.
Exact finite difference schemes for the non-linear unidirectional wave equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.
The form-invariance of wave equations without requiring a priori relations between field variables
NASA Astrophysics Data System (ADS)
Xiang, ZhiHai
2014-12-01
According to the principle of relativity, the equations describing the laws of physics should have the same forms in all admissible frames of reference, i.e., form-invariance is an intrinsic property of correct wave equations. However, so far in the design of metamaterials by transformation methods, the form-invariance is always proved by using certain relations between field variables before and after coordinate transformation. The main contribution of this paper is to give general proofs of form-invariance of electromagnetic, sound and elastic wave equations in the global Cartesian coordinate system without using any assumption of the relation between field variables. The results show that electromagnetic wave equations and sound wave equations are intrinsically form-invariant, but traditional elastodynamic equations are not. As a by-product, one can naturally obtain new elastodynamic equations in the time domain that are locally accurate to describe the elastic wave propagation in inhomogeneous media. The validity of these new equations is demonstrated by some numerical simulations of a perfect elastic wave rotator and an approximate elastic wave cloak. These findings are important for solving inverse scattering problems in many fields such as seismology, nondestructive evaluation and metamaterials.
A large active wave trapped in Jupiter's equator
NASA Astrophysics Data System (ADS)
Legarreta, J.; Barrado-Izagirre, N.; García-Melendo, E.; Sánchez-Lavega, A.; Gómez-Forrellad, J. M.
2016-02-01
Context. A peculiar atmospheric feature was observed in the equatorial zone (EZ) of Jupiter between September and December 2012 in ground-based and Hubble Space Telescope (HST) images. This feature consisted of two low albedo Y-shaped cloud structures (Y1 and Y2) oriented along the equator and centred on it (latitude 0.5°-1°N). Aims: We wanted to characterize these features, and also tried to find out their properties and understand their nature. Methods: We tracked these features to obtain their velocity and analyse their cloud morphology and the interaction with their surroundings. We present numerical simulations of the phenomenon based on one- and two-layer shallow water models under a Gaussian pulse excitation. Results: Each Y feature had a characteristic zonal length of ~15° (18 000 km) and a meridional width (distance between the north-south extremes of the Y) of 5° (6000 km), and moved eastward with a speed of around 20-40 m s-1 relative to Jupiter's mean flow. Their lifetime was 90 and 60 days for Y1 and Y2, respectively. In November, both Y1 and Y2 exhibited outbursts of rapidly evolving bright spots emerging from the Y vertex. The Y features were not visible at wavelengths of 255 or 890 nm, which suggests that they were vertically shallow and placed in altitude between the upper equatorial hazes and the main cloud deck. Numerical simulations of the dynamics of the Jovian equatorial region generate Kelvin and Rossby waves, which are similar to those in the Matsuno-Gill model for Earth's equatorial dynamics, and reproduce the observed cloud morphology and the main properties the main properties of the Y features.
PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
NASA Astrophysics Data System (ADS)
Ren, Dandan; Ou, Yaobin
2016-08-01
In this paper, we prove the incompressible limit of all-time strong solutions to the three-dimensional full compressible Navier-Stokes equations. Here the velocity field and temperature satisfy the Dirichlet boundary condition and convective boundary condition, respectively. The uniform estimates in both the Mach number {ɛin(0,overline{ɛ}]} and time {tin[0,∞)} are established by deriving a differential inequality with decay property, where {overline{ɛ} in(0,1]} is a constant. Based on these uniform estimates, the global solution of full compressible Navier-Stokes equations with "well-prepared" initial conditions converges to the one of isentropic incompressible Navier-Stokes equations as the Mach number goes to zero.
NASA Technical Reports Server (NTRS)
Shareef, N. H.; Amirouche, F. M. L.
1991-01-01
A computational algorithmic procedure is developed and implemented for the dynamic analysis of a multibody system with rigid/flexible interconnected bodies. The algorithm takes into consideration the large rotation/translation and small elastic deformations associated with the rigid-body degrees of freedom and the flexibility of the bodies in the system respectively. Versatile three-dimensional isoparametric brick elements are employed for the modeling of the geometric configurations of the bodies. The formulation of the recursive dynamical equations of motion is based on the recursive Kane's equations, strain energy concepts, and the techniques of component mode synthesis. In order to minimize CPU-intensive matrix multiplication operations and speed up the execution process, the concepts of indexed arrays is utilized in the formulation of the equations of motion. A spin-up maneuver of a space robot with three flexible links carrying a solar panel is used as an illustrative example.
3d-3d correspondence revisited
NASA Astrophysics Data System (ADS)
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
NASA Astrophysics Data System (ADS)
Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David
2015-03-01
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.
Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David
2015-03-15
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.
Nonlinear modulation of periodic waves in the small dispersion limit of the Benjamin-Ono equation
NASA Astrophysics Data System (ADS)
Matsuno, Y.
1998-12-01
The Whitham modulation theory is used to construct large time asymptotic solutions of the Benjamin-Ono (BO) equation in the small dispersion limit. For a wide class of initial data, asymptotic solutions are represented by a single-phase periodic solution of the BO equation with slowly varying amplitude and wave number. The Whitham system of modulation equations for these wave parameters has a very simple structure, and it can be solved exactly under appropriate boundary conditions. It is found that the oscillating zone expands with time, and eventually evolves into a train of solitary waves. In the case of localized initial data, the number density function of solitary waves is derived in a closed form. The resulting expression coincides with the corresponding formula obtained from the asymptotic theory based on the conservation laws of the BO equation. For steplike initial data, the total number of created solitary waves increases without limit in proportion to time.
On strongly interacting internal waves in a rotating ocean and coupled Ostrovsky equations.
Alias, A; Grimshaw, R H J; Khusnutdinova, K R
2013-06-01
In the weakly nonlinear limit, oceanic internal solitary waves for a single linear long wave mode are described by the KdV equation, extended to the Ostrovsky equation in the presence of background rotation. In this paper we consider the scenario when two different linear long wave modes have nearly coincident phase speeds and show that the appropriate model is a system of two coupled Ostrovsky equations. These are systematically derived for a density-stratified ocean. Some preliminary numerical simulations are reported which show that, in the generic case, initial solitary-like waves are destroyed and replaced by two coupled nonlinear wave packets, being the counterpart of the same phenomenon in the single Ostrovsky equation. PMID:23822486
NASA Astrophysics Data System (ADS)
Xu, Mei-Juan; Tian, Shou-Fu; Tu, Jian-Min; Ma, Pan-Li; Zhang, Tian-Tian
2015-08-01
In this paper, the (2+1)-dimensional Saweda-Kotera-Kadomtsev-Petviashvili (SK-KP) equation is investigated, which can be used to describe certain situations from the fluid mechanics, ocean dynamics and plasma physics. With the aid of generalized Bell's polynomials, the Hirota's bilinear equation and N-soliton solution are explicitly constructed to the SK-KP equation, respectively. Based on the Riemann theta function, a direct and lucid way is presented to explicitly construct quasi-periodic wave solutions for the SK-KP equation. The two-periodic waves admit two independent spatial periods in two independent horizontal directions, which are a direct generalization of one-periodic waves. Finally, the relationships between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure.
A more general model equation of nonlinear Rayleigh waves and their quasilinear solutions
NASA Astrophysics Data System (ADS)
Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo
2016-03-01
A more general two-dimensional wave motion equation with consideration of attenuation and nonlinearity is proposed to describe propagating nonlinear Rayleigh waves of finite amplitude. Based on the quasilinear theory, the numerical solutions for the sound beams of fundamental and second harmonic waves are constructed with Green’s function method. Compared with solutions from the parabolic approximate equation, results from the general equation have more accuracy in both the near distance of the propagation direction and the far distance of the transverse direction, as quasiplane waves are used and non-paraxial Green’s functions are obtained. It is more effective to obtain the nonlinear Rayleigh sound beam distributions accurately with the proposed general equation and solutions. Brief consideration is given to the measurement of nonlinear parameter using nonlinear Rayleigh waves.
Ge, Liang; Sotiropoulos, Fotis
2008-01-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533
Ge, Liang; Sotiropoulos, Fotis
2007-08-01
A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533
NASA Astrophysics Data System (ADS)
Mohammed, K. Elboree
2015-10-01
In this paper, we investigate the traveling wave solutions for the nonlinear dispersive equation, Korteweg-de Vries Zakharov-Kuznetsov (KdV-ZK) equation and complex coupled KdV system by using extended simplest equation method, and then derive the hyperbolic function solutions include soliton solutions, trigonometric function solutions include periodic solutions with special values for double parameters and rational solutions. The properties of such solutions are shown by figures. The results show that this method is an effective and a powerful tool for handling the solutions of nonlinear partial differential equations (NLEEs) in mathematical physics.
The dilution wave in polymer crystallization is described by Fisher's reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Higgs, Paul G.; Ungar, Goran
2001-04-01
Monodisperse long-chain alkanes such as C198H398 form lamellar crystals in both extended- and folded-chain forms. Folded-chain crystals are in a meta-stable equilibrium with polymer solution at a concentration CF. The crystal growth rate is virtually zero at this point, due to the self-poisoning phenomenon. If extended-chain crystallization is initiated from this state, a wave of crystallization proceeds through the solution, termed the dilution wave. The solution concentration falls as the wave passes, until a value CE is reached that is in equilibrium with the extended-chain crystal phase. We write down a reaction-diffusion equation to describe the dilution wave, and show that this is equivalent to Fisher's equation, which has previously been used to describe many other traveling wave phenomena. Numerical solutions of the equation are used to show examples of the wave shape.
Orbital stability of periodic waves in the class of reduced Ostrovsky equations
NASA Astrophysics Data System (ADS)
Johnson, Edward R.; Pelinovsky, Dmitry E.
2016-09-01
Periodic travelling waves are considered in the class of reduced Ostrovsky equations that describe low-frequency internal waves in the presence of rotation. The reduced Ostrovsky equations with either quadratic or cubic nonlinearities can be transformed to integrable equations of the Klein-Gordon type by means of a change of coordinates. By using the conserved momentum and energy as well as an additional conserved quantity due to integrability, we prove that small-amplitude periodic waves are orbitally stable with respect to subharmonic perturbations, with period equal to an integer multiple of the period of the wave. The proof is based on construction of a Lyapunov functional, which is convex at the periodic wave and is conserved in the time evolution. We also show numerically that convexity of the Lyapunov functional holds for periodic waves of arbitrary amplitudes.
PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
NASA Astrophysics Data System (ADS)
Feng, Lian-Li; Tian, Shou-Fu; Yan, Hui; Wang, Li; Zhang, Tian-Tian
2016-07-01
In this paper, a lucid and systematic approach is proposed to systematically study the periodic-wave solutions and asymptotic behaviors of a (2 + 1) -dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt (gKDKK) equation, which can be used to describe certain situations from the fluid mechanics, ocean dynamics and plasma physics. Based on Bell's polynomials, the bilinear formalism and N -soliton solution of the gKDKK equation are derived, respectively. Furthermore, based on multidimensional Riemann theta functions, the periodic-wave solutions of the equation are also constructed. Finally, an asymptotic relation between the periodic-wave solutions and soliton solutions are strictly established under a limited procedure.
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
NASA Astrophysics Data System (ADS)
Xu, Zhaoquan; Xiao, Dongmei
2016-01-01
A class of reaction diffusion equation with spatio-temporal delays is systematically investigated. When the reaction function of this equation is nonlinear without monotonicity, it is shown that there exists a spreading speed c* > 0 for this equation such that c* is linearly determinate and coincides with the minimal wave speed of traveling waves, and that this equation admits a unique traveling wave (up to translation) with speed c >c* and no traveling wave with c
PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
A simple and direct method for generating travelling wave solutions for nonlinear equations
Bazeia, D. Das, Ashok; Silva, A.
2008-05-15
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.
Grating formation by a high power radio wave in near-equator ionosphere
Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.
2011-11-15
The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Such a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.
NASA Astrophysics Data System (ADS)
Bruno, Oscar P.; Cubillos, Max
2016-02-01
This paper introduces alternating-direction implicit (ADI) solvers of higher order of time-accuracy (orders two to six) for the compressible Navier-Stokes equations in two- and three-dimensional curvilinear domains. The higher-order accuracy in time results from 1) An application of the backward differentiation formulae time-stepping algorithm (BDF) in conjunction with 2) A BDF-like extrapolation technique for certain components of the nonlinear terms (which makes use of nonlinear solves unnecessary), as well as 3) A novel application of the Douglas-Gunn splitting (which greatly facilitates handling of boundary conditions while preserving higher-order accuracy in time). As suggested by our theoretical analysis of the algorithms for a variety of special cases, an extensive set of numerical experiments clearly indicate that all of the BDF-based ADI algorithms proposed in this paper are "quasi-unconditionally stable" in the following sense: each algorithm is stable for all couples (h , Δt)of spatial and temporal mesh sizes in a problem-dependent rectangular neighborhood of the form (0 ,Mh) × (0 ,Mt). In other words, for each fixed value of Δt below a certain threshold, the Navier-Stokes solvers presented in this paper are stable for arbitrarily small spatial mesh-sizes. The second-order formulation has further been rigorously shown to be unconditionally stable for linear hyperbolic and parabolic equations in two-dimensional space. Although implicit ADI solvers for the Navier-Stokes equations with nominal second-order of temporal accuracy have been proposed in the past, the algorithms presented in this paper are the first ADI-based Navier-Stokes solvers for which second-order or better accuracy has been verified in practice under non-trivial (non-periodic) boundary conditions.
Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.
Whitfield, A J; Johnson, E R
2015-05-01
The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting. PMID:26066112
Fractal ladder models and power law wave equations
Kelly, James F.; McGough, Robert J.
2009-01-01
The ultrasonic attenuation coefficient in mammalian tissue is approximated by a frequency-dependent power law for frequencies less than 100 MHz. To describe this power law behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By combining this constitutive equation with linearized conservation principles and an adiabatic equation of state, a fractional partial differential equation that describes power law attenuation is derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and 2, while the phase velocity is in agreement with the Kramers–Kronig relations. The fractal ladder model is compared to published attenuation coefficient data, thus providing equivalent lumped parameters. PMID:19813816
Group classification and conservation laws of anisotropic wave equations with a source
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.; Gandarias, M. L.; Galiakberova, L. R.; Bruzon, M. S.; Avdonina, E. D.
2016-08-01
Linear and nonlinear waves in anisotropic media are useful in investigating complex materials in physics, biomechanics, biomedical acoustics, etc. The present paper is devoted to investigation of symmetries and conservation laws for nonlinear anisotropic wave equations with specific external sources when the equations in question are nonlinearly self-adjoint. These equations involve two arbitrary functions. Construction of conservation laws associated with symmetries is based on the generalized conservation theorem for nonlinearly self-adjoint partial differential equations. First we calculate the conservation laws for the basic equation without any restrictions on the arbitrary functions. Then we make the group classification of the basic equation in order to specify all possible values of the arbitrary functions when the equation has additional symmetries and construct the additional conservation laws.
Numerical solution of the nonlinear Schrödinger equation with wave operator on unbounded domains.
Li, Hongwei; Wu, Xiaonan; Zhang, Jiwei
2014-09-01
In this paper, we generalize the unified approach proposed in Zhang et al. [J. Zhang, Z. Xu, and X. Wu, Phys. Rev. E 78, 026709 (2008)] to design the nonlinear local absorbing boundary conditions (LABCs) for the nonlinear Schrödinger equation with wave operator on unbounded domains. In fact, based on the methodology underlying the unified approach, we first split the original equation into two parts-the linear equation and the nonlinear equation-then achieve a one-way operator to approximate the linear equation to make the wave outgoing, and finally combine the one-way operator with the nonlinear equation to achieve the nonlinear LABCs. The stability of the equation with the nonlinear LABCs is also analyzed by introducing some auxiliary variables, and some numerical examples are presented to verify the accuracy and effectiveness of our proposed method. PMID:25314566
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2015-12-01
The propagation of dust-ion-acoustic waves with high-energy electrons and positrons in three-dimensional is considered. The Zakharov-Kuznetsov-Burgers (ZKB) equations for the dust-ion-acoustic waves in dusty plasmas is obtained. The conservations laws and integrals of motion for the ZKB equation are deduced. In the present study, by applying the modified direct algebraic method, we found the electric field potential, electric field and quantum statistical pressure in form water wave solutions for three-dimensional ZKB equation. The solutions for the ZKB equation are obtained precisely and efficiency of the method can be demonstrated. The stability of the obtained solutions and the movement role of the waves by making the graphs of the exact solutions are discussed and analyzed.
Klein-Gordon equation and reflection of Alfven waves in nonuniform media
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.
1992-01-01
A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off.
NASA Astrophysics Data System (ADS)
Jia, Xuanji; Zhou, Yong
2015-09-01
We prove that a weak solution (u, b) to the MHD equations is smooth on (0, T ] if \\text{M}\\in {{L}α}≤ft(0,T;{{L}γ}≤ft({{{R}}3}\\right)\\right) with 2/α +3/γ =2 , 1≤slant α <∞ and 3/2<γ ≤slant ∞ , where \\text{M} is a 3× 3 mixture matrix (see its definition below). As we will explain later, this kind of regularity criteria is more likely to capture the nature of the coupling effects between the fluid velocity and the magnetic field in the evolution of the MHD flows. Moreover, the condition on \\text{M} is scaling invariant, i.e. it is of Ladyzhenskaya-Prodi-Serrin type.
Nonlocal Symmetries, Explicit Solutions, and Wave Structures for the Korteweg-de Vries Equation
NASA Astrophysics Data System (ADS)
Ma, Zheng-Yi; Fei, Jin-Xi
2016-08-01
From the known Lax pair of the Korteweg-de Vries (KdV) equation, the Lie symmetry group method is successfully applied to find exact invariant solutions for the KdV equation with nonlocal symmetries by introducing two suitable auxiliary variables. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to the hyperbolic and Jacobi elliptic functions are derived. Figures show the physical interaction between the cnoidal waves and a solitary wave.
On exact traveling-wave solutions for local fractional Korteweg-de Vries equation
NASA Astrophysics Data System (ADS)
Yang, Xiao-Jun; Tenreiro Machado, J. A.; Baleanu, Dumitru; Cattani, Carlo
2016-08-01
This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.
On exact traveling-wave solutions for local fractional Korteweg-de Vries equation.
Yang, Xiao-Jun; Tenreiro Machado, J A; Baleanu, Dumitru; Cattani, Carlo
2016-08-01
This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces. PMID:27586629
Simple equations guide high-frequency surface-wave investigation techniques
Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.
2006-01-01
We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparis