Science.gov

Sample records for 3d x-ray microtomography

  1. Use of x-ray microtomography for 3D imaging of internal structures

    NASA Astrophysics Data System (ADS)

    Hain, Miroslav; Bartl, Jan; Ševčík, Robert; Jacko, Vlado

    2012-01-01

    The article describes the basic principles and the use of X-ray microtomography which has emerged as a new promising method of measurement and non-destructive testing. X-ray microtomography (μCT) combines the principles of X-ray shadow microscopy together with the computed tomography CT. The current technical possibilities allow achieving submicron resolution by the use of experimental as well as commercial μCT facilities. Use of this method can be found particularly in materials research, precision engineering, and electronics industry. In all these areas there is a need for a non-destructive, high resolution visualization of internal microstructures, measurement of interior dimensions of 3D objects, materials testing for the presence of internal defects. Unlike the nondestructive μCT, the conventional testing methods require for the observation of internal structures mechanical cutting of the object and thus its destruction. Such damage of the object under study is often unacceptable, especially when it concerns an object of research, which should be preserved in integrity for its uniqueness or need to take further measurements and tests. Besides the materials research, there are also many other important areas of application of X-ray microtomography measuring method: electronics and precision mechanical engineering industry, mineralogy, geology, biology and archeology. In the experimental part of this article the results achieved in the microtomography laboratory of Slovak Academy of Sciences, equipped with the GE phoenix|x-ray nanotom 180 facility, will be presented.

  2. True-3D Strain Mapping for Assessment of Material Deformation by Synchrotron X-Ray Microtomography

    SciTech Connect

    Ahn, J.J.; Toda, H.; Niinomi, M.; Kobayashi, T.; Akahori, T.; Uesugi, K.

    2005-04-09

    Downsizing of products with complex shapes has been accelerated thanks to the rapid development of electrodevice manufacturing technology. Micro electromechanical systems (MEMS) are one of such typical examples. 3D strain measurement of such miniature products is needed to ensure their reliability. In the present study, as preliminary trial for it 3D tensile deformation behavior of a pure aluminum wire is examined using the synchrotron X-ray microtomography technique at Spring-8, Japan. Multipurpose in-situ tester is used to investigate real-time tensile deformation behavior of the Al wire. Tensile tests are carried out under strokes of 0, 0.005, 0.01 and 0.015mm. It measures 3D local deformation of a region of interest by tracking a relative movement of a pair of particles at each point. Local deformation behavior of the Al wire is identified to be different from macroscopic deformation behavior. It may be closely associated with underlying microstructure.

  3. 3D investigation of inclusions in diamonds using X-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    Parisatto, M.; Nestola, F.; Artioli, G.; Nimis, P.; Harris, J. W.; Kopylova, M.; Pearson, G. D.

    2012-04-01

    The study of mineral inclusions in diamonds is providing invaluable insights into the geochemistry, geodynamics and geophysics of the Earth's mantle. Over the last two decades, the identification of different inclusion assemblages allowed to recognize diamonds deriving from the deep upper mantle, the transition zone and even the lower mantle. In such research field the in-situ investigation of inclusions using non-destructive techniques is often essential but still remains a challenging task. In particular, conventional 2D imaging techniques (e.g. SEM) are limited to the investigation of surfaces and the lack of access to the third dimension represents a major limitation when trying to extract quantitative information. Another critical aspect is related to sample preparation (cutting, polishing) which is typically very invasive. Nowadays, X-ray computed micro-tomography (X-μCT) allows to overcome such limitations, enabling the internal microstructure of totally undisturbed samples to be visualized in a three-dimensional (3D) manner at the sub-micrometric scale. The final output of a micro-tomography experiment is a greyvalue 3D map of the variations of the X-ray attenuation coefficient (µ) within the studied object. The high X-ray absorption contrast between diamond (almost transparent to X-rays) and the typical inclusion-forming minerals (olivines, garnets, pyroxenes, oxides and sulphides) makes X-μCT a straightforward method for the 3D visualization of inclusions and for the study of their spatial relationships with the diamond host. In this work we applied microfocus X-μCT to investigate silicate inclusions still trapped in diamonds, in order to obtain in-situ information on their exact position, crystal size, shape and X-ray absorption coefficient (which is related to their composition). We selected diamond samples from different deposits containing mainly olivine and garnet inclusions. The investigated samples derived from the Udachnaya pipe (Siberia

  4. First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomography

    SciTech Connect

    Bernard, Dominique . E-mail: bernard@icmcb.u-bordeaux.fr; Gendron, Damien; Heintz, Jean-Marc; Bordere, Sylvie; Etourneau, Jean

    2005-01-03

    X-ray computed microtomography (XCMT) has been applied to ceramic samples of different materials to visualise, for the first time at this scale, real 3D microstructural evolutions during sintering. Using this technique, it has been possible to follow the whole sintering process of the same grains set. Two materials have been studied; a glass powder heat treated at 700 deg. C and a crystallised lithium borate (Li{sub 6}Gd(BO{sub 3}){sub 3}) powder heat treated at 720 deg. C. XCMT measurements have been done after different sintering times. For each material, a sub-volume was individualised and localised on the successive recordings and its 3D images numerically reconstructed. Description of the three-dimensional microstructures evolution is proposed. From the 3D experimental data, quantitative evolutions of parameters such as porosity and neck size are presented for the glass sample. Possibilities offered by this technique to study complex sintering processes, as for lithium borate, are illustrated.

  5. The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-01-01

    New experiments of falling volcanic particles were performed in order to define terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity Φ3D and fractal dimension D3D were obtained. They are easier to measure and less operator dependent than the 2D shape parameters used in previous papers. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3 × 10- 2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of Φ3D and D3D of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are finally proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions.

  6. Colloid Transport in Unsaturated Porous Media: 3D Visualization Using Synchrotron X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Brueck, C. L.; Meisenheimer, D.; Wildenschild, D.

    2015-12-01

    Understanding the mechanisms controlling colloid transport and deposition in the vadose zone is an important step in protecting our water resources. Not only may these particles themselves be undesirable contaminants, but they can also aid in the transport of smaller, molecular-scale contaminants by chemical attachment. In this research, we examined the influence that air-water interfaces (AWI) and air-water-solid contact lines (AWS) have on colloid deposition and mobilization in three-dimensional systems. We used x-ray microtomography to visualize the transport of hydrophobic colloids as they move through a partially saturated glass bead pack. Drainage and imbibition experiments were conducted using syringe pumps to control the flow of a colloid suspension through the porous media at 0.6 mL/hr. The high ionic strength fluid was adjusted to a pH of 9.5 and a concentration of 1.0 mol/L KI. During the drainage and imbibition, the flow was periodically halted and allowed to equilibrate before collecting the microtomography scans. Dopants were used to enhance the contrast between the four phases (water, air, beads, and colloids), including potassium iodide dissolved in the fluid, and an outer layer of silver coating the colloids. We hypothesized that AWIs and AWSs will scour and mobilize a significant percentage of colloids, and therefore reduce the concentration of colloids along the vertical profile of the column. The concentration of potassium iodide, and thus the ionic strength, necessary for adequate image segmentation was also explored in separate experiments so that the influence of ionic strength on colloid deposition and mobilization can be studied.

  7. Comparison of the bubble size distribution in silicate foams using 2D images and 3D x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Robert, Genevieve; Baker, Don R.; Rivers, Mark L.; Allard, Emilie; Larocque, Jeffery

    2004-10-01

    Three silicate glasses were hydrated at high pressure and then heated at atmospheric pressure to exsolve the water into bubbles and create foams. The bubble size distribution in these foams was measured by x-ray microtomography on the GSECARS BM-13 beamline at the Advanced Photon Source. The bubble area distributions were measured in two dimensions using the image slices produced from the microtomography and the software ImageJ. The bubble volume distributions were measured from the three-dimensional tomographic images with the BLOB3D software. We found that careful analysis of the microtomography data in both two and three dimensions was necessary to avoid the physically unrealistic, experimental artifact of identifying and counting many small bubbles whose surfaces were not defined by a septum of glass. When this artifact was avoided the foams demonstrated power-law distributions of bubble sizes in both two and three dimensions. Conversion of the power-law exponents for bubble areas measured in two dimensions to exponents for bubble volumes usually agreed with the measured three dimensional volume exponents. Furthermore, the power-law distributions for bubble volumes typically agree with multiple theories of bubble growth, all of which yield an exponent of 1 for the cumulative bubble volume distribution. The measured bubble volume distributions with exponents near 0.3 can be explained by diffusive growth as proposed by other authors, but distributions with exponents near 1.4 remain to be explained and are the subject of continuing research on the effects of water concentration and melt viscosity on foaming behavior.

  8. Proceedings of the workshop on X-ray computed microtomography

    SciTech Connect

    1998-02-01

    This report consists of vugraphs from the nine presentations at the conference. Titles of the presentations are: CMT: Applications and Techniques; Computer Microtomography Using X-rays from Third Generation Synchrotron X-ray; Approaches to Soft-X-ray Nanotomography; Diffraction Enhanced Tomography; X-ray Computed Microtomography Applications at the NSLS; XCMT Applications in Forestry and Forest Products; 3DMA: Investigating Three Dimensional Pore Geometry from High Resolution Images; X-ray Computed Microtomography Studies of Volcanic Rock; and 3-D Visualization of Tomographic Volumes.

  9. Imaging in 3D under pressure: a decade of high-pressure X-ray microtomography development at GSECARS

    NASA Astrophysics Data System (ADS)

    Yu, Tony; Wang, Yanbin; Rivers, Mark L.

    2016-12-01

    The high-pressure X-ray microtomography (HPXMT) apparatus has been operating at the GeoSoilEnviroCARS (GSECARS) bending magnet beamline at the Advanced Photon Source since 2005. By combining the powerful synchrotron X-ray source and fast switching between white (for X-ray diffraction) and monochromatic (for absorption imaging) modes, this technique provides the high-pressure community with a unique opportunity to image the three-dimensional volume, texture, and microstructure of materials under high pressure and temperature. The ability to shear the sample with unlimited strain by twisting the two opposed anvils in the apparatus allows shear deformation studies under extreme pressure and temperature to be performed. HPXMT is a powerful tool for studying the physical properties of both crystalline and non-crystalline materials under high pressure and high temperature. Over the past 10 years, continuous effort has been put into technical development, modifications to improve the overall performance, and additional probing techniques to meet users' needs. Here, we present an up-to-date report on the HPXMT system, a brief review of some of its many exciting scientific applications, and a discussion of future developments.

  10. 3D Morphochemistry of Basaltic/Rhyolitic Mixed Eruptions revealed via Microanalysis and X-ray microtomography.

    NASA Astrophysics Data System (ADS)

    Morgavi, D.; Arzilli, F.; Pritchard, C. J.; Perugini, D.; Mancini, L.; Larson, P. B.; Dingwell, D. B.

    2014-12-01

    Magma Mixing, a widespread petrogenetic process often operates in concert with fractional crystallisation and assimilation, to produce chemical and temperature gradients in magma. The injection of mafic magmas into felsic magma chambers is widely regarded as a key driver in the sudden triggering of what often become highly explosive volcanic eruptions. Understanding the mechanistic chain leading to such hazardous events is the goal of the present study of the morphochemistry of mingled lavas. This study involves the combination of X-ray microtomographic and electron microprobe analyses, to unravel the complex textures and attendant chemical heterogeneities of the mixed basaltic and rhyolitic eruption of Grizzly Lake in the Norris-Mammoth corridor of the Yellowstone Plateau Volcanic Field (YPVF). We observe that both magmatic viscous interfingering and disequilibrium crystallization/dissolution processes provide vital information on the timescale of interaction between the two magmatic components prior to the eruption. Mixed rocks in the YPVF appear to have a complicated history and evolution. Therefore a very considerable amount of chemical analysis was employed here. In addition, X-ray microtomography images show variegated textural features, such as vesicle and crystal distributions, filament morphology, the distribution of enclaves, and further textural features otherwise obscured in a simple 2D analyses. Here most effort was applied to the determination of the characterisation of mixing end members. Nevertheless, analysis of the hybrid portion has led to the unexpected discovery that mixing in the Grizzly Lake system was also characterised by the disintegration/dissolution of mafic crystals into the rhyolitic magma. The results of this study expose the complexity of mixing in natural magmatic systems, identifying several textural reactive factors that must be understood more deeply for our understanding of this potential eruptive trigger to proceed.

  11. X-ray microtomography of porous media at BNL

    SciTech Connect

    Dowd, B.

    1997-02-01

    This session is comprised of pertinent information about the historical aspects, current status of research, technical achievements, and future plans in X-ray computed microtomography at Brookhaven National Laboratories. An explanation with specifications and diagrams of X-ray instrumentation is provided. Several high resolution 3-D color images of reservoir rock drill cores and other materials are included.

  12. Study of the structure of 3-D composites based on carbon nanotubes in bovine serum albumin matrix by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Ignatov, D.; Zhurbina, N.; Gerasimenko, A.

    2017-01-01

    3-D composites are widely used in tissue engineering. A comprehensive analysis by X-ray microtomography was conducted to study the structure of the 3-D composites. Comprehensive analysis of the structure of the 3-D composites consisted of scanning, image reconstruction of shadow projections, two-dimensional and three-dimensional visualization of the reconstructed images and quantitative analysis of the samples. Experimental samples of composites were formed by laser vaporization of the aqueous dispersion BSA and single-walled (SWCNTs) and multi-layer (MWCNTs) carbon nanotubes. The samples have a homogeneous structure over the entire volume, the percentage of porosity of 3-D composites based on SWCNTs and MWCNTs - 16.44%, 28.31%, respectively. An average pore diameter of 3-D composites based on SWCNTs and MWCNTs - 45 μm 93 μm. 3-D composites based on carbon nanotubes in bovine serum albumin matrix can be used in tissue engineering of bone and cartilage, providing cell proliferation and blood vessel sprouting.

  13. Modeling of the Snow Temperature Gradient Metamorphism by Using 3D Images from X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Flin, F.; Brzoska, J.; Pieritz, R. A.; Lesaffre, B.; Coleou, C.; Furukawa, Y.

    2006-12-01

    Among the different kinds of metamorphisms that may occur in snow, the temperature gradient (TG) metamorphism is probably the most interesting. Typically occurring by cold and clear night, when the TG between the top and the bottom of the snow layer is high, this metamorphism is characterized by the formation of facets at the bottom of the grains, while upper parts remain rounded [1]. Since the TG metamorphism may be the source of week layer formation in the snow cover, its study has major issues in avalanche studies and is an active research field in snow and ice community. Despite of this interest, the TG metamorphism remains quite poorly understood. In particular, two fundamental questions have not been fully solved. First, what is the driving force of the matter exchange in the ice matrix and what are the associated mechanisms? Second, what determines concretely whether well-rounded or faceted shapes can appear? These two questions have been addressed and partly solved by Colbeck [2] more than twenty years ago, but the results where based on 2D observations and very simple approximations on the snow geometry. In our approach, we would like to take advantage of X-ray microtomographic techniques and revisit these questions by using high-resolution 3D images. A simple physical model describing the temperature gradient metamorphism of snow is presented in this work. This model, based on Kelvin and Langmuir-Knudsen equations, is close to a previously developed model of isothermal metamorphism [3], but takes into account the variation of the saturating vapor pressure with temperature. It can determine locally whether the ice is condensing or subliming, just depending on both the temperatures in the snow matrix and the local mean curvatures of the ice/pore interface. This model can also explain the formation of facets that occurs during the metamorphism. Thanks to X-ray microtomographic images of snow samples obtained under moderate temperature gradient conditions

  14. High density resolution synchrotron radiation based x-ray microtomography (SR μCT) for quantitative 3D-morphometrics in zoological sciences

    NASA Astrophysics Data System (ADS)

    Nickel, Michael; Hammel, Jörg U.; Herzen, Julia; Bullinger, Eric; Beckmann, Felix

    2008-08-01

    Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based x-ray microtomography (SR μCT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR μCT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SRμCT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR μCT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR μCT further increase of density resolution in absorption contrast methods is desirable.

  15. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-04-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.

  16. New Insights into the Lithospheric Mantle Carbon Storage in an Intra-Continental Area: A Geochemical and 3D X-Ray Micro-Tomography Study

    NASA Astrophysics Data System (ADS)

    Creon, L.; Rouchon, V.; Rosenberg, E.; Delpech, G.; Youssef, S.; Guyot, F. J.; Szabo, C.

    2014-12-01

    The Pannonian Basins situated in a context of lithospheric fluxing by mantle CO2-rich fluids, as evidenced by Plio-Pleistocene alkaline basalts and Basin gas geochemical data [1]. Such type of intracontinental CO2-fluxes remain poorly constrained at the scale of the global C-cycle. We report here the first quantification of the CO2 volumes stored in the lithospheric mantle, by coupling geochemical and 3D micro-tomography studies of lherzolitic and harzburgitic mantle xenoliths. The Pannonian Basin xenolith peridotites present numerous signs of melt/fluid migration. The compositions of glasses found in the peridotites vary from sub-alkaline (Na2O + K2O = 3.8 wt. %) to alkaline (Na2O + K2O = 12.6 wt. %) and from mafic (SiO2 = 48.2 wt. %) to more felsic (SiO2 = 62.1 wt. %) compositions and differ markedly from the host basalts of the xenoliths. Microthermometric and Raman spectroscopic studies on fluid inclusions (n = 115) show pure CO2 compositions with densities range between 0.6 and 0.9 g.cm3 [290 to 735 MPa (PCO2)], corresponding to deep fluid trapping on both sides of the Moho. High-resolution synchrotron X-ray micro-tomography (Micro-CT), together with laboratory micro-CT were performed to obtain information about structure, volume and density of each phase (minerals, melts and fluids). Fluids and melts are mainly located at grain boundaries and secondary trails cut off the grain boundaries, which implies a contemporary introduction of such fluids [Figure 1]. The amount of fluid inclusions in xenoliths is heterogeneous and varied from 0.79 ± 0.15 to 4.58 ± 0.54 vol % of the peridotite. The carbon-dioxide content stored in the lithospheric mantle, due to the percolation of asthenospheric melts produced in the mantle beneath the Pannonian Basin, can be estimated by the combination of 3D reconstruction (Micro-CT) and CO2 pressures from inclusions. [1] B. Sherwood Lollar et al., 1997. Geochim. Cosmochim. Acta, vol. 61, no. 11, pp. 2295-2307

  17. 3D quantification of dynamic fluid-fluid interfaces in porous media with fast x-ray microtomography: A comparison with quasi-equilibrium methods

    NASA Astrophysics Data System (ADS)

    Meisenheimer, D.; Brueck, C. L.; Wildenschild, D.

    2015-12-01

    X-ray microtomography imaging of fluid-fluid interfaces in three-dimensional porous media allows for the testing of thermodynamically derived predictions that seek a unique relationship between capillary pressure, fluid saturation, and specific interfacial area (Pc-Sw-Anw). Previous experimental studies sought to test this functional dependence under quasi-equilibrium conditions (assumed static on the imaging time-scale); however, applying predictive models developed under static conditions for dynamic scenarios can lead to substantial flaws in predicted outcomes. Theory and models developed using dynamic data can be verified using fast x-ray microtomography which allows for the unprecedented measurement of developing interfacial areas, curvatures, and trapping behaviors of fluid phases in three-dimensional systems. We will present results of drainage and imbibition experiments of air and water within a mixture of glass beads. The experiments were performed under both quasi-equilibrium and dynamic conditions at the Advanced Photon Source (APS) at Argonne National Laboratory. Fast x-ray microtomography was achieved by utilizing the high brilliance of the x-ray beam at the APS under pink-beam conditions where the white beam is modified with a 4 mm Al absorber and a 0.8 mrad Pt-coated mirror to eliminate low and high-energy photons, respectively. We present a comparison of the results from the quasi-equilibrium and dynamic experiments in an effort to determine if the Pc-Sw-Anw relationship is comparable under either experimental condition and to add to the discussion on whether the Pc-Sw-Anw relationship is unique as hypothesized by existing theory.

  18. Accuracy evaluation of an X-ray microtomography system.

    PubMed

    Fernandes, Jaquiel S; Appoloni, Carlos R; Fernandes, Celso P

    2016-06-01

    Microstructural parameter evaluation of reservoir rocks is of great importance to petroleum production companies. In this connection, X-ray computed microtomography (μ-CT) has proven to be a quite useful method for the assessment of rocks, as it provides important microstructural parameters, such as porosity, permeability, pore size distribution and porous phase of the sample. X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields 2-D cross-sectional images of the sample as well as volume rendering. This technique offers an additional advantage, as it does not require sample preparation, of reducing the measurement time, which is approximately one to three hours, depending on the spatial resolution used. Although this technique is extensively used, accuracy verification of measurements is hard to obtain because the existing calibrated samples (phantoms) have large volumes and are assessed in medical CT scanners with millimeter spatial resolution. Accordingly, this study aims to determine the accuracy of an X-ray computed microtomography system using a Skyscan 1172 X-ray microtomograph. To accomplish this investigation, it was used a nylon thread set with known appropriate diameter inserted into a glass tube. The results for porosity size and phase distribution by X-ray microtomography were very close to the geometrically calculated values. The geometrically calculated porosity and the porosity determined by the methodology using the μ-CT was 33.4±3.4% and 31.0±0.3%, respectively. The outcome of this investigation was excellent. It was also observed a small variability in the results along all 401 sections of the analyzed image. Minimum and maximum porosity values between the cross sections were 30.9% and 31.1%, respectively. A 3-D image representing the actual structure of the sample was also rendered from the 2-D images.

  19. X-ray microtomography application in pore space reservoir rock.

    PubMed

    Oliveira, M F S; Lima, I; Borghi, L; Lopes, R T

    2012-07-01

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies.

  20. X-ray microtomography at Shanghai Synchrotron Radiation facility

    NASA Astrophysics Data System (ADS)

    Chen, Rongchang; Xie, Honglan; Deng, Biao; Du, Guohao; Ren, Yuqi; Wang, Yudan; Zhou, Guangzhao; Tan, Hai; Yang, Yiming; Xu, Liang; Hu, Tao; Li, Qiao; Feng, Binggang; Wang, Feixiang; Xiao, Tiqiao

    2016-10-01

    BL13W, an X-ray imaging beamline has been built and opened to users since May 6, 2009. More than 70 user proposals per year are granted and implemented at the beamline, with about 500 user visits/year. Up to now, X-ray microtomography (XMCT) is the dominated method for BL13W user operation, more than 70% user experiments were carried out with XMCT, covering the research fields in material science, biomedicine, physics, environmental science, archaeology and paleontology. To meet the user requirements, micro-CT imaging methods based on a variety of contrast mechanisms, including absorption, phase contrast, X-ray fluorescence, have been developed. Algorithms and related software have been developed achieve the low dose and fast data collection. Quantitative analysis to the three dimensional CT images is highly emphasized and related software for 3D information extraction with high precision and high efficiency, has been developed. Three-dimensional structure evolution has been attracting more and more attention in many scientific research fields. Two-Hertz dynamic phase contrast CT based on monochromatic SR beam was established at SSRF. The limitation of fluorescence X-ray CT from practical applications is the data-collection efficiency. The ordered-subsets expectation maximization algorithm was inducted to improve practicability of X-ray fluorescence computed tomography (XFCT), greatly. A scheme for full field XFCT was also proposed.

  1. High temperature x-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    MacDowell, Alastair A.; Barnard, Harold; Parkinson, Dilworth Y.; Haboub, Abdel; Larson, Natalie; Zok, Frank; Panerai, Francesco; Mansour, Nagi N.; Bale, Hrishikesh; Gludovatz, Bernd; Acevedo, Claire; Liu, Dong; Ritchie, Robert O.

    2016-07-01

    There is increasing demand for 3D micro-scale time-resolved imaging of samples in realistic - and in many cases extreme environments. The data is used to understand material response, validate and refine computational models which, in turn, can be used to reduce development time for new materials and processes. Here we present the results of high temperature experiments carried out at the x-ray micro-tomography beamline 8.3.2 at the Advanced Light Source. The themes involve material failure and processing at temperatures up to 1750°C. The experimental configurations required to achieve the requisite conditions for imaging are described, with examples of ceramic matrix composites, spacecraft ablative heat shields and nuclear reactor core Gilsocarbon graphite.

  2. A multi-scale Lattice Boltzmann model for simulating solute transport in 3D X-ray micro-tomography images of aggregated porous materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Crawford, John W.; Flavel, Richard J.; Young, Iain M.

    2016-10-01

    The Lattice Boltzmann (LB) model and X-ray computed tomography (CT) have been increasingly used in combination over the past decade to simulate water flow and chemical transport at pore scale in porous materials. Because of its limitation in resolution and the hierarchical structure of most natural soils, the X-ray CT tomography can only identify pores that are greater than its resolution and treats other pores as solid. As a result, the so-called solid phase in X-ray images may in reality be a grey phase, containing substantial connected pores capable of conducing fluids and solute. Although modified LB models have been developed to simulate fluid flow in such media, models for solute transport are relatively limited. In this paper, we propose a LB model for simulating solute transport in binary soil images containing permeable solid phase. The model is based on the single-relaxation time approach and uses a modified partial bounce-back method to describe the resistance caused by the permeable solid phase to chemical transport. We derive the relationship between the diffusion coefficient and the parameter introduced in the partial bounce-back method, and test the model against analytical solution for movement of a pulse of tracer. We also validate it against classical finite volume method for solute diffusion in a simple 2D image, and then apply the model to a soil image acquired using X-ray tomography at resolution of 30 μm in attempts to analyse how the ability of the solid phase to diffuse solute at micron-scale affects the behaviour of the solute at macro-scale after a volumetric average. Based on the simulated results, we discuss briefly the danger in interpreting experimental results using the continuum model without fully understanding the pore-scale processes, as well as the potential of using pore-scale modelling and tomography to help improve the continuum models.

  3. Fast microtomography using bright monochromatic x-rays

    SciTech Connect

    Jung, J. W.; Lee, J. S.; Park, S. J.; Chang, S.; Pyo, J.; Kwon, N.; Kim, J.; Kohmura, Y.; Nishino, Y.; Yamamoto, M.; Ishikawa, T.

    2012-09-15

    A fast microtomography system for high-resolution high-speed imaging has been developed using bright monochromatic x-rays at the BL29XU beamline of SPring-8. The shortest scan time for microtomography we attained was 0.25 s in 1.25 {mu}m effective pixel size by combining the bright monochromatic x-rays, a fast rotating sample stage, and a high performance x-ray imaging detector. The feasibility of the tomography system was successfully demonstrated by visualization of rising bubbles in a viscous liquid, an interesting issue in multiphase flow physics. This system also provides a high spatial (a measurable feature size of 300 nm) or a very high temporal (9.8 {mu}s) resolution in radiographs.

  4. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  5. Investigation of Sandstones Wetting by X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Marquesa, Leonardo C.; Appoloni, Carlos R.; Fernandes, Jaquiel S.; Nagata, Rodrigo

    2011-08-01

    X-ray microtomography is a non-destructive imaging technique. It consists in cross-sections object reconstruction based in the linear attenuation coefficient maps achieved through the object illuminating by a X-ray beam at different angular positions. It has been used by various researches to supply microstructural informations of materials as ceramic filters, pills, titanium prosthesis and reservoir rocks. An item of great interest has been the characterization of the liquid phase presence in porous space. This paper shows the X-ray microtomography methodology employed to achieve qualitative and quantitative results about Botucatu sandstones wetting. It was used a Skyscan, 1172 model, which employs an X-ray tube with W anode and a cone beam. This laboratory based equipment is able to provide images of until 1 μm spatial resolution. The employed samples were two cores of layered Botucatu sandstone, named ARN1 and ARN 2. These samples were scanned in two situations each one, dried and wet. 2D images, porosity values for each 2D image, total average porosity and pose size distribution for the dried and wet situation were compared. H20-NaCl-KI solution was employed for the samples wetting procedure. The two samples were scanned with 4.84 μm spatial resolution. The total average porosities obtained for ARN1 sample before and after wetting were 4.4±0.7% and 1.8±0.4%, respectively.

  6. In-situ X-ray Synchrotron Microtomography: Real Time Pore Structure Evolution during Olivine Carbonation

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fusseis, F.; Lisabeth, H. P.; Xiao, X.

    2013-12-01

    Mineral carbonation has been proposed as a promising method for long-term, secure sequestration of carbon dioxide. In porous rocks, fluid-rock interactions can significantly alter the pore space and thus exert important controls over the rate and extent of carbonation. We constructed an x-ray transparent pressure cell [Fusseis et al., 2013] to investigate the real time pore structure evolution during mineral carbonation in porous olivine aggregates. In each experiment, a sintered olivine sample was subjected to a confining pressure of 13 MPa and a pore pressure of 10 MPa, with a sodium bicarbonate solution (NaHCO3 at 1.5 M) as pore fluid. At these pressure conditions, the cell was heated to 473 K. Constant pressure and temperature conditions were maintained during the length of the experiments, lasting 72-120 hours. Using a polychromatic beam in the 2-BM upstream hutch at the Advanced Photon Source, 3-dimensional (3-D) microtomography data were collected in 20 seconds with 30-minute interval. A novel phase retrieval reconstruction algorithm [Paganin et al., 2002] was used to reconstruct microtomographic datasets with a voxel size of ~1.1 micron. The microtomography images at different stages of the carbonation process reveal progressive growth of new crystals in the pore space. Integration of a x-ray transparent pressure vessel with flow through capacity and 3-D microtomography provides a novel research direction of studying the coupled chemo-hydro-thermal-mechanical processes in rocks.

  7. Advances in x-ray computed microtomography at the NSLS

    SciTech Connect

    Dowd, B.A.; Andrews, A.B.; Marr, R.B.; Siddons, D.P.; Jones, K.W.; Peskin, A.M.

    1998-08-01

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the gridding algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  8. ADVANCES IN X-RAY COMPUTED MICROTOMOGRAPHY AT THE NSLS.

    SciTech Connect

    DOWD,B.A.

    1998-08-07

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the ''gridding'' algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.

  9. Image quality and accuracy in x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Davis, Graham R.

    1999-09-01

    It is known that the reconstruction produced by the standard cone beam back-projection algorithm, with circular orbit, gives only an approximation to the true three dimensional x- ray attenuation map. It is generally thought that the errors are acceptable if the cone angle is not too large. Such assumptions are based, at least in part, on reconstructions of ellipsoids or spheres. However, this is not representative of most of the specimens used for microtomography which may give rise to larger errors. We have therefore designed a mathematical cone beam phantom generator, capable of calculating a projection data set from analytical specimens described by surface polygons. Using this phantom generator, we have tested a variety of different types of 'specimen' and have shown that when they have certain characteristics, serious errors can occur with very small cone angles, while others will tolerate much larger angles. For a more authentic simulation, a polygon surface was generated from a microtomography scan of a real piece of walrus tusk. This has been used to determine the susceptibility of this type of specimen to cone-beam related errors for various cone angles.

  10. A versatile x-ray microtomography station for biomedical imaging and materials research.

    PubMed

    Lussani, Fernando Cesar; Vescovi, Rafael Ferreira da Costa; de Souza, Thaís Diniz; Leite, Carlos A P; Giles, Carlos

    2015-06-01

    An x-ray microtomography station implemented at the X-ray Applied Crystallography Laboratory of the State University of Campinas is described. The station is based on a propagation based phase contrast imaging setup with a microfocus source and digital x-ray area detectors. Due to its simplicity, this setup is ideal for fast, high resolution imaging and microtomography of small biological specimens and materials research samples. It can also be coupled to gratings to use and develop new techniques as the harmonic spatial coherent imaging, which allow scattering contrast imaging. Details of the experimental setup, equipment, and software integration are described. Test microtomography for setup commissioning and characterization is shown. We conclude that phase contrast enhanced x-ray imaging and microtomography with resolution below 5 μm voxel size are possible and data sets as wide as 2000 × 2000 × 2000 voxels are obtained with this instrumentation.

  11. A versatile x-ray microtomography station for biomedical imaging and materials research

    NASA Astrophysics Data System (ADS)

    Lussani, Fernando Cesar; Vescovi, Rafael Ferreira da Costa; Souza, Thaís Diniz de; Leite, Carlos A. P.; Giles, Carlos

    2015-06-01

    An x-ray microtomography station implemented at the X-ray Applied Crystallography Laboratory of the State University of Campinas is described. The station is based on a propagation based phase contrast imaging setup with a microfocus source and digital x-ray area detectors. Due to its simplicity, this setup is ideal for fast, high resolution imaging and microtomography of small biological specimens and materials research samples. It can also be coupled to gratings to use and develop new techniques as the harmonic spatial coherent imaging, which allow scattering contrast imaging. Details of the experimental setup, equipment, and software integration are described. Test microtomography for setup commissioning and characterization is shown. We conclude that phase contrast enhanced x-ray imaging and microtomography with resolution below 5 μm voxel size are possible and data sets as wide as 2000 × 2000 × 2000 voxels are obtained with this instrumentation.

  12. Particle tracking during Ostwald ripening using time-resolved laboratory X-ray microtomography

    SciTech Connect

    Werz, T.; Baumann, M.; Wolfram, U.; Krill, C.E.

    2014-04-01

    Laboratory X-ray microtomography is investigated as a method for obtaining time-resolved images of microstructural coarsening of the semisolid state of Al–5 wt.% Cu samples during Ostwald ripening. Owing to the 3D imaging capability of tomography, this technique uniquely provides access to the growth rates of individual particles, thereby not only allowing a statistical characterization of coarsening—as has long been possible by conventional metallography—but also enabling quantification of the influence of local environment on particle boundary migration. The latter information is crucial to understanding growth kinetics during Ostwald ripening at high volume fractions of the coarsening phase. Automated image processing and segmentation routines were developed to close gaps in the network of particle boundaries and to track individual particles from one annealing step to the next. The particle tracking success rate places an upper bound of only a few percent on the likelihood of segmentation errors for any given particle. The accuracy of particle size trajectories extracted from the time-resolved tomographic reconstructions is correspondingly high. Statistically averaged coarsening data and individual particle growth rates are in excellent agreement with the results of prior experimental studies and with computer simulations of Ostwald ripening. - Highlights: • Ostwald ripening in Al–5 wt.% Cu measured by laboratory X-ray microtomography • Time-resolved measurement of individual particle growth • Automated segmentation routines developed to close gaps in particle boundary network • Particle growth/shrinkage rates deviate from LSW model prediction.

  13. X-ray microtomography for fracture studies in cement-based materials

    NASA Astrophysics Data System (ADS)

    Landis, Eric N.; Keane, Denis T.

    1999-09-01

    In this study we are interested in microstructure-property relationships in portland cement-based materials. Specifically, we are interested in relating microfracture and damage to bulk mechanical properties. To do this a high resolution three-dimensional scanning technique called x-ray microtomography was applied to measure internal damage and crack growth in small mortar cylinders loaded in uniaxial compression. Synchrotron-based microtomography allows us to resolve internal features that are only a few microns in size. Multiple tomographic scans were made of the same specimen at different levels of deformation, the deformation being applied through a custom built loading frame. Three-dimensional image analysis was used to measure internal crack growth during each deformation increment. Measured load-deformation curves were used to calculate the non-recoverable work of load on the specimen. Incremental non-recoverable work of load was related to measured incremental change in crack surface area to estimate work-of-fracture in three dimensions. Initial results indicate a nearly constant work-of-fracture for the early stages of crack growth. These results show that basic fracture mechanics principles may be applied to concrete in compression, however we must think in terms of 3D multiple crack systems rather than traditional 2D single crack systems.

  14. Study of liquid gallium as a function of pressure and temperature using synchrotron x-ray microtomography and x-ray diffraction

    SciTech Connect

    Li, Renfeng; Li, Liangliang; Chen, Jiaxuan; Yu, Tony; Wang, Yanbin; Rivers, Mark L.; Wang, Luhong E-mail: haozhe@hit.edu.cn; Cai, Zhonghou; Chen, Jiuhua; Liu, Haozhe E-mail: haozhe@hit.edu.cn

    2014-07-28

    The volume change of liquid and solid gallium has been studied as a function of pressure and temperature up to 3.02 GPa at 300 K and up to 3.63 GPa at 330 K using synchrotron x-ray microtomography combined with energy dispersive x-ray diffraction techniques. Two sets of directly measured P-V data at 300 K and 330 K were obtained from 3D tomography reconstruction data, and the corresponding isothermal bulk moduli were determined as 23.6 (0.5) GPa and 24.6 (0.4) GPa, respectively. The existence of a liquid-liquid phase transition region is proposed based on the abnormal compressibility of Ga melt at about 2.44 GPa and 330 K conditions.

  15. Investigating biofilm structure using x-ray microtomography and gratings-based phase contrast

    SciTech Connect

    Miller, Erin A.; Xiao, Xianghui; Miller, Micah D.; Keller, Paul E.; White, Timothy A.; Marshall, Matthew J.

    2012-10-17

    Direct examination of natural and engineered environments has revealed that the majority of microorganisms in these systems live in structured communities termed biofilms. To gain a better understanding for how biofilms function and interact with their local environment, fundamental capabilities for enhanced visualization, compositional analysis, and functional characterization of biofilms are needed. For pore-scale and community-scale analysis (100’s of nm to 10’s of microns), a variety of surface tools are available. However, understanding biofilm structure in complex three-dimensional (3-D) environments is considerably more difficult. X-ray microtomography can reveal a biofilm’s internal structure, but the obtaining sufficient contrast to image low-Z biological material against a higher-Z substrate makes detecting biofilms difficult. Here we present results imaging Shewanella oneidensis biofilms on a Hollow-fiber Membrane Biofilm Reactor (HfMBR), using the x-ray microtomography system at sector 2-BM of the Advanced Photon Source (APS), at energies ranging from 13-15.4 keV and pixel sizes of 0.7 and 1.3 μm/pixel. We examine the use of osmium (Os) as a contrast agent to enhance biofilm visibility and demonstrate that staining improves imaging of hydrated biofilms. We also present results using a Talbot interferometer to provide phase and scatter contrast information in addition to absorption. Talbot interferometry allows imaging of unstained hydrated biofilms with phase contrast, while absorption contrast primarily highlights edges and scatter contrast provides little information. However, the gratings used here limit the spatial resolution to no finer than 2 μm, which hinders the ability to detect small features. Future studies at higher resolution or higher Talbot order for greater sensitivity to density variations may improve imaging.

  16. Improved method for effective rock microporosity estimation using X-ray microtomography.

    PubMed

    Cid, H E; Carrasco-Núñez, G; Manea, V C

    2017-01-22

    Petrophysical analysis using X-ray microtomography provides key textural and compositional information, useful to investigate porous media characteristics of hydrocarbon and geothermal reservoirs. Several approaches, used for rock porosity estimation from tomography data, rely mainly on visual or mathematical segmentation algorithms that attempt to obtain thresholding values to segment a phase solved by pixel analysis resolution. Therefore, porosity is evaluated using only pores above pixel resolution (macroporosity), and dismiss pores sized less than the pixel resolution (microporosity) that can be essential to characterize permeability conditions of geothermal reservoirs. Here we propose an improved method to calculate the total effective porosity and simulate the absolute permeability of rock samples. This method combines the analysis of X-ray computed microtomography (μCT) with the interpretation of data using a powerful thresholding method that is based on the greyscale interclass variance. The 3D volume is segmented into three domains: solid, pores above resolution and, an intermediate region where each pore below resolution is linearly combined with solid matrix resulting in a grey scaled pixel equal to this combination. For the intermediate region, the microporosity was calculated employing a Matlab code that provides a new thresholding value containing pores, both above and below resolution (total porosity). Finally, by using this new calculated thresholding value the total effective porosity was obtained and an absolute permeability simulation was implemented only to the connected pores. Our results show that micropores contribute for nearly 50 percent of the total porosity and that microporosity plays a key role in estimating effective porosity, and assessing the geothermal potential of a rock reservoir.

  17. High-throughput real-time x-ray microtomography at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    De Carlo, Francesco; Albee, Paul B.; Chu, Yong S.; Mancini, Derrick C.; Tieman, Brian; Wang, Steve Y.

    2002-01-01

    It is now possible for large volumes of synchrotron- radiation-generated micro-tomography data to be produced at gigabyte-per-minute rates, especially when using currently available CCD cameras at a high-brightness source, such as the Advanced Photon Source (APS). Recent improvements in the speed of our detectors and stages, combined with increased photon flux supplied by a newly installed double multilayer monochromator, allow us to achieve these data rates on a bending magnet beamline. Previously, most x-ray microtomography experiments have produced data at comparatively lower rates, and often the data were analyzed after the experiment. The time needed to generate complete data sets meant putting off analysis to the completion of a run, thus preventing the user from evaluating the usefulness of a data set and consequently impairing decision making during data acquisition as to how to proceed. Thus, the ability to provide to a tomography user a fully reconstructed data set in few minutes is one of the major problems to be solved when dealing with high-throughput x- ray tomography. This is due to the complexity of the data analysis that involves data preprocessing, sinogram generation, 3D reconstruction, and rendering. At the APS, we have developed systems and techniques to address this issue. We present a method that uses a cluster-based, parallel- computing system based on the Message Passing Interface (MPI) standard. Among the advantages of this approach are the portability, ease-of-use, and low cost of the system. The combination of high-speed, online analysis with high- throughput acquisition allows us to acquire and reconstruct a 512x512x512-voxel sample with a few microns resolution in less than ten minutes.

  18. Investigating biofilm structure using x-ray microtomography and gratings-based phase contrast

    NASA Astrophysics Data System (ADS)

    Miller, Erin A.; Xiao, Xianghui; Miller, Micah; Keller, Paul; White, Timothy A.; Marshall, Matthew

    2012-10-01

    Direct examination of natural and engineered environments has revealed that the majority of microorganisms in these systems live in structured communities termed biofilms. To gain a better understanding for how biofilms function and interact with their local environment, fundamental capabilities for enhanced visualization, compositional analysis, and functional characterization of biofilms are needed. For pore-scale and community-scale analysis (100's of nm to 10's of microns), a variety of surface tools are available. However, understanding biofilm structure in complex three-dimensional (3-D) environments is considerably more difficult. X-ray microtomography can reveal a biofilm's internal structure, but obtaining sufficient contrast to image low atomic number (Z) biological material against a higher-Z substrate makes detecting biofilms difficult. Here we present results imaging Shewanella oneidensis biofilms on a Hollow-fiber Membrane Biofilm Reactor (HfMBR), using the x-ray microtomography system at sector 2-BM of the Advanced Photon Source (APS), at energies ranging from 12.9-15.4 keV and pixel sizes of 0.7 and 1.3 μm/pixel. We examine the use of osmium (Os) as a contrast agent to enhance biofilm visibility and demonstrate that staining improves imaging of hydrated biofilms. We also present results using a Talbot interferometer to provide phase and scatter contrast information in addition to absorption. Talbot interferometry allows imaging of unstained hydrated biofilms with phase contrast, while absorption contrast primarily highlights edges and scatter contrast provides little information. However, the gratings used here limit the spatial resolution to no finer than 2 μm, which hinders the ability to detect small features. Future studies at higher resolution or higher Talbot order for greater sensitivity to density variations may improve imaging.

  19. Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography.

    PubMed

    Mendoza, Fernando; Verboven, Pieter; Mebatsion, Hibru K; Kerckhofs, Greet; Wevers, Martine; Nicolaï, Bart

    2007-08-01

    The microstructure and the connectivity of the pore space are important variables for better understanding of the complex gas transport phenomena that occur in plant tissues. In this study, we present an experimental procedure for image acquisition and image processing to quantitatively characterize in 3D the pore space of apple tissues (Malus domestica Borkh.) for two cultivars (Jonagold and Braeburn) taken from the fleshy part of the cortex using X-ray computer microtomography. Preliminary sensitivity analyses were performed to determine the effect of the resolution and the volume size (REV, representative elementary volume analysis) on the computed porosity of apple samples. For comparison among cultivars, geometrical properties such as porosity, specific surface area, number of disconnected pore volumes and their distribution parameters were extracted and analyzed in triplicate based on the 3D skeletonization of the pore space (medial axis analysis). The results showed that microtomography provides a resolution at the micrometer level to quantitatively analyze and characterize the 3D topology of the pore space in apple tissue. The computed porosity was confirmed to be highly dependent of the resolution used, and the minimum REV of the cortical flesh of apple fruit was estimated to be 1.3 mm(3). Comparisons among the two cultivars using a resolution of 8.5 mum with a minimum REV cube showed that in spite of the complexity and variability of the pore space network observed in Jonagold and Braeburn apples, the extracted parameters from the medial axis were significantly different (P-value < 0.05). Medial axis parameters showed potential to differentiate the microstructure between the two evaluated apple cultivars.

  20. 3D X-Ray Luggage-Screening System

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth

    2006-01-01

    A three-dimensional (3D) x-ray luggage- screening system has been proposed to reduce the fatigue experienced by human inspectors and increase their ability to detect weapons and other contraband. The system and variants thereof could supplant thousands of xray scanners now in use at hundreds of airports in the United States and other countries. The device would be applicable to any security checkpoint application where current two-dimensional scanners are in use. A conventional x-ray luggage scanner generates a single two-dimensional (2D) image that conveys no depth information. Therefore, a human inspector must scrutinize the image in an effort to understand ambiguous-appearing objects as they pass by at high speed on a conveyor belt. Such a high level of concentration can induce fatigue, causing the inspector to reduce concentration and vigilance. In addition, because of the lack of depth information, contraband objects could be made more difficult to detect by positioning them near other objects so as to create x-ray images that confuse inspectors. The proposed system would make it unnecessary for a human inspector to interpret 2D images, which show objects at different depths as superimposed. Instead, the system would take advantage of the natural human ability to infer 3D information from stereographic or stereoscopic images. The inspector would be able to perceive two objects at different depths, in a more nearly natural manner, as distinct 3D objects lying at different depths. Hence, the inspector could recognize objects with greater accuracy and less effort. The major components of the proposed system would be similar to those of x-ray luggage scanners now in use. As in a conventional x-ray scanner, there would be an x-ray source. Unlike in a conventional scanner, there would be two x-ray image sensors, denoted the left and right sensors, located at positions along the conveyor that are upstream and downstream, respectively (see figure). X-ray illumination

  1. Comparison of agricultural soils' structure depending on tillage system using X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Beckers, Eléonore; Degré, Aurore; Ly, Sarann; Léonard, Angélique

    2010-05-01

    , Belgium). The cone beam source operated at 100 kV, using an aluminium filter. The detector configuration, i.e. 1048×2000 pixels 16-bit X-ray camera, and the distance source-object-camera were adjusted to produce images with a pixel size of 17 µm. This resolution allows us to visualize both meso- and macro- porosity. In this study, half the samples were placed under a 15000 kPa pressure (corresponding pressure for the wilting point) in Richards' apparatus in order to empty the meso- and macro-porosity. To determine a priori the class of porosity for the samples, relations between water retention and pressure head can be plotted using this apparatus. Scanning results consist in 2D images. The 2D images are recombined to form 3D structure. Then the pore network can be analyzed through useful factors like size distribution, shape, connectivity, orientation, tortuosity etc. The oral presentation will report the first analysis results of images obtained from the microtomographic investigation of soil samples. Soil sampling and scanning methods will be detailed. Main porosity parameters will be discussed, soil's structure will be defined, and finally differences according to the agricultural practices will be put in evidence.

  2. Imaging biofilms in porous media using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Davit, Y.; Debenest, G.; Quintard, M.

    2009-12-01

    In soils and rivers subsurface, bacterial biofilms growth induce modifications of mass and momentum transport dynamics. Evidence for these modifications have been developed essentially by inspection, that is, observation of the reduction of hydraulic conductivity, permeability, changes in porosity and anomalous transport. Deeper understanding of these sessile communities in porous media environments and of the multiscale/multiphase complexity of the system requires 3-D informations concerning the pore-scale/biofilm-scale geometry. Additionnally, breakthroughs in imaging techniques are likely to trigger breakthroughs in the theoretical analysis. In this study, we develop a new technique for direct observation and imaging of unstrained biofilms in porous media using X-ray computed micro-tomography. The biofilms are grown for ten days on polyamide and expanded polystyrene beads placed in small plastic columns. A circulation of water from the river Garonne (France) is imposed using peristaltic pumps. No particular bacterial strain is introduced, the micro-organisms being naturally present in the water from the river. The X-ray acquisition is performed by a Skyscan-1174 micro-CT. A special experimental technique, based on two different contrast agents, has been designed to solve the challenging problem of imaging 3 phases of initial similar absorption coefficients. On the one hand, we use a suspension of barium sulfate to enhance the contrast of the water-phase. On the other hand, the absorption of the biofilm-phase is increased using iodine which diffuses into the polymeric matrix. Examples of reconstructed images are given to illustrate the effectiveness of the method. We demonstrate how to combine the 3-D measurements with upscaling techniques such as volume averaging, by calculating the modifications of the permeability of the system when biofilms grow. At last, we aim to couple these 3-D measurements with upscaled reactive models to describe the Darcy

  3. Utilisation of X-Ray computed microtomography for evaluation of iron sulphide distribution in roofing slate

    NASA Astrophysics Data System (ADS)

    Souček, Kamil; Daněk, Tomáš; Vavro, Martin; Botula, Jiří

    2016-04-01

    Roofing slate represents a traditional natural stone used for centuries for roofing and other construction applications in various types of buildings. Quality roofing slate must be primarily splittable into large, thin and waterproof tiles. In addition, it must be stable in colour and resistant against weathering. The abundance of mineral phases that weather easily or minerals that are long-term unstable has the effect of reducing the durability of slates in exterior conditions. One of the most problematic rock components, which are in a larger or smaller extent present in almost all slates, are iron sulphides, such as pyrite, marcasite or pyrrhotite. Under common atmospheric conditions, these minerals tend to oxidise, which leads to the formation of limonite and sulphuric acid. As a consequence of the origin of red-brown Fe oxyhydroxides, the undesirable colour changes of the slate may occur. But the most serious problem which occurs during this process is the changes in volume. This can cause disintegration of slate depending on the form of the iron sulphide occurrence. The content and size distribution of iron sulphides in roofing slate is normally determined using the microscopic analysis in transmitted light, combined with the observation in reflected light. For quantitative determination of iron sulphides in slate, the X-Ray powder diffraction is also often used. The results of the microscopic and X-Ray analyses need to be mutually compared and should not differ fundamentally. This paper is focused on the assessing the possibility of application of the X-Ray computed microtomography (CT) as a new complementary technique enabling the analysis of content and size (volume) distribution of iron sulphides in roofing slate. The X-Ray CT study was conducted using an XT H 225 ST industrial micro-tomographic system made by Nikon Metrology NV. Studied samples were reconstructed using the CT Pro 3D software (Nikon Metrology NV). The visualisation and analysis software

  4. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    NASA Astrophysics Data System (ADS)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  5. X-ray micro-tomography for investigations of brain tissues on cellular level

    NASA Astrophysics Data System (ADS)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based

  6. X-ray micro-Tomography at the Advanced Light Source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  7. Upgraded X-ray topography and microtomography beamline at the Kurchatov synchrotron radiation source

    SciTech Connect

    Senin, R. A. Khlebnikov, A. S.; Vyazovetskova, A. E.; Blinov, I. A.; Golubitskii, A. O.; Kazakov, I. V.; Vorob'ev, A. A.; Buzmakov, A. V.; Asadchikov, V. E.; Shishkov, V. A.; Mukhamedzhanov, E. Kh.; Kovalchuk, M. V.

    2013-05-15

    An upgraded X-ray Topography and Microtomography (XRT-MT) station is described, the parameters of the optical schemes and detectors are given, and the experimental possibilities of the station are analyzed. Examples of tomographic reconstructions are reported which demonstrate spatial resolutions of 2.5 and 10 {mu}m at fields of view of 2.5 and 10 mm, respectively.

  8. 3D/4D analyses of damage and fracture behaviours in structural materials via synchrotron X-ray tomography.

    PubMed

    Toda, Hiroyuki

    2014-11-01

    X-ray microtomography has been utilized for the in-situ observation of various structural metals under external loading. Recent advances in X-ray microtomography provide remarkable tools to image the interior of materials. In-situ X-ray microtomography provides a unique possibility to access the 3D character of internal microstructure and its time evolution behaviours non-destructively, thereby enabling advanced techniques for measuring local strain distribution. Local strain mapping is readily enabled by processing such high-resolution tomographic images either by the particle tracking technique or the digital image correlation technique [1]. Procedures for tracking microstructural features which have been developed by the authors [2], have been applied to analyse localised deformation and damage evolution in a material [3]. Typically several tens of thousands of microstructural features, such as particles and pores, are tracked in a tomographic specimen (0.2 - 0.3 mm(3) in volume). When a sufficient number of microstructural features is dispersed in 3D space, the Delaunay tessellation algorithm is used to obtain local strain distribution. With these techniques, 3D strain fields can be measured with reasonable accuracy. Even local crack driving forces, such as local variations in the stress intensity factor, crack tip opening displacement and J integral along a crack front line, can be measured from discrete crack tip displacement fields [4]. In the present presentation, complicated crack initiation and growth behaviour and the extensive formation of micro cracks ahead of a crack tip are introduced as examples.A novel experimental method has recently been developed by amalgamating a pencil beam X-Ray diffraction (XRD) technique with the microstructural tracking technique [5]. The technique provides information about individual grain orientations and 1-micron-level grain morphologies in 3D together with high-density local strain mapping. The application of this

  9. 3D x-ray reconstruction using lightfield imaging

    NASA Astrophysics Data System (ADS)

    Saha, Sajib; Tahtali, Murat; Lambert, Andrew; Pickering, Mark R.

    2014-09-01

    Existing Computed Tomography (CT) systems require full 360° rotation projections. Using the principles of lightfield imaging, only 4 projections under ideal conditions can be sufficient when the object is illuminated with multiple-point Xray sources. The concept was presented in a previous work with synthetically sampled data from a synthetic phantom. Application to real data requires precise calibration of the physical set up. This current work presents the calibration procedures along with experimental findings for the reconstruction of a physical 3D phantom consisting of simple geometric shapes. The crucial part of this process is to determine the effective distances of the X-ray paths, which are not possible or very difficult by direct measurements. Instead, they are calculated by tracking the positions of fiducial markers under prescribed source and object movements. Iterative algorithms are used for the reconstruction. Customized backprojection is used to ensure better initial guess for the iterative algorithms to start with.

  10. Compact x-ray microtomography system for element mapping and absorption imaging

    SciTech Connect

    Feldkamp, J. M.; Schroer, C. G.; Patommel, J.; Lengeler, B.; Guenzler, T. F.; Schweitzer, M.; Stenzel, C.; Dieckmann, M.; Schroeder, W. H.

    2007-07-15

    We have designed and built a compact x-ray microtomography system to perform element mapping and absorption imaging by exploiting scanning fluorescence tomography and full-field transmission microtomography, respectively. It is based on a low power microfocus tube and is potentially appropriate for x-ray diagnostics in space. Full-field transmission tomography yields the three-dimensional inner structure of an object. Fluorescence microtomography provides the element distribution on a virtual section through the sample. Both techniques can be combined for appropriate samples. Microradiography as well as fluorescence mapping are also possible. For fluorescence microtomography a small and intensive microbeam is required. It is generated using a polycapillary optic. Operating the microfocus tube with a molybdenum target at 12 W, a microbeam with a full width at half maximum lateral extension of 16 {mu}m and a flux of about 10{sup 8} photons/s is generated. As an example of application, this beam is used to determine the element distribution inside dried plant samples. For full-field scanning tomography, the x-ray optic is removed and the sample is imaged in magnifying projection onto a two-dimensional position sensitive detector. Depending on the sample size, a spatial resolution down to about 10 {mu}m is possible in this mode. The method is demonstrated by three-dimensional imaging of a rat humerus.

  11. X-ray Micro-Tomography of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  12. Heterogeneous vesiculation of 2011 El Hierro xeno-pumice revealed by X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Berg, S. E.; Troll, V. R.; Deegan, F. M.; Burchardt, S.; Krumbholz, M.; Mancini, L.; Polacci, M.; Carracedo, J. C.; Soler, V.; Arzilli, F.; Brun, F.

    2016-12-01

    During the first week of the 2011 El Hierro submarine eruption, abundant light-coloured pumiceous, high-silica volcanic bombs coated in dark basanite were found floating on the sea. The composition of the light-coloured frothy material (`xeno-pumice') is akin to that of sedimentary rocks from the region, but the textures resemble felsic magmatic pumice, leaving their exact mode of formation unclear. To help decipher their origin, we investigated representative El Hierro xeno-pumice samples using X-ray computed microtomography for their internal vesicle shapes, volumes, and bulk porosity, as well as for the spatial arrangement and size distributions of vesicles in three dimensions (3D). We find a wide range of vesicle morphologies, which are especially variable around small fragments of rock contained in the xeno-pumice samples. Notably, these rock fragments are almost exclusively of sedimentary origin, and we therefore interpret them as relicts an the original sedimentary ocean crust protolith(s). The irregular vesiculation textures observed probably resulted from pulsatory release of volatiles from multiple sources during xeno-pumice formation, most likely by successive release of pore water and mineral water during incremental heating and decompression of the sedimentary protoliths.

  13. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.

    PubMed

    Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole

    2014-10-01

    Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180μm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7μm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water.

  14. Evaluation of Microstructural Parameters of Reservoir Rocks of the Guarani Aquifer by Analysis of Images Obtained by X- Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Fernandes, J. S.; Lima, F. A.; Vieira, S. F.; Reis, P. J.; Appoloni, C. R.

    2015-07-01

    Microstructural parameters evaluation of porous materials, such as, rocks reservoir (water, petroleum, gas...), it is of great importance for several knowledge areas. In this context, the X-ray microtomography (μ-CT) has been showing a technical one quite useful for the analysis of such rocks (sandstone, limestone and carbonate), object of great interest of the petroleum and water industries, because it facilitates the characterization of important parameters, among them, porosity, permeability, grains or pore size distribution. The X-ray microtomography is a non-destructive method, that besides already facilitating the reuse of the samples analyzed, it also supplies images 2-D and 3-D of the sample. In this work samples of reservoir rock of the Guarani aquifer will be analyzed, given by the company of perforation of wells artesian Blue Water, in the municipal district of Videira, Santa Catarina, Brazil. The acquisition of the microtomographys data of the reservoir rocks was accomplished in a Skyscan 1172 μ-CT scanner, installed in Applied Nuclear Physics Laboratory (LFNA) in the State University of Londrina (UEL), Paraná, Brazil. In this context, this work presents the microstructural characterization of reservoir rock sample of the Guarani aquifer, analyzed for two space resolutions, 2.8 μm and 4.8 μm, where determined average porosity was 28.5% and 21.9%, respectively. Besides, we also determined the pore size distribution for both resolutions. Two 3-D images were generated of this sample, one for each space resolution, in which it is possible to visualize the internal structure of the same ones.

  15. X-ray microtomography characterization of Sn particle evolution during lithiation/delithiation in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gonzalez, Joseph; Sun, Ke; Huang, Meng; Dillon, Shen; Chasiotis, Ioannis; Lambros, John

    2015-07-01

    In this work, we investigate Tin (Sn) as a high capacity Li+ host material and perform an ex situ study with X-ray microtomography characterizing in three-dimensions (3D) Sn particle deformation during the crucial first cycles of lithiation/delithiation. We combine in-house algorithms with commercial software to develop 3D visualizations and measurements showing radial particle fracture, non-uniform lithiation of Sn particles, and a link between the global change in image intensity and loss of capacity. Particle size dependent "effective" volume expansion between 200% and 450% was measured during lithiation, and effective volume reductions of 50% were measured during delithiation. Relationships between the gray scale intensity change, volumetric expansion and particle size during the first cycle are also illustrated.

  16. 3D histomorphometric quantification of trabecular bones by computed microtomography using synchrotron radiation.

    PubMed

    Nogueira, L P; Braz, D; Barroso, R C; Oliveira, L F; Pinheiro, C J G; Dreossi, D; Tromba, G

    2010-12-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility.

  17. Determining the concentration and distribution of arsenic deposits in rock matrices and porous media by X-ray difference microtomography

    NASA Astrophysics Data System (ADS)

    Peng, D.; Alsina, M.; Chen, C.; Keane, D.; Packman, A. I.; Gaillard, J.; Aubeneau, A. F.; Pasten, P. A.; Pizarro, G.

    2009-12-01

    Synchrotron-based high resolution X-ray microtomography was used to characterize arsenic (As) deposits within porous media. The distribution of arsenic was determined using difference tomography, where the X-rays used to image the sample were selected to be just above and below the As absorption edge at 11,853 eV. The difference tomograms have background noise from other minerals contained in the sample, local variation of X-ray beam intensity, and electronic noise associated with the data acquisition process. Image processing filters, such as windowing or adaptive filters derived from the Fast Fourier Transform (FFT) method, were employed to reduce background noise in the tomograms and enhance information on the arsenic deposits. These errors are generally larger in difference tomography than in conventional X-ray microtomography because this method requires operating at very specific X-ray energies (i.e., an edge of the element of interest), and this constraint makes it very difficult to obtain optimal contrast for tomographic reconstruction. In particular, the signal-to-noise ratio is often low in difference tomograms of geological samples having high background X-ray absorption. The relationship between As concentration and difference image intensity was evaluated using well defined As samples prepared in the laboratory, along with As-rich sinter deposits from El Tatio hydrothermal field and fluvial sediments from the Loa River downstream of El Tatio. This relationship is non-linear because of interactions between the different sources of error in the construction of the difference tomograms. As a result, the difference tomography method is relatively insensitive to bulk As concentrations, and instead primarily provides information on the distribution of regions of the sample that have high As concentrations, such as As-rich particles, precipitates, or evaporite deposits. Tomographic 3D reconstructions of the porous media and of the aggregate structure thus

  18. Coupling X-ray microtomography and macroscopic soil measurements: a method to enhance near-saturation functions?

    NASA Astrophysics Data System (ADS)

    Beckers, E.; Plougonven, E.; Gigot, N.; Léonard, A.; Roisin, C.; Brostaux, Y.; Degré, A.

    2014-05-01

    Agricultural management practices influence soil structure, but the characterization of these modifications and consequences are still not completely understood. In this study, we combine X-ray microtomography with retention and hydraulic conductivity measurements in the context of tillage simplification. First, this association is used to validate microtomography information with a quick scan method. Secondly, X-ray microtomography is used to increase our knowledge of soil structural differences. Notably, we show a good match for retention and conductivity functions between macroscopic measurements and microtomographic information. Microtomography refines the shape of the retention function, highlighting the presence of a secondary pore system in our soils. Analysis of structural parameters for these pores appears to be of interest and offers additional clues for soil structure differentiation, through - among others - connectivity and tortuosity parameters. These elements make microtomography a highly competitive instrument for routine soil characterization.

  19. Comparison of the data of X-ray microtomography and fluorescence analysis in the study of bone-tissue structure

    NASA Astrophysics Data System (ADS)

    Asadchikov, V. E.; Senin, R. A.; Blagov, A. E.; Buzmakov, A. V.; Gulimova, V. I.; Zolotov, D. A.; Orekhov, A. S.; Osadchaya, A. S.; Podurets, K. M.; Savel'ev, S. V.; Seregin, A. Yu.; Tereshchenko, E. Yu.; Chukalina, M. V.; Kovalchuk, M. V.

    2012-09-01

    The possibility of localizing clusters of heavy atoms is substantiated by comparing the data of X-ray microtomography at different wavelengths, scanning electron microscopy, and X-ray fluorescence analysis. The proximal tail vertebrae of Turner's thick-toed gecko ( Chondrodactylus turneri) have been investigated for the first time by both histological and physical methods, including X-ray microtomography at different wavelengths and elemental analysis. This complex methodology of study made it possible to reveal the regions of accumulation of heavy elements in the aforementioned bones of Turner's thick-toed gecko.

  20. An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks

    NASA Astrophysics Data System (ADS)

    Baker, D. R.; Mancini, L.; Polacci, M.; Higgins, M. D.; Gualda, G. A. R.; Hill, R. J.; Rivers, M. L.

    2012-09-01

    Imaging rocks in three-dimensions through X-ray microtomography enables routine visualization of structures in samples, which can be spatially resolved down to the sub-micron scale. Although X-ray tomography has been applied in biomedical research and clinical settings for decades, it has only recently been applied to studies of rocks, and few geoscientists realize its value and potential. This contribution provides an introduction to the principles and techniques of X-ray microtomography to the study of igneous rock textures as well as reviewing the current state of the art. We hope that this short review will encourage more geoscientists to apply X-ray microtomography in their research and that this will lead to new insights into the processes that occur in magmatic (as well as other geological) systems.

  1. An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks

    SciTech Connect

    Baker, D.R.; Mancini, L.; Polacci, M.; Higgins, M.D.; Gualda, G.A.R.; Hill, R.J.; Rivers, M.L.

    2012-10-25

    Imaging rocks in three-dimensions through X-ray microtomography enables routine visualization of structures in samples, which can be spatially resolved down to the sub-micron scale. Although X-ray tomography has been applied in biomedical research and clinical settings for decades, it has only recently been applied to studies of rocks, and few geoscientists realize its value and potential. This contribution provides an introduction to the principles and techniques of X-ray microtomography to the study of igneous rock textures as well as reviewing the current state of the art. We hope that this short review will encourage more geoscientists to apply X-ray microtomography in their research and that this will lead to new insights into the processes that occur in magmatic (as well as other geological) systems.

  2. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    SciTech Connect

    Loo, B.W. Jr. ||; Rothman, S.S. |

    1997-02-01

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetration depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).

  3. X-ray microtomography of hydrochloric acid propagation in carbonate rocks.

    PubMed

    Machado, A C; Oliveira, T J L; Cruz, F B; Lopes, R T; Lima, I

    2015-02-01

    Acid treatments are used in the oil and gas industry, to increase the permeability of the carbonate reservoirs by creating preferential channels, called wormholes. Channels formation is strongly influenced by acid type and injection rate. The aim of this study is to evaluate some characteristics of the microporous system of carbonate rocks, before and after acidizing. For that purpose X-ray high-resolution microtomography was used. The results show that this technique can be used as a reliable method to analyze microstructural characteristics of the wormholes.

  4. A novel technique for investigation of complete and partial anisotropic wetting on structured surface by X-ray microtomography

    SciTech Connect

    Santini, M.; Guilizzoni, M.; Fest-Santini, S.; Lorenzi, M.

    2015-02-15

    An experimental study about the anisotropic wetting behavior of a surface patterned with parallel grooves is presented as an application example of a novel technique for investigation of complete and partial anisotropic wetting on structured surface by X-ray microtomography. Shape of glycerin droplets on such surface is investigated by X-ray micro computed tomography (microCT) acting as a non-intrusive, full volume 3D microscope with micrometric spatial resolution. The reconstructed drop volumes enable to estimate the exact volumes of the drops, their base contours, and 3D static contact angles, based on true cross-sections of the drop-surface couple. Droplet base contours are compared to approximate geometrical contour shapes proposed in the literature. Contact angles along slices parallel and perpendicular to the grooves direction are compared with each other. The effect of the sessile drop volume on the wetting behavior is discussed. The proposed technique, which is applicable for any structured surface, enables the direct measure of Wenzel ratio based on the microCT scan in the wetted region usually inapproachable by any others. Comparisons with simplified models are presented and congruence of results with respect to the minimum resolution needed is evaluated and commented.

  5. A novel technique for investigation of complete and partial anisotropic wetting on structured surface by X-ray microtomography.

    PubMed

    Santini, M; Guilizzoni, M; Fest-Santini, S; Lorenzi, M

    2015-02-01

    An experimental study about the anisotropic wetting behavior of a surface patterned with parallel grooves is presented as an application example of a novel technique for investigation of complete and partial anisotropic wetting on structured surface by X-ray microtomography. Shape of glycerin droplets on such surface is investigated by X-ray micro computed tomography (microCT) acting as a non-intrusive, full volume 3D microscope with micrometric spatial resolution. The reconstructed drop volumes enable to estimate the exact volumes of the drops, their base contours, and 3D static contact angles, based on true cross-sections of the drop-surface couple. Droplet base contours are compared to approximate geometrical contour shapes proposed in the literature. Contact angles along slices parallel and perpendicular to the grooves direction are compared with each other. The effect of the sessile drop volume on the wetting behavior is discussed. The proposed technique, which is applicable for any structured surface, enables the direct measure of Wenzel ratio based on the microCT scan in the wetted region usually inapproachable by any others. Comparisons with simplified models are presented and congruence of results with respect to the minimum resolution needed is evaluated and commented.

  6. A novel technique for investigation of complete and partial anisotropic wetting on structured surface by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Santini, M.; Guilizzoni, M.; Fest-Santini, S.; Lorenzi, M.

    2015-02-01

    An experimental study about the anisotropic wetting behavior of a surface patterned with parallel grooves is presented as an application example of a novel technique for investigation of complete and partial anisotropic wetting on structured surface by X-ray microtomography. Shape of glycerin droplets on such surface is investigated by X-ray micro computed tomography (microCT) acting as a non-intrusive, full volume 3D microscope with micrometric spatial resolution. The reconstructed drop volumes enable to estimate the exact volumes of the drops, their base contours, and 3D static contact angles, based on true cross-sections of the drop-surface couple. Droplet base contours are compared to approximate geometrical contour shapes proposed in the literature. Contact angles along slices parallel and perpendicular to the grooves direction are compared with each other. The effect of the sessile drop volume on the wetting behavior is discussed. The proposed technique, which is applicable for any structured surface, enables the direct measure of Wenzel ratio based on the microCT scan in the wetted region usually inapproachable by any others. Comparisons with simplified models are presented and congruence of results with respect to the minimum resolution needed is evaluated and commented.

  7. Micro-CTvlab: A web based virtual gallery of biological specimens using X-ray microtomography (micro-CT)

    PubMed Central

    Faulwetter, Sarah; Chatzinikolaou, Eva; Michalakis, Nikitas; Filiopoulou, Irene; Minadakis, Nikos; Panteri, Emmanouela; Perantinos, George; Gougousis, Alexandros; Arvanitidis, Christos

    2016-01-01

    Abstract Background During recent years, X-ray microtomography (micro-CT) has seen an increasing use in biological research areas, such as functional morphology, taxonomy, evolutionary biology and developmental research. Micro-CT is a technology which uses X-rays to create sub-micron resolution images of external and internal features of specimens. These images can then be rendered in a three-dimensional space and used for qualitative and quantitative 3D analyses. However, the online exploration and dissemination of micro-CT datasets are rarely made available to the public due to their large size and a lack of dedicated online platforms for the interactive manipulation of 3D data. Here, the development of a virtual micro-CT laboratory (Micro-CTvlab) is described, which can be used by everyone who is interested in digitisation methods and biological collections and aims at making the micro-CT data exploration of natural history specimens freely available over the internet. New information The Micro-CTvlab offers to the user virtual image galleries of various taxa which can be displayed and downloaded through a web application. With a few clicks, accurate, detailed and three-dimensional models of species can be studied and virtually dissected without destroying the actual specimen. The data and functions of the Micro-CTvlab can be accessed either on a normal computer or through a dedicated version for mobile devices. PMID:27956848

  8. X-ray microtomography of collagen and polylactide scaffolds in liquids.

    PubMed

    Hannula, Markus; Haaparanta, Anne-Marie; Tamminen, Ilmari; Aula, Antti; Kellomaki, Minna; Hyttinen, Jari

    2015-08-01

    Methods to image and assess the microstructure of polymer based biomaterials in liquid phase, for example cell culture medium, are well warranted. X-ray microtomography could provide a mean to visualize and analyze such structures. However, the density of such polymers is close to that of water and hence the X-ray contrast is poor. Moreover, if the biomaterials contain cells and are dried, the cell morphology may be distorted. In this paper we test phosphotungstic acid (PTA) staining to improve the contrast. We imaged collagen and PLA samples with μCT in air, water and alcohol. The methods were compared visually and with contrast to noise ratio calculated from the images. Our results demonstrate that with alcohol the PLA can be imaged also in liquid phase. PTA staining seems to be a good method to increase the contrast for collagen in μCT imaging.

  9. Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics.

    PubMed

    Steppe, Kathy; Cnudde, Veerle; Girard, Catherine; Lemeur, Raoul; Cnudde, Jean-Pierre; Jacobs, Patric

    2004-10-01

    Quantitative analysis of wood anatomical characteristics is usually performed using classical microtomy yielding optical micrographs of stained thin sections. It is time-consuming to obtain high quality cross-sections from microtomy, and sections can be damaged. This approach, therefore, is often impractical for those who need quick acquisition of quantitative data on vessel characteristics in wood. This paper reports results of a novel approach using X-ray computed microtomography (microCT) for non-invasive determination of wood anatomy. As a case study, stem wood samples of a 2-year-old beech (Fagus sylvatica L.) and a 3-year-old oak (Quercus robur L.) tree were investigated with this technique, beech being a diffuse-porous and oak a ring-porous tree species. MicroCT allowed non-invasive mapping of 2-D transverse cross-sections of both wood samples with micrometer resolution. Self-developed software 'microCTanalysis' was used for image processing of the 2-D cross-sections in order to automatically determine the inner vessel diameters, the transverse cross-sectional surface area of the vessels, the vessel density and the porosity with computer assistance. Performance of this new software was compared with manual analysis of the same micrographs. The automatically obtained results showed no significant statistical differences compared to the manual measurements. Visual inspection of the microCT slices revealed very good correspondence with the optical micrographs. Statistical analysis confirmed this observation in a more quantitative way, and it was, therefore, argued that anatomical analysis of optical micrographs can be readily substituted by automated use of microCT, and this without loss of accuracy. Furthermore, as an additional application of microCT, the 3-D renderings of the internal microstructure of the xylem vessels for both the beech and the oak sample could be reconstructed, clearly showing the complex nature of vessel networks. It can be concluded

  10. Three-dimensional phase-contrast X-ray microtomography with scanning-imaging X-ray microscope optics.

    PubMed

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-09-01

    A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning-imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown.

  11. Spatial resolution of synchrotron x-ray microtomography in high energy range: Effect of x-ray energy and sample-to-detector distance

    NASA Astrophysics Data System (ADS)

    Seo, D.; Tomizato, F.; Toda, H.; Uesugi, K.; Takeuchi, A.; Suzuki, Y.; Kobayashi, M.

    2012-12-01

    Spatial resolution of three-dimensional images obtained by synchrotron X-ray microtomography technique is evaluated using cyclic bar patterns machined on a steel wire. Influences of X-ray energy and the sample-to-detector distance on spatial resolution were investigated. High X-ray energies of 33-78 keV are applied due to the high X-ray absorption of transition metals. Best spatial resolution of about 1.2 μm pitch was observed at the sample-to-detector distance range of 20-110 mm and at the energy range of 68-78 keV. Several factors such as X-ray scattering and diffraction phenomena affecting the degradation of spatial resolution are also discussed.

  12. Examining nanoparticle assemblies using high spatial resolution x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Jenneson, P. M.; Luggar, R. D.; Morton, E. J.; Gundogdu, O.; Tüzün, U.

    2004-09-01

    An experimental system has been designed to examine the assembly of nanoparticles in a variety of process engineering applications. These applications include the harvesting from solutions of nanoparticles into green parts, and the subsequent sintering into finished components. The system is based on an x-ray microtomography with a spatial resolution down to 5μm. The theoretical limitations in x-ray imaging are considered to allow experimental optimization. A standard nondestructive evaluation type apparatus with a small focal-spot x-ray tube, high-resolution complementary metal oxide semiconductor flat-panel pixellated detector, and a mechanical rotational stage is used to image the static systems. Dynamic sintering processes are imaged using the same x-ray source and detector but a custom rotational stage which is contained in an environmental chamber where the temperature, atmospheric pressure, and compaction force can be controlled. Three-dimensional tomographic data sets are presented here for samples from the pharmaceutical, nutraceutical, biotechnology, and nanoparticle handling industries and show the microscopic features and defects which can be resolved with the system.

  13. Understanding how active volcanoes work: a contribution from synchrotron X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Baker, D. R.; Mancini, L.

    2009-04-01

    Volcanoes are complex systems that require the integration of many different geoscience disciplines to understand their behaviour and to monitor and forecast their activity. In the last two decades an increasing amount of information on volcanic processes has been obtained by studying the textures and compositions of volcanic rocks. Five years ago we started a continuing collaboration with the SYRMEP beamline of Elettra Sincrotrone, a third generation synchrotron light source near Trieste, Italy, with the goal of performing high-resolution, phase-contrast X-ray tomographic scans and reconstructing 3-D digital volumes of volcanic specimens. These volumes have been then used for the visualization of the internal structure of rocks and for the quantification of rock textures (i.e., vesicle and crystal volume fraction, individual vesicle volumes and shapes, vesicle connectivity, vesicle volume distributions, permeability simulations etc.). We performed tomographic experiments on volcanic products erupted from different hazardous volcanic systems in Italy and around the world: Campi Flegrei, Stromboli, Etna (Southern Italy), Villarrica (Chile), Yasur and Ambrym (Vanuatu Islands). As an example, we used the results of these studies to constrain the dynamics of vesiculation and degassing in basaltic (Polacci et al., 2006; Burton et al., 2007; Colò et al., 2007; Andronico et al., 2008; Polacci et al., 2008a) and trachytic (Piochi et al., 2008) magmas. A better knowledge of how gas is transported and lost from magmas has led us in turn to draw new implications on the eruptive style of these active, hazardous volcanoes (Polacci et al., 2008b). Work in progress consists of optimizing our procedure by establishing a precise protocol that will enable us to quantitatively study the 3-D texture and composition of rocks in a statistically representative way. Future work will concentrate on the study of the spatial relations between phases (crystals, vesicles and glass) in rocks

  14. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    NASA Astrophysics Data System (ADS)

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  15. Grazing incidence small-angle X-ray scattering microtomography demonstrated on a self-ordered dried drop of nanoparticles.

    PubMed

    Kuhlmann, Marion; Feldkamp, Jan M; Patommel, Jens; Roth, Stephan V; Timmann, Andreas; Gehrke, Rainer; Müller-Buschbaum, Peter; Schroer, Christian G

    2009-07-07

    We combine grazing-incidence small-angle X-ray scattering (GISAXS) with scanning X-ray microtomography to investigate the nanostructure in a dried gold/polystyrene nanocomposite drop. Local GISAXS structure factors are reconstructed at each position on the surface of this two-dimensionally heterogeneous sample with 30 microm pixel size. Evidence for four types of self-assembled colloidal crystalline structures is provided by the reconstructed data of the drop demonstrating the feasibility of the method.

  16. Measuring air-water interfacial areas with X-ray microtomography and interfacial partitioning tracer tests.

    PubMed

    Brusseau, Mark L; Peng, Sheng; Schnaar, Gregory; Murao, Asami

    2007-03-15

    Air-water interfacial areas as a function of water saturation were measured for a sandy, natural porous medium using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. In addition, interfacial areas measured in a prior study with the gas-phase interfacial partitioning tracer-test method for the same porous medium were included for comparison. For all three methods, total air-water interfacial areas increased with decreasing water saturation. The interfacial areas measured with the tracer-test methods were generally larger than those obtained from microtomography, and the disparity increased as water saturation decreased. The interfacial areas measured by microtomography extrapolated to a value (147 cm(-1)) very similar to the specific solid surface area (151 cm(-1)) calculated using the smooth-sphere assumption, indicating that the method does not characterize the area associated with microscopic surface heterogeneity (surface roughness, microporosity). This is consistent with the method resolution of approximately 12 microm. In contrast, the interfacial areas measured with the gas-phase tracer tests approached the N2/BET measured specific solid surface area (56000 cm(-1)), indicating that this method does characterize the interfacial area associated with microscopic surface heterogeneity. The largest interfacial area measured with the aqueous-phase tracer tests was 224 cm(-1), while the extrapolated maximum interfacial area was approximately 1100 cm(-1). Both of these values are larger than the smooth-sphere specific solid surface area but much smaller than the N2/BET specific solid surface area, which suggests that the method measures a limited portion of the interfacial area associated with microscopic surface heterogeneity. All three methods provide measures of total (capillary + film) interfacial area, a primary difference being that the film-associated area is a smooth-surface equivalent for the

  17. A quasi-realtime x-ray microtomography system at the Advanced Photon Source.

    SciTech Connect

    DeCarlo, F.; Foster, I.; Insley, J.; Kesselman, C.; Lane, P.; Mancini, D.; McNulty, I.; Su, M.; Tieman, B.; Wang, Y.; von Laszewski, G.

    1999-07-16

    The combination of high-brilliance x-ray sources, fast detector systems, wide-bandwidth networks, and parallel computers can substantially reduce the time required to acquire, reconstruct, and visualize high-resolution three-dimensional tomographic datasets. A quasi-realtime computed x-ray microtomography system has been implemented at the 2-BM beamline at the Advanced Photon Source at Argonne National Laboratory. With this system, a complete tomographic data set can be collected in about 15 minutes. Immediately after each projection is obtained, it is rapidly transferred to the Mathematics and Computing Sciences Division where preprocessing and reconstruction calculations are performed concurrently with the data acquisition by a SGI parallel computer. The reconstruction results, once completed, are transferred to a visualization computer that performs the volume rendering calculations. Rendered images of the reconstructed data are available for viewing back at the beamline experiment station minutes after the data acquisition was complete. The fully pipelined data acquisition and reconstruction system also gives us the option to acquire the tomographic data set in several cycles, initially with coarse then with fine angular steps. At present the projections are acquired with a straight-ray projection imaging scheme using 5-20 keV hard x rays in either phase or amplitude contrast mode at a 1-10 pm resolution. In the future, we expect to increase the resolution of the projections to below 100 nm by using a focused x-ray beam at the 2-ID-B beamline and to reduce the combined acquisition and computation time to the 1 min scale with improvements in the detectors, network links, software pipeline, and computation algorithms.

  18. Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Saif, Tarik; Lin, Qingyang; Singh, Kamaljit; Bijeljic, Branko; Blunt, Martin J.

    2016-07-01

    The structure and connectivity of the pore space during the pyrolysis of oil shales determines hydrocarbon flow behavior and ultimate recovery. We image the time evolution of the pore and microfracture networks during oil shale pyrolysis using synchrotron X-ray microtomography. Immature Green River (Mahogany Zone) shale samples were thermally matured under vacuum conditions at temperatures up to 500°C while being periodically imaged with a 2 µm voxel size. The structural transformation of both organic-rich and organic-lean layers within the shale was quantified. The images reveal a dramatic change in porosity accompanying pyrolysis between 390 and 400°C with the formation of micron-scale heterogeneous pores. With a further increase in temperature, the pores steadily expand resulting in connected microfracture networks that predominantly develop along the kerogen-rich laminations.

  19. X-ray microtomography of field-induced macro-structures in a ferrofluid.

    SciTech Connect

    Lee, W.; X-Ray Science Division

    2010-09-01

    X-ray microtomography is used to visualize, in-situ, the three-dimensional nature of the magnetic field induced macro-structures (>1 ?m) inside a bulk (not, vert, similar1 mm diameter) magnetite-particle-mineral oil ferrofluid sample. Columnar structures of not, vert, similar10 ?m diameter were seen under a 0.35 kG applied magnetic field, while labyrinth type structures not, vert, similar4 ?m in width were seen at 0.55 kG. The structures have height/width aspect ratios >100. The results show that the magnetite volume fraction is not constant within the structures and on average is considerably less than a random sphere packing model.

  20. Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Chen, Rongchang; Du, Guohao; Yang, Yiming; Wang, Feixiang; Deng, Biao; Xie, Honglan; Xiao, Tiqiao

    2016-09-01

    Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system.

  1. Automated contact angle estimation for three-dimensional X-ray microtomography data

    DOE PAGES

    Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu; ...

    2015-11-10

    Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less

  2. SYNCHROTRON X-RAY MICROPROBE AND COMPUTED MICROTOMOGRAPHY FOR CHARACTERIZATION OF NANOCATALYSTS.

    SciTech Connect

    JONES, K.W.; FENG, H.; LANZIROTTI, A.; MAHAJAN, D.

    2004-06-01

    Gas-to-liquids (GTL) is a viable pathway for synthesis of clean fuels from natural gas. One of the attractive synthesis options is the Fischer-Tropsch (F-T) method using an iron catalyst to yield a broad range of hydrocarbons. We collected catalyst samples during three separate F-T runs that utilized nanophase (mean particle diameter (MPD): 3 nm and 20-80 nm) and micrometer-sized (32.5 ? m) Fe{sub 2}O{sub 3} that served as catalyst precursors. The collected samples were characterized with micro x-ray fluorescence and computed Microtomography at the National Synchrotron Light Source (NSLS). Results found with two different measurement techniques indicated that there was heterogeneity on a spatial scale corresponding to volumes of roughly 10{sup 3} {micro}m{sup 3}.

  3. Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography

    PubMed Central

    Xu, Liang; Chen, Rongchang; Du, Guohao; Yang, Yiming; Wang, Feixiang; Deng, Biao; Xie, Honglan; Xiao, Tiqiao

    2016-01-01

    Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system. PMID:27580585

  4. Automated contact angle estimation for three-dimensional X-ray microtomography data

    SciTech Connect

    Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu; Karpyn, Zuleima

    2015-11-10

    Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contact angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.

  5. Phase Contrast X-Ray Synchrotron Microtomography for Virtual Dissection of the Head of Rhodnius prolixus

    NASA Astrophysics Data System (ADS)

    Sena, G.; Almeida, A. P.; Braz, D.; Nogueira, L. P.; Colaço, M. V.; Soares, J.; Cardoso, S. C.; Garcia, E. S.; Azambuja, P.; Gonzalez, M. S.; Mohammadi, S.; Tromba, G.; Barroso, R. C.

    2014-04-01

    Phase Contrast X-Ray Synchroton Microtomography is a non-destructive technique that allows the microanatomical investigations of Rhodnius prolixus, one of the most important insect vectors of Trypanosoma cruzi. In this work complete series of virtual thin sections through the heads of selected Rhodnius prolixus were obtained. The sections of the head were important to compare the difference in use the spatial resolution of 2 μm or 4.5 μm and to see anatomical details that couldn't be seen with other technique. Three different groups of Rhodnius prolixus were used. One group was fed with defibrinated rabbit blood and after 10 days was sacrificed, other group was sacrificed 4 days after feeding and the last group remained unfed. The results show some differences for each kind of groups and for the different resolutions.

  6. Investigation of the microstructure and mineralogical composition of urinary calculi fragments by synchrotron radiation X-ray microtomography: a feasibility study.

    PubMed

    Kaiser, Jozef; Holá, Markéta; Galiová, Michaela; Novotný, Karel; Kanický, Viktor; Martinec, Petr; Sčučka, Jiří; Brun, Francesco; Sodini, Nicola; Tromba, Giuliana; Mancini, Lucia; Kořistková, Tamara

    2011-08-01

    The outcomes from the feasibility study on utilization of synchrotron radiation X-ray microtomography (SR-μCT) to investigate the texture and the quantitative mineralogical composition of selected calcium oxalate-based urinary calculi fragments are presented. The comparison of the results obtained by SR-μCT analysis with those derived from current standard analytical approaches is provided. SR-μCT is proved as a potential effective technique for determination of texture, 3D microstructure, and composition of kidney stones.

  7. Sulfate deterioration of cement-based materials examined by x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Naik, Nikhila N.; Kurtis, Kimberly E.; Wilkinson, Angus P.; Jupe, Andrew C.; Stock, Stuart R.

    2004-10-01

    Sulfate ions present in soil, groundwater, seawater, decaying organic matter, acid rain, and industrial effluent adversely affect the long-term durability of portland cement concrete, but lack of complete understanding of the nature and consequences of sulfate attack hamper our ability to accurately predict performance of concrete in sulfate-rich environments. One impediment to improved understanding of sulfate deterioration of cement-based materials has been the lack of appropriate non-destructive characterization techniques. Laboratory x-ray microtomography affords an opportunity to study in situ the evolution of physical manifestations of damage due to sulfate exposure. The influence of materials selection and mixture parameters - including water-to-cement ratio, cement type, and presence or absence of aggregate, as well as the influence of sulfate exposure conditions, including sulfate and cation type (i.e., Na2SO4 and MgSO4) and concentration - have been examined by microtomography to determine their influence on the rate and character of the sulfate-induced deterioration.

  8. X-ray microtomography to study the microstructure of cream cheese-type products.

    PubMed

    Laverse, J; Mastromatteo, M; Frisullo, P; Del Nobile, M A

    2011-01-01

    In this work, the imaging x-ray microtomography technique, new to the field of food science, was used for the analysis of fat microstructure and quantification of the fat present in cream cheese-type products. Five different types of commercially produced cheeses, chosen for their variability of texture, were used for this experiment: sample A, sample B, sample C, sample D, and sample E. Appropriate quantitative 3-dimensional parameters describing the fat structure were calculated (e.g., the geometric parameter percentage of fat volume was calculated for each image as a representation of the percentage of total fat content within the sample). The dynamic-mechanical properties of these samples were also studied using a controlled-strain rotational rheometer. Storage modulus and loss modulus were determined in a frequency range of 0.01 to 10 Hz. The strain value was obtained by preliminary strain sweep oscillatory trials to determine the linear viscoelastic region of the cream cheese-type products. Statistical correlation analysis was performed on the results to help identify any microstructural-mechanical structure relationships. The results from this study show that microtomography is a suitable technique for the microstructural analysis of fat in cream cheese-type products, as it does not only provide an accurate percentage of the volume of the fat present but can also determine its spatial distribution.

  9. Recent progress of hard x-ray imaging microscopy and microtomography at BL37XU of SPring-8

    SciTech Connect

    Suzuki, Yoshio Takeuchi, Akihisa; Terada, Yasuko; Uesugi, Kentaro; Mizutani, Ryuta

    2016-01-28

    A hard x-ray imaging microscopy and microtomography system is now being developed at the beamline 37XU of SPring-8. In the latest improvement, a spatial resolution of about 50 nm is achieved in two-dimensional imaging at 6 keV x-ray energy using a Fresnel zone plate objective with an outermost zone width of 35 nm. In the tomographic measurement, a spatial resolution of about 100 nm is achieved at 8 keV using an x-ray guide tube condenser optic and a Fresnel zone plate objective with an outermost zone width of 50 nm.

  10. X-ray microtomography using correlation of near-field speckles for material characterization

    PubMed Central

    Zanette, Irene; Zdora, Marie-Christine; Zhou, Tunhe; Burvall, Anna; Larsson, Daniel H.; Thibault, Pierre; Hertz, Hans M.; Pfeiffer, Franz

    2015-01-01

    Nondestructive microscale investigation of objects is an invaluable tool in life and materials sciences. Currently, such investigation is mainly performed with X-ray laboratory systems, which are based on absorption-contrast imaging and cannot access the information carried by the phase of the X-ray waves. The phase signal is, nevertheless, of great value in X-ray imaging as it is complementary to the absorption information and in general more sensitive to visualize features with small density differences. Synchrotron facilities, which deliver a beam of high brilliance and high coherence, provide the ideal condition to develop such advanced phase-sensitive methods, but their access is limited. Here we show how a small modification of a laboratory setup yields simultaneously quantitative and 3D absorption and phase images of the object. This single-shot method is based on correlation of X-ray near-field speckles and represents a significant broadening of the capabilities of laboratory-based X-ray tomography. PMID:26424447

  11. Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography.

    PubMed

    Busignies, Virginie; Leclerc, Bernard; Porion, Patrice; Evesque, Pierre; Couarraze, Guy; Tchoreloff, Pierre

    2006-08-01

    Direct compaction is a complex process that results in a density distribution inside the tablets which is often heterogeneous. Therefore, the density variations may affect the compact properties. A quantitative analysis of this phenomenon is still lacking. Recently, X-ray microtomography has been successfully used in pharmaceutical development to study qualitatively the impact of tablet shape and break-line in the density of pharmaceutical tablets. In this study, we evaluate the density profile in microcrystalline cellulose (Vivapur 12) compacts obtained at different mean porosity (ranging from 7.7% to 33.5%) using X-ray tomography technique. First, the validity of the Beer-Lambert law is studied. Then, density calibration is performed and density maps of cylindrical tablets are obtained and visualized using a process with colour-scale calibration plot which is explained. As expected, important heterogeneity in density is observed and quantified. The higher densities in peripheral region were particularly investigated and appraised in regard to the lower densities observed in the middle of the tablet. The results also underlined that in the case of pharmaceutical tablets, it is important to differentiate the mechanical properties representative of the total volume tablet and the mechanical properties that only characterize the tablet surface like the Brinell hardness measurements.

  12. Visualization of xylem embolism by X-ray microtomography: a direct test against hydraulic measurements.

    PubMed

    Nolf, Markus; Lopez, Rosana; Peters, Jennifer M R; Flavel, Richard J; Koloadin, Leah S; Young, Iain M; Choat, Brendan

    2017-04-01

    X-ray microtomography (microCT) is becoming a valuable noninvasive tool for advancing our understanding of plant-water relations. Laboratory-based microCT systems are becoming more affordable and provide better access than synchrotron facilities. However, some systems come at the cost of comparably lower signal quality and spatial resolution than synchrotron facilities. In this study, we evaluated laboratory-based X-ray microCT imaging as a tool to nondestructively analyse hydraulic vulnerability to drought-induced embolism in a woody plant species. We analysed the vulnerability to drought-induced embolism of benchtop-dehydrated Eucalyptus camaldulensis plants using microCT and hydraulic flow measurements on the same sample material, allowing us to directly compare the two methods. Additionally, we developed a quantitative procedure to improve microCT image analysis at limited resolution and accurately measure vessel lumens. Hydraulic measurements matched closely with microCT imaging of the current-year growth ring, with similar hydraulic conductivity and loss of conductivity due to xylem embolism. Optimized thresholding of vessel lumens during image analysis, based on a physiologically meaningful parameter (theoretical conductivity), allowed us to overcome common potential constraints of some lab-based systems. Our results indicate that estimates of vulnerability to embolism provided by microCT visualization agree well with those obtained from hydraulic measurements on the same sample material.

  13. Investigation of artefact sources in synchrotron microtomography via virtual X-ray imaging

    NASA Astrophysics Data System (ADS)

    Vidal, F. P.; Létang, J. M.; Peix, G.; Cloetens, P.

    2005-06-01

    Qualitative and quantitative use of volumes reconstructed by computed tomography (CT) can be compromised due to artefacts which corrupt the data. This article illustrates a method based on virtual X-ray imaging to investigate sources of artefacts which occur in microtomography using synchrotron radiation. In this phenomenological study, different computer simulation methods based on physical X-ray properties, eventually coupled with experimental data, are used in order to compare artefacts obtained theoretically to those present in a volume acquired experimentally, or to predict them for a particular experimental setup. The article begins with the presentation of a synchrotron microtomographic slice of a reinforced fibre composite acquired at the European Synchrotron Radiation Facility (ESRF) containing streak artefacts. This experimental context is used as the motive throughout the paper to illustrate the investigation of some artefact sources. First, the contribution of direct radiation is compared to the contribution of secondary radiations. Then, the effect of some methodological aspects are detailed, including under-sampling, sample and camera misalignment, sample extending outside of the field of view and photonic noise. The effect of harmonic components present in the experimental spectrum are also simulated. Afterwards, detector properties, such as its impulse response or defective pixels, are taken into account. Finally, the importance of phase contrast effects is evaluated. In the last section, this investigation is discussed by putting emphasis on the experimental context which is used throughout this paper.

  14. 3D X-ray ultra-microscopy of bone tissue.

    PubMed

    Langer, M; Peyrin, F

    2016-02-01

    We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.

  15. Microstructural investigation to the controlled release kinetics of monolith osmotic pump tablets via synchrotron radiation X-ray microtomography.

    PubMed

    Li, Haiyan; Yin, Xianzhen; Ji, Junqiu; Sun, Lixin; Shao, Qun; York, Peter; Xiao, Tiqiao; He, You; Zhang, Jiwen

    2012-05-10

    Tomographic imaging techniques are attractive tools for the visualization of the internal structural characteristics of pharmaceutical solid dosage forms. In this paper, the internal structure of the tablet core for a monolith osmotic drug delivery system, felodipine sustained-release tablet, was visualized via synchrotron radiation X-ray computed microtomography during the drug release process. The surface areas and three dimensional parameters of the tablet core were calculated based on the three dimensional reconstruction of the images. At different stages of the drug release process, the surface morphology, the hydration, the swelling, and the structure changing of the tablet, were visualized from the two dimensional monochrome X-ray images. The three dimensional volumes of the remaining tablet core correlated well with the percentages of felodipine (R=0.9988). Also, the three dimensional surface area almost unchanged during the drug release process, which clearly demonstrated the intrinsic drug release mechanism of the osmotic drug delivery system. In conclusion, the synchrotron radiation X-ray computed microtomography, with rapid acquisition, high intensity and micro-scale spatial resolution, was found to be a useful tool for the quantitative elucidation of the intrinsic drug release kinetics and the three dimensional parameters such as surface areas of the remained core obtained by the synchrotron radiation. Thus, X-ray computed microtomography can be considered as a new and complimentary analytical tool to standard compendial pharmaceutical tests for quality control of osmotic drug delivery systems.

  16. Application of Image And X-Ray Microtomography Technique To Quantify Filler Distribution In Thermoplastic-Natural Rubber Blend Composites

    SciTech Connect

    Ahmad, Sahrim; Rasid, Rozaidi; Mouad, A. T.; Aziz Mohamed, A.; Abdullah, Jaafar; Dahlan, M.; Mohamad, Mahathir; Jamro, Rafhayudi; Hamzah Harun, M.; Yazid, Hafizal; Abdullah, W. Saffiey W.

    2010-01-05

    X-ray microtomography and ImageJ 1.39 u is used as a tool to quantify volume percentage of B{sub 4}C as fillers in thermoplastic-natural rubber blend composites. The use of percentage of area occupied by fillers as obtain from ImageJ from the microtomography sliced images enables the proposed technique to easily obtain the amount volume percentage of B{sub 4}C in the composite non-destructively. Comparison with other technique such as density measurement and chemical analysis proves the proposed technique as one of the promising approach.

  17. X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites

    NASA Astrophysics Data System (ADS)

    Fan, Shuai; Li, Mo

    2015-01-01

    Concrete cracking and deterioration can potentially be addressed by innovative self-healing cementitious materials, which can autogenously regain transport properties and mechanical characteristics after the damage self-healing process. For the development of such materials, it is crucial, but challenging, to precisely characterize the extent and quality of self-healing due to a variety of factors. This study adopted x-ray computed microtomography (μCT) to derive three-dimensional morphological data on microcracks before and after healing in engineered cementitious composite (ECC). Scanning electron microscope and energy dispersive x-ray spectroscopy were also used to morphologically and chemically analyze the healing products. This work showed that the evolution of the microcrack 3D structure due to self-healing in cementitious materials can be directly and quantitatively characterized by μCT. A detailed description of the μCT image analysis method applied to ECC self-healing was presented. The results revealed that the self-healing extent and rate strongly depended on initial surface crack width, with smaller crack width favoring fast and robust self-healing. We also found that the self-healing mechanism in cementitious materials is dependent on crack depth. The region of a crack close to the surface (from 0 to around 50-150 μm below the surface) can be sealed quickly with crystalline precipitates. However, at greater depths the healing process inside the crack takes a significantly longer time to occur, with healing products more likely resulting from continued hydration and pozzolanic reactions. Finally, the μCT method was compared with other self-healing characterization methods, with discussions on its importance in generating new scientific knowledge for the development of robust self-healing cementitious materials.

  18. 2D/3D registration for X-ray guided bronchoscopy using distance map classification.

    PubMed

    Xu, Di; Xu, Sheng; Herzka, Daniel A; Yung, Rex C; Bergtholdt, Martin; Gutierrez, Luis F; McVeigh, Elliot R

    2010-01-01

    In X-ray guided bronchoscopy of peripheral pulmonary lesions, airways and nodules are hardly visible in X-ray images. Transbronchial biopsy of peripheral lesions is often carried out blindly, resulting in degraded diagnostic yield. One solution of this problem is to superimpose the lesions and airways segmented from preoperative 3D CT images onto 2D X-ray images. A feature-based 2D/3D registration method is proposed for the image fusion between the datasets of the two imaging modalities. Two stereo X-ray images are used in the algorithm to improve the accuracy and robustness of the registration. The algorithm extracts the edge features of the bony structures from both CT and X-ray images. The edge points from the X-ray images are categorized into eight groups based on the orientation information of their image gradients. An orientation dependent Euclidean distance map is generated for each group of X-ray feature points. The distance map is then applied to the edge points of the projected CT images whose gradient orientations are compatible with the distance map. The CT and X-ray images are registered by matching the boundaries of the projected CT segmentations to the closest edges of the X-ray images after the orientation constraint is satisfied. Phantom and clinical studies were carried out to validate the algorithm's performance, showing a registration accuracy of 4.19(± 0.5) mm with 48.39(± 9.6) seconds registration time. The algorithm was also evaluated on clinical data, showing promising registration accuracy and robustness.

  19. Visualization and Pathological Characteristics of Hepatic Alveolar Echinococcosis with Synchrotron-based X-ray Phase Sensitive Micro-tomography

    NASA Astrophysics Data System (ADS)

    Liu, Huiqiang; Ji, Xuewen; Sun, Li; Xiao, Tiqiao; Xie, Honglan; Fu, Yanan; Zhao, Yuan; Liu, Wenya; Zhang, Xueliang; Lin, Renyong

    2016-11-01

    Propagation-based phase-contrast computed tomography (PPCT) utilizes highly sensitive phase-contrast technology applied to X-ray micro-tomography, especially with the extensive use of synchrotron radiation (SR). Performing phase retrieval (PR) on the acquired angular projections can enhance image contrast and enable quantitative imaging. We employed the combination of SR-PPCT and PR for the histopathological evaluation of hepatic alveolar echinococcosis (HAE) disease and demonstrated the validity and superiority of PR-based SR-PPCT. A high-resolution angular projection data set of a human postoperative specimen of HAE disease was acquired, which was processed by graded ethanol concentration fixation (GECF). The reconstructed images from both approaches, with the projection data directly used and preprocessed by PR for tomographic reconstruction, were compared in terms of the tissue contrast-to-noise ratio and density spatial resolution. The PR-based SR-PPCT was selected for microscale measurement and the 3D visualization of HAE disease. Our experimental results demonstrated that the PR-based SR-PPCT technique is greatly suitable for the discrimination of pathological tissues and the characterization of HAE. In addition, this new technique is superior to conventional hospital CT and microscopy for the three-dimensional, non-destructive microscale measurement of HAE. This PR-based SR-PPCT technique has great potential for in situmicroscale histopathological analysis and diagnosis, especially for applications involving soft tissues and organs.

  20. Visualization and Pathological Characteristics of Hepatic Alveolar Echinococcosis with Synchrotron-based X-ray Phase Sensitive Micro-tomography

    PubMed Central

    Liu, Huiqiang; Ji, Xuewen; Sun, Li; Xiao, Tiqiao; Xie, Honglan; Fu, Yanan; Zhao, Yuan; Liu, Wenya; Zhang, Xueliang; Lin, Renyong

    2016-01-01

    Propagation-based phase-contrast computed tomography (PPCT) utilizes highly sensitive phase-contrast technology applied to X-ray micro-tomography, especially with the extensive use of synchrotron radiation (SR). Performing phase retrieval (PR) on the acquired angular projections can enhance image contrast and enable quantitative imaging. We employed the combination of SR-PPCT and PR for the histopathological evaluation of hepatic alveolar echinococcosis (HAE) disease and demonstrated the validity and superiority of PR-based SR-PPCT. A high-resolution angular projection data set of a human postoperative specimen of HAE disease was acquired, which was processed by graded ethanol concentration fixation (GECF). The reconstructed images from both approaches, with the projection data directly used and preprocessed by PR for tomographic reconstruction, were compared in terms of the tissue contrast-to-noise ratio and density spatial resolution. The PR-based SR-PPCT was selected for microscale measurement and the 3D visualization of HAE disease. Our experimental results demonstrated that the PR-based SR-PPCT technique is greatly suitable for the discrimination of pathological tissues and the characterization of HAE. In addition, this new technique is superior to conventional hospital CT and microscopy for the three-dimensional, non-destructive microscale measurement of HAE. This PR-based SR-PPCT technique has great potential for in situmicroscale histopathological analysis and diagnosis, especially for applications involving soft tissues and organs. PMID:27897249

  1. Using synchrotron X-ray microtomography to characterize the pore network of reservoir rocks: A case study on carbonates

    NASA Astrophysics Data System (ADS)

    Arzilli, F.; Cilona, A.; Mancini, L.; Tondi, E.

    2016-09-01

    In this work we propose a new methodology to calculate pore connectivity in granular rocks. This method is useful to characterize the pore networks of natural and laboratory compaction bands (CBs), and compare them with the host rock pore network. Data were collected using the synchrotron X-ray microtomography technique and quantitative analyses were carried out using the Pore3D software library. The porosity was calculated from segmented tridimensional images of deformed and pristine rocks. A process of skeletonization of the pore space was used to obtain the number of connected pores within the rock volume. By analyzing the skeletons the differences between natural and laboratory CBs were highlighted. The natural CB has a lower porosity than to the laboratory one. In natural CBs, the grain contacts appear welded, whereas laboratory CBs show irregular pore shape. Moreover, we assessed for the first time how pore connectivity evolves as a function of deformation, documenting the mechanism responsible for pore connectivity drop within the CBs.

  2. SYNCHROTRON X-RAY MICROTOMOGRAPHY AND INTERFACIAL PARTITIONING TRACER TEST MEASUREMENTS OF NAPL-WATER INTERFACIAL AREAS

    PubMed Central

    Brusseau, Mark L.; Janousek, Hilary; Murao, Asami; Schnaar, Gregory

    2013-01-01

    Interfacial areas between an immiscible organic liquid (NAPL) and water were measured for two natural porous media using two methods, aqueous-phase interfacial partitioning tracer tests and synchrotron X-ray microtomography. The interfacial areas measured with the tracer tests were similar to previously reported values obtained with the method. The values were, however, significantly larger than those obtained from microtomography. Analysis of microtomography data collected before and after introduction of the interfacial tracer solution indicated that the surfactant tracer had minimal impact on fluid-phase configuration and interfacial areas under conditions associated with typical laboratory application. The disparity between the tracer-test and microtomography values is attributed primarily to the inability of the microtomography method to resolve interfacial area associated with microscopic surface heterogeneity. This hypothesis is consistent with results recently reported for a comparison of microtomographic analysis and interfacial tracer tests conducted for an air-water system. The tracer-test method provides a measure of effective, total (capillary and film) interfacial area, whereas microtomography can be used to determine separately both capillary-associated and film-associated interfacial areas. Both methods appear to provide useful information for given applications. A key to their effective use is recognizing the specific nature of the information provided by each, as well as associated limitations. PMID:23678204

  3. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  4. Multi-scale X-ray Microtomography Imaging of Immiscible Fluids After Imbibition

    NASA Astrophysics Data System (ADS)

    Garing, C.; de Chalendar, J.; Voltolini, M.; Ajo Franklin, J. B.; Benson, S. M.

    2015-12-01

    A major issue for CO2 storage security is the efficiency and long-term reliability of the trapping mechanisms occurring in the reservoir where CO2 is injected. Residual trapping is one of the key processes for storage security beyond the primary stratigraphic seal. Although classical conceptual models of residual fluid trapping assume that disconnected ganglia are permanently immobilized, multiple mechanisms exist which could allow the remobilization of residually trapped CO2. The aim of this study is to quantify fluid phases saturation, connectivity and morphology after imbibition using x-ray microtomography in order to evaluate potential changes in droplets organization due to differences in capillary pressure between disconnected ganglia. Particular emphasis is placed on the effect of image resolution. Synchrotron-based x-ray microtomographic datasets of air-water spontaneous imbibition were acquired in sintered glass beads and sandstone samples with voxel sizes varying from 0.64 to 4.44 μm. The results show that for both sandstones the residual air phase is homogeneously distributed within the entire pore space and consists of disconnected clusters of multiple sizes and morphologies. The multi-scale analysis of subsamples of few pores and throats imaged at the same location of the sample reveals significant variations in the estimation of connectivity, size and shape of the fluid phases. This is particularly noticeable when comparing the results from the images with voxel sizes above 1 μm with the results from the images acquired with voxel sizes below 1 μm.

  5. Reservoir Condition Pore-scale Imaging of Multiple Fluid Phases Using X-ray Microtomography

    PubMed Central

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin

    2015-01-01

    X-ray microtomography was used to image, at a resolution of 6.6 µm, the pore-scale arrangement of residual carbon dioxide ganglia in the pore-space of a carbonate rock at pressures and temperatures representative of typical formations used for CO2 storage. Chemical equilibrium between the CO2, brine and rock phases was maintained using a high pressure high temperature reactor, replicating conditions far away from the injection site. Fluid flow was controlled using high pressure high temperature syringe pumps. To maintain representative in-situ conditions within the micro-CT scanner a carbon fiber high pressure micro-CT coreholder was used. Diffusive CO2 exchange across the confining sleeve from the pore-space of the rock to the confining fluid was prevented by surrounding the core with a triple wrap of aluminum foil. Reconstructed brine contrast was modeled using a polychromatic x-ray source, and brine composition was chosen to maximize the three phase contrast between the two fluids and the rock. Flexible flow lines were used to reduce forces on the sample during image acquisition, potentially causing unwanted sample motion, a major shortcoming in previous techniques. An internal thermocouple, placed directly adjacent to the rock core, coupled with an external flexible heating wrap and a PID controller was used to maintain a constant temperature within the flow cell. Substantial amounts of CO2 were trapped, with a residual saturation of 0.203 ± 0.013, and the sizes of larger volume ganglia obey power law distributions, consistent with percolation theory. PMID:25741751

  6. A high-throughput x-ray microtomography system at the Advanced Photon Source

    SciTech Connect

    Wang, Yuxin; De Carlo, Francesco; Mancini, Derrick C.; McNulty, Ian; Tieman, Brian; Bresnahan, John; Foster, Ian; Insley, Joseph; Lane, Peter; von Laszewski, Gregor

    2001-04-01

    A third-generation synchrotron radiation source provides enough brilliance to acquire complete tomographic data sets at 100 nm or better resolution in a few minutes. To take advantage of such high-brilliance sources at the Advanced Photon Source, we have constructed a pipelined data acquisition and reconstruction system that combines a fast detector system, high-speed data networks, and massively parallel computers to rapidly acquire the projection data and perform the reconstruction and rendering calculations. With the current setup, a data set can be obtained and reconstructed in tens of minutes. A specialized visualization computer makes rendered three-dimensional (3D) images available to the beamline users minutes after the data acquisition is completed. This system is capable of examining a large number of samples at sub-{mu}m 3D resolution or studying the full 3D structure of a dynamically evolving sample on a 10 min temporal scale. In the near future, we expect to increase the spatial resolution to below 100 nm by using zone-plate x-ray focusing optics and to improve the time resolution by the use of a broadband x-ray monochromator and a faster detector system.

  7. 3D measurements in conventional X-ray imaging with RGB-D sensors.

    PubMed

    Albiol, Francisco; Corbi, Alberto; Albiol, Alberto

    2017-04-01

    A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient' s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient's body.

  8. Optimization of Reconstructed Quality of Hard X-ray Phase Micro-Tomography

    PubMed Central

    Liu, Huiqiang; Wu, Xizeng; Xiao, Tiqiao

    2015-01-01

    For the applications of hard X-ray Propagation-based Phase-contrast Computed micro-Tomography (PPCT) in high-resolution biological research, both the high spatial resolution and high contrast-to-noise ratio are simultaneously required for tiny structural discrimination and characterization. Most existing micro-CT techniques to improve image quality are limited by high cost, physical limitations, and complexity of the experimental hardware and setup. In this work a novel PPCT technique, which combines a wavelet transform based modulation transform function compensation (MTFC) algorithm and a generalized phase retrieval algorithm, is proposed to optimize the reconstruction quality of tomographic slices. Our experimental results, which compared the spatial resolutions and contrast-to-noise ratios of reconstructed images, demonstrated the validity of the proposed generalized PPCT technique. The experimental results showed that the proposed generalized PPCT technique is superior to the direct PPCT technique and the linearized phase retrieval PPCT technique. This novel PPCT technique demonstrates great potential for biological imaging, especially for applications that require high spatial resolution and limit radiation exposure. PMID:26193002

  9. Noninvasive Measurement of Vulnerability to Drought-Induced Embolism by X-Ray Microtomography1

    PubMed Central

    Choat, Brendan; Cochard, Herve; Jansen, Steven

    2016-01-01

    Hydraulic failure induced by xylem embolism is one of the primary mechanisms of plant dieback during drought. However, many of the methods used to evaluate the vulnerability of different species to drought-induced embolism are indirect and invasive, increasing the possibility that measurement artifacts may occur. Here, we utilize x-ray computed microtomography (microCT) to directly visualize embolism formation in the xylem of living, intact plants with contrasting wood anatomy (Quercus robur, Populus tremula × Populus alba, and Pinus pinaster). These observations were compared with widely used centrifuge techniques that require destructive sampling. MicroCT imaging provided detailed spatial information regarding the dimensions and functional status of xylem conduits during dehydration. Vulnerability curves based on microCT observations of intact plants closely matched curves based on the centrifuge technique for species with short vessels (P. tremula × P. alba) or tracheids (P. pinaster). For ring porous Q. robur, the centrifuge technique significantly overestimated vulnerability to embolism, indicating that caution should be used when applying this technique to species with long vessels. These findings confirm that microCT can be used to assess the vulnerability to embolism on intact plants by direct visualization. PMID:26527655

  10. Validation of Terahertz coating thickness measurements using X-ray microtomography.

    PubMed

    Russe, Isabelle-Sophie; Brock, Daniela; Knop, Klaus; Kleinebudde, Peter; Zeitler, J Axel

    2012-12-03

    Terahertz pulsed imaging (TPI) is a recently developed nondestructive and noncontact method to measure the coating thickness of coated pharmaceutical tablets. The method requires no calibration in order to resolve the coating structure of tablets. The relative coating thickness over a tablet surface or between different tablets of the same batch can be determined with high precision. However, in order to determine the absolute coating thickness accurately the refractive index, n, of the coating layer needs to be known. For all published studies to date the value of n was based on estimates or bulk measurements, which were based on the assumption that n is constant for a given coating formulation. We have developed a measurement technique using X-ray microtomography to independently quantify the coating thickness. These data were then used to validate the terahertz imaging results, and we found that the intertablet variation of n for coating layers of 25-270 μm thickness is less than 4% and that there is less than 3% intratablet variation in n. Based on our results we estimate that, depending on the pigment content, the absolute value of n in a typical pharmaceutical coating formulation will be in the range of 1.45 < n < 2.01. We conclude that TPI is a robust technique and that, due to its very simple measurement principle, it is an ideal measurement technique to quantify the coating thickness in process control and quality monitoring applications.

  11. Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Falenty, Andrzej; Chaouachi, Marwen; Haberthür, David; Kuhs, Werner F.

    2016-09-01

    In-situ synchrotron X-ray computed microtomography with sub-micrometer voxel size was used to study the decomposition of gas hydrates in a sedimentary matrix. Xenon-hydrate was used instead of methane hydrate to enhance the absorption contrast. The microstructural features of the decomposition process were elucidated indicating that the decomposition starts at the hydrate-gas interface; it does not proceed at the contacts with quartz grains. Melt water accumulates at retreating hydrate surface. The decomposition is not homogeneous and the decomposition rates depend on the distance of the hydrate surface to the gas phase indicating a diffusion-limitation of the gas transport through the water phase. Gas is found to be metastably enriched in the water phase with a concentration decreasing away from the hydrate-water interface. The initial decomposition process facilitates redistribution of fluid phases in the pore space and local reformation of gas hydrates. The observations allow also rationalizing earlier conjectures from experiments with low spatial resolutions and suggest that the hydrate-sediment assemblies remain intact until the hydrate spacers between sediment grains finally collapse; possible effects on mechanical stability and permeability are discussed. The resulting time resolved characteristics of gas hydrate decomposition and the influence of melt water on the reaction rate are of importance for a suggested gas recovery from marine sediments by depressurization.

  12. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders

    SciTech Connect

    Provis, John L.; Myers, Rupert J.; White, Claire E.; Rose, Volker; Deventer, Jannie S.J. van

    2012-06-15

    Durability of alkali-activated binders is of vital importance in their commercial application, and depends strongly on microstructure and pore network characteristics. X-ray microtomography ({mu}CT) offers, for the first time, direct insight into microstructural and pore structure characteristics in three dimensions. Here, {mu}CT is performed on a set of sodium metasilicate-activated fly ash/slag blends, using a synchrotron beamline instrument. Segmentation of the samples into pore and solid regions is then conducted, and pore tortuosity is calculated by a random walker method. Segmented porosity and diffusion tortuosity are correlated, and vary as a function of slag content (slag addition reduces porosity and increases tortuosity), and sample age (extended curing gives lower porosity and higher tortuosity). This is particularly notable for samples with {>=} 50% slag content, where a space-filling calcium (alumino)silicate hydrate gel provides porosity reductions which are not observed for the sodium aluminosilicate ('geopolymer') gels which do not chemically bind water of hydration.

  13. Study of strontium ranelate bone issues by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Lima, I.; Taam, P.; da Costa, V.; Fleiuss, M. F.; Rosenthal, D.; Lopes, R. T.

    2011-10-01

    The X-ray microtomography is a non-destructive image technique that allows evaluation of inner structure of several kinds of materials, such as trabecular bone. The microarchitecture of osteoporosis bone becomes more fragile and susceptible to fractures. Strontium ranelate (Protos ®) is a current oral medication used in the treatment of osteoporosis diseases, which promises to act stimulating the proliferation of osteoblasts, as well as inhibiting the proliferation of osteoclasts. In the present work, two ways to administer strontium ranelate are studied in experiments with rats and mice: via oral and via intra-peritoneal injections. Intra-peritoneal injections are easier and not susceptible to gastrointestinal tract issues such as diarrhoea and absorption variations. However, the only method to administrate the strontium ranelate described in literature is still the gavage. In order to establish the best technique for future experiments, structural bone changes in rats were evaluated. The results show that bone porosity parameter at the femoral head decreased after 23 days of treatment when both oral and intraperitoneal routes of strontium ranelate administration were applied, suggesting an improved bone microarchitecture.

  14. Rapid terrestrial core formation from in situ X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Chen, B.; Zhang, D.; Leng, W.; Jackson, J. M.; Wang, Y.; Yu, T.; Liu, J.; Li, J.

    2011-12-01

    The timescale of the terrestrial core formation constrained from the hafnium-tungsten chronometer is within 30 million years after the Solar System formation (e.g. Kleine et al., 2002; Yin et al., 2002). Possible mechanisms for core formation include diapiric instability of iron-rich liquids and percolation of the liquids through the solid silicate matrix. Core-mantle segregation by diapiric instabilities is thought to be a more rapid and efficient core formation process compared with percolation (Stevenson, 1981; Rubie et al., 2007; Golabek et al., 2008). Our experimental results from in situ X-ray computed microtomography show that at 1-1.5 GPa the iron-sulfur and iron-carbon liquids sank through the underlying olivine layer at a speed consistent with the measured core formation timescale. Our three-dimensional tomography data taken at various heating stages revealed that the iron-rich liquid diapirs in olivine induced percolative flow channeling processes, which affects the rheology of olivine and thus facilitates the sinking of iron-rich diapirs. Numerical simulations of diapir sinking based on the tomography observations suggest that the percolative flow channeling process accompanying the iron diapirs could significantly reduce the time for core formation segregation by a factor of 2 or more, depending on the viscosity reduction ratio caused by the percolative flow. Our study sheds new light on core formation processes in the Earth and terrestrial-like planetary bodies, contributing to our understanding of the origin and dynamics of planetary cores.

  15. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect

    Jacobsen, Chris

    2011-04-14

    This project helped pioneer the core capabilities of coherent diffraction imaging (CDI) using X rays at synchrotron light source facilities. We developed an apparatus that was used for CDI at the Advanced Light Source, and applied it to 2D and 3D imaging of nanostructures. We also explored a number of conceptual and computational issues on the reconstruction of CDI data.

  16. Natural and laboratory compaction bands in porous carbonates: a three-dimensional characterization using synchrotron X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Cilona, A.; Arzilli, F.; Mancini, L.; Emanuele, T.

    2014-12-01

    Porous carbonates form important reservoirs for water and hydrocarbons. The fluid flow properties of carbonate reservoirs may be affected by post-depositional processes (e.g., mechanical and chemical), which need to be quantified. Field-based studies described bed-parallel compaction bands (CBs) within carbonates with a wide range of porosities. These burial-related structures accommodate volumetric strain by grain rotation, translation, pore collapse and pressure solution. Recently, the same structures have been reproduced for the first time in the laboratory by performing triaxial compaction experiments on porous grainstones. These laboratory studies characterized and compared the microstructures of natural and laboratory CBs, but no analysis of pore connectivity has been performed. In this paper, we use an innovative approach to characterize the pore networks (e.g. porosity, connectivity) of natural and laboratory CBs and compare them with the host rock one. We collected the data using the synchrotron X-ray computed microtomography technique at the SYRMEP beamline of the Elettra-Sincrotrone Trieste Laboratory (Italy). Quantitative analyses of the samples were performed with the Pore3D software library. The porosity was calculated from segmented 3D images of pristine and deformed carbonates. A process of skeletonization was then applied to quantify the number of connected pores within the rock volume. The analysis of the skeleton allowed us to highlight the differences between natural and laboratory CBs, and to investigate how pore connectivity evolves as a function of different deformation pathways. Both pore volume and connectivity are reduced within the CBs respect to the pristine rock and the natural CB has a lower porosity with respect to the laboratory one. The grain contacts in the natural CB are welded, whereas in the laboratory one they have more irregular shapes and grain crushing is the predominant process.

  17. Fast generation of virtual X-ray images for reconstruction of 3D anatomy.

    PubMed

    Ehlke, Moritz; Ramm, Heiko; Lamecker, Hans; Hege, Hans-Christian; Zachow, Stefan

    2013-12-01

    We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g. pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach will improve treatments in orthopedics, where 3D anatomical information is essential.

  18. X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper

    NASA Astrophysics Data System (ADS)

    Myllys, M.; Häkkänen, H.; Korppi-Tommola, J.; Backfolk, K.; Sirviö, P.; Timonen, J.

    2015-04-01

    A novel method was developed for studying the ink-paper interface and the structural variations of a deposited layer of ink. Combining high-resolution x-ray tomography with laser ablation, the depth profile of ink (toner), i.e., its varying thickness, could be determined in a paper substrate. X-ray tomography was used to produce the 3D structure of paper with about 1 μm spatial resolution. Laser ablation combined with optical imaging was used to produce the 3D structure of the printed layer of ink on top of that paper with about 70 nm depth resolution. Ablation depth was calibrated with an optical profilometer. It can be concluded that a toner layer on a light-weight-coated paper substrate was strongly perturbed by protruding fibers of the base paper. Such fibers together with the surface topography of the base paper seem to be the major factors that control the leveling of toner and its penetration into a thinly coated paper substrate.

  19. X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper

    SciTech Connect

    Myllys, M.; Häkkänen, H.; Korppi-Tommola, J.; Backfolk, K.; Sirviö, P.; Timonen, J.

    2015-04-14

    A novel method was developed for studying the ink-paper interface and the structural variations of a deposited layer of ink. Combining high-resolution x-ray tomography with laser ablation, the depth profile of ink (toner), i.e., its varying thickness, could be determined in a paper substrate. X-ray tomography was used to produce the 3D structure of paper with about 1 μm spatial resolution. Laser ablation combined with optical imaging was used to produce the 3D structure of the printed layer of ink on top of that paper with about 70 nm depth resolution. Ablation depth was calibrated with an optical profilometer. It can be concluded that a toner layer on a light-weight-coated paper substrate was strongly perturbed by protruding fibers of the base paper. Such fibers together with the surface topography of the base paper seem to be the major factors that control the leveling of toner and its penetration into a thinly coated paper substrate.

  20. A Segmentation Algorithm for X-ray 3D Angiography and Vessel Catheterization

    SciTech Connect

    Franchi, Danilo; Rosa, Luigi; Placidi, Giuseppe

    2008-11-06

    Vessel Catheterization is a clinical procedure usually performed by a specialist by means of X-ray fluoroscopic guide with contrast-media. In the present paper, we present a simple and efficient algorithm for vessel segmentation which allows vessel separation and extraction from the background (noise and signal coming from other organs). This would reduce the number of projections (X-ray scans) to reconstruct a complete and accurate 3D vascular model and the radiological risk, in particular for the patient. In what follows, the algorithm is described and some preliminary experimental results are reported illustrating the behaviour of the proposed method.

  1. 3D/2D image registration: the impact of X-ray views and their number.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2007-01-01

    An important part of image-guided radiation therapy or surgery is registration of a three-dimensional (3D) preoperative image to two-dimensional (2D) images of the patient. It is expected that the accuracy and robustness of a 3D/2D image registration method do not depend solely on the registration method itself but also on the number and projections (views) of intraoperative images. In this study, we systematically investigate these factors by using registered image data, comprising of CT and X-ray images of a cadaveric lumbar spine phantom and the recently proposed 3D/2D registration method. The results indicate that the proportion of successful registrations (robustness) significantly increases when more X-ray images are used for registration.

  2. Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials.

    PubMed

    Weiss, P; Obadia, L; Magne, D; Bourges, X; Rau, C; Weitkamp, T; Khairoun, I; Bouler, J M; Chappard, D; Gauthier, O; Daculsi, G

    2003-11-01

    This study used synchrotron X-ray microtomography on a micron scale to compare three-dimensional (3D) bone ingrowth after implantation of various calcium phosphate bone substitutes in a rabbit model. The advantage of using this new method for the study of biomaterials was then compared with histomorphometry for analysis of interconnection and bone ingrowth. The study focused on the newly formed bone-biomaterial interface. Macroporous Biphasic Calcium Phosphate (MBCP) ceramic blocks and two different injectable calcium phosphate biomaterials [an injectable bone substitute (IBS) consisting of a biphasic calcium phosphate granule suspension in hydrosoluble polymer and a calcium phosphate cement material (CPC)] were studied after in vivo implantation. Absorption or phase-contrast microtomography was performed with the dedicated set-up at beamline ID22. Experimental spatial resolution was between 1 and 1.4 microm, depending on experimental radiation. All calcium phosphates tested showed osteoconduction. IBS observations after 3D reconstruction showed interconnected bioactive biomaterial with total open macroporosity and complete bone ingrowth as early as 3 weeks after implantation. This experimentation was consistent with two-dimensional histomorphometric analysis, which confirmed its suitability for biomaterials. This 3D study relates the different types of bone substitution to biomaterial architecture. As porosity and interconnection increase, bone ingrowth becomes greater at the expense of the bone substitute: IBS>MBCP>CPC.

  3. 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging

    SciTech Connect

    Boone, M.A.; De Kock, T.; Bultreys, T.; De Schutter, G.; Vontobel, P.; Van Hoorebeke, L.; Cnudde, V.

    2014-11-15

    Determining the distribution of fluids in porous sedimentary rocks is of great importance in many geological fields. However, this is not straightforward, especially in the case of complex sedimentary rocks like limestone, where a multidisciplinary approach is often needed to capture its broad, multimodal pore size distribution and complex pore geometries. This paper focuses on the porosity and fluid distribution in two varieties of Massangis limestone, a widely used natural building stone from the southeast part of the Paris basin (France). The Massangis limestone shows locally varying post-depositional alterations, resulting in different types of pore networks and very different water distributions within the limestone. Traditional techniques for characterizing the porosity and pore size distribution are compared with state-of-the-art neutron radiography and X-ray computed microtomography to visualize the distribution of water inside the limestone at different imbibition conditions. X-ray computed microtomography images have the great advantage to non-destructively visualize and analyze the pore space inside of a rock, but are often limited to the larger macropores in the rock due to resolution limitations. In this paper, differential imaging is successfully applied to the X-ray computed microtomography images to obtain sub-resolution information about fluid occupancy and to map the fluid distribution in three dimensions inside the scanned limestone samples. The detailed study of the pore space with differential imaging allows understanding the difference in the water uptake behavior of the limestone, a primary factor that affects the weathering of the rock. - Highlights: • The water distribution in a limestone was visualized in 3D with micro-CT. • Differential imaging allowed to map both macro and microporous zones in the rock. • The 3D study of the pore space clarified the difference in water uptake behavior. • Trapped air is visualized in the moldic

  4. Advancement in Understanding Volcanic Processes by 4D Synchrotron X-ray Computed Microtomography Imaging of Rock Textures

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Arzilli, F.; La Spina, G.

    2015-12-01

    X-ray computed microtomography (μCT) is the only high-resolution, non-destructive technique that allows visualization and processing of geomaterials directly in three-dimensions. This, together with the development of more and more sophisticated imaging techniques, have generated in the last ten years a widespread application of this methodology in Earth Sciences, from structural geology to palaeontology to igneous petrology to volcanology. Here, I will describe how X-ray μCT has contributed to advance our knowledge of volcanic processes and eruption dynamics and illustrate the first, preliminary results from 4D (space+time) X-ray microtomographic experiments of magma kinetics in basaltic systems.

  5. 3D simulation of the image formation in soft x-ray microscopes.

    PubMed

    Selin, Mårten; Fogelqvist, Emelie; Holmberg, Anders; Guttmann, Peter; Vogt, Ulrich; Hertz, Hans M

    2014-12-15

    In water-window soft x-ray microscopy the studied object is typically larger than the depth of focus and the sample illumination is often partially coherent. This blurs out-of-focus features and may introduce considerable fringing. Understanding the influence of these phenomena on the image formation is therefore important when interpreting experimental data. Here we present a wave-propagation model operating in 3D for simulating the image formation of thick objects in partially coherent soft x-ray microscopes. The model is compared with present simulation methods as well as with experiments. The results show that our model predicts the image formation of transmission soft x-ray microscopes more accurately than previous models.

  6. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    SciTech Connect

    Robert, Normand Polack, George G.; Sethi, Benu; Rowlands, John A.; Crystal, Eugene

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  7. Analysis of Soil Structure Turnover with Garnet Particles and X-Ray Microtomography

    PubMed Central

    Vogel, Hans-Jörg

    2016-01-01

    Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other. PMID:27453995

  8. Effects of infrared laser on the bone repair assessed by x-ray microtomography (μct) and histomorphometry

    NASA Astrophysics Data System (ADS)

    Paolillo, Alessandra Rossi; Paolillo, Fernanda Rossi; da Silva, Alessandro M. Hakme; Reiff, Rodrigo Bezerra de Menezes; Bagnato, Vanderlei Salvador; Alves, José Marcos

    2015-06-01

    The bone fracture is important public health problems. The lasertherapy is used to accelerate tissue healing. Regarding diagnosis, few methods are validated to follow the evolution of bone microarchitecture. The aim of this study was to evaluate the effects of lasertherapy on bone repair with x-ray microtomography (μCT) and histomorphometry. A transverse rat tibia osteotomy with a Kirchner wire and a 2mm width polymeric spacer beads were used to produce a delayed bone union. Twelve rats were divided into two groups: (i) Control Group: untreated fracture and; (ii) Laser Group: fracture treated with laser. Twelve sessions of treatment (808nm laser, 100mW, 125J/cm2, 50seconds) were performed. The μCT scanner parameters were: 100kV, 100μA, Al+Cu filter and 9.92μm resolution. A volume of interest (VOI) was chosen with 300 sections above and below the central region of the fracture, totaling 601sections with a 5.96mm. The softwares CT-Analyzer, NRecon and Mimics were used for 2D and 3D analysis. A histomorphometry analysis was also performed. The connectivity (Conn) showed significant increase for Laser Group than Control Group (32371+/-20689 vs 17216+/-9467, p<0.05). There was no significant difference for bone volume (59+/-19mm3 vs 47+/- 8mm3) and histomorfometric data [Laser and Control Groups showed greater amount of cartilaginous (0.19+/-0.05% vs 0.11+/-0.09%) and fibrotic (0.21+/-0.12% vs 0.09+/-0.11%) tissues]. The negative effect was presence of the cartilaginous and fibrotic tissues which may be related to the Kirchner wire and the non-absorption of the polymeric that may have influenced negatively the light distribution through the bone. However, the positive effect was greater bone connectivity, indicating improvement in bone microarchitecture.

  9. Synchrotron X-ray micro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes.

    PubMed

    Sedighi Gilani, Marjan; Boone, Matthieu N; Mader, Kevin; Schwarze, Francis Willis Mathew Robert

    2014-08-01

    Incubation of Norway spruce with Physisporinus vitreus and sycamore with Xylaria longipes results in reduction in density of these wood species that are traditionally used for the top and bottom plate of a violin, which follows by enhanced acoustic properties. We used Synchrotron X-ray micro-tomography, to study the three-dimensional structure of wood at the micro-scale level and the alterations of the density distribution after incubation with two white-rot fungi. Micro-tomography data from wood treated at different incubation periods are analyzed and compared with untreated (control) specimens to determine the wood density map and changes at the cell-wall level. Differences between the density of early- and latewood, xylem ray and around bordered pits in both Norway spruce and sycamore are studied. Three-dimensional hyphal networks of the P.vitreus and Xylaria longipes hyphae are visualized inside the cell lumina and their significance on the density of the early- and latewood cells after different incubation periods are discussed. The study illustrates the utility of X-ray micro-tomography for both qualitative and quantitative studies of a wide variety of biological systems and due to its high sensitivity, small structural changes can be quantified.

  10. 3D image reconstruction on x-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Louk, Andreas C.

    2015-03-01

    A model for 3D image reconstruction of x-ray micro-computed tomography scanner (micro-CTScan) has been developed. A small object has been put under inspection on an x-ray micro-CTScan. The object cross-section was assumed on the x-y plane, while its height was along the z-axis. Using a radiography plane detector, a set of digital radiographs represents multiple angle of views from 0º to 360º with an interval of 1º was obtained. Then, a set of crosssectional tomography, slice by slice was reconstructed. At the end, all image slices were stacked together sequentially to obtain a 3D image model of the object being inspected. From this development, lessons on the way to have better understanding on the internal structure of the object can be approached based on the cross-sectional image slice by slice and surface skin.

  11. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy.

    PubMed

    Jiang, Huaidong; Song, Changyong; Chen, Chien-Chun; Xu, Rui; Raines, Kevin S; Fahimian, Benjamin P; Lu, Chien-Hung; Lee, Ting-Kuo; Nakashima, Akio; Urano, Jun; Ishikawa, Tetsuya; Tamanoi, Fuyuhiko; Miao, Jianwei

    2010-06-22

    Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3-5 nm, but is only applicable to thin or sectioned specimens. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50-60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5-10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.

  12. NDE of spacecraft materials using 3D Compton backscatter x-ray imaging

    NASA Astrophysics Data System (ADS)

    Burke, E. R.; Grubsky, V.; Romanov, V.; Shoemaker, K.

    2016-02-01

    We present the results of testing of the NDE performance of a Compton Imaging Tomography (CIT) system for single-sided, penetrating 3D inspection. The system was recently developed by Physical Optics Corporation (POC) and delivered to NASA for testing and evaluation. The CIT technology is based on 3D structure mapping by collecting the information on density profiles in multiple object cross sections through hard x-ray Compton backscatter imaging. The individual cross sections are processed and fused together in software, generating a 3D map of the density profile of the object which can then be analyzed slice-by-slice in x, y, or z directions. The developed CIT scanner is based on a 200-kV x-ray source, flat-panel x-ray detector (FPD), and apodized x-ray imaging optics. The CIT technology is particularly well suited to the NDE of lightweight aerospace materials, such as the thermal protection system (TPS) ceramic and composite materials, micrometeoroid and orbital debris (MMOD) shielding, spacecraft pressure walls, inflatable habitat structures, composite overwrapped pressure vessels (COPVs), and aluminum honeycomb materials. The current system provides 3D localization of defects and features with field of view 20x12x8 cm3 and spatial resolution ˜2 mm. In this paper, we review several aerospace NDE applications of the CIT technology, with particular emphasis on TPS. Based on the analysis of the testing results, we provide recommendations for continued development on TPS applications that can benefit the most from the unique capabilities of this new NDE technology.

  13. 3D Medipix2 detector characterization with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Gimenez, E. N.; Maneuski, D.; Mac Raighne, A.; Parkes, C.; Bates, R.; O'Shea, V.; Fleta, C.; Pellegrini, G.; Lozano, M.; Alianelli, L.; Sawhney, K. J. S.; Marchal, J.; Tartoni, N.

    2011-05-01

    Three-dimensional (3D) photodiode detectors offer advantages over standard planar photodiodes in a wide range of applications. The main advantage of these sensors for X-ray imaging is their reduced charge sharing between adjacent pixels, which could improve spatial and spectral resolution. However, a drawback of 3D sensors structures is the loss of detection efficiency due to the presence in the pixel structure of heavily doped electrode columns which are insensitive to X-ray. In this work two types of 3D silicon detectors: n-type wafer with hole collecting readout-columns (N-TYPE) and p-type wafer with electron collecting readout-columns (P-TYPE), bump-bounded to a Medipix2 read-out chip were characterized with a 14.5 keV micro-focused X-ray beam from a synchrotron. Measurements of the detection efficiency and the charge sharing were performed at different bias voltages and Medipix2 energy thresholds and compared with those of a standard planar silicon sensor.

  14. 3D X-ray imaging methods in support catheter ablations of cardiac arrhythmias.

    PubMed

    Stárek, Zdeněk; Lehar, František; Jež, Jiří; Wolf, Jiří; Novák, Miroslav

    2014-10-01

    Cardiac arrhythmias are a very frequent illness. Pharmacotherapy is not very effective in persistent arrhythmias and brings along a number of risks. Catheter ablation has became an effective and curative treatment method over the past 20 years. To support complex arrhythmia ablations, the 3D X-ray cardiac cavities imaging is used, most frequently the 3D reconstruction of CT images. The 3D cardiac rotational angiography (3DRA) represents a modern method enabling to create CT like 3D images on a standard X-ray machine equipped with special software. Its advantage lies in the possibility to obtain images during the procedure, decreased radiation dose and reduction of amount of the contrast agent. The left atrium model is the one most frequently used for complex atrial arrhythmia ablations, particularly for atrial fibrillation. CT data allow for creation and segmentation of 3D models of all cardiac cavities. Recently, a research has been made proving the use of 3DRA to create 3D models of other cardiac (right ventricle, left ventricle, aorta) and non-cardiac structures (oesophagus). They can be used during catheter ablation of complex arrhythmias to improve orientation during the construction of 3D electroanatomic maps, directly fused with 3D electroanatomic systems and/or fused with fluoroscopy. An intensive development in the 3D model creation and use has taken place over the past years and they became routinely used during catheter ablations of arrhythmias, mainly atrial fibrillation ablation procedures. Further development may be anticipated in the future in both the creation and use of these models.

  15. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  16. Geometrical Calibration of X-Ray Imaging With RGB Cameras for 3D Reconstruction.

    PubMed

    Albiol, Francisco; Corbi, Alberto; Albiol, Alberto

    2016-08-01

    We present a methodology to recover the geometrical calibration of conventional X-ray settings with the help of an ordinary video camera and visible fiducials that are present in the scene. After calibration, equivalent points of interest can be easily identifiable with the help of the epipolar geometry. The same procedure also allows the measurement of real anatomic lengths and angles and obtains accurate 3D locations from image points. Our approach completely eliminates the need for X-ray-opaque reference marks (and necessary supporting frames) which can sometimes be invasive for the patient, occlude the radiographic picture, and end up projected outside the imaging sensor area in oblique protocols. Two possible frameworks are envisioned: a spatially shifting X-ray anode around the patient/object and a moving patient that moves/rotates while the imaging system remains fixed. As a proof of concept, experiences with a device under test (DUT), an anthropomorphic phantom and a real brachytherapy session have been carried out. The results show that it is possible to identify common points with a proper level of accuracy and retrieve three-dimensional locations, lengths and shapes with a millimetric level of precision. The presented approach is simple and compatible with both current and legacy widespread diagnostic X-ray imaging deployments and it can represent a good and inexpensive alternative to other radiological modalities like CT.

  17. Polyglycolic acid-polylactic acid scaffold response to different progenitor cell in vitro cultures: a demonstrative and comparative X-ray synchrotron radiation phase-contrast microtomography study.

    PubMed

    Giuliani, Alessandra; Moroncini, Francesca; Mazzoni, Serena; Belicchi, Marzia Laura Chiara; Villa, Chiara; Erratico, Silvia; Colombo, Elena; Calcaterra, Francesca; Brambilla, Lucia; Torrente, Yvan; Albertini, Gianni; Della Bella, Silvia

    2014-04-01

    Spatiotemporal interactions play important roles in tissue development and function, especially in stem cell-seeded bioscaffolds. Cells interact with the surface of bioscaffold polymers and influence material-driven control of cell differentiation. In vitro cultures of different human progenitor cells, that is, endothelial colony-forming cells (ECFCs) from a healthy control and a patient with Kaposi sarcoma (an angioproliferative disease) and human CD133+ muscle-derived stem cells (MSH 133+ cells), were seeded onto polyglycolic acid-polylactic acid scaffolds. Three-dimensional (3D) images were obtained by X-ray phase-contrast microtomography (micro-CT) and processed with the Modified Bronnikov Algorithm. The method enabled high spatial resolution detection of the 3D structural organization of cells on the bioscaffold and evaluation of the way and rate at which cells modified the construct at different time points from seeding. The different cell types displayed significant differences in the proliferation rate. In conclusion, X-ray synchrotron radiation phase-contrast micro-CT analysis proved to be a useful and sensitive tool to investigate the spatiotemporal pattern of progenitor cell organization on a bioscaffold.

  18. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  19. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.

    SciTech Connect

    FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

    2001-10-12

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

  20. A room temperature operating cryogenic cell for in vivo monitoring of dry snow metamorphism by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Rolland du Roscoat, S.; Geindreau, C.

    2013-12-01

    Three-dimensional (3D) images of snow offer the possibility of studying snow metamorphism at the grain scale by analysing the time evolution of its complex microstructure. Such images are also particularly useful for providing physical effective properties of snow arising in macroscopic models. In the last 15 years, several experiments have been developed in order to get 3D images of snow by X-ray microtomography. Up to now, two different approaches have been used: a static and an in vivo approach. The static method consists in imaging a snow sample whose structural evolution has been stopped by impregnation and/or very cold temperature conditions. The sample is placed in a cryogenic cell that can operate at the ambient temperature of the tomograph room (e.g. Brzoska et al., 1999, Coléou et al., 2001). The in vivo technique uses a non impregnated sample which continues to undergo structural evolutions and is put in a cell that controls the temperature conditions at the boundaries of the sample. This kind of cell requires a cold environnement and the whole tomographic acquisition process takes place in a cold room (e.g. Schneebeli and Sokratov, 2004, Pinzer and Schneebeli, 2009). The 2nd approach has the major advantage to provide the time evolution of the microstructure of a same snow sample but requires a dedicated cold-room tomographic scanner, whereas the static method can be used with any tomographic scanner operating at ambient conditions. We developed a new in vivo cryogenic cell which benefits from the advantages of each of the above methods: it (1) allows to follow the evolution of the same sample with time and (2) is usable with a wide panel of tomographic scanners provided with large cabin sizes, which has many advantages in terms of speed, resolution, and availability of new technologies. The thermal insulation between the snow sample and the outside is ensured by a double wall vacuum system of thermal conductivity of about 0.0015 Wm-1K-1. An air

  1. X-ray phase nanotomography resolves the 3D human bone ultrastructure.

    PubMed

    Langer, Max; Pacureanu, Alexandra; Suhonen, Heikki; Grimal, Quentin; Cloetens, Peter; Peyrin, Françoise

    2012-01-01

    Bone strength and failure are increasingly thought to be due to ultrastructural properties, such as the morphology of the lacuno-canalicular network, the collagen fiber orientation and the mineralization on the nanoscale. However, these properties have not been studied in 3D so far. Here we report the investigation of the human bone ultrastructure with X-ray phase nanotomography, which now provides the required sensitivity, spatial resolution and field of view. The 3D organization of the lacuno-canalicular network is studied in detail over several cells in osteonal and interstitial tissue. Nanoscale density variations are revealed and show that the cement line separating these tissues is hypermineralized. Finally, we show that the collagen fibers are organized as a twisted plywood structure in 3D.

  2. Application of 3D X-ray CT data sets to finite element analysis

    SciTech Connect

    Bossart, P.L.; Martz, H.E.; Brand, H.R.; Hollerbach, K.

    1995-08-31

    Finite Element Modeling (FEM) is becoming more important as industry drives toward concurrent engineering. A fundamental hindrance to fully exploiting the power of FEM is the human effort required to acquire complex part geometry, particularly as-built geometry, as a FEM mesh. Many Quantitative Non Destructive Evaluation (QNDE) techniques that produce three-dimensional (3D) data sets provide a substantial reduction in the effort required to apply FEM to as-built parts. This paper describes progress at LLNL on the application of 3D X-ray computed tomography (CT) data sets to more rapidly produce high-quality FEM meshes of complex, as-built geometries. Issues related to the volume segmentation of the 3D CT data as well as the use of this segmented data to tailor generic hexahedral FEM meshes to part specific geometries are discussed. The application of these techniques to FEM analysis in the medical field is reported here.

  3. X-ray computed microtomography for drop shape analysis and contact angle measurement.

    PubMed

    Santini, Maurizio; Guilizzoni, Manfredo; Fest-Santini, Stephanie

    2013-11-01

    The interaction between an atomized fluid and a solid surface has a great importance in many fields, both in adiabatic conditions and when heat transfer is involved. To investigate the behavior of many drops in contact with a surface, the first step is to study a single one of them and in that, surface wettability is key parameter. Wettability analyses are usually performed by contact angle measurement, in most cases using the sessile drop or captive bubble techniques. Such techniques require optical acquisition of a side view of the drop or bubble, with a series of drawbacks when conventional optics are used, in particular for not uniform, not planar or rough base surfaces. X-ray micro-computed tomography is therefore used to acquire a 3D scan of a drop gently deposited on a surface, with the aim to reconstruct the drop surface and to perform contact angle measurements on true cross-sections of the drop-surface couple. Comparison with contact angle measurements performed on conventional images is performed. The results evidence that the proposed technique is very promising for surface characterization and to get more accurate and detailed information about wettability characteristics.

  4. X-ray microscopy for in situ characterization of 3D nanostructural evolution in the laboratory

    NASA Astrophysics Data System (ADS)

    Hornberger, Benjamin; Bale, Hrishikesh; Merkle, Arno; Feser, Michael; Harris, William; Etchin, Sergey; Leibowitz, Marty; Qiu, Wei; Tkachuk, Andrei; Gu, Allen; Bradley, Robert S.; Lu, Xuekun; Withers, Philip J.; Clarke, Amy; Henderson, Kevin; Cordes, Nikolaus; Patterson, Brian M.

    2015-09-01

    X-ray microscopy (XRM) has emerged as a powerful technique that reveals 3D images and quantitative information of interior structures. XRM executed both in the laboratory and at the synchrotron have demonstrated critical analysis and materials characterization on meso-, micro-, and nanoscales, with spatial resolution down to 50 nm in laboratory systems. The non-destructive nature of X-rays has made the technique widely appealing, with potential for "4D" characterization, delivering 3D micro- and nanostructural information on the same sample as a function of sequential processing or experimental conditions. Understanding volumetric and nanostructural changes, such as solid deformation, pore evolution, and crack propagation are fundamental to understanding how materials form, deform, and perform. We will present recent instrumentation developments in laboratory based XRM including a novel in situ nanomechanical testing stage. These developments bridge the gap between existing in situ stages for micro scale XRM, and SEM/TEM techniques that offer nanometer resolution but are limited to analysis of surfaces or extremely thin samples whose behavior is strongly influenced by surface effects. Several applications will be presented including 3D-characterization and in situ mechanical testing of polymers, metal alloys, composites and biomaterials. They span multiple length scales from the micro- to the nanoscale and different mechanical testing modes such as compression, indentation and tension.

  5. Microfabric and anisotropy of elastic waves in sandstone - An observation using high-resolution X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Kahl, Wolf-Achim; Hinkes, Robert; Feeser, Volker; Holzheid, Astrid

    2013-04-01

    Petrophysical experiments, using acoustic velocities to characterise anisotropies of mechanical behaviour of rocks are of essential relevance to understand the geomechanical behaviour of sandstone reservoirs under changing stress fields. Here, we present high-resolution X-ray microtomography (μ-CT) as a supplementary research tool to interpret anisotropic ultrasound velocities in sandstones with variation of isotopic stress. Specimens of two Lower Cretaceous sandstones (localities Bentheim and Obernkirchen, both Germany) have been used in petrophysical laboratory experiments under dry conditions to study ultrasonic sound velocities (frequency of signal input 1 MHz). Subsequently, oriented micro-plugs drilled from the sandstone samples were investigated using high-resolution X-ray microtomography. By means of image processing of the reconstructed scan images, geometric attributes such as mean structural thickness, orientation and tortuosity were evaluated from the μ-CT data for both pore space and grain skeleton. Our observations clearly indicate the different roles of pore space and grain skeleton in regard to the propagation of ultrasonic waves: because the pores do not transmit the waves, it was sufficient to investigate the average thickness of this fabric element. In contrast, as the ultrasonic waves traverse the rock via the adjacent grains, it was necessary to survey the actual travel lengths of seismic waves in the sandstone grain skeleton.

  6. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-04-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  7. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-01-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  8. Interface Strength in NiAl-Mo Composites from 3D X-ray Microdiffraction

    SciTech Connect

    Barabash, Rozaliya; Bei, Hongbin; Gao, Yanfei; Ice, Gene E

    2011-01-01

    The depth-dependent strain gradients near buried interfaces in a model system of NiAl-Mo composite were nondestructively probed with 3-D X-ray microdiffraction. Coupled with micromechanical analysis, our study shows that the relaxation of the residual thermal strains in the NiAl-Mo composites results in the formation of a near-surface 'slip zone' with large strain gradients in both the reinforcing Mo fibers and NiAl matrix. Based on these results an approach to calculate the fiber-matrix interface strength for composite materials is suggested.

  9. Computing elastic moduli on 3-D X-ray computed tomography image stacks

    NASA Astrophysics Data System (ADS)

    Garboczi, E. J.; Kushch, V. I.

    2015-03-01

    A numerical task of current interest is to compute the effective elastic properties of a random composite material by operating on a 3D digital image of its microstructure obtained via X-ray computed tomography (CT). The 3-D image is usually sub-sampled since an X-ray CT image is typically of order 10003 voxels or larger, which is considered to be a very large finite element problem. Two main questions for the validity of any such study are then: can the sub-sample size be made sufficiently large to capture enough of the important details of the random microstructure so that the computed moduli can be thought of as accurate, and what boundary conditions should be chosen for these sub-samples? This paper contributes to the answer of both questions by studying a simulated X-ray CT cylindrical microstructure with three phases, cut from a random model system with known elastic properties. A new hybrid numerical method is introduced, which makes use of finite element solutions coupled with exact solutions for elastic moduli of square arrays of parallel cylindrical fibers. The new method allows, in principle, all of the microstructural data to be used when the X-ray CT image is in the form of a cylinder, which is often the case. Appendix A describes a similar algorithm for spherical sub-samples, which may be of use when examining the mechanical properties of particles. Cubic sub-samples are also taken from this simulated X-ray CT structure to investigate the effect of two different kinds of boundary conditions: forced periodic and fixed displacements. It is found that using forced periodic displacements on the non-geometrically periodic cubic sub-samples always gave more accurate results than using fixed displacements, although with about the same precision. The larger the cubic sub-sample, the more accurate and precise was the elastic computation, and using the complete cylindrical sample with the new method gave still more accurate and precise results. Fortran 90

  10. Comparison of Interfacial Partitioning Tracer Test and X-ray Microtomography Measurements of Immiscible Fluid-Fluid Interfacial Areas within the Identical System

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; McDonald, K.; Brusseau, M. L. L.

    2015-12-01

    The interfacial area between immiscible fluids in porous media has been demonstrated to be a critical entity for improved understanding, characterization, and simulation of multiphase flow and mass transport in the subsurface. Two general methods are available for measuring interfacial areas for 3-D porous-media systems, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Each method has their associated advantages and disadvantages. A few prior research efforts have conducted comparative analyses of the two methods, which have generally indicated disparities in measured values for natural geomedia. For these studies, however, interfacial areas were measured for separate samples with each method due to method restrictions. Thus, to date, there has been no comparative analysis conducted wherein the two measurement methods were applied to the exact same sample. To address this issue, trichloroethene-water interfacial areas were measured for a system comprising a well-sorted, natural sand (median grain diameter of 0.323 mm) using both X-ray microtomography and IPTTs. The microtomographic imaging was conducted on the same packed columns used to conduct the IPTTs. Columns were imaged before and after the IPTTs to evaluate potential impacts of the tracer tests on fluid configuration. The interfacial areas measured using IPTT were 4-6 times larger than the microtomography results, which is consistent with previous work. This disparity was attributed to the inability of the microtomography method to characterize interfacial area associated with microscopic surface roughness. The results indicate that both methods provide useful measures of interfacial area as long as their limitations are recognized.

  11. 3D printing of preclinical X-ray computed tomographic data sets.

    PubMed

    Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew

    2013-03-22

    Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.

  12. 3D X-rays application for precision measurement of the cell structure of extruded polystyrene

    NASA Astrophysics Data System (ADS)

    Lim, J. Y.; Kim, K. Y.; Shin, H. S.; Yeom, S.; Lee, S. E.

    2015-12-01

    While the thermal performance of existing insulation materials have been determined by blister gases, the thermal performance of future insulation materials will be dependent on the cell size and independent foam content as we use eco-friendly blister gases with a higher thermal conductivity. However, with the current technology we are only able to guess the whole cell size and independent foam content through SEM applied 2D fragmentary scanning but are still far from the level of accurate cell structure data extraction. Under this situation, we utilized X-ray CT scanned 3D images to identify and shape the cell structure and proposed a method of inferring the whole distribution and independent foam content as accurately as possible. According to X-ray CT scanning images and SEM images, the shape was similar but according to tracer applied CT scanning images, the cell size distribution was 380∼400 pm within the range of the general insulation diameter distribution which had the highest reliability. As for extrusion foaming polystyrene, we need additional image processing to identify the independent foam content as its density is too low. So, it is recommended to raise the 3D cell structure completeness of XPS by improving the scanning accuracy.

  13. Finite element 3D reconstruction of the pulmonary acinus imaged by synchrotron X-ray tomography

    PubMed Central

    Tsuda, A.; Filipovic, N.; Haberthür, D.; Dickie, R.; Matsui, Y.; Stampanoni, M.; Schittny, J. C.

    2008-01-01

    The alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72–80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 × 1024 pixels) with resolution of 1.4 μm3 per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing ∼7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72–80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization. PMID:18583378

  14. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    PubMed Central

    Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S.

    2015-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. PMID:26189811

  15. TU-F-BRF-04: Registration of 3D Transesophageal Echocardiography and X-Ray Fluoroscopy Using An Inverse Geometry X-Ray System

    SciTech Connect

    Speidel, M; Hatt, C; Tomkowiak, M; Raval, A; Funk, T

    2014-06-15

    Purpose: To develop a method for the fusion of 3D echocardiography and Scanning-Beam Digital X-ray (SBDX) fluoroscopy to assist with catheter device and soft tissue visualization during interventional procedures. Methods: SBDX is a technology for low-dose inverse geometry x-ray fluoroscopy that performs digital tomosynthesis at multiple planes in real time. In this study, transesophageal echocardiography (TEE) images were fused with SBDX images by estimating the 3D position and orientation (the “pose”) of the TEE probe within the x-ray coordinate system and then spatially transforming the TEE image data to match this pose. An initial pose estimate was obtained through tomosynthesis-based 3D localization of points along the probe perimeter. Position and angle estimates were then iteratively refined by comparing simulated projections of a 3D probe model against SBDX x-ray images. Algorithm performance was quantified by imaging a TEE probe in different known orientations and locations within the x-ray field (0-30 degree tilt angle, up to 50 mm translation). Fused 3D TEE/SBDX imaging was demonstrated by imaging a tissue-mimicking polyvinyl alcohol cylindrical cavity as a catheter was navigated along the cavity axis. Results: Detected changes in probe tilt angle agreed with the known changes to within 1.2 degrees. For a 50 mm translation along the source-detector axis, the detected translation was 50.3 mm. Errors for in-plane translations ranged from 0.1 to 0.9 mm. In a fused 3D TEE/SBDX display, the catheter device was well visualized and coincident with the device shadow in the TEE images. The TEE images portrayed phantom boundaries that were not evident under x-ray. Conclusion: Registration of soft tissue anatomy derived from TEE imaging and device imaging from SBDX x-ray fluoroscopy is feasible. The simultaneous 3D visualization of these two modalities may be useful in interventional procedures involving the navigation of devices to soft tissue anatomy.

  16. Search for Fluid Inclusions in a Carbonaceous Chondrite Using a New X-Ray Micro-Tomography Technique Combined with FIB Sampling

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Miyake, A.; Zolensky, M. E.; Uesugi, K.; Nakano, T.; Takeuchi, A.; Suzuki, Y.; Yoshida, K.

    2014-01-01

    Early solar system aqueous fluids are preserved in some H chondrites as aqueous fluid inclusions in halite (e.g., [1]). Although potential fluid inclusions are also expected in carbonaceous chondrites [2], they have not been surely confirmed. In order to search for these fluid inclusions, we have developped a new X-ray micro-tomography technique combined with FIB sampling and applied this techniqu to a carbanaceous chondrite. Experimental: A polished thin section of Sutter's Mill meteorite (CM) was observed with an optical microscope and FE-SEM (JEOL 7001F) for chosing mineral grains of carbonates (mainly calcite) and sulfides (FeS and ZnS) 20-50 microns in typical size, which may have aqueous fluid inclusions. Then, a "house" similar to a cube with a roof (20-30 microns in size) is sampled from the mineral grain by using FIB (FEI Quanta 200 3DS). Then, the house was atached to a thin W-needle by FIB and imaged by a SR-based imaging microtomography system with a Fresnel zone plate at beamline BL47XU, SPring-8, Japan. One sample was imaged at two X-ray energies, 7 and 8 keV, to identify mineral phases (dual-enegy microtomography: [3]). The size of voxel (pixel in 3D) was 50-80 nm, which gave the effective spatial resolution of approx. 200 nm. A terrestrial quartz sample with an aqueous fluid inclusion with a bubble was also examined as a test sample by the same method. Results and discussion: A fluid inclusion of 5-8 microns in quartz was clearly identified in a CT image. A bubble of approx. 4 microns was also identified as refraction contrast although the X-ray absorption difference between fluid and bubble is small. Volumes of the fluid and bubble were obtained from the 3D CT images. Fourteen grains of calcite, two grains of iron sulfide and one grain of (Zn,Fe)S were examined. Ten calcite, one iron sulfide and one (Zn,Fe)S grains have inclusions >1 micron in size (the maximum: approx. 5 microns). The shapes are spherical or irregular. Tiny inclusions (<1 micron

  17. A novel technique combining high-resolution synchrotron x-ray microtomography and x-ray diffraction for characterization of micro particulates

    NASA Astrophysics Data System (ADS)

    Merrifield, David R.; Ramachandran, Vasuki; Roberts, Kevin J.; Armour, Wesley; Axford, Danny; Basham, Mark; Connolley, Thomas; Evans, Gwyndaf; McAuley, Katherine E.; Owen, Robin L.; Sandy, James

    2011-11-01

    The processing of solids, such as crystals, is strongly influenced by the surface properties of the material. In recent years the pharmaceutical industry has shown great interest in identifying, or chemically speciating, the molecular components of crystal faces. Formerly, characterization of the molecular identity of crystal faces was restricted to the study of large single crystals. This would have been primarily for structure determination as part of the drug registration process. Diamond Light Source in Oxfordshire is a new synchrotron facility in the UK, having 18 operational beamlines with 4 more in the construction phase. Beamlines at this medium energy light source enable the study of micron-sized objects in great detail. It is well known that x-ray microtomography (XMT) can be used to investigate the external morphology of a crystal whereas x-ray diffraction (XRD) is used to study the molecular orientation, structure and packing within the crystal. The objective of this research is to assess the feasibility of, and thereby develop a new methodology for, characterizing the molecular identity of a particular face of a crystalline particle at a scale of scrutiny of 20-50 µm by combining these two powerful techniques. This work demonstrates the application of XMT and XRD to investigate respectively the shape and crystalline phase/orientation of relevant test crystals. This research has applications in the pharmaceutical industry in that when the exact molecular nature of a particular face is known, the important physico-pharmaceutical properties stemming from that can be better understood. Some initial data are presented and discussed.

  18. 3D reconstruction of the coronary tree from two X-ray angiographic views

    NASA Astrophysics Data System (ADS)

    Sang, Nong; Peng, Weixue; Li, Heng; Zhang, Zhen; Zhang, Tianxu

    2006-03-01

    In this paper, we develop a method for the reconstruction of 3D coronary artery based on two perspective projections acquired on a standard single plane angiographic system in the same systole. Our reconstruction is based on the model of generalized cylinders, which are generated by sweeping a two-dimensional cross section along an axis in three-dimensional space. We restrict the cross section to be circular and always perpendicular to the tangent of the axis. Firstly, the vascular centerlines of the X-ray angiography images on both projections are semiautomatically extracted by multiscale vessel tracking using Gabor filters, and the radius of the coronary are also acquired simultaneously. Secondly, the relative geometry of the two projections is determined by the gantry information and 2D matching is realized through the epipolar geometry and the consistency of the vessels. Thirdly, we determine the three-dimensional (3D) coordinates of the identified object points from the image coordinates of the matched points and the calculated imaging system geometry. Finally, we link the consequent cross sections which are processed according to the radius and the direction information to obtain the 3D structure of the artery. The proposed 3D reconstruction method is validated on real data and is shown to perform robustly and accurately in the presence of noise.

  19. Geological Carbon Sequestration: new insights from in-situ Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Voltolini, M.; Kwon, T.; Ajo Franklin, J. B.

    2012-12-01

    In a world with rapidly increasing atmospheric CO2 concentrations, a variety of scalable technologies are being considered to mitigate emissions from the combustion of fossil fuels; among these approaches, geological carbon storage (GCS) is being actively tested at a variety of subsurface sites. Despite these activities, a mechanistic understanding of multiphase flow in scCO2/brine systems at the pore scale is still being developed. The distribution of scCO2 in the pore space controls a variety of processes at the continuum scale including CO2 dissolution rate (by way of brine/CO2 contact area), capillary trapping, and residual brine fraction. Virtually no dynamic measurements of the pore-scale distribution of scCO2 in real geological samples have been made in three dimensions leaving models describing multi-phase fluid dynamics, reactive transport, and geophysical properties reliant on analog systems (often using fewer spatial dimensions, different fluids, or lower pressures) or theoretical models describing phase configurations. We present dynamic pore-scale imagery of scCO2 invasion dynamics in a 3D geological sample, in this case a quartz-rich sandstone core extracted from the Domengine Fm, a regionally extensive unit which is currently a target for future GCS operations in the Sacramento Basin. This dataset, acquired using synchrotron X-ray micro tomography (SXR-μCT) and high speed radiography, was made possible by development of a controlled P/T flow-through triaxial cell compatible with X-ray imaging in the 8-40 keV range. These experiments successfully resolved scCO2 and brine phases at a spatial resolution of 4.47 μm while the sample was kept at in situ conditions (45°C, 9 MPa pore pressure, 14 MPa hydrostatic confining stress) during drainage and imbibition cycles. Image volumes of the dry, brine saturated, and partially scCO2 saturated sample were captured and were used to correlate aspects of rock microstructure to development of the invasion front

  20. 3D-printing of undisturbed soil imaged by X-ray

    NASA Astrophysics Data System (ADS)

    Bacher, Matthias; Koestel, John; Schwen, Andreas

    2014-05-01

    The unique pore structures in Soils are altered easily by water flow. Each sample has a different morphology and the results of repetitions vary as well. Soil macropores in 3D-printed durable material avoid erosion and have a known morphology. Therefore potential and limitations of reproducing an undisturbed soil sample by 3D-printing was evaluated. We scanned an undisturbed soil column of Ultuna clay soil with a diameter of 7 cm by micro X-ray computer tomography at a resolution of 51 micron. A subsample cube of 2.03 cm length with connected macropores was cut out from this 3D-image and printed in five different materials by a 3D-printing service provider. The materials were ABS, Alumide, High Detail Resin, Polyamide and Prime Grey. The five print-outs of the subsample were tested on their hydraulic conductivity by using the falling head method. The hydrophobicity was tested by an adapted sessile drop method. To determine the morphology of the print-outs and compare it to the real soil also the print-outs were scanned by X-ray. The images were analysed with the open source program ImageJ. The five 3D-image print-outs copied from the subsample of the soil column were compared by means of their macropore network connectivity, porosity, surface volume, tortuosity and skeleton. The comparison of pore morphology between the real soil and the print-outs showed that Polyamide reproduced the soil macropore structure best while Alumide print-out was the least detailed. Only the largest macropore was represented in all five print-outs. Printing residual material or printing aid material remained in and clogged the pores of all print-out materials apart from Prime Grey. Therefore infiltration was blocked in these print-outs and the materials are not suitable even though the 3D-printed pore shapes were well reproduced. All of the investigated materials were insoluble. The sessile drop method showed angles between 53 and 85 degrees. Prime Grey had the fastest flow rate; the

  1. Registration of 3D+t coronary CTA and monoplane 2D+t X-ray angiography.

    PubMed

    Metz, Coert T; Schaap, Michiel; Klein, Stefan; Baka, Nora; Neefjes, Lisan A; Schultz, Carl J; Niessen, Wiro J; van Walsum, Theo

    2013-05-01

    A method for registering preoperative 3D+t coronary CTA with intraoperative monoplane 2D+t X-ray angiography images is proposed to improve image guidance during minimally invasive coronary interventions. The method uses a patient-specific dynamic coronary model, which is derived from the CTA scan by centerline extraction and motion estimation. The dynamic coronary model is registered with the 2D+t X-ray sequence, considering multiple X-ray time points concurrently, while taking breathing induced motion into account. Evaluation was performed on 26 datasets of 17 patients by comparing projected model centerlines with manually annotated centerlines in the X-ray images. The proposed 3D+t/2D+t registration method performed better than a 3D/2D registration method with respect to the accuracy and especially the robustness of the registration. Registration with a median error of 1.47 mm was achieved.

  2. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  3. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-01

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ˜80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  4. Resonant x-ray scattering in 3d-transition-metal oxides: Anisotropy and charge orderings

    NASA Astrophysics Data System (ADS)

    Subías, G.; García, J.; Blasco, J.; Herrero-Martín, J.; Sánchez, M. C.

    2009-11-01

    The structural, magnetic and electronic properties of transition metal oxides reflect in atomic charge, spin and orbital degrees of freedom. Resonant x-ray scattering (RXS) allows us to perform an accurate investigation of all these electronic degrees. RXS combines high-Q resolution x-ray diffraction with the properties of the resonance providing information similar to that obtained by atomic spectroscopy (element selectivity and a large enhancement of scattering amplitude for this particular element and sensitivity to the symmetry of the electronic levels through the multipole electric transitions). Since electronic states are coupled to the local symmetry, RXS reveals the occurrence of symmetry breaking effects such as lattice distortions, onset of electronic orbital ordering or ordering of electronic charge distributions. We shall discuss the strength of RXS at the K absorption edge of 3d transition-metal oxides by describing various applications in the observation of local anisotropy and charge disproportionation. Examples of these resonant effects are (I) charge ordering transitions in manganites, Fe3O4 and ferrites and (II) forbidden reflections and anisotropy in Mn3+ perovskites, spinel ferrites and cobalt oxides. In all the studied cases, the electronic (charge and/or anisotropy) orderings are determined by the structural distortions.

  5. Multi-contrast 3D X-ray imaging of porous and composite materials

    SciTech Connect

    Sarapata, Adrian; Herzen, Julia; Ruiz-Yaniz, Maite; Zanette, Irene; Rack, Alexander; Pfeiffer, Franz

    2015-04-13

    Grating-based X-ray computed tomography allows for simultaneous and nondestructive determination of the full X-ray complex index of refraction and the scattering coefficient distribution inside an object in three dimensions. Its multi-contrast capabilities combined with a high resolution of a few micrometers make it a suitable tool for assessing multiple phases inside porous and composite materials such as concrete. Here, we present quantitative results of a proof-of-principle experiment performed on a concrete sample. Thanks to the complementarity of the contrast channels, more concrete phases could be distinguished than in conventional attenuation-based imaging. The phase-contrast reconstruction shows high contrast between the hardened cement paste and the aggregates and thus allows easy 3D segmentation. Thanks to the dark-field image, micro-cracks inside the coarse aggregates are visible. We believe that these results are extremely interesting in the field of porous and composite materials studies because of unique information provided by grating interferometry in a non-destructive way.

  6. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.

    2011-02-01

    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  7. High cone-angle x-ray computed micro-tomography with 186 GigaVoxel datasets

    NASA Astrophysics Data System (ADS)

    Myers, Glenn R.; Latham, Shane J.; Kingston, Andrew M.; Kolomazník, Jan; Krajíček, Václav; Krupka, TomáÅ.¡; Varslot, Trond K.; Sheppard, Adrian P.

    2016-10-01

    X-ray computed micro-tomography systems are able to collect data with sub-micron resolution. This high- resolution imaging has many applications but is particularly important in the study of porous materials, where the sub-micron structure can dictate large-scale physical properties (e.g. carbonates, shales, or human bone). Sample preparation and mounting become diffiult for these materials below 2mm diameter: consequently, a typical ultra-micro-CT reconstruction volume (with sub-micron resolution) will be around 3k x 3k x 10k voxels, with some reconstructions becoming much larger. In this paper, we discuss the hardware (MPI-parallel CPU/GPU) and software (python/C++/CUDA) tools used at the ANU CTlab to reconstruct 186 GigaVoxel datasets.

  8. X-ray Synchrotron Microtomography of a silicified Jurassic Cheirolepidiaceae (Conifer) cone: histology and morphology of Pararaucaria collinsonae sp. nov.

    PubMed

    Steart, David C; Spencer, Alan R T; Garwood, Russell J; Hilton, Jason; Munt, Martin C; Needham, John; Kenrick, Paul

    2014-01-01

    We document a new species of ovulate cone (Pararaucaria collinsonae) on the basis of silicified fossils from the Late Jurassic Purbeck Limestone Group of southern England (Tithonian Stage: ca. 145 million years). Our description principally relies on the anatomy of the ovuliferous scales, revealed through X-ray synchrotron microtomography (SRXMT) performed at the Diamond Light Source (UK). This study represents the first application of SRXMT to macro-scale silicified plant fossils, and demonstrates the significant advantages of this approach, which can resolve cellular structure over lab-based X-ray computed microtomography (XMT). The method enabled us to characterize tissues and precisely demarcate their boundaries, elucidating organ shape, and thus allowing an accurate assessment of affinities. The cones are broadly spherical (ca. 1.3 cm diameter), and are structured around a central axis with helically arranged bract/scale complexes, each of which bares a single ovule. A three-lobed ovuliferous scale and ovules enclosed within pocket-forming tissue, demonstrate an affinity with Cheirolepidiaceae. Details of vascular sclerenchyma bundles, integument structure, and the number and attachment of the ovules indicate greatest similarity to P. patagonica and P. carrii. This fossil develops our understanding of the dominant tree element of the Purbeck Fossil Forest, providing the first evidence for ovulate cheirolepidiaceous cones in Europe. Alongside recent discoveries in North America, this significantly extends the known palaeogeographic range of Pararaucaria, supporting a mid-palaeolatitudinal distribution in both Gondwana and Laurasia during the Late Jurassic. Palaeoclimatic interpretations derived from contemporaneous floras, climate sensitive sediments, and general circulation climate models indicate that Pararaucaria was a constituent of low diversity floras in semi-arid Mediterranean-type environments.

  9. X-ray Synchrotron Microtomography of a silicified Jurassic Cheirolepidiaceae (Conifer) cone: histology and morphology of Pararaucaria collinsonae sp. nov.

    PubMed Central

    Steart, David C.; Spencer, Alan R.T.; Garwood, Russell J.; Hilton, Jason; Munt, Martin C.; Needham, John

    2014-01-01

    We document a new species of ovulate cone (Pararaucaria collinsonae) on the basis of silicified fossils from the Late Jurassic Purbeck Limestone Group of southern England (Tithonian Stage: ca. 145 million years). Our description principally relies on the anatomy of the ovuliferous scales, revealed through X-ray synchrotron microtomography (SRXMT) performed at the Diamond Light Source (UK). This study represents the first application of SRXMT to macro-scale silicified plant fossils, and demonstrates the significant advantages of this approach, which can resolve cellular structure over lab-based X-ray computed microtomography (XMT). The method enabled us to characterize tissues and precisely demarcate their boundaries, elucidating organ shape, and thus allowing an accurate assessment of affinities. The cones are broadly spherical (ca. 1.3 cm diameter), and are structured around a central axis with helically arranged bract/scale complexes, each of which bares a single ovule. A three-lobed ovuliferous scale and ovules enclosed within pocket-forming tissue, demonstrate an affinity with Cheirolepidiaceae. Details of vascular sclerenchyma bundles, integument structure, and the number and attachment of the ovules indicate greatest similarity to P. patagonica and P. carrii. This fossil develops our understanding of the dominant tree element of the Purbeck Fossil Forest, providing the first evidence for ovulate cheirolepidiaceous cones in Europe. Alongside recent discoveries in North America, this significantly extends the known palaeogeographic range of Pararaucaria, supporting a mid-palaeolatitudinal distribution in both Gondwana and Laurasia during the Late Jurassic. Palaeoclimatic interpretations derived from contemporaneous floras, climate sensitive sediments, and general circulation climate models indicate that Pararaucaria was a constituent of low diversity floras in semi-arid Mediterranean-type environments. PMID:25374776

  10. Multiple-scattering approach to the x-ray-absorption spectra of 3d transition metals

    NASA Astrophysics Data System (ADS)

    Kitamura, Michihide; Muramatsu, Shinji; Sugiura, Chikara

    1986-04-01

    The x-ray-absorption near-edge structure (XANES) has been calculated for the 3d transition metals Cr, Fe, Ni, and Cu from a multiple-scattering approach within the muffin-tin-potential approximation, as a first step to studying the XANES for complicated materials. The muffin-tin potential is constructed via the Mattheiss prescription using the atomic data of Herman and Skillman. It is found that the XANES is sensitive to the potential used and that the calculated XANES spectra reproduce the number of peaks and their separations observed experimentally. The final spectra, including the lifetime-broadening effect, show the general features of each material. We emphasize that the multiple-scattering theory which can be applied to the disordered systems as well as the ordered ones may be promising as a tool to analyze the XANES of complicated materials.

  11. 3-D X-ray tomography of diamondiferous mantle eclogite xenoliths, Siberia: A review

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Sobolev, Nikolay V.; Pernet-Fisher, John F.; Ketcham, Richard A.; Maisano, Jessica A.; Pokhilenko, Lyudmila N.; Taylor, Dawn; Taylor, Lawrence A.

    2015-04-01

    -systems'. Diamonds observed completely enclosed in garnets suggest an early diamond-forming event prior to major re-crystallization and eclogite formation during subduction. The occurrence of diamond in association with embayed garnets suggests that diamond grew at the expense of the hosting silicate protolith. In addition, the spatial relationships of diamonds with metasomatic pathways, which are generally interpreted to result from late-stage proto-kimberlitic fluid percolation, indicate a period of diamond growth occurring close to, but prior to, the time of kimberlite emplacement. Furthermore, the paragenesis of sulfides within eclogite xenoliths are described using 3-D models for entire xenoliths volumes, providing important constraints of the timing of sulfide mobilization within the mantle. Three-D animations created using X-ray tomography data for ten of the xenoliths can be viewed at the following link: http://eps.utk.edu/faculty/taylor/tomography.php

  12. X-ray phase microtomography with a single grating for high-throughput investigations of biological tissue

    PubMed Central

    Zdora, Marie-Christine; Vila-Comamala, Joan; Schulz, Georg; Khimchenko, Anna; Hipp, Alexander; Cook, Andrew C.; Dilg, Daniel; David, Christian; Grünzweig, Christian; Rau, Christoph; Thibault, Pierre; Zanette, Irene

    2017-01-01

    The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM. PMID:28271016

  13. X-ray phase microtomography with a single grating for high-throughput investigations of biological tissue.

    PubMed

    Zdora, Marie-Christine; Vila-Comamala, Joan; Schulz, Georg; Khimchenko, Anna; Hipp, Alexander; Cook, Andrew C; Dilg, Daniel; David, Christian; Grünzweig, Christian; Rau, Christoph; Thibault, Pierre; Zanette, Irene

    2017-02-01

    The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.

  14. Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology

    NASA Astrophysics Data System (ADS)

    Töpperwien, Mareike; Krenkel, Martin; Quade, Felix; Salditt, Tim

    2016-09-01

    Due to the large penetration depth and small wavelength hard x-rays offer a unique potential for 3D biomedical and biological imaging, combining capabilities of high resolution and large sample volume. However, in classical absorption-based computed tomography, soft tissue only shows a weak contrast, limiting the actual resolution. With the advent of phase-contrast methods, the much stronger phase shift induced by the sample can now be exploited. For high resolution, free space propagation behind the sample is particularly well suited to make the phase shift visible. Contrast formation is based on the self-interference of the transmitted beam, resulting in object-induced intensity modulations in the detector plane. As this method requires a sufficiently high degree of spatial coherence, it was since long perceived as a synchrotron-based imaging technique. In this contribution we show that by combination of high brightness liquid-metal jet microfocus sources and suitable sample preparation techniques, as well as optimized geometry, detection and phase retrieval, excellent three-dimensional image quality can be obtained, revealing the anatomy of a cobweb spider in high detail. This opens up new opportunities for 3D virtual histology of small organisms. Importantly, the image quality is finally augmented to a level accessible to automatic 3D segmentation.

  15. Single grating phase contrast imaging for x-ray microscopy and microtomography

    NASA Astrophysics Data System (ADS)

    Bruyndonckx, P.; Sasov, A.; Pauwels, B.

    2014-09-01

    The grating based approach to phase contrast imaging is rather inefficient in the use of the available x-ray flux due to the presence of two absorption gratings and it requires longer scan times compared to conventional CT because multiple images are needed at each projection angle. To avoid these drawbacks, a proof-of-principle experiment was developed to obtain absorption, phase contrast (DPC) and dark field images (DCI) in a single exposure using only a non-absorbing phase grating, a micro-focus source in cone-beam geometry and a highresolution x-ray detector.

  16. Local ISM 3D Distribution and Soft X-ray Background Inferences for Nearby Hot Gas

    NASA Technical Reports Server (NTRS)

    Puspitarini, L.; Lallement, R.; Snowden, Steven L.; Vergely, J.-L.; Snowden, S.

    2014-01-01

    Three-dimensional (3D) interstellar medium (ISM) maps can be used to locate not only interstellar (IS) clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae, and are filled by hot gas. To demonstrate this, and to derive a clearer picture of the local ISM, we compare our recent 3D IS dust distribution maps to the ROSAT diffuse Xray background maps after removal of heliospheric emission. In the Galactic plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the soft (0.25 keV) background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust to gas ratio and homogeneous 106 K hot gas filling the cavities, we modeled in a simple way the 0.25 keV surface brightness along the Galactic plane as seen from the Sun, taking into account the absorption by the mapped clouds. The data-model comparison favors the existence of hot gas in the solar neighborhood, the so-called Local Bubble (LB). The inferred mean pressure in the local cavities is found to be approx.9,400/cu cm K, in agreement with previous studies, providing a validation test for the method. On the other hand, the model overestimates the emission from the huge cavities located in the third quadrant. Using CaII absorption data, we show that the dust to CaII ratio is very small in those regions, implying the presence of a large quantity of lower temperature (non-X-ray emitting) ionized gas and as a consequence a reduction of the volume filled by hot gas, explaining at least part of the discrepancy. In the meridian plane, the two main brightness enhancements coincide well with the LB's most elongated parts and chimneys connecting the LB to the halo, but no particular nearby cavity is found towards the enhancement in the direction of the bright North Polar Spur (NPS) at high latitude. We searched in the 3D maps for the source regions of the higher energy

  17. Enhanced quantification for 3D SEM–EDS: Using the full set of available X-ray lines

    PubMed Central

    Burdet, Pierre; Croxall, S.A.; Midgley, P.A.

    2015-01-01

    An enhanced method to quantify energy dispersive spectra recorded in 3D with a scanning electron microscope (3D SEM–EDS) has been previously demonstrated. This paper presents an extension of this method using all the available X-ray lines generated by the beam. The extended method benefits from using high energy lines, that are more accurately quantified, and from using soft X-rays that are highly absorbed and thus more surface sensitive. The data used to assess the method are acquired with a dual beam FIB/SEM investigating a multi-element Ni-based superalloy. A high accelerating voltage, needed to excite the highest energy X-ray line, results in two available X-ray lines for several elements. The method shows an improved compositional quantification as well as an improved spatial resolution. PMID:25461593

  18. Technical Note: Synchrotron-based high-energy x-ray phase sensitive microtomography for biomedical research

    SciTech Connect

    Liu, Huiqiang; Wu, Xizeng E-mail: tqxiao@sinap.ac.cn; Xiao, Tiqiao E-mail: tqxiao@sinap.ac.cn

    2015-10-15

    Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed by phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.

  19. Synchrotron radiation X-ray microtomography and histomorphometry for evaluation of chemotherapy effects in trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Alessio, R.; Nogueira, L. P.; Almeida, A. P.; Colaço, M. V.; Braz, D.; Andrade, C. B. V.; Salata, C.; Ferreira-Machado, S. C.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2014-04-01

    Three-dimensional microtomography has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to bone changes. In the present work, the femur heads of rats treated with chemotherapy drugs were evaluated by 3D histomorphometry using synchrotron radiation microcomputed tomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur heads of rats in both analyzed groups.

  20. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    SciTech Connect

    Ando, Masami; Bando, Hiroko; Ueno, Ei

    2007-01-19

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm x 22 mm x 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  1. Assessment of the 3 D Pore Structure and Individual Components of Preshaped Catalyst Bodies by X-Ray Imaging.

    PubMed

    da Silva, Julio C; Mader, Kevin; Holler, Mirko; Haberthür, David; Diaz, Ana; Guizar-Sicairos, Manuel; Cheng, Wu-Cheng; Shu, Yuying; Raabe, Jörg; Menzel, Andreas; van Bokhoven, Jeroen A

    2015-02-01

    Porosity in catalyst particles is essential because it enables reactants to reach the active sites and it enables products to leave the catalyst. The engineering of composite-particle catalysts through the tuning of pore-size distribution and connectivity is hampered by the inability to visualize structure and porosity at critical-length scales. Herein, it is shown that the combination of phase-contrast X-ray microtomography and high-resolution ptychographic X-ray tomography allows the visualization and characterization of the interparticle pores at micro- and nanometer-length scales. Furthermore, individual components in preshaped catalyst bodies used in fluid catalytic cracking, one of the most used catalysts, could be visualized and identified. The distribution of pore sizes, as well as enclosed pores, which cannot be probed by traditional methods, such as nitrogen physisorption and isotherm analysis, were determined.

  2. 3D Analysis of Porosity in a Ceramic Coating Using X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Klement, Uta; Ekberg, Johanna; Kelly, Stephen T.

    2017-02-01

    Suspension plasma spraying (SPS) is a new, innovative plasma spray technique using a feedstock consisting of fine powder particles suspended in a liquid. Using SPS, ceramic coatings with columnar microstructures have been produced which are used as topcoats in thermal barrier coatings. The microstructure contains a wide pore size range consisting of inter-columnar spacings, micro-pores and nano-pores. Hence, determination of total porosity and pore size distribution is a challenge. Here, x-ray microscopy (XRM) has been applied for describing the complex pore space of the coatings because of its capability to image the (local) porosity within the coating in 3D at a resolution down to 50 nm. The possibility to quantitatively segment the analyzed volume allows analysis of both open and closed porosity. For an yttria-stabilized zirconia coating with feathery microstructure, both open and closed porosity were determined and it could be revealed that 11% of the pore volumes (1.4% of the total volume) are closed pores. The analyzed volume was reconstructed to illustrate the distribution of open and closed pores in 3D. Moreover, pore widths and pore volumes were determined. The results on the complex pore space obtained by XRM are discussed in connection with other porosimetry techniques.

  3. Volumetric properties of magnesium silicate glasses and supercooled liquid at high pressure by X-ray microtomography

    SciTech Connect

    Lesher, Charles E.; Wang, Yanbin; Gaudio, Sarah; Clark, Alisha; Nishiyama, Nori; Rivers, Mark

    2009-06-01

    The volumetric properties of silicate glasses and supercooled liquid are examined at high pressures and temperatures using X-ray computed tomography (CT) and absorption. The high pressure X-ray microtomography (HPXMT) system at the Advanced Photon Source, Argonne National Laboratory (GeoSoilEnvironCARS 13-BM-D beamline) consists of two opposing anvils compressed within an X-ray-transparent containment ring supported by thrust bearings and loaded using a 250-ton hydraulic press. This system permits the pressure cell to rotate under the load, while collecting radiographs through at least 180{sup o} of rotation. The 13-BM-D beamline permits convenient switching between monochromatic radiation required for radiography and polychromatic radiation for pressure determination by energy dispersive diffraction. We report initial results on several refractory magnesium silicate glasses synthesized by levitation laser heating. Volume changes during room temperature compression of Mg-silicate glasses with 33 mol% and 38 mol% SiO2 up to 11.5 GPa give an isothermal bulk moduli of 93--100 GPa for a K' of 1. These values are consistent with ultrasonic measurements of more silica-rich glasses. The volumetric properties of amorphous MgSiO{sub 3} at 2 GPa were examined during annealing up to 1000 C. We consider the consequences of heating through the glass transition and the implications for thermal expansivity of supercooled liquids at high pressure. Our results illustrate the capabilities of HPXMT for studies of refractory glasses and liquids at high pressure and offer strategies for future studies of liquid densities within the melting interval for magmas in planet interiors.

  4. An integrated system for 3D hip joint reconstruction from 2D X-rays: a preliminary validation study.

    PubMed

    Schumann, Steffen; Liu, Li; Tannast, Moritz; Bergmann, Mathias; Nolte, Lutz-P; Zheng, Guoyan

    2013-10-01

    The acquisition of conventional X-ray radiographs remains the standard imaging procedure for the diagnosis of hip-related problems. However, recent studies demonstrated the benefit of using three-dimensional (3D) surface models in the clinical routine. 3D surface models of the hip joint are useful for assessing the dynamic range of motion in order to identify possible pathologies such as femoroacetabular impingement. In this paper, we present an integrated system which consists of X-ray radiograph calibration and subsequent 2D/3D hip joint reconstruction for diagnosis and planning of hip-related problems. A mobile phantom with two different sizes of fiducials was developed for X-ray radiograph calibration, which can be robustly detected within the images. On the basis of the calibrated X-ray images, a 3D reconstruction method of the acetabulum was developed and applied together with existing techniques to reconstruct a 3D surface model of the hip joint. X-ray radiographs of dry cadaveric hip bones and one cadaveric specimen with soft tissue were used to prove the robustness of the developed fiducial detection algorithm. Computed tomography scans of the cadaveric bones were used to validate the accuracy of the integrated system. The fiducial detection sensitivity was in the same range for both sizes of fiducials. While the detection sensitivity was 97.96% for the large fiducials, it was 97.62% for the small fiducials. The acetabulum and the proximal femur were reconstructed with a mean surface distance error of 1.06 and 1.01 mm, respectively. The results for fiducial detection sensitivity and 3D surface reconstruction demonstrated the capability of the integrated system for 3D hip joint reconstruction from 2D calibrated X-ray radiographs.

  5. Effective atomic number and density determination of rocks by X-ray microtomography.

    PubMed

    Jussiani, Eduardo Inocente; Appoloni, Carlos Roberto

    2015-03-01

    Microtomography, as a non-destructive technique, has become an important tool in studies of internal properties of materials. Recently, interest using this methodology in characterizing the samples with respect to their compositions, especially rocks, has grown. Two physical properties, density and effective atomic number, are important in determining the composition of rocks. In this work, six samples of materials with densities that varied from 2.42 to 6.84g/cm(3) and effective atomic numbers from 15.0 to 77.3 were studied. The measurements were made using a SkyScan-Bruker 1172 microtomography apparatus operating in voltages at 50, 60, 70, 80, 90 and 100kV with a resolution of 13.1μm. Through micro-CT images, an average gray scale was calculated for the samples and correlation studies of this value with the density and the effective atomic number of samples were made. Linear fits were obtained for each energy value. The obtained functions were tested with samples of Amazonite, Gabbro, Sandstone and Sodalite.

  6. Single and double grating-based X-ray microtomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thalmann, P.; Bikis, C.; Hipp, A.; Müller, B.; Hieber, S. E.; Schulz, G.

    2017-02-01

    Hard X-ray phase contrast imaging techniques have become most suitable for the non-destructive three-dimensional visualization of soft tissues at the microscopic level. Among the hard X-ray grating interferometry methods, a single-grating approach (XSGI) has been implemented by simplifying the established double-grating interferometer (XDGI). We quantitatively compare the XSGI and XDGI tomograms of a human nerve and demonstrate that both techniques provide sufficient contrast to allow for the distinction of tissue types. The two-fold binned data show spatial resolution of (5.2 ± 0.6) μm and (10.7 ± 0.6) μm, respectively, underlying the performance of XSGI in soft tissue imaging.

  7. Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert

    2012-11-01

    Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.

  8. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    DOE PAGES

    Willey, T. M.; Champley, K.; Hodgin, R.; ...

    2016-06-17

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. The work described here outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ~80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst,more » the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.« less

  9. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    SciTech Connect

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-17

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. The work described here outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ~80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  10. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  11. Quantification of swelling and erosion in the controlled release of a poorly water-soluble drug using synchrotron X-ray computed microtomography.

    PubMed

    Yin, Xianzhen; Li, Haiyan; Guo, Zhen; Wu, Li; Chen, Fangwei; de Matas, Marcel; Shao, Qun; Xiao, Tiqiao; York, Peter; He, You; Zhang, Jiwen

    2013-10-01

    The hydration layer plays a key role in the controlled drug release of gel-forming matrix tablets. For poorly water-soluble drugs, matrix erosion is considered as the rate limiting step for drug release. However, few investigations have reported on the quantification of the relative importance of swelling and erosion in the release of poorly soluble drugs, and three-dimensional (3D) structures of the hydration layer are poorly understood. Here, we employed synchrotron radiation X-ray computed microtomography with 9-μm resolution to investigate the hydration dynamics and to quantify the relative importance of swelling and erosion on felodipine release by a statistical model. The 3D structures of the hydration layer were revealed by the reconstructed 3D rendering of tablets. Twenty-three structural parameters related to the volume, the surface area (SA), and the specific surface area (SSA) for the hydration layer and the tablet core were calculated. Three dominating parameters, including SA and SSA of the hydration layer (SA hydration layer and SSA hydration layer ) and SA of the glassy core (SA glassy core ), were identified to establish the statistical model. The significance order of independent variables was SA hydration layer > SSA hydration layer > SA glassy core , which quantitatively indicated that the release of felodipine was dominated by a combination of erosion and swelling. The 3D reconstruction and structural parameter calculation methods in our study, which are not available from conventional methods, are efficient tools to quantify the relative importance of swelling and erosion in the controlled release of poorly soluble drugs from a structural point of view.

  12. Visualising, segmenting and analysing heterogenous glacigenic sediments using 3D x-ray CT.

    NASA Astrophysics Data System (ADS)

    Carr, Simon; Diggens, Lucy; Groves, John; O'Sullivan, Catherine; Marsland, Rhona

    2015-04-01

    Whilst there has been significant application of 3D x-ray CT to geological contexts, much of this work has focused on examining properties such as porosity, which are important in reservoir assessment and hydrological evaluations. There has been considerably less attention given to the analysis of the properties of sediments themselves. One particular challenge in CT analysis is to effectively observe and discriminate the relationships between the skeleton and matrix of a sediment. This is particularly challenging in glacial sediments, which comprise an admixture of particles of a wide range of size, morphology and composition within a variably-consolidated sediment body. A key sedimentological component of glacial sediments is their fabric properties. Till fabric data has long been applied to the analysis of the coupling between glaciers and their deformable substrates. This work has typically focused on identifying former ice-flow directions, processes of till deformation and emplacement, and such data is often used to reconcile the sedimentary evidence of former glaciation with the predicted glacier and ice-sheet dynamics derived from numerical models. The collection and interpretation of till fabric data has received significant criticism in recent years, with issues such as low sample populations (typically ~50 grains per sample), small-scale spatial variation in till fabric and operator bias during data collection, all of which compromise the reliability of macro-scale till fabric analysis. Recent studies of micro-scale till fabrics have substantially added to our understanding, and suggest there is systematic variation in particle fabric as a function of particle size. However, these findings are compromised by the 2D nature of the samples (derived from thin sections) capturing only apparent orientations of particles, and are again limited to relatively small datasets. As such, there are fundamental limitations in the quality and application of till fabric

  13. Analytic 3D Imaging of Mammalian Nucleus at Nanoscale Using Coherent X-Rays and Optical Fluorescence Microscopy

    PubMed Central

    Song, Changyong; Takagi, Masatoshi; Park, Jaehyun; Xu, Rui; Gallagher-Jones, Marcus; Imamoto, Naoko; Ishikawa, Tetsuya

    2014-01-01

    Despite the notable progress that has been made with nano-bio imaging probes, quantitative nanoscale imaging of multistructured specimens such as mammalian cells remains challenging due to their inherent structural complexity. Here, we successfully performed three-dimensional (3D) imaging of mammalian nuclei by combining coherent x-ray diffraction microscopy, explicitly visualizing nuclear substructures at several tens of nanometer resolution, and optical fluorescence microscopy, cross confirming the substructures with immunostaining. This demonstrates the successful application of coherent x-rays to obtain the 3D ultrastructure of mammalian nuclei and establishes a solid route to nanoscale imaging of complex specimens. PMID:25185543

  14. Radial lens distortion correction with sub-pixel accuracy for X-ray micro-tomography.

    PubMed

    Vo, Nghia T; Atwood, Robert C; Drakopoulos, Michael

    2015-12-14

    Distortion correction or camera calibration for an imaging system which is highly configurable and requires frequent disassembly for maintenance or replacement of parts needs a speedy method for recalibration. Here we present direct techniques for calculating distortion parameters of a non-linear model based on the correct determination of the center of distortion. These techniques are fast, very easy to implement, and accurate at sub-pixel level. The implementation at the X-ray tomography system of the I12 beamline, Diamond Light Source, which strictly requires sub-pixel accuracy, shows excellent performance in the calibration image and in the reconstructed images.

  15. Microscopy and elemental analysis in tissue samples using computed microtomography with synchrotron x-rays

    SciTech Connect

    Spanne, P.; Rivers, M.L.

    1988-01-01

    The initial development shows that CMT using synchrotron x-rays can be developed to ..mu..m spatial resolution and perhaps even better. This creates a new microscopy technique which is of special interest in morphological studies of tissues, since no chemical preparation or slicing of the sample is necessary. The combination of CMT with spatial resolution in the ..mu..m range and elemental mapping with sensitivity in the ppM range results in a new tool for elemental mapping at the cellular level. 7 refs., 1 fig.

  16. A comparison of different approaches for imaging cracks in composites by X-ray microtomography

    PubMed Central

    Yu, B.; Bradley, R. S.; Withers, P. J.

    2016-01-01

    X-ray computed tomography (CT) has emerged as a key imaging tool in the characterization of materials, allowing three-dimensional visualization of an object non-destructively as well as enabling the monitoring of damage accumulation over time through time-lapse imaging. However, small defects and cracks can be difficult to detect, particularly in composite materials where low-contrast, plate-like geometries of large area can compromise detectability. Here, we investigate a number of strategies aimed at increasing the capability of X-ray CT to detect composite damage such as transverse ply cracking and delamination, looking specifically at a woven glass fibre-reinforced three-dimensional composite. High-resolution region of interest (ROI) scanning, in situ loading, phase contrast and contrast agents are examined systematically as strategies for improving the defect detectability. Spatial resolution, contrast, signal-to-noise ratio, full width at half maximum, user friendliness and measurement time are all considered. Taken together, the results suggest that high-resolution ROI scanning combined with the increased contrast resulting from staining give the highest defect detectability. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242291

  17. Projection-based metal-artifact reduction for industrial 3D X-ray computed tomography.

    PubMed

    Amirkhanov, Artem; Heinzl, Christoph; Reiter, Michael; Kastner, Johann; Gröller, M Eduard

    2011-12-01

    Multi-material components, which contain metal parts surrounded by plastic materials, are highly interesting for inspection using industrial 3D X-ray computed tomography (3DXCT). Examples of this application scenario are connectors or housings with metal inlays in the electronic or automotive industry. A major problem of this type of components is the presence of metal, which causes streaking artifacts and distorts the surrounding media in the reconstructed volume. Streaking artifacts and dark-band artifacts around metal components significantly influence the material characterization (especially for the plastic components). In specific cases these artifacts even prevent a further analysis. Due to the nature and the different characteristics of artifacts, the development of an efficient artifact-reduction technique in reconstruction-space is rather complicated. In this paper we present a projection-space pipeline for metal-artifacts reduction. The proposed technique first segments the metal in the spatial domain of the reconstructed volume in order to separate it from the other materials. Then metal parts are forward-projected on the set of projections in a way that metal-projection regions are treated as voids. Subsequently the voids, which are left by the removed metal, are interpolated in the 2D projections. Finally, the metal is inserted back into the reconstructed 3D volume during the fusion stage. We present a visual analysis tool, allowing for interactive parameter estimation of the metal segmentation. The results of the proposed artifact-reduction technique are demonstrated on a test part as well as on real world components. For these specimens we achieve a significant reduction of metal artifacts, allowing an enhanced material characterization.

  18. Magma mixing in the Yellowstone Plateau Volcanic Field brought to light by X-ray microtomography and chemical analysis

    NASA Astrophysics Data System (ADS)

    Morgavi, Daniele; Arzilli, Fabio; Pritchard, Chad; Perugini, Diego; Mancini, Lucia; Larson, Peter; Dingwell, Donald Bruce

    2015-04-01

    The Yellowstone Plateau Volcanic Field (YVF) hosts at least four mixed magma complexes (Wilcox, 1944; Christiansen et al. 2007; Pritchard et al., 2013). We focus on the well-exposed Grizzly Lake complex. The main evidence of mixing in igneous rocks is commonly found as textural heterogeneities, such as i) flow structures, ii) magmatic enclaves and iii) physico-chemical disequilibria in melt and crystals (e.g. Perugini and Poli, 2012). From the geochemical and mineralogical point of view, quantitative and qualitative analyses of chemical and textural heterogeneity in mixed rocks highlights the important role of mixing dynamics in producing geochemical complexities and heterogeneities (Kratzmann et al., 2009). Zoned crystals and complex mineralogical associations are also considered, in many cases, evidence for mixing (e.g., Murphy at al., 1998; Couch et al., 2001). The generation of such textures implies the development of large contact interfaces between interacting melts/solids through which chemical and crystals exchanges are strongly amplified, leading to highly variable degrees of homogenization depending on differing element mobility (e.g. Perugini et al., 2006; 2008; De Campos et al., 2011; Perugini et al., 2012; Perugini and Poli, 2012; Morgavi et al., 2013a, b, c). Despite the abundant literature regarding magma mixing processes, only a few studies are focused on describing and quantifying the inter-relationship between the morphological texture of mixing patterns and the geochemical variability in mixed rhyolitic and basaltic complexes. (Freundt and Schmincke 1992; Morgavi et al., 2013 a, b, c;). Here, we combine two analytical techniques; X-ray computed microtomography and microprobe analysis to study the texture and chemistry of mixed rocks. Since mixed rocks of Grizzly Lake in the YVF had a very complex history and evolution, a significant amount of chemical measurements were needed to characterize the phases. In addition, X-ray microtomography was

  19. Identifying microbial habitats in soil using quantum dots and x-ray fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Dohnalkova, A.; Durall, D. M.; Gursoy, D.; Jones, M. D.; Kovarik, L.; Lai, B.; Roehrig, C.; Sullivan, S.; Vogt, S.; Kemner, K. M.

    2015-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout the three-dimensional pore network of the soil. Here we use a novel combination of imaging techniques with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to locate bacteria in the three-dimensional pore network of a soil aggregate. First, we show using confocal and aberration-corrected transmission electron microscopies that bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Pseudomonas protogens) actively take up and internalize CdSe/ZnS core/shell QDs conjugated to biologically relevant substrates. Next, we show that cells bearing QDs can be identified using fluorescence imaging with hard x-rays at 2ID-D at the Advanced Photon Source (APS). Finally, we demonstrate that the Se constituent to the QDs can be used to label bacteria in three-dimensional tomographic reconstructions of natural soil at 0.5 nm spatial resolution using hard x-rays at 2ID-E at the APS. This is the first time soil bacteria have been imaged in the intact soil matrix at such high resolution. These results offer a new way to experimentally investigate basic bacterial ecology in situ, revealing constraints on microbial function in soil that will help improve connections between pore-scale and ecosystem-scale processes in models.

  20. X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions

    NASA Astrophysics Data System (ADS)

    Davis, A. K.; Michel, D. T.; Craxton, R. S.; Epstein, R.; Hohenberger, M.; Mo, T.; Froula, D. H.

    2016-11-01

    As hydrodynamics codes develop to increase understanding of three-dimensional (3-D) effects in inertial confinement fusion implosions, diagnostics must adapt to evaluate their predictive accuracy. A 3-D radiation postprocessor was developed to investigate the use of soft x-ray self-emission images of an imploding target to measure the size of nonuniformities on the target surface. Synthetic self-emission images calculated from 3-D simulations showed a narrow ring of emission outside the ablation surface of the target. Nonuniformities growing in directions perpendicular to the diagnostic axis were measured through angular variations in the radius of the steepest intensity gradient on the inside of the ring and through changes in the peak x-ray intensity in the ring as a function of angle. The technique was applied to an implosion to measure large 3-D nonuniformities resulting from two dropped laser beam quads at the National Ignition Facility.

  1. X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions.

    PubMed

    Davis, A K; Michel, D T; Craxton, R S; Epstein, R; Hohenberger, M; Mo, T; Froula, D H

    2016-11-01

    As hydrodynamics codes develop to increase understanding of three-dimensional (3-D) effects in inertial confinement fusion implosions, diagnostics must adapt to evaluate their predictive accuracy. A 3-D radiation postprocessor was developed to investigate the use of soft x-ray self-emission images of an imploding target to measure the size of nonuniformities on the target surface. Synthetic self-emission images calculated from 3-D simulations showed a narrow ring of emission outside the ablation surface of the target. Nonuniformities growing in directions perpendicular to the diagnostic axis were measured through angular variations in the radius of the steepest intensity gradient on the inside of the ring and through changes in the peak x-ray intensity in the ring as a function of angle. The technique was applied to an implosion to measure large 3-D nonuniformities resulting from two dropped laser beam quads at the National Ignition Facility.

  2. Synchrotron x-ray microtomography of the interior microstructure of chocolate

    NASA Astrophysics Data System (ADS)

    Lügger, Svenja K.; Wilde, Fabian; Dülger, Nihan; Reinke, Lennart M.; Kozhar, Sergii; Beckmann, Felix; Greving, Imke; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan

    2016-10-01

    The structure of chocolate, a multicomponent food product, was analyzed using microtomography. Chocolate consists of a semi-solid cocoa butter matrix and a dense network of suspended particles. A detailed analysis of the microstructure is needed to understand mass transport phenomena. Transport of lipids from e.g. a filling or liquid cocoa butter is responsible for major problems in the confectionery industry such as formation of chocolate bloom, which is the formation of visible white spots or a grayish haze on the chocolate surface and leads to consumer rejections and thus large sales losses for the confectionery industry. In this study it was possible to visualize the inner structure of chocolate and clearly distinguish the particles from the continuous phase by taking advantage of the high density contrast of synchrotron radiation. Consequently, particle arrangement and cracks within the sample were made visible. The cracks are several micrometers thick and propagate throughout the entire sample. Images of pure cocoa butter, chocolate without any particles, did not show any cracks and thus confirmed that cracks are a result of embedded particles. They arise during the manufacturing process. Thus, the solidification process, a critical manufacturing step, was simulated with finite element methods in order to understand crack formation during this step. The simulation showed that cracks arise because of significant contraction of cocoa butter, the matrix phase, without any major change of volume of the suspended particles. Tempering of the chocolate mass prior to solidification is another critical step for a good product quality. We found that samples which solidified in an uncontrolled manner are less homogeneous than tempered samples. In summary, our study visualized for the first time the inner microstructure of tempered and untempered cocoa butter as well as chocolate without sample destruction and revealed cracks, which might act as transport pathways.

  3. Application of X-ray microtomography for the characterisation of hollow polymer-stabilised spray dried amorphous dispersion particles.

    PubMed

    Gamble, John F; Terada, Masako; Holzner, Christian; Lavery, Leah; Nicholson, Sarah J; Timmins, Peter; Tobyn, Mike

    2016-08-20

    The aim of this study was to investigate the capability of X-ray microtomography to obtain information relating to powder characteristics such as wall thickness and solid volume fraction for hollow, polymer-stabilised spray dried dispersion (SDD) particles. SDDs of varying particle properties, with respect to shell wall thickness and degree of particle collapse, were utilised to assess the capability of the approach. The results demonstrate that the approach can provide insight into the morphological characteristics of these hollow particles, and thereby a means to understand/predict the processability and performance characteristics of the bulk material. Quantitative assessments of particle wall thickness, particle/void volume and thereby solid volume fraction were also demonstrated to be achievable. The analysis was also shown to be able to qualitatively assess the impact of the drying rate on the morphological nature of the particle surfaces, thus providing further insight into the final particle shape. The approach demonstrated a practical means to access potentially important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as particle size and bulk density, may enable a better understanding of such materials, and their impact on downstream processability and dosage form performance.

  4. Probing the microstructural evolution of polyviologen-silica hybrid nanopowders during intermediate processing using X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Gundogdu, O.; Jenneson, P. M.; Tuzun, U.; Gray, G. M.; Hay, J. N.

    2006-11-01

    Polyviologen polymers are potential template agents for hydrolytic sol-gel processing of silica particles. The resultant polyviologen-silica hybrid nanopowders are amorphous aggregates of roughly spherical shape, which can be harvested from the sol-gel solution and processed to green body products under different environmental conditions. A bench-top X-ray microtomography system, with a spatial resolution of 5 μm is used to produce three-dimensional images of the dynamic processing of the nanopowders. Various processing routes are imaged using a custom built environmental chamber where the temperature, atmospheric pressure, and compaction force can be controlled. This allows processes such as vacuum sintering and microwave sintering to be studied. The three-dimensional images reveal the axial and radial distributions of the molten polyviologen polymer within a matrix of agglomerates of the silica nanoparticles. Such observations are crucial to the optimisation of the processes that are used to produce the green body products so as to preserve desirable nano-intensive properties.

  5. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of acetaminophen microspheres.

    PubMed

    Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen

    2016-02-29

    The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking.

  6. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography

    SciTech Connect

    Jung, Hun Bok; Jansik, Danielle; Um, Wooyong

    2013-01-02

    ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity: 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.

  7. Sesamoid bones in tuatara (Sphenodon punctatus) investigated with X-ray microtomography, and implications for sesamoid evolution in Lepidosauria.

    PubMed

    Regnault, Sophie; Hutchinson, John R; Jones, Marc E H

    2017-01-01

    Sesamoids bones are small intra-tendinous (or ligamentous) ossifications found near joints and are often variable between individuals. Related bones, lunulae, are found within the menisci of certain joints. Several studies have described sesamoids and lunulae in lizards and their close relatives (Squamata) as potentially useful characters in phylogenetic analysis, but their status in the extant outgroup to Squamata, tuatara (Sphenodon), remains unclear. Sphenodon is the only living rhynchocephalian, but museum specimens are valuable and difficult to replace. Here, we use non-destructive X-ray microtomography to investigate the distribution of sesamoids and lunulae in 19 Sphenodon specimens and trace the evolution of these bones in Lepidosauria (Rhynchocephalia + Squamata). We find adult Sphenodon to possess a sesamoid and lunula complement different from any known squamate, but also some variation within Sphenodon specimens. The penultimate phalangeal sesamoids and tibial lunula appear to mineralize prior to skeletal maturity, followed by mineralization of a sesamoid between metatarsal I and the astragalocalcaneum (MTI-AC), the palmar sesamoids, and tibiofemoral lunulae around attainment of skeletal maturity. The tibial patella, ulnar, and plantar sesamoids mineralize late in maturity or variably. Ancestral state reconstruction indicates that the ulnar patella and tibiofemoral lunulae are synapomophies of Squamata, and the palmar sesamoid, tibial patella, tibial lunula, and MTI-AC may be synapomorphies of Lepidosauria. J. Morphol. 278:62-72, 2017. ©© 2016 Wiley Periodicals,Inc.

  8. X-ray microtomography (micro-CT): a reference technology for high-resolution quantification of xylem embolism in trees.

    PubMed

    Cochard, H; Delzon, S; Badel, E

    2015-01-01

    As current methods for measuring xylem embolism in trees are indirect and prone to artefacts, there is an ongoing controversy over the capacity of trees to resist or recover from embolism. The debate will not end until we get direct visualization of the vessel content. Here, we propose desktop X-ray microtomography (micro-CT) as a reference direct technique to quantify xylem embolism and thus validate more widespread measurements based upon either hydraulic or acoustic methods. We used desktop micro-CT to measure embolism levels in dehydrated or centrifuged shoots of laurel - a long-vesseled species thought to display daily cycles of embolism formation and refilling. Our direct observations demonstrate that this Mediterranean species is highly resistant to embolism and is not vulnerable to drought-induced embolism in a normal range of xylem tensions. We therefore recommend that embolism studies in long-vesseled species should be validated by direct methods such as micro-CT to clear up any misunderstandings on their physiology.

  9. TENSILE SPECIMEN DESIGN AND EXPERIMENTAL PROCEDURES FOR CHARACTERIZING POLYMERIC COMPOSITES USING X-RAY BASED MICRO-TOMOGRAPHY

    SciTech Connect

    Kunc, Vlastimil; Frame, Barbara J; Nguyen, Ba N.; Case, Scott; Young, Stephen; Penumadu, Dayakar

    2008-01-01

    The recent rapid increase in the use of continuous and chopped fiber composites for automotive, aerospace, and naval applications demands an increased understanding of microstructure evolution with stress in order to understand potential failure locations. X-ray imaging with micro-focus source and optics with high resolution shows promise for exploring such technology to study the microstructure. Initial tomography and radiography results will be presented that clearly show individual fibers and its interface with the resin as a function of tensile stress. In this study, we focus on the design of miniature fiber reinforced polymer specimens suitable for examination during tensile loading using a micro-tomography system. Issues related to potential stress concentrations and experimental boundary conditions are examined using finite element analysis. Two gripping designs and specimen geometries are examined analytically and experimentally. Specimens with cylindrical cross-section with specimen ends bonded to a metallic threaded grip were considered for thermoset materials. Grips containing cavities with cylindrical and conical shapes were also examined. Dog-bone shaped, shoulder loaded, square cross-section sample was considered for thermoplastic materials because of difficulties bonding them to a metallic threaded grip.

  10. Reaction Rates in Chemically Heterogeneous Rock: Coupled Impact of Structure and Flow Properties Studied by X-ray Microtomography.

    PubMed

    Al-Khulaifi, Yousef; Lin, Qingyang; Blunt, Martin J; Bijeljic, Branko

    2017-04-04

    We study dissolution in a chemically heterogeneous medium consisting of two minerals with contrasting initial structure and transport properties. We perform a reactive transport experiment using CO2-saturated brine at reservoir conditions in a millimeter-scale composite core composed of Silurian dolomite and Ketton limestone (calcite) arranged in series. We repeatedly image the composite core using X-ray microtomography (XMT) and collect effluent to assess the individual mineral dissolution. The mineral dissolution from image analysis was comparable to that measured from effluent analysis using inductively coupled plasma mass spectrometry (ICP-MS). We find that the ratio of the effective reaction rate of calcite to that of dolomite decreases with time, indicating the influence of dynamic transport effects originating from changes in pore structure coupled with differences in intrinsic reaction rates. Moreover, evolving flow and transport heterogeneity in the initially heterogeneous dolomite is a key determinant in producing a two-stage dissolution in the calcite. The first stage is characterized by a uniform dissolution of the pore space, while the second stage follows a single-channel growth regime. This implies that spatial memory effects in the medium with a heterogeneous flow characteristic (dolomite) can change the dissolution patterns in the medium with a homogeneous flow characteristic (calcite).

  11. Effects of root-induced compaction on rhizosphere hydraulic properties--X-ray microtomography imaging and numerical simulations.

    PubMed

    Aravena, Jazmín E; Berli, Markus; Ghezzehei, Teamrat A; Tyler, Scott W

    2011-01-15

    Soil compaction represents one of the most ubiquitous environmental impacts of human development, decreasing bulk-scale soil porosity and hydraulic conductivity, thereby reducing soil productivity and fertility. At the aggregate-scale however, this study shows that natural root-induced compaction increases contact areas between aggregates, leading to an increase in unsaturated hydraulic conductivity of the soils adjacent to the roots. Contrary to intuition, water flow may therefore be locally enhanced due to root-induced compaction. This study investigates these processes by using recent advances in X-ray microtomography (XMT) imaging and numerical water flow modeling to show evolution in interaggregate contact and its implications for water flow between aggregates under partially saturated conditions. Numerical modeling showed that the effective hydraulic conductivity of a pair of aggregates undergoing uniaxial deformation increased following a nonlinear relationship as the interaggregate contact area increased due to increasing aggregate deformation. Numerical modeling using actual XMT images of aggregated soil around a root surrogate demonstrated how root-induced deformation increases unsaturated water flow toward the root, providing insight into the growth, function, and water uptake patterns of roots in natural soils.

  12. Evaluation of synchrotron X-ray computerized microtomography for the visualization of transport processes in low-porosity materials.

    PubMed

    Altman, Susan J; Peplinski, William J; Rivers, Mark L

    2005-07-01

    Synchrotron-source X-ray computerized microtomography (CMT) is evaluated as a method to visualize transport processes. We conclude that CMT is adequate for visualization of transport experiments if the right conditions exist. Namely, 1) not much more than one-order-of-magnitude range in concentration data is needed for the study, 2) the pore space in the samples are greater than approximately 2--50 mum, depending on the sample size and system setup; 3) the sample is fine-grained enough so that a representative elemental volume (REV) can be contained by a 2--10 mm diameter sample, and 4) the transport process is slow enough that significant changes do not occur within the 25--50 min (and possibly less in the future) needed to collect data for one three-dimensional image. Absorption edge difference imaging (AEDI) in association with CMT is introduced as a method to enhance pore-space visualization. We successfully imaged the pore space in a low-porosity granodiorite, diorite and fine-grained granite cores and a higher-porosity soil aggregate sample. We found that the pore space important to transport in the core samples was smaller than what we were able to visualize with CMT. We also made rudimentary associations of minerals with pore-space location.

  13. Developments in synchrotron x-ray micro-tomography for in-situ materials analysis at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Venkatakrishnan, S. V.; Panerai, F.; Mansour, N. N.

    2016-10-01

    The Advanced Light Source (ALS) is a third-generation synchrotron X-ray source that operates as a user facility with more than 40 beamlines hosting over 2000 users per year. Synchrotron sources like the ALS provide high quality X-ray beams, with flux that is several orders of magnitude higher than lab-based sources. This is particularly advantageous for dynamic applications because it allows for high-speed, high-resolution imaging and microscale tomography. The hard X-ray beamline 8.3.2 at the Advanced Light Source enables imaging of samples at high temperatures and pressures, with mechanical loading and other realistic conditions using environmental test cells. These test cells enable experimental observation of samples undergoing dynamic microstructural changes in-situ. We present recent instrumentation developments that allow for continuous tomography with scan rates approaching 1 Hz per 3D image. In addition, our use of iterative reconstruction techniques allows for improved image quality despite fewer images and low exposure times used during fast tomography compared to traditional Fourier reconstruction methods.

  14. Fully 3D-Integrated Pixel Detectors for X-Rays

    SciTech Connect

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; Grybos, Pawel; Holm, Scott; Lipton, Ronald; Maj, Piotr; Patti, Robert; Siddons, David Peter; Szczygiel, Robert; Yarema, Raymond

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  15. Fully 3D-Integrated Pixel Detectors for X-Rays

    DOE PAGES

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; ...

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch,more » yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.« less

  16. Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales.

    PubMed

    Friis, Else Marie; Crane, Peter R; Pedersen, Kaj Raunsgaard; Bengtson, Stefan; Donoghue, Philip C J; Grimm, Guido W; Stampanoni, Marco

    2007-11-22

    Over the past 25 years the discovery and study of Cretaceous plant mesofossils has yielded diverse and exquisitely preserved fossil flowers that have revolutionized our knowledge of early angiosperms, but remains of other seed plants in the same mesofossil assemblages have so far received little attention. These fossils, typically only a few millimetres long, have often been charred in natural fires and preserve both three-dimensional morphology and cellular detail. Here we use phase-contrast-enhanced synchrotron-radiation X-ray tomographic microscopy to clarify the structure of small charcoalified gymnosperm seeds from the Early Cretaceous of Portugal and North America. The new information links these seeds to Gnetales (including Erdtmanithecales, a putatively closely related fossil group), and to Bennettitales--important extinct Mesozoic seed plants with cycad-like leaves and flower-like reproductive structures. The results suggest that the distinctive seed architecture of Gnetales, Erdtmanithecales and Bennettitales defines a clade containing these taxa. This has significant consequences for hypotheses of seed plant phylogeny by providing support for key elements of the controversial anthophyte hypothesis, which links angiosperms, Bennettitales and Gnetales.

  17. HIGH RESOLUTION X-RAY FLUORESCENCE MICRO-TOMOGRAPHY ON SINGLE SEDIMENT PARTICLES.

    SciTech Connect

    VINCZE,L.; VEKEMANS,B.; SZALOKI,I.; JANSSENS,K.; VAN GRIEKEN,R.; FENG,H.; JONES,K.W.; ADAMS,F.

    2002-07-29

    This work focuses on the investigation of the distribution of contaminants in individual sediment particles from the New York/New Jersey Harbor. Knowledge of the spatial distribution of the contaminants within the particles is needed to enable (1) more sophisticated approaches to the understanding of the fate and transport of the contaminants in the environment and (2) more refined methods for cleaning the sediments. The size of the investigated particles ranges from 30-80 microns. Due to the low concentration of the elements of interest and the microscopic size of the environmental particles in these measurements, the small size and high intensity of the analyzing X-ray beam was critical. The high photon flux at the ESRF Microfocus beam line (ID13) was used as the basis for fluorescence tomography to investigate whether the inorganic compounds are taken upon the surface organic coating or whether they are distributed through the volume of the grains being analyzed. The experiments were done using a 13 keV monochromatic beam of approximately 2 {micro}m in size having an intensity of 10{sup 10} ph/s, allowing absolute detection limits on the 0.04-1 fg level for Ti, Cr, Mn, Fe, Ni, and Zn.

  18. A Non-Destructive Method for Distinguishing Reindeer Antler (Rangifer tarandus) from Red Deer Antler (Cervus elaphus) Using X-Ray Micro-Tomography Coupled with SVM Classifiers.

    PubMed

    Lefebvre, Alexandre; Rochefort, Gael Y; Santos, Frédéric; Le Denmat, Dominique; Salmon, Benjamin; Pétillon, Jean-Marc

    2016-01-01

    Over the last decade, biomedical 3D-imaging tools have gained widespread use in the analysis of prehistoric bone artefacts. While initial attempts to characterise the major categories used in osseous industry (i.e. bone, antler, and dentine/ivory) have been successful, the taxonomic determination of prehistoric artefacts remains to be investigated. The distinction between reindeer and red deer antler can be challenging, particularly in cases of anthropic and/or taphonomic modifications. In addition to the range of destructive physicochemical identification methods available (mass spectrometry, isotopic ratio, and DNA analysis), X-ray micro-tomography (micro-CT) provides convincing non-destructive 3D images and analyses. This paper presents the experimental protocol (sample scans, image processing, and statistical analysis) we have developed in order to identify modern and archaeological antler collections (from Isturitz, France). This original method is based on bone microstructure analysis combined with advanced statistical support vector machine (SVM) classifiers. A combination of six microarchitecture biomarkers (bone volume fraction, trabecular number, trabecular separation, trabecular thickness, trabecular bone pattern factor, and structure model index) were screened using micro-CT in order to characterise internal alveolar structure. Overall, reindeer alveoli presented a tighter mesh than red deer alveoli, and statistical analysis allowed us to distinguish archaeological antler by species with an accuracy of 96%, regardless of anatomical location on the antler. In conclusion, micro-CT combined with SVM classifiers proves to be a promising additional non-destructive method for antler identification, suitable for archaeological artefacts whose degree of human modification and cultural heritage or scientific value has previously made it impossible (tools, ornaments, etc.).

  19. A Non-Destructive Method for Distinguishing Reindeer Antler (Rangifer tarandus) from Red Deer Antler (Cervus elaphus) Using X-Ray Micro-Tomography Coupled with SVM Classifiers

    PubMed Central

    Lefebvre, Alexandre; Rochefort, Gael Y.; Santos, Frédéric; Le Denmat, Dominique; Salmon, Benjamin; Pétillon, Jean-Marc

    2016-01-01

    Over the last decade, biomedical 3D-imaging tools have gained widespread use in the analysis of prehistoric bone artefacts. While initial attempts to characterise the major categories used in osseous industry (i.e. bone, antler, and dentine/ivory) have been successful, the taxonomic determination of prehistoric artefacts remains to be investigated. The distinction between reindeer and red deer antler can be challenging, particularly in cases of anthropic and/or taphonomic modifications. In addition to the range of destructive physicochemical identification methods available (mass spectrometry, isotopic ratio, and DNA analysis), X-ray micro-tomography (micro-CT) provides convincing non-destructive 3D images and analyses. This paper presents the experimental protocol (sample scans, image processing, and statistical analysis) we have developed in order to identify modern and archaeological antler collections (from Isturitz, France). This original method is based on bone microstructure analysis combined with advanced statistical support vector machine (SVM) classifiers. A combination of six microarchitecture biomarkers (bone volume fraction, trabecular number, trabecular separation, trabecular thickness, trabecular bone pattern factor, and structure model index) were screened using micro-CT in order to characterise internal alveolar structure. Overall, reindeer alveoli presented a tighter mesh than red deer alveoli, and statistical analysis allowed us to distinguish archaeological antler by species with an accuracy of 96%, regardless of anatomical location on the antler. In conclusion, micro-CT combined with SVM classifiers proves to be a promising additional non-destructive method for antler identification, suitable for archaeological artefacts whose degree of human modification and cultural heritage or scientific value has previously made it impossible (tools, ornaments, etc.). PMID:26901355

  20. 3D reconstruction of coronary arteries from two X-ray angiograms based on anatomic model

    NASA Astrophysics Data System (ADS)

    Tu, Rong; Li, Qin; Shui, Haomiao; Yang, Jian; Wang, Yongtian

    2007-05-01

    In this paper, we have developed a model-based approach to match two X-ray angiograms from different views. Under the guidance of the prior knowledge of anatomic structure of human coronary vessels, this method can build a node attribute table and assign unique anatomic labels to coronary arteries in X-ray angiograms automatically by the father-son relationship of the nodes, which is essential in reconstruction of vessels.

  1. Pore-space alteration in source rock (shales) during hydrocarbons generation: X-ray microtomography and pore-scale modelling study

    NASA Astrophysics Data System (ADS)

    Korost, Dmitry; Gerke, Kirill; Akhmanov, Grigory; Vasilyev, Roman; Čapek, Pavel; Karsanina, Marina; Nadezhkin, Dmitry

    2013-04-01

    Hydrocarbons (HC) are generated from solid organic matter (kerogen) due to thermocatalytic reactions. The rate of such reactions shows direct correlation with temperature and depends on the depth of source rock burial. Burial of sedimentary rock is also inevitably accompanied by its structural alteration owing to compaction, dehydration and re-crystallization. Processes of HC generation, primary migration and structural changes are inaccessible for direct observation in nature, but they can be studied in laboratory experiments. Modern technical facilities of laboratories make it possible to carry out experiments on HC generation from the organic-rich rocks at a completely new level (Kobchenko et al., 2011). Some new technologies, including X-ray microtomography and pore-scale modeling, allow us to carry out a step-by-step description of such processes and their development, and to study their reflection in alterations of rock structure. Experiments were carried out with a clayey-carbonate rock sample of the Domanic Formaition taken at a depth of 1939 m from borehole drilled in the central part of the Melekes depression (West Tatar arch, Russia). The rock chosen fits the very essential requirements for studying HC generation under laboratory conditions - high organic matter content and its low metamorphic grade. Our work aimed such a study in an undisturbed rock sample by heating it in nitrogen atmosphere based on a specified temperature regime in a RockEval6 analyzer and monitoring alterations in the pore space structure. Observations were carried out with a SkyScan-1172 X-ray microtomography scanner (resulting scan resolution of 1 µm). A cylinder, 4 mm in diameter, was prepared from the rock sample for the pyrolitic and microtomographic analyses. Scanning procedures were carried out in 5 runs. Temperature interval for each run had to match the most important stage of HC generation in the source rock, namely: (1) original structure; (2) 100-300

  2. X-Ray and Optical Videography for 3D Measurement of Capillary and Melt Pool Geometry in Laser Welding

    NASA Astrophysics Data System (ADS)

    Boley, M.; Abt, F.; Weber, R.; Graf, T.

    This paper describes a method to reconstruct the 3D shape of the melt pool and the capillary of a laser keyhole welding process. Three different diagnostic methods, including X-Ray and optical videography as well as metallographic cross sections are combined to gain the three dimensional data of the solidus-liquidus-surface. A detailed description of the experimental setup and a discussion of different methods to combine the 2D data sets of the three different diagnostic methods to a 3D-model will be given. The result will be a static 3D description of the welding process.

  3. Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline.

    PubMed

    Murrie, Rhiannon P; Morgan, Kaye S; Maksimenko, Anton; Fouras, Andreas; Paganin, David M; Hall, Chris; Siu, Karen K W; Parsons, David W; Donnelley, Martin

    2015-07-01

    The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s(-1) allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.

  4. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery

    SciTech Connect

    Li, Ruijiang; Fahimian, Benjamin P.; Xing, Lei

    2011-07-15

    Purpose: Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. Methods: First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a ''plug-and-play'' fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. Results: For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not

  5. Preparation and characterization of polymer layer systems for validation of 3D Micro X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaumann, Ina; Malzer, Wolfgang; Mantouvalou, Ioanna; Lühl, Lars; Kanngießer, Birgit; Dargel, Rainer; Giese, Ulrich; Vogt, Carla

    2009-04-01

    For the validation of the quantification of the newly-developed method of 3D Micro X-ray fluorescence spectroscopy (3D Micro-XRF) samples with a low average Z matrix and minor high Z elements are best suited. In a light matrix the interferences by matrix effects are minimized so that organic polymers are appropriate as basis for analytes which are more easily detected by X-ray fluorescence spectroscopy. Polymer layer systems were assembled from single layers of ethylene-propylene-diene rubber (EPDM) filled with changing concentrations of silica and zinc oxide as inorganic additives. Layer thicknesses were in the range of 30-150 μm. Before the analysis with 3D Micro-XRF all layers have been characterized by scanning micro-XRF with regard to filler dispersion, by infrared microscopy and light microscopy in order to determine the layer thicknesses and by ICP-OES to verify the concentration of the X-ray sensitive elements in the layers. With the results obtained for stacked polymer systems the validity of the analytical quantification model for the determination of stratified materials by 3D Micro-XRF could be demonstrated.

  6. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  7. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles

    PubMed Central

    Slater, Thomas J. A.; Lewis, Edward A.; Haigh, Sarah J.

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  8. The Grizzly Lake complex (Yellowstone Volcano, USA): Mixing between basalt and rhyolite unraveled by microanalysis and X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Morgavi, Daniele; Arzilli, Fabio; Pritchard, Chad; Perugini, Diego; Mancini, Lucia; Larson, Peter; Dingwell, Donald B.

    2016-09-01

    Magma mixing is a widespread petrogenetic process. It has long been suspected to operate in concert with fractional crystallization and assimilation to produce chemical and temperature gradients in magmas. In particular, the injection of mafic magmas into felsic magma chambers is widely regarded as a key driver in the sudden triggering of what often become highly explosive volcanic eruptions. Understanding the mechanistic event chain leading to such hazardous events is a scientific goal of high priority. Here we investigate a mingling event via the evidence preserved in mingled lavas using a combination of X-ray computed microtomographic and electron microprobe analyses, to unravel the complex textures and attendant chemical heterogeneities of the mixed basaltic and rhyolitic eruption of Grizzly Lake in the Norris-Mammoth corridor of the Yellowstone Plateau volcanic field (YVF). We observe evidence that both magmatic viscous inter-fingering of magmas and disequilibrium crystallization/dissolution processes occur. Furthermore, these processes constrain the timescale of interaction between the two magmatic components prior to their eruption. X-ray microtomography images show variegated textural features, involving vesicle and crystal distributions, filament morphology, the distribution of enclaves, and further textural features otherwise obscured in conventional 2D observations and analyses. Although our central effort was applied to the determination of mixing end members, analysis of the hybrid portion has led to the discovery that mixing in the Grizzly Lake system was also characterized by the disintegration and dissolution of mafic crystals in the rhyolitic magma. The presence of mineral phases in both end member, for example, forsteritic olivine, sanidine, and quartz and their transport throughout the magmatic mass, by a combination of both mixing dynamics and flow imposed by ascent of the magmatic mass and its eruption, might have acted as a "geometric

  9. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    PubMed Central

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  10. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-10-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography.

  11. 3D Manipulation of Protein Microcrystals with Optical Tweezers for X-ray Crystallography

    NASA Astrophysics Data System (ADS)

    Hikima, T.; Hashimoto, K.; Murakami, H.; Ueno, G.; Kawano, Y.; Hirata, K.; Hasegawa, K.; Kumasaka, T.; Yamamoto, M.

    2013-03-01

    In some synchrotron facilities such as SPring-8, X-ray microbeams have been utilized for protein crystallography, allowing users to collect diffraction data from a protein microcrystal. Usually, a protein crystal is picked up manually from a crystallization droplet. However it is very difficult to manipulate the protein microcrystals which are very small and fragile against a shock and changes of temperature and solvent condition. We have been developing an automatic system applying the optical tweezers with two lensed fiber probes to manipulate the fragile protein microcrystal. The system succeeded in trapping a crystal and levitating it onto the cryoloop in the solvent. X-ray diffraction measurement for the manipulated protein microcrystals indicated that laser irradiation and trap with 1064nm wavelength hardly affected the result of X-ray structural analysis.

  12. Final report of LDRD project : compact ultrabright multikilovolt x-ray sources for advanced materials studies, 3D nanoimaging, and attosecond x-ray technology.

    SciTech Connect

    Loubriel, Guillermo Manuel; Rhodes, Charles Kirkham; Mar, Alan

    2005-02-01

    Experimental evidence and corresponding theoretical analyses have led to the conclusion that the system composed of Xe hollow atom states, that produce a characteristic Xe(L) spontaneous emission spectrum at 1 {at} 2.9 {angstrom} and arise from the excitation of Xe clusters with an intense pulse of 248 nm radiation propagating in a self-trapped plasma channel, closely represents the ideal situation sought for amplification in the multikilovolt region. The key innovation that is central to all aspects of the proposed work is the controlled compression of power to the level ({approx} 10{sup 20} W/cm{sup 3}) corresponding to the maximum achieved by thermonuclear events. Furthermore, since the x-ray power that is produced appears in a coherent form, an entirely new domain of physical interaction is encountered that involves states of matter that are both highly excited and highly ordered. Moreover, these findings lead to the concept of 'photonstaging', an idea which offers the possibility of advancing the power compression by an additional factor of {approx} 10{sup 9} to {approx} 10{sup 29} W/cm{sup 3}. In this completely unexplored regime, g-ray production ({h_bar}{omega}{sub {gamma}} {approx} 1 MeV) is expected to be a leading process. A new technology for the production of very highly penetrating radiation would then be available. The Xe(L) source at {h_bar}{omega}{sub x} {approx} 4.5 keV can be applied immediately to the experimental study of many aspects of the coupling of intense femtosecond x-ray pulses to materials. In a joint collaboration, the UIC group and Sandia plan to explore the following areas. These are specifically, (1) anomalous electromagnetic coupling to solid state materials, (2) 3D nanoimaging of solid matter and hydrated biological materials (e.g. interchromosomal linkers and actin filaments in muscle), and (3) EMP generation with attosecond x-rays.

  13. Synchrotron X-ray Studies of the Keel of the Short-Spined Sea Urchin Lytechinus variegatus: Absorption Microtomography (microCT) and Small Beam Diffraction Mapping

    SciTech Connect

    Stock, S. R.; Barss, J.; Dahl, T.; Veis, A.; Almer, J. D.; De Carlo, F.

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  14. Volume fraction and location of voids and gaps in ultraconservative restorations by X-ray computed micro-tomography

    PubMed Central

    Lagouvardos, Panagiotis; Nikolinakos, Nick; Oulis, Constantine

    2015-01-01

    Background: Volume fraction (Vf) and location of internal voids and gaps in relation to material type and cavity dimensions in ultraconservative restorations were investigated in this study. Materials and Methods: Forty-eight round cavities of 1.3 mm mean diameter and 2.6 mm mean depth were made on buccal and lingual surfaces of recently extracted human teeth. These were filled and thermocycled with two low viscosity composites (AeliteFlo LV [AF], PermaFlo [PF]), one high viscosity composite (Aelite aesthetic enamel [AA]) and one glass-ionomer (GCFuji IX GP). X-ray microtomography, following a specific procedure, was applied to all cavities before and after their restoration, using SkyScan-1072 microtomographer. Vf percent (Vf%) and location of voids and gaps were recorded and analysed statistically at a = 0.05. Kruskal-Wallis nonparametric analysis of variance, post-hoc analysis, Mann-Whitney test, Spearman's correlation analysis were used to analyze data. Results: Cavities filled with AF and PF showed significantly lower Vf % of voids and gaps than all other restorations (P < 0.05). Only for the cavities filled with AA, cavity width and depth was significantly correlated with Vf % (P < 0.05). 50-75% of the filled cavities contained internal voids regardless of the restorative material (P > 0.05). The proportion of cavities with gaps at the bottom and side walls was lower in those filled with AF and PF (P < 0.05). Conclusion: Cavities filled with low viscosity composites presented the lowest amount of internal voids and gaps. Glass-ionomer and high viscosity composite restorative materials showed the highest amount of interfacial gaps. Only in the high viscosity composite restorations the amount of voids and gaps correlated with the cavity depth, width and volume. PMID:26759587

  15. Bone fracture analysis on the short rod chevron-notch specimens using the X-ray computer micro-tomography.

    PubMed

    De Santis, R; Anderson, P; Tanner, K E; Ambrosio, L; Nicolais, L; Bonfield, W; Davis, G R

    2000-10-01

    Mechanical fatigue of bone leads to micro-cracking which is associated with remodeling, establishing a balance in the microcrack population of the living tissue, thus, in the steady-state, the microstructure of bone provides sites of discontinuity acting as stress raisers. Hence fracture toughness plays a decisive role in bone functionality by determining the level to which the material can be stressed in the presence of cracks, or, equivalently, the magnitude of cracking which can be tolerated at a given stress level. Cortical bone, which behaves as a quasi-brittle solid when fractured, was tested as short-rod chevron-notched tension specimens (CNT). The main features of the CNT specimen are its geometry and the V shaped notch. The notch leads to steady-state crack propagation whilst the requested geometry allows a diameter 40% smaller than the thickness of a standard compact tension specimens (CT). These features are essential to distinguish the inhomogeneties in the fracture properties of materials like bone. Bone structure and crack propagation of the CNT specimens were analyzed using X-ray computed micro-tomography (XMT), which is a non-invasive imaging technique. The unique feature of the micro-CT is the high resolution three-dimensional image which consists of multi-sliced tomographs taken in a fine pitch along the rotational axis. Fracture toughness (K(IC)) computed according to the peak load was 4.8 MNm(-3/2) while that derived from experimental calibration tests using XMT was 4.9 MNm(-3/2).

  16. The 4D evolution of porosity during ongoing pressure-solution processes in NaCl using x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Butler, Ian; Tudisco, Erika; Hall, Stephen; Andò, Edward

    2016-04-01

    Pressure-solution creep is a common deformation mechanism in the upper crust. It represents a mass transfer via dissolution-reprecipitation that critically affects the hydraulic properties of rocks. Successful management of safe radioactive storage sites in rock-salt deposits critically depends on an accurate knowledge of the hydro-mechanical behaviour of salt deposits. Despite numerous lab experiments that have been conducted, many aspects of pressure-solution are still poorly understood. There is little knowledge about the spatio-temporal evolution of porosity and permeability during pressure-solution creep. While rates of pressure-solution creep in silicates and carbonates are slow, which makes laboratory investigations of these materials impractical, compaction experiments have demonstrated that NaCl samples deform sufficiently fast to study pressure-solution creep in a lab environment at room temperature and modest loads. We present results from novel experiments that quantify the 4-dimensional (three spatial dimensions plus time) evolution of pressure-solution processes using in-situ x-ray microtomography. Our experiments are performed in custom made x-ray transparent presses. 5 mm diameter NaCl powder samples with a grain size of 250-300 μm are loaded dry into the press and pre-compacted to produce a starting aggregated material. The sample is then flooded with saturated NaCl solution and loaded uniaxially by means of a pneumatic actuator to a constant uniaxial stress. Different sample mixtures were tested, as well as different uniaxial loads. The resulting deformation of the samples is documented in 3-dimensional microtomographic datasets, acquired at regular time intervals. Image analysis allowed characterization of the microstructural evolution of the NaCl grains and the spatio-temporal distribution of porosity during ongoing mechanical and chemical compaction. The microtomography data have also been analysed with 3D Digital Image Correlation (3D-DIC or

  17. Applying very high resolution microfocus X-ray CT and 3-D reconstruction to the human auditory apparatus.

    PubMed

    Shibata, T; Nagano, T

    1996-08-01

    Conventional high-resolution X-ray computed tomography (XCT) is an important medical technique because it provides sectional images (tomograms) of internal structures without destroying the specimen. However, it is difficult to observe and to analyze fine structures less than a few cubic millimeters in size because of its low spatial resolution of 0.4 mm. Overcoming this problem would not only enable visualization of human anatomical structures in living subjects by means of computer images but would make it possible to obtain the equivalent of microscopic images by XCT without making microscopic sections of biopsy material, which would allow the examination of the entire body and detection of focal lesions at an early stage. Bonse et al. and Kinney et al. studied absorption contrast microtomography by using synchrotron radiation and achieved 8-microns spatial resolution in human cancellous bone. Recently, Momose et al. reported examining the soft tissue of cancerous rabbit liver by a modification of the phase-contrast technique using synchrotron radiation with a spatial resolution of 30 microns (ref. 4). However, the equipment for synchrotron radiation requires a great deal of space and is very expensive. Aoki et al., on a different tack, reported microtomography of frog embryos by using a conventional laboratory microfocus X-ray source with a spot size of about 2 microns (ref. 5). As no human tomographic studies by superresolution microfocus XCT (MFXCT) using a normal open-type X-ray source have been reported, we tried using MFXCT with a maximum experimental spatial resolution of 2.5 microns, especially designed for industrial use, on the auditory ossicles of a human fetus, the smallest and lightest bones in the skeletal system. No XCT studies of fetal auditory ossicles have been reported to date. The fine tomograms with three-dimensional reconstructions obtained showed the existence of an apparently previously undescribed joint between the tympanic ring and the

  18. Grating-based X-ray tomography of 3D food structures

    NASA Astrophysics Data System (ADS)

    Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur; Lametsch, René

    2016-10-01

    A novel grating based X-ray phase-contrast tomographic method has been used to study how partly substitution of meat proteins with two different types of soy proteins affect the structure of the formed protein gel in meat emulsions. The measurements were performed at the Swiss synchrotron radiation light source using a grating interferometric set-up.

  19. Evaluating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Cunningham, Ross; Narra, Sneha P.; Ozturk, Tugce; Beuth, Jack; Rollett, A. D.

    2016-03-01

    Electron beam melting (EBM) is one of the subsets of direct metal additive manufacturing (AM), an emerging manufacturing method that fabricates metallic parts directly from a three-dimensional (3D) computer model by the successive melting of powder layers. This family of technologies has seen significant growth in recent years due to its potential to manufacture complex components with shorter lead times, reduced material waste and minimal post-processing as a "near-net-shape" process, making it of particular interest to the biomedical and aerospace industries. The popular titanium alloy Ti-6Al-4V has been the focus of multiple studies due to its importance to these two industries, which can be attributed to its high strength to weight ratio and corrosion resistance. While previous research has found that most tensile properties of EBM Ti-6Al-4V meet or exceed conventional manufacturing standards, fatigue properties have been consistently inferior due to a significant presence of porosity. Studies have shown that adjusting processing parameters can reduce overall porosity; however, they frequently utilize methods that give insufficient information to properly characterize the porosity (e.g., Archimedes' method). A more detailed examination of the result of process parameter adjustments on the size and spatial distribution of gas porosity was performed utilizing synchrotron-based x-ray microtomography with a minimum feature resolution of 1.5 µm. Cross-sectional melt pool area was varied systematically via process mapping. Increasing melt pool area through the speed function variable was observed to significantly reduce porosity in the part.

  20. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    NASA Astrophysics Data System (ADS)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  1. High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue.

    PubMed

    Bukreeva, Inna; Fratini, Michela; Campi, Gaetano; Pelliccia, Daniele; Spanò, Raffaele; Tromba, Giuliana; Brun, Francesco; Burghammer, Manfred; Grilli, Marco; Cancedda, Ranieri; Cedola, Alessia; Mastrogiacomo, Maddalena

    2015-01-01

    The understanding of structure-function relationships in normal and pathologic mammalian tissues is at the basis of a tissue engineering (TE) approach for the development of biological substitutes to restore or improve tissue function. In this framework, it is interesting to investigate engineered bone tissue, formed when porous ceramic constructs are loaded with bone marrow stromal cells (BMSC) and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here, we used synchrotron X-ray phase-contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in an ectopic bone formation mouse-model. We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples. We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required.

  2. High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue

    PubMed Central

    Bukreeva, Inna; Fratini, Michela; Campi, Gaetano; Pelliccia, Daniele; Spanò, Raffaele; Tromba, Giuliana; Brun, Francesco; Burghammer, Manfred; Grilli, Marco; Cancedda, Ranieri; Cedola, Alessia; Mastrogiacomo, Maddalena

    2015-01-01

    The understanding of structure–function relationships in normal and pathologic mammalian tissues is at the basis of a tissue engineering (TE) approach for the development of biological substitutes to restore or improve tissue function. In this framework, it is interesting to investigate engineered bone tissue, formed when porous ceramic constructs are loaded with bone marrow stromal cells (BMSC) and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here, we used synchrotron X-ray phase-contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in an ectopic bone formation mouse-model. We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples. We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required. PMID:26442248

  3. Advanced 3D textile composites reinforcements meso F.E analyses based on X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Naouar, Naim; Vidal-Salle, Emmanuelle; Boisse, Philippe

    2016-10-01

    Meso-FE modelling of 3D textile composites is a powerful tool, which can help determine mechanical properties and permeability of the reinforcements or composites. The quality of the meso FE analyses depends on the quality of the initial model. A direct method based on X-ray tomography imaging is introduced to determine finite element models based on the real geometry of 3D composite reinforcements. The method is particularly suitable regarding 3D textile reinforcements for which internal geometries are numerous and complex. The approach used for the separation of the yarns in different directions is specialized because the fibres flow in three-dimensional space. An analysis of the image's texture is performed. A hyperelastic model developed for fibre bundles is used for the simulation of the deformation of the 3D reinforcement.

  4. Accretion disk coronae of intermediate polar cataclysmic variables. 3D magnetohydrodynamic modelling and thermal X-ray emission

    NASA Astrophysics Data System (ADS)

    Barbera, E.; Orlando, S.; Peres, G.

    2017-04-01

    Context. Intermediate polar cataclysmic variables (IPCV) contain a magnetic, rotating white dwarf surrounded by a magnetically truncated accretion disk. To explain their strong flickering X-ray emission, accretion has been successfully taken into account. Nevertheless, observations suggest that accretion phenomena might not be the only process behind it. An intense flaring activity occurring on the surface of the disk may generate a corona, contribute to the thermal X-ray emission, and influence the system stability. Aims: Our purposes are: investigating the formation of an extended corona above the accretion disk, due to an intense flaring activity occurring on the disk surface; studying the effects of flares on the disk and stellar magnetosphere; assessing its contribution to the observed thermal X-ray flux. Methods: We have developed a 3D magnetohydrodynamic (MHD) model of a IPCV system. The model takes into account gravity, disk viscosity, thermal conduction, radiative losses, and coronal flare heating through heat injection at randomly chosen locations on the disk surface. To perform a parameter space exploration, several system conditions have been considered, with different magnetic field intensity and disk density values. From the results of the evolution of the model, we have synthesized the thermal X-ray emission. Results: The simulations show the formation of an extended corona, linking disk and star. The flaring activity is capable of strongly influencing the disk configuration and possibly its stability, effectively deforming the magnetic field lines. Hot plasma evaporation phenomena occur in the layer immediately above the disk. The flaring activity gives rise to a thermal X-ray emission in both the [ 0.1-2.0 ] keV and the [ 2.0-10 ] keV X-ray bands. Conclusions: An intense coronal activity occurring on the disk surface of an IPCV can affect the structure of the disk depending noticeably on the density of the disk and the magnetic field of the central

  5. Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images.

    PubMed

    Mahfouz, Mohamed R; Hoff, William A; Komistek, Richard D; Dennis, Douglas A

    2005-02-01

    In many biomedical applications, it is desirable to estimate the three-dimensional (3D) position and orientation (pose) of a metallic rigid object (such as a knee or hip implant) from its projection in a two-dimensional (2D) X-ray image. If the geometry of the object is known, as well as the details of the image formation process, then the pose of the object with respect to the sensor can be determined. A common method for 3D-to-2D registration is to first segment the silhouette contour from the X-ray image; that is, identify all points in the image that belong to the 2D silhouette and not to the background. This segmentation step is then followed by a search for the 3D pose that will best match the observed contour with a predicted contour. Although the silhouette of a metallic object is often clearly visible in an X-ray image, adjacent tissue and occlusions can make the exact location of the silhouette contour difficult to determine in places. Occlusion can occur when another object (such as another implant component) partially blocks the view of the object of interest. In this paper, we argue that common methods for segmentation can produce errors in the location of the 2D contour, and hence errors in the resulting 3D estimate of the pose. We show, on a typical fluoroscopy image of a knee implant component, that interactive and automatic methods for segmentation result in segmented contours that vary significantly. We show how the variability in the 2D contours (quantified by two different metrics) corresponds to variability in the 3D poses. Finally, we illustrate how traditional segmentation methods can fail completely in the (not uncommon) cases of images with occlusion.

  6. Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography.

    PubMed

    Parkinson, Dilworth Y; McDermott, Gerry; Etkin, Laurence D; Le Gros, Mark A; Larabell, Carolyn A

    2008-06-01

    Imaging has long been one of the principal techniques used in biological and biomedical research. Indeed, the field of cell biology grew out of the first electron microscopy images of organelles in a cell. Since this landmark event, much work has been carried out to image and classify the organelles in eukaryotic cells using electron microscopy. Fluorescently labeled organelles can now be tracked in live cells, and recently, powerful light microscope techniques have pushed the limit of optical resolution to image single molecules. In this paper, we describe the use of soft X-ray tomography, a new tool for quantitative imaging of organelle structure and distribution in whole, fully hydrated eukaryotic Schizosaccharomyces pombe cells. In addition to imaging intact cells, soft X-ray tomography has the advantage of not requiring the use of any staining or fixation protocols--cells are simply transferred from their growth environment to a sample holder and immediately cryofixed. In this way the cells can be imaged in a near native state. Soft X-ray tomography is also capable of imaging relatively large numbers of cells in a short period of time, and is therefore a technique that has the potential to produce information on organelle morphology from statistically significant numbers of cells.

  7. Characterizing the Impact of Enhanced Solubilization Reagents on Organic-Liquid Morphology and Organic-Liquid/Water Interfacial Area Using Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Narter, M.; Brusseau, M.

    2010-12-01

    A primary goal of enhanced solubilization reagents is to increase contaminant mass transfer into the aqueous phase in order to achieve faster and more efficient mass removal from the subsurface. The rate of mass transfer depends on the degree of contact between the aqueous phase and the contaminant, and thus is dependent upon the interfacial area between the two phases. It is therefore important to understand the impact of enhanced solubilization reagents on organic-liquid distribution and morphology. This was accomplished using synchrotron X-ray microtomography to examine entrapped organic liquid in a natural porous medium. Polyoxyethylene Sorbitan Monooleate (tween 80), hydroxypropyl-β-cyclodextrin (HPCD), sodium dodecyl sulfate (SDS), and ethanol were used as the solubilization agents. Tetrachloroethene (PCE) was used as the entrapped organic immiscible liquid. Microtomography images were collected prior to and after successive floods with three concentrations of each reagent. The results were compared to those obtained from equivalent experiments conducted with water flooding.

  8. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  9. The K x-ray line structures of the 3d-transition metals in warm dense plasma

    NASA Astrophysics Data System (ADS)

    Szymańska, E.; Syrocki, Ł.; Słabkowska, K.; Polasik, M.; Rzadkiewicz, J.

    2016-09-01

    The shapes and positions of the Kα1 and Kα2 x-ray lines for 3d-transition metals can vary substantially as electrons are stripped from the outer-shells. This paper shows the detailed line shapes for nickel and zinc, obtained by calculations with a multiconfiguration Dirac-Fock method that includes Breit interaction and quantum electrodynamics corrections. The line shapes can be useful in interpreting hot, dense plasmas with energetic electrons for which the K x-ray lines are optically thin, as may be produced by pulsed power machines such as the plasma-filled rod pinch diode or the plasma focus, or in short-pulsed high power laser plasmas.

  10. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    PubMed

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-08-18

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.

  11. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    PubMed Central

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  12. Spherulites growth in trachytic melts: a textural quantitative study from synchrotron X-ray microtomography and SEM data

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Giuli, Gabriele; Cicconi, Maria Rita; Voltolini, Marco; Carroll, Michael R.

    2013-04-01

    This study shows the first textural data on synthetic alkali-feldspar spherulites grown in trachytic melts during cooling and decompression experiments with water-saturated conditions. Previous textural studies have shown the shape evolution and the growth process of spherulites as a function of undercooling (T) and water content, although just in basaltic and rhyolitic melts [1-3]. Spherulites are spherical clusters of polycrystalline aggregates that occur commonly in rhyolitic melts under highly non-equilibrium conditions [3-4]. Cooling and decompression experiments have been carried out on trachytic melts in order to investigate crystallization kinetics of alkali feldspars and the implications for magma dynamics during the ascent towards the surface. Experiments have been conducted using cold seal pressure vessel apparatus at pressure range of 30 - 200 MPa, temperature of 750 - 850 °C and time of 2 - 16 hours, thereby reproducing pre- and syn-eruptive conditions of the Campi Flegrei volcanoes. This study presents quantitative data on spherulite morphologies obtained both by scanning electron microscopy (SEM) and synchrotron X-ray microtomography. Size, aspect ratio, number and crystallographic misorientation of alkali feldspar crystals will be measured. Furthermore, experiments performed at different durations could allow us to follow the growth and the evolution of spherulites. The shape of spherulites changes as a function of ΔT and experimental durations. Two kind of spherulites occured during experiments: open spherulites and close spherulites. The open spherulites are characterized by an structure with large (generally rectangular prismatic), widely spaced fibers with main axis converging towards a central nucleus, in agreement with previous observations [5-6]. Instead, the close spherulites consist of acicular and tiny fibers radially aggregated around a nucleus and single crystals are hardly distinguishable. First preliminary results show: a

  13. The effect of shear deformation on planetesimal core segregation: Results from in-situ X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Todd, K. A.; Watson, H. C.; Yu, T.; Wang, Y.

    2012-12-01

    It is well accepted that the Earth formed by the accretion and collision of small (10-100km) planetesimals. W-Hf isotopic evidence from meteorites (e.g. Kleine et al., 2002) suggest that pre-differentiated planetesimals accreted to form the Earth within 3 My. How did these planetesimals differentiate in such a relatively short time period? While a very hot, deep magma ocean is generally thought to have been the driving mechanism for core formation in large planetary bodies, it inadequately explains differentiation and core formation in small planetesimals due to temperatures being insufficient for wide-scale melting to occur. In order for these planetesimals to differentiate within such a relatively short time without a magma ocean, a critical melt volume of the metallic (core-forming) phase, and sufficient melt connectivity and grain size must exist in order to attain the required permeability and lead to efficient core formation. Deformation has been shown to improve permeability in similar studies with samples of nearly the same composition and melt fraction (e.g. Hustoft & Kohlstedt, 2006), and could have been a contributing factor in the formation of planetesimal cores. This deformation may have been caused by large impacts and collisions experienced by the planetesimals in the early Solar System. The purpose of this work is to test the hypothesis that shear deformation enhances the connectivity and permeability of Fe-S melt within a solid silicate (olivine) matrix, such that rapid core formation is plausible. A rotational Drickamer press was used to heat and torsionally deform a sample of solid olivine + FeS liquid through 6 steps of 180° rotation, while X-ray microtomography was used to obtain 3-dimensional images of the sample in-situ at each step. The resulting digital volumes were processed and permeability simulations were performed to determine the effect of deformation on connectivity and permeability within the sample. Our results indicate that

  14. Multi-scale analysis in carbonates by X-ray microtomography: Characterization of the porosity and pore size distribution

    NASA Astrophysics Data System (ADS)

    Fernandes, Jaquiel S.; Nagata, Rodrigo; Moreira, Anderson C.; Fernandes, Celso P.; Appoloni, Carlos R.

    2013-05-01

    The porous systems of reservoir rocks present a complex geometry, involving aspects of shape of pores (morphology) and connectivity between the pores (topology). The macroscopic physical properties of these materials are strongly dependent of their microstructures. Based on these aspects, the present study has as main objective the characterization of the porous system geometry and computational determination of petrophysics properties of carbonate reservoir rocks through the X-ray microtomography methodology. Samples were microtomographed with the microtomographs Skyscan model 1172, installed at the PETROBRAS Research and Development Center (CENPES), Rio de Janeiro-RJ, Brazil and model 1173, installed at Sedimentary Geology Laboratory (LAGESD) in the Federal University of Rio de Janeiro (UFRJ). Two samples of carbonates were measured, Travertine and Dolomite, with spatial resolutions of 7 μm and 9.8 μm and 1.3 μm, 7 μm and 17 μm, respectively for the travertine and dolomite. With the data collected in the acquisitions, 900 transversal sections were reconstructed for each one of the referred resolutions. For the sample of dolomite, the average porosity found was 21.64%, 20.92% and 15.97% for resolutions of 1.3 μm, 7 μm and 17 μm, respectively. For the sample of travertine, the average porosity was 7.80 % and 7.52 % for resolutions of 7 μm and 9.8 μm, respectively. For the sample of dolomite, the pore size distribution showed that 50 % of the porous phase has pores with radius up to 37.6 μm, 84.6 μm and 84.4 μm, for the spatial resolutions of 1.3 μm, 7 μm and 17 μm, respectively. For the sample of travertine, 50 % of the pores have radius up to 148.1 μm and 158.1 μm, for the spatial resolutions of 7 μm and 9.8 μm.

  15. Strain in a silicon-on-insulator nanostructure revealed by 3D x-ray Bragg ptychography

    PubMed Central

    Chamard, V.; Allain, M.; Godard, P.; Talneau, A.; Patriarche, G.; Burghammer, M.

    2015-01-01

    Progresses in the design of well-defined electronic band structure and dedicated functionalities rely on the high control of complex architectural device nano-scaled structures. This includes the challenging accurate description of strain fields in crystalline structures, which requires non invasive and three-dimensional (3D) imaging methods. Here, we demonstrate in details how x-ray Bragg ptychography can be used to quantify in 3D a displacement field in a lithographically patterned silicon-on-insulator structure. The image of the crystalline properties, which results from the phase retrieval of a coherent intensity data set, is obtained from a well-controlled optimized process, for which all steps are detailed. These results confirm the promising perspectives of 3D Bragg ptychography for the investigation of complex nano-structured crystals in material science. PMID:25984829

  16. Diagnostics of 3D Scaffolds by the Method of X-Ray Phase Contrast Visualization

    NASA Astrophysics Data System (ADS)

    Al'tapova, V. R.; Khlusov, I. A.; Karpov, D. A.; Chen, F.; Baumbach, T.; Pichugin, V. F.

    2014-02-01

    Polymers are one of the most interesting classes of materials for bioengineering due to their high biocompatibility and the possibility of regulating their strength and degradation. In bioengineering, the design of a polymer scaffold determines the functional possibilities of the scaffold and its possible medical applications. Traditionally, the design of polymer scaffolds is analyzed with the help of two-dimensional visualization methods, such as optical and electron microscopy, and computer tomography. However, the x-ray region of the electromagnetic spectrum is only insignificantly absorbed by polymers and soft tissue, which means that it does not support computer tomography with sufficient contrast. The present work investigates visualization with the help of an interferometer based on the Talbot effect for three-dimensional visualization of a polymer scaffold in absorption, phase, and dark-field contrasts. A comparison of images obtained by x-ray visualization with histological sections of the scaffold is made. Phase contrast has made it possible to visualize the polymer structure and growth of soft tissues in the volume of the scaffold. In the future, it will be possible to use phase contrast for three-dimensional visualization of polymer scaffolds and soft tissues in vivo as well as in vitro.

  17. A Hidden Markov Model for 3D Catheter Tip Tracking with 2D X-ray Catheterization Sequence and 3D Rotational Angiography.

    PubMed

    Ambrosini, Pierre; Smal, Ihor; Ruijters, Daniel; Niessen, Wiro; Moelker, Adriaan; van Walsum, Theo

    2016-11-07

    In minimal invasive image guided catheterization procedures, physicians require information of the catheter position with respect to the patient's vasculature. However, in fluoroscopic images, visualization of the vasculature requires toxic contrast agent. Static vasculature roadmapping, which can reduce the usage of iodine contrast, is hampered by the breathing motion in abdominal catheterization. In this paper, we propose a method to track the catheter tip inside the patient's 3D vessel tree using intra-operative single-plane 2D X-ray image sequences and a peri-operative 3D rotational angiography (3DRA). The method is based on a hidden Markov model (HMM) where states of the model are the possible positions of the catheter tip inside the 3D vessel tree. The transitions from state to state model the probabilities for the catheter tip to move from one position to another. The HMM is updated following the observation scores, based on the registration between the 2D catheter centerline extracted from the 2D X-ray image, and the 2D projection of 3D vessel tree centerline extracted from the 3DRA. The method is extensively evaluated on simulated and clinical datasets acquired during liver abdominal catheterization. The evaluations show a median 3D tip tracking error of 2.3 mm with optimal settings in simulated data. The registered vessels close to the tip have a median distance error of 4.7 mm with angiographic data and optimal settings. Such accuracy is sufficient to help the physicians with an up-to-date roadmapping. The method tracks in real-time the catheter tip and enables roadmapping during catheterization procedures.

  18. Real-time 3-D X-ray and gamma-ray viewer

    NASA Technical Reports Server (NTRS)

    Yin, L. I. (Inventor)

    1983-01-01

    A multi-pinhole aperture lead screen forms an equal plurality of invisible mini-images having dissimilar perspectives of an X-ray and gamma-ray emitting object (ABC) onto a near-earth phosphor layer. This layer provides visible light mini-images directly into a visible light image intensifier. A viewing screen having an equal number of dissimilar perspective apertures distributed across its face in a geometric pattern identical to the lead screen, provides a viewer with a real, pseudoscopic image (A'B'C') of the object with full horizontal and vertical parallax. Alternatively, a third screen identical to viewing screen and spaced apart from a second visible light image intensifier, may be positioned between the first image intensifier and the viewing screen, thereby providing the viewer with a virtual, orthoscopic image (A"B"C") of the object (ABC) with full horizontal and vertical parallax.

  19. Identification of strain fields in pure Al and hybrid Ni/Al metal foams using X-ray micro-tomography under loading

    NASA Astrophysics Data System (ADS)

    Fíla, T.; Jiroušek, O.; Jung, A.; Kumpová, I.

    2016-11-01

    Hybrid foams are materials formed by a core from a standard open cell metal foam that is during the process of electrodeposition coated by a thin layer of different nanocrystalline metals. The material properties of the base metal foam are in this way modified resulting in higher plateau stress and, more importantly, by introduction of strain-rate dependence to its deformation response. In this paper, we used time-lapse X-ray micro-tomography for the mechanical characterization of Ni/Al hybrid foams (aluminium open cell foams with nickel coating layer). To fully understand the effects of the coating layer on the material's effective properties, we compared the compressive response of the base uncoated foam to the response of the material with coating thickness of 50 and 75 μm. Digital volume correlation (DVC) was applied to obtain volumetric strain fields of the deforming micro-structure up to the densification region of the deforming cellular structure. The analysis was performed as a compressive mechanical test with simultaneous observation using X-ray radiography and tomography. A custom design experimental device was used for compression of the foam specimens in several deformation states directly in the X-ray setup. Planar X-ray images were taken during the loading phases and a X-ray tomography was performed at the end of each loading phase (up to engineering strain 22%). The samples were irradiated using micro-focus reflection type X-ray tube and images were taken using a large area flat panel detector. Tomography reconstructions were used for an identification of a strain distribution in the foam using digital volumetric correlation. A comparison of the deformation response of the coated and the uncoated foam in uniaxial quasi-static compression is summarized in the paper.

  20. Understanding Plasticity and Fracture in Aluminum Alloys and their Composites by 3D X-ray Synchrotron Tomography and Microdiffraction

    NASA Astrophysics Data System (ADS)

    Hruby, Peter

    Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using

  1. X-ray micro-tomography investigation of the foaming process in the system of waste glass–silica mud–MnO{sub 2}

    SciTech Connect

    Ducman, V.; Korat, L.; Legat, A.; Mirtič, B.

    2013-12-15

    In case of foamed lightweight aggregates (LWAs), porosity is introduced by the addition of a foaming agent to the glassy matrix, which degasses at an elevated temperature, so that the resulting gases remain trapped inside the glassy structure. The efficiency of action of MnO{sub 2} as a foaming agent in waste glass and waste glass/silica mud systems was studied. Samples were fired at different temperatures and with different dwelling times at a certain temperature, and the development of porosity was investigated by means of X-ray micro-tomography. It was found that, with the prolongation in dwelling times, the number of pores decreased, while, on the other hand, the volume of these pores increased, and that the addition of silica mud increases the foaming temperature and slows down the foaming process. - Highlights: • Preparation of lightweight aggregate from waste glass, silica sludge, and MnO{sub 2} • DTA/TG investigation of MnO{sub 2} • Characterization of pore-forming process by means of X-ray micro-tomography (μcT)

  2. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.

    PubMed

    Guan, Shanyuanye; Gray, Hans A; Keynejad, Farzad; Pandy, Marcus G

    2016-01-01

    Most X-ray fluoroscopy systems are stationary and impose restrictions on the measurement of dynamic joint motion; for example, knee-joint kinematics during gait is usually measured with the subject ambulating on a treadmill. We developed a computer-controlled, mobile, biplane, X-ray fluoroscopy system to track human body movement for high-speed imaging of 3D joint motion during overground gait. A robotic gantry mechanism translates the two X-ray units alongside the subject, tracking and imaging the joint of interest as the subject moves. The main aim of the present study was to determine the accuracy with which the mobile imaging system measures 3D knee-joint kinematics during walking. In vitro experiments were performed to measure the relative positions of the tibia and femur in an intact human cadaver knee and of the tibial and femoral components of a total knee arthroplasty (TKA) implant during simulated overground gait. Accuracy was determined by calculating mean, standard deviation and root-mean-squared errors from differences between kinematic measurements obtained using volumetric models of the bones and TKA components and reference measurements obtained from metal beads embedded in the bones. Measurement accuracy was enhanced by the ability to track and image the joint concurrently. Maximum root-mean-squared errors were 0.33 mm and 0.65° for translations and rotations of the TKA knee and 0.78 mm and 0.77° for translations and rotations of the intact knee, which are comparable to results reported for treadmill walking using stationary biplane systems. System capability for in vivo joint motion measurement was also demonstrated for overground gait.

  3. Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3D X-ray CT

    PubMed Central

    Cho, Jang Hwan; Fessler, Jeffrey A.

    2014-01-01

    Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in [1] to 3D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in [1] with both phantom simulation and clinical reconstruction in 3D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT. PMID:25361500

  4. Regularization designs for uniform spatial resolution and noise properties in statistical image reconstruction for 3-D X-ray CT.

    PubMed

    Cho, Jang Hwan; Fessler, Jeffrey A

    2015-02-01

    Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in to 3-D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in with both phantom simulation and clinical reconstruction in 3-D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT.

  5. Efficient feature-based 2D/3D registration of transesophageal echocardiography to x-ray fluoroscopy for cardiac interventions

    NASA Astrophysics Data System (ADS)

    Hatt, Charles R.; Speidel, Michael A.; Raval, Amish N.

    2014-03-01

    We present a novel 2D/ 3D registration algorithm for fusion between transesophageal echocardiography (TEE) and X-ray fluoroscopy (XRF). The TEE probe is modeled as a subset of 3D gradient and intensity point features, which facilitates efficient 3D-to-2D perspective projection. A novel cost-function, based on a combination of intensity and edge features, evaluates the registration cost value without the need for time-consuming generation of digitally reconstructed radiographs (DRRs). Validation experiments were performed with simulations and phantom data. For simulations, in silica XRF images of a TEE probe were generated in a number of different pose configurations using a previously acquired CT image. Random misregistrations were applied and our method was used to recover the TEE probe pose and compare the result to the ground truth. Phantom experiments were performed by attaching fiducial markers externally to a TEE probe, imaging the probe with an interventional cardiac angiographic x-ray system, and comparing the pose estimated from the external markers to that estimated from the TEE probe using our algorithm. Simulations found a 3D target registration error of 1.08(1.92) mm for biplane (monoplane) geometries, while the phantom experiment found a 2D target registration error of 0.69mm. For phantom experiments, we demonstrated a monoplane tracking frame-rate of 1.38 fps. The proposed feature-based registration method is computationally efficient, resulting in near real-time, accurate image based registration between TEE and XRF.

  6. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    SciTech Connect

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science

  7. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    DOE PAGES

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; ...

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncoveredmore » from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science« less

  8. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    PubMed Central

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-01-01

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science. PMID:25650004

  9. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    NASA Astrophysics Data System (ADS)

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-02-01

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science.

  10. Quantitative 3D petrography using X-ray tomography 2: Combining information at various resolutions

    SciTech Connect

    Pamukcu, Ayla S.; Gualda, Guilherme A.R.

    2010-12-02

    X-ray tomography is a nondestructive technique that can be used to study rocks and other materials in three dimensions over a wide range of sizes. Samples that range from decimeters to micrometers in size can be analyzed, and micrometer- to centimeter-sized crystals, vesicles, and other particles can be identified and quantified. In many applications, quantification of a large spectrum of sizes is important, but this cannot be easily accomplished using a single tomogram due to a common trade-off between sample size and image resolution. This problem can be circumvented by combining tomograms acquired for a single sample at a variety of resolutions. We have successfully applied this method to obtain crystal size distributions (CSDs) for magnetite, pyroxene + biotite, and quartz + feldspar in Bishop Tuff pumice. Five cylinders of systematically varying size (1-10 mm diameter and height) were analyzed from each of five pumice clasts. Cylinder size is inversely proportional to image resolution, such that resolution ranges from 2.5 to 17 {micro}m/voxel with increasing sample size. This allows quantification of crystals 10-1000 {micro}m in size. We obtained CSDs for each phase in each sample by combining information from all resolutions, each size bin containing data from the resolution that best characterizes crystals of that size. CSDs for magnetite and pyroxene + biotite in late-erupted Bishop pumice obtained using this method are fractal, but do not seem to result from crystal fragmentation. CSDs for quartz + feldspar reveal a population of abundant crystals <35 {micro}m in size, and a population of crystals >50 {micro}m in size, which will be the focus of a separate publication.

  11. Quantifying Electromigration Processes in Sn-0.7Cu Solder with Lab-Scale X-Ray Computed Micro-Tomography

    NASA Astrophysics Data System (ADS)

    Mertens, James Charles Edwin

    For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (muXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale muXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging. In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering 'zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs. The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the

  12. Patterns of drought-induced embolism formation and spread in living walnut saplings visualized using X-ray microtomography.

    PubMed

    Knipfer, Thorsten; Brodersen, Craig R; Zedan, Amr; Kluepfel, Daniel A; McElrone, Andrew J

    2015-07-01

    Embolism formation and spread are dependent on conduit structure and xylem network connectivity. Detailed spatial analysis has been limited due to a lack of non-destructive methods to visualize these processes in living plants. We used synchrotron X-ray computed tomography (microCT) to visualize these processes in vivo for Juglans microcarpa Berl. saplings subjected to drought, and also evaluated embolism repair capability after re-watering. Cavitation was not detected in vivo until stem water potentials (Ψ(stem)) reached -2.2 MPa, and loss of stem hydraulic conductivity as derived from microCT images predicted that 50% of conductivity was lost at Ψ(stem) of ∼ -3.5 MPa; xylem vulnerability as determined with the centrifuge method was comparable only in the range of Ψ(stem) from -2.5 to -3.5 MPa. MicroCT images showed that cavitation appeared initially in isolated vessels not connected to other air-filled conduits. Once embolized vessels were present, multiple vessels in close proximity cavitated, and 3-D analysis along the stem axis revealed some connections between cavitated vessels. A tomography-derived automated xylem network analysis found that only 36% of vessels had one or more connections to other vessels. Cavitation susceptibility was related to vessel diameter, with large diameter vessels (>40 μm, mean diameter 25-30 μm) cavitating mainly under moderate stress (Ψ(stem) > -3 MPa) and small diameter vessels (<30 μm) under severe stress. After re-watering there was no evidence for short or longer term vessel refilling over 2 weeks despite a rapid recovery of plant water status. The low embolism susceptibility in 1-year-old J. microcarpa may aid sapling survival during establishment.

  13. Practical alignment method for X-ray spectral measurement in micro-CT system based on 3D printing technology.

    PubMed

    Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong

    2016-06-01

    This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a "sweet spot" with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of Kα1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when

  14. X-ray Laue Diffraction Microscopy in 3D at the Advanced Photon Source

    SciTech Connect

    Liu, W.; Zschack, P.; Tischler, Jonathan Zachary; Ice, Gene E; Larson, Ben C

    2011-01-01

    Studies of materials on mesoscopic length-scales require a penetrating structural probe with submicron point-to-point spatial resolution. The principle research activities at beamline 34-ID-E of the Advanced Photon Source (APS) involve development of exciting new micro-/nano-diffraction techniques for characterization and microscopy in support of both applied engineering and fundamental materials research. Taking advantage of the high brightness of the source, advanced focusing mirrors, a novel depth profiling technique, and high-speed area detectors, three-dimensional scanning Laue diffraction microscopy provides detailed local structural information of crystalline materials, such as crystallographic orientation, orientation gradients, and strain tensors. It is general and applicable to single-crystal, polycrystalline, composite, deformed, and functionally graded materials. Applications include 3D diffraction investigations for a diverse and growing user community with interests in materials deformation, electro-migration, recrystallization, fatigue, solid-solution precipitation, high-pressure environments, and condensed matter physics.

  15. Characterization of 3D Trench PZT Capacitors for High Density FRAM Devices by Synchrotron X-ray Micro-diffraction

    SciTech Connect

    Shin, Sangmin; Park, Youngsoo; Han, Hee; Park, Yong Jun; Baik, Sunggi; Choi, Jae-Young

    2007-01-19

    3D trench PbZrxTi1-xO3 (PZT) capacitors for 256 Mbit 1T-1C FRAM devices were characterized by synchrotron X-ray micro-diffraction at Pohang Light Source. Three layers, Ir/PZT/Ir were deposited on SiO2 trench holes with different widths ranging from 180 nm to 810 nm and 400 nm in depth by ALD and MOCVD. Each hole is separated from neighboring holes by 200 nm. The cross sectional TEM analysis for the trenches revealed that the PZT layers were consisted of columnar grains at the trench entrance and changes to polycrystalline granular grains at the lower part of the trench. The transition from columnar to granular grains was dependent on the trench size. The smaller trenches were favorable to granular grain formation. High resolution synchrotron X-ray diffraction analysis was performed to determine the crystal structure of each region. The beam was focused to about 500 {mu}m and the diffraction patterns were obtained from a single trench. Only the peaks corresponding to ferroelectric tetragonal phases are observed for the trenches larger than 670 nm, which consist of fully columnar grains. However, the trenches smaller than 670 nm showed the peaks corresponding the pyrochlore phases, which suggested that the granular grains are of pyrochlore phases and non-ferroelectric.

  16. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    NASA Astrophysics Data System (ADS)

    Reischig, Péter; Helfen, Lukas; Wallert, Arie; Baumbach, Tilo; Dik, Joris

    2013-06-01

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art.

  17. High-quality 3-D coronary artery imaging on an interventional C-arm x-ray system

    SciTech Connect

    Hansis, Eberhard; Carroll, John D.; Schaefer, Dirk; Doessel, Olaf; Grass, Michael

    2010-04-15

    Purpose: Three-dimensional (3-D) reconstruction of the coronary arteries during a cardiac catheter-based intervention can be performed from a C-arm based rotational x-ray angiography sequence. It can support the diagnosis of coronary artery disease, treatment planning, and intervention guidance. 3-D reconstruction also enables quantitative vessel analysis, including vessel dynamics from a time-series of reconstructions. Methods: The strong angular undersampling and motion effects present in gated cardiac reconstruction necessitate the development of special reconstruction methods. This contribution presents a fully automatic method for creating high-quality coronary artery reconstructions. It employs a sparseness-prior based iterative reconstruction technique in combination with projection-based motion compensation. Results: The method is tested on a dynamic software phantom, assessing reconstruction accuracy with respect to vessel radii and attenuation coefficients. Reconstructions from clinical cases are presented, displaying high contrast, sharpness, and level of detail. Conclusions: The presented method enables high-quality 3-D coronary artery imaging on an interventional C-arm system.

  18. Characterization of Pore Defects and Fatigue Cracks in Die Cast AM60 Using 3D X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2015-08-01

    AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.

  19. Acute effects of delayed reperfusion following myocardial infarction: a 3D x-ray imaging analysis

    NASA Astrophysics Data System (ADS)

    Simari, Robert D.; Bell, M. R.; Pao, Y. C.; Gersh, B. J.; Ritman, Erik L.

    1996-04-01

    Clinical and experimental data suggest that delayed reperfusion of the infarct related artery may limit infarct expansion without increasing myocardial salvage. In order to assess the potential mechanisms involved, an acute closed chest canine model of myocardial infarction and delayed reperfusion was studied. Nineteen dogs underwent 3D computed tomography in the Dynamic Spatial Reconstructor (a fast, volume imaging, CT scanner) at baseline and three and four hours later to estimate left ventricular chamber volumes, global distensibility and regional myocardial stiffness. A control group was scanned without intervention. An occlusion group underwent four hours of coronary artery occlusion. A reperfusion group underwent three hours of coronary artery occlusion followed by one hour of reperfusion. Similar infarct sizes were seen in the occlusion and reperfusion groups. Globally reperfusion was associated with increased left ventricular end diastolic pressure and prolongation of global relaxation. Regionally reperfusion was associated with increased myocardial stiffness, intramyocardial blood volume and wall thickness within the infarct zone relative to the not reperfused myocardium.

  20. A 3D CZT hard x-ray polarimeter for a balloon-borne payload

    NASA Astrophysics Data System (ADS)

    Caroli, E.; Alvarez, J. M.; Auricchio, N.; Budtz-Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Ferrando, P.; Laurent, P.; Limousin, O.; Galvèz, J. L.; Gloster, C. P.; Hernanz, M.; Isern, J.; Kuvvetli, I.; Maia, J. M.; Meuris, A.; Stephen, J. B.; Zappettini, A.

    2012-09-01

    Today it is widely recognised that a measurement of the polarization status of cosmic sources high energy emission is a key observational parameter to understand the active production mechanism and its geometry. Therefore new instrumentation operating in the hard X/soft γ rays energy range should be optimized also for this type of measurement. In this framework, we present the concept of a small high-performance spectrometer designed for polarimetry between 100 and 1000 keV suitable as a stratospheric balloon-borne payload dedicated to perform an accurate and reliable measurement of the polarization status of the Crab pulsar, i.e. the polarization level and direction. The detector with 3D spatial resolution is based on a CZT spectrometer in a highly segmented configuration designed to operate as a high performance scattering polarimeter. We discuss different configurations based on recent development results and possible improvements currently under study. Furthermore we describe a possible baseline design of the payload, which can be also seen as a pathfinder for a high performance focal plane detector in new hard X and soft gamma ray focussing telescopes and/or advanced Compton instruments. Finally we present preliminary data from Montecarlo undergoing studies to determine the best trade-off between polarimetric performance and detector design complexity.

  1. A novel diamond anvil cell for x-ray diffraction at cryogenic temperatures manufactured by 3D printing

    NASA Astrophysics Data System (ADS)

    Jin, H.; Woodall, C. H.; Wang, X.; Parsons, S.; Kamenev, K. V.

    2017-03-01

    A new miniature high-pressure diamond anvil cell was designed and constructed using 3D micro laser sintering technology. This is the first application of the use of rapid prototyping technology to construct high-pressure apparatus. The cell is specifically designed for use as an X-ray diffraction cell that can be used with commercially available diffractometers and open-flow cryogenic equipment to collect data at low temperature and high pressure. The cell is constructed from stainless steel 316L and is about 9 mm in diameter and 7 mm in height, giving it both small dimensions and low thermal mass, and it will fit into the cooling envelope of a standard CryostreamTM cooling system. The cell is clamped using a customized miniature buttress thread of diameter 7 mm and pitch of 0.5 mm enabled by 3D micro laser sintering technology; such dimensions are not attainable using conventional machining. The buttress thread was used as it has favourable uniaxial load properties allowing for higher pressure and better anvil alignment. The clamp can support the load of at least 1.5 kN according to finite element analysis (FEA) simulations. FEA simulations were also used to compare the performance of the standard thread and the buttress thread, and demonstrate that stress is distributed more uniformly in the latter. Rapid prototyping of the pressure cell by the laser sintering resulted in a substantially higher tensile yield strength of the 316L stainless steel (675 MPa compared to 220 MPa for the wrought type of the same material), which increased the upper pressure limit of the cell. The cell is capable of reaching pressures of up to 15 GPa with 600 μm diameter culets of diamond anvils. Sample temperature and pressure changes on cooling were assessed using X-ray diffraction on samples of NaCl and HMT-d12.

  2. Critical dimension small angle X-ray scattering measurements of FinFET and 3D memory structures

    NASA Astrophysics Data System (ADS)

    Settens, Charles; Bunday, Benjamin; Thiel, Brad; Kline, R. Joseph; Sunday, Daniel; Wang, Chengqing; Wu, Wen-li; Matyi, Richard

    2013-04-01

    We have demonstrated that transmission critical dimension small angle X-ray scattering (CD-SAXS) provides high accuracy and precision CD measurements on advanced 3D microelectronic architectures. The competitive advantage of CD-SAXS over current 3D metrology methods such as optical scatterometry is that CD-SAXS is able to decouple and fit cross-section parameters without any significant parameter cross-correlations. As the industry aggressively scales beyond the 22 nm node, CD-SAXS can be used to quantitatively measure nanoscale deviations in the average crosssections of FinFETs and high-aspect ratio (HAR) memory devices. Fitting the average cross-section of 18:1 isolated HAR contact holes with an effective trapezoid model yielded an average pitch of 796.9 +/- 0.4 nm, top diameter of 70.3 +/- 0.9 nm, height of 1088 +/- 4 nm, and sidewall angle below 0.1°. Simulations of dense 40:1 HAR contact holes and FinFET fin-gate crossbar structures have been analyzed using CD-SAXS to inquire the theoretical precision of the technique to measure important process parameters such as fin CD, height, and sidewall angle; BOX etch recess, thickness of hafnium oxide and titanium nitride layers; gate CD, height, and sidewall angle; and hafnium oxide and titanium nitride etch recess. The simulations of HAR and FinFET structures mimic the characteristics of experimental data collected at a synchrotron x-ray source. Using the CD-SAXS simulator, we estimate the measurement capabilities for smaller similar structures expected at future nodes to predict the applicability of this technique to fulfill important CD metrology needs.

  3. 3D electron density imaging using single scattered x rays with application to breast CT and mammographic screening

    NASA Astrophysics Data System (ADS)

    van Uytven, Eric Peter

    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal tissue. Commercial Computed Tomography (CT) produces a true 3D image yet has a limited role in mammography due to relatively low resolution and contrast. With the intent of enhancing mammography and breast CT, we have developed an algorithm which can produce 3D electron density images using a single projection. Imaging an object with x rays produces a characteristic scattered photon spectrum at the detector plane. A known incident beam spectrum, beam shape, and arbitrary 3D matrix of electron density values enable a theoretical scattered photon distribution to be calculated. An iterative minimization algorithm is used to make changes to the electron density voxel matrix to reduce regular differences between the theoretical and the experimentally measured distributions. The object is characterized by the converged electron density image. This technique has been validated in simulation using data produced by the EGSnrc Monte Carlo code system. At both mammographic and CT energies, a scanning polychromatic pencil beam was used to image breast tissue phantoms containing lesion-like inhomogeneities. The resulting Monte Carlo data is processed using a Nelder-Mead iterative algorithm (MATLAB) to produce the 3D matrix of electron density values. Resulting images have confirmed the ability of the algorithm to detect various 1x1x2.5 mm3 lesions with calcification content as low as 0.5% (p<0.005) at a dose comparable to mammography.

  4. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, Mayka; Halisch, Matthias; Müller, Cornelia; Peres Fernandes, Celso

    2016-02-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rock-fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (µ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94 % and from 58.80 to 45.18 % when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.

  5. Fluids escape in subduction zones: new constraints from 3-D microtomography data

    NASA Astrophysics Data System (ADS)

    Le Roux, V.; Gaetani, G. A.; Slaugenwhite, J.; Miller, K.

    2013-12-01

    Large amounts of H2O are carried into trenches via subduction of the sediments, basaltic crust and uppermost mantle that make up the oceanic lithosphere. A major question is how much of this subducted H2O is released into the overlying mantle wedge, promoting melting, and how much is carried deeper into the mantle. This depends, at least in part, on whether H2O is able to form an interconnected network among the mineral grains that make up the rock down to very low fluid fractions. In order to achieve connectivity and allow the fluid phase to escape, a minimum amount of fluid (critical porosity) is required when dihedral angles are more than 60 degrees. We investigated the distribution of seawater in simplified sediment analogs (i.e. quartz for siliceous sediments; calcite for carbonate sediments), in natural clays (kaolinite and montmorillonite) and in bulk eclogite. Experiments were performed in a piston-cylinder apparatus at 2 GPa and 650°C. Fluid fractions ranged from ~10% to ~1% to determine the porosity at which connectivity of the seawater network is lost for each rock type. We used synchrotron X-ray microtomographic techniques (at Argonne National Laboratory, IL) to obtain 3-D images of the pore space network in order to constrain the grain scale distribution of fluids in a subducted slab. This nondestructive 3-D imaging technique has a spatial resolution of 0.7 μm and provides quantitative information on geometrical parameters of fluid topology, such as porosity, dihedral angle distribution, fluid channel sizes and connectivity. The geometrical parameters were extracted using the VSG Avizo software. This study lays the groundwork for determining the 3-D grain scale distribution of fluids in a range of subducted lithologies. Results from this study provide important new insights into the amount of fluid that can be transported into the deep mantle by subduction.

  6. X-ray computed microtomography of sea ice - comment on "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow", by Bartels-Rausch et al. (2014)

    NASA Astrophysics Data System (ADS)

    Obbard, R. W.

    2015-05-01

    This comment addresses a statement made in "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (2014). Here we rebut the assertion that X-ray computed microtomography of sea ice fails to reveal liquid brine inclusions, by discussing the phases present at the analysis temperature.

  7. Advancing the visualization of pure water transport in porous materials by fast, talbot interferometry-based multi-contrast x-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Griffa, Michele; Hipp, Alexander; Derluyn, Hannelore; Moonen, Peter; Kaufmann, Rolf; Boone, Matthieu N.; Beckmann, Felix; Lura, Pietro

    2016-10-01

    The spatio-temporal distribution (4D) of water in porous materials plays a fundamental role in many natural and technological processes. The dynamics of water transport is strongly entangled with the material's pore-scale structure. Understanding their correlation requires imaging simultaneously the 4D water distribution and the porous microstructure. To date, 4D images with high temporal and spatial resolution have been mainly acquired by attenuation-based X-ray micro-tomography, whereby pure water is substituted by saline solutions with high atomic number components to improve image contrast. The use of saline solutions is however not always desirable, as the altered fluid properties may affect the transport process as well or, as it is the case for hydrating cement-based materials, they may modify the chemical reactions and their kinetics. In this study, we aimed at visualizing pure water transport in porous building materials by a new implementation of fast Talbot interferometry-based multi-contrast X-ray micro-tomography at the P07 beamline of the Helmholtz-Zentrum Geesthacht at DESY. We report results from a mortar specimen imaged at three different stages during evaporative drying. We show the possibility of visualizing simultaneously the microstructure and the pore-scale water redistribution by the phase contrast images. In addition, different solid material phases are clearly distinguished in these images. The higher contrast between water and the porous substrate, achievable in the phase contrast images, compared with the attenuation ones, empowers new analysis and allows investigating the correlation between the drying process and the porous microstructure. The approach offers the possibility of studying other chemically inert or reactive water transport processes without any chemical or physical perturbation of the processes themselves.

  8. Design of smart 3D-digital X-ray microtomographic scanners for non-destructive testing of materials and components of electronic devices with a multilayered structure

    NASA Astrophysics Data System (ADS)

    Syryamkin, V. I.; Suntsov, S. B.; Klestov, S. A.; Echina, E. S.

    2015-10-01

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. Chapter 4 covers general procedures of defect search, which is based on vector analysis principles. In conclusion, the main applications of X-ray tomography are presented.

  9. Design of smart 3D-digital X-ray microtomographic scanners for non-destructive testing of materials and components of electronic devices with a multilayered structure

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A. Echina, E. S.; Suntsov, S. B.

    2015-10-27

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. Chapter 4 covers general procedures of defect search, which is based on vector analysis principles. In conclusion, the main applications of X-ray tomography are presented.

  10. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  11. Doppler Tomography in 2D and 3D of the X-ray Binary Cyg X-1 for June 2007

    NASA Astrophysics Data System (ADS)

    Sharova, O. I.; Agafonov, M. I.; Karitskaya, E. A.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar, A. V.

    2012-04-01

    The 2D and 3D Doppler tomograms of X-ray binary system Cyg X-1 (V1357 Cyg) were reconstructed from spectral data for the line HeII 4686Å obtained with 2-m telescope of the Peak Terskol Observatory (Russia) and 2.1-m telescope of the Mexican National Observatory in June, 2007. Information about gas motions outside the orbital plane, using all of the three velocity components Vx, Vy, Vz, was obtained for the first time. The tomographic reconstruction was carried out for the system inclination angle of 45°. The equal resolution (50 × 50 × 50 km/s) is realized in this case, in the orbital plane (Vx, Vy) and also in the perpendicular direction Vz. The checkout tomograms were realized also for the inclination angle of 40° because of the angle uncertainty. Two versions of the result showed no qualitative discrepancy. Details of the structures revealed by the 3D Doppler tomogram were analyzed.

  12. Hard x-ray micro-tomography of a human head post-mortem as a gold standard to compare x-ray modalities

    NASA Astrophysics Data System (ADS)

    Dalstra, M.; Schulz, G.; Dagassan-Berndt, D.; Verna, C.; Müller-Gerbl, M.; Müller, B.

    2016-10-01

    An entire human head obtained at autopsy was micro-CT scanned in a nano/micro-CT scanner in a 6-hour long session. Despite the size of the head, it could still be scanned with a pixel size of 70 μm. The aim of this study was to obtain an optimal quality 3D data-set to be used as baseline control in a larger study comparing the image quality of various cone beam CT systems currently used in dentistry. The image quality of the micro-CT scans was indeed better than the ones of the clinical imaging modalities, both with regard to noise and streak artifacts due to metal dental implants. Bony features in the jaws, like the trabecular architecture and the thin wall of the alveolar bone were clearly visible. Therefore, the 3D micro-CT data-set can be used as the gold standard for linear, angular, and volumetric measurements of anatomical features in and around the oral cavity when comparing clinical imaging modalities.

  13. Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging

    PubMed Central

    Staedler, Yannick M.; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  14. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    PubMed

    Staedler, Yannick M; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  15. Feasibility of CT-based 3D anatomic mapping with a scanning-beam digital x-ray (SBDX) system

    NASA Astrophysics Data System (ADS)

    Slagowski, Jordan M.; Tomkowiak, Michael T.; Dunkerley, David A. P.; Speidel, Michael A.

    2015-03-01

    This study investigates the feasibility of obtaining CT-derived 3D surfaces from data provided by the scanning-beam digital x-ray (SBDX) system. Simulated SBDX short-scan acquisitions of a Shepp-Logan and a thorax phantom containing a high contrast spherical volume were generated. 3D reconstructions were performed using a penalized weighted least squares method with total variation regularization (PWLS-TV), as well as a more efficient variant employing gridding of projection data to parallel rays (gPWLS-TV). Voxel noise, edge blurring, and surface accuracy were compared to gridded filtered back projection (gFBP). PWLS reconstruction of a noise-free reduced-size Shepp-Logan phantom had 1.4% rRMSE. In noisy gPWLS-TV reconstructions of a reduced-size thorax phantom, 99% of points on the segmented sphere perimeter were within 0.33, 0.47, and 0.70 mm of the ground truth, respectively, for fluences comparable to imaging through 18.0, 27.2, and 34.6 cm acrylic. Surface accuracies of gFBP and gPWLS-TV were similar at high fluences, while gPWLS-TV offered improvement at the lowest fluence. The gPWLS-TV voxel noise was reduced by 60% relative to gFBP, on average. High-contrast linespread functions measured 1.25 mm and 0.96 mm (FWHM) for gPWLS-TV and gFBP. In a simulation of gated and truncated projection data from a full-sized thorax, gPWLS-TV reconstruction yielded segmented surface points which were within 1.41 mm of ground truth. Results support the feasibility of 3D surface segmentation with SBDX. Further investigation of artifacts caused by data truncation and patient motion is warranted.

  16. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  17. Feasibility of CT-based 3D anatomic mapping with a scanning-beam digital x-ray (SBDX) system.

    PubMed

    Slagowski, Jordan M; Tomkowiak, Michael T; Dunkerley, David A P; Speidel, Michael A

    This study investigates the feasibility of obtaining CT-derived 3D surfaces from data provided by the scanning-beam digital x-ray (SBDX) system. Simulated SBDX short-scan acquisitions of a Shepp-Logan and a thorax phantom containing a high contrast spherical volume were generated. 3D reconstructions were performed using a penalized weighted least squares method with total variation regularization (PWLS-TV), as well as a more efficient variant employing gridding of projection data to parallel rays (gPWLS-TV). Voxel noise, edge blurring, and surface accuracy were compared to gridded filtered back projection (gFBP). PWLS reconstruction of a noise-free reduced-size Shepp-Logan phantom had 1.4% rRMSE. In noisy gPWLS-TV reconstructions of a reduced-size thorax phantom, 99% of points on the segmented sphere perimeter were within 0.33, 0.47, and 0.70 mm of the ground truth, respectively, for fluences comparable to imaging through 18.0, 27.2, and 34.6 cm acrylic. Surface accuracies of gFBP and gPWLS-TV were similar at high fluences, while gPWLS-TV offered improvement at the lowest fluence. The gPWLS-TV voxel noise was reduced by 60% relative to gFBP, on average. High-contrast linespread functions measured 1.25 mm and 0.96 mm (FWHM) for gPWLS-TV and gFBP. In a simulation of gated and truncated projection data from a full-sized thorax, gPWLS-TV reconstruction yielded segmented surface points which were within 1.41 mm of ground truth. Results support the feasibility of 3D surface segmentation with SBDX. Further investigation of artifacts caused by data truncation and patient motion is warranted.

  18. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging.

    PubMed

    Schmidgunst, C; Ritter, D; Lang, E

    2007-09-01

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems, (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  19. Multi-scale 3D X-ray Imaging Capabilities at the Advanced Photon Source - Current status and future direction (Invited)

    NASA Astrophysics Data System (ADS)

    DeCarlo, F.; Xiao, X.; Khan, F.; Glowacki, A.; Schwarz, N.; Jacobsen, C.

    2013-12-01

    In x-ray computed μ-tomography (μ-XCT), a thin scintillator screen is coupled to a visible light lens and camera system to obtain micrometer-scale transmission imaging of specimens as large as a few millimeters. Recent advances in detector technology allow collecting these images at unprecedented frame rates. For a high x-ray flux density synchrotron facility like the Advanced Photon Source (APS), the detector exposure time ranges from hundreds of milliseconds to hundreds of picoseconds, making possible to acquire a full 3D micrometer-resolution dataset in less than one second. The micron resolution limitation of parallel x-ray beam projection systems can be overcame by Transmission X-ray Microscopes (TXM) where part of the image magnification is done in x-ray regime using x-ray optics like capillary condensers and Fresnel zone plates. These systems, when installed on a synchrotron x-ray source, can generate 2D images with up to 20 nm resolution with second exposure time and collect a full 3D nano-resolution dataset in few minutes. μ-XCT and TXM systems available at the x-ray imaging beamlines of the APS are routinely used in material science and geoscience applications where high-resolution and fast 3D imaging are instrumental in extracting in situ four-dimensional dynamic information. In this presentation we describe the computational challenges associated with μ-XCT and TXM systems and present the framework and infrastructure developed at the APS to allow for routine multi-scale data integration between the two systems.

  20. Multi-scale 3D X-ray Imaging Capabilities at the Advanced Photon Source - Current status and future direction (Invited)

    NASA Astrophysics Data System (ADS)

    DeCarlo, F.; Xiao, X.; Khan, F.; Glowacki, A.; Schwarz, N.; Jacobsen, C.

    2011-12-01

    In x-ray computed μ-tomography (μ-XCT), a thin scintillator screen is coupled to a visible light lens and camera system to obtain micrometer-scale transmission imaging of specimens as large as a few millimeters. Recent advances in detector technology allow collecting these images at unprecedented frame rates. For a high x-ray flux density synchrotron facility like the Advanced Photon Source (APS), the detector exposure time ranges from hundreds of milliseconds to hundreds of picoseconds, making possible to acquire a full 3D micrometer-resolution dataset in less than one second. The micron resolution limitation of parallel x-ray beam projection systems can be overcame by Transmission X-ray Microscopes (TXM) where part of the image magnification is done in x-ray regime using x-ray optics like capillary condensers and Fresnel zone plates. These systems, when installed on a synchrotron x-ray source, can generate 2D images with up to 20 nm resolution with second exposure time and collect a full 3D nano-resolution dataset in few minutes. μ-XCT and TXM systems available at the x-ray imaging beamlines of the APS are routinely used in material science and geoscience applications where high-resolution and fast 3D imaging are instrumental in extracting in situ four-dimensional dynamic information. In this presentation we describe the computational challenges associated with μ-XCT and TXM systems and present the framework and infrastructure developed at the APS to allow for routine multi-scale data integration between the two systems.

  1. Nucleation and Grain Growth During Dehydration of Polycrystalline Gypsum Observed in Time-series Synchrotron X-ray Micro-tomography Experiments

    NASA Astrophysics Data System (ADS)

    Leclere, H.; Bedford, J. D.; Fusseis, F.; Wheeler, J.; Faulkner, D.

    2015-12-01

    Nucleation and growth of new minerals in response to disequilibrium is the most fundamental metamorphic process. However, our current understanding of metamorphic reactions is largely based on inference from mineral assemblages brought to the surface by uplift and erosion, rather than from direct observation. The experimental investigation of metamorphism has also been limited, typically to concealed vessels thus restricting the possibility of direct microstructural monitoring. Recent advances in synchrotron-based X-ray micro-tomography allow for new experiments that utilise X-ray transparent setups in order to image these processes on the micron-scale in 4D. We conducted in-situ constant temperature experiments at the Advanced Photon Source (Argonne National Laboratory, USA) to dehydrate confined cylinders of Volterra Gypsum (5mm length x 2mm diameter). The relatively modest temperature of reaction and the apparently simple mineralogy make gypsum an ideal material for investigating processes associated with metamorphic devolatilization. Using a purpose-built X-ray transparent experimental cell (Fusseis et al., 2014, J. Synchrotron Rad. 21, 251-253) to apply an effective pressure of 5MPa, the samples were heated to 388K for approximately 10 hours to acquire three-dimensional time-series tomography datasets comprising forty time steps. Images show grains of the product material (bassanite) growing throughout the sample accompanied by an evolving porous network. These datasets provide new visual insights into the spatiotemporal association between porosity development and the formation of product minerals during devolatilization. The direct observation of reaction also has important implications for general metamorphic theory as we can track the complete history of grain growth from nucleation through to interaction with surrounding grains.

  2. Coherent 3D nanostructure of γ-Al2O3: Simulation of whole X-ray powder diffraction pattern

    NASA Astrophysics Data System (ADS)

    Pakharukova, V. P.; Yatsenko, D. A.; Gerasimov, E. Yu.; Shalygin, A. S.; Martyanov, O. N.; Tsybulya, S. V.

    2017-02-01

    The structure and nanostructure features of nanocrystalline γ-Al2O3 obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al2O3 were constructed. The models of nanostructured γ-Al2O3 particles were first confirmed by a direct simulation of powder X-Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al2O3 was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al2O3 platelets were heterogeneous on a nanometer scale and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al2O3 particles with formation of planar defects on {001}, {100}, and {101} planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al2O3 structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al2O3 oxide.

  3. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector

    PubMed Central

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N.; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-01-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M2. Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~ 0.4–2.0 μm for photons with energies 6–14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities. PMID:26634431

  4. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    NASA Astrophysics Data System (ADS)

    Yermukhambetova, Assiya; Tan, Chun; Daemi, Sohrab R.; Bakenov, Zhumabay; Darr, Jawwad A.; Brett, Daniel J. L.; Shearing, Paul R.

    2016-10-01

    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries.

  5. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    PubMed Central

    Yermukhambetova, Assiya; Tan, Chun; Daemi, Sohrab R.; Bakenov, Zhumabay; Darr, Jawwad A.; Brett, Daniel J. L.; Shearing, Paul R.

    2016-01-01

    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries. PMID:27748437

  6. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    SciTech Connect

    Raguvarun, K. Balasubramaniam, Krishnan Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Kapoor, Ajay; Hoye, Nicholas; Curiri, Dominic

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  7. Kβ/ Kα intensity ratios for X-ray production in 3d metals by gamma-rays and protons

    NASA Astrophysics Data System (ADS)

    Bhuinya, C. R.; Padhi, H. C.

    1994-04-01

    Systematic measurements of Kβ/ Kα intensity ratios for X-ray production in 3d metals have been carried out using γ-ray and fast proton ionization methods. The measured ratios from proton ionization experiments indicate production of multivacancies in the L shell giving rise to higher Kβ/ Kα ratios compared to the present γRF results and 2 MeV proton ionization results of Perujo et al. [Perujo A., Maxwell J. A., Teesdale W. J. and Cambell J. L. (1987) J. Phys. B: Atom. Molec. Phys.20, 4973]. This is consistent with the SCA model calculation which gives increased simultaneous K- and L-shell ionization at 4 MeV. The present results from γRF experiments are in close agreement with the 2 MeV proton ionization results of Perujo et al. (1987) and also with the theoretical calculation of jankowski and Polasik [Jankowski K. and Polasik M. (1989) J. Phys. B: Atom. Molec. Optic. Phys. 22, 2369] but the theoretical results of Scofield [Scofield J. H. (1974a) Atom. Data Nucl. Data Tables14, 12] are somewhat higher.

  8. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    NASA Astrophysics Data System (ADS)

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali

    2015-01-01

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 5123 to 81923 voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and Ht (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume "Shepp and Logan" in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  9. Observations of 3-D transverse dispersion and dilution in natural consolidated rock by X-ray tomography

    NASA Astrophysics Data System (ADS)

    Boon, Maartje; Bijeljic, Branko; Niu, Ben; Krevor, Sam

    2016-10-01

    Recent studies have demonstrated the importance of transverse dispersion for dilution and mixing of solutes but most observations have remained limited to two-dimensional sand-box models. We present a new core-flood test to characterize solute transport in 3-D natural-rock media. A device consisting of three annular regions was used for fluid injection into a cylindrical rock core. Pure water was injected into the center and outer region and a NaI solution into the middle region. Steady state transverse dispersion of NaI was visualized with an X-ray medical CT-scanner for a range of Peclét numbers. Three methods were used to calculate Dt: (1) fitting an analytical solution, (2) analyzing the second-central moment, and (3) analyzing the dilution index and reactor ratio. Transverse dispersion decreased with distance due to flow focusing. Furthermore, Dt in the power-law regime showed sub-linear behavior. Overall, the reactor ratios were high confirming the homogeneity of Berea sandstone.

  10. Development status of a CZT spectrometer prototype with 3D spatial resolution for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Auricchio, N.; Caroli, E.; Basili, A.; Benassi, G.; Budtz Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Kuvvetli, I.; Milano, L.; Moscatelli, F.; Stephen, J. B.; Zanichelli, M.; Zappettini, A.

    2012-07-01

    The development of new focusing optics based on wide band Laue lenses operating from ~60 keV up to several hundred keV is particularly challenging. This type of hard X-ray or gamma ray optics requires a high performance focal plane detector in order to exploit to the best their intrinsic capabilities. We describe a three dimensional (3D) position sensitive detector prototype suitable as the basic module for a high efficiency Laue lens focal plane detector. This detector configuration is currently under study for use in a balloon payload dedicated to performing a high significance measurement of the polarization status of the Crab between 100 and 500 keV. The prototype is made by packing 8 linear modules, each composed of one basic sensitive unit bonded onto a thin supporting ceramic layer. Each unit is a drift strip detector based on a CZT crystal, irradiated transversally to the electric field direction. The anode is segmented into 8 detection cells, each comprising one collecting strip and 8 surrounding drift strips. The drift strips are biased by a voltage divider. The cathode is divided into 4 horizontal strips for the reconstruction of the Z interaction position. The detector readout electronics is based on RENA-3 ASIC and the data handling system uses a custom electronics based on FPGA to provide the ASIC setting, the event handling logic, and the data acquisition. This paper mainly describes the components and the status of the undergoing activities for the construction of the proposed 3D CZT prototype and shows the results of the electronics tests.

  11. Structural factors affecting pore space transformation during hydrocarbon generation in source rock (shales): laboratory experiments and X-ray microtomography/SEM study

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, Dina; Korost, Dmitry; Gerke, Kirill

    2015-04-01

    Oil and gas generation is a complex superposition of processes which take place in the interiors and are not readily observable in nature in human life time-frames. During burial of the source rocks organic matter is transformed into a mixture of high-molecular compounds - precursors of oil and gas (kerogen). Specific thermobaric conditions trigger formation of low molecular weight hydrocarbon compounds. Generation of sufficient quantities of hydrocarbons leads to the primary fluid migration. For series of our experiments we selected mainly siliceous-carbonate composition shale rocks from Domanic horizon of South-Tatar arch. Rock samples were heated in the pyrolyzer to temperatures closely corresponding to different catagenesis stages. X-ray microtomography method was used to monitor changes in the morphology of the pore space within studied shale rocks. By routine measurements we made sure that all samples (10 in total) had similar composition of organic and mineral phases. All samples in the collection were grouped according to initial structure and amount of organics and processed separately to: 1) study the influence of organic matter content on the changing morphology of the rock under thermal effects; 2) study the effect of initial structure on the primary migration processes for samples with similar organic matter content. An additional experiment was conducted to study the dynamics of changes in the structure of the pore space and prove the validity of our approach. At each stage of heating the morphology of altered rocks was characterized by formation of new pores and channels connecting primary voids. However, it was noted that the samples with a relatively low content of the organic matter had less changes in pore space morphology, in contrast to rocks with a high organic content. Second part of the study also revealed significant differences in resulting pore structures depending on initial structure of the unaltered rocks and connectivity of original

  12. Non-uniform temperature distribution in Li-ion batteries during discharge - A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach

    NASA Astrophysics Data System (ADS)

    Robinson, James B.; Darr, Jawwad A.; Eastwood, David S.; Hinds, Gareth; Lee, Peter D.; Shearing, Paul R.; Taiwo, Oluwadamilola O.; Brett, Dan J. L.

    2014-04-01

    Thermal runaway is a major cause of failure in Li-ion batteries (LIBs), and of particular concern for high energy density transport applications, where safety concerns have hampered commercialisation. A clear understanding of electro-thermal properties and how these relate to structure and operation is vital to improving thermal management of LIBs. Here a combined thermal imaging, X-ray tomography and electrochemical impedance spectroscopy (EIS) approach was applied to commercially available 18650 cells to study their thermal characteristics. Thermal imaging was used to characterise heterogeneous temperature distributions during discharge above 0.75C; the complementary information provided by 3D X-ray tomography was utilised to evaluate the internal structure of the battery and identify the regions causing heating, specifically the components of the battery cap.

  13. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    PubMed Central

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-01-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a region-of-interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance. PMID:27375314

  14. Analysis of Ablative Performance of C/C Composite Throat Containing Defects Based on X-ray 3D Reconstruction in a Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Hui, Wei-Hua; Bao, Fu-Ting; Wei, Xiang-Geng; Liu, Yang

    2015-12-01

    In this paper, a new measuring method of ablation rate was proposed based on X-ray three-dimensional (3D) reconstruction. The ablation of 4-direction carbon/carbon composite nozzles was investigated in the combustion environment of a solid rocket motor, and the macroscopic ablation and linear recession rate were studied through the X-ray 3D reconstruction method. The results showed that the maximum relative error of the X-ray 3D reconstruction was 0.0576%, which met the minimum accuracy of the ablation analysis; along the nozzle axial direction, from convergence segment, throat to expansion segment, the ablation gradually weakened; in terms of defect ablation, the middle ablation was weak, while the ablation in both sides was more serious. In a word, the proposed reconstruction method based on X-ray about C/C nozzle ablation can construct a clear model of ablative nozzle which characterizes the details about micro-cracks, deposition, pores and surface to analyze ablation, so that this method can create the ablation curve in any surface clearly.

  15. X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance.

    PubMed

    Nardini, Andrea; Savi, Tadeja; Losso, Adriano; Petit, Giai; Pacilè, Serena; Tromba, Giuliana; Mayr, Stefan; Trifilò, Patrizia; Lo Gullo, Maria A; Salleo, Sebastiano

    2017-02-01

    Drought-induced xylem embolism is a serious threat to plant survival under future climate scenarios. Hence, accurate quantification of species-specific vulnerability to xylem embolism is a key to predict the impact of climate change on vegetation. Low-cost hydraulic measurements of embolism rate have been suggested to be prone to artefacts, thus requiring validation by direct visualization of the functional status of xylem conduits using nondestructive imaging techniques, such as X-ray microtomography (microCT). We measured the percentage loss of conductance (PLC) of excised stems of Laurus nobilis (laurel) dehydrated to different xylem pressures, and compared results with direct observation of gas-filled vs water-filled conduits at a synchrotron-based microCT facility using a phase contrast imaging modality. Theoretical PLC calculated on the basis of microCT observations in stems of laurel dehydrated to different xylem pressures overall were in agreement with hydraulic measurements, revealing that this species suffers a 50% loss of xylem hydraulic conductance at xylem pressures averaging -3.5 MPa. Our data support the validity of estimates of xylem vulnerability to embolism based on classical hydraulic techniques. We discuss possible causes of discrepancies between data gathered in this study and those of recent independent reports on laurel hydraulics.

  16. Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: Curvature, snap-off, and remobilization of residual CO2

    NASA Astrophysics Data System (ADS)

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin J.

    2014-11-01

    X-ray microtomography was used to image the shape and size of residual ganglia of supercritical CO2 at resolutions of 3.5 and 2 μm and at representative subsurface conditions of temperature and pressure. The capillary pressure for each ganglion was found by measuring the curvature of the CO2-brine interface, while the pore structure was parameterized using distance maps of the pore space. The formation of the residual clusters by snap-off was examined by comparing the ganglion capillary pressure to local pore topography. The capillary pressure was found to be inversely proportional to the radius of the largest restriction (throat) surrounding the ganglion, which validates the imbibition mechanisms used in pore-network modeling. The potential mobilization of residual ganglia was assessed using a reformulation of both the capillary (Ncmacro) and Bond numbers (Nbmacro), rigorously based on a balance of pore-scale forces, with the majority of ganglia remobilized at Ncmacro around 1. Buoyancy forces were found to be small in this system (Nbmacro << 1), meaning the gravitational remobilization of CO2 after residual trapping would be extremely difficult.

  17. Non-destructive imaging of fragments of historical beeswax seals using high-contrast X-ray micro-radiography and micro-tomography with large area photon-counting detector array.

    PubMed

    Karch, Jakub; Bartl, Benjamin; Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek

    2016-12-01

    Historical beeswax seals are unique cultural heritage objects. Unfortunately, a number of historical sealing waxes show a porous structure with a strong tendency to stratification and embrittlement, which makes these objects extremely prone to mechanical damage. The understanding of beeswax degradation processes therefore plays an important role in the preservation and consequent treatment of these objects. Conventional methods applied for the investigation of beeswax materials (e.g. gas chromatography) are of a destructive nature or bring only limited information about the sample surface (microscopic techniques). Considering practical limitations of conventional methods and ethical difficulties connected with the sampling of the historical material, radiation imaging methods such as X-ray micro-tomography presents a promising non-destructive tool for the onward scientific research in this field. In this contribution, we present the application of high-contrast X-ray micro-radiography and micro-tomography for the investigation of beeswax seal fragments. The method is based on the application of the large area photon-counting detector recently developed at our institute. The detector combines the advantages of single-photon counting technology with a large field of view. The method, consequently, enables imaging of relatively large objects with high geometrical magnification. In the reconstructed micro-tomographies of investigated historical beeswax seals, we are able to reveal morphological structures such as stratification, micro-cavities and micro-fractures with spatial resolution down to 5μm non-destructively and with high imaging quality. The presented work therefore demonstrates that a combination of state-of-the-art hybrid pixel semiconductor detectors and currently available micro-focus x-ray sources makes it possible to apply X-ray micro-radiography and micro-tomography as a valuable non-destructive tool for volumetric beeswax seal morphological studies.

  18. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures☆

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.

    2011-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414

  19. Electronic structure and characteristics of Fe 3d valence states of Fe(1.01)Se superconductors under pressure probed by x-ray absorption spectroscopy and resonant x-ray emission spectroscopy.

    PubMed

    Chen, J M; Haw, S C; Lee, J M; Chen, S A; Lu, K T; Deng, M J; Chen, S W; Ishii, H; Hiraoka, N; Tsuei, K D

    2012-12-28

    The electronic structure and characteristics of Fe 3d valence states of iron-chalcogenide Fe(1.01)Se superconductors under pressure were probed with x-ray absorption spectroscopy and resonant x-ray emission spectroscopy (RXES). The intensity of the pre-edge peak at ~7112.7 eV of the Fe K-edge x-ray absorption spectrum of Fe(1.01)Se decreases for pressure from 0.5 GPa increased to 6.9 GPa. The satellite line Kβ' was reduced in intensity upon applying pressure and became absent for pressure 52 GPa. Fe(1.01)Se shows a small net magnetic moment of Fe(2+), likely arising from strong Fe-Fe spin fluctuations. The 1s3p-RXES spectra of Fe(1.01)Se at pressures 0.5, 6.9, and 52 GPa recorded at the Fe K-edge reveal that unoccupied Fe 3d states exhibit a delocalized character, stemming from hybridization of Fe 3d and 4p orbitals arising from a local distortion around the Fe atom in a tetrahedral site. Application of pressure causes suppression of this on-site Fe 3d-Fe 4p hybridization, and thereby decreases the intensity of the pre-edge feature in the Fe K-edge absorption spectrum of Fe(1.01)Se. Compression enhances spin fluctuations at Fe sites in Fe(1.01)Se and increases the corresponding T(c), through a competition between nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic superexchange interactions. This result aids our understanding of the physics underlying iron-based superconductors.

  20. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation.

    PubMed

    Nakashima, Yoshito; Nakano, Tsukasa; Nakamura, Koichi; Uesugi, Kentaro; Tsuchiyama, Akira; Ikeda, Susumu

    2004-10-01

    The diffusion pathways of porous sandstone were examined by a three-dimensional (3-D) imaging technique based on X-ray computed tomography (CT) using the SPring-8 (Super Photon ring-8 GeV, Hyogo, Japan) synchrotron radiation facility. The analysis was undertaken to develop better understanding of the diffusion pathways in natural rock as a key factor in clarifying the detailed mechanism of the diffusion of radionuclides and water molecules through the pore spaces of natural barriers in underground nuclear waste disposal facilities. A cylindrical sample (diameter 4 mm, length 6 mm) of sandstone (porosity 0.14) was imaged to obtain a 3-D image set of 450(3) voxels=2.62(3) mm(3). Through cluster-labeling analysis of the 3-D image set, it was revealed that 89% of the pore space forms a single large pore-cluster responsible for macroscopic diffusive transport, while only 11% of the pore space is made up of isolated pores that are not involved in long-range diffusive transport. Computer simulations of the 3-D diffusion of non-sorbing random walkers in the largest pore cluster were performed to calculate the surface-to-volume ratio of the pore, tortuosity (diffusion coefficient in free space divided by that in porous rock). The results showed that (i) the simulated surface-to-volume ratio is about 60% of the results obtained by conventional pulsed-field-gradient proton nuclear magnetic resonance (NMR) laboratory experiments and (ii) the simulated tortuosity is five to seven times larger than the results of laboratory diffusion experiments using non-sorbing I(-) and Br(-). These discrepancies are probably attributed to the intrinsic sample heterogeneity and limited spatial resolution of the CT system. The permeability was also estimated based on the NMR diffusometry theory using the results of the random walk simulations via the Kozeny-Carman equation. The estimated permeability involved an error of about 20% compared with the permeability measured by the conventional

  1. Effects of x-ray and CT image enhancements on the robustness and accuracy of a rigid 3D/2D image registration.

    PubMed

    Kim, Jinkoo; Yin, Fang-Fang; Zhao, Yang; Kim, Jae Ho

    2005-04-01

    A rigid body three-dimensional/two-dimensional (3D/2D) registration method has been implemented using mutual information, gradient ascent, and 3D texturemap-based digitally reconstructed radiographs. Nine combinations of commonly used x-ray and computed tomography (CT) image enhancement methods, including window leveling, histogram equalization, and adaptive histogram equalization, were examined to assess their effects on accuracy and robustness of the registration method. From a set of experiments using an anthropomorphic chest phantom, we were able to draw several conclusions. First, the CT and x-ray preprocessing combination with the widest attraction range was the one that linearly stretched the histograms onto the entire display range on both CT and x-ray images. The average attraction ranges of this combination were 71.3 mm and 61.3 deg in the translation and rotation dimensions, respectively, and the average errors were 0.12 deg and 0.47 mm. Second, the combination of the CT image with tissue and bone information and the x-ray images with adaptive histogram equalization also showed subvoxel accuracy, especially the best in the translation dimensions. However, its attraction ranges were the smallest among the examined combinations (on average 36 mm and 19 deg). Last the bone-only information on the CT image did not show convergency property to the correct registration.

  2. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  3. 2D/3D cryo x-ray fluorescence imaging at the bionanoprobe at the advanced photon source

    SciTech Connect

    Chen, S. Vine, D. J.; Lai, B.; Paunesku, T.; Yuan, Y.; Woloschak, G. E.; Deng, J.; Jin, Q.; Hong, Y. P.; Flachenecker, C.; Hornberger, B.; Brister, K.; Jacobsen, C.; Vogt, S.

    2016-01-28

    Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation.

  4. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: A validation study

    SciTech Connect

    Zheng Guoyan; Schumann, Steffen

    2009-04-15

    Twenty-three femurs (one plastic bone and twenty-two cadaver bones) with both nonpathologic and pathologic cases were considered to validate a statistical shape model based technique for three-dimensional (3D) reconstruction of a patient-specific surface model from calibrated x-ray radiographs. The 3D reconstruction technique is based on an iterative nonrigid registration of the features extracted from a statistically instantiated 3D surface model to those interactively identified from the radiographs. The surface models reconstructed from the radiographs were compared to the associated ground truths derived either from a 3D CT-scan reconstruction method or from a 3D laser-scan reconstruction method and an average error distance of 0.95 mm were found. Compared to the existing works, our approach has the advantage of seamlessly handling both nonpathologic and pathologic cases even when the statistical shape model that we used was constructed from surface models of nonpathologic bones.

  5. A fast rigid-registration method of inferior limb X-ray image and 3D CT images for TKA surgery

    NASA Astrophysics Data System (ADS)

    Ito, Fumihito; O. D. A, Prima; Uwano, Ikuko; Ito, Kenzo

    2010-03-01

    In this paper, we propose a fast rigid-registration method of inferior limb X-ray films (two-dimensional Computed Radiography (CR) images) and three-dimensional Computed Tomography (CT) images for Total Knee Arthroplasty (TKA) surgery planning. The position of the each bone, such as femur and tibia (shin bone), in X-ray film and 3D CT images is slightly different, and we must pay attention how to use the two different images, since X-ray film image is captured in the standing position, and 3D CT is captured in decubitus (face up) position, respectively. Though the conventional registration mainly uses cross-correlation function between two images,and utilizes optimization techniques, it takes enormous calculation time and it is difficult to use it in interactive operations. In order to solve these problems, we calculate the center line (bone axis) of femur and tibia (shin bone) automatically, and we use them as initial positions for the registration. We evaluate our registration method by using three patient's image data, and we compare our proposed method and a conventional registration, which uses down-hill simplex algorithm. The down-hill simplex method is an optimization algorithm that requires only function evaluations, and doesn't need the calculation of derivatives. Our registration method is more effective than the downhill simplex method in computational time and the stable convergence. We have developed the implant simulation system on a personal computer, in order to support the surgeon in a preoperative planning of TKA. Our registration method is implemented in the simulation system, and user can manipulate 2D/3D translucent templates of implant components on X-ray film and 3D CT images.

  6. Multiscale microstructural characterization of Sn-rich alloys by three dimensional (3D) X-ray synchrotron tomography and focused ion beam (FIB) tomography

    SciTech Connect

    Yazzie, K.E.; Williams, J.J.; Phillips, N.C.; De Carlo, F.; Chawla, N.

    2012-08-15

    Sn-rich (Pb-free) alloys serve as electrical and mechanical interconnects in electronic packaging. It is critical to quantify the microstructures of Sn-rich alloys to obtain a fundamental understanding of their properties. In this work, the intermetallic precipitates in Sn-3.5Ag and Sn-0.7Cu, and globular lamellae in Sn-37Pb solder joints were visualized and quantified using 3D X-ray synchrotron tomography and focused ion beam (FIB) tomography. 3D reconstructions were analyzed to extract statistics on particle size and spatial distribution. In the Sn-Pb alloy the interconnectivity of Sn-rich and Pb-rich constituents was quantified. It will be shown that multiscale characterization using 3D X-ray and FIB tomography enabled the characterization of the complex morphology, distribution, and statistics of precipitates and contiguous phases over a range of length scales. - Highlights: Black-Right-Pointing-Pointer Multiscale characterization by X-ray synchrotron and focused ion beam tomography. Black-Right-Pointing-Pointer Characterized microstructural features in several Sn-based alloys. Black-Right-Pointing-Pointer Quantified size, fraction, and clustering of microstructural features.

  7. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    NASA Astrophysics Data System (ADS)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  8. Characterisation of the Pore Structure of Functionalised Calcium Carbonate Tablets by Terahertz Time-Domain Spectroscopy and X-ray Computed Microtomography.

    PubMed

    Markl, Daniel; Wang, Parry; Ridgway, Cathy; Karttunen, Anssi-Pekka; Chakraborty, Mousumi; Bawuah, Prince; Pääkkönen, Pertti; Gane, Patrick; Ketolainen, Jarkko; Peiponen, Kai; Zeitler, J Axel

    2017-03-03

    Novel excipients are entering the market to enhance the bioavailability of drug particles by having a high porosity and thus providing a rapid liquid uptake and disintegration to accelerate subsequent drug dissolution. One example of such a novel excipient is functionalised calcium carbonate (FCC), which enables the manufacture of compacts with a bimodal pore size distribution consisting of larger inter-particle and fine intra-particle pores. Five sets of FCC tablets with a target porosity of 45% to 65% were prepared in 5% steps and characterised using terahertz time-domain spectroscopy (THz-TDS) and X- ray computed microtomography (XμCT). THz-TDS was employed to derive the porosity using effective medium approximations (EMAs), i.e., the traditional and an anisotropic Bruggeman model. The anisotropic Bruggeman model yields the better correlation with the nominal porosity (R(2) = 0.995) and it provided additional information about the shape and orientation of the pores within the powder compact. The spheroidal (ellipsoids of revolution) shaped pores have a preferred orientation perpendicular to the compaction direction causing an anisotropic behaviour of the dielectric porous medium. The results from XμCT confirmed the non-spherical shape as well as the orientation of the pores and it further revealed that the anisotropic behaviour is mainly caused by the inter-particle pores. The information from both techniques provide a detailed insight into the pore structure of pharmaceutical tablets. This is of great interest to study the impact of tablet microstructure on the disintegration and dissolution performance.

  9. Three-dimensional textural analysis of products from the 1997 Vulcanian explosions of Soufrière Hills Volcano, using X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Giachetti, Thomas; Burgisser, Alain; Arbaret, Laurent; Druitt, Timothy H.; Kelfoun, Karim

    2010-05-01

    X-ray computed microtomography is a powerful, non-destructive method for imaging textures and for quantifying vesicle spatial relationships and size distributions. It was applied to one breadcrust bomb and three pumices from the 1997 Vulcanian explosions of the Soufrière Hills Volcano, Montserrat. A detailed 2D textural study of these same samples, including high-resolution vesicle size distributions, has already been carried out. In order to cover the wide range of vesicle and crystal sizes (few µm to a few hundreds of µm), we acquired tomographic images at three magnifications (0.37, 4.0 and 17.4 µm voxel-1) on each sample. Each magnification covers only part of the whole vesicle size range, but with large overlaps. Vesicle walls were reconstructed using ImageJ and 3DMA_Rock softwares, and a Matlab code was written to combine the data from the three stacks and to calculate vesicle size and sphericity distributions for the whole sample. Comparison with the 2D results show only minor differences in the vesicle size distributions. Cumulative vesicle number densities obtained by the two methods are of the same order of magnitude (~1015 m-3 of glass). Three vesicle populations are recognized in the samples, the same three recognized in 2D, although minor shifts in modes are observed. As in 2D, vesicle sphericity decreases with size, vesicle shape being progressively more complicated as the vesicle grows and coalesces with neighbours. Coalescence in all samples appears to occur between neighbouring vesicles of any sizes, but, as intuitively expected, the larger the vesicle, the more connected it is. Our results show that coalescence affected indifferently pre- and syn-eruptive bubbles. This suggests that the syn-eruptive gas was rapidly connected to large-scale pathways through which it could escape. Depending on clast permeability, this mechanism has the potential to double the amount of gas available for propulsion of the Vulcanian jet.

  10. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    SciTech Connect

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  11. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE PAGES

    Singh, S. S.; Williams, J. J.; Lin, M. F.; ...

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  12. A micro-tomography method based on X-ray diffraction enhanced imaging for the visualization of micro-organs and soft tissues.

    PubMed

    Gao, Xin; Luo, Shunqian; Yin, Hongxia; Liu, Bo; Xu, Maolin; Yuan, Qingxi; Gao, Xiulai; Zhu, Peiping

    2006-01-01

    Diffraction enhanced imaging (DEI) is one of the phase contrast imaging methods using the monochromatic X-ray from synchrotron, which provides information on the out-of-plane angular deviation of X-ray. DEI allows the investigation of micro-structures inside weakly absorbing samples at high spatial resolution without serious radiation exposure. Tomographic techniques can be applied readily to phase contrast images. The combination of DEI and tomography allows for a reconstruction of refractive index gradient distribution inside weakly absorbing samples with micrometer resolution, particularly suited for the 3D observation of micro-organisms and tissues. The existing phase contrast tomography methods based on DEI use phase contrast images as projections, such images contain not only the phase information, but also the absorption information. A novel method (DEI in the tomography mode) was developed to greatly increase the proportion of refraction information in phase contrast images by computing the difference between the two sets of images acquired at different angles of the rocking curve to adopt the projections with a complete set (2pi) for reconstruction. The reconstructed images of cochlea of a guinea pig showed the spatial structures and the micro-features inside the samples. The new method reveals higher spatial resolution compared to the conventional phase contrast tomography methods and is more suitable to the investigation of micro-structures of micro-organisms and tissue materials.

  13. Complementary X-ray tomography techniques for histology-validated 3D imaging of soft and hard tissues using plaque-containing blood vessels as examples.

    PubMed

    Holme, Margaret N; Schulz, Georg; Deyhle, Hans; Weitkamp, Timm; Beckmann, Felix; Lobrinus, Johannes A; Rikhtegar, Farhad; Kurtcuoglu, Vartan; Zanette, Irene; Saxer, Till; Müller, Bert

    2014-01-01

    A key problem in X-ray computed tomography is choosing photon energies for postmortem specimens containing both soft and hard tissues. Increasing X-ray energy reduces image artifacts from highly absorbing hard tissues including plaque, but it simultaneously decreases contrast in soft tissues including the endothelium. Therefore, identifying the lumen within plaque-containing vessels is challenging. Destructive histology, the gold standard for tissue evaluation, reaches submicron resolution in two dimensions, whereas slice thickness limits spatial resolution in the third. We present a protocol to systematically analyze heterogeneous tissues containing weakly and highly absorbing components in the original wet state, postmortem. Taking the example of atherosclerotic human coronary arteries, the successively acquired 3D data of benchtop and synchrotron radiation-based tomography are validated by histology. The entire protocol requires ∼20 working days, enables differentiation between plaque, muscle and fat tissues without using contrast agents and permits blood flow simulations in vessels with plaque-induced constrictions.

  14. Effective incorporation of spatial information in a mutual information based 3D-2D registration of a CT volume to X-ray images.

    PubMed

    Zheng, Guoyan

    2008-01-01

    This paper addresses the problem of estimating the 3D rigid pose of a CT volume of an object from its 2D X-ray projections. We use maximization of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. In this paper, instead of directly maximizing mutual information, we propose to use a variational approximation derived from the Kullback-Leibler bound. Spatial information is then incorporated into this variational approximation using a Markov random field model. The newly derived similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on X-ray and CT datasets of a plastic phantom and a cadaveric spine segment.

  15. Estimation of three-dimensional knee joint movement using bi-plane x-ray fluoroscopy and 3D-CT

    NASA Astrophysics Data System (ADS)

    Haneishi, Hideaki; Fujita, Satoshi; Kohno, Takahiro; Suzuki, Masahiko; Miyagi, Jin; Moriya, Hideshige

    2005-04-01

    Acquisition of exact information of three-dimensional knee joint movement is desired in plastic surgery. Conventional X-ray fluoroscopy provides dynamic but just two-dimensional projected image. On the other hand, three-dimensional CT provides three-dimensional but just static image. In this paper, a method for acquiring three-dimensional knee joint movement using both bi-plane, dynamic X-ray fluoroscopy and static three-dimensional CT is proposed. Basic idea is use of 2D/3D registration using digitally reconstructed radiograph (DRR) or virtual projection of CT data. Original ideal is not new but the application of bi-plane fluoroscopy to natural bones of knee is reported for the first time. The technique was applied to two volunteers and successful results were obtained. Accuracy evaluation through computer simulation and phantom experiment with a knee joint of a pig were also conducted.

  16. Solution structure of the complex between CR2 SCR 1-2 and C3d of human complement: an X-ray scattering and sedimentation modelling study.

    PubMed

    Gilbert, Hannah E; Eaton, Julian T; Hannan, Jonathan P; Holers, V Michael; Perkins, Stephen J

    2005-02-25

    Complement receptor type 2 (CR2, CD21) forms a tight complex with C3d, a fragment of C3, the major complement component. Previous crystal structures of the C3d-CR2 SCR 1-2 complex and free CR2 SCR 1-2 showed that the two SCR domains of CR2 form contact with each other in a closed V-shaped structure. SCR 1 and SCR 2 are connected by an unusually long eight-residue linker peptide. Medium-resolution solution structures for CR2 SCR 1-2, C3d, and their complex were determined by X-ray scattering and analytical ultracentrifugation. CR2 SCR 1-2 is monomeric. For CR2 SCR 1-2, its radius of gyration R(G) of 2.12(+/-0.05) nm, its maximum length of 10nm and its sedimentation coefficient s20,w(o) of 1.40(+/-0.03) S do not agree with those calculated from the crystal structures, and instead suggest an open structure. Computer modelling of the CR2 SCR1-2 solution structure was based on the structural randomisation of the eight-residue linker peptide joining SCR 1 and SCR 2 to give 9950 trial models. Comparisons with the X-ray scattering curve indicated that the most favoured arrangements for the two SCR domains corresponded to an open V-shaped structure with no contacts between the SCR domains. For C3d, X-ray scattering and sedimentation velocity experiments showed that it exists as a monomer-dimer equilibrium with a dissociation constant of 40 microM. The X-ray scattering curve for monomeric C3d gave an R(G) value of 1.95 nm, and this together with its s20,w(o) value of 3.17 S gave good agreement with the monomeric C3d crystal structure. Modelling of the C3d dimer gave good agreements with its scattering and ultracentrifugation parameters. For the complex, scattering and ultracentrifugation experiments showed that there was no dimerisation, indicating that the C3d dimerisation site was located close to the CR2 SCR 1-2 binding site. The R(G) value of 2.44(+/-0.1) nm, its length of 9 nm and its s20,w(o) value of 3.45(+/-0.01) S showed that its structure was not much more

  17. Effect of Pressure on Magnetoelastic Coupling in 3d Metal Alloys Studied with X-Ray Absorption Spectroscopy

    SciTech Connect

    Pascarelli, S.; Trapananti, A.; Mathon, O.; Aquilanti, G.; Ruffoni, M. P.; Ostanin, S.; Staunton, J. B.; Pettifer, R. F.

    2007-12-07

    Using x-ray absorption spectroscopy, we have studied the effect of pressure on femtometer-scale bond strain due to anisotropic magnetostriction in a thin FeCo film. At 7 GPa local magnetostrictive strain is found to be larger than at ambient, in agreement with spin-polarized ab initio electronic structure calculations, but contrary to the expected effect of compression on bond stiffness. The availability of high pressure data on local magnetostrictive strain opens new capabilities for validating theoretical predictions and can lead to the development of materials with the desired properties.

  18. Comparison of fluid-fluid interfacial areas measured with X-ray microtomography and interfacial partitioning tracer tests for the same samples

    NASA Astrophysics Data System (ADS)

    McDonald, Kieran; Carroll, Kenneth C.; Brusseau, Mark L.

    2016-07-01

    Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure nonwetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of the tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ˜5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.

  19. The Best of Both Worlds: 3D X-ray Microscopy with Ultra-high Resolution and a Large Field of View

    NASA Astrophysics Data System (ADS)

    Li, W.; Gelb, J.; Yang, Y.; Guan, Y.; Wu, W.; Chen, J.; Tian, Y.

    2011-09-01

    3D visualizations of complex structures within various samples have been achieved with high spatial resolution by X-ray computed nanotomography (nano-CT). While high spatial resolution generally comes at the expense of field of view (FOV). Here we proposed an approach that stitched several 3D volumes together into a single large volume to significantly increase the size of the FOV while preserving resolution. Combining this with nano-CT, 18-μm FOV with sub-60-nm resolution has been achieved for non-destructive 3D visualization of clustered yeasts that were too large for a single scan. It shows high promise for imaging other large samples in the future.

  20. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    PubMed

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  1. X-Ray microtomography for ant taxonomy: An exploration and case study with two new Terataner (Hymenoptera, Formicidae, Myrmicinae) species from Madagascar

    PubMed Central

    Fischer, Georg; Liu, Cong; Audisio, Tracy L.; Alpert, Gary D.; Fisher, Brian L.; Economo, Evan P.

    2017-01-01

    We explore the potential of x-ray micro computed tomography (μCT) for the field of ant taxonomy by using it to enhance the descriptions of two remarkable new species of the ant genus Terataner: T. balrog sp. n. and T. nymeria sp. n.. We provide an illustrated worker-based species identification key for all species found on Madagascar, as well as detailed taxonomic descriptions, which include diagnoses, discussions, measurements, natural history data, high-quality montage images and distribution maps for both new species. In addition to conventional morphological examination, we have used virtual reconstructions based on volumetric μCT scanning data for the species descriptions. We also include 3D PDFs, still images of virtual reconstructions, and 3D rotation videos for both holotype workers and one paratype queen. The complete μCT datasets have been made available online (Dryad, https://datadryad.org) and represent the first cybertypes in ants (and insects). We discuss the potential of μCT scanning and critically assess the usefulness of cybertypes for ant taxonomy. PMID:28328931

  2. Laser gain on 3p-3d and 3s-3p transitions and X-ray line ratios for the nitrogen isoelectronic sequence

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Seely, J. F.; Bhatia, A. K.

    1989-01-01

    Results are presented on calculations of the 72 levels belonging to the 2s(2)2p(3), 2s2p(4), 2p(5), 2s(2)2p(2)3s, 2s(2)2p(2)3p, and 2s(2)2p(2)3d configurations of the N I isoelectronic sequence for the ions Ar XII, Ti XVI, Fe XX, Zn XXIV, and Kr XXX, for electron densities up to 10 to the 24th/cu cm. It was found that large population inversions and gain occur between levels in the 2s(2)2p(2)3p configuration and levels in the 2s(2)2p(2)3d configuration that cannot decay to the ground configuration by an electric dipole transition. For increasing electron densities, the intensities of the X-ray transitions from the 2s(2)2p(2)3p configuration to the ground configuration decrease relative to the transitions from the 2s(2)2p(2)3s and 2s(2)2p(2)3d configurations to the ground configuration. The density dependence of these X-ray line ratios is presented.

  3. Three-dimensional (3D) microstructural characterization and quantification of reflow porosity in Sn-rich alloy/copper joints by X-ray tomography

    SciTech Connect

    Jiang Ling; Chawla, Nikhilesh; Pacheco, Mario; Noveski, Vladimir

    2011-10-15

    In this paper high resolution X-ray tomography was used to characterize reflow porosity in Sn-3.9Ag-0.7Cu/Cu solder joints. The combination of two segmentation techniques was applied for the three-dimensional (3D) visualization of pores in the joints and the quantification on the characteristics of reflow porosity, including pore size, volume fraction and morphology. The size, morphology and distribution of porosity were visualized in 3D for three different solder joints. Since the results are relatively similar for all three, only the results of one joint are presented. Solder reflow porosity was mostly spherical, segregated along the solder/Cu interface, and had an average pore size of 30 {mu}m in diameter. A few large pores (larger than 100 {mu}m in diameter) were present, some of which had lower sphericity, i.e., they were more irregular. The presence of these large pores may significantly influence the mechanical behavior of solder joints. - Highlights: {yields} Non-destructive 3D characterization and quantification of porosity in Pb-free solders by X-ray tomography {yields} Two new image analysis and reconstruction tools are presented that can be used by the community at large {yields} Pore size, volume fraction, and sphericity, is critical to understanding microstructure and modeling of these systems.

  4. X-ray computed microtomography of sea ice - comment on "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (2014)

    NASA Astrophysics Data System (ADS)

    Obbard, R. W.

    2015-07-01

    This comment addresses a statement made in "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (Atmos. Chem. Phys., 14, 1587-1633, doi:10.5194/acp-14-1587-2014, 2014). Here we rebut the assertion that X-ray computed microtomography of sea ice fails to reveal liquid brine inclusions by discussing the phases present at the analysis temperature.

  5. Relationship between chemical structure of soil organic matter and intra-aggregate pore structure: evidence from X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra; Grandy, Stuart A.

    2014-05-01

    Understanding chemical structure of soil organic matter (SOM) and factors that affect it are vital for gaining understanding of mechanisms of C sequestration by soil. Physical protection of C by adsorption to mineral particles and physical disconnection between C sources and microbial decomposers is now regarded as the key component of soil C sequestration. Both of the processes are greatly influenced by micro-scale structure and distribution of soil pores. However, because SOM chemical structure is typically studied in disturbed (ground and sieved) soil samples the experimental evidence of the relationships between soil pore structure and chemical structure of SOM are still scarce. Our study takes advantage of the X-ray computed micro-tomography (µ-CT) tools that enable non-destructive analysis of pore structure in intact soil samples. The objective of this study is to examine the relationship between SOM chemical structure and pore-characteristics in intact soil macro-aggregates from two contrasting long-term land uses. The two studied land use treatments are a conventionally tilled corn-soybean-wheat rotation treatment and a native succession vegetation treatment removed from agricultural use >20 years ago. The study is located in southwest Michigan, USA, on sandy-loam Typic Hapludalfs. For this study we used soil macro-aggregates 4-6 mm in size collected at 0-15 cm depth. The aggregate size was selected so as both to enable high resolution of µ-CT and to provide sufficient amount of soil for C measurements. X-ray µ-CT scanning was conducted at APS Argonne at a scanning resolution of 14 µm. Two scanned aggregates (1 per treatment) were used in this preliminary study. Each aggregate was cut into 7 "geo-referenced" sections. Analyses of pore characteristics in each section were conducted using 3DMA and ImageJ image analysis tools. SOM chemistry was analyzed using pyrolysis/gas chromatography-mass spectroscopy. Results demonstrated that the relationships

  6. Lifetime-Broadening-Suppressed X-ray Absorption Spectrum of β-YbAlB4 Deduced from Yb 3d → 2p Resonant X-ray Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawamura, Naomi; Kanai, Noriko; Hayashi, Hisashi; Matsuda, Yasuhiro H.; Mizumaki, Masaichiro; Kuga, Kentaro; Nakatsuji, Satoru; Watanabe, Shinji

    2017-01-01

    In this work, the Yb 3d → 2p (Yb Lα1,2) resonant X-ray emission spectrum of β-YbAlB4 was acquired using excitation energies around the Yb L3-edge, at 2 K. Subsequently, the lifetime-broadening-suppressed (LBS) X-ray absorption structure (XAS) spectrum was obtained using the SIM-RIXS program. This spectrum was found to exhibit clearly resolved pre-edge and shoulder structures. Resonant Lα1 emission spectra were well reproduced from LBS-XAS profiles over wide ranges of excitation and emission energies. In contrast, noticeable discrepancies appeared between the experimental and simulated Lα2 emission spectra, suggesting an effect resulting from M4M5O1 Coster-Kronig transitions. LBS-XAS, in conjunction with partial fluorescence yield (PFY) XAS and transmission XAS, determined a value for the Yb valence (v) in β-YbAlB4 of 2.76 ± 0.08 at 2 K. Despite this relatively large uncertainty in v, each method provided a consistent variation in valence (δv) as the temperature was raised from 2 to 280 K: 0.060 ± 0.004 (LBS-XAS), 0.061 ± 0.005 (PFY-XAS) and 0.058 ± 0.007 (transmission XAS). The smaller δv associated with LBS-XAS demonstrates the greater precision of this method.

  7. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography

    PubMed Central

    Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.

    2015-01-01

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance. PMID:26043280

  8. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography.

    PubMed

    Zielke, L; Barchasz, C; Waluś, S; Alloin, F; Leprêtre, J-C; Spettl, A; Schmidt, V; Hilger, A; Manke, I; Banhart, J; Zengerle, R; Thiele, S

    2015-06-04

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance.

  9. Multiscale 3D virtual dissections of 100-million-year-old flowers using X-ray synchrotron micro- and nanotomography.

    PubMed

    Moreau, Jean-David; Cloetens, Peter; Gomez, Bernard; Daviero-Gomez, Véronique; Néraudeau, Didier; Lafford, Tamzin A; Tafforeau, Paul

    2014-02-01

    A multiscale approach combining phase-contrast X-ray micro- and nanotomography is applied for imaging a Cretaceous fossil inflorescence in the resolution range from 0.75 μm to 50 nm. The wide range of scale views provides three-dimensional reconstructions from the external gross morphology of the inflorescence fragment to the finest exine sculptures of in situ pollen. This approach enables most of the characteristics usually observed under light microscopy, or with low magnification under scanning and transmission electron microscopy, to be obtained nondestructively. In contrast to previous tomography studies of fossil and extant flowers that used resolutions down to the micron range, we used voxels with a 50 nm side in local tomography scans. This high level of resolution enables systematic affinities of fossil flowers to be established without breaking or slicing specimens.

  10. Effective incorporating spatial information in a mutual information based 3D-2D registration of a CT volume to X-ray images.

    PubMed

    Zheng, Guoyan

    2010-10-01

    This paper addresses the problem of estimating the 3D rigid poses of a CT volume of an object from its 2D X-ray projection(s). We use maximization of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measures only take intensity values into account without considering spatial information and their robustness is questionable. In this paper, instead of directly maximizing mutual information, we propose to use a variational approximation derived from the Kullback-Leibler bound. Spatial information is then incorporated into this variational approximation using a Markov random field model. The newly derived similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experiments were conducted on datasets from two applications: (a) intra-operative patient pose estimation from a limited number (e.g. 2) of calibrated fluoroscopic images, and (b) post-operative cup orientation estimation from a single standard X-ray radiograph with/without gonadal shielding. The experiment on intra-operative patient pose estimation showed a mean target registration accuracy of 0.8mm and a capture range of 11.5mm, while the experiment on estimating the post-operative cup orientation from a single X-ray radiograph showed a mean accuracy below 2 degrees for both anteversion and inclination. More importantly, results from both experiments demonstrated that the newly derived similarity measures were robust to occlusions in the X-ray image(s).

  11. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, M.; Halisch, M.; Müller, C.; Fernandes, C. P.

    2015-12-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behaviour of rock-fluid systems. With the availability of 3-D high-resolution imaging (e.g. μ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2 and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates and cubes, to characterize asymmetric particles of any material type with 3-D image analysis.

  12. Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography

    NASA Astrophysics Data System (ADS)

    Wautier, A.; Geindreau, C.; Flin, F.

    2015-10-01

    The full 3-D macroscopic mechanical behavior of snow is investigated by solving kinematically uniform boundary condition problems derived from homogenization theories over 3-D images obtained by X-ray tomography. Snow is modeled as a porous cohesive material, and its mechanical stiffness tensor is computed within the framework of the elastic behavior of ice. The size of the optimal representative elementary volume, expressed in terms of correlation lengths, is determined through a convergence analysis of the computed effective properties. A wide range of snow densities is explored, and power laws with high regression coefficients are proposed to link the Young's and shear moduli of snow to its density. The degree of anisotropy of these properties is quantified, and Poisson's ratios are also provided. Finally, the influence of the main types of metamorphism (isothermal, temperature gradient, and wet snow metamorphism) on the elastic properties of snow and on their anisotropy is reported.

  13. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images

    PubMed Central

    Hapca, Simona; Baveye, Philippe C.; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented

  14. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images.

    PubMed

    Hapca, Simona; Baveye, Philippe C; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented

  15. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  16. Exceptionally Preserved Cambrian Trilobite Digestive System Revealed in 3D by Synchrotron-Radiation X-Ray Tomographic Microscopy

    PubMed Central

    Eriksson, Mats E.; Terfelt, Fredrik

    2012-01-01

    The Cambrian ‘Orsten’ fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish ‘Orsten’ fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the ‘Orsten’ fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome. PMID:22558180

  17. Exceptionally preserved Cambrian trilobite digestive system revealed in 3D by synchrotron-radiation X-ray tomographic microscopy.

    PubMed

    Eriksson, Mats E; Terfelt, Fredrik

    2012-01-01

    The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.

  18. Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG

    PubMed Central

    Ng, Julian; Browning, Alyssa; Lechner, Lorenz; Terada, Masako; Howard, Gillian; Jefferis, Gregory S. X. E.

    2016-01-01

    Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition. PMID:27958322

  19. Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.

    PubMed

    Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2015-06-16

    Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed.

  20. A method for 3D electron density imaging using single scattered x-rays with application to mammographic screening.

    PubMed

    Van Uytven, Eric; Pistorius, Stephen; Gordon, Richard

    2008-10-07

    Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal, heterogeneous tissue. In this work, we examine the potential of single scattered photon electron density imaging in a mammographic environment. Simulating a low-energy (<20 keV) scanning pencil beam, we have developed an algorithm capable of producing 3D electron density images from a single projection. We have tested the algorithm by imaging parts of a simulated mammographic accreditation phantom containing lesions of various sizes. The results indicate that the group of imaged lesions differ significantly from background breast tissue (p<0.005), confirming that electron density imaging may be a useful diagnostic test for the presence of breast cancer.

  1. New BNL 3D-Trench Electrode Si Detectors for Radiation Hard Detectors for sLHC and for X-ray Applications

    SciTech Connect

    Li Z.

    2011-05-11

    . Since the large electrode spacing (up to 500 {micro}m) can be realized in the 3D-Trench electrode detector due to their advantage of greatly reduced full depletion voltage, detectors with large pixel cells (therefore small dead volume) can be made for applications in photon science (e.g. X-ray).

  2. Parabolic refractive X-ray lenses: a breakthrough in X-ray optics

    NASA Astrophysics Data System (ADS)

    Lengeler, Bruno; Schroer, Christian G.; Benner, Boris; Günzler, Til Florian; Kuhlmann, Marion; Tümmler, Johannes; Simionovici, Alexandre S.; Drakopoulos, Michael; Snigirev, Anatoly; Snigireva, Irina

    2001-07-01

    Refractive X-ray lenses, considered for a long time as unfeasible, have been realized with a rotational parabolic profile at our institute: The main features of the new lenses are: they focus in two directions and are free of spherical aberration. By varying the number of individual lenses in the stack the focal length can be chosen in a typical range from 0.5 to 2 m for photon energies between about 6 and 60 keV. The aperture of the lens is about 1 mm matching the angular divergence of undulator beams at 3d generation synchrotron radiation sources. They cope without problems with the heat load from the white beam of an undulator. Finally, they are easy to align and to operate. Refractive X-ray lenses can be used with hard X-rays in the same way as glass lenses can be used for visible light, if it is take into account that the numerical aperture is small (of the order 10 -4). Being high-quality optical elements, the refractive X-ray lenses can be used for generating a focal spot in the μm range with a gain of a factor 1000 and more, or for imaging purposes as in a hard X-ray microscope. Recent examples from microanalysis, microtomography, fluorescence tomography, X-ray microscopy will be shown to demonstrate the state of the art. Possible new developments will be discussed.

  3. Grain- and Pore-level Analysis of Drainage in Fractionally-wet Granular Media using Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Willson, C. S.; Bradley, S.; Thompson, K. E.

    2011-12-01

    Numerous lab- and field-scale experimental studies have shown the strong impact of wettability on multiphase flow constitutive relations and how increased water repellency can lead to preferential flow paths and a heterogeneous water distribution. In conjunction, theoretical and pore-scale modeling work has been performed seeking to improve our understanding of the impact of grain-level wettability properties. Advances in high-resolution X-ray computed tomography (XCT) techniques now make it possible to nondestructively image opaque materials providing previously hard-to-observe qualitative and quantitative data and information. Furthermore, the characteristics of synchrotron X-rays make it possible to monochromatize the incident energy allowing for both k-edge absorption differencing and segmentation of fluids and materials that have even slightly different chemical composition. Concurrent with these advances has been the development of methods to extract granular packing and pore network structure data from XCT images. In this talk, we will present results from a series of experiments designed to obtain grain-, pore- and fluid-scale details during the drainage of water in fractionally-wet glass bead systems. Here, two sets of glass beads were used each having slightly different chemical compositions and thus, different X-ray absorption properties. One set was treated so that the bead surface was water neutral while the other set remained hydrophilic. Three sets of drainage experiments were conducted on three fractionally-wet systems: 100, 90, and 75% hydrophilic by weight. First, traditional lab-scale drainage experiments were performed to obtain a baseline set of characteristic drainage curves for the three systms. Next, a set of tomography-scale (i.e., 5.5 mm inner diameter column) drainage experiments were conducted in the lab to ensure that the drainage curves in the smaller columns were consistent with the lab-scale curves. Finally, tomography-scale drainage

  4. The role of symbiotic algae in the formation of the coral polyp skeleton: 3-D morphological study based on X-ray microcomputed tomography

    NASA Astrophysics Data System (ADS)

    Iwasaki, Shinya; Inoue, Mayuri; Suzuki, Atsushi; Sasaki, Osamu; Kano, Harumasa; Iguchi, Akira; Sakai, Kazuhiko; Kawahata, Hodaka

    2016-09-01

    Symbiotic algae of primary polyps play an important role in calcification of coral skeletons. However, the function of the symbiotic algae, including the way they influence the physical features of their host skeleton under various conditions, is not well understood. We used X-ray microcomputed tomography to observe skeletal shape characteristics in symbiotic and aposymbiotic primary polyps of Acropora digitifera that were cultured at various temperature and pCO2 levels (temperature 27, 29, 33°C; pCO2 400, 800, 1000 µatm). Symbiotic polyps had a basal plate with a well-developed folding margin supporting the branched skeleton, whereas aposymbiotic ones did not. The features of the folding margin suggest that it might be the initial growth stage of the epitheca. In addition, three-dimensional (3-D) morphological measurements made by X-ray microcomputed tomography show that the branched skeletons of symbiotic primary polyps were taller than those of aposymbiotic ones, suggesting that zooxanthellae in coral primary polyps play a critical role in the height growth of skeletal branches. Furthermore, results of the temperature- and pCO2-controlled experiments suggest that global warming might greatly affect the activity of zooxanthellae, whereas ocean acidification might reduce calcification by damaging the coral host itself. Our findings provide new knowledge about the role of zooxanthellae in coral calcification.

  5. Trends in reactivity of electrodeposited 3d transition metals on gold revealed by operando soft x-ray absorption spectroscopy during water splitting

    NASA Astrophysics Data System (ADS)

    Velasco-Vélez, J. J.; Jones, Travis E.; Pfeifer, Verena; Dong, Chung-Li; Chen, Yu-Xun; Chen, Chieh-Ming; Chen, Hsin-Yu; Lu, Ying-Rui; Chen, Jin-Ming; Schlögl, R.; Knop-Gericke, A.; Chuang, C.-H.

    2017-01-01

    We activated gold electrodes for their use as electrocatalyst for water splitting by electrodepositing Cu, Ni and Co. A combination of operando x-ray absorption spectroscopy and potentiometric control under aqueous conditions revealed the trends in reactivity yielded by these electrodes, which are directly associated with the cross- and overpotentials as well as the occupancy of the 3d orbitals. It was found that under anodic polarization the materials electrodeposited on gold suffer from a lack of stability, while under cathodic polarization they exhibit stable behavior. The observed activity is strongly related to the lack of stability shown by these composites under anodic polarization revealing a dynamic process ruled by corrosion. By operando x-ray absorption, we established that the overall enhancement of the activity for the oxygen evolution reaction is directly attributable to the cross-potential and corrosion process of the electrodeposited materials. It is associated with the high potential deposition, which is the origin of the incipient oxidation-corrosion resistance of the lattice. We conclude that the observed trends in the total current are directly associated with the loss of oxygen in the metal-oxide lattice and the subsequent dissolution of metallic ions in the electrolyte under anodic polarization.

  6. Resonant X-ray scattering measurements of a spatial modulation of the Cu 3d and O 2p energies in stripe-ordered cuprate superconductors.

    PubMed

    Achkar, A J; He, F; Sutarto, R; Geck, J; Zhang, H; Kim, Y-J; Hawthorn, D G

    2013-01-04

    A prevailing description of the stripe phase in underdoped cuprate superconductors is that the charge carriers (holes) phase segregate on a microscopic scale into hole-rich and hole-poor regions. We report resonant elastic x-ray scattering measurements of stripe-ordered La(1.475)Nd(0.4)Sr(0.125)CuO(4) at the Cu L and O K absorption edges that identify an additional feature of stripe order. Analysis of the energy dependence of the scattering intensity reveals that the dominant signature of the stripe order is a spatial modulation in the energies of Cu 3d and O 2p states rather than the large modulation of the charge density (valence) envisioned in the common stripe paradigm. These energy shifts are interpreted as a spatial modulation of the electronic structure and may point to a valence-bond-solid interpretation of the stripe phase.

  7. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.

  8. Using three-dimensional 3D grazing-incidence small-angle X-ray scattering (GISAXS) analysis to probe pore deformation in mesoporous silica films.

    PubMed

    Panduro, Elvia Anabela Chavez; Granlund, Håvard; Sztucki, Michael; Konovalov, Oleg; Breiby, Dag W; Gibaud, Alain

    2014-02-26

    In the past decade, remarkable progress has been made in studying nanoscale objects deposited on surfaces by grazing-incidence small-angle X-ray scattering (GISAXS). However, unravelling the structural properties of mesostructured thin films containing highly organized internal three-dimensional (3D) structures remains a challenging issue, because of the lack of efficient algorithms that allow prediction of the GISAXS intensity patterns. Previous attempts to calculate intensities have mostly been limited to cases of two-dimensional (2D) assemblies of nanoparticles at surfaces, or have been adapted to specific 3D cases. Here, we demonstrate that highly organized 3D mesoscale structures (for example, porous networks) can be modeled by the combined use of established crystallography formalism and the Distorted Wave Born Approximation (DWBA). Taking advantage of the near-zero intensity of symmetry-allowed Bragg reflections, the casual extinction or existence of certain reflections related to the anisotropy of the form factor of the pores can be used as a highly sensitive method to extract structural information. We employ this generic method to probe the slightly compressed anisotropic shape and orientation of pores in a mesoporous silica thin film having P63/mmc symmetry.

  9. Reconstructing the 3D shape and bone mineral density distribution of the proximal femur from dual-energy X-ray absorptiometry.

    PubMed

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; Del Rio Barquero, Luis M; Frangi, Alejandro F

    2011-12-01

    The accurate diagnosis of osteoporosis has gained increasing importance due to the aging of our society. Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is an established criterion in the diagnosis of osteoporosis. This measure, however, is limited by its two-dimensionality. This work presents a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image used in clinical routine. A statistical model of the combined shape and BMD distribution is presented, together with a method for its construction from a set of quantitative computed tomography (QCT) scans. A reconstruction is acquired in an intensity based 3D-2D registration process whereby an instance of the model is found that maximizes the similarity between its projection and the DXA image. Reconstruction experiments were performed on the DXA images of 30 subjects, with a model constructed from a database of QCT scans of 85 subjects. The accuracy was evaluated by comparing the reconstructions with the same subject QCT scans. The method presented here can potentially improve the diagnosis of osteoporosis and fracture risk assessment from the low radiation dose and low cost DXA devices currently used in clinical routine.

  10. NON-EQUILIBRIUM MODELING OF THE FE XVII 3C/3D LINE RATIO IN AN INTENSE X-RAY FREE-ELECTRON LASER EXCITED PLASMA

    SciTech Connect

    Loch, S. D.; Ballance, C. P.; Li, Y.; Fogle, M.; Fontes, C. J.

    2015-03-01

    Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe xvii 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe xvii spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.

  11. Novel experimental technique for 3D investigation of high-speed cavitating diesel fuel flows by X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Lorenzi, M.; Mitroglou, N.; Santini, M.; Gavaises, M.

    2017-03-01

    An experimental technique for the estimation of the temporal-averaged vapour volume fraction within high-speed cavitating flow orifices is presented. The scientific instrument is designed to employ X-ray micro computed tomography (microCT) as a quantitative 3D measuring technique applied to custom designed, large-scale, orifice-type flow channels made from Polyether-ether-ketone (PEEK). The attenuation of the ionising electromagnetic radiation by the fluid under examination depends on its local density; the transmitted radiation through the cavitation volume is compared to the incident radiation, and combination of radiographies from sufficient number of angles leads to the reconstruction of attenuation coefficients versus the spatial position. This results to a 3D volume fraction distribution measurement of the developing multiphase flow. The experimental results obtained are compared against the high speed shadowgraph visualisation images obtained in an optically transparent nozzle with identical injection geometry; comparison between the temporal mean image and the microCT reconstruction shows excellent agreement. At the same time, the real 3D internal channel geometry (possibly eroded) has been measured and compared to the nominal manufacturing CAD drawing of the test nozzle.

  12. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    SciTech Connect

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Gladstone, David J.

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  13. Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3 d transition metals; a new probe for mineralogical and geochemical research

    NASA Astrophysics Data System (ADS)

    Cressey, G.; Henderson, C. M. B.; van der Laan, G.

    1993-07-01

    2 p ( L 2,3) X-ray absorption spectra are presented for a range of minerals to demonstrate the usefulness of L-edge spectroscopy as a symmetry- and valenceselective probe. 2 p XAS provides a sensitive fingerprint of the electronic states of 3 d transition metals and can be applied to phases containing mixtures of such elements. Calculated spectra for 3 d n → 2 p 5 3 d n+1 transitions provide a basis for the interpretation of the measured spectra. Thus, in principle, multiple valence states of a particular 3 d metal can be precisely characterized from a single L-edge spectrum. Examples of vanadium L-edge spectra are presented for a range of minerals; these complex spectra hold information concerning the presence of vanadium in multiple valence states. The Cu L-edge spectrum of sulvanite (Cu3 VS4) indicates the presence of both Cu+ and Cu2+; the V L-edge spectrum of the same sample shows that both V2+ and V5+ are present. Spectral simulations representing mixtures of Fe d 5 and Fe d 6 states are used to quantify Fe3+/ ∑Fe in a spinel, a glass, and an amphibole, all of which contain Fe as a major component. To illustrate the sensitivity of 2 p XAS in a dilute system, the Fe L-edge spectrum of amethyst ( α-SiO2: Fe) has been recorded; this spectrum shows that ˜68% of the Fe in amethyst is Fe2+, and ˜32% is Fe3+. Although previous studies on amethyst using other spectroscopic methods cite evidence for Fe4+, there is no indication in the L-edge spectrum for Fe4+ in amethyst. Comparison of theoretical and experimental spectra not only allows the valence states of 3 d ions to be recognised, but also provides site-symmetry information and crystal field parameters for each ion site.

  14. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    PubMed Central

    Glaser, Adam K.; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2015-01-01

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water. PMID:26133613

  15. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-Chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2014-12-01

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications.Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to

  16. X-Ray Emission Spectra and Electronic Structures of Red Phosphorus, 3d Transition-Metal Phosphides and III V Compounds

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1995-07-01

    The P Kβ emission spectra in fluorescence from red amorphous phosphorus, 3d transition-metal phosphides TiP, CrP, FeP, Fe2P, Fe3P, CoP, Co2P, Ni5P4, Ni2P, Ni3P, Cu3P, ZnP2 (black) and Zn3P2, and the semiconducting phosphides of the III-V type, BP, AlP, GaP and InP are measured with a high-resolution two-crystal vacuum spectrometer equipped with Ge(111) crystals. The influence of the metal atoms appears distinctly on the P Kβ fluorescence emission spectra. The measured spectra are compared with available X-ray emission and XPS valence-band spectra and theoretical energy-band calculations on a common energy scale. It is shown that considerable p-d, s mixing occurs in the valence bands of the 3d transition-metal phosphides and the P 3p states mix fairly with the P 3s states in the valence bands of red phosphorus, Gap and InP

  17. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    NASA Astrophysics Data System (ADS)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  18. Effect of Tube-Based X-Ray Microtomography Imaging on the Amino Acid and Amine Content of the Murchison CM2 Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Friedrich, J. M.; Aponte, J. C.; Dworkin, J. P.; Ebel, D. S.; Elsila, J. E.; Hill, M.; McLain, H. L.; Towbin, W. H.

    2017-01-01

    X-ray and synchrotron X-ray micro-computed tomography (micro-CT) are increasingly being used for three dimensional reconnaissance imaging of chondrites and returned extraterrestrial material prior to detailed chemical and mineralogical analyses. Although micro-CT imaging is generally considered to be a non-destructive technique since silicate and metallic minerals in chondrites are not affected by X-ray exposures at the intensities and wavelengths typically used, there are concerns that the use of micro-CT could be detrimental to the organics in carbonaceous chondrites. We recently conducted a synchrotron micro-CT experiment on a powdered sample of the Murchison CM2 carbonaceous chondrite exposed to a monochromatic high energy (approximately 48 kiloelectronvolts) total X-ray radiation dose of approximately 1 kilogray (kGy) using the Advanced Photon Source beamline 13-BMD (13-Bending Magnet-D Beamline) at Argonne National Laboratory and found that there were no detectable changes in the amino acid abundances or enantiomeric compositions in the chondrite after exposure relative to a Murchison control sample that was not exposed. However, lower energy bremsstrahlung X-rays could interact more with amino acids and other lower molecular weight amines in meteorites. To test for this possibility, three separate micro-CT imaging experiments of the Murchison meteorite using the GE Phoenix v/tome/x s 240 kilovolt microfocus high resolution tungsten target X-ray tube instrument at the American Museum of Natural History (AMNH) were conducted and the amino acid abundances and enantiomeric compositions were determined. We also investigated the abundances of the C1-C5 amines in Murchison which were not analyzed in the first study.

  19. Comprehensive Non-Destructive Conservation Documentation of Lunar Samples Using High-Resolution Image-Based 3D Reconstructions and X-Ray CT Data

    NASA Technical Reports Server (NTRS)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2015-01-01

    Established contemporary conservation methods within the fields of Natural and Cultural Heritage encourage an interdisciplinary approach to preservation of heritage material (both tangible and intangible) that holds "Outstanding Universal Value" for our global community. NASA's lunar samples were acquired from the moon for the primary purpose of intensive scientific investigation. These samples, however, also invoke cultural significance, as evidenced by the millions of people per year that visit lunar displays in museums and heritage centers around the world. Being both scientifically and culturally significant, the lunar samples require a unique conservation approach. Government mandate dictates that NASA's Astromaterials Acquisition and Curation Office develop and maintain protocols for "documentation, preservation, preparation and distribution of samples for research, education and public outreach" for both current and future collections of astromaterials. Documentation, considered the first stage within the conservation methodology, has evolved many new techniques since curation protocols for the lunar samples were first implemented, and the development of new documentation strategies for current and future astromaterials is beneficial to keeping curation protocols up to date. We have developed and tested a comprehensive non-destructive documentation technique using high-resolution image-based 3D reconstruction and X-ray CT (XCT) data in order to create interactive 3D models of lunar samples that would ultimately be served to both researchers and the public. These data enhance preliminary scientific investigations including targeted sample requests, and also provide a new visual platform for the public to experience and interact with the lunar samples. We intend to serve these data as they are acquired on NASA's Astromaterials Acquisistion and Curation website at http://curator.jsc.nasa.gov/. Providing 3D interior and exterior documentation of astromaterial

  20. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry.

    PubMed

    Palmquist, Anders; Shah, Furqan A; Emanuelsson, Lena; Omar, Omar; Suska, Felicia

    2017-03-01

    This paper investigates the application of X-ray micro-computed tomography (micro-CT) to accurately evaluate bone formation within 3D printed, porous Ti6Al4V implants manufactured using Electron Beam Melting (EBM), retrieved after six months of healing in sheep femur and tibia. All samples were scanned twice (i.e., before and after resin embedding), using fast, low-resolution scans (Skyscan 1172; Bruker micro-CT, Kontich, Belgium), and were analysed by 2D and 3D morphometry. The main questions posed were: (i) Can low resolution, fast scans provide morphometric data of bone formed inside (and around) metal implants with a complex, open-pore architecture?, (ii) Can micro-CT be used to accurately quantify both the bone area (BA) and bone-implant contact (BIC)?, (iii) What degree of error is introduced in the quantitative data by varying the threshold values?, and (iv) Does resin embedding influence the accuracy of the analysis? To validate the accuracy of micro-CT measurements, each data set was correlated with a corresponding centrally cut histological section. The results show that quantitative histomorphometry corresponds strongly with 3D measurements made by micro-CT, where a high correlation exists between the two techniques for bone area/volume measurements around and inside the porous network. On the contrary, the direct bone-implant contact is challenging to estimate accurately or reproducibly. Large errors may be introduced in micro-CT measurements when segmentation is performed without calibrating the data set against a corresponding histological section. Generally, the bone area measurement is strongly influenced by the lower threshold limit, while the upper threshold limit has little or no effect. Resin embedding does not compromise the accuracy of micro-CT measurements, although there is a change in the contrast distributions and optimisation of the threshold ranges is required.

  1. Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure.

    PubMed

    Betz, Oliver; Wegst, Ulrike; Weide, Daniela; Heethoff, Michael; Helfen, Lukas; Lee, Wah-Keat; Cloetens, Peter

    2007-07-01

    Synchrotron-generated X-rays provide scientists with a multitude of investigative techniques well suited for the analysis of the composition and structure of all types of materials and specimens. Here, we describe the properties of synchrotron-generated X-rays and the advantages that they provide for qualitative morphological research of millimetre-sized biological organisms and biomaterials. Case studies of the anatomy of insect heads, of whole microarthropods and of the three-dimensional reconstruction of the cuticular tendons of jumping beetles, all performed at the beamline ID19 of the European Synchrotron Radiation Facility (ESRF), are presented to illustrate the techniques of phase-contrast tomography available for anatomical and structural investigations. Various sample preparation techniques are described and compared and experimental settings that we have found to be particularly successful are given. On comparing the strengths and weaknesses of the technique with traditional histological thin sectioning, we conclude that synchrotron radiation microtomography has a great potential in biological microanatomy.

  2. Three Dimensional Structures of Particles Recovered from the Asteroid Itokawa by the Hayabusa Mission and a Role of X-Ray Microtomography in the Preliminary Examination

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Uesugi, M.; Uesugi, K.; Nakano, T.; Nakamura, T.; Noguchi, T.; Noguchi, R.; Matsumoto, T.; Matsuno, J.; Nagano, T.; Takeuchi, A.; Suzuki, Y.; Ebihara, M.; Ireland, T. R.; Kiajima, F.; Nagao, K.; Naraoka, H.; Okazaki, R.; Sandford, S. A.; Yurimoto, H.; Zolensky, M. E.; Fujimura, A.; Abe, M.; Yada, T.; Mukai, T.

    2011-01-01

    Particles of regolith on S-type Asteroid 25143 Itokawa were successfully recovered by the Hayabusa mission of JAXA (Japan Aerospace Exploration Agency). Near-infrared spectral study of Itokawa s surface indicates that these particles are materials similar to LL5 or LL6 chondrites. High-resolution images of Itokawa's surface suggest that they may be breccias and some impact products. At least more than 1500 particles were identified as Itokawa origin at curation facility of JAXA. Preliminary analysis with SEM/EDX at the curation facility shows that they are roughly similar to LL chondrites. Although most of them are less than 10 micron in size, some larger particles of about 100 micron or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team, and sequential examination will start from January 2011 by Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). In mainstream of the analytical flow, each particle will be examined by microtomography, XRD and XRF first as nondestructive analyses, and then the particle will be cut by an ultra-microtome and examined by TEM, SEM, EPMA, SIMS, PEEM/XANES, and TOF-SIMS sequentially. Three-dimensional structures of Itokawa particles will be obtained by microtomography sub-team of HASPET. The results together with XRD and XRF will be used for design of later destructive analyses, such as determination of cutting direction and depth, to obtain as much information as possible from small particles. Scientific results and a role of the microtomography in the preliminary examination will be presented.

  3. Synchrotron X-ray 2D and 3D Elemental Imaging of CdSe/ZnS Quantum dot Nanoparticles in Daphnia Magna

    SciTech Connect

    Jackson, B.; Pace, H; Lanzirotti, A; Smith, R; Ranville, J

    2009-01-01

    The potential toxicity of nanoparticles to aquatic organisms is of interest given that increased commercialization will inevitably lead to some instances of inadvertent environmental exposures. Cadmium selenide quantum dots (QDs) capped with zinc sulfide are used in the semiconductor industry and in cellular imaging. Their small size (<10 nm) suggests that they may be readily assimilated by exposed organisms. We exposed Daphnia magna to both red and green QDs and used synchrotron X-ray fluorescence to study the distribution of Zn and Se in the organism over a time period of 36 h. The QDs appeared to be confined to the gut, and there was no evidence of further assimilation into the organism. Zinc and Se fluorescence signals were highly correlated, suggesting that the QDs had not dissolved to any extent. There was no apparent difference between red or green QDs, i.e., there was no effect of QD size. 3D tomography confirmed that the QDs were exclusively in the gut area of the organism. It is possible that the QDs aggregated and were therefore too large to cross the gut wall.

  4. Comparing natural and artificial carious lesions in human crowns by means of conventional hard x-ray micro-tomography and two-dimensional x-ray scattering with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Botta, Lea Maria; White, Shane N.; Deyhle, Hans; Dziadowiec, Iwona; Schulz, Georg; Thalmann, Peter; Müller, Bert

    2016-10-01

    Dental caries, one of the most prevalent infectious bacterial diseases in the world, is caused by specific types of acid-producing bacteria. Caries is a disease continuum resulting from the earliest loss of ions from apatite crystals through gross cavitation. Enamel dissolution starts when the pH-value drops below 5.5. Neutralizing the pH-value in the oral cavity opposes the process of demineralization, and so caries lesions occur in a dynamic cyclic de-mineralizing/remineralizing environment. Unfortunately, biomimetic regeneration of cavitated enamel is not yet possible, although remineralization of small carious lesions occurs under optimal conditions. Therefore, the development of methods that can regenerate carious lesions, and subsequently recover and retain teeth, is highly desirable. For the present proceedings we analyzed one naturally occurring sub-surface and one artificially produced lesion. For the characterization of artificial and natural lesions micro computed tomography is the method of choice when looking to determine three-dimensional mineral distribution and to quantify the degree of mineralization. In this pilot study we elucidate that the de-mineralized enamel in natural and artificially induced lesions shows comparable X-ray attenuation behavior, thereby implying that the study protocol employed herein seems to be appropriate. Once we know that the lesions are comparable, a series of well-reproducible in vitro experiments on enamel regeneration could be performed. In order to quantify further lesion morphology, the anisotropy of the enamel's nanostructure can be characterized by using spatially resolved, small-angle X-ray scattering. We wanted to demonstrate that the artificially induced defect fittingly resembles the natural carious lesion.

  5. SoilJ - An ImageJ plugin for semi-automatized image-processing of 3-D X-ray images of soil columns

    NASA Astrophysics Data System (ADS)

    Koestel, John

    2016-04-01

    3-D X-ray imaging is a formidable tool for quantifying soil structural properties which are known to be extremely diverse. This diversity necessitates the collection of large sample sizes for adequately representing the spatial variability of soil structure at a specific sampling site. One important bottleneck of using X-ray imaging is however the large amount of time required by a trained specialist to process the image data which makes it difficult to process larger amounts of samples. The software SoilJ aims at removing this bottleneck by automatizing most of the required image processing steps needed to analyze image data of cylindrical soil columns. SoilJ is a plugin of the free Java-based image-processing software ImageJ. The plugin is designed to automatically process all images located with a designated folder. In a first step, SoilJ recognizes the outlines of the soil column upon which the column is rotated to an upright position and placed in the center of the canvas. Excess canvas is removed from the images. Then, SoilJ samples the grey values of the column material as well as the surrounding air in Z-direction. Assuming that the column material (mostly PVC of aluminium) exhibits a spatially constant density, these grey values serve as a proxy for the image illumination at a specific Z-coordinate. Together with the grey values of the air they are used to correct image illumination fluctuations which often occur along the axis of rotation during image acquisition. SoilJ includes also an algorithm for beam-hardening artefact removal and extended image segmentation options. Finally, SoilJ integrates the morphology analyses plugins of BoneJ (Doube et al., 2006, BoneJ Free and extensible bone image analysis in ImageJ. Bone 47: 1076-1079) and provides an ASCII file summarizing these measures for each investigated soil column, respectively. In the future it is planned to integrate SoilJ into FIJI, the maintained and updated edition of ImageJ with selected

  6. High-pass-filtered diffraction microtomography by coherent hard x rays for cell imaging: theoretical and numerical studies of the imaging and reconstruction principles.

    PubMed

    Yuasa, Tetsuya; Sugiyama, Hiroshi; Zhong, Zhong; Maksimenko, Anton; Dilmanian, F Avraham; Akatsuka, Takao; Ando, Masami

    2005-12-01

    This paper presents theoretical and numerical studies of diffraction tomography using hard x rays, from the viewpoint of imaging and reconstruction methods for cell imaging. The proposed system employs a single-perfect-crystal analyzer in symmetric Laue-case transmission geometry to efficiently detect the higher spatial frequency components of an object's refractive-index distribution, and to effectively suppress interference between the unperturbated wave field and the wave field diffracted by the object. This system features acquisition of a single projection by a single exposure using a simple geometry and aggressive use of diffracted x rays. We present the physical description of the imaging method using the Fourier diffraction theorem derived from the Born approximation. First, we demonstrate that the reconstruction leads to the phase-retrieval problem. We then describe a reconstruction algorithm based on the classical Gerchberg-Saxton-Fienup algorithm. Finally, we show the efficacy of this system by computer simulation. Our simulation demonstrates that the imaging system delineates microstructure 3.5 microm in diameter in a phase object 400 microm in diameter.

  7. Monochromatic computed microtomography using laboratory and synchrotron sources and X-ray fluorescence analysis for comprehensive analysis of structural changes in bones1

    PubMed Central

    Buzmakov, Alexey; Chukalina, Marina; Nikolaev, Dmitry; Gulimova, Victoriya; Saveliev, Sergey; Tereschenko, Elena; Seregin, Alexey; Senin, Roman; Zolotov, Denis; Prun, Victor; Shaefer, Gerald; Asadchikov, Victor

    2015-01-01

    A combination of X-ray tomography at different wavelengths and X-ray fluorescence analysis was applied in the study of two types of bone tissue changes: prolonged presence in microgravity conditions and age-related bone growth. The proximal tail vertebrae of geckos were selected for investigation because they do not bear the supporting load in locomotion, which allows them to be considered as an independent indicator of gravitational influence. For the vertebrae of geckos no significant differences were revealed in the elemental composition of the flight samples and the synchronous control samples. In addition, the gecko bone tissue samples from the jaw apparatus, spine and shoulder girdle were measured. The dynamics of structural changes in the bone tissue growth was studied using samples of a human fetal hand. The hands of human fetuses of 11–15 weeks were studied. Autonomous zones of calcium accumulation were found not only in individual fingers but in each of the investigated phalanges. The results obtained are discussed. PMID:26089762

  8. Detection of lead in Zea mays by dual-energy X-ray microtomography at the SYRMEP beamline of the ELETTRA synchrotron and by atomic absorption spectroscopy.

    PubMed

    Reale, Lucia; Kaiser, Jozef; Pace, Loretta; Lai, Antonia; Flora, Francesco; Angelosante Bruno, Antonella; Tucci, Adele; Zuppella, Paola; Mancini, Lucia; Tromba, Giuliana; Ruggieri, Fabrizio; Fanelli, Maria; Malina, Radomir; Liska, Miroslav; Poma, Anna

    2010-06-01

    This study is related to the application of the X-ray dual-energy microradiography technique together with the atomic absorption spectroscopy (AAS) for the detection of lead on Zea mays stem, ear, root, and leaf samples. To highlight the places with lead intake, the planar radiographs taken with monochromatic X-ray radiation in absorption regime with photon energy below and above the absorption edge of a given chemical element, respectively, are analyzed and processed. To recognize the biological structures involved in the intake, the dual-energy images with the lead signal have been compared with the optical images of the same Z. mays stem. The ear, stem, root, and leaf samples have also been analyzed with the AAS technique to measure the exact amount of the hyperaccumulated lead. The AAS measurement revealed that the highest intake occurred in the roots while the lowest in the maize ears and in the leaf. It seems there is a particular mechanism that protects the seeds and the leaves in the intake process.

  9. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    SciTech Connect

    Laloum, D.; Printemps, T.; Bleuet, P.; Lorut, F.

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  10. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics.

    PubMed

    Laloum, D; Printemps, T; Lorut, F; Bleuet, P

    2015-01-01

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  11. Preliminary study of X-ray and laser digital image of kidney endocast

    NASA Astrophysics Data System (ADS)

    Drewniak, Tomasz; Bielecki, Jakub; WyczóŁkowski, Marek; Smoleński, Witold; Kwiatek, Wojciech M.

    2011-10-01

    Kidney endocasts are the only way to show intrarenal arteries and the collecting system of pathologically unchanged human kidney. We describe different methods of digital endocast three dimensional (3D) imaging with the use of X-ray and laser radiation. Images of several kidney endocasts were obtained with the use of: (i) X-ray microtomography, (ii) Medical Computed Tomography (CT) and (iii) 3D Laser Scanner. The images were compared with an appearance of endocast and the images of kidney vessels obtained during angiographic CT protocols in clinical practice. The X-ray computed microtomography is characterized by very high resolution; however, relatively small field of view is available at high magnification and long data acquisition time is needed. Laser 3D scanner has a comparable resolution, but it was not possible to obtain full 3D reconstruction of the sample structure. The cast was too complex for reconstruction with limited number of projection obtained with the use of the laser scanner. Medical CT has limited resolution but time of data acquisition was very short. The achieved images were comparable with those from Angio-CT protocols. Digital imaging of kidney endocasts is possible with current imaging obtained by means of X-ray imaging techniques. The obtained images are useful for further study, such as statistical analysis, especially those obtained from Medical CT.

  12. A method of 2D/3D registration of a statistical mouse atlas with a planar X-ray projection and an optical photo

    PubMed Central

    Wang, Hongkai; Stout, David B; Chatziioannou, Arion F

    2013-01-01

    The development of sophisticated and high throughput whole body small animal imaging technologies has created a need for improved image analysis and increased automation. The registration of a digital mouse atlas to individual images is a prerequisite for automated organ segmentation and uptake quantification. This paper presents a fully-automatic method for registering a statistical mouse atlas with individual subjects based on an anterior-posterior X-ray projection and a lateral optical photo of the mouse silhouette. The mouse atlas was trained as a statistical shape model based on 83 organ-segmented micro-CT images. For registration, a hierarchical approach is applied which first registers high contrast organs, and then estimates low contrast organs based on the registered high contrast organs. To register the high contrast organs, a 2D-registration-back-projection strategy is used that deforms the 3D atlas based on the 2D registrations of the atlas projections. For validation, this method was evaluated using 55 subjects of preclinical mouse studies. The results showed that this method can compensate for moderate variations of animal postures and organ anatomy. Two different metrics, the Dice coefficient and the average surface distance, were used to assess the registration accuracy of major organs. The Dice coefficients vary from 0.31±0.16 for the spleen to 0.88±0.03 for the whole body, and the average surface distance varies from 0.54±0.06 mm for the lungs to 0.85±0.10 mm for the skin. The method was compared with a direct 3D deformation optimization (without 2D-registration-back-projection) and a single-subject atlas registration (instead of using the statistical atlas). The comparison revealed that the 2D-registration-back-projection strategy significantly improved the registration accuracy, and the use of the statistical mouse atlas led to more plausible organ shapes than the single-subject atlas. This method was also tested with shoulder xenograft

  13. Measurement of fibre-fibre contact in three-dimensional images of fibrous materials obtained from X-ray synchrotron microtomography

    NASA Astrophysics Data System (ADS)

    Malmberg, F.; Lindblad, J.; Östlund, C.; Almgren, K. M.; Gamstedt, E. K.

    2011-05-01

    A series of wood-fibre mats was investigated using high-resolution phase-contrast microtomography at the beamline ID 19 of the European Synchrotron Radiation Facility in Grenoble, France. A method for data reduction to quantify the degree of fibre-fibre contact has been derived. The degree of fibre-fibre contact and bonding plays a fundamental role in the mechanical properties of cellulose-fibre mats, paper materials and cellulose-fibre composites. The proposed computerised automated method consists of two parts. First, fibre lumens are segmented using a watershed based method. This information is then used to identify fibre-fibre contacts in projections along the z-axis of the material. The method is tested on microtomographic images of mats made of wood pulp fibres, and is shown to successfully detect differences in the amount of fibre-fibre contact between samples. The degree of fibre-fibre contact correlates well with measured out-of-plane strength of the fibrous material.

  14. Synchrotron-Based X-ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Cunningham, Ross; Narra, Sneha P.; Montgomery, Colt; Beuth, Jack; Rollett, A. D.

    2017-01-01

    The porosity observed in additively manufactured (AM) parts is a potential concern for components intended to undergo high-cycle fatigue without post-processing to remove such defects. The morphology of pores can help identify their cause: irregularly shaped lack of fusion or key-holing pores can usually be linked to incorrect processing parameters, while spherical pores suggest trapped gas. Synchrotron-based x-ray microtomography was performed on laser powder-bed AM Ti-6Al-4V samples over a range of processing conditions to investigate the effects of processing parameters on porosity. The process mapping technique was used to control melt pool size. Tomography was also performed on the powder to measure porosity within the powder that may transfer to the parts. As observed previously in experiments with electron beam powder-bed fabrication, significant variations in porosity were found as a function of the processing parameters. A clear connection between processing parameters and resulting porosity formation mechanism was observed in that inadequate melt pool overlap resulted in lack-of-fusion pores whereas excess power density produced keyhole pores.

  15. Synchrotron-Based X-ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Cunningham, Ross; Narra, Sneha P.; Montgomery, Colt; Beuth, Jack; Rollett, A. D.

    2017-03-01

    The porosity observed in additively manufactured (AM) parts is a potential concern for components intended to undergo high-cycle fatigue without post-processing to remove such defects. The morphology of pores can help identify their cause: irregularly shaped lack of fusion or key-holing pores can usually be linked to incorrect processing parameters, while spherical pores suggest trapped gas. Synchrotron-based x-ray microtomography was performed on laser powder-bed AM Ti-6Al-4V samples over a range of processing conditions to investigate the effects of processing parameters on porosity. The process mapping technique was used to control melt pool size. Tomography was also performed on the powder to measure porosity within the powder that may transfer to the parts. As observed previously in experiments with electron beam powder-bed fabrication, significant variations in porosity were found as a function of the processing parameters. A clear connection between processing parameters and resulting porosity formation mechanism was observed in that inadequate melt pool overlap resulted in lack-of-fusion pores whereas excess power density produced keyhole pores.

  16. Automatic localization of vertebral levels in x-ray fluoroscopy using 3D-2D registration: a tool to reduce wrong-site surgery.

    PubMed

    Otake, Y; Schafer, S; Stayman, J W; Zbijewski, W; Kleinszig, G; Graumann, R; Khanna, A J; Siewerdsen, J H

    2012-09-07

    Surgical targeting of the incorrect vertebral level (wrong-level surgery) is among the more common wrong-site surgical errors, attributed primarily to the lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. The conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (namely CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and a CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved ten patient CT datasets from which 50 000 simulated fluoroscopic images were generated from C-arm poses selected to approximate the C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (namely mPD <5 mm). Simulation studies showed a success rate of 99.998% (1 failure in 50 000 trials) and computation time of 4.7 s on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated the robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond the

  17. Automatic localization of vertebral levels in x-ray fluoroscopy using 3D-2D registration: a tool to reduce wrong-site surgery

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-09-01

    Surgical targeting of the incorrect vertebral level (wrong-level surgery) is among the more common wrong-site surgical errors, attributed primarily to the lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. The conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (namely CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and a CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved ten patient CT datasets from which 50 000 simulated fluoroscopic images were generated from C-arm poses selected to approximate the C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (namely mPD <5 mm). Simulation studies showed a success rate of 99.998% (1 failure in 50 000 trials) and computation time of 4.7 s on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated the robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond

  18. Quantification of sub-resolution porosity in carbonate rocks by applying high-salinity contrast brine using X-ray microtomography differential imaging

    NASA Astrophysics Data System (ADS)

    Lin, Qingyang; Al-Khulaifi, Yousef; Blunt, Martin J.; Bijeljic, Branko

    2016-10-01

    Characterisation of the pore space in carbonate reservoirs and aquifers is of utmost importance in a number of applications such as enhanced oil recovery, geological carbon storage and contaminant transport. We present a new experimental methodology that uses high-salinity contrast brine and differential imaging acquired by X-ray tomography to non-invasively obtain three-dimensional spatially resolved information on porosity and connectivity of two rock samples, Portland and Estaillades limestones, including sub-resolution micro-porosity. We demonstrate that by injecting 30 wt% KI brine solution, a sufficiently high phase contrast can be achieved allowing accurate three-phase segmentation based on differential imaging. This results in spatially resolved maps of the solid grain phase, sub-resolution micro-pores within the grains, and macro-pores. The total porosity values from the three-phase segmentation for two carbonate rock samples are shown to be in good agreement with Helium porosity measurements. Furthermore, our flow-based method allows for an accurate estimate of pore connectivity and a distribution of porosity within the sub-resolution pores.

  19. Three-dimensional mapping of soil chemical characteristics at micrometric scale: Statistical prediction by combining 2D SEM-EDX data and 3D X-ray computed micro-tomographic images

    NASA Astrophysics Data System (ADS)

    Hapca, Simona

    2015-04-01

    Many soil properties and functions emerge from interactions of physical, chemical and biological processes at microscopic scales, which can be understood only by integrating techniques that traditionally are developed within separate disciplines. While recent advances in imaging techniques, such as X-ray computed tomography (X-ray CT), offer the possibility to reconstruct the 3D physical structure at fine resolutions, for the distribution of chemicals in soil, existing methods, based on scanning electron microscope (SEM) and energy dispersive X-ray detection (EDX), allow for characterization of the chemical composition only on 2D surfaces. At present, direct 3D measurement techniques are still lacking, sequential sectioning of soils, followed by 2D mapping of chemical elements and interpolation to 3D, being an alternative which is explored in this study. Specifically, we develop an integrated experimental and theoretical framework which combines 3D X-ray CT imaging technique with 2D SEM-EDX and use spatial statistics methods to map the chemical composition of soil in 3D. The procedure involves three stages 1) scanning a resin impregnated soil cube by X-ray CT, followed by precision cutting to produce parallel thin slices, the surfaces of which are scanned by SEM-EDX, 2) alignment of the 2D chemical maps within the internal 3D structure of the soil cube, and 3) development, of spatial statistics methods to predict the chemical composition of 3D soil based on the observed 2D chemical and 3D physical data. Specifically, three statistical models consisting of a regression tree, a regression tree kriging and cokriging model were used to predict the 3D spatial distribution of carbon, silicon, iron and oxygen in soil, these chemical elements showing a good spatial agreement between the X-ray grayscale intensities and the corresponding 2D SEM-EDX data. Due to the spatial correlation between the physical and chemical data, the regression-tree model showed a great potential

  20. Growth and setting of gas bubbles in a viscoelastic matrix imaged by X-ray microtomography: the evolution of cellular structures in fermenting wheat flour dough.

    PubMed

    Turbin-Orger, A; Babin, P; Boller, E; Chaunier, L; Chiron, H; Della Valle, G; Dendievel, R; Réguerre, A L; Salvo, L

    2015-05-07

    X-ray tomography is a relevant technique for the dynamic follow-up of gas bubbles in an opaque viscoelastic matrix, especially using image analysis. It has been applied here to pieces of fermenting wheat flour dough of various compositions, at two different voxel sizes (15 and 5 μm). The resulting evolution of the main cellular features shows that the creation of cellular structures follows two regimes that are defined by a characteristic time of connectivity, tc [30 and 80 min]: first (t ≤ tc), bubbles grow freely and then (t ≥ tc) they become connected since the percolation of the gas phase is limited by liquid films. During the first regime, bubbles can be tracked and the local strain rate can be measured. Its values (10(-4)-5 × 10(-4) s(-1)) are in agreement with those computed from dough viscosity and internal gas pressure, both of which depend on the composition. For higher porosity, P = 0.64 in our case, and thus occurring in the second regime, different cellular structures are obtained and XRT images show deformed gas cells that display complex shapes. The comparison of these images with confocal laser scanning microscopy images suggests the presence of liquid films that separate these cells. The dough can therefore be seen as a three-phase medium: viscoelastic matrix/gas cell/liquid phase. The contributions of the different levels of matter organization can be integrated by defining a capillary number (C = 0.1-1) that makes it possible to predict the macroscopic dough behavior.

  1. Numerical Calculation of Permeability and Electrical Formation Factor from AN Oil Reservoir Rock Using Geometry Obtained from Synchrotron X-Ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Butler, S. L.; Bird, M.; Hawkes, C.; Kotzer, T.

    2013-12-01

    Advanced imaging techniques and computational modeling are being used increasingly to investigate the transport characteristics of porous rocks. In this contribution, we describe modeling of fluid and electrical flow through the interstices of two rock samples from the Weyburn oilfield in Southwestern Saskatchewan, Canada, using commercially available software. Samples of Marley Dolostone and Vuggy Limestone were imaged at resolutions of 0.78 μm and 7.45 μm, respectively, using synchrotron X-ray tomography. The porosity, permeability and electrical formation factor of similar samples were measured in the laboratory. The connected pore space of the rock sample was extracted and converted to a standard CAD file representation using commercial software. This CAD file was then imported into a commercial finite-element modeling software package where the pore space was meshed and the Navier-Stokes equations and Laplace's equation describing fluid and electrical flows were solved with appropriate boundary conditions. An example solution of the fluid flow field is shown in figure 1. Streamlines follow the direction of fluid flow while colors indicate the magnitude of the velocity. Calculation of the fluxes in post-processing allowed us to determine the permeability and electrical formation factors which were similar to those found experimentally and fell on the same porosity-permeability and Archie's Law trends. Fluid flow through a 50 micron per side cubic sub-sample of a Marley Dolostone. The pressure gradient is applied vertically. Streamlines indicate the direction of fluid flow. Colors indicate the magnitude of flow velocity.

  2. Observations of the Dynamic Connectivity of the Non-Wetting Phase During Steady State Flow at the Pore Scale Using 3D X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Menke, H. P.; Blunt, M. J.; Krevor, S. C.

    2015-12-01

    We observe a new type of non-wetting phase flow using time-resolved pore scale imaging. The traditional conceptual model of drainage involves a non-wetting phase invading a porous medium saturated with a wetting phase as either a fixed, connected flow path through the centres of pores or as discrete ganglia which move individually through the pore space, depending on the capillary number. We observe a new type of flow behaviour at low capillary number in which the flow of the non-wetting phase occurs through networks of persistent ganglia that occupy the large pores but continuously rearrange their connectivity (Figure 1). Disconnections and reconnections occur randomly to provide short-lived pseudo-steady state flow paths between pores. This process is distinctly different to the notion of flowing ganglia which coalesce and break-up. The size distribution of ganglia is dependent on capillary number. Experiments were performed by co-injecting N2and 25 wt% KI brine into a Bentheimer sandstone core (4mm diameter, 35mm length) at 50°C and 10 MPa. Drainage was performed at three flow rates (0.04, 0.3 and 1 ml/min) at a constant fractional flow of 0.5 and the variation in ganglia populations and connectivity observed. We obtained images of the pore space during steady state flow with a time resolution of 43 s over 1-2 hours. Experiments were performed at the Diamond Light Source synchrotron. Figure 1. The position of N2 in the pore space during steady state flow is summed over 40 time steps. White indicates that N2 occupies the space over >38 time steps and red <5 time steps.

  3. Comparing parametric solid modelling/reconfiguration, global shape modelling and free-form deformation for the generation of 3D digital models of femurs from X-ray images.

    PubMed

    Filippi, Stefano; Motyl, Barbara; Bandera, Camillo

    2009-02-01

    At present, computer assisted surgery systems help orthopaedic surgeons both plan and perform surgical procedures. To enable these systems to function, it is crucial to have at one's disposal 3D models of anatomical structures, surgical tools and prostheses (if required). This paper analyses and compares three methods for generating 3D digital models of anatomical structures starting from X-ray images: parametric solid modelling/reconfiguration, global shape modelling and free-form deformation. Seven experiences involving the generation of a femur model were conducted by software developers and different skilled users. These experiences are described in detail and compared at different stages and from different points of view.

  4. Synchrotron microtomography and 3D image analysis for studying the degradability of biocompatible ceramics within biopsies sampled after sinus floor augmentation

    NASA Astrophysics Data System (ADS)

    Rack, Alexander; Stiller, M.; Knabe, C.; Dalügge, O.; Koch, Ch.; Weidemann, G.; Riesemeier, H.; Goebbels, J.

    2007-02-01

    This article presents a novel approach to evaluate two-dimensional histomorphometric studies of biodegradable ceramic particles by means of element-sensitive, three-dimensional and non-destructive synchrotron-microtomography (SCT). An in vivo study was performed in which bone substitute materials (Cerasorb) were implanted in the mandible to support the bone regeneration. After 6 months of implantation samples were prepared and investigated using SCT and subsequent 3D image analysis as well as histological evaluation. A comparison of corresponding tomographical and histological slices delivers information about the newly formed bone and its stage of development. Additionally SCT gives insights into the structural changes of the bony tissue in a given defect and the local biodegradation of the bone substitute material in a three-dimensional manner. This emphasizes the fact that the completion of investigations by 2D histological images with 3D tomographical images is required in order to be able to draw conclusions concerning the influence of different bioceramics on the bone regeneration.

  5. Three-dimensional textural analysis of products from the Vulcanian explosions of Soufrière Hills Volcano, Montserrat, 1997, using X-ray computed microtomography: comparison with 2D data and implications for vesiculation processes

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Burgisser, A.; Druitt, T. H.

    2009-12-01

    X-ray computed microtomography is a powerful, non-destructive method for imaging textures and for quantifying vesicle spatial relationships and size distributions. It was applied to one breadcrust bomb and three pumices from the 1997 Vulcanian explosions of the Soufrière Hills Volcano, Montserrat. A detailed 2D textural study of these same samples, including high-resolution vesicle size distributions, has already been carried out. In order to cover the wide range of vesicle and crystal sizes (few µm to a few hundreds of µm), we acquired tomographic images at three magnifications (0.37, 4.0 and 17.4 µm/voxel) on each sample. Each magnification covers only part of the whole vesicle size range, but with large overlaps. Vesicle walls were reconstructed using ImageJ and 3DMA_Rock softwares, and a Matlab code was written to combine the data from the three stacks and to calculate vesicle size and sphericity distributions for the whole sample. Comparison with the 2D results show only minor differences in the vesicle size distributions. Cumulative vesicle number densities obtained by the two methods are of the same order of magnitude (~1015 m-3 of glass). Three vesicle populations are recognized in the samples, the same three recognized in 2D, although minor shifts in modes are observed. As in 2D, vesicle sphericity decreases with size, vesicle shape being progressively more complicated as the vesicle grows and coalesces with neighbours. Coalescence in all samples appears to occur between neighbouring vesicles of any sizes, but, as intuitively expected, the larger the vesicle, the more connected it is. Our results show that coalescence affected indifferently pre- and syn-eruptive bubbles. This suggests that the syn-eruptive gas was rapidly connected to large-scale pathways through which it could escape. Depending on clast permeability, this mechanism has the potential to double the amount of gas available for propulsion of the Vulcanian jet.

  6. Prediction of empirical properties using direct pore-scale simulation of straining through 3D microtomography images of porous media

    NASA Astrophysics Data System (ADS)

    Mirabolghasemi, Maryam; Prodanović, Maša; DiCarlo, David; Ji, Hongyu

    2015-10-01

    Understanding the mechanisms of filtration through porous media is relevant in many engineering applications ranging from waste water treatment and aquifer contamination in environmental engineering to estimating the permeability reduction in near wellbore region during drilling or water re-injection in petroleum engineering. In this paper we present a pore-scale approach that models straining through the pore structures extracted from X-ray tomographic images of rock and grain pack samples from the first principles, enabling the examination of current macroscopic models. While continuum models are widely used for fast prediction of the retention profiles and permeability of the host porous medium, they require a number of phenomenological parameters which are derived from matching experimental results. One of these parameters is the rate of entrapment, which is the sink term in the advection-diffusion equation. Here we find the constitutive relationship for the rate of entrapment as a product of the filtration coefficient, velocity, and concentration and validate it by comparing with core flood experiments. Results show that the pore-scale simulation gives close approximations of filtration coefficient when pore bridging and straining are the main particle capture mechanisms.

  7. 3-D reconstruction and virtual ductoscopy of high-grade ductal carcinoma in situ of the breast with casting type calcifications using refraction-based X-ray CT.

    PubMed

    Ichihara, Shu; Ando, Masami; Maksimenko, Anton; Yuasa, Tetsuya; Sugiyama, Hiroshi; Hashimoto, Eiko; Yamasaki, Katsuhito; Mori, Kensaku; Arai, Yoshinori; Endo, Tokiko

    2008-01-01

    Stereomicroscopic observations of thick sections, or three-dimensional (3-D) reconstructions from serial sections, have provided insights into histopathology. However, they generally require time-consuming and laborious procedures. Recently, we have developed a new algorithm for refraction-based X-ray computed tomography (CT). The aim of this study is to apply this emerging technology to visualize the 3-D structure of a high-grade ductal carcinomas in situ (DCIS) of the breast. The high-resolution two-dimensional images of the refraction-based CT were validated by comparing them with the sequential histological sections. Without adding any contrast medium, the new CT showed strong contrast and was able to depict the non-calcified fine structures such as duct walls and intraductal carcinoma itself, both of which were barely visible in a conventional absorption-based CT. 3-D reconstruction and virtual endoscopy revealed that the high-grade DCIS was located within the dichotomatous branches of the ducts. Multiple calcifications occurred in the necrotic core of the continuous DCIS, resulting in linear and branching (casting type) calcifications, a hallmark of high-grade DCIS on mammograms. In conclusion, refraction-based X-ray CT approaches the low-power light microscopic view of the histological sections. It provides high quality slice data for 3-D reconstruction and virtual ductosocpy.

  8. The Lipophilic Vitamin C Derivative, 6-O-Palmitoylascorbate Protects Human Keratinocytes and 3D-Human Skin Equivalents Against X-Ray-Induced Oxidative Stress and Apoptosis More Markedly Than L-Ascorbic Acid.

    PubMed

    Xiao, Li; Miwa, Nobuhiko

    2017-02-01

    The aim of this study was to investigate preventive effects of the lipophilic vitamin C derivative, 6-O-palmitoylascorbate (PlmtVC) against X-ray radiation-induced harmful events. Free radical scavenging activity tests showed that both fresh and old (being kept at 37°C for 72 h) solutions of PlmtVC showed significantly higher abilities for scavenging both DPPH and peroxyl radical (ROO·) radicals than L-ascorbic acid (L-AA) under the same conditions, suggesting that PlmtVC is an antioxidant more efficient and stable than L-AA. Irradiation with X-ray (15 Gy) increased intracellular ROS production, lipid peroxidation and protein carbonylation, in human keratinocytes HaCaT, all of which were repressed, especially for intracellular ROS more markedly, by PlmtVC than by L-AA. After X-ray (15 Gy)-irradiation, caspase 3/7 activation and TUNEL-detected DNA-strand-breakages characteristic of apoptosis obviously increased in HaCaT cells or 3D-skin tissue equivalents, respectively, both of which were prevented more appreciably by PlmtVC than by L-AA. PlmtVC also noticeably prevented cumene hydroperoxide-induced generation of cellular ROS in epidermis parts of 3D-skin equivalents. Thus, PlmtVC prevents X-ray-induced diverse harmful effects, through its antioxidant activity and the palmitoyl moiety-based lipophilicity, more efficiently than L-AA. J. Cell. Biochem. 118: 318-329, 2017. © 2016 Wiley Periodicals, Inc.

  9. Measurement of Localized Corrosion Rates at Inclusion Particles in AA7075 by In Situ Three Dimensional (3D) X-ray Synchrotron Tomography

    SciTech Connect

    Singh, Sudhanshu S.; Williams, Jason J.; Stannard, Tyler J.; Xiao, Xianghui; De Carlo, Francesco; Chawla, Nikhilesh

    2016-03-01

    In situ X-ray synchrotron tomography was used to measure the localized corrosion rate of Mg2Si particles present in 7075 aluminum alloys in deionized ultra-filtered (DIUF) water. The evolution of hydrogen bubbles was captured as a function of time and the measured volume was used to calculate the local corrosion rate of Mg2Si particles. It was shown that in the absence of chloride ions, stress was needed to create fresh particle surfaces, either by fracture or debonding, to initiate corrosion at the particles.

  10. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron X-ray CT.

    PubMed

    Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  11. Reaction-induced porosity and onset of low-temperature carbonation in abyssal peridotites: Insights from 3D high-resolution microtomography

    NASA Astrophysics Data System (ADS)

    Jöns, Niels; Kahl, Wolf-Achim; Bach, Wolfgang

    2017-01-01

    In a drillcore sample of serpentinized harzburgite from the uppermost oceanic crust (Mid-Atlantic Ridge, ODP Leg 209, Site 1270), we demonstrate using high-resolution 3D-microtomography that micron-sized open cavities are present. The development of porosity is interpreted to result from dissolution of brucite and/or olivine. Petrographic observations indicate that voids are integrated in a network of carbonate veins, the formation of which is linked to changing alkalinity in conjunction with dissolution reactions. Partial carbonate filling of pore spaces indicates that under static conditions low-temperature carbonation leads to clogging of fluid pathways and thus to a reduction in permeability. Electron microprobe analyses show that the inner walls of open voids are lined with Fe-rich precipitates. We propose that the iron in those phases was released by brucite or olivine dissolution and was subsequently oxidized and precipitated as ferric hydroxide. Thermodynamic computations show that this process may be a potential source of catabolic energy for microorganisms inhabiting serpentinites. The proposed carbonation mechanism implies that carbonate precipitation may start soon after exposure of the abyssal peridotites, when dissolution of brucite and weathering of olivine begin, and continue until the phases become inaccessible to seawater. Predicting carbonation rates of abyssal peridotites will hence require understanding of permeability reactions.

  12. Laboratory Measurements of the Relative Oscillator Strengths of the Fe XVII Lines 3C and 3D Using an X-ray Laser and an Electron Beam Ion Trap

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Hi-Light Collaboration

    2013-04-01

    X-ray emission from neon-like Fe XVII has been observed in a plethora of celestial sources including stellar atmospheres, galaxy clusters, elliptical galaxies, and supernova remnants. Two of the strongest lines emitted from Fe XVII are the 3d to 2p transitions located at 15.01 and 15.26 angstroms and known as 3C and 3D, respectively. Owing to their strength and presence over a large temperature range, diagnostics involving these lines are of high value. Unfortunately, even though many theoretical and experimental studies have been conducted on 3C and 3D, significant discrepancies among different theories, and between theory and both laboratory and observational measurements have been found. Many different theoretical approaches have been pursued in attempt to resolve the discrepancies, but none has provided a consistent solution (Brown & Beiersdorfer Physical Review Letters, 2012). As a result, the diagnostic utility of these lines has not been fully realized. In order to further probe the nature of these X-ray transitions, we have used the Linac Coherent Light Source X-ray free electron laser in conjunction with the portable FLASH-EBIT electron beam ion trap to photo-excite these lines and measure their relative oscillator strength, Ro. Our results, Ro = 2.61+/- 0.23 (Bernitt, et al. Nature 2012) differs by over 3σ from the best quantum mechanical calculations. We present an overview of these measurements and their implications, as well as a sampling of other photoabsorption measurements using the FLASH-EBIT at various third and fourth generation light sources. This work was performed under the auspices of the U.S. D.o.E. by under Contract DE-AC52-07NA27344 and supported by NASA grants to LLNL and GSFC.

  13. Comparison of fluid-fluid interfacial areas measured with X-ray microtomography and interfacial partitioning tracer tests for the same samples: COMPARISON OF FLUID-FLUID INTERFACIAL AREAS

    SciTech Connect

    McDonald, Kieran; Carroll, Kenneth C.; Brusseau, Mark L.

    2016-07-01

    Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure nonwetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of the tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ~5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.

  14. X-ray Diffraction Study of Order-Disorder Phase Transition in CuMPt6 (M=3d Elements) Alloys

    NASA Astrophysics Data System (ADS)

    Ahmed, Ejaz; Takahashi, Miwako; Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2009-01-01

    We investigated the ordering behavior of ternary CuMPt6 alloys with M=Ti, V, Cr, Mn, Fe, Co, and Ni by high-temperature polycrystalline X-ray diffraction. The alloys undergo a phase transition from the fcc disordered state to the Cu3Au-type ordered state, except for the alloy with M=Ni, in which only short-range order forms. The transition temperature Tc is highest (1593 K) for M=Ti and decreases almost monotonically with increasing atomic number to 1153 K for M=Co. The observed dependence of ordering tendency on the atomic number of M is discussed in the light of the theory of ordering in transition-metal alloys and its significance for the study of ordering in ternary alloys.

  15. The Evolution of a Fracture in a Dolomite Sample During Dissolution Induced by a CO2-Saturated Solution Flow at Reservoir Conditions: a Dynamic Synchrotron X-Ray Microtomography Study

    NASA Astrophysics Data System (ADS)

    Voltolini, M.; Yang, L.; Ajo Franklin, J. B.

    2014-12-01

    Due to their importance as both GCS reservoir rocks and seals, the geochemical behavior of carbonates, such as limestones and dolomites, in acidic environments is relatively well-studied topic. However, the feedbacks between dissolution processes and permeability are not fully understood, particularly for fractured carbonates at in-situ stress conditions. A key open problem is the evolution of fracture aperture (and therefore permeability) for induced fractures in low permeability carbonates. We present the results of a dynamic synchrotron X-ray microtomography (SXR-μCT) experiment investigating changes in fracture aperture in a dolomite sample during dissolution induced by CO2 saturated water. The dolomite sample used for the experiment was sourced from the Duperow formation of North central Montana, and consisted of a 3/8" cylindrical sample, 7/8" long, with a single vertical fracture. CO2 bearing solution was flowed through the the sample in a μCT high pressure vessel for ~ one week at a constant flow rate of 5 μl/min under 1400 psi pore pressure and 1700 psi confining pressure. XR tomographic scans were taken at different time steps to follow the evolution of fracture apertures. Results show that the evolution of the fracture is extremely complex: the calcite fraction present in the sample (~5%) dissolves readily showing a prompt retreat in the fragments contacting the fracture surface. In contrast, dolomite zones develop a leached layer ~250 μm thick, rich in micropores along the surfaces of the fracture. With the evolution of the system, a wormholing effect becomes more evident with the development of channels of preferential dissolution along the paths of maximum fluid velocity, where the leached layer becomes less evident and faster bulk dissolution of the dolomite is observed. The main aperture of the fracture remains fairly constant during dissolution; even after an increase in confining pressure (2300 psi), no closure was observed. This highlights

  16. Piecewise-rigid 2D-3D registration for pose estimation of snake-like manipulator using an intraoperative x-ray projection

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Murphy, R. J.; Kutzer, M. D.; Taylor, R. H.; Armand, M.

    2014-03-01

    Background: Snake-like dexterous manipulators may offer significant advantages in minimally-invasive surgery in areas not reachable with conventional tools. Precise control of a wire-driven manipulator is challenging due to factors such as cable deformation, unknown internal (cable friction) and external forces, thus requiring correcting the calibration intraoperatively by determining the actual pose of the manipulator. Method: A method for simultaneously estimating pose and kinematic configuration of a piecewise-rigid object such as a snake-like manipulator from a single x-ray projection is presented. The method parameterizes kinematics using a small number of variables (e.g., 5), and optimizes them simultaneously with the 6 degree-of-freedom pose parameter of the base link using an image similarity between digitally reconstructed radiographs (DRRs) of the manipulator's attenuation model and the real x-ray projection. Result: Simulation studies assumed various geometric magnifications (1.2-2.6) and out-of-plane angulations (0°-90°) in a scenario of hip osteolysis treatment, which demonstrated the median joint angle error was 0.04° (for 2.0 magnification, +/-10° out-of-plane rotation). Average computation time was 57.6 sec with 82,953 function evaluations on a mid-range GPU. The joint angle error remained lower than 0.07° while out-of-plane rotation was 0°-60°. An experiment using video images of a real manipulator demonstrated a similar trend as the simulation study except for slightly larger error around the tip attributed to accumulation of errors induced by deformation around each joint not modeled with a simple pin joint. Conclusions: The proposed approach enables high precision tracking of a piecewise-rigid object (i.e., a series of connected rigid structures) using a single projection image by incorporating prior knowledge about the shape and kinematic behavior of the object (e.g., each rigid structure connected by a pin joint parameterized by a

  17. Resonant soft x-ray magnetic scattering from the 4f and 3d electrons in DyFe{sub 4}Al{sub 8}: Magnetic interactions in a cycloidal antiferromagnet

    SciTech Connect

    Beale, T. A. W.; Hatton, P. D.; Wilkins, S. B.; Abbamonte, P.; Stanescu, S.; Paixao, J. A.

    2007-05-01

    Soft x-ray resonant scattering has been used to examine the charge and magnetic interactions in the cycloidal antiferromagnetic compound DyFe{sub 4}Al{sub 8}. By tuning to the Dy M{sub 4} and M{sub 5} absorption edges and the Fe L{sub 2} and L{sub 3} absorption edges, we can directly observe the behavior of the Dy 4f and Fe 3d electron shells. Magnetic satellites surrounding the (110) Bragg peak were observed below 65 K. The diffraction peaks display complex spectra at the Dy M{sub 5} edge, indicative of a split 4f electron band. This is in contrast to the simple resonance observed at the Fe L{sub 3} absorption edge, which probes the Fe 3d electron shell. Temperature-dependent measurements detail the ordering of the magnetic moments on both the iron and the dysprosium antiferromagnetic cycloids. The ratio between the superlattice peak intensities of the Dy M{sub 4} and M{sub 5} absorption edges remained constant throughout the temperature range, in contrast to a previous study conducted at the Dy L{sub 2,3} edges. Our results demonstrate the ability of soft x-ray diffraction to separate the individual magnetic components in complicated multielement magnetic structures.

  18. HipMatch: an object-oriented cross-platform program for accurate determination of cup orientation using 2D-3D registration of single standard X-ray radiograph and a CT volume.

    PubMed

    Zheng, Guoyan; Zhang, Xuan; Steppacher, Simon D; Murphy, Stephen B; Siebenrock, Klaus A; Tannast, Moritz

    2009-09-01

    The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior (AP) radiograph is known inaccurate, largely due to the wide variability in individual pelvic orientation relative to X-ray plate. 2D-3D image registration methods have been introduced for an accurate determination of the post-operative cup alignment with respect to an anatomical reference extracted from the CT data. Although encouraging results have been reported, their extensive usage in clinical routine is still limited. This may be explained by their requirement of a CAD model of the prosthesis, which is often difficult to be organized from the manufacturer due to the proprietary issue, and by their requirement of either multiple radiographs or a radiograph-specific calibration, both of which are not available for most retrospective studies. To address these issues, we developed and validated an object-oriented cross-platform program called "HipMatch" where a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration was implemented to estimate a rigid transformation between a pre-operative CT volume and the post-operative X-ray radiograph for a precise estimation of cup alignment. No CAD model of the prosthesis is required. Quantitative and qualitative results evaluated on cadaveric and clinical datasets are given, which indicate the robustness and the accuracy of the program. HipMatch is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway), VTK, and Coin3D and is transportable to any platform.

  19. Structure from Motion Photogrammetry and Micro X-Ray Computed Tomography 3-D Reconstruction Data Fusion for Non-Destructive Conservation Documentation of Lunar Samples

    NASA Technical Reports Server (NTRS)

    Beaulieu, K. R.; Blumenfeld, E. H.; Liddle, D. A.; Oshel, E. R.; Evans, C. A.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2017-01-01

    Our team is developing a modern, cross-disciplinary approach to documentation and preservation of astromaterials, specifically lunar and meteorite samples stored at the Johnson Space Center (JSC) Lunar Sample Laboratory Facility. Apollo Lunar Sample 60639, collected as part of rake sample 60610 during the 3rd Extra-Vehicular Activity of the Apollo 16 mission in 1972, served as the first NASA-preserved lunar sample to be examined by our team in the development of a novel approach to internal and external sample visualization. Apollo Sample 60639 is classified as a breccia with a glass-coated side and pristine mare basalt and anorthosite clasts. The aim was to accurately register a 3-dimensional Micro X-Ray Computed Tomography (XCT)-derived internal composition data set and a Structure-From-Motion (SFM) Photogrammetry-derived high-fidelity, textured external polygonal model of Apollo Sample 60639. The developed process provided the means for accurate, comprehensive, non-destructive visualization of NASA's heritage lunar samples. The data products, to be ultimately served via an end-user web interface, will allow researchers and the public to interact with the unique heritage samples, providing a platform to "slice through" a photo-realistic rendering of a sample to analyze both its external visual and internal composition simultaneously.

  20. Opacity of iron, nickel, and copper plasmas in the x-ray wavelength range: Theoretical interpretation of 2p-3d absorption spectra

    SciTech Connect

    Blenski, T.; Loisel, G.; Poirier, M.; Thais, F.; Arnault, P.; Caillaud, T.; Fariaut, J.; Gilleron, F.; Pain, J.-C.; Porcherot, Q.; Reverdin, C.; Silvert, V.; Villette, B.; Bastiani-Ceccotti, S.; Turck-Chieze, S.; Foelsner, W.; Gaufridy de Dortan, F. de

    2011-09-15

    This paper deals with theoretical studies on the 2p-3d absorption in iron, nickel, and copper plasmas related to LULI2000 (Laboratoire pour l'Utilisation des Lasers Intenses, 2000J facility) measurements in which target temperatures were of the order of 20 eV and plasma densities were in the range 0.004-0.01 g/cm{sup 3}. The radiatively heated targets were close to local thermodynamic equilibrium (LTE). The structure of 2p-3d transitions has been studied with the help of the statistical superconfiguration opacity code sco and with the fine-structure atomic physics codes hullac and fac. A new mixed version of the sco code allowing one to treat part of the configurations by detailed calculation based on the Cowan's code rcg has been also used in these comparisons. Special attention was paid to comparisons between theory and experiment concerning the term features which cannot be reproduced by sco. The differences in the spin-orbit splitting and the statistical (thermal) broadening of the 2p-3d transitions have been investigated as a function of the atomic number Z. It appears that at the conditions of the experiment the role of the term and configuration broadening was different in the three analyzed elements, this broadening being sensitive to the atomic number. Some effects of the temperature gradients and possible non-LTE effects have been studied with the help of the radiative-collisional code scric. The sensitivity of the 2p-3d structures with respect to temperature and density in medium-Z plasmas may be helpful for diagnostics of LTE plasmas especially in future experiments on the {Delta}n=0 absorption in medium-Z plasmas for astrophysical applications.

  1. High-Resolution Imaged-Based 3D Reconstruction Combined with X-Ray CT Data Enables Comprehensive Non-Destructive Documentation and Targeted Research of Astromaterials

    NASA Technical Reports Server (NTRS)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2014-01-01

    Providing web-based data of complex and sensitive astromaterials (including meteorites and lunar samples) in novel formats enhances existing preliminary examination data on these samples and supports targeted sample requests and analyses. We have developed and tested a rigorous protocol for collecting highly detailed imagery of meteorites and complex lunar samples in non-contaminating environments. These data are reduced to create interactive 3D models of the samples. We intend to provide these data as they are acquired on NASA's Astromaterials Acquisition and Curation website at http://curator.jsc.nasa.gov/.

  2. Deformation of Rock Mass Caused by Strike-Slip Faulting: 3D Analysis of Analogue Models by Helical X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Ueta, K.

    2007-12-01

    Strike-slip fault zones are induced experimentally in artificial rock subjected to strike-slip displacement along basement fault. The purpose is to investigate in three dimensions, the geometries and sequence of development of structural elements comprising the fault zones by use of a helical X-ray CT scanner. 860 mm long, 310 mm wide, 25 mm high artificial rocks were made by mixing sand, plaster and water. The basement fault was displaced up to 100 mm at a displacement rate of 0.1mm/sec. The deformation of the artificial rocks with increasing basement displacement was observed as follows. 1) En echelon fractures corresponding to the Riedel shears are observed at the surface of the artificial rock. These Riedel structures contain within them similar Riedels on a smaller scale (Riedel within Riedel structures). The length of the first and second order Riedel fractures is of the order of 100 mm and 10 mm, respectively. In three dimensions, each fracture has helicoidal shape. 2) Fractures corresponding to the first and second order P-shears form at the junctions between two first and second order Riedel shears, and serve to connect the Riedel shears. The combination of displacement along the Riedel and P-shears leads to the formation of the principal displacement shears including first and second order jogs and pull-aparts. 3) New shears (outer shears) branch off from Riedel and P- shears in compressional jogs and propagate aside from the fault zone that consists of Riedel and P-shears. The outer shears do not join the basement fault directly and develop near the surface of the artificial rock. The region among the Riedel shear, P-shear and outer shear is an up-squeezed block (push-up), which undergo rotation with increasing displacement. The push-up structures tend to be limited to shallow part of the artificial rock. The lower artificial rock on the one side of basement fault adheres to one on the other side in the compressional jogs. 4) As slip proceed, wear erode

  3. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  4. Structural integrity--Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

    SciTech Connect

    Xu, Yahong; Hu, Enyuan; Yang, Feifei; Corbett, Jeff; Sun, Zhihong; Lyu, Yingchun; Yu, Xiqian; Liu, Yijin; Yang, Xiao-Qing; Li, Hong

    2016-10-24

    Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. Here, our study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li2Ru0.5Mn0.5O3 cathode particles at the meso to nano scale. We performed combined X-ray spectroscopy, diffraction and microscopy experiments to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.

  5. Automated 3D-2D registration of X-ray microcomputed tomography with histological sections for dental implants in bone using chamfer matching and simulated annealing.

    PubMed

    Becker, Kathrin; Stauber, Martin; Schwarz, Frank; Beißbarth, Tim

    2015-09-01

    We propose a novel 3D-2D registration approach for micro-computed tomography (μCT) and histology (HI), constructed for dental implant biopsies, that finds the position and normal vector of the oblique slice from μCT that corresponds to HI. During image pre-processing, the implants and the bone tissue are segmented using a combination of thresholding, morphological filters and component labeling. After this, chamfer matching is employed to register the implant edges and fine registration of the bone tissues is achieved using simulated annealing. The method was tested on n=10 biopsies, obtained at 20 weeks after non-submerged healing in the canine mandible. The specimens were scanned with μCT 100 and processed for hard tissue sectioning. After registration, we assessed the agreement of bone to implant contact (BIC) using automated and manual measurements. Statistical analysis was conducted to test the agreement of the BIC measurements in the registered samples. Registration was successful for all specimens and agreement of the respective binary images was high (median: 0.90, 1.-3. Qu.: 0.89-0.91). Direct comparison of BIC yielded that automated (median 0.82, 1.-3. Qu.: 0.75-0.85) and manual (median 0.61, 1.-3. Qu.: 0.52-0.67) measures from μCT were significant positively correlated with HI (median 0.65, 1.-3. Qu.: 0.59-0.72) between μCT and HI groups (manual: R(2)=0.87, automated: R(2)=0.75, p<0.001). The results show that this method yields promising results and that μCT may become a valid alternative to assess osseointegration in three dimensions.

  6. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography

    NASA Astrophysics Data System (ADS)

    Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.

    2015-05-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.

  7. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    SciTech Connect

    Schulze, D. ); Anderson, S. ); Mattigod, S. )

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  8. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  9. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  10. Chest X-Ray

    MedlinePlus

    ... by Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  11. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  12. X-ray tensor tomography

    NASA Astrophysics Data System (ADS)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  13. 3D geometry and hydrodynamic modifications in fractured and porous rock samples through chemical alterations.

    NASA Astrophysics Data System (ADS)

    Noiriel, C. N.

    2011-12-01

    Fractured and porous rocks are the principal path for water flow and potential contamination. Modification of fracture topology and transmissivity by reactive fluids is an important and complex geological process. In carbonate rocks, fractures and porous media properties may change quickly and strongly due to natural processes (e.g. karstification, salt intrusion) or anthropogenic practice (e.g. CO2 geological sequestration). Recent application of X-ray micro-tomography to the Earth Sciences, which allows the visualization of 3D objects with a micrometre resolution, has considerably increased experimental capability by giving access to a 4D spatio-temporal vision (3D geometry + time) of the physical-chemical processes within the rocks. New information is now accessible, which provides a better understanding of the processes and allows the numerical models to be better constrained. I will present the application of X-ray micro-tomography to study changes of petrophysical properties (e.g. porosity, permeability, mineral surface area, etc.) of fractured and porous rocks in response to fluid-rock interactions (dissolution and precipitation). Experimental results will be discussed in regard to numerical modelling of flow and transport. Keywords: X-ray micro-tomography, fracture, porous media, dissolution, precipitation, carbon dioxide sequestration, limestone, reactive surface, geochemical modelling,

  14. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  15. Development of X-ray CCD camera based X-ray micro-CT system.

    PubMed

    Sarkar, Partha S; Ray, N K; Pal, Manoj K; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y; Sinha, A; Gadkari, S C

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  16. Computerized microtomography for new applications

    SciTech Connect

    Ice, G.; Thompson, A.

    1996-09-01

    The advent of high brilliance synchrotron sources has stimulated the development of advanced x-ray microtomography. However, materials research problems challenge existing tomographic techniques. High spatial resolution is required to identify and characterize microstructure in real materials. Good elemental sensitivity is required to study the effects of microalloying. Three-dimensional crystal texture, strain and phase information is required to understand advanced materials. Materials samples can include a wide range of elements, can come in unfavorable geometries, and sometimes require dynamic measurements of their three-dimensional structure. One challenge for x-ray microtomography is the measurement of low concentrations with good spatial resolution and high elemental sensitivity. Another challenge to standard x-ray microtomography is the study of elemental distributions in planar structures where elemental sensitivity is required in one or two dimensions, but the spatial sensitivity in all three dimensions is not required. For a large class of materials, crystalline structure, strain and texture are critical to the materials properties. Recent work has now demonstrated the possibility of extending X-ray microdiffraction to the study of three dimensional crystallographic distributions. Efforts are now underway at the APS, ALS, SSRL and NSLS to further develop x-ray microdiffraction and x-ray microdiffraction tomography. The measurement of strain and texture in three dimensions will have important applications to the study of high J{sub c} high {Tc} superconductors, the study of second phase distributions and texture in composite materials, and the study of crack and void evolution in structural and electronic materials. Another frontier for x-ray tomography is the development of dynamic, real-time measurements.

  17. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  18. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction

    SciTech Connect

    Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

    2010-01-01

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

  19. Ligational behaviour of (E)-2-amino-N‧-[1-(2-hydroxyphenyl)ethylidene]benzohydrazide towards later 3d metal ions: X-ray crystal structure of nickel(IV) complex

    NASA Astrophysics Data System (ADS)

    Gudasi, Kalagouda B.; Patil, Siddappa A.; Bakale, Raghavendra P.; Nethaji, Munirathinum

    2014-05-01

    Ligational behaviour of (E)-2-amino-N‧-[1-(2-hydroxyphenyl)ethylidene]benzohydrazide (Aheb) towards later 3d metal ions[copper(II), cobalt(II), manganese(II), zinc(II), cadmium(II) and nickel(IV)] has been studied. Their structures have been elucidated on the basis of spectral (IR, 1H NMR, UV-Vis, EPR and FAB-mass), elemental analyses, conductance measurements, magnetic moments, and thermal studies. During complexation Ni(II) ion has got oxidized to Ni(IV). The changes in the bond parameters of the ligand on complexation has been discussed by comparing the crystal structure of the ligand with that of its Ni(IV) complex. The X-ray single crystal analysis of [Ni(aheb)2]Cl2·4H2O has confirmed an octahedral geometry around the metal ion. EPR spectra of the Cu(II) complex in polycrystalline state at room (300 K) and liquid nitrogen temperature (77 K) were recorded and their salient features are reported.

  20. X-ray emission spectroscopy.

    PubMed

    Bergmann, Uwe; Glatzel, Pieter

    2009-01-01

    We describe the chemical information that can be obtained by means of hard X-ray emission spectroscopy (XES). XES is presented as a technique that is complementary to X-ray absorption spectroscopy (XAS) and that provides valuable information with respect to the electronic structure (local charge- and spin-density) as well as the ligand environment of a 3d transition metal. We address non-resonant and resonant XES and present results that were recorded on Mn model systems and the Mn(4)Ca-cluster in the oxygen evolving complex of photosystem II. A brief description of the instrumentation is given with an outlook toward future developments.

  1. X-ray biosignature of bacteria in terrestrial and extra-terrestrial rocks

    NASA Astrophysics Data System (ADS)

    Lemelle, L.; Simionovici, A.; Susini, J.; Oger, P.; Chukalina, M.; Rau, Ch.; Golosio, B.; Gillet, P.

    2003-04-01

    X-ray imaging techniques at the best spatial resolution and using synchrotron facilities are put forth as powerful techniques for the search of small life forms in extraterrestrial rocks under quarantine conditions (Lemelle et al. 2003). Samples, which may be collected in situ on the martian surface or on a cometary surface, will be brought back and finally stored in a container. We tested on the ID22 beamline, the possibilities of the X-ray absorption and fluorescence tomographies on sub-mm grains of NWA817 (Lemelle et al. submitted) and Tatahouine (Simionovici et al. 2001) meteorites stored in a 10 micrometer silica capillary, full of air, mimicking such containers. Studies of the X-ray microtomographies carried on reveal the positions, the 3D textures and mineralogies of the microenvironments where traces of life should be looked for in priority (with a submicrometer spatial resolution). Limitations with respect to bacterial detection are due to the difficulties to obtain information about light elements (Z <= 14), major constituents of biological and silicate samples. At this stage, traces of life were not detected, nor identified such as, on all the studied meteorites through the capillary. Theoretical developments of an internal elemental microanalysis combining X-ray fluorescence, Compton and Transmission tomographies will soon allow improvements of 3D detection of life by X-ray techniques (Golosio et al. submitted). We tested on the ID21 beamline, the possibilities of the X-ray imaging techniques on bacteria/silicate assemblages prepared in the laboratory and directly placed in the beam. The X-ray signature of a "present" bacteria on a silicate surface was defined by X-ray mapping, out of a container, as coincident micrometer and oval zones having strong P and S fluorescence lines (S-fluorescence being slightly lower than P-fluorescence) and an amino-linked sulfur redox speciation. The X-ray signature of a single bacteria can now be applied to test the

  2. Note: design and construction of a multi-scale, high-resolution, tube-generated x-ray computed-tomography system for three-dimensional (3D) imaging.

    PubMed

    Mertens, J C E; Williams, J J; Chawla, Nikhilesh

    2014-01-01

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  3. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  4. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  5. Bone x-ray

    MedlinePlus

    ... not being scanned. Alternative Names X-ray - bone Images Skeleton Skeletal spine Osteogenic sarcoma - x-ray References ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  6. X-ray

    MedlinePlus

    ... think you might be pregnant. Alternative Names Radiography Images X-ray X-ray References Geleijns J, Tack ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  7. Extremity x-ray

    MedlinePlus

    ... sensitive to the risks of an x-ray. Images X-ray References Kelly DM. Congenital anomalies of ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  8. X-Ray Toolkit

    SciTech Connect

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  9. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  10. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  11. From Historical Backgrounds to Recent Advances in 3D Characterization of Materials: An Overview

    NASA Astrophysics Data System (ADS)

    Monteiro, Sergio Neves; Paciornik, Sidnei

    2017-01-01

    Two-dimensional pictures and x-ray diffraction (XRD) patterns have for a long time been the standard techniques most frequently used to analyze a material structure. In the past decades, owing to advances in imaging and computer technology, three-dimensional (3D) techniques have provided new insights into how phase distribution, crystallographic interfaces and defect arrangements contribute to build a material structure. Moreover, theoretical modeling is now able to disclose a more accurate structural simulation with the support of 3D characterization. In this work, a concise overview of the major 3D imaging techniques is presented to update the reader with the main related achievements in automated serial sectioning, focused ion beam/scanning electron microscopy (FIB/SEM) and x-ray microtomography (microCT). Examples addressed in the literature for engineering materials illustrate each technique.

  12. X-ray tomographic imaging of Al/SiC p functionally graded composites fabricated by centrifugal casting

    NASA Astrophysics Data System (ADS)

    Velhinho, A.; Sequeira, P. D.; Martins, Rui; Vignoles, G.; Braz Fernandes, F.; Botas, J. D.; Rocha, L. A.

    2003-01-01

    The present work refers to an X-ray microtomography experiment aiming at the elucidation of some aspects regarding particle distribution in SiC-particle-reinforced functionally graded aluminium composites. Precursor composites were produced by rheocasting. These were then molten and centrifugally cast to obtain the functionally graded composites. From these, cylindrical samples, around 1 mm in diameter, were extracted, which were then irradiated with a X-ray beam produced at the European Synchrotron Radiation Facility. The 3-D images were obtained in edge-detection mode. A segmentation procedure has been adapted in order to separate the pores and SiC particles from the Al matrix. Preliminary results on the particle and pore distributions are presented.

  13. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  14. The Cambrian Evolutionary Explosion: Novel Evidence from Fossils Studied by X-ray Tomography

    SciTech Connect

    Chen, Jun-Yuan

    2011-06-01

    The Cambrian explosion (from 542 million years to 488 million years ago) is one of the greatest mysteries in evolutionary biology. It wasn't until this period that complex organisms became common and diverse. the magnitude of the event can be understood based on the contrast between the biota and the degree of diversity of the fossils from both sides. great advances have been made in Cambrian palaeontology over the past century, especially the discovery of the well-preserved soft-bodied fauna from the Middle Cambrian Burgess Shale and the Lower Cambrian Maotianshan Shale deposits. The Cambrian side of the "Cambrian explosion" is richly illustrated and contrasts greatly with the Precambrian side. The study of these extraordinarily preserved fossil biota is extremely difficult. A major challenge is 3-D reconstruction and determining the patter of the cell organization in Weng'an embryos and their buried structures in Maotianshan Shale fossils. This talk will show that two recent technological approaches, propagation phase contrast synchrotron x-ray microtomography and microtomography, provide unique analytical tools that permit the nondestructive computational examination and visualization of the internal and buried characters in virtual sections in any plane, and virtual 3-D depictions of internal structures.

  15. X-Ray Diffraction Contrast Tomography in micro-CT Lab Source Systems

    DTIC Science & Technology

    2014-05-16

    DCT is a truly three-dimensional tomographic imaging approach, sharing a common experimental setup with conventional X - ray microtomography. After...interaction with the material, both the transmitted and diffracted beams are recorded on a high-resolution X - ray imaging detector positioned close to the...grain microstructures in a wide range of polycrystalline materials. The combination of three-dimensional X - ray imaging and diffraction techniques on the

  16. Aligning Microtomography Analysis with Traditional Anatomy for a 3D Understanding of the Host-Parasite Interface – Phoradendron spp. Case Study

    PubMed Central

    Teixeira-Costa, Luíza; Ceccantini, Gregório C. T.

    2016-01-01

    The complex endophytic structure formed by parasitic plant species often represents a challenge in the study of the host-parasite interface. Even with the large amounts of anatomical slides, a three-dimensional comprehension of the structure may still be difficult to obtain. In the present study we applied the High Resolution X-ray Computed Tomography (HRXCT) analysis along with usual plant anatomy techniques in order to compare the infestation pattern of two mistletoe species of the genus Phoradendron. Additionally, we tested the use of contrasting solutions in order to improve the detection of the parasite’s endophytic tissue. To our knowledge, this is the first study to show the three-dimensional structure of host-mistletoe interface by using HRXCT technique. Results showed that Phoradendron perrottetii growing on the host Tapirira guianensis forms small woody galls with a restricted endophytic system. The sinkers were short and eventually grouped creating a continuous interface with the host wood. On the other hand, the long sinkers of P. bathyoryctum penetrate deeply