Science.gov

Sample records for 3d yang-mills theory

  1. Gauged supersymmetries in Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Tissier, Matthieu; Wschebor, Nicolás

    2009-03-01

    In this paper we show that Yang-Mills theory in the Curci-Ferrari-Delbourgo-Jarvis gauge admits some up to now unknown local linear Ward identities. These identities imply some nonrenormalization theorems with practical simplifications for perturbation theory. We show, in particular, that all renormalization factors can be extracted from two-point functions. The Ward identities are shown to be related to supergauge transformations in the superfield formalism for Yang-Mills theory. The case of nonzero Curci-Ferrari mass is also addressed.

  2. Gauged supersymmetries in Yang-Mills theory

    SciTech Connect

    Tissier, Matthieu; Wschebor, Nicolas

    2009-03-15

    In this paper we show that Yang-Mills theory in the Curci-Ferrari-Delbourgo-Jarvis gauge admits some up to now unknown local linear Ward identities. These identities imply some nonrenormalization theorems with practical simplifications for perturbation theory. We show, in particular, that all renormalization factors can be extracted from two-point functions. The Ward identities are shown to be related to supergauge transformations in the superfield formalism for Yang-Mills theory. The case of nonzero Curci-Ferrari mass is also addressed.

  3. Gravitino interactions from Yang-Mills theory

    SciTech Connect

    Bjerrum-Bohr, N. E. J.; Engelund, Oluf Tang

    2010-05-15

    We fabricate gravitino vertex interactions, using as only input on-shell Yang-Mills amplitudes and the Kawai-Lewellen-Tye gauge theory/gravity relations, aiming to achieve a better understanding of Kawai-Lewellen-Tye factorizations for gravitinos at an off-shell Lagrangian level. A useful by-product of this analysis is simpler tree-level Feynman rules for gravitino scattering than in traditional gauges. All results are explicitly verified until five-point scattering.

  4. Wong's equations in Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Storchak, Sergey

    2014-04-01

    Wong's equations for the finite-dimensional dynamical system representing the motion of a scalar particle on a compact Riemannian manifold with a given free isometric smooth action of a compact semi-simple Lie group are derived. The equations obtained are written in terms of dependent coordinates which are typically used in an implicit description of the local dynamics given on the orbit space of the principal fiber bundle. Using these equations, we obtain Wong's equations in a pure Yang-Mills gauge theory with Coulomb gauge fixing. This result is based on the existing analogy between the reduction procedures performed in a finite-dimensional dynamical system and the reduction procedure in Yang-Mills gauge fields.

  5. Superstring limit of Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Lechtenfeld, Olaf; Popov, Alexander D.

    2016-11-01

    It was pointed out by Shifman and Yung that the critical superstring on X10 =R4 ×Y6, where Y6 is the resolved conifold, appears as an effective theory for a U(2) Yang-Mills-Higgs system with four fundamental Higgs scalars defined on Σ2 ×R2, where Σ2 is a two-dimensional Lorentzian manifold. Their Yang-Mills model supports semilocal vortices on R2 ⊂Σ2 ×R2 with a moduli space X10. When the moduli of slowly moving thin vortices depend on the coordinates of Σ2, the vortex strings can be identified with critical fundamental strings. We show that similar results can be obtained for the low-energy limit of pure Yang-Mills theory on Σ2 × Tp2, where Tp2 is a two-dimensional torus with a puncture p. The solitonic vortices of Shifman and Yung then get replaced by flat connections. Various ten-dimensional superstring target spaces can be obtained as moduli spaces of flat connections on Tp2, depending on the choice of the gauge group. The full Green-Schwarz sigma model requires extending the gauge group to a supergroup and augmenting the action with a topological term.

  6. Band structure in Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Bachas, Constantin; Tomaras, Theodore

    2016-05-01

    We show how Yang-Mills theory on S3 × ℝ can exhibit a spectrum with continuous bands if coupled either to a topological 3-form gauge field, or to a dynamical axion with heavy Peccei-Quinn scale. The basic mechanism consists in associating winding histories to a bosonic zero mode whose role is to convert a circle in configuration space into a helix. The zero mode is, respectively, the holonomy of the 3-form field or the axion momentum. In these models different θ sectors coexist and are only mixed by (non-local) volume operators. Our analysis sheds light on, and extends Seiberg's proposal for modifying the topological sums in quantum field theories. It refutes a recent claim that B + L violation at LHC is unsuppressed.

  7. Quantum Yang-Mills field theory

    NASA Astrophysics Data System (ADS)

    Frasca, Marco

    2017-01-01

    We show that the Dyson-Schwinger set of equations for the Yang-Mills theory can be exactly solved till the two-point function. This is obtained given a set of nonlinear waves solving the classical equations of motion. Translation invariance is maintained by the proper choice of the solution of the equation for the two-point function as devised by Coleman. The computation of the Dyson-Schwinger equations is performed in the same way as devised by Bender, Milton and Savage providing a set of partial differential equations whose proof of existence of the solutions is standard. So, the correlation functions of the theory could be proved to exist and the two-point function manifests a mass gap.

  8. Knot Theory and Topologically Massive Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Yildirim, Tuna; Rodgers, Vincent; Nair, Parameswaran; Carter, Suzanne

    2013-04-01

    In 2+1 dimensions, we study Yang-Mills(YM) + Chern-Simons(CS) theory also known as topologically massive Yang-Mills(TMYM) theory. Using geometric quantization method we calculate the Wilson Loop expectation values of TMYM theory. At large distances, where only the topological theory survives, we obtain a condition that makes skein relations of knot theory useful to calculate Wilson loop expectation values of TMYM theory. These link invariants may lead to a better understanding of mass gap in 2+1 dimensions.

  9. Integrable amplitude deformations for N =4 super Yang-Mills and ABJM theory

    NASA Astrophysics Data System (ADS)

    Bargheer, Till; Huang, Yu-Tin; Loebbert, Florian; Yamazaki, Masahito

    2015-01-01

    We study Yangian-invariant deformations of scattering amplitudes in 4d N =4 super Yang-Mills theory and 3d N =6 Aharony-Bergman-Jafferis-Maldacena (ABJM) theory. In particular, we obtain the deformed Graßmannian integral for 4d N =4 supersymmetric Yang-Mills theory, both in momentum and momentum-twistor space. For 3d ABJM theory, we initiate the study of deformed scattering amplitudes. We investigate general deformations of on-shell diagrams, and find the deformed Graßmannian integral for this theory. We furthermore introduce the algebraic R-matrix construction of deformed Yangian invariants for ABJM theory.

  10. Einstein-Yang-Mills theory: Asymptotic symmetries

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Lambert, Pierre-Henry

    2013-11-01

    Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four-dimensional asymptotically flat case.

  11. Path integral regularization of pure Yang-Mills theory

    SciTech Connect

    Jacquot, J. L.

    2009-07-15

    In enlarging the field content of pure Yang-Mills theory to a cutoff dependent matrix valued complex scalar field, we construct a vectorial operator, which is by definition invariant with respect to the gauge transformation of the Yang-Mills field and with respect to a Stueckelberg type gauge transformation of the scalar field. This invariant operator converges to the original Yang-Mills field as the cutoff goes to infinity. With the help of cutoff functions, we construct with this invariant a regularized action for the pure Yang-Mills theory. In order to be able to define both the gauge and scalar fields kinetic terms, other invariant terms are added to the action. Since the scalar fields flat measure is invariant under the Stueckelberg type gauge transformation, we obtain a regularized gauge-invariant path integral for pure Yang-Mills theory that is mathematically well defined. Moreover, the regularized Ward-Takahashi identities describing the dynamics of the gauge fields are exactly the same as the formal Ward-Takahashi identities of the unregularized theory.

  12. Instanton Effective Action in Deformed Super Yang-Mills Theories

    SciTech Connect

    Nakajima, Hiroaki; Ito, Katsushi; Sasaki, Shin

    2008-11-23

    We study the ADHM construction of instantons in N = 2 supersymmetric Yang-Mills theory deformed in constant Ramond-Ramond (R-R) 3-form field strength background in type IIB superstrings. We compare the deformed instanton effective action with the effective action of fractional D3/D(-1) branes at the orbifold singularity of C{sup 2}/Z{sub 2} in the same R-R background. We find discrepancy between them at the second order in deformation parameters, which comes from the coupling of the translational zero modes of the D(-1)-branes to the R-R background. We improve the deformed action by adding a term with spacetime dependent gauge coupling such that the action reproduces the effective action of the fractional branes.

  13. Full colour for loop amplitudes in Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Ochirov, Alexander; Page, Ben

    2017-02-01

    We present a general method to account for full colour dependence Yang-Mills amplitudes at loop level. The method fits most naturally into the framework of multi-loop integrand reduction and in a nutshell amounts to consistently retaining the colour structures of the unitarity cuts from which the integrand is gradually constructed. This technique has already been used in the recent calculation of the two-loop five-gluon amplitude in pure Yang-Mills theory with all positive helicities, JHEP 10 (2015) 064. In this note, we give a careful exposition of the method and discuss its connection to looplevel Kleiss-Kuijf relations. We also explore its implications for cancellation of nontrivial symmetry factors at two loops. As an example of its generality, we show how it applies to the three-loop case in supersymmetric Yang-Mills case.

  14. Field-dependent BRST transformations in Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Lavrov, Peter M.; Lechtenfeld, Olaf

    2013-10-01

    We find an explicit form for the Jacobian of arbitrary field-dependent BRST transformations in Yang-Mills theory. For the functional-integral representation of the (gauge-fixed) Yang-Mills vacuum functional, such transformations merely amount to a precise change in the gauge-fixing functional. This proves the independence of the vacuum functional under any field-dependent BRST transformation. We also give a formula for the transformation parameter functional which generates a prescribed change of gauge and evaluate it for connecting two arbitrary Rξ gauges.

  15. Perturbation Theory of Massive Yang-Mills Fields

    DOE R&D Accomplishments Database

    Veltman, M.

    1968-08-01

    Perturbation theory of massive Yang-Mills fields is investigated with the help of the Bell-Treiman transformation. Diagrams containing one closed loop are shown to be convergent if there are more than four external vector boson lines. The investigation presented does not exclude the possibility that the theory is renormalizable.

  16. Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Kotanski, J.

    2008-12-01

    The main features of the cusp anomalous dimension in N=4 supersymmetric Yang-Mills theory are reviewed. Moreover, the strong coupling expansion of the cusp derived in B. Basso, G.P. Korchemsky, J. Kotanski, Phys. Rev. Lett. 100, 091601 (2008) is presented.

  17. Hamiltonian flow in Coulomb gauge Yang-Mills theory

    SciTech Connect

    Leder, Markus; Reinhardt, Hugo; Pawlowski, Jan M.; Weber, Axel

    2011-01-15

    We derive a new functional renormalization group equation for Hamiltonian Yang-Mills theory in Coulomb gauge. The flow equations for the static gluon and ghost propagators are solved under the assumption of ghost dominance within different diagrammatic approximations. The results are compared to those obtained in the variational approach and the reliability of the approximations is discussed.

  18. Deconfinement in Yang-Mills Theory through Toroidal Compactification

    SciTech Connect

    Simic, Dusan; Unsal, Mithat; /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    We introduce field theory techniques through which the deconfinement transition of four-dimensional Yang-Mills theory can be moved to a semi-classical domain where it becomes calculable using two-dimensional field theory. We achieve this through a double-trace deformation of toroidally compactified Yang-Mills theory on R{sup 2} x S{sub L}{sup 1} x S{sub {beta}}{sup 1}. At large N, fixed-L, and arbitrary {beta}, the thermodynamics of the deformed theory is equivalent to that of ordinary Yang-Mills theory at leading order in the large N expansion. At fixed-N, small L and a range of {beta}, the deformed theory maps to a two-dimensional theory with electric and magnetic (order and disorder) perturbations, analogs of which appear in planar spin-systems and statistical physics. We show that in this regime the deconfinement transition is driven by the competition between electric and magnetic perturbations in this two-dimensional theory. This appears to support the scenario proposed by Liao and Shuryak regarding the magnetic component of the quark-gluon plasma at RHIC.

  19. Infrared propagators of Yang-Mills theory from perturbation theory

    SciTech Connect

    Tissier, Matthieu; Wschebor, Nicolas

    2010-11-15

    We show that the correlation functions of ghosts and gluons for the pure Yang-Mills theory in Landau gauge can be accurately reproduced for all momenta by a one-loop calculation. The key point is to use a massive extension of the Faddeev-Popov action. The agreement with lattice simulation is excellent in d=4. The one-loop calculation also reproduces all the characteristic features of the lattice simulations in d=3 and naturally explains the peculiarities of the propagators in d=2.

  20. Multiscale Monte Carlo equilibration: Pure Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Endres, Michael G.; Brower, Richard C.; Detmold, William; Orginos, Kostas; Pochinsky, Andrew V.

    2015-12-01

    We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.

  1. SL(2, r) Yang-Mills Theory on a Circle

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar; Hallin, Joakim

    The kinematic of SL(2, ℝ) Yang-Mills theory on a circle is considered, for reasons that are spelt out. The gauge transformations exhibit hyperbolic fixed points, and this results in a physical configuration space with a non-Hausdorff “network” topology. The ambiguity encountered in canonical quantization is then much more pronounced than in the compact case and cannot be resolved through the kind of appeal made to group theory in that case.

  2. Quantum Chromodynamics -- The Perfect Yang-Mills Gauge Field Theory

    NASA Astrophysics Data System (ADS)

    Gross, David

    David Gross: My talk today is about the most beautiful of all Yang-Mills Theories (non-Abelian gauge theories), the theory of the strong nuclear interactions, Quantum Chromodynamics, QCD. We are celebrating 60 years of the publication of a remarkable paper which introduced the concept of non-Abelian local gauge symmetries, now called the Yang-Mills theory, to physics. In the introduction to this paper it is noted that the usual principle of isotopic spin symmetry is not consistent with the concept of localized fields. This sentence has drawn attention over the years because the usual principle of isotopic spin symmetry is consistent, it is just not satisfactory. The authors, Yang and Mills, introduced a more satisfactory notion of local symmetry which did not require one to rotate (in isotopic spin space) the whole universe at once to achieve the symmetry transformation. Global symmetries are thus are similar to `action at a distance', whereas Yang-Mills theory is manifestly local...

  3. Compactification driven hilltop inflation in Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Ó Colgáin, Eoin; Zaballa, Ignacio

    2010-04-01

    Starting from Einstein-Yang-Mills theory in higher dimensions with an instanton on a compact sphere, we dimensionally reduce to find an effective four-dimensional action describing “hilltop” inflation. Using recent CMB data, we analyze the parameter space of this model to search for viable setups. One unique feature of this class of inflationary models is that the value of the inflaton field, or alternatively, the size of the compact sphere, is stabilized dynamically during the inflationary process.

  4. Transport coefficients in Yang-Mills theory and QCD.

    PubMed

    Christiansen, Nicolai; Haas, Michael; Pawlowski, Jan M; Strodthoff, Nils

    2015-09-11

    We calculate the shear-viscosity-over-entropy-density ratio η/s in Yang-Mills theory from the Kubo formula using an exact diagrammatic representation in terms of full propagators and vertices using gluon spectral functions as external input. We provide an analytic fit formula for the temperature dependence of η/s over the whole temperature range from a glueball resonance gas at low temperatures, to a high-temperature regime consistent with perturbative results. Subsequently, we provide a first estimate for η/s in QCD.

  5. MONOPOLES AND DYONS IN THE PURE EINSTEIN YANG MILLS THEORY

    SciTech Connect

    HOSOTANI,Y.; BJORAKER,J.

    1999-08-16

    In the pure Einstein-Yang-Mills theory in four dimensions there exist monopole and dyon solutions. The spectrum of the solutions is discrete in asymptotically flat or de Sitter space, whereas it is continuous in asymptotically anti-de Sitter space. The solutions are regular everywhere and specified with their mass, and non-Abelian electric and magnetic charges. In asymptotically anti-de Sitter space a class of monopole solutions have no node in non-Abelian magnetic fields, and are stable against spherically symmetric perturbations.

  6. Counting the massive vacua of super Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Troost, Jan

    2015-08-01

    We compute the number of massive vacua of supersymmetric Yang-Mills theory on mass-deformed to preserve supersymmetry, for any gauge group G. We use semi-classical techniques and efficiently reproduce the known counting for A, B and C type gauge groups, present the generating function for both O(2 n) and SO(2 n), and compute the supersymmetric index for gauge groups of exceptional type. A crucial role is played by the classification of nilpotent orbits, as well as global properties of their centralizers. We give illustrative examples of new features of our analysis for the D-type algebras.

  7. Width of the confining string in Yang-Mills theory.

    PubMed

    Gliozzi, F; Pepe, M; Wiese, U-J

    2010-06-11

    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  8. Emergent Yang-Mills theories from universal extra dimensions

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.; Kepuladze, Z.

    2017-02-01

    We study emergent Yang-Mills theories which could origin from universal extra dimensions. Particularly, some vector field potential terms or polynomial vector field constraints introduced into five-dimensional (5D) non-Abelian gauge theory is shown to lead to spontaneous violation of an underlying spacetime symmetry and generate vector pseudo-Goldstone modes as conventional four-dimensional (4D) gauge boson candidates. As a special signature, apart from conventional gauge couplings, there appear an infinite number of the properly suppressed direct multi-boson (multi-photon in particular) interaction couplings in emergent Yang-Mills theories whose observation could shed light on their high-dimensional nature. Moreover, in these theories, an internal symmetry also appeared spontaneously broken to its diagonal subgroups. This breaking originates from the extra vector field components playing the role of some adjoint scalar field multiplet in the 4D spacetime. So, one naturally has the Higgs effect without a specially introduced scalar field multiplet. Remarkably, when applied to Grand Unified Theories (GUTs), this results in an automatic breakdown of emergent GUTs down to the Standard Model (SM) just at the 5D Lorentz violation scale M.

  9. Resurgence, operator product expansion, and remarks on renormalons in supersymmetric Yang-Mills theory

    SciTech Connect

    Shifman, M.

    2015-03-15

    We discuss similarities and differences between the resurgence program in quantum mechanics and the operator product expansion in strongly coupled Yang-Mills theories. In N = 1 super-Yang-Mills theories, renormalons are peculiar and are not quite similar to renormalons in QCD.

  10. Yang-Mills gauge theory and Higgs particle

    NASA Astrophysics Data System (ADS)

    Wu, Tai Tsun; Wu, Sau Lan

    2015-12-01

    Motivated by the experimental data on the Higgs particle from the ATLAS Collaboration and the CMS Collaboration at CERN, the standard model, which is a Yang-Mills non-Abelian gauge theory with the group U(1) × SU(2) × SU(3), is augmented by scalar quarks and scalar leptons without changing the gauge group and without any additional Higgs particle. Thus there is fermion-boson symmetry between these new particles and the known quarks and leptons. In a simplest scenario, the cancellation of the quadratic divergences in this augmented standard model leads to a determination of the masses of all these scalar quarks and scalar leptons. All these masses are found to be less than 100 GeV/c2, and the right-handed scalar neutrinos are especially light. Alterative procedures are given with less reliance on the experimental data, leading to the same conclusions.

  11. Yang-Mills Gauge Theory and Higgs Particle

    NASA Astrophysics Data System (ADS)

    Wu, Tai Tsun; Wu, Sau Lan

    Motivated by the experimental data on the Higgs particle from the ATLAS Collaboration and the CMS Collaboration at CERN, the standard model, which is a Yang-Mills non-Abelian gauge theory with the group U(1) × SU (2) × SU (3), is augmented by scalar quarks and scalar leptons without changing the gauge group and without any additional Higgs particle. Thus there is fermion-boson symmetry between these new particles and the known quarks and leptons. In a simplest scenario, the cancellation of the quadratic divergences in this augmented standard model leads to a determination of the masses of all these scalar quarks and scalar leptons. All these masses are found to be less than 100 GeV/c2, and the right-handed scalar neutrinos are especially light. Alterative procedures are given with less reliance on the experimental data, leading to the same conclusions.

  12. Is the ground state of Yang-Mills theory Coulombic?

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.; Lutz, W.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  13. Residual Confinement in High-Temperature Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Maas, A.; Wambach, J.; Grüter, B.; Alkofer, R.

    2005-01-01

    The infrared behavior of Landau gauge gluon and ghost propagators are investigated in Yang-Mills theory at non-vanishing temperatures. Self-consistent solutions are presented for temperatures below the presumed phase transition and in the infinite temperature limit. Gluon confinement is manifest in the infrared behavior of these propagators. As expected confinement prevails below the phase transition. In the infinite-temperature limit a qualitative change is observed: the chromoelectric sector exhibits a near-perturbative behavior while long-range chromomagnetic interactions, mediated by soft ghost modes, are still present. The latter behavior is in agreement with corresponding lattice results. It furthermore implies that part of the gluons are still confined.

  14. Non-uniqueness of quantized Yang - Mills theories

    NASA Astrophysics Data System (ADS)

    Dütsch, Michael

    1996-12-01

    We consider quantized Yang - Mills theories in the framework of causal perturbation theory which goes back to Epstein and Glaser. In this approach gauge invariance is expressed by a simple commutator relation for the S-matrix. The most general coupling which is gauge invariant to first order contains a two-parametric ambiguity in the ghost sector: a divergence- and a coboundary-coupling may be added. We prove (not completely) that the higher orders with these two additional couplings are also gauge invariant. Moreover, we show that the ambiguities of the n-point distributions restricted to the physical subspace are only a sum of the divergences (in the sense of vector analysis). It turns out that the theory without divergence- and coboundary-coupling is the simplest one in a quite technical sense. The proofs for the n-point distributions containing coboundary-couplings are given up to third or fourth order only, whereas the statements about the divergence-coupling are proved for all orders.

  15. Infrared singularities in Landau gauge Yang-Mills theory

    SciTech Connect

    Alkofer, Reinhard; Huber, Markus Q.; Schwenzer, Kai

    2010-05-15

    We present a more detailed picture of the infrared regime of Landau-gauge Yang-Mills theory. This is done within a novel framework that allows one to take into account the influence of finite scales within an infrared power counting analysis. We find that there are two qualitatively different infrared fixed points of the full system of Dyson-Schwinger equations. The first extends the known scaling solution, where the ghost dynamics is dominant and gluon propagation is strongly suppressed. It features in addition to the strong divergences of gluonic vertex functions in the previously considered uniform scaling limit, when all external momenta tend to zero, also weaker kinematic divergences, when only some of the external momenta vanish. The second solution represents the recently proposed decoupling scenario where the gluons become massive and the ghosts remain bare. In this case we find that none of the vertex functions is enhanced, so that the infrared dynamics is entirely suppressed. Our analysis also provides a strict argument why the Landau-gauge gluon dressing function cannot be infrared divergent.

  16. Composite strings in (2+1)-dimensional anisotropic weakly coupled Yang-Mills theory

    SciTech Connect

    Orland, Peter

    2008-01-15

    The small-scale structure of a string connecting a pair of static sources is explored for the weakly coupled anisotropic SU(2) Yang-Mills theory in (2+1) dimensions. A crucial ingredient in the formulation of the string Hamiltonian is the phenomenon of color smearing of the string constituents. The quark-antiquark potential is determined. We close with some discussion of the standard, fully Lorentz-invariant Yang-Mills theory.

  17. Quark confinement due to non-Abelian magnetic monopoles in SU(3) Yang-Mills theory

    SciTech Connect

    Kondo, Kei-Ichi; Shibata, Akihiro; Shinohara, Toru; Kato, Seikou

    2012-10-23

    We present recent results on quark confinement: in SU(3) Yang-Mills theory, confinement of fundamental quarks is obtained due to the dual Meissner effect originated from non-Abelian magnetic monopoles defined in a gauge-invariant way, which is distinct from the well-known Abelian projection scenario. This is achieved by using a non-Abelian Stokes theorem for the Wilson loop operator and a new reformulation of the Yang-Mills theory.

  18. Mapping a Massless Scalar Field Theory on a Yang-Mills Theory:. Classical Case

    NASA Astrophysics Data System (ADS)

    Frasca, Marco

    We analyze a recent proposal to map a massless scalar field theory onto a Yang-Mills theory at classical level. It is seen that this mapping exists at a perturbative level when the expansion is a gradient expansion. In this limit the theories share the spectrum, at the leading order, that is the one of a harmonic oscillator. Gradient expansion is exploited maintaining Lorentz covariance by introducing a fifth coordinate and turning the theory to Euclidean space. These expansions give common solutions to scalar and Yang-Mills field equations that are so proved to exist by construction, confirming that the selected components of the Yang-Mills field are indeed an extremum of the corresponding action functional.

  19. Surface-invariants in 2D classical Yang-Mills theory

    SciTech Connect

    Diaz, Rafael; Fuenmayor, E.; Leal, Lorenzo

    2006-03-15

    We study a method to obtain invariants under area-preserving diffeomorphisms associated to closed curves in the plane from classical Yang-Mills theory in two dimensions. Taking as starting point the Yang-Mills field coupled to nondynamical particles carrying chromo-electric charge, and by means of a perturbative scheme, we obtain the first two contributions to the on-shell action, which are area-invariants. A geometrical interpretation of these invariants is given.

  20. A quantization of twistor Yang-Mills theory through the background field method

    NASA Astrophysics Data System (ADS)

    Boels, Rutger

    2007-11-01

    Four-dimensional Yang-Mills theory formulated through an action on twistor space has a larger gauge symmetry than the usual formulation, which in previous work was shown to allow a simple gauge transformation between textbook perturbation theory and the Cachazo-Svrček-Witten rules. In this paper we study nonsupersymmetric twistor Yang-Mills theory at loop level using the background field method. For an appropriate partial quantum field gauge choice it is shown that the calculation of the effective action is equivalent to (the twistor lift of) the calculation in ordinary Yang-Mills theory in the Chalmers and Siegel formulation to all orders in perturbation theory. A direct consequence is that the twistor version of Yang-Mills theory is just as renormalizable in this particular gauge. As applications an explicit calculation of the Yang-Mills beta function and some preliminary investigations into using the formalism to calculate S-matrix elements at loop level are presented. In principle the technique described in this paper generates consistent quantum completions of the Cachazo-Svrček-Witten rules. However, by inherent limitations of the partial gauge choice employed here, this offers in its current form mainly simplifications for tree-level forestry. The method is expected to be applicable to a wide class of four-dimensional gauge theories.

  1. Topological Geon Black Holes in Einstein-Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Kottanattu, George T.; Louko, Jorma

    2011-04-01

    We construct topological geon quotients of two families of Einstein-Yang-Mills black holes. For Künzle's static, spherically symmetric SU( n) black holes with n > 2, a geon quotient exists but generically requires promoting charge conjugation into a gauge symmetry. For Kleihaus and Kunz's static, axially symmetric SU(2) black holes a geon quotient exists without gauging charge conjugation, and the parity of the gauge field winding number determines whether the geon gauge bundle is trivial. The geon's gauge bundle structure is expected to have an imprint in the Hawking-Unruh effect for quantum fields that couple to the background gauge field.

  2. Renormalizability of Yang-Mills theory with Lorentz violation and gluon mass generation

    NASA Astrophysics Data System (ADS)

    Santos, T. R. S.; Sobreiro, R. F.

    2015-01-01

    We show that pure Yang-Mills theories with Lorentz violation are renormalizable to all orders in perturbation theory. To do this, we employ the algebraic renormalization technique. Specifically, we control the breaking terms with a suitable set of external sources, which eventually attain certain physical values. The Abelian case is also analyzed as a starting point. The main result is that the renormalizability of the usual Maxwell and Yang-Mills sectors are both left unchanged. Furthermore, in contrast to Lorentz-violating QED, the C P T -odd violation sector of Yang-Mills theories renormalizes independently. Moreover, the method induces mass terms for the gauge field in a natural way, while the photon remains massless (at least in the sense of a Proca-like term). The entire analysis is carried out in the Landau gauge.

  3. Discriminating between two reformulations of SU(3) Yang-Mills theory on a lattice

    NASA Astrophysics Data System (ADS)

    Shibata, Akihiro; Kondo, Kei-Ichi; Kato, Seikou; Shinohara, Toru

    2016-01-01

    In order to investigate quark confinement, we give a new reformulation of the SU (N) Yang-Mills theory on a lattice and present the results of the numerical simulations of the SU (3) Yang-Mills theory on a lattice. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc.

  4. Discriminating between two reformulations of SU(3) Yang-Mills theory on a lattice

    SciTech Connect

    Shibata, Akihiro; Kondo, Kei-Ichi; Shinohara, Toru; Kato, Seikou

    2016-01-22

    In order to investigate quark confinement, we give a new reformulation of the SU (N) Yang-Mills theory on a lattice and present the results of the numerical simulations of the SU (3) Yang-Mills theory on a lattice. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the “Abelian” dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc.

  5. Hamiltonian Approach to Yang-Mills Theory in Coulomb Gauge--Revisited

    SciTech Connect

    Reinhardt, Hugo; Campagnari, Davide R.; Leder, Markus; Burgio, Giuseppe; Quandt, Markus; Pawlowski, Jan M.; Weber, Axel

    2011-05-24

    I briefly review results obtained within the variational Hamiltonian approach to Yang-Mills theory in Coulomb gauge and confront them with recent lattice data. The variational approach is extended to non-Gaussian wave functionals including three- and four-gluon kernels in the exponential of the vacuum wave functional and used to calculate the three-gluon vertex. A new functional renormalization group flow equation for Hamiltonian Yang-Mills theory in Coulomb gauge is solved for the gluon and ghost propagator under the assumption of ghost dominance. The results are compared to those obtained in the variational approach.

  6. Perturbation theory in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge

    SciTech Connect

    Campagnari, Davide R.; Reinhardt, Hugo; Weber, Axel

    2009-07-15

    We study the Hamiltonian approach to Yang-Mills theory in Coulomb gauge in Rayleigh-Schroedinger perturbation theory. The static gluon and ghost propagator as well as the potential between static color sources are calculated to one-loop order. Furthermore, the one-loop {beta} function is calculated from both the ghost-gluon vertex and the static potential and found to agree with the result of covariant perturbation theory.

  7. Center-stabilized Yang-Mills Theory:Confinement and Large N Volume Independence

    SciTech Connect

    Unsal, Mithat; Yaffe, Laurence G.; /Washington U., Seattle

    2008-03-21

    We examine a double trace deformation of SU(N) Yang-Mills theory which, for large N and large volume, is equivalent to unmodified Yang-Mills theory up to O(1/N{sup 2}) corrections. In contrast to the unmodified theory, large N volume independence is valid in the deformed theory down to arbitrarily small volumes. The double trace deformation prevents the spontaneous breaking of center symmetry which would otherwise disrupt large N volume independence in small volumes. For small values of N, if the theory is formulated on R{sup 3} x S{sup 1} with a sufficiently small compactification size L, then an analytic treatment of the non-perturbative dynamics of the deformed theory is possible. In this regime, we show that the deformed Yang-Mills theory has a mass gap and exhibits linear confinement. Increasing the circumference L or number of colors N decreases the separation of scales on which the analytic treatment relies. However, there are no order parameters which distinguish the small and large radius regimes. Consequently, for small N the deformed theory provides a novel example of a locally four-dimensional pure gauge theory in which one has analytic control over confinement, while for large N it provides a simple fully reduced model for Yang-Mills theory. The construction is easily generalized to QCD and other QCD-like theories.

  8. Three Proofs of the Makeenko-Migdal Equation for Yang-Mills Theory on the Plane

    NASA Astrophysics Data System (ADS)

    Driver, Bruce K.; Hall, Brian C.; Kemp, Todd

    2017-04-01

    We give three short proofs of the Makeenko-Migdal equation for the Yang-Mills measure on the plane, two using the edge variables and one using the loop or lasso variables. Our proofs are significantly simpler than the earlier pioneering rigorous proofs given by Lévy and by Dahlqvist. In particular, our proofs are "local" in nature, in that they involve only derivatives with respect to variables adjacent to the crossing in question. In an accompanying paper with Gabriel, we show that two of our proofs can be adapted to the case of Yang-Mills theory on any compact surface.

  9. Covariant gauges without Gribov ambiguities in Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Serreau, J.; Tissier, M.; Tresmontant, A.

    2014-06-01

    We propose a one-parameter family of nonlinear covariant gauges which can be formulated as an extremization procedure that may be amenable to lattice implementation. At high energies, where the Gribov ambiguities can be ignored, this reduces to the Curci-Ferrari-Delbourgo-Jarvis gauges. We further propose a continuum formulation in terms of a local action which is free of Gribov ambiguities and avoids the Neuberger zero problem of the standard Faddeev-Popov construction. This involves an averaging over Gribov copies with a nonuniform weight, which introduces a new gauge-fixing parameter. We show that the proposed gauge-fixed action is perturbatively renormalizable in four dimensions and we provide explicit expressions of the renormalization factors at one loop. We discuss the possible implications of the present proposal for the calculation of Yang-Mills correlators.

  10. Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory at Strong Coupling

    SciTech Connect

    Basso, B.; Korchemsky, G. P.; Kotanski, J.

    2008-03-07

    We construct an analytical solution to the integral equation which is believed to describe logarithmic growth of the anomalous dimensions of high-spin operators in planar N=4 super Yang-Mills theory and use it to determine the strong coupling expansion of the cusp anomalous dimension.

  11. Hamiltonian Dyson-Schwinger and FRG Flow Equations of Yang-Mills Theory in Coulomb Gauge

    SciTech Connect

    Reinhardt, Hugo; Leder, Markus; Pawlowski, Jan M.; Weber, Axel

    2011-05-23

    A new functional renormalization group equation for Hamiltonian Yang-Mills theory in Coulomb gauge is presented and solved for the static gluon and ghost propagators under the assumption of ghost dominance. The results are compared to those obtained in the variational approach.

  12. Perturbative Quantum Gravity and Yang-Mills Theories in de Sitter Spacetime

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2011-05-01

    This thesis consists of three parts. In the first part we review the quantization of Yang-Mills theories and perturbative quantum gravity in curved spacetime. In the second part we calculate the Feynman propagators of the Faddeev-Popov ghosts for Yang-Mills theories and perturbative quantum gravity in the covariant gauge. In the third part we investigate the physical equivalence of covariant Wightman graviton two-point function with the physical graviton two-point function. The Feynman propagators of the Faddeev-Popov ghosts for Yang-Mills theories and perturbative quantum gravity in the covariant gauge are infrared (IR) divergent in de Sitter spacetime. We point out, that if we regularize these divergences by introducing a finite mass and take the zero mass limit at the end, then the modes responsible for these divergences will not contribute to loop diagrams in computations of time-ordered products in either Yang-Mills theories or perturbative quantum gravity. We thus find effective Feynman propagators for ghosts in Yang-Mills theories and perturbative quantum gravity by subtracting out these divergent modes. It is known that the covariant graviton two-point function in de Sitter spacetime is infrared divergent for some choices of gauge parameters. On the other hand it is also known that there are no infrared problems for the physical graviton two-point function obtained by fixing all gauge degrees of freedom, in global coordinates. We show that the covariant Wightman graviton two-point function is equivalent to the physical one in the sense that they result in the same two-point function of any local gauge-invariant quantity. Thus any infrared divergence in the Wightman graviton two-point function in de Sitter spacetime can only be an gauge artefact.

  13. Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.; Schlotterer, Oliver

    2015-09-01

    In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher-mass dimensions are defined and their equations of motion are spelled out.

  14. Non-Abelian Dual Superconductivity in SU(3) Yang-Mills Theory due to Non-Abelian Magnetic Monopoles

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Shibata, Akihiro; Kato, Seikou; Shinohara, Toru

    We give numerical evidences for the non-Abelian dual superconductivity due to non-Abelian magnetic monopoles in SU(3) Yang-Mills theory as a mechanism for quark confinement, based on our new formulation of lattice gauge theory.

  15. Multiscale Monte Carlo equilibration: Pure Yang-Mills theory

    SciTech Connect

    Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; Detmold, William; Pochinsky, Andrew V.

    2015-12-29

    In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.

  16. Amplitude relations in heterotic string theory and Einstein-Yang-Mills

    NASA Astrophysics Data System (ADS)

    Schlotterer, Oliver

    2016-11-01

    We present all-multiplicity evidence that the tree-level S-matrix of gluons and gravitons in heterotic string theory can be reduced to color-ordered single-trace amplitudes of the gauge multiplet. Explicit amplitude relations are derived for up to three gravitons, up to two color traces and an arbitrary number of gluons in each case. The results are valid to all orders in the inverse string tension α' and generalize to the ten-dimensional superamplitudes which preserve 16 supercharges. Their field-theory limit results in an alternative proof of the recently discovered relations between Einstein-Yang-Mills amplitudes and those of pure Yang-Mills theory. Similarities and differences between the integrands of the Cachazo-He-Yuan formulae and the heterotic string are investigated.

  17. Quantum Metamorphosis of a Conformal Transformation in D3-Brane Yang-Mills Theory

    SciTech Connect

    Jevicki, A.; Kazama, Y.; Yoneya, T.

    1998-12-01

    We show how the linear special conformal transformation in four-dimensional N=4 super-Yang-Mills theory is metamorphosed into the nonlinear and field-dependent transformation for the collective coordinates of Dirichlet 3-branes, which agrees with the transformation law for the space-time coordinates in the anti{endash}de Sitter (AdS) space-time. Our result provides a new and strong support for the conjectured relation between AdS{sub 5}{times} S{sup 5} supergravity and super-Yang-Mills theory (SYM). Furthermore, our work sheds elucidating light on the nature of the AdS/SYM correspondence. {copyright} {ital 1998} {ital The American Physical Society}

  18. Hedgehogs in Wilson loops and phase transition in SU(2) Yang Mills theory

    NASA Astrophysics Data System (ADS)

    Belavin, V. A.; Chernodub, M. N.; Kozlov, I. E.

    2006-08-01

    We suggest that the gauge-invariant hedgehog-like structures in the Wilson loops are physically interesting degrees of freedom in the Yang-Mills theory. The trajectories of these "hedgehog loops" are closed curves corresponding to center-valued (untraced) Wilson loops and are characterized by the center charge and winding number. We show numerically in the SU(2) Yang-Mills theory that the density of hedgehog structures in the thermal Wilson-Polyakov line is very sensitive to the finite-temperature phase transition. The (additively normalized) hedgehog line density behaves like an order parameter: The density is almost independent of the temperature in the confinement phase and changes substantially as the system enters the deconfinement phase. In particular, our results suggest that the (static) hedgehog lines may be relevant degrees of freedom around the deconfinement transition and thus affect evolution of the quark-gluon plasma in high-energy heavy-ion collisions.

  19. Four-loop dressing phase of N=4 super-Yang-Mills theory

    SciTech Connect

    Beisert, N.; McLoughlin, T.; Roiban, R.

    2007-08-15

    We compute the dilatation generator in the su(2) sector of planar N=4 super-Yang-Mills theory at four loops. We use the known world-sheet scattering matrix to constrain the structure of the generator. The remaining few coefficients can be computed directly from Feynman diagrams. This allows us to confirm previous conjectures for the leading contribution to the dressing phase which is proportional to {zeta}(3)

  20. Integrability and maximally helicity violating diagrams in n=4 supersymmetric yang-mills theory.

    PubMed

    Brandhuber, Andreas; Penante, Brenda; Travaglini, Gabriele; Young, Donovan

    2015-02-20

    We apply maximally helicity violating (MHV) diagrams to the derivation of the one-loop dilatation operator of N=4 supersymmetric Yang-Mills theory in the SO(6) sector. We find that in this approach the calculation reduces to the evaluation of a single MHV diagram in dimensional regularization. This provides the first application of MHV diagrams to an off-shell quantity. We also discuss other applications of the method and future directions.

  1. Yang-Mills theory at 60: Milestones, landmarks and interesting questions

    NASA Astrophysics Data System (ADS)

    Chau, Ling-Lie

    2015-12-01

    On the auspicious occasion of celebrating the 60th anniversary of the Yang-Mills theory, and Professor Yang’s many other important contributions to physics and mathematics, I will highlight the impressive milestones and landmarks that have been established in the last 60 years, as well as some interesting questions that still lie before us. The paper is written (without equations) for the interest of non-scientists as well as of scientists.

  2. On the stability of dyons and dyonic black holes in Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Nolan, Brien C.; Winstanley, Elizabeth

    2016-02-01

    We investigate the stability of four-dimensional dyonic soliton and black hole solutions of {su}(2) Einstein-Yang-Mills theory in anti-de Sitter space. We prove that, in a neighbourhood of the embedded trivial (Schwarzschild-)anti-de Sitter solution, there exist non-trivial dyonic soliton and black hole solutions of the field equations which are stable under linear, spherically symmetric, perturbations of the metric and non-Abelian gauge field.

  3. Solving the ghost-gluon system of Yang-Mills theory on GPUs

    NASA Astrophysics Data System (ADS)

    Hopfer, Markus; Alkofer, Reinhard; Haase, Gundolf

    2013-04-01

    We solve the ghost-gluon system of Yang-Mills theory using graphics processing units (GPUs). Working in the Landau gauge, we use the Dyson-Schwinger formalism for the mathematical description, as this approach is well suited to directly benefit from the computing power of the GPUs. With the help of a Chebyshev expansion for the dressing functions and a subsequent appliance of a Newton-Raphson method, the non-linear system of coupled integral equations is linearized. The resulting Newton matrix is generated in parallel using OpenMPI and CUDA™. Our results show that it is possible to cut down the run time by two orders of magnitude as compared to a sequential version of the code. This makes the proposed techniques well suited for Dyson-Schwinger calculations on more complicated systems where the Yang-Mills sector of QCD serves as a starting point. In addition, the computation of Schwinger functions using GPU devices is studied.

  4. Quantization of Yang-Mills theory without the Gribov ambiguity

    NASA Astrophysics Data System (ADS)

    Zhou, Gao-Liang; Yan, Zheng-Xin; Zhang, Xin

    2017-03-01

    A gauge fixing condition is presented here for non-Abelian gauge theory on the manifold R ⊗S1 ⊗S1 ⊗S1. It is proved that the new gauge fixing condition is continuous and free from the Gribov ambiguity. While perturbative calculations based on the new gauge condition behave like those based on the axial gauge in ultraviolet region, infrared behaviours of the perturbative series under the new gauge fixing condition are quite nontrivial. The new gauge condition, which reads n ṡ ∂ n ṡ A = 0, may not satisfy the boundary condition Aμ (∞) = 0 as required by conventional perturbative calculations for gauge theories on the manifold S4. However, such contradiction is not harmful for the theory considered here.

  5. Amplitudes in N = 4 Super-Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Spradlin, Marcus

    These lecture notes provide a lightning introduction to some aspects of scattering amplitudes in maximally supersymmetric theory, aimed at the audience of students attending the 2014 TASI summer school "Journeys Through the Precision Frontier: Amplitudes for Colliders". Emphasis is placed on explaining modern terminology so that students needing to delve further may more easily access the available literature.

  6. Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory.

    PubMed

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2013-03-22

    Non-Abelian gauge theories play an important role in the standard model of particle physics, and unfold a partially unexplored world of exciting physical phenomena. In this Letter, we suggest a realization of a non-Abelian lattice gauge theory-SU(2) Yang-Mills in (1 + 1) dimensions, using ultracold atoms. Remarkably, and in contrast to previous proposals, in our model gauge invariance is a direct consequence of angular momentum conservation and thus is fundamental and robust. Our proposal may serve as well as a starting point for higher-dimensional realizations.

  7. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2016-01-01

    We propose the reformulations of the SU (N) Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the SU (N) Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulations can be combined with the SU (N) extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the SU (N) Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group U (N- 1). This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group U(1)N-1, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.

  8. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    SciTech Connect

    Kondo, Kei-Ichi; Shinohara, Toru; Kato, Seikou; Shibata, Akihiro

    2016-01-22

    We propose the reformulations of the SU (N) Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the SU (N) Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulations can be combined with the SU (N) extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the SU (N) Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group U (N− 1). This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group U(1){sup N−1}, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.

  9. Nonsingular and accelerated expanding universe from effective Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    De Lorenci, Vitorio A.

    2010-03-01

    The energy-momentum tensor coming from one-parameter effective Yang-Mills theory is here used to describe the matter-energy content of the homogeneous and isotropic Friedmann cosmology in its early stages. The behavior of all solutions is examined. Particularly, it is shown that only solutions corresponding to an open model allow the universe to evolve into an accelerated expansion. This result appears as a possible mechanism for an inflationary phase produced by a vector field. Further, depending on the value of some parameters characterizing the system, the resulting models are classified as singular or nonsingular.

  10. Vacuum energy of two-dimensional N=(2,2) super Yang-Mills theory

    SciTech Connect

    Kanamori, Issaku

    2009-06-01

    We measure the vacuum energy of two-dimensional N=(2,2) super Yang-Mills theory using lattice simulation. The obtained vacuum energy density is E{sub 0}=0.09(9)((+10/-8))g{sup 2}, where the first error is the systematic and the second is the statistical one, measured in the dimensionful gauge coupling g which governs the scale of the system. The result is consistent with unbroken supersymmetry, although we cannot exclude a possible very small nonzero vacuum energy.

  11. Reformulations of Yang-Mills theories with space-time tensor fields

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Qiang

    2016-01-01

    We provide the reformulations of Yang-Mills theories in terms of gauge invariant metric-like variables in three and four dimensions. The reformulations are used to analyze the dimension two gluon condensate and give gauge invariant descriptions of gluon polarization. In three dimensions, we obtain a non-zero dimension two gluon condensate by one loop computation, whose value is similar to the square of photon mass in the Schwinger model. In four dimensions, we obtain a Lagrangian with the dual property, which shares the similar but different property with the dual superconductor scenario. We also make discussions on the effectiveness of one loop approximation.

  12. Z{sub 2} monopoles in SU(n) Yang-Mills-Higgs theories

    SciTech Connect

    Kneipp, Marco A. C.; Liebgott, Paulo J.

    2010-02-15

    Z{sub n} monopoles are important for the understanding of the Goddard-Nuyts-Olive duality when the scalar field is not in the adjoint representation. We analyze the Z{sub 2} monopole solutions in SU(n) Yang-Mills-Higgs theories spontaneously broken to Spin(n)/Z{sub 2} by a scalar in the nxn representation. We construct explicitly Z{sub 2} monopole asymptotic fields solutions for each of the weights of the defining representation of the dual algebra so(n){sup or.}

  13. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    PubMed

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  14. D=5 maximally supersymmetric Yang-Mills theory diverges at six loops

    NASA Astrophysics Data System (ADS)

    Bern, Zvi; Carrasco, John Joseph M.; Dixon, Lance J.; Douglas, Michael R.; von Hippel, Matt; Johansson, Henrik

    2013-01-01

    The connection of maximally supersymmetric Yang-Mills theory to the (2,0) theory in six dimensions has raised the possibility that it might be perturbatively ultraviolet finite in five dimensions. We test this hypothesis by computing the coefficient of the first potential ultraviolet divergence of planar (large Nc) maximally supersymmetric Yang-Mills theory in D=5, which occurs at six loops. We show that the coefficient is nonvanishing. Furthermore, the numerical value of the divergence falls very close to an approximate exponential formula based on the coefficients of the divergences through five loops. This formula predicts the approximate values of the ultraviolet divergence at loop orders L>6 in the critical dimension D=4+6/L. To obtain the six-loop divergence we first construct the planar six-loop four-point amplitude integrand using generalized unitarity. The ultraviolet divergence follows from a set of vacuum integrals, which are obtained by expanding the integrand in the external momenta. The vacuum integrals are integrated via sector decomposition, using a modified version of the FIESTA program.

  15. More on Gribov copies and propagators in Landau-gauge Yang-Mills theory

    SciTech Connect

    Maas, Axel

    2009-01-01

    Fixing a gauge in the nonperturbative domain of Yang-Mills theory is a nontrivial problem due to the presence of Gribov copies. In particular, there are different gauges in the nonperturbative regime which all correspond to the same definition of a gauge in the perturbative domain. Gauge-dependent correlation functions may differ in these gauges. Two such gauges are the minimal Landau gauge and the absolute Landau gauge, both corresponding to the perturbative Landau gauge. These, and their numerical implementation, are described and presented in detail. Other choices will also be discussed. This investigation is performed, using numerical lattice gauge theory calculations, by comparing the propagators of gluons and ghosts for the minimal Landau gauge and the absolute Landau gauge in SU(2) Yang-Mills theory. It is found that the propagators are different in the far infrared and even at energy scales of the order of half a GeV. In particular, the finite-volume effects are also modified. This is observed in two and three dimensions. Some remarks on the four-dimensional case are provided as well.

  16. Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery

    NASA Astrophysics Data System (ADS)

    Mansfield, Paul

    1994-04-01

    We solve Schrödinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero.

  17. Amplitudes in the N=4 supersymmetric Yang-Mills theory from quantum geometry of momentum space

    NASA Astrophysics Data System (ADS)

    Gorsky, A.

    2009-12-01

    We discuss multiloop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory in terms of effective gravity in the momentum space with IR regulator branes as degrees of freedom. Kinematical invariants of external particles yield the moduli spaces of complex or Kahler structures which are the playgrounds for the Kodaira-Spencer or Kahler type gravity. We suggest fermionic representation of the loop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory assuming the identification of the IR regulator branes with Kodaira-Spencer fermions in the B model and Lagrangian branes in the A model. The two-easy mass box diagram is related to the correlator of fermionic currents on the spectral curve in the B model or hyperbolic volume in the A model and it plays the role of a building block in the whole picture. The Bern-Dixon-Smirnov-like ansatz has the interpretation as the semiclassical limit of a fermionic correlator. It is argued that fermionic representation implies a kind of integrability on the moduli spaces. We conjecture the interpretation of the reggeon degrees of freedom in terms of the open strings stretched between the IR regulator branes.

  18. Amplitudes in the N=4 supersymmetric Yang-Mills theory from quantum geometry of momentum space

    SciTech Connect

    Gorsky, A.

    2009-12-15

    We discuss multiloop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory in terms of effective gravity in the momentum space with IR regulator branes as degrees of freedom. Kinematical invariants of external particles yield the moduli spaces of complex or Kahler structures which are the playgrounds for the Kodaira-Spencer or Kahler type gravity. We suggest fermionic representation of the loop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory assuming the identification of the IR regulator branes with Kodaira-Spencer fermions in the B model and Lagrangian branes in the A model. The two-easy mass box diagram is related to the correlator of fermionic currents on the spectral curve in the B model or hyperbolic volume in the A model and it plays the role of a building block in the whole picture. The Bern-Dixon-Smirnov-like ansatz has the interpretation as the semiclassical limit of a fermionic correlator. It is argued that fermionic representation implies a kind of integrability on the moduli spaces. We conjecture the interpretation of the reggeon degrees of freedom in terms of the open strings stretched between the IR regulator branes.

  19. Non-Abelian Dual Superconductivity in SU(3) Yang-Mills Theory Due to Non-Abelian Magnetic Monopoles

    NASA Astrophysics Data System (ADS)

    Shibata, Akihiro; Kondo, Kei-Ichi; Kato, Seikou; Shinohara, Toru

    The dual superconductivity is the promising mechanism for quark confinement. We have proposed the non-Abelian dual superconductivity picture in the SU(3) Yang-Mills theory, and already presented numerical evidences for the restricted field dominance and the non-Abelian magnetic monopole dominance in the string tension, by applying our new formulation of Yang-Mills theory to a lattice. In this talk, we focus on the non-Abelian dual Meissner effect and the type of dual superconductivity. We find that the measured chromo-electric flux tube between a quark and antiquark pair strongly supports the non-Abelian dual Meissner effect due to non-Abelian magnetic monopoles. Moreover, we give a remarkable result that the type of the resulting dual superconductor is the type I in SU(3) Yang-Mills, rather than the border between the type I and II, in marked contrast to the SU(2) case.

  20. Dual computations of non-Abelian Yang-Mills theories on the lattice

    NASA Astrophysics Data System (ADS)

    Cherrington, J. Wade; Christensen, J. Daniel; Khavkine, Igor

    2007-11-01

    In the past several decades there have been a number of proposals for computing with dual forms of non-Abelian Yang-Mills theories on the lattice. Motivated by the gauge-invariant, geometric picture offered by dual models and successful applications of duality in the U(1) case, we revisit the question of whether it is practical to perform numerical computation using non-Abelian dual models. Specifically, we consider three-dimensional SU(2) pure Yang-Mills as an accessible yet nontrivial case in which the gauge group is non-Abelian. Using methods developed recently in the context of spin foam quantum gravity, we derive an algorithm for efficiently computing the dual amplitude and describe Metropolis moves for sampling the dual ensemble. We relate our algorithms to prior work in non-Abelian dual computations of Hari Dass and his collaborators, addressing several problems that have been left open. We report results of spin expectation value computations over a range of lattice sizes and couplings that are in agreement with our conventional lattice computations. We conclude with an outlook on further development of dual methods and their application to problems of current interest.

  1. Perturbative quantization of Yang-Mills theory with classical double as gauge algebra

    NASA Astrophysics Data System (ADS)

    Ruiz Ruiz, F.

    2016-02-01

    Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary.

  2. Gauge invariant perturbation theory and non-critical string models of Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Lugo, Adrián R.; Sturla, Mauricio B.

    2010-04-01

    We carry out a gauge invariant analysis of certain perturbations of D - 2-branes solutions of low energy string theories. We get generically a system of second order coupled differential equations, and show that only in very particular cases it is possible to reduce it to just one differential equation. Later, we apply it to a multi-parameter, generically singular family of constant dilaton solutions of non-critical string theories in D dimensions, a generalization of that recently found in arXiv:0709.0471 [hep-th]. According to arguments coming from the holographic gauge theory-gravity correspondence, and at least in some region of the parameters space, we obtain glue-ball spectra of Yang-Mills theories in diverse dimensions, putting special emphasis in the scalar metric perturbations not considered previously in the literature in the non critical setup. We compare our numerical results to those studied previously and to lattice results, finding qualitative and in some cases, tuning properly the parameters, quantitative agreement. These results seem to show some kind of universality of the models, as well as an irrelevance of the singular character of the solutions. We also develop the analysis for the T-dual, non trivial dilaton family of solutions, showing perfect agreement between them.

  3. Massless and massive three-dimensional super Yang-Mills theory and mini-twistor string theory

    SciTech Connect

    Chiou, D.-W.; Ganor, Ori J.; Hong, Yoon Pyo; Kim, Bom Soo; Mitra, Indrajit

    2005-06-15

    We propose various ways of adding mass terms to three-dimensional twistor string theory. We begin with a review of mini-twistor space--the reduction of D=4 twistor space to D=3. We adapt the two proposals for twistor string theory, Witten's and Berkovits's, to D=3 super Yang-Mills theory. In Berkovits's model, we identify the enhanced R symmetry. We then construct B-model topological string theories that, we propose, correspond to D=3 Yang-Mills theory with massive spinors and massive and massless scalars in the adjoint representation of the gauge group. We also analyze the counterparts of these constructions in Berkovits's model. Some of our constructions can be lifted to D=4, where infinitesimal mass terms correspond to vacuum expectation values of certain superconformal gravity fields.

  4. On the restoration of supersymmetry in twisted two-dimensional lattice Yang Mills theory

    NASA Astrophysics Data System (ADS)

    Catterall, Simon

    2007-04-01

    We study a discretization of Script N = 2 super Yang-Mills theory which possesses a single exact supersymmetry at non-zero lattice spacing. This supersymmetry arises after a reformulation of the theory in terms of twisted fields. In this paper we derive the action of the other twisted supersymmetries on the component fields and study, using Monte Carlo simulation, a series of corresponding Ward identities. Our results for SU(2) and SU(3) support a restoration of these additional supersymmetries without fine tuning in the infinite volume continuum limit. Additionally we present evidence supporting a restoration of (twisted) rotational invariance in the same limit. Finally we have examined the distribution of scalar field eigenvalues and find evidence for power law tails extending out to large eigenvalue. We argue that these tails indicate that the classical moduli space does not survive in the quantum theory.

  5. Non-Abelian localization for supersymmetric Yang-Mills-Chern-Simons theories on a Seifert manifold

    NASA Astrophysics Data System (ADS)

    Ohta, Kazutoshi; Yoshida, Yutaka

    2012-11-01

    We derive non-Abelian localization formulas for supersymmetric Yang-Mills-Chern-Simons theory with matters on a Seifert manifold M, which is the three-dimensional space of a circle bundle over a two-dimensional Riemann surface Σ, by using the cohomological approach introduced by Källén. We find that the partition function and the vacuum expectation value of the supersymmetric Wilson loop reduces to a finite dimensional integral and summation over classical flux configurations labeled by discrete integers. We also find that the partition function reduces further to just a discrete sum over integers in some cases, and evaluate the supersymmetric index (Witten index) exactly on S1×Σ. The index completely agrees with the previous prediction from field theory and branes. We discuss a vacuum structure of the Aharony-Bergman-Jafferis-Maldacena theory deduced from the localization.

  6. `Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories

    NASA Astrophysics Data System (ADS)

    Raptis, Ioannis

    2007-05-01

    Certain pivotal results from various applications of Abstract Differential Geometry (ADG) to gravity and gauge theories are presently collected and used to argue that we already possess a geometrically (pre)quantized, second quantized and manifestly background spacetime manifold independent vacuum Einstein gravitational field dynamics. The arguments carry also mutatis mutandis to the case of free Yang-Mills theories, since from the ADG-theoretic perspective gravity is regarded as another gauge field theory. The powerful algebraico-categorical, sheaf cohomological conceptual and technical machinery of ADG is then employed, based on the fundamental ADG-theoretic conception of a field as a pair ({mathcal{E}},{mathcal{D}}) consisting of a vector sheaf {mathcal{E}} and an algebraic connection {mathcal{D}} acting categorically as a sheaf morphism on {mathcal{E}}'s local sections, to introduce a ‘universal’, because expressly functorial, field quantization scenario coined third quantization. Although third quantization is fully covariant, on intuitive and heuristic grounds alone it formally appears to follow a canonical route; albeit, in a purely algebraic and, in contradistinction to geometric (pre)quantization and (canonical) second quantization, manifestly background geometrical spacetime manifold independent fashion, as befits ADG. All in all, from the ADG-theoretic vantage, vacuum Einstein gravity and free Yang-Mills theories are regarded as external spacetime manifold unconstrained, third quantized, pure gauge field theories. The paper abounds with philosophical smatterings and speculative remarks about the potential import and significance of our results to current and future Quantum Gravity research. A postscript gives a brief account of this author's personal encounters with Rafael Sorkin and his work.

  7. The five-loop beta function of Yang-Mills theory with fermions

    NASA Astrophysics Data System (ADS)

    Herzog, F.; Ruijl, B.; Ueda, T.; Vermaseren, J. A. M.; Vogt, A.

    2017-02-01

    We have computed the five-loop corrections to the scale dependence of the renormalized coupling constant for Quantum Chromodynamics (QCD), its generalization to non-Abelian gauge theories with a simple compact Lie group, and for Quantum Electrodynamics (QED). Our analytical result, obtained using the background field method, infrared rearrangement via a new diagram-by-diagram implementation of the R* operation and the Forcer program for massless four-loop propagators, confirms the QCD and QED results obtained by only one group before. The numerical size of the five-loop corrections is briefly discussed in the standard overline{MS} scheme for QCD with n f flavours and for pure SU( N) Yang-Mills theory. Their effect in QCD is much smaller than the four-loop contributions, even at rather low scales.

  8. Energy-momentum tensor on the lattice: Nonperturbative renormalization in Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Giusti, Leonardo; Pepe, Michele

    2015-06-01

    We construct an energy-momentum tensor on the lattice which satisfies the appropriate Ward identities (WIs) and has the right trace anomaly in the continuum limit. It is defined by imposing suitable WIs associated to the Poincaré invariance of the continuum theory. These relations come forth when the length of the box in the temporal direction is finite, and they take a particularly simple form if the coordinate and the periodicity axes are not aligned. We implement the method for the SU(3) Yang-Mills theory discretized with the standard Wilson action in the presence of shifted boundary conditions in the (short) temporal direction. By carrying out extensive numerical simulations, the renormalization constants of the traceless components of the tensor are determined with a precision of roughly half a percent for values of the bare coupling constant in the range 0 ≤g02≤1 .

  9. Exact Spectrum of Anomalous Dimensions of Planar N=4 Supersymmetric Yang-Mills Theory

    SciTech Connect

    Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro

    2009-09-25

    We present a set of functional equations defining the anomalous dimensions of arbitrary local single trace operators in planar N=4 supersymmetric Yang-Mills theory. It takes the form of a Y system based on the integrability of the dual superstring sigma model on the five-dimensional anti-de Sitter space (AdS{sub 5}xS{sup 5}) background. This Y system passes some very important tests: it incorporates the full asymptotic Bethe ansatz at large length of operator L, including the dressing factor, and it confirms all recently found wrapping corrections. The recently proposed AdS{sub 4}/three-dimensional conformal field theory duality is also treated in a similar fashion.

  10. Inflationary Dilatonic de Sitter Universe from { N} = 4 Super-Yang Mills Theory Perturbed by Scalars

    NASA Astrophysics Data System (ADS)

    Hurtado, John Quiroga

    In this paper a quantum { N} = 4 super-Yang Mills theory perturbed by dilaton-coupled scalars, is considered. The induced effective action for such a theory is calculated on a dilaton-gravitational background using the conformal anomaly found via AdS/CFT correspondence. Considering such an effective action (using the large N method) as a quantum correction to the classical gravity action with cosmological constant we study the effect from dilaton to the scale factor (which corresponds to the inflationary universe without dilaton). It is shown that, depending on the initial conditions for the dilaton, the dilaton may slow down, or accelerate, the inflation process. At late times, the dilaton is decaying exponentially. At the end of this work, we consider the question how the perturbation of the solution for the scale factor affects the stability of the solution for the equations of motion and therefore the stability of the Inflationary Universe, which could be eternal.

  11. Finite temperature and the Polyakov loop in the covariant variational approach to Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Quandt, Markus; Reinhardt, Hugo

    2017-03-01

    We extend the covariant variational approach for Yang-Mills theory in Landau gauge to non-zero temperatures. Numerical solutions for the thermal propagators are presented and compared to high-precision lattice data. To study the deconfinement phase transition, we adapt the formalism to background gauge and compute the effective action of the Polyakov loop for the colour groups SU(2) and SU(3). Using the zero-temperature propagators as input, all parameters are fixed at T = 0 and we find a clear signal for a deconfinement phase transition at finite temperatures, which is second order for SU(2) and first order for SU(3). The critical temperatures obtained are in reasonable agreement with lattice data.

  12. Covariant variational approach to Yang-Mills theory: Effective potential of the Polyakov loop

    NASA Astrophysics Data System (ADS)

    Quandt, M.; Reinhardt, H.

    2016-09-01

    We compute the effective action of the Polyakov loop in S U (2 ) and S U (3 ) Yang-Mills theory using a previously developed covariant variational approach. The formalism is extended to background gauge and it is shown how to relate the low-order Green's functions to the ones in Landau gauge studied earlier. The renormalization procedure is discussed. The self-consistent effective action is derived and evaluated using the numerical solution of the gap equation. We find a clear signal for a deconfinement phase transition at finite temperatures, which is second order for S U (2 ) and first order for S U (3 ). The critical temperatures obtained are in reasonable agreement with high-precision lattice data.

  13. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    NASA Astrophysics Data System (ADS)

    Pereira, A. D.; Sobreiro, R. F.; Sorella, S. P.

    2016-10-01

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi: 10.1103/PhysRevD.92.045039 arXiv:1506.06995 [hep-th], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions.

  14. N=2 supersymmetric Yang-Mills theories and Whitham integrable hierarchies

    NASA Astrophysics Data System (ADS)

    Edelstein, José D.; Mas, Javier

    1999-07-01

    We review recent work on the study of N=2 super Yang-Mills theory with gauge group SU(N) from the point of view of the Whitham hierarchy, mainly focusing on three main results: (i) We develop a new recursive method to compute the whole instanton expansion of the low-energy effective prepotential; (ii) We interpret the slow times of the hierarchy as additional couplings and promote them to spurion superfields that softly break N=2 supersymmetry down to N=0 through deformations associated to higher Casimir operators of the gauge group; (iii) We show that the Seiberg-Witten-Whitham equations provide a set of non-trivial constraints on the form of the strong coupling expansion in the vicinity of the maximal singularities. We use them to check a proposal that we make for the value of the off-diagonal couplings at those points of the moduli space.

  15. = 4 supersymmetric Yang-Mills theories in AdS3

    NASA Astrophysics Data System (ADS)

    Kuzenko, Sergei M.; Tartaglino-Mazzucchelli, Gabriele

    2014-05-01

    For all types of = 4 anti-de Sitter (AdS) supersymmetry in three dimensions, we construct manifestly supersymmetric actions for Abelian vector multiplets and explain how to extend the construction to the non-Abelian case. Manifestly = 4 supersymmetric Yang-Mills (SYM) actions are explicitly given in the cases of (2,2) and critical (4,0) AdS supersymmetries. The = 4 vector multiplets and the corresponding actions are then reduced to (2,0) AdS superspace, in which only = 2 supersymmetry is manifest. Using the off-shell structure of the = 4 vector multiplets, we provide complete = 4 SYM actions in (2,0) AdS superspace for all types of = 4 AdS supersymmetry. In the case of (4,0) AdS supersymmetry, which admits a Euclidean counterpart, the resulting = 2 action contains a Chern-Simons term proportional to q/r, where r is the radius of AdS 3 and q is the R-charge of a chiral scalar superfield. The R-charge is a linear inhomogeneous function of X, an expectation value of the = 4 Cotton superfield. Thus our results explain the mysterious structure of = 4 supersymmetric Yang-Mills theories on S 3 discovered in arXiv:1401.7952. In the case of (3,1) AdS supersymmetry, which has no Euclidean counterpart, the SYM action contains both a Chern-Simons term and a chiral mass-like term. In the case of (2,2) AdS supersymmetry, which admits a Euclidean counterpart, the SYM action has no Chern-Simons and chiral mass-like terms.

  16. N = 4 super-Yang-Mills in LHC superspace part I: classical and quantum theory

    NASA Astrophysics Data System (ADS)

    Chicherin, Dmitry; Sokatchev, Emery

    2017-02-01

    We present a formulation of the maximally supersymmetric N = 4 gauge theory in Lorentz harmonic chiral (LHC) superspace. It is closely related to the twistor formulation of the theory but employs the simpler notion of Lorentz harmonic variables. They parametrize a two-sphere and allow us to handle efficiently infinite towers of higher-spin auxiliary fields defined on ordinary space-time. In this approach the chiral half of N =4 supersymmetry is manifest. The other half is realized non-linearly and the algebra closes on shell. We give a straightforward derivation of the Feynman rules in coordinate space. We show that the LHC formulation of the N = 4 super-Yang-Mills theory is remarkably similar to the harmonic superspace formulation of the N = 2 gauge and hypermultiplet matter theories. In the twin paper arXiv:1601.06804 we apply the LHC formalism to the study of the non-chiral multipoint correlation functions of the N = 4 stress-tensor supermultiplet.

  17. The Analytic Structure of Scattering Amplitudes in N = 4 Super-Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Litsey, Sean Christopher

    We begin the dissertation in Chapter 1 with a discussion of tree-level amplitudes in Yang-. Mills theories. The DDM and BCJ decompositions of the amplitudes are described and. related to one another by the introduction of a transformation matrix. This is related to the. Kleiss-Kuijf and BCJ amplitude identities, and we conjecture a connection to the existence. of a BCJ representation via a condition on the generalized inverse of that matrix. Under. two widely-believed assumptions, this relationship is proved. Switching gears somewhat, we introduce the RSVW formulation of the amplitude, and the extension of BCJ-like features to residues of the RSVW integrand is proposed. Using the previously proven connection of BCJ representations to the generalized inverse condition, this extension is validated, including a version of gravitational double copy. The remainder of the dissertation involves an analysis of the analytic properties of loop. amplitudes in N = 4 super-Yang-Mills theory. Chapter 2 contains a review of the planar case, including an exposition of dual variables and momentum twistors, dual conformal symmetry, and their implications for the amplitude. After defining the integrand and on-shell diagrams, we explain the crucial properties that the amplitude has no poles at infinite momentum and that its leading singularities are dual-conformally-invariant cross ratios, and can therefore be normalized to unity. We define the concept of a dlog form, and show that it is a feature of the planar integrand as well. This leads to the definition of a pure integrand basis. The proceeding setup is connected to the amplituhedron formulation, and we put forward the hypothesis that the amplitude is determined by zero conditions. Chapter 3 contains the primary computations of the dissertation. This chapter treats. amplitudes in fully nonplanar N = 4 super-Yang-Mills, analyzing the conjecture that they. follow the pattern of having no poles at infinity, can be written in dlog

  18. Constraints on the infrared behavior of the ghost propagator in Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Cucchieri, A.; Mendes, T.

    2008-11-01

    We present rigorous upper and lower bounds for the momentum-space ghost propagator G(p) of Yang-Mills theories in terms of the smallest nonzero eigenvalue (and of the corresponding eigenvector) of the Faddeev-Popov matrix. We apply our analysis to data from simulations of SU(2) lattice gauge theory in Landau gauge, using the largest lattice sizes to date. Our results suggest that, in three and in four space-time dimensions, the Landau gauge ghost propagator is not enhanced as compared to its tree-level behavior. This is also seen in plots and fits of the ghost dressing function. In the two-dimensional case, on the other hand, we find that G(p) diverges as p-2-2κ with κ≈0.15, in agreement with A. Maas, Phys. Rev. D 75, 116004 (2007)PRVDAQ0556-282110.1103/PhysRevD.75.116004. We note that our discussion is general, although we make an application only to pure gauge theory in Landau gauge. Our simulations have been performed on the IBM supercomputer at the University of São Paulo.

  19. Entropy production from chaoticity in Yang-Mills field theory with use of the Husimi function

    NASA Astrophysics Data System (ADS)

    Tsukiji, Hidekazu; Iida, Hideaki; Kunihiro, Teiji; Ohnishi, Akira; Takahashi, Toru T.

    2016-11-01

    We investigate possible entropy production in Yang-Mills (YM) field theory by using a quantum distribution function called the Husimi function fH(A ,E ,t ) for the YM field, which is given by a coarse graining of the Wigner function and non-negative. We calculate the Husimi-Wehrl entropy SHW(t )=-Tr fHlog fH defined as an integral over the phase space, for which two adaptations of the test-particle method are used combined with Monte Carlo method. We utilize the semiclassical approximation to obtain the time evolution of the distribution functions of the YM field, which is known to show chaotic behavior in the classical limit. We also make a simplification of the multidimensional phase-space integrals by making a product ansatz for the Husimi function, which is found to give a 10-20% overestimate of the Husimi-Wehrl entropy for a quantum system with a few degrees of freedom. We show that the quantum YM theory does exhibit the entropy production and that the entropy production rate agrees with the sum of positive Lyapunov exponents or the Kolmogorov-Sinai entropy, suggesting that the chaoticity of the classical YM field causes the entropy production in the quantum YM theory.

  20. Integration of Kaluza-Klein modes in Yang-Mills theories

    SciTech Connect

    Novales-Sanchez, H.; Toscano, J. J.

    2011-10-01

    A five-dimensional pure Yang-Mills theory, with the fifth coordinate compactified on the orbifold S{sup 1}/Z{sub 2} of radius R, leads to a four-dimensional theory which is governed by two types of infinitesimal gauge transformations, namely, the well-known standard gauge transformations (SGT) dictated by the SU{sub 4}(N) group under which the zero Fourier modes A{sub {mu}}{sup (0)a} transform as gauge fields, and a set of nonstandard gauge transformations (NSGT) determining the gauge nature of the Kaluza-Klein (KK) excitations A{sub {mu}}{sup (m)a}. By using a SGT-covariant gauge-fixing procedure for removing the degeneration associated with the NSGT, we integrate out the KK excitations and obtain a low-energy effective Lagrangian expansion involving all of the independent canonical-dimension-six operators that are invariant under the SGT of the SU{sub 4}(N) group and that are constituted by light gauge fields, A{sub {mu}}{sup (0)a}, exclusively. It is shown that this effective Lagrangian is invariant under the SGT, but it depends on the gauge-fixing of the gauge KK excitations. Our result shows explicitly that the one-loop contributions of the KK excitations to light (standard) Green's functions are renormalizable.

  1. Non-Abelian dual superconductivity in SU(3) Yang-Mills theory: Dual Meissner effect and type of the vacuum

    NASA Astrophysics Data System (ADS)

    Shibata, Akihiro; Kondo, Kei-Ichi; Kato, Seikou; Shinohara, Toru

    2013-03-01

    We have proposed the non-Abelian dual superconductivity picture for quark confinement in the SU(3) Yang-Mills (YM) theory, and have given numerical evidences for the restricted-field dominance and the non-Abelian magnetic monopole dominance in the string tension by applying a new formulation of the YM theory on a lattice. To establish the non-Abelian dual superconductivity picture for quark confinement, we have observed the non-Abelian dual Meissner effect in the SU(3) Yang-Mills theory by measuring the chromoelectric flux created by the quark-antiquark source, and the non-Abelian magnetic monopole currents induced around the flux. We conclude that the dual superconductivity of the SU(3) Yang-Mills theory is strictly the type I and that this type of dual superconductivity is reproduced by the restricted field and the non-Abelian magnetic monopole part, in sharp contrast to the SU(2) case: the border of type I and type II.

  2. Two-dimensional Script N = (2, 2) super Yang-Mills theory on computer

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi

    2007-09-01

    We carry out preliminary numerical study of Sugino's lattice formulation [1, 2] of the two-dimensional Script N = (2, 2) super Yang-Mills theory (2d Script N = (2, 2) SYM) with the gauge group SU(2). The effect of dynamical fermions is included by re-weighting a quenched ensemble by the pfaffian factor. It appears that the complex phase of the pfaffian due to lattice artifacts and flat directions of the classical potential are not problematic in Monte Carlo simulation. Various one-point supersymmetric Ward-Takahashi (WT) identities are examined for lattice spacings up to a = 0.5/g with the fixed physical lattice size L = 4.0/g, where g denotes the gauge coupling constant in two dimensions. WT identities implied by an exact fermionic symmetry of the formulation are confirmed in fair accuracy and, for most of these identities, the quantum effect of dynamical fermions is clearly observed. For WT identities expected only in the continuum limit, the results seem to be consistent with the behavior expected from supersymmetry, although we do not see clear distintion from the quenched simulation. We measure also the expectation values of renormalized gauge-invariant bi-linear operators of scalar fields.

  3. Embedded monopoles in quark eigenmodes in SU(2) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Chernodub, M. N.; Morozov, S. M.

    2006-09-01

    We study the embedded QCD monopoles (“quark monopoles”) using low-lying eigenmodes of the overlap Dirac operator in zero- and finite-temperature SU(2) Yang-Mills theory on the lattice. These monopoles correspond to the gauge-invariant hedgehogs in the quark-antiquark condensates. The monopoles were suggested to be agents of the chiral symmetry restoration since their cores should suppress the chiral condensate. We study numerically the scalar, axial, and chirally invariant definitions of the embedded monopoles and show that the monopole densities are in fact globally anticorrelated with the density of the Dirac eigenmodes. We observe that the embedded monopoles corresponding to low-lying Dirac eigenvalues are dense in the chirally invariant (high temperature) phase and dilute in the chirally broken (low-temperature) phase. We find that the scaling of the scalar and axial monopole densities towards the continuum limit is similar to the scaling of the stringlike objects while the chirally invariant monopoles scale as membranes. The excess of gluon energy at monopole positions reveals that the embedded QCD monopole possesses a gluonic core which is, however, empty at the very center of the monopole.

  4. Embedded monopoles in quark eigenmodes in SU(2) Yang-Mills theory

    SciTech Connect

    Chernodub, M. N.; Morozov, S. M.

    2006-09-01

    We study the embedded QCD monopoles ('quark monopoles') using low-lying eigenmodes of the overlap Dirac operator in zero- and finite-temperature SU(2) Yang-Mills theory on the lattice. These monopoles correspond to the gauge-invariant hedgehogs in the quark-antiquark condensates. The monopoles were suggested to be agents of the chiral symmetry restoration since their cores should suppress the chiral condensate. We study numerically the scalar, axial, and chirally invariant definitions of the embedded monopoles and show that the monopole densities are in fact globally anticorrelated with the density of the Dirac eigenmodes. We observe that the embedded monopoles corresponding to low-lying Dirac eigenvalues are dense in the chirally invariant (high temperature) phase and dilute in the chirally broken (low-temperature) phase. We find that the scaling of the scalar and axial monopole densities towards the continuum limit is similar to the scaling of the stringlike objects while the chirally invariant monopoles scale as membranes. The excess of gluon energy at monopole positions reveals that the embedded QCD monopole possesses a gluonic core which is, however, empty at the very center of the monopole.

  5. Gluon mass generation and infrared Abelian dominance in Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Shibata, Akihiro

    2006-12-01

    Dual superconductivity is believed to be a promising mechanism for quark confinement. Indeed, that this picture is true has been confirmed in the maximal Abelian (MA) gauge. However, it is not yet confirmed in any other gauge, and the MA gauge explicitly breaks color symmetry. To remedy this defect, we propose to use our compact formulation of a non-linear change of variables (NLCV), called once by the Cho-Faddeev-Niemi (CFN) decomposition, on a lattice. This formulation has succeeded to extract the magnetic monopole with integer-valued magnetic charge in the gauge-invariant way. We present measurements of various correlation functions for the operators constructed from the NLCV in SU(2) Yang-Mills theory. Some of our results reproduce previous results obtained in MA gauge, e.g., DeGrand-Toussaint monopole, infrared Abelian dominance and off-diagonal gluon mass generation. These studies preserve color symmetry, which is sharp contrast to the conventional MA gauge. We argue the gauge fixing independence of these results and the implications for quark confinement

  6. Non-intersecting Brownian walkers and Yang-Mills theory on the sphere

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Majumdar, Satya N.; Schehr, Grégory

    2011-03-01

    We study a system of N non-intersecting Brownian motions on a line segment [0,L] with periodic, absorbing and reflecting boundary conditions. We show that the normalized reunion probabilities of these Brownian motions in the three models can be mapped to the partition function of two-dimensional continuum Yang-Mills theory on a sphere respectively with gauge groups U(N), Sp(2N) and SO(2N). Consequently, we show that in each of these Brownian motion models, as one varies the system size L, a third order phase transition occurs at a critical value L=L(N)˜√{N} in the large N limit. Close to the critical point, the reunion probability, properly centered and scaled, is identical to the Tracy-Widom distribution describing the probability distribution of the largest eigenvalue of a random matrix. For the periodic case we obtain the Tracy-Widom distribution corresponding to the GUE random matrices, while for the absorbing and reflecting cases we get the Tracy-Widom distribution corresponding to GOE random matrices. In the absorbing case, the reunion probability is also identified as the maximal height of N non-intersecting Brownian excursions ("watermelons" with a wall) whose distribution in the asymptotic scaling limit is then described by GOE Tracy-Widom law. In addition, large deviation formulas for the maximum height are also computed.

  7. Duality-symmetric supersymmetric Yang-Mills theory in three dimensions

    SciTech Connect

    Nishino, Hitoshi; Rajpoot, Subhash

    2010-10-15

    We formulate a duality-symmetric N=1 supersymmetric Yang-Mills theory in three dimensions. Our field content is (A{sub {mu}}{sup I},{lambda}{sup I},{phi}{sup I}), where the index I is for the adjoint representation of an arbitrary gauge group G. Our Hodge duality symmetry is F{sub {mu}{nu}}{sup I}=+{epsilon}{sub {mu}{nu}}{sup {rho}D}{sub {rho}{phi}}{sup I}. Because of this relationship, the presence of two physical fields A{sub {mu}}{sup I} and {phi}{sup I} within the same N=1 supermultiplet poses no problem. We can couple this multiplet to another vector multiplet (C{sub {mu}}{sup I},{chi}{sup I};B{sub {mu}{nu}}{sup I}) with 1+1 physical degrees of freedom modulo dim G. Thanks to peculiar couplings and supersymmetry, the usual problem with an extra vector field in a nontrivial representation does not arise in our system.

  8. Radiating black holes in Einstein-Yang-Mills theory and cosmic censorship

    SciTech Connect

    Ghosh, Sushant G.; Dadhich, Naresh

    2010-08-15

    Exact nonstatic spherically symmetric black-hole solutions of the higher dimensional Einstein-Yang-Mills equations for a null dust with Yang-Mills gauge charge are obtained by employing Wu-Yang ansatz, namely, HD-EYM Vaidya solution. It is interesting to note that gravitational contribution of Yang-Mills (YM) gauge charge for this ansatz is indeed opposite (attractive rather than repulsive) that of Maxwell charge. It turns out that the gravitational collapse of null dust with YM gauge charge admits strong curvature shell focusing naked singularities violating cosmic censorship. However, there is significant shrinkage of the initial data space for a naked singularity of the HD-Vaidya collapse due to presence of YM gauge charge. The effect of YM gauge charge on structure and location of the apparent and event horizons is also discussed.

  9. Doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group

    NASA Astrophysics Data System (ADS)

    Caspar, S.; Mesterházy, D.; Olesen, T. Z.; Vlasii, N. D.; Wiese, U.-J.

    2016-11-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group G in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm phase, which is manifested in the doubled theory in terms of a nontrivial ground-state degeneracy on a single cross. We discuss several examples of these doubled theories with different gauge groups including the cyclic group Z(k) ⊂ U(1) , the symmetric group S3 ⊂ O(2) , the binary dihedral (or quaternion) group D¯2 ⊂ SU(2) , and the finite group Δ(27) ⊂ SU(3) . In each case the spectrum of the single-cross electric Hamiltonian is determined exactly. We examine the nature of the low-lying excited states in the full Hilbert space, and emphasize the role of the center symmetry for the confinement of charges. Whether the investigated doubled models admit a non-Abelian topological state which allows for fault-tolerant quantum computation will be addressed in a future publication.

  10. Einstein-Yang-Mills from pure Yang-Mills amplitudes

    NASA Astrophysics Data System (ADS)

    Nandan, Dhritiman; Plefka, Jan; Schlotterer, Oliver; Wen, Congkao

    2016-10-01

    We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton case with a single color trace. As the derivation is made in the dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external bosons in any number of spacetime dimensions. Moreover, they generalize to the superamplitudes in theories with 16 supercharges.

  11. Comparing the drag force on heavy quarks in N=4 super-Yang-Mills theory and QCD

    SciTech Connect

    Gubser, Steven S.

    2007-12-15

    Computations of the drag force on a heavy quark moving through a thermal state of strongly coupled N=4 super-Yang-Mills theory have appeared recently. I compare the strength of this effect between N=4 gauge theory and QCD, using the static force between external quarks to normalize the 't Hooft coupling. Comparing N=4 and QCD at fixed energy density then leads to a relaxation time of roughly 2 fm/c for charm quarks moving through a quark-gluon plasma at T=250 MeV. This estimate should be regarded as preliminary because of the difficulties of comparing two such different theories.

  12. Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories

    NASA Astrophysics Data System (ADS)

    Anderson, Lara B.; Braun, Volker; Karp, Robert L.; Ovrut, Burt A.

    2010-06-01

    A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.

  13. Double hairpin diagrams and the planar equivalence of N=1 supersymmetric Yang-Mills theory and one-flavor QCD

    NASA Astrophysics Data System (ADS)

    Keith-Hynes, Patrick

    2006-12-01

    Recent work by Armoni, Shifman, and Veneziano suggests a large-N equivalence between super- symmetric Yang-Mills Theory and one-flavor QCD. One consequence of this "orientifold projec- tion" is that scalar and pseudoscalar mesons in one-flavor QCD should have degenerate mass since they lie within the same Wess-Zumino supermultiplet. We use lattice calculations to investigate the mass shifts caused by "double-hairpin" annihilation diagrams in quenched QCD to test for this degeneracy. Similar quark-antiquark annihilation processes are studied in the 2-dimensional CP´N1µ model with quenched fermions.

  14. Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2015-05-01

    The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark

  15. A novel approach for computing glueball masses and matrix elements in Yang-Mills theories on the lattice

    NASA Astrophysics Data System (ADS)

    Della Morte, Michele; Giusti, Leonardo

    2011-05-01

    We make use of the global symmetries of the Yang-Mills theory on the lattice to design a new computational strategy for extracting glueball masses and matrix elements which achieves an exponential reduction of the statistical error with respect to standard techniques. By generalizing our previous work on the parity symmetry, the partition function of the theory is decomposed into a sum of path integrals each giving the contribution from multiplets of states with fixed quantum numbers associated to parity, charge conjugation, translations, rotations and central conjugations Z N 3. Ratios of path integrals and correlation functions can then be computed with a multi-level Monte Carlo integration scheme whose numerical cost, at a fixed statistical precision and at asymptotically large times, increases power-like with the time extent of the lattice. The strategy is implemented for the SU(3) Yang-Mills theory, and a full-fledged computation of the mass and multiplicity of the lightest glueball with vacuum quantum numbers is carried out at a lattice spacing of 0.17 fm.

  16. Towards the large N limit of pure Nu = 1 super Yang-Mills theory.

    PubMed

    Maldacena, J; Nuñez, C

    2001-01-22

    We find the gravity solution corresponding to a large number of Neveu-Schwarz or D5-branes wrapped on a two sphere so that we have pure Nu = 1 super Yang-Mills in the IR. The supergravity solution is smooth, it shows confinement, and it breaks the U(1)(R) chiral symmetry in the appropriate way. When the gravity approximation is valid the masses of glueballs are comparable to the masses of Kaluza-Klein (KK) states on the 5-brane, but if we could quantize strings on this background it looks like we should be able to decouple the KK states.

  17. Experimentally verifiable Yang-Mills spin 2 gauge theory of gravity with group U(1) x SU(2)

    NASA Astrophysics Data System (ADS)

    Peng, Huei

    1988-06-01

    A Yang-Mills spin 2 gauge theory of gravity is proposed. Based on both the verification of the helicity 2 property of the SU(2) gauge bosons of the theory and the agreement of the theory with most observational and experimental evidence, it is argued that the theory is truly a gravitational theory. Generation by the 4-momentum P sup mu of a fermion of U(1) x SU(2) internal symmetry group for gravity, but not the transformation group T sup 4 is demonstrated. It is shown that the U(1) x SU(2) group represents the time displacement and rotation in ordinary space. Thereby internal space associated with gravity is identical with Minkowski spacetime, so a gauge potential of gravity carries two spacetime indices. Then it is verified that the SU(2) gravitational boson has helicity 2. This theory predicts experimentally verifiable gravitomagnetic fields 4 times smaller than that of general relativity.

  18. New Integrable 4D Quantum Field Theories from Strongly Deformed Planar N=4 Supersymmetric Yang-Mills Theory.

    PubMed

    Gürdoğan, Ömer; Kazakov, Vladimir

    2016-11-11

    We introduce a family of new integrable quantum field theories in four dimensions by considering the γ-deformed N=4 supersymmetric Yang-Mills (SYM) theory in the double scaling limit of large imaginary twists and small coupling. This limit discards the gauge fields and retains only certain Yukawa and scalar interactions with three arbitrary effective couplings. In the 't Hooft limit, these 4D theories are integrable, and contain a wealth of conformal correlators such that the whole arsenal of AdS/CFT integrability remains applicable. As a special case of these models, we obtain a quantum field theory of two complex scalars with a chiral, quartic interaction. The Berenstein-Maldacena-Nastase vacuum anomalous dimension is dominated in each loop order by a single "wheel" graph, whose bulk represents an integrable "fishnet" graph. This explicitly demonstrates the all-loop integrability of gamma-deformed planar N=4 SYM theory, at least in our limit. Using this feature and integrability results we provide an explicit conjecture for the periods of double-wheel graphs with an arbitrary number of spokes in terms of multiple zeta values of limited depth.

  19. New Integrable 4D Quantum Field Theories from Strongly Deformed Planar N =4 Supersymmetric Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Gürdoǧan, Ömer; Kazakov, Vladimir

    2016-11-01

    We introduce a family of new integrable quantum field theories in four dimensions by considering the γ -deformed N =4 supersymmetric Yang-Mills (SYM) theory in the double scaling limit of large imaginary twists and small coupling. This limit discards the gauge fields and retains only certain Yukawa and scalar interactions with three arbitrary effective couplings. In the `t Hooft limit, these 4D theories are integrable, and contain a wealth of conformal correlators such that the whole arsenal of AdS /CFT integrability remains applicable. As a special case of these models, we obtain a quantum field theory of two complex scalars with a chiral, quartic interaction. The Berenstein-Maldacena-Nastase vacuum anomalous dimension is dominated in each loop order by a single "wheel" graph, whose bulk represents an integrable "fishnet" graph. This explicitly demonstrates the all-loop integrability of gamma-deformed planar N =4 SYM theory, at least in our limit. Using this feature and integrability results we provide an explicit conjecture for the periods of double-wheel graphs with an arbitrary number of spokes in terms of multiple zeta values of limited depth.

  20. Magnetic black holes and monopoles in a nonminimal Einstein-Yang-Mills theory with a cosmological constant: Exact solutions

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.

    2016-04-01

    Alternative theories of gravity and their solutions are of considerable importance since, at some fundamental level, the world can reveal new features. Indeed, it is suspected that the gravitational field might be nonminimally coupled to the other fields at scales not yet probed, bringing into the forefront nonminimally coupled theories. In this mode, we consider a nonminimal Einstein-Yang-Mills theory with a cosmological constant. Imposing spherical symmetry and staticity for the spacetime and a magnetic Wu-Yang ansatz for the Yang-Mills field, we find expressions for the solutions of the theory. Further imposing constraints on the nonminimal parameters, we find a family of exact solutions of the theory depending on five parameters—two nonminimal parameters, the cosmological constant, the magnetic charge, and the mass. These solutions represent magnetic monopoles and black holes in magnetic monopoles with de Sitter, Minkowskian, and anti-de Sitter asymptotics, depending on the sign and value of the cosmological constant Λ . We classify completely the family of solutions with respect to the number and the type of horizons and show that the spacetime solutions can have, at most, four horizons. For particular sets of the parameters, these horizons can become double, triple, and quadruple. For instance, for a positive cosmological constant Λ , there is a critical Λc for which the solution admits a quadruple horizon, evocative of the Λc that appears for a given energy density in both the Einstein static and Eddington-Lemaître dynamical universes. As an example of our classification, we analyze solutions in the Drummond-Hathrell nonminimal theory that describe nonminimal black holes. Another application is with a set of regular black holes previously treated.

  1. High-energy scattering amplitudes of Yang-Mills theories in generalized leading-term approximation and eikonal formulas

    SciTech Connect

    Lo, C.Y.

    1981-01-15

    In this paper, we study the apparent discrepancy between Feynman diagrams and the eikonal formulas, and the apparent paradox between the eikonal formulas and the s-u crossing symmetry. We analyze the generalized leading-term approximation (GLA), which generates the terms of the eikonal formulas from Feynman diagrams. This analysis is done through using the techniques of decomposing diagrammatically the isospin factors (or group-theoretical weights in general) of Feynman diagrams. As a result, we modify the GLA into a generalized complex leading-term approximation. We calculate, with this new formalism, the high-energy limit (s..-->..infinity with t fixed) of the vector-meson--vector-meson elastic amplitude of a Yang-Mills theory with SU(2) symmetry through tenth perturbative order. With this new method, we resolve the apparent discrepancy and paradox mentioned above. This method is generalizable to other non-Abelian gauge theories.

  2. Finite-temperature Yang-Mills theory in the Hamiltonian approach in Coulomb gauge from a compactified spatial dimension

    NASA Astrophysics Data System (ADS)

    Heffner, J.; Reinhardt, H.

    2015-04-01

    Yang-Mills theory is studied at finite temperature within the Hamiltonian approach in Coulomb gauge by means of the variational principle using a Gaussian-type Ansatz for the vacuum wave functional. Temperature is introduced by compactifying one spatial dimension. As a consequence the finite-temperature behavior is encoded in the vacuum wave functional calculated on the spatial manifold R2×S1(L ) where L-1 is the temperature. The finite-temperature equations of motion are obtained by minimizing the vacuum energy density to two-loop order. We show analytically that these equations yield the correct zero-temperature limit while at infinite temperature they reduce to the equations of the 2 +1 -dimensional theory in accordance with dimensional reduction. The resulting propagators are compared to those obtained from the grand canonical ensemble where an additional Ansatz for the density matrix is required.

  3. Nonminimal Einstein-Yang-Mills-Higgs theory: Associated, color, and color-acoustic metrics for the Wu-Yang monopole model

    NASA Astrophysics Data System (ADS)

    Balakin, A. B.; Dehnen, H.; Zayats, A. E.

    2007-12-01

    We discuss a nonminimal Einstein-Yang-Mills-Higgs model with uniaxial anisotropy in the group space associated with the Higgs field. We apply this theory to the problem of propagation of color and color-acoustic waves in the gravitational background related to the nonminimal regular Wu-Yang monopole.

  4. Lattice study of two-dimensional N=(2,2) super Yang-Mills theory at large N

    SciTech Connect

    Hanada, Masanori; Kanamori, Issaku

    2009-09-15

    We study two-dimensional N=(2,2) SU(N) super Yang-Mills theory on Euclidean two-torus using Sugino's lattice regularization. We perform the Monte Carlo simulation for N=2,3,4,5 and then extrapolate the result to N={infinity}. With the periodic boundary conditions for the fermions along both circles, we establish the existence of a bound state in which scalar fields clump around the origin, in spite of the existence of a classical flat direction. In this phase the global (Z{sub N}){sup 2} symmetry turns out to be broken. We provide a simple explanation for this fact and discuss its physical implications.

  5. Spacetime and flux tube S-matrices at finite coupling for N=4 supersymmetric Yang-Mills theory.

    PubMed

    Basso, Benjamin; Sever, Amit; Vieira, Pedro

    2013-08-30

    We propose a nonperturbative formulation of planar scattering amplitudes in N=4 supersymmetric Yang-Mills theory, or, equivalently, polygonal Wilson loops. The construction is based on the operator product expansion approach and introduces a new decomposition of the Wilson loop in terms of fundamental building blocks named pentagon transitions. These transitions satisfy a simple relation to the worldsheet S matrix on top of the so-called Gubser-Klebanov-Polyakov vacuum which allows us to bootstrap them at any value of the coupling. In this Letter we present a subsector of the full solution which we call the gluonic part. We match our results with both weak and strong coupling data available in the literature.

  6. Color-Kinematics Duality and Sudakov Form Factor at Five Loops for N =4 Supersymmetric Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Yang, Gang

    2016-12-01

    Using color-kinematics duality, we construct for the first time the full integrand of the five-loop Sudakov form factor in N =4 super-Yang-Mills theory, including nonplanar contributions. This result also provides a first manifestation of the color-kinematics duality at five loops. The integrand is explicitly ultraviolet finite when D <26 /5 , coincident with the known finiteness bound for amplitudes. If the double-copy method could be applied to the form factor, this would indicate an interesting ultraviolet finiteness bound for N =8 supergravity at five loops. The result is also expected to provide an essential input for computing the five-loop nonplanar cusp anomalous dimension.

  7. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  8. The Yang-Mills Mass Gap Solution

    NASA Astrophysics Data System (ADS)

    Yablon, Jay R.

    2014-03-01

    The Yang-Mills Mass Gap problem is solved by deriving SU(3)C Chromodynamics as a corollary theory from Yang-Mills gauge theory. The mass gap is filled from finite non-zero eigenvalues of a configuration space inverse perturbation tensor containing vacuum excitations. This results from carefully developing six equivalent views of Yang-Mills gauge theory as having: 1) non-commuting (non-Abelian) gauge fields; 2) gauge fields with non-linear self-interactions; 3) a ``steroidal'' minimal coupling; 4) perturbations; 5) curvature in the gauge space of connections; and 6) gauge fields related to source currents through an infinite recursive nesting. Based on combining classical Yang-Mills electric and magnetic source field equations into a single equation, confinement results from showing how magnetic monopoles of Yang-Mills gauge theory exhibit color confinement and meson flow and have all the color symmetries of baryons, from which we conclude that they are one and the same as baryons. Chiral symmetry breaking results from the recursive behavior of these monopoles coupled with viewing Dirac's gamma matrices as Hamiltonian quaternions extended into spacetime. Finally, with aid from the ``steroidal'' view, the recursive view of Yang-Mills enables polynomial gauge field terms in the Yang-Mills action to be stripped out and replaced by polynomial source current terms prior to path integration. This enables an exact analytical calculation of a non-linear path integral using a closed recursive kernel and yields a non-linear quantum amplitude also with a closed recursive kernel, thus proving the existence of a non-trivial relativistic quantum Yang-Mills field theory on R4 for any simple gauge group G.

  9. Direct evaluation of n-point single-trace MHV amplitudes in 4d Einstein-Yang-Mills theory using the CHY formalism

    NASA Astrophysics Data System (ADS)

    Du, Yi-Jian; Teng, Fei; Wu, Yong-Shi

    2016-09-01

    In this paper we extend our techniques, developed in a previous paper [1] for direct evaluation of arbitrary n-point tree-level MHV amplitudes in 4d Yang-Mills and gravity theory using the Cachazo-He-Yuan (CHY) formalism, to the 4d Einstein-Yang-Mills (EYM) theory. Any single-trace color-ordered n-point tree-level MHV amplitude in EYM theory, obtained by a direct evaluation of the CHY formula, is of an elegant factorized form of a Parke-Taylor factor and a Hodges determinant, much simpler and more compact than the existing formulas in the literature. We prove that our new expression is equivalent to the conjectured Selivanov-Bern-De Freitas-Wong (SBDW) formula, with the help of a new theorem showing that the SBDW generating function has a graph theory interpretation. Together with ref. [1], we provide strong analytic evidence for hidden simplicity in quantum field theory.

  10. Numerical study of tree-level improved lattice gradient flows in pure Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Kamata, Norihiko; Sasaki, Shoichi

    2017-03-01

    We study several types of tree-level improvement in the Yang-Mills gradient flow method in order to reduce the lattice discretization errors in line with Fodor et al. [J. High Energy Phys. 09 (2014) 018., 10.1007/JHEP09(2014)018]. The tree-level O (a2) improvement can be achieved in a simple manner, where an appropriate weighted average is computed between the plaquette and clover-leaf definitions of the action density ⟨E (t )⟩ measured at every flow time t . We further develop the idea of achieving the tree-level O (a4) improvement within a usage of actions consisting of the 1 ×1 plaquette and 1 ×2 planar loop for both the flow and gauge actions. For testing our proposal, we present numerical results for ⟨E (t )⟩ obtained on gauge configurations generated with the Wilson and Iwasaki gauge actions at three lattice spacings (a ≈0.1 ,0.07 , and 0.05 fm). Our results show that tree-level improved flows significantly eliminate the discretization corrections on t2⟨E (t )⟩ in the relatively small-t regime for up to t ≳a2 . To demonstrate the feasibility of our tree-level improvement proposal, we also study the scaling behavior of the dimensionless combinations of the ΛMS ¯ parameter and the new reference scale tX, which is defined through tX2⟨E (tX)⟩=X for the smaller X , e.g., X =0.15 . It is found that √{t0.15 }ΛMS ¯ shows a nearly perfect scaling behavior as a function of a2 regardless of the types of gauge action and flow, after tree-level improvement is achieved up to O (a4) . Further detailed study of the scaling behavior exposes the presence of the remnant O (g2 na2) corrections, which are beyond the tree level. Although our proposal is not enough to eliminate all O (a2) effects, we show that the O (g2 na2) corrections can be well under control even by the simplest tree-level O (a2) improved flow.

  11. Supergravity duals to the noncommutative N=4 super Yang-Mills theory in the infinite momentum frame

    NASA Astrophysics Data System (ADS)

    Kim, Hongsu

    2003-09-01

    In this work, the construction of supergravity duals to the noncommutative N=4 super Yang-Mills theory in the infinite momentum frame but with a constant momentum density is attempted. In the absence of noncommutativity, it has been known for some time that the previous AdS5/CFT4 correspondence should be replaced by the K5/CFT4 correspondence (with K(p+2) denoting the generalized Kaigorodov spacetime) with a pp wave propagating on the Bogomol’nyi-Prasad-Sommerfield brane worldvolume. Interestingly enough, putting together the two additions, i.e., the introduction of noncommutativity and at the same time that of the pp wave along the brane worldvolume, leads to quite nontrivial consequences such as the emergence of “time-space” noncommutativity in addition to the “space-space” noncommutativity in the manifold on which the dual gauge theory is defined. Taking the gravity decoupling limit, it has been realized that, for small u, the solutions all reduce to K5×S5 geometry, confirming our expectation that the IR dynamics of the dual gauge theory should be unaffected by the noncommutativity while, as u→∞, the solutions start to deviate significantly from the K5×S5 limit, indicating that the UV dynamics of dual gauge theory is heavily distorted by the effect of noncommutativity.

  12. Faddeev-Popov-ghost propagators for Yang-Mills theories and perturbative quantum gravity in the covariant gauge in de Sitter spacetime

    SciTech Connect

    Faizal, Mir; Higuchi, Atsushi

    2008-09-15

    The propagators of the Faddeev-Popov (FP) ghosts for Yang-Mills theories and perturbative quantum gravity in the covariant gauge are infrared (IR) divergent in de Sitter spacetime. We point out, however, that the modes responsible for these divergences will not contribute to loop diagrams in computations of time-ordered products in either Yang-Mills theories or perturbative quantum gravity. Therefore, we propose that the IR-divergent FP-ghost propagator should be regularized by a small mass term that is sent to zero in the end of any perturbative calculations. This proposal is equivalent to using the effective FP-ghost propagators, which we present in an explicit form, obtained by removing the modes responsible for the IR divergences. We also make some comments on the corresponding propagators in anti-de Sitter spacetime.

  13. Distinctive ultraviolet structure of extra-dimensional Yang-Mills theories by integration of heavy Kaluza-Klein modes

    NASA Astrophysics Data System (ADS)

    García-Jiménez, I.; Novales-Sánchez, H.; Toscano, J. J.

    2016-05-01

    One-loop Standard Model observables produced by virtual heavy Kaluza-Klein fields play a prominent role in the minimal model of universal extra dimensions. Motivated by this aspect, we integrate out all the Kaluza-Klein heavy modes coming from the Yang-Mills theory set on a spacetime with an arbitrary number, n , of compact extra dimensions. After fixing the gauge with respect to the Kaluza-Klein heavy gauge modes in a covariant manner, we calculate a gauge-independent effective Lagrangian expansion containing multiple Kaluza-Klein sums that entail a bad divergent behavior. We use the Epstein-zeta function to regularize and characterize discrete divergences within such multiple sums, and then we discuss the interplay between the number of extra dimensions and the degree of accuracy of effective Lagrangians to generate or not divergent terms of discrete origin. We find that nonrenormalizable terms with mass dimension k are finite as long as k >4 +n . Multiple Kaluza-Klein sums of nondecoupling logarithmic terms, not treatable by Epstein-zeta regularization, are produced by four-dimensional momentum integration. On the grounds of standard renormalization, we argue that such effects are unobservable.

  14. Remarks on the effects of the Gribov copies on the infrared behavior of higher dimensional Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Guimaraes, M. S.; Pereira, A. D.; Sorella, S. P.

    2016-12-01

    In this paper, we discuss nonperturbative infrared features of Yang-Mills theory in Euclidean space-time dimensions greater than 4 in the Landau gauge and within the refined Gribov-Zwanziger framework, which enables us to take into account the existence of gauge copies by restricting the domain of integration in the path integral to the Gribov region. Evidences for a decoupling/massive solution for the gluon propagator in higher dimensions are provided. This behavior is strengthened the bigger the dimension is. Further, we show that, by a dimensional reduction of the refined Gribov-Zwanziger action from five to four dimensions, a nonperturbative coupling between the inverse of the Faddeev-Popov operator and the scalar field corresponding to the fifth component of the gauge field naturally arises, being in agreement with the recently proposed mechanism [1 M. A. L. Capri, M. S. Guimaraes, I. F. Justo, L. F. Palhares, and S. P. Sorella, Phys. Rev. D 90, 085010 (2014)., 10.1103/PhysRevD.90.085010] to generalize the refined Gribov-Zwanziger construction to the matter sector.

  15. Conformal kernel for the next-to-leading-order BFKL equation in N=4 super Yang-Mills theory

    SciTech Connect

    Balitsky, Ian; Chirilli, Giovanni A.

    2009-02-01

    Using the requirement of Moebius invariance of N=4 super Yang-Mills amplitudes in the Regge limit, we restore the explicit form of the conformal next-to-leading-order Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel out of the eigenvalues known from the forward next-to-leading-order BFKL result.

  16. Yang Mills Chern Simons supergravity

    NASA Astrophysics Data System (ADS)

    Lü, H.; Pope, C. N.; Sezgin, E.

    2004-06-01

    N = (1, 0) supergravity in six dimensions admits AdS3 × S3 as a vacuum solution. We extend our recent results presented in Lü et al (2002 Preprint hep-th/0212323), by obtaining the complete N = 4 Yang Mills Chern Simons supergravity in D = 3, up to quartic fermion terms, by S3 group manifold reduction of the six-dimensional theory. The SU(2) gauge fields have Yang Mills kinetic terms as well as topological Chern Simons mass terms. There is in addition a triplet of matter vectors. After diagonalization, these fields describe two triplets of topologically-massive vector fields of opposite helicities. The model also contains six scalars, described by a GL(3, R)/SO(3) sigma model. It provides the first example of a three-dimensional gauged supergravity that can be obtained by a consistent reduction of string theory or M-theory and that admits AdS3 as a vacuum solution. There are unusual features in the reduction from six-dimensional supergravity, owing to the self-duality condition on the 3-form field. The structure of the full equations of motion in N = (1, 0) supergravity in D = 6 is also elucidated, and the role of the self-dual field strength as torsion is exhibited.

  17. Yang-Mills mass gap at large-N, noncommutative YM theory, topological quantum field theory and hyperfiniteness

    NASA Astrophysics Data System (ADS)

    Bochicchio, Marco

    2015-03-01

    We review a number of old and new concepts in quantum gauge theories, some of which are well-established but not widely appreciated, some are most recent, that may have analogs in gauge formulations of quantum gravity, loop quantum gravity, and their topological versions, and may be of general interest. Such concepts involve noncommutative gauge theories and their relation to the large-N limit, loop equations and the change to the anti-selfdual (ASD) variables also known as Nicolai map, topological field theory (TFT) and its relation to localization and Morse-Smale-Floer homology, with an emphasis both on the mathematical aspects and the physical meaning. These concepts, assembled in a new way, enter a line of attack to the problem of the mass gap in large-NSU(N) Yang-Mills (YM), that is reviewed as well. Algebraic considerations furnish a measure of the mathematical complexity of a complete solution of large-NSU(N) YM: In the large-N limit of pure SU(N) YM the ambient algebra of Wilson loops is known to be a type II1 nonhyperfinite factor. Nevertheless, for the mass gap problem at the leading 1/N order, only the subalgebra of local gauge-invariant single-trace operators matters. The connected two-point correlators in this subalgebra must be an infinite sum of propagators of free massive fields, since the interaction is subleading in (1)/(N), a vast simplification. It is an open problem, determined by the growth of the degeneracy of the spectrum, whether the aforementioned local subalgebra is in fact hyperfinite. Moreover, the sum of free propagators that occurs in the two-point correlators in the aforementioned local subalgebra must be asymptotic for large momentum to the result implied by the asymptotic freedom and the renormalization group: This fundamental constraint fixes asymptotically the residues of the poles of the propagators in terms of the mass spectrum and of the anomalous dimensions of the local operators. For the mass gap problem, in the search of a

  18. Einstein-Yang-Mills-Dirac systems from the discretized Kaluza-Klein theory

    NASA Astrophysics Data System (ADS)

    Wali, Kameshwar; Viet, Nguyen Ali

    2017-01-01

    A unified theory of the non-Abelian gauge interactions with gravity in the framework of a discretized Kaluza-Klein theory is constructed with a modified Dirac operator and wedge product. All the couplings of chiral spinors to the non-Abelian gauge fields emerge naturally as components of the coupling of the chiral spinors in the generalized gravity together with some new interactions. In particular, the currently prevailing gravity-QCD quark and gravity-electroweak-quark and lepton models are shown to follow as special cases of the general framework.

  19. Regularization of two-dimensional supersymmetric Yang-Mills theory via non-commutative geometry

    NASA Astrophysics Data System (ADS)

    Valavane, K.

    2000-11-01

    The non-commutative geometry is a possible framework to regularize quantum field theory in a non-perturbative way. This idea is an extension of the lattice approximation by non-commutativity that allows us to preserve symmetries. The supersymmetric version is also studied and more precisely in the case of the Schwinger model on a supersphere. This paper is a generalization of this latter work to more general gauge groups.

  20. Towards the Exact Dilatation Operator of {N} = 4 Super Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Ryzhov, Anton V.

    I present a summary of hep-th/0404215, which suggested a novel way of organizing the dilatation operator D of planar {N} = 4 SYM in the SU(2) sector. Instead of the usual perturbative expansion in powers of λ, we split D into parts D(n) according to the number n of independent pairwise interactions between spins at different sites. The BMN limit fixes D(1) completely, and it has regular expansions at both small and large values of λ. Anomalous dimensions of "long" operators in the two-scalar sector then generically scale as √λ at large λ, i.e. in the same way as energies of semiclassical states in the dual AdS5 ×S5 string theory.

  1. θ dependence in S U (3 ) Yang-Mills theory from analytic continuation

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; D'Elia, Massimo; Scapellato, Aurora

    2016-01-01

    We investigate the topological properties of the S U (3 ) pure gauge theory by performing numerical simulations at imaginary values of the θ parameter. By monitoring the dependence of various cumulants of the topological charge distribution on the imaginary part of θ and exploiting analytic continuation, we determine the free energy density up to the sixth order in θ , f (θ ,T )=f (0 ,T )+1/2 χ (T )θ2(1 +b2(T )θ2+b4(T )θ4+O (θ6)) . That permits us to achieve determinations with improved accuracy, in particular for the higher-order terms, with control over the continuum and the infinite-volume extrapolations. We obtain b2=-0.0216 (15 ) and |b4|≲4 ×10-4 .

  2. Generalized gaugino condensation in super Yang-Mills theories: Discrete R symmetries and vacua

    NASA Astrophysics Data System (ADS)

    Kehayias, John

    2010-12-01

    One can define generalized models of gaugino condensation as theories that dynamically break a discrete R symmetry but do not break supersymmetry. We consider general examples consisting of gauge and matter fields and the minimal number of gauge-singlet fields to avoid flat directions in the potential. We explore which R symmetries can arise and their spontaneous breaking. In general, we find that the discrete symmetry is Z2b0R, and the number of supersymmetric vacua is b0, where b0 is the coefficient of the one-loop beta function. Results are presented for various groups, including SU(Nc), SO(Nc), Sp(2Nc), and G2, for various numbers of flavors, Nf, by several methods. This analysis can also apply to the other exceptional groups and, thus, all simple Lie groups. We also comment on model-building applications where a discrete R symmetry, broken by the singlet vacuum expectation values, can account for μ-type terms and allow a realistic Higgs spectrum naturally.

  3. The framed Standard Model (I) — A physics case for framing the Yang-Mills theory?

    NASA Astrophysics Data System (ADS)

    Chan, Hong-Mo; Tsou, Sheung Tsun

    2015-10-01

    Introducing, in the underlying gauge theory of the Standard Model, the frame vectors in internal space as field variables (framons), in addition to the usual gauge boson and matter fermions fields, one obtains: the standard Higgs scalar as the framon in the electroweak sector; a global su˜(3) symmetry dual to colour to play the role of fermion generations. Renormalization via framon loops changes the orientation in generation space of the vacuum, hence also of the mass matrices of leptons and quarks, thus making them rotate with changing scale μ. From previous work, it is known already that a rotating mass matrix will lead automatically to: CKM mixing and neutrino oscillations, hierarchical masses for quarks and leptons, a solution to the strong-CP problem transforming the theta-angle into a Kobayashi-Maskawa phase. Here in the framed standard model (FSM), the renormalization group equation has some special properties which explain the main qualitative features seen in experiment both for mixing matrices of quarks and leptons, and for their mass spectrum. Quantitative results will be given in Paper II. The present paper ends with some tentative predictions on Higgs decay, and with some speculations on the origin of dark matter.

  4. The Framed Standard Model (I) -- A Physics Case for Framing the Yang-Mills Theory?

    NASA Astrophysics Data System (ADS)

    Chan, Hong-Mo; Tsou, Sheung Tsun

    Introducing, in the underlying gauge theory of the Standard Model, the frame vectors in internal space as field variables (framons), in addition to the usual gauge boson and matter fermions fields, one obtains: * the standard Higgs scalar as the framon in the electroweak sector; * a global widetilde{su}(3) symmetry dual to colour to play the role of fermion generations. Renormalization via framon loops changes the orientation in generation space of the vacuum, hence also of the mass matrices of leptons and quarks, thus making them rotate with changing scale μ. From previous work, it is known already that a rotating mass matrix will lead automatically to: * CKM mixing and neutrino oscillations, * hierarchical masses for quarks and leptons, * a solution to the strong-CP problem transforming the theta-angle into a Kobayashi-Maskawa phase. Here in the framed standard model (FSM), the renormalization group equation has some special properties which explain the main qualitative features seen in experiment both for mixing matrices of quarks and leptons, and for their mass spectrum. Quantitative results will be given in Paper II. The present paper ends with some tentative predictions on Higgs decay, and with some speculations on the origin of dark matter...

  5. Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Nakagawa, Y.; Voigt, A.; Ilgenfritz, E.-M.; Müller-Preussker, M.; Nakamura, A.; Saito, T.; Sternbeck, A.; Toki, H.

    2009-06-01

    We study the momentum dependence of the ghost propagator and of the space and time components of the gluon propagator at equal time in pure SU(3) lattice Coulomb-gauge theory carrying out a joint analysis of data collected independently at the Research Center for Nuclear Physics, Osaka and Humboldt University, Berlin. We focus on the scaling behavior of these propagators at β=5.8,…,6.2 and apply a matching technique to relate the data for the different lattice cutoffs. Thereby, lattice artifacts are found to be rather strong for both instantaneous gluon propagators at a large momentum. As a byproduct we obtain the respective lattice scale dependences a(β) for the transversal gluon and the ghost propagator which indeed run faster with β than two-loop running, but slightly slower than what is known from the Necco-Sommer analysis of the heavy quark potential. The abnormal a(β) dependence as determined from the instantaneous time-time gluon propagator, D44, remains a problem, though. The role of residual gauge-fixing influencing D44 is discussed.

  6. Infinite dimensional symmetries of self-dual Yang-Mills

    NASA Astrophysics Data System (ADS)

    Mansfield, Paul; Wardlow, Adam

    2009-08-01

    We construct symmetries of the Chalmers-Siegel action describing self-dual Yang-Mills theory using a canonical transformation to a free theory. The symmetries form an infinite dimensional Lie algebra in the group algebra of isometries.

  7. Perturbation Theory at Eight Loops: Novel Structures and the Breakdown of Manifest Conformality in N =4 Supersymmetric Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Bourjaily, Jacob L.; Heslop, Paul; Tran, Vuong-Viet

    2016-05-01

    We use the soft-collinear bootstrap to construct the 8-loop integrand for the 4-point amplitude and 4-stress-tensor correlation function in planar maximally supersymmetric Yang-Mills theory. Both have a unique representation in terms of planar, conformal integrands grouped according to a hidden symmetry discovered for correlation functions. The answer we find exposes a fundamental tension between manifest locality and planarity with manifest conformality not seen at lower loops. For the first time, the integrand must include terms that are finite even on-shell and terms that are divergent even off-shell (so-called pseudoconformal integrals). We describe these novelties and their consequences in this Letter, and we make the full correlator and amplitude available as part of the Supplemental Material.

  8. Gauge-independent "Abelian" and magnetic-monopole dominance, and the dual Meissner effect in lattice S U (2 ) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Kato, Seikou; Kondo, Kei-Ichi; Shibata, Akihiro

    2015-02-01

    In the S U (2 ) Yang-Mills theory on the four-dimensional Euclidean lattice, we confirm the gauge-independent "Abelian" dominance (or the restricted field dominance) and gauge-independent magnetic-monopole dominance in the string tension of the linear potential extracted from the Wilson loop in the fundamental representation. The dual Meissner effect is observed by demonstrating the squeezing of the chromoelectric field flux connecting a pair of a quark and an antiquark. In addition, the circular magnetic-monopole current is induced around the chromoelectric flux. The type of the dual superconductivity is also determined by fitting the result with the dual Ginzburg-Landau model. Thus, the dual superconductor picture for quark confinement is supported in a gauge-independent manner. These results are obtained based on a reformulation of the lattice Yang-Mills theory based on the change of variables à la Cho-Duan-Ge-Faddeev-Niemi combined with a non-Abelian Stokes theorem for the Wilson loop operator. We give a new procedure (called the reduction) for obtaining the color direction field that plays the central role in this reformulation.

  9. Yang-Mills for Historians and Philosophers

    NASA Astrophysics Data System (ADS)

    Crease, R. P.

    The phrase "Yang-Mills" can be used (1) to refer to the specific theory proposed by Yang and Mills in 1954; or (2) as shorthand for any non-Abelian gauge theory. The 1954 version, physically speaking, had a famous show-stopping defect in the form of what might be called the "Pauli snag," or the requirement that, in the Lagrangian for non-Abelian gauge theory the mass term for the gauge field has to be zero. How, then, was it possible for (1) to turn into (2)? What unfolding sequence of events made this transition possible, and what does this evolution say about the nature of theories in physics? The transition between (1) and (2) illustrates what historians and philosophers a century from now might still find instructive and stimulating about the development of Yang-Mills theory.

  10. Analytic representations of Yang-Mills amplitudes

    NASA Astrophysics Data System (ADS)

    Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.; Feng, Bo

    2016-12-01

    Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space-fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is the foundations of a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.

  11. Existence of topological hairy dyons and dyonic black holes in anti-de Sitter su(N) Einstein-Yang-Mills theory

    SciTech Connect

    Baxter, J. Erik

    2016-02-15

    We investigate dyonic black hole and dyon solutions of four-dimensional su(N) Einstein-Yang-Mills theory with a negative cosmological constant. We derive a set of field equations in this case, and prove the existence of non-trivial solutions to these equations for any integer N, with 2N − 2 gauge degrees of freedom. We do this by showing that solutions exist locally at infinity, and at the event horizon for black holes and the origin for solitons. We then prove that we can patch these solutions together regularly into global solutions that can be integrated arbitrarily far into the asymptotic regime. Our main result is to show that dyonic solutions exist in open sets in the parameter space, and hence that we can find non-trivial dyonic solutions in a number of regimes whose magnetic gauge fields have no zeros, which is likely important to the stability of the solutions.

  12. On the existence of soliton and hairy black hole solutions of {\\mathfrak {su}}(N) Einstein Yang Mills theory with a negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Baxter, J. E.; Winstanley, Elizabeth

    2008-12-01

    We study the existence of soliton and black hole solutions of four-dimensional {\\mathfrak {su}}(N) Einstein Yang Mills theory with a negative cosmological constant. We prove the existence of non-trivial solutions for any integer N, with N - 1 gauge field degrees of freedom. In particular, we prove the existence of solutions in which all the gauge field functions have no zeros. For fixed values of the parameters (at the origin or event horizon, as applicable) defining the soliton or black hole solutions, if the magnitude of the cosmological constant is sufficiently large, then the gauge field functions all have no zeros. These latter solutions are of special interest because at least some of them will be linearly stable.

  13. On the global existence of hairy black holes and solitons in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik

    2016-10-01

    We investigate the existence of black hole and soliton solutions to four dimensional, anti-de Sitter (adS), Einstein-Yang-Mills theories with general semisimple connected and simply connected gauge groups, concentrating on the so-called regular case. We here generalise results for the asymptotically flat case, and compare our system with similar results from the well-researched adS {mathfrak {su}}(N) system. We find the analysis differs from the asymptotically flat case in some important ways: the biggest difference is that for Λ <0, solutions are much less constrained as r→ infty , making it possible to prove the existence of global solutions to the field equations in some neighbourhood of existing trivial solutions, and in the limit of |Λ |→ infty . In particular, we can identify non-trivial solutions where the gauge field functions have no zeroes, which in the {mathfrak {su}}(N) case proved important to stability.

  14. On the stability of soliton and hairy black hole solutions of 𝔰𝔲(N) Einstein-Yang-Mills theory with a negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik; Winstanley, Elizabeth

    2016-02-01

    We investigate the stability of spherically symmetric, purely magnetic, soliton and black hole solutions of four-dimensional 𝔰𝔲(N) Einstein-Yang-Mills theory with a negative cosmological constant Λ. These solutions are described by N - 1 magnetic gauge field functions ωj. We consider linear, spherically symmetric, perturbations of these solutions. The perturbations decouple into two sectors, known as the sphaleronic and gravitational sectors. For any N, there are no instabilities in the sphaleronic sector if all the magnetic gauge field functions ωj have no zeros and satisfy a set of N - 1 inequalities. In the gravitational sector, we prove that there are solutions which have no instabilities in a neighbourhood of stable embedded 𝔰𝔲(2) solutions, provided the magnitude of the cosmological constant |" separators=" Λ | is sufficiently large.

  15. Dyons and dyonic black holes in su (N ) Einstein-Yang-Mills theory in anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Shepherd, Ben L.; Winstanley, Elizabeth

    2016-03-01

    We present new spherically symmetric, dyonic soliton and black hole solutions of the su (N ) Einstein-Yang-Mills equations in four-dimensional asymptotically anti-de Sitter spacetime. The gauge field has nontrivial electric and magnetic components and is described by N -1 magnetic gauge field functions and N -1 electric gauge field functions. We explore the phase space of solutions in detail for su (2 ) and su (3 ) gauge groups. Combinations of the electric gauge field functions are monotonic and have no zeros; in general the magnetic gauge field functions may have zeros. The phase space of solutions is extremely rich, and we find solutions in which the magnetic gauge field functions have more than fifty zeros. Of particular interest are solutions for which the magnetic gauge field functions have no zeros, which exist when the negative cosmological constant has sufficiently large magnitude. We conjecture that at least some of these nodeless solutions may be stable under linear, spherically symmetric, perturbations.

  16. YANG-MILLS FIELDS AND THE LATTICE.

    SciTech Connect

    CREUTZ,M.

    2004-05-18

    The Yang-Mills theory lies at the heart of our understanding of elementary particle interactions. For the strong nuclear forces, we must understand this theory in the strong coupling regime. The primary technique for this is the lattice. While basically an ultraviolet regulator, the lattice avoids the use of a perturbative expansion. I discuss some of the historical circumstances that drove us to this approach, which has had immense success, convincingly demonstrating quark confinement and obtaining crucial properties of the strong interactions from first principles.

  17. Study of the maximal Abelian gauge in SU(2) Euclidean Yang-Mills theory in the presence of the Gribov horizon

    NASA Astrophysics Data System (ADS)

    Capri, M. A. L.; Lemes, V. E. R.; Sobreiro, R. F.; Sorella, S. P.; Thibes, R.

    2006-11-01

    We pursue the study of SU(2) Euclidean Yang-Mills theory in the maximal Abelian gauge by taking into account the effects of the Gribov horizon. The Gribov approximation, previously introduced in [M. A. L. Capri, V. E. R. Lemes, R. F. Sobreiro, S. P. Sorella, and R. Thibes, Phys. Rev. D 72, 085021 (2005).], is improved through the introduction of the horizon function, which is constructed under the requirements of localizability and renormalizability. By following Zwanziger’s treatment of the horizon function in the Landau gauge, we prove that, when cast in local form, the horizon term of the maximal Abelian gauge leads to a quantized theory which enjoys multiplicative renormalizability, a feature which is established to all orders by means of the algebraic renormalization. Furthermore, it turns out that the horizon term is compatible with the local residual U(1) Ward identity, typical of the maximal Abelian gauge, which is easily derived. As a consequence, the nonrenormalization theorem, ZgZA1/2=1, relating the renormalization factors of the gauge coupling constant Zg and of the diagonal gluon field ZA, still holds in the presence of the Gribov horizon. Finally, we notice that a generalized dimension two gluon operator can be also introduced. It is BRST invariant on-shell, a property which ensures its multiplicative renormalizability. Its anomalous dimension is not an independent parameter of the theory, being obtained from the renormalization factors of the gauge coupling constant and of the diagonal antighost field.

  18. Landau gauge Yang-Mills correlation functions

    NASA Astrophysics Data System (ADS)

    Cyrol, Anton K.; Fister, Leonard; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2016-09-01

    We investigate Landau gauge S U (3 ) Yang-Mills theory in a systematic vertex expansion scheme for the effective action with the functional renormalization group. Particular focus is put on the dynamical creation of the gluon mass gap at nonperturbative momenta and the consistent treatment of quadratic divergences. The nonperturbative ghost and transverse gluon propagators as well as the momentum-dependent ghost-gluon, three-gluon and four-gluon vertices are calculated self-consistently with the classical action as the only input. The apparent convergence of the expansion scheme is discussed and within the errors, our numerical results are in quantitative agreement with available lattice results.

  19. The four-loop remainder function and multi-Regge behavior at NNLLA in planar $ \\mathcal{N} $ = 4 super-Yang-Mills theory

    SciTech Connect

    None, None

    2014-06-19

    We present the four-loop remainder function for six-gluon scattering with maximal helicity violation in planar NN = 4 super-Yang-Mills theory, as an analytic function of three dual-conformal cross ratios. The function is constructed entirely from its analytic properties, without ever inspecting any multi-loop integrand. We employ the same approach used at three loops, writing an ansatz in terms of hexagon functions, and fixing coefficients in the ansatz using the multi-Regge limit and the operator product expansion in the near-collinear limit. We express the result in terms of multiple polylogarithms, and in terms of the coproduct for the associated Hopf algebra. From the remainder function, we extract the BFKL eigenvalue at next-to-next-to-leading logarithmic accuracy (NNLLA), and the impact factor at N3LLA. We plot the remainder function along various lines and on one surface, studying ratios of successive loop orders. As seen previously through three loops, these ratios are surprisingly constant over large regions in the space of cross ratios, and they are not far from the value expected at asymptotically large orders of perturbation theory.

  20. Einstein Manifolds as Yang-Mills Instantons

    NASA Astrophysics Data System (ADS)

    Oh, John J.; Yang, Hyun Seok

    2013-07-01

    It is well known that Einstein gravity can be formulated as a gauge theory of Lorentz group where spin connections play a role of gauge fields and Riemann curvature tensors correspond to their field strengths. One can then pose an interesting question: What is the Einstein equation from the gauge theory point of view? Or equivalently, what is the gauge theory object corresponding to Einstein manifolds? We show that the Einstein equations in four dimensions are precisely self-duality equations in Yang-Mills gauge theory and so Einstein manifolds correspond to Yang-Mills instantons in SO(4) = SU(2)L × SU(2)R gauge theory. Specifically, we prove that any Einstein manifold with or without a cosmological constant always arises as the sum of SU(2)L instantons and SU(2)R anti-instantons. This result explains why an Einstein manifold must be stable because two kinds of instantons belong to different gauge groups, instantons in SU(2)L and anti-instantons in SU(2)R, and so they cannot decay into a vacuum. We further illuminate the stability of Einstein manifolds by showing that they carry nontrivial topological invariants.

  1. Stationary axisymmetric SU(2) Einstein-Yang-Mills fields with restricted circularity conditions are Abelian

    NASA Astrophysics Data System (ADS)

    Chinea, F. J.; Navarro-Lérida, F.

    2002-03-01

    In this paper we prove that in a stationary axisymmetric SU(2) Einstein-Yang-Mills theory the most reasonable circularity conditions that can be considered for the Yang-Mills fields imply in fact that the field is of embedded Abelian type, or else that the metric is not asymptotically flat.

  2. Quantum Yang-Mills Dark Energy

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman

    2016-02-01

    In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  3. Non-Abelian strings in supersymmetric Yang-Mills

    SciTech Connect

    Shifman, M.

    2012-09-26

    I give a broad review of novel phenomena discovered in certain Yang-Mills theories: non-Abelian strings and confined monopoles. Then I explain how these phenomena allow one to study strong dynamics of gauge theories in four dimensions from two-dimensional models emerging on the string world sheet.

  4. Nonperturbative aspects of Euclidean Yang-Mills theories in linear covariant gauges: Nielsen identities and a BRST-invariant two-point correlation function

    NASA Astrophysics Data System (ADS)

    Capri, M. A. L.; Dudal, D.; Pereira, A. D.; Fiorentini, D.; Guimaraes, M. S.; Mintz, B. W.; Palhares, L. F.; Sorella, S. P.

    2017-02-01

    In order to construct a gauge-invariant two-point function in a Yang-Mills theory, we propose the use of the all-order gauge-invariant transverse configurations Ah . Such configurations can be obtained through the minimization of the functional Amin2 along the gauge orbit within the BRST-invariant formulation of the Gribov-Zwanziger framework recently put forward in [1,2] for the class of the linear covariant gauges. This correlator turns out to provide a characterization of nonperturbative aspects of the theory in a BRST-invariant and gauge-parameter-independent way. In particular, it turns out that the poles of ⟨Aμh(k )Aνh(-k )⟩ are the same as those of the transverse part of the gluon propagator, which are also formally shown to be independent of the gauge parameter α entering the gauge condition through the Nielsen identities. The latter follow from the new exact BRST-invariant formulation introduced before. Moreover, the correlator ⟨Aμh(k )Aνh(-k )⟩ enables us to attach a BRST-invariant meaning to the possible positivity violation of the corresponding temporal Schwinger correlator, giving thus for the first time a consistent, gauge parameter independent, setup to adopt the positivity violation of ⟨Aμh(k )Aνh(-k )⟩ as a signature for gluon confinement. Finally, in the context of gauge theories supplemented with a fundamental Higgs field, we use ⟨Aμh(k )Aνh(-k )⟩ to probe the pole structure of the massive gauge boson in a gauge-invariant fashion.

  5. Yang-Mills for historians and philosophers

    NASA Astrophysics Data System (ADS)

    Crease, R. P.

    2016-01-01

    The phrase “Yang-Mills” can be used (1) to refer to the specific theory proposed by Yang and Mills in 1954; or (2) as shorthand for any non-Abelian gauge theory. The 1954 version, physically speaking, had a famous show-stopping defect in the form of what might be called the “Pauli snag,” or the requirement that, in the Lagrangian for non-Abelian gauge theory the mass term for the gauge field has to be zero. How, then, was it possible for (1) to turn into (2)? What unfolding sequence of events made this transition possible, and what does this evolution say about the nature of theories in physics? The transition between (1) and (2) illustrates what historians and philosophers a century from now might still find instructive and stimulating about the development of Yang-Mills theory.

  6. Yang-Mills instanton sheaves

    NASA Astrophysics Data System (ADS)

    Lai, Sheng-Hong; Lee, Jen-Chi; Tsai, I.-Hsun

    2017-02-01

    The SL(2 , C) Yang-Mills instanton solutions constructed recently by the biquaternion method were shown to satisfy the complex version of the ADHM equations and the monad construction. Moreover, we discover that, in addition to the holomorphic vector bundles on CP3 similar to the case of SU(2) ADHM construction, the SL(2 , C) instanton solutions can be used to explicitly construct instanton sheaves on CP3. Presumably, the existence of these instanton sheaves is related to the singularities of the SL(2 , C) instantons on S4 which do not exist for SU(2) instantons.

  7. Black-hole black-string phase transitions in thermal (1 + 1)-dimensional supersymmetric Yang Mills theory on a circle

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Marsano, Joseph; Minwalla, Shiraz; Wiseman, Toby

    2004-11-01

    We review and extend earlier work that uses the AdS/CFT correspondence to relate the black-hole black-string transition of gravitational theories on a circle to a phase transition in maximally supersymmetric (1 + 1)-dimensional SU(N) gauge theories at large N, again compactified on a circle. We perform gravity calculations to determine a likely phase diagram for the strongly coupled gauge theory. We then directly study the phase structure of the same gauge theory, now at weak 't Hooft coupling. In the interesting temperature regime for the phase transition, the (1 + 1)-dimensional theory reduces to a (0 + 1)-dimensional bosonic theory, which we solve using Monte Carlo methods. We find strong evidence that the weakly coupled gauge theory also exhibits a black hole black string-like phase transition in the large N limit. We demonstrate that a simple Landau Ginzburg-like model describes the behaviour near the phase transition remarkably well. The weak coupling transition appears to be close to the cusp between a first-order and a second-order transition.

  8. Exotic polarizations of D2 branes and oblique vacua of (2+1)-dimensional super Yang-Mills theory

    SciTech Connect

    Bena, Iosif; Nudelman, Aleksey

    2000-12-15

    We investigate the oblique vacua in the perturbed (2+1)-dimensional gauge theory living on D2-branes. The string theory dual of these vacua is expected to correspond to polarizations of the D2-branes into NS5-branes with D4-brane charge. We perturb the gauge theory by adding fermion masses. In the nonsupersymmetric case, we also consider the effect of slight variations of the masses of the scalars. For certain ranges of scalar masses we find oblique vacua. We show that D4 charge is an essential ingredient in understanding D2 {yields} NS5 polarizations. We find that some of the polarization states which appear as metastable vacua when the D4 charge is not considered are in fact unstable. They decay by acquiring a D4 charge, tilting and shrinking to zero size.

  9. No-go for partially massless spin-2 Yang-Mills

    DOE PAGES

    Garcia-Saenz, Sebastian; Hinterbichler, Kurt; Joyce, Austin; ...

    2016-02-05

    There are various no-go results forbidding self-interactions for a single partially massless spin-2 field. Given the photon-like structure of the linear partially massless field, it is natural to ask whether a multiplet of such fields can interact under an internal Yang-Mills like extension of the partially massless symmetry. In this paper, we give two arguments that such a partially massless Yang-Mills theory does not exist. The first is that there is no Yang-Mills like non-abelian deformation of the partially massless symmetry, and the second is that cubic vertices with the appropriate structure constants do not exist.

  10. An exploratory study of Yang-Mills three-point functions at non-zero temperature

    NASA Astrophysics Data System (ADS)

    Huber, Markus Q.

    2017-03-01

    Results for three-point functions of Landau gauge Yang-Mills theory at non-vanishing temperature are presented and compared to lattice results. It is found that the three-gluon vertex is enhanced for temperatures below the phase transition. At very low momenta it becomes negative for all temperatures. Furthermore, truncation effects in functional equations are discussed at the example of three-dimensional Yang-Mills theory for which a self-contained solution is presented.

  11. Yang-Mills glueballs as closed bosonic strings

    NASA Astrophysics Data System (ADS)

    Dubovsky, Sergei; Hernández-Chifflet, Guzmán

    2017-02-01

    We put forward the Axionic String Ansatz (ASA), which provides a unified description for the worldsheet dynamics of confining strings in pure Yang-Mills theory both in D = 3 and D = 4 space-time dimensions. The ASA is motivated by the excitation spectrum of long confining strings, as measured on a lattice, and by recently constructed integrable axionic non-critical string models. According to the ASA, pure gluodynamics in 3D is described by a non-critical bosonic string theory without any extra local worldsheet degrees of freedom. We argue that this assumption fixes the set of quantum numbers (spins, P-and C-parities) of almost all glueball states. We confront the resulting predictions with the properties of approximately 12 + 22 + 32 + 52 = 39 lightest glueball states measured on a lattice and find a good agreement. On the other hand, the spectrum of low lying glueballs in 4D gluodynamics suggests the presence of a massive pseudoscalar mode on the string worldsheet, in agreement with the ASA and lattice data for long strings.

  12. HYM-flation: Yang-Mills cosmology with Horndeski coupling

    NASA Astrophysics Data System (ADS)

    Davydov, E.; Gal'tsov, D.

    2016-02-01

    We propose new mechanism for inflation using classical SU (2) Yang-Mills (YM) homogeneous and isotropic field non-minimally coupled to gravity via Horndeski prescription. This is the unique generally and gauge covariant ghost-free YM theory with the curvature-dependent action leading to second-order gravity and Yang-Mills field equations. We show that its solution space contains de Sitter boundary to which the trajectories are attracted for some finite time, ensuring the robust inflation with a graceful exit. The theory can be generalized to include the Higgs field leading to two-steps inflationary scenario, in which the Planck-scale YM-generated inflation naturally prepares the desired initial conditions for the GUT-scale Higgs inflation.

  13. Comments on twisted indices in 3d supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Closset, Cyril; Kim, Heeyeon

    2016-08-01

    We study three-dimensional {N} = 2 supersymmetric gauge theories on Σ g × S 1 with a topological twist along Σ g , a genus- g Riemann surface. The twisted supersymmetric index at genus g and the correlation functions of half-BPS loop operators on S 1 can be computed exactly by supersymmetric localization. For g = 1, this gives a simple UV computation of the 3d Witten index. Twisted indices provide us with a clean derivation of the quantum algebra of supersymmetric Wilson loops, for any Yang-Mills-Chern-Simons-matter theory, in terms of the associated Bethe equations for the theory on {{R}}^2× {S}^1 . This also provides a powerful and simple tool to study 3d {N} = 2 Seiberg dualities. Finally, we study A- and B-twisted indices for {N} = 4 supersymmetric gauge theories, which turns out to be very useful for quantitative studies of three-dimensional mirror symmetry. We also briefly comment on a relation between the S 2 × S 1 twisted indices and the Hilbert series of {N} = 4 moduli spaces.

  14. Yang-Mills generalization of the geometrical collective model

    NASA Astrophysics Data System (ADS)

    Rosensteel, George; Sparks, Nick

    2015-04-01

    The geometrical or Bohr-Mottelson model is generalized and recast as a Yang-Mills theory. The gauge symmetry determines conservation of Kelvin circulation. The circulation commutes with the Hamiltonian when it is the sum of the kinetic energy and a potential that depends only on deformation. The conventional Bohr-Mottelson model is the special case of circulation zero, and wave functions are complex-valued. In the generalization, any quantized value of the circulation is allowed, and the wave functions are vector-valued. The Yang-Mills formulation introduces a new coupling between the geometrical and intrinsic degrees of freedom. The coupling appears in the covariant derivative term of the collective kinetic energy. This kind of coupling is sometimes called ``magnetic'' because of the analogy with electrodynamics.

  15. Ω-deformation of B-twisted gauge theories and the 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Tan, Meng-Chwan; Yagi, Junya; Zhao, Qin

    2015-02-01

    We study Ω-deformation of B-twisted gauge theories in two dimensions. As an application, we construct an Ω-deformed, topologically twisted five-dimensional maximally supersymmetric Yang-Mills theory on the product of a Riemann surface Σ and a three-manifold M, and show that when Σ is a disk, this theory is equivalent to analytically continued Chern-Simons theory on M. Based on these results, we establish a correspondence between three-dimensional = 2 superconformal theories and analytically continued Chern-Simons theory. Furthermore, we argue that there is a mirror symmetry between Ω-deformed two-dimensional theories.

  16. Yang-Mills effective action at high temperature

    NASA Astrophysics Data System (ADS)

    Oswald, M.

    2005-06-01

    Yang-Mills theory undergoes a transition from a confined to a deconfined phase in the intermediate temperature regime, where perturbation theory fails. In order to approach this phase transition from the high temperature side we study the effective action for the eigenvalues of the order parameter, the Polyakov loop, in the whole range of its possible variation. By means of a covariant derivative expansion we integrate out fast varying quantum fluctuations around background gluon fields and assume that these are slowly varying, but that the amplitude of A4 is arbitrary. Our results can be used to study correlation functions of the order parameter at high temperatures.

  17. Fate of Yang-Mills black hole in early Universe

    NASA Astrophysics Data System (ADS)

    Nakonieczny, Łukasz; Rogatko, Marek

    2013-02-01

    According to the Big Bang Theory as we go back in time the Universe becomes progressively hotter and denser. This leads us to believe that the early Universe was filled with hot plasma of elementary particles. Among many questions concerning this phase of history of the Universe there are questions of existence and fate of magnetic monopoles and primordial black holes. Static solution of Einstein-Yang-Mills system may be used as a toy model for such a black hole. Using methods of field theory we will show that its existence and regularity depend crucially on the presence of fermions around it.

  18. Fate of Yang-Mills black hole in early Universe

    SciTech Connect

    Nakonieczny, Lukasz; Rogatko, Marek

    2013-02-21

    According to the Big Bang Theory as we go back in time the Universe becomes progressively hotter and denser. This leads us to believe that the early Universe was filled with hot plasma of elementary particles. Among many questions concerning this phase of history of the Universe there are questions of existence and fate of magnetic monopoles and primordial black holes. Static solution of Einstein-Yang-Mills system may be used as a toy model for such a black hole. Using methods of field theory we will show that its existence and regularity depend crucially on the presence of fermions around it.

  19. N=2 super Yang-Mills action as a Becchi-Rouet-Stora-Tyutin term, topological Yang-Mills action, and instantons

    NASA Astrophysics Data System (ADS)

    Ülker, K.

    2003-10-01

    By constructing a nilpotent extended Becchi-Rouet-Stora-Tyutin (BRST) operator s¯ that involves the N=2 global supersymmetry transformations of one chirality, we show that the standard N=2 off-shell super Yang-Mills action can be represented as an exact BRST term s¯Ψ, if the gauge fermion Ψ is allowed to depend on the inverse powers of supersymmetry (SUSY) ghosts. By using this nonanalytical structure of the gauge fermion (via inverse powers of supersymmetry ghosts), we give field redefinitions in terms of composite fields of SUSY ghosts and N=2 fields and we show that Witten’s topological Yang-Mills (TYM) theory can be obtained from the ordinary Euclidean N=2 super Yang-Mills (SYM) theory directly by using such field redefinitions. In other words, TYM theory is obtained as a change of variables (without twisting). As a consequence it is found that physical and topological interpretations of N=2 SYM theory are intertwined together due to the requirement of analyticity of global SUSY ghosts. Moreover, after an instanton-inspired truncation of the model is used, we show that the given field redefinitions yield the Baulieu-Singer formulation of topological Yang-Mills theory.

  20. A consistent measure for lattice Yang-Mills

    NASA Astrophysics Data System (ADS)

    Vilela Mendes, R.

    2017-01-01

    The construction of a consistent measure for Yang-Mills is a precondition for an accurate formulation of nonperturbative approaches to QCD, both analytical and numerical. Using projective limits as subsets of Cartesian products of homomorphisms from a lattice to the structure group, a consistent interaction measure and an infinite-dimensional calculus have been constructed for a theory of non-Abelian generalized connections on a hypercubic lattice. Here, after reviewing and clarifying past work, new results are obtained for the mass gap when the structure group is compact.

  1. Yang-Mills correlators across the deconfinement phase transition

    NASA Astrophysics Data System (ADS)

    Reinosa, U.; Serreau, J.; Tissier, M.; Tresmontant, A.

    2017-02-01

    We compute the finite temperature ghost and gluon propagators of Yang-Mills theory in the Landau-DeWitt gauge. The background field that enters the definition of the latter is intimately related with the (gauge-invariant) Polyakov loop and serves as an equivalent order parameter for the deconfinement transition. We use an effective gauge-fixed description where the nonperturbative infrared dynamics of the theory is parametrized by a gluon mass which, as argued elsewhere, may originate from the Gribov ambiguity. In this scheme, one can perform consistent perturbative calculations down to infrared momenta, which have been shown to correctly describe the phase diagram of Yang-Mills theories in four dimensions as well as the zero-temperature correlators computed in lattice simulations. In this article, we provide the one-loop expressions of the finite temperature Landau-DeWitt ghost and gluon propagators for a large class of gauge groups and present explicit results for the SU(2) case. These are substantially different from those previously obtained in the Landau gauge, which corresponds to a vanishing background field. The nonanalyticity of the order parameter across the transition is directly imprinted onto the propagators in the various color modes. In the SU(2) case, this leads, for instance, to a cusp in the electric and magnetic gluon susceptibilities as well as similar signatures in the ghost sector. We mention the possibility that such distinctive features of the transition could be measured in lattice simulations in the background field gauge studied here.

  2. Understanding the Yang-Mills ground state: The origin of colour confinement

    NASA Astrophysics Data System (ADS)

    Preparata, Giuliano

    1988-01-01

    The essential magnetic instability of the perturbative ground state of a non-abelian Yang-Mills theory recently discovered, is shown to lead to a family of degenerate states, the Savvidy states, where the Yang-Mills fields undergo an infinite (when the ultraviolet cut-off Λ-->∞M) condensation process. These states build up the real Yang-Mills ground state, in which colour is confined and governed by the effective lagrangian of anisotropic chromodynamics (ACD), proposed by the present author a few years ago. This appears to solve the problem of confinement in QCD. On leave of absence from Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy.

  3. Gauge-covariant decomposition and magnetic monopole for G (2 ) Yang-Mills field

    NASA Astrophysics Data System (ADS)

    Matsudo, Ryutaro; Kondo, Kei-Ichi

    2016-08-01

    We provide a gauge-covariant decomposition of the Yang-Mills field with the exceptional gauge group G (2 ), which extends the field decomposition proposed by Cho, Duan-Ge, and Faddeev-Niemi for the S U (N ) Yang-Mills field. As an application of the decomposition, we derive a new expression of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of G (2 ). The resulting new form is used to define gauge-invariant magnetic monopoles in the G (2 ) Yang-Mills theory. Moreover, we obtain the quantization condition to be satisfied by the resulting magnetic charge. The method given in this paper is general enough to be applicable to any semisimple Lie group other than S U (N ) and G (2 ).

  4. A walk through superstring theory with an application to Yang-Mills theory: K-strings and D-branes as gauge/gravity dual objects

    NASA Astrophysics Data System (ADS)

    Stiffler, Kory M.

    Superstring theory is one current, promising attempt at unifying gravity with the other three known forces: the electromagnetic force, and the weak and strong nuclear forces. Though this is still a work in progress, much effort has been put toward this goal. A set of specific tools which are used in this effort are gauge/gravity dualities. This thesis consists of a specific implementation of gauge/gravity dualities to describe k-strings of strongly coupled gauge theories as objects dual to Dp-branes embedded in confining supergravity backgrounds from low energy superstring field theory. Along with superstring theory, k-strings are also commonly investigated with lattice gauge theory and Hamiltonian methods. A k-string is a colorless combination of quark-antiquark source pairs, between which a color flux tube develops. The two most notable terms of the k-string energy are, for large quark anti-quark separation L, the tension term, proportional to L, and the Coulombic 1/L correction, known as the Luscher term. This thesis provides an overview of superstring theories and how gauge/gravity dualities emerge from them. It shows in detail how these dualities can be used for the specific problem of calculating the k-string energy in 2 + 1 and 3 + 1 space-time dimensions as the energy of D p-branes in the dual gravitational theory. A detailed review of k-string tension calculations is given where good agreement is found with lattice gauge theory and Hamiltonian methods. In reviewing the k-string tension, we also touch on how different representations of k-strings can be described with Dp-branes through gauge/gravity dualities. The main result of this thesis is how the Luscher term is found to emerge as the one loop quantum corrections to the Dp-brane energy. In 2+1 space-time dimensions, we have Luscher term data to compare with from lattice gauge theory, where we find good agreement.

  5. Statefinder Diagnostic for the Yang-Mills Dark Energy Model

    NASA Astrophysics Data System (ADS)

    Zhao, Wen

    We study the statefinder parameters in the Yang-Mills condensate dark energy models, and find that the evolving trajectories of these models are different from those of other dark energy models. We also define two eigenfunctions of the Yang-Mills condensate dark energy models. The values of these eigenfunctions are quite close to zero if the equation of state of the Yang-Mills condensate is not far from -1, which can be used to simply differentiate between the Yang-Mills condensate models and other dark energy models.

  6. Einstein-Yang-Mills scattering amplitudes from scattering equations

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2015-01-01

    We present the building blocks that can be combined to produce tree-level S-matrix elements of a variety of theories with various spins mixed in arbitrary dimensions. The new formulas for the scattering of n massless particles are given by integrals over the positions of n points on a sphere restricted to satisfy the scattering equations. As applications, we obtain all single-trace amplitudes in Einstein-Yang-Mills (EYM) theory, and generalizations to include scalars. Also in EYM but extended by a B-field and a dilaton, we present all double-trace gluon amplitudes. The building blocks are made of Pfaffians and Parke-Taylor-like factors of subsets of particle labels.

  7. Galactic Rotation Curves from Yang-Mills Gravity

    NASA Astrophysics Data System (ADS)

    Katz, Daniel

    2014-03-01

    Yang-Mills Gravity (YMG) is a gauge field theory based on the T4 group in flat spacetime. In its macroscopic limit, it modifies the trajectories of classical objects such that it serves as an alternative to General Relativity (GR). Since YMG is relatively new and unknown, a brief review of the general theory is given and a more comprehensive list of references is provided. In the present work, we find that the Schwarzchild-like solution to YMG supports a term like αr with constant α. This translates into an r-term in the effective gravitational potential of classical objects. We use this modified potential to predict the shape of the rotation curves of spiral galaxies, and then use data from SDSS to constrain α, which seems to be a free parameter in YMG. This work was supported the NSF's GK12 Vibes and Waves Fellowship.

  8. Classical Yang-Mills Mechanics: Instant vs. Light-cone Form

    SciTech Connect

    Mladenov, D.

    2010-11-25

    Two different forms of relativistic dynamics, the instant and the light-cone form, for the pure SU(2) Yang-Mills field theory in 4-dimensional Minkowski space are examined under the supposition that the gauge fields depend on the time evolution parameter only. The obtained under that restriction of gauge potential space homogeneity mechanical matrix model, sometimes called Yang-Mills classical mechanics, is systematically studied in its instant and light-cone form of dynamics using the Dirac's generalized Hamiltonian approach. In the both cases the constraint content of the obtained mechanical systems is found. In contrast to its well-known instant-time counterpart the light-cone version of SU(2) Yang-Mills classical mechanics has in addition to the constraints generating the SU(2) gauge transformations the new first and second class constraints also. On account of all of these constraints a complete reduction in number of the degrees of freedom is performed. In the instant form of dynamics it is shown that after elimination of the gauge degrees of freedom from the classical SU(2) Yang-Mills mechanics the resulting unconstrained system represents the ID{sub 3} Euler-Calogero-Moser model with a certain external fourth-order potential, whereas in the light-cone form it is argued that the classical evolution of the unconstrained degrees of freedom is equivalent to a free one-dimensional particle dynamics.

  9. On the sign problem in 2D lattice super Yang-Mills

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Galvez, Richard; Joseph, Anosh; Mehta, Dhagash

    2012-01-01

    In recent years a new class of supersymmetric lattice theories have been proposed which retain one or more exact supersymmetries for non-zero lattice spacing. Recently there has been some controversy in the literature concerning whether these theories suffer from a sign problem. In this paper we address this issue by conducting simulations of the mathcal{N} = (2, 2) and mathcal{N} = (8, 8) supersymmetric Yang-Mills theories in two dimensions for the U(N ) theories with N = 2, 3, 4, using the new twisted lattice formulations. Our results provide evidence that these theories do not suffer from a sign problem in the continuum limit. These results thus boost confidence that the new lattice formulations can be used successfully to explore non-perturbative aspects of four-dimensional mathcal{N} = 4 supersymmetric Yang-Mills theory.

  10. Newtonian perturbations and the Einstein Yang Mills-dilaton equations

    NASA Astrophysics Data System (ADS)

    Oliynyk, Todd A.

    2005-06-01

    In this paper, we show that the problem of proving the existence of a countable number of solutions to the static spherically symmetric SU(2) Einstein Yang Mills-dilaton (EYMd) equations can be reduced to proving the non-existence of solutions to the linearized Yang Mills-dilaton equations (lYMd) satisfying certain asymptotic conditions. The reduction from a nonlinear to a linear problem is achieved using a Newtonian perturbation-type argument.

  11. Two-Dimensional Lattice for Four-Dimensional N = 4 Supersymmetric Yang-Mills

    NASA Astrophysics Data System (ADS)

    Hanada, M.; Matsuura, S.; Sugino, F.

    2011-10-01

    We construct a lattice formulation of a mass-deformed two-dimensional N = (8,8) super Yang-Mills theory with preserving two supercharges exactly. Gauge fields are represented by compact unitary link variables, and the exact supercharges on the lattice are nilpotent up to gauge transformations and SU(2)_R rotations. Due to the mass deformation, the lattice model is free from the vacuum degeneracy problem, which was encountered in earlier approaches, and flat directions of scalar fields are stabilized giving discrete minima representing fuzzy S^2. Around the trivial minimum, quantum continuum theory is obtained with no tuning, which serves a nonperturbative construction of the IIA matrix string theory. Moreover, around the minimum of k-coincident fuzzy spheres, four-dimensional N = 4 U(k) super Yang-Mills theory with two commutative and two noncommutative directions emerges. In this theory, sixteen supersymmetries are broken by the mass deformation to two. Assuming the breaking is soft, we give a scenario leading to undeformed N = 4 super Yang-Mills on R^4 without any fine tuning. As an evidence for the validity of the assumption, some computation of 1-loop radiative corrections is presented.

  12. New perspectives on an old problem: The bending of light in Yang-Mills gravity

    NASA Astrophysics Data System (ADS)

    Cottrell, Kazuo Ota; Hsu, Jong-Ping

    Yang-Mills gravity with electromagnetism predicts, in the geometric optics limit, a value for the deflection of light by the sun which agrees closely with the reanalysis of Eddington's 1919 optical measurements done in 1979. Einstein's General Theory of Relativity, on the other hand, agrees very closely with measurements of the deflection of electromagnetic waves made in the range of radio frequencies. Since both General Relativity and Yang-Mills gravity with electromagnetism in the geometric optics limit make predictions for the optical region which fall within experimental uncertainty, it becomes important to consider the possibility of the existence of a frequency dependence in the measurement results for the deflection of light, in order to determine which theory more closely describes nature...

  13. Lattice super-Yang-Mills using domain wall fermions in the chiral limit

    SciTech Connect

    Giedt, Joel; Brower, Richard; Catterall, Simon; Fleming, George T.; Vranas, Pavlos

    2009-01-15

    Lattice N=1 super-Yang-Mills formulated using Ginsparg-Wilson fermions provides a rigorous nonperturbative definition of the continuum theory that requires no fine-tuning as the lattice spacing is reduced to zero. Domain wall fermions are one explicit scheme for achieving this and using them we have performed large-scale Monte Carlo simulations of the theory for gauge group SU(2). We have measured the gaugino condensate, static potential, Creutz ratios, and residual mass for several values of the domain wall separation L{sub s}, four-dimensional lattice volume, and two values of the bare gauge coupling. With this data we are able to extrapolate the gaugino condensate to the chiral limit, to express it in physical units, and to establish important benchmarks for future studies of super-Yang-Mills on the lattice.

  14. Regular solutions to higher order curvature Einstein Yang Mills systems in higher dimensions

    NASA Astrophysics Data System (ADS)

    Breitenlohner, Peter; Maison, Dieter; Tchrakian, D. H.

    2005-12-01

    We study regular, static, spherically symmetric solutions of Yang Mills theories employing higher order invariants of the field strength coupled to gravity in d dimensions. We consider models with only two such invariants characterized by integers p and q. These models depend on one dimensionless parameter α leading to one-parameter families of regular solutions, obtainable by numerical solution of the corresponding boundary value problem. Much emphasis is put on an analytical understanding of the numerical results.

  15. Initial data for gravity coupled to scalar, electromagnetic, and Yang-Mills fields

    NASA Astrophysics Data System (ADS)

    Husain, Viqar

    1999-02-01

    We give Ansätze for solving classically the initial value constraints of general relativity minimally coupled to a scalar field, electromagnetism, or Yang-Mills theory. The results include both time-symmetric and asymmetric data. The time-asymmetric examples are used to test Penrose's cosmic censorship inequality. We find that the inequality can be violated if only the weak energy condition holds.

  16. Topologically massive Yang-Mills: A Hamilton-Jacobi constraint analysis

    SciTech Connect

    Bertin, M. C.; Pimentel, B. M.; Valcárcel, C. E.; Zambrano, G. E. R.

    2014-04-15

    We analyse the constraint structure of the topologically massive Yang-Mills theory in instant-form and null-plane dynamics via the Hamilton-Jacobi formalism. The complete set of hamiltonians that generates the dynamics of the system is obtained from the Frobenius’ integrability conditions, as well as its characteristic equations. As generators of canonical transformations, the hamiltonians are naturally linked to the generator of Lagrangian gauge transformations.

  17. String scattering in flat space and a scaling limit of Yang-Mills correlators

    SciTech Connect

    Okuda, Takuya; Penedones, Joao

    2011-04-15

    We use the flat space limit of the AdS/CFT correspondence to derive a simple relation between the 2{yields}2 scattering amplitude of massless string states in type IIB superstring theory on ten-dimensional Minkowski space and a scaling limit of the N=4 super Yang-Mills four-point functions. We conjecture that this relation holds nonperturbatively and at arbitrarily high energy.

  18. Yang-Mills equation for the nuclear geometrical collective model connexion

    NASA Astrophysics Data System (ADS)

    Sparks, N.; Rosensteel, G.

    2017-01-01

    The Bohr-Mottelson collective model of rotations and quadrupole vibrations is a foundational model in nuclear structure physics. A modern formulation using differential geometry of bundles builds on this legacy collective model to allow a deformation-dependent interaction between rotational and vortical degrees of freedom. The interaction is described by the bundle connexion. This article reports the Yang-Mills equation for the connexion. For a class of solutions to the Yang-Mills equation, the differential geometric collective model attains agreement between experiment and theory for the moments of inertia of deformed isotopes. More generally, the differential geometric framework applies to models of emergent phenomena in which two interacting sets of degrees of freedom must be unified.

  19. Non-Perturbative Yang-Mills from Supersymmetry and Strings, Or, in the Jungles of Strong Coupling

    NASA Astrophysics Data System (ADS)

    Shifman, M.

    2005-12-01

    I summarize some recent developments in the issue of planar equivalence between supersymmetric Yang-Mills theory and its orbifold/orientifold daughters. This talk is based on works carried out in collaboration with Adi Armoni, Sasha Gorsky and Gabriele Veneziano.

  20. Recombination of H and He in Yang-Mills Gravity

    NASA Astrophysics Data System (ADS)

    Katz, Daniel

    2015-07-01

    We investigate some aspects of the thermal history of the early universe according to Yang-Mills Gravity (YMG); a gauge theory of gravity set in flat space-time. Specifically, equations for the ionization fractions of hydrogen and singly ionized helium during the recombination epoch are deduced analytically and then solved numerically. By considering several approximations, we find that the presence of primordial helium and its interaction with Lyman series photons has a much stronger effect on the overall free electron density in YMG than it does in the standard, General Relativity (GR)-based, model. Compared to the standard model, recombination happens over a much larger range of temperatures, although there is still a very sharp temperature of last scattering around 2000 K. The ionization history of the universe is not directly observable, but knowledge of it is necessary for CMB power spectrum calculations. Such calculations will provide another rigorous test of YMG and will be explored in detail in an upcoming paper.

  1. Echoing and scaling in Einstein-Yang-Mills critical collapse

    NASA Astrophysics Data System (ADS)

    Gundlach, Carsten

    1997-05-01

    We confirm recent numerical results of echoing and mass scaling in the gravitational collapse of a spherical Yang-Mills field by constructing the critical solution and its perturbations as an eigenvalue problem. Because the field equations are not scale invariant, the Yang-Mills critical solution is asymptotically, rather than exactly, self-similar, but the methods for dealing with discrete self-similarity developed for the real scalar field can be generalized. We find an echoing period Δ=0.73784+/-0.00002 and a critical exponent for the black hole mass γ=0.1964+/-0.0007.

  2. Supergravity backgrounds for four-dimensional maximally supersymmetric Yang-Mills

    NASA Astrophysics Data System (ADS)

    Maxfield, Travis

    2017-02-01

    In this note, we describe supersymmetric backgrounds for the four-dimensional maximally supersymmetric Yang-Mills theory. As an extension of the method of Festuccia and Seiberg to sixteen supercharges in four dimensions, we utilize the coupling of the gauge theory to maximally extended conformal supergravity. Included among the fields of the conformal supergravity multiplet is the complexified coupling parameter of the gauge theory; therefore, backgrounds with spacetime varying coupling — such as appear in F-theory and Janus configurations — are naturally included in this formalism. We demonstrate this with a few examples from past literature.

  3. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  4. Yang - Mills - Higgs equations with nonhomogeneous boundary conditions

    NASA Astrophysics Data System (ADS)

    Tafel, Jacek

    1997-01-01

    The Yang - Mills - Higgs equations in a spatially bounded subset of the Minkowski space are studied under the assumption of a temporal gauge. It is shown that the Cauchy problem for these equations is uniquely solvable (locally in time) if nonhomogeneous boundary conditions of the metallic type are imposed.

  5. Warped Products and Yang-Mills Equations on Noncommutative Spaces

    NASA Astrophysics Data System (ADS)

    Zampini, Alessandro

    2015-02-01

    This paper presents a non-self-dual solution of the Yang-Mills equations on a noncommutative version of the classical , so generalizing the classical meron solution first introduced by de Alfaro et al. (Phys Lett B 65:163-166, 1976). The basic tool for that is a generalization to noncommutative spaces of the classical notion of warped products between metric spaces.

  6. Deconfinement and Duality of (super) Yang-Mills on Toroidially-Compactified Spacetimes for all Gauge Groups

    NASA Astrophysics Data System (ADS)

    Teeple, Brett

    I study gauge theories for any gauge group G, in particular Yang-Mills (YM) theories including super Yang-Mills (SYM) and mass deformed super Yang-Mills (SYM*), on toroidially compactified spacetimes. Each compact direction introduces r = rank( G) massive scalar fields into the theory and results in an effective potential added to the Lagrangian of the theory. The mathematics of such potentials is interesting, however important applications begin with special simple cases. The first case studied here is finite temperature super Yang-Mills where a thermal circle of size 1/T is introduced and the temperature dependence of phases of the theory can be studied including the deconfinement phase transition. Further compactification on a spatial circle of size L is useful. For small such L we are in a regime where semiclassical calculations can be performed at weak coupling. The transition is found to be mediated by the competition between non-perturbative objects including monopole-instantons and 'exotic' topological molecules: neutral and magnetic bions composed of BPS and KK monopole constituents, with charges in the co-root lattice of the gauge group G, as well as electrically charged W-bosons (and wino superpartners in the case of SYM) with charges in the root lattice of G.. The second case is super Yang-Mills on circle compactified spacetimes, but with softly broken supersymmetry with a small mass m for the adjoint fermion. This is interesting as there is a conjectured continuity relating this theory, and its quantum deconfining phase transition at some critical mass for the gluino, to pure Yang-Mills with a thermal deconfinement transition at some critical temperature. Furthermore, on torus compactified spacetimes, I determine a duality for all G to a 2D Coulomb gas of bions of different charges of their monopole constituents, and W-bosons of both scalar and electric charges. Aharonov-Bohm interactions exist between magnetic bions and W-bosons. New scalar

  7. Stationary perturbations and infinitesimal rotations of static Einstein-Yang-Mills configurations with bosonic matter

    NASA Astrophysics Data System (ADS)

    Brodbeck, Othmar; Heusler, Markus

    1997-11-01

    Using the Kaluza-Klein structure of stationary spacetimes, a framework for analyzing stationary perturbations of static Einstein-Yang-Mills configurations with bosonic matter fields is presented. It is shown that the perturbations giving rise to a nonvanishing ADM angular momentum are governed by a self-adjoint system of equations for a set of gauge-invariant scalar amplitudes. The method is illustrated for SU(2) gauge fields, coupled to a Higgs doublet or a Higgs triplet. It is argued that slowly rotating black holes arise generically in self-gravitating non-Abelian gauge theories with bosonic matter, whereas, in general, soliton solutions do not have rotating counterparts.

  8. On the functional renormalization group approach for Yang-Mills fields

    NASA Astrophysics Data System (ADS)

    Lavrov, Peter M.; Shapiro, Ilya L.

    2013-06-01

    We explore the gauge dependence of the effective average action within the functional renormalization group (FRG) approach. It is shown that in the framework of standard definitions of FRG for the Yang-Mills theory, the effective average action remains gauge-dependent on-shell, independent on the use of truncation scheme. Furthermore, we propose a new formulation of the FRG, based on the use of composite operators. In this case one can provide on-shell gauge-invariance for the effective average action and universality of S-matrix.

  9. Symmetric blocking and renormalization in lattice N=4 super Yang-Mills

    NASA Astrophysics Data System (ADS)

    Giedt, Joel; Catterall, Simon

    2015-04-01

    The form of the long distance effective action of the twisted lattice N = 4 super Yang-Mills theory depends on having a real space renormalization group transformation that preserves the original lattice properties, both the symmetries and the geometric interpretation of the fields. We have found such a transformation and have exhibited its behavior through a preliminary Monte Carlo renormalization group calculation. Other results regarding the number of counterterms are also obtained by considering rescalings of the lattice fields. Supported by Department of Energy, Office of Science, Office of High Energy Physics Grants DE-FG02-08ER41575 and SC0009998.

  10. Classical Yang-Mills Black Hole Hair in Anti-de Sitter Space

    NASA Astrophysics Data System (ADS)

    Winstanley, E.

    The properties of hairy black holes in Einstein-Yang-Mills (EYM) theory are reviewed, focusing on spherically symmetric solutions. In particular, in asymptotically anti-de Sitter space (adS) stable black hole hair is known to exist for frak su(2) EYM. We review recent work in which it is shown that stable hair also exists in frak su(N) EYM for arbitrary N, so that there is no upper limit on how much stable hair a black hole in adS can possess.

  11. Gravity and Yang-Mills amplitude relations

    SciTech Connect

    Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Soendergaard, Thomas; FengBo

    2010-11-15

    Using only general features of the S matrix and quantum field theory, we prove by induction the Kawai-Lewellen-Tye relations that link products of gauge theory amplitudes to gravity amplitudes at tree level. As a bonus of our analysis, we provide a novel and more symmetric form of these relations. We also establish an infinite tower of new identities between amplitudes in gauge theories.

  12. Yang-Mills Field as a Subset of Covariant Derivative -- a Unified Yang-Mills Field and Higgs Field

    NASA Astrophysics Data System (ADS)

    Gan, Woon Siong

    2014-04-01

    A different approach using the covariant derivative is used to derive the Yang-Mills field. This avoids the weakness of resulting massless particles. Covariant derivative is also used to derive the Higgs field. A detailed mass acquisition mechanism for matter particles and force particles is given for the Higgs field. This paves the way towards a unified Yang-Mills field and Higgs field. We show that the Yang-Mills field is a special case of the unified field when the temperature is above the critical temperature of the spontaneous symmetry breaking (SSB). SSB has a broader implication that it can be extended to all particles in the universe. Higgs boson is a product of SSB and it causes the Big Bang points to the role of SSB in the Big Bang creation of the universe and this gives support to the proposed superfluid model for the particles of the universe beyond the Standard Model. The critical temperature for SSB is equivalent to the extremely high temperature which occurs during the Big Bang.

  13. Yang Mills condensate dark energy coupled with matter and radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xia, T. Y.; Zhao, W.

    2007-07-01

    The coincidence problem is studied for the dark energy model of effective Yang Mills condensate (YMC) in a flat expanding universe during the matter-dominated stage. The YMC energy ρy(t) is taken to represent the dark energy, which is coupled either with the matter ρm(t), or with both the matter and the radiation components ρr(t). The effective YM Lagrangian is completely determined by the quantum field theory up to 1-loop order with an energy scale ~10-3 eV as a model parameter, and for each coupling, there is an extra model parameter. We have studied extensively the coupling models: the YMC decaying into the matter and the radiation; or vice versa the matter and radiation decaying into the YMC. It is found that, starting from the equality of radiation-matter ρmi = ρri, for a wide range of initial conditions of ρyi = (10-10, 10-2)ρmi, the models have a scaling solution during the early stages, and the YMC levels off and becomes dominant at late time, and the present state with Ωy sime 0.7, Ωm sime 0.3 and Ωr sime 10-5 is always achieved. If the YMC decays into a component, then this component also levels off later and approaches a constant value asymptotically, and the equation of state (EoS) of the YMC wy = ρy/py crosses over -1 and takes the value wy sime -1.1 at z = 0. If the matter and radiation decay into the YMC, then ρm(t) ~ a(t)-3 and ρr(t) ~ a(t)-4 approximately for all the time, and wy approaches -1 but does not cross over -1. We have also demonstrated that, at t → ∞, the coupled dynamics for (ρy(t), ρm(t), ρr(t)) is a stable attractor. Therefore, under generic circumstances, the existence of the scaling solution during the early stages and the subsequential exit from the scaling regime around z sime (0.3 0.5) are inevitable. Thus the coincidence problem can be naturally solved in the YMC dark energy models.

  14. Quantum cosmological Friedman models with a massive Yang-Mills field

    NASA Astrophysics Data System (ADS)

    Gerhardt, Claus

    2009-07-01

    We prove the existence of a spectral resolution of the Wheeler-DeWitt equation when the matter field is provided by a massive Yang-Mills field. The resolution is achieved by first solving the free eigenvalue problem for the gravitational field and then the constrained eigenvalue problem for the Yang-Mills field. In the latter case, the mass of the Yang-Mills field assumes the role of the eigenvalue.

  15. Constructing the tree-level Yang-Mills S-matrix using complex factorization

    NASA Astrophysics Data System (ADS)

    Schuster, Philip C.; Toro, Natalia

    2009-06-01

    A remarkable connection between BCFW recursion relations and constraints on the S-matrix was made by Benincasa and Cachazo in 0705.4305, who noted that mutual consistency of different BCFW constructions of four-particle amplitudes generates non-trivial (but familiar) constraints on three-particle coupling constants — these include gauge invariance, the equivalence principle, and the lack of non-trivial couplings for spins > 2. These constraints can also be derived with weaker assumptions, by demanding the existence of four-point amplitudes that factorize properly in all unitarity limits with complex momenta. From this starting point, we show that the BCFW prescription can be interpreted as an algorithm for fully constructing a tree-level S-matrix, and that complex factorization of general BCFW amplitudes follows from the factorization of four-particle amplitudes. The allowed set of BCFW deformations is identified, formulated entirely as a statement on the three-particle sector, and using only complex factorization as a guide. Consequently, our analysis based on the physical consistency of the S-matrix is entirely independent of field theory. We analyze the case of pure Yang-Mills, and outline a proof for gravity. For Yang-Mills, we also show that the well-known scaling behavior of BCFW-deformed amplitudes at large z is a simple consequence of factorization. For gravity, factorization in certain channels requires asymptotic behavior ~ 1/z2.

  16. Relations for Einstein-Yang-Mills amplitudes from the CHY representation

    NASA Astrophysics Data System (ADS)

    de la Cruz, Leonardo; Kniss, Alexander; Weinzierl, Stefan

    2017-04-01

    We show that a recently discovered relation, which expresses tree-level single trace Einstein-Yang-Mills amplitudes with one graviton and (n - 1) gauge bosons as a linear combination of pure Yang-Mills tree amplitudes with n gauge bosons, can be derived from the CHY representation. In addition we show that there is a generalisation, which expresses tree-level single trace Einstein-Yang-Mills amplitudes with r gravitons and (n - r) gauge bosons as a linear combination of pure Yang-Mills tree amplitudes with n gauge bosons. We present a general formula for this case.

  17. Yang-Mills condensate as dark energy: A nonperturbative approach

    NASA Astrophysics Data System (ADS)

    Donà, Pietro; Marcianò, Antonino; Zhang, Yang; Antolini, Claudia

    2016-02-01

    Models based on the Yang-Mills condensate (YMC) have been advocated for in the literature and claimed as successful candidates for explaining dark energy. Several variations on this simple idea have been considered, the most promising of which are reviewed here. Nevertheless, the previously attained results relied heavily on the perturbative approach to the analysis of the effective Yang-Mills action, which is only adequate in the asymptotically free limit, and were extended into a regime, the infrared limit, in which confinement is expected. We show that if a minimum of the effective Lagrangian in θ =-Fμν aFa μ ν/2 exists, a YMC forms that drives the Universe toward an accelerated de Sitter phase. The details of the models depend weakly on the specific form of the effective Yang-Mills Lagrangian. Using nonperturbative techniques mutated from the functional renormalization-group procedure, we finally show that the minimum in θ of the effective Lagrangian exists. Thus, a YMC can actually take place. The nonperturbative model has properties similar to the ones in the perturbative model. In the early stage of the Universe, the YMC equation of state has an evolution that resembles the radiation component, i.e., wy→1 /3 . However, in the late stage, wy naturally runs to the critical state with wy=-1 , and the Universe transitions from a matter-dominated into a dark energy dominated stage only at latest time, at a redshift whose value depends on the initial conditions that are chosen while solving the dynamical system.

  18. Einstein-scalar-Yang-Mills black holes: a thermodynamical approach

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata

    2013-12-01

    We try to find out the nature of different thermodynamical parameters for a black hole solution drawn for a special case in Einstein-Scalar-Yang-Mills gravity. Whether a phase transition occurs for the solution or not is a matter of interest. The nature of the phase transition is tried to understand. Ruppeiner metric and the corresponding Ricci scalar is constructed. It is noticed that the metric is not of positive Ricci for all the parametric values and there exist(s) point(s) in thermodynamic space where the Ricci scalar becomes zero.

  19. Wilson loops in 3d {N} = 4 SQCD from Fermi gas

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi

    2016-11-01

    We study 1/2 BPS Wilson loops in 3d {N} = 4 U( N ) Yang-Mills theory with one adjoint and N f fundamental hypermultiplets from the Fermi gas approach. By numerical fitting, we find the first few worldsheet instanton corrections to the Wilson loops with winding numbers 1, 2 and 3. We verify that our Fermi gas results are consistent with the matrix model results in the planar limit.

  20. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    ERIC Educational Resources Information Center

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  1. Higher-dimensional thin-shell wormholes in Einstein-Yang-Mills-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.; Amirabi, Z.

    2011-01-01

    We present thin-shell wormhole solutions in the Einstein-Yang-Mills-Gauss-Bonnet (EYMGB) theory in higher dimensions d >= 5. Exact black hole solutions are employed for this purpose where the radius of the thin shell lies outside the event horizon. For some reasons the cases d = 5 and d > 5 are treated separately. The surface energy-momentum of the thin shell creates surface pressures to resist against collapse and rendering stable wormholes possible. We test the stability of the wormholes against spherical perturbations through a linear energy-pressure relation and plot stability regions. Apart from this restricted stability we investigate the possibility of normal (i.e. non-exotic) matter which satisfies the energy conditions. For negative values of the Gauss-Bonnet (GB) parameter we obtain such physical wormholes.

  2. a Unified Gravity-Electroweak Model Based on a Generalized Yang-Mills Framework

    NASA Astrophysics Data System (ADS)

    Hsu, Jong-Ping

    Gravitational and electroweak interactions can be unified in analogy with the unification in the Weinberg-Salam theory. The Yang-Mills framework is generalized to include spacetime translational group T(4), whose generators Tμ ( = ∂/∂xμ) do not have constant matrix representations. By gauging T(4) × SU(2) × U(1) in flat spacetime, we have a new tensor field ϕμν which universally couples to all particles and anti-particles with the same constant g, which has the dimension of length. In this unified model, the T(4) gauge symmetry dictates that all wave equations of fermions, massive bosons and the photon in flat spacetime reduce to a Hamilton-Jacobi equation with the same "effective Riemann metric tensor" in the geometric-optics limit. Consequently, the results are consistent with experiments. We demonstrated that the T(4) gravitational gauge field can be quantized in inertial frames.

  3. Regge meets collinear in strongly-coupled N=4 super Yang-Mills

    NASA Astrophysics Data System (ADS)

    Sprenger, Martin

    2017-01-01

    We revisit the calculation of the six-gluon remainder function in planar N=4 super Yang-Mills theory from the strong coupling TBA in the multi-Regge limit and identify an infinite set of kinematically subleading terms. These new terms can be compared to the strong coupling limit of the finite-coupling expressions for the impact factor and the BFKL eigenvalue proposed by Basso et al. in [1], which were obtained from an analytic continuation of the Wilson loop OPE. After comparing the results order by order in those subleading terms, we show that it is possible to precisely map both formalisms onto each other. A similar calculation can be carried out for the seven-gluon amplitude, the result of which shows that the central emission vertex does not become trivial at strong coupling.

  4. Gravitating Vortices, Cosmic Strings, and the Kähler-Yang-Mills Equations

    NASA Astrophysics Data System (ADS)

    Álvarez-Cónsul, Luis; Garcia-Fernandez, Mario; García-Prada, Oscar

    2017-04-01

    In this paper we construct new solutions of the Kähler-Yang-Mills equations, by applying dimensional reduction methods to the product of the complex projective line with a compact Riemann surface. The resulting equations, which we call gravitating vortex equations, describe abelian vortices on the Riemann surface with back reaction of the metric. As a particular case of these gravitating vortices on the Riemann sphere we find solutions of the Einstein-Bogomol'nyi equations, which physically correspond to Nielsen-Olesen cosmic strings in the Bogomol'nyi phase. We use this to provide a Geometric Invariant Theory interpretation of an existence result by Y. Yang for the Einstein-Bogomol'nyi equations, applying a criterion due to G. Székelyhidi.

  5. Gravitational contributions to the running Yang-Mills coupling in large extra-dimensional brane worlds

    NASA Astrophysics Data System (ADS)

    Ebert, Dietmar; Plefka, Jan; Rodigast, Andreas

    2009-02-01

    We study the question of a modification of the running gauge coupling of Yang-Mills theories due to quantum gravitational effects in a compact large extra dimensional brane world scenario with a low energy quantum gravity scale. The ADD scenario is applied for a D = d+δ dimensional space-time in which gravitons freely propagate, whereas the non-abelian gauge fields are confined to a d-dimensional brane. The extra dimensions are taken to be toroidal and the transverse fluctuation modes (branons) of the brane are taken into account. On this basis we have calculated the one-loop corrections due to virtual Kaluza-Klein graviton and branon modes for the gluon two- and three-point functions in an effective field theory treatment. Applying momentum cut-off regularization we find that for a d = 4 brane the leading gravitational divergencies cancel irrespective of the number of extra dimensions δ, generalizing previous results in the absence of extra-dimensions. Hence, again the Yang-Mills β-function receives no gravitational corrections at one-loop. This is no longer true in a `universal' extra dimensional scenario with a d > 4 dimensional brane. Moreover, the subleading power-law gravitational divergencies induce higher-dimensional counterterms, which we establish in our scheme. Interestingly, for d = 4 these gravitationally induced counterterms are of the form recently considered in non-abelian Lee-Wick extensions of the standard model—now with a possible mass scale in the TeV range due to the presence of large extra dimensions.

  6. 2-loop quantum Yang Mills condensate as dark energy

    NASA Astrophysics Data System (ADS)

    Xia, T. Y.; Zhang, Y.

    2007-11-01

    In seeking a model solving the coincidence problem, the effective Yang Mills condensate (YMC) is an alternative candidate for dark energy. A study is made for the model up to the 2-loop order of quantum corrections. It is found that, like in the 1-loop model, for generic initial conditions during the radiation era, there is always a desired tracking solution, yielding the current status Ω≃0.73 and Ω≃0.27. As the time t→∞ the dynamics is a stable attractor. Thus the model naturally solves the coincidence problem of dark energy. Moreover, if YMC decays into matter, its equation of state (EoS) crosses -1 and takes w˜-1.1, as indicated by the recent observations.

  7. Conformally flat Einstein-Yang-Mills-Higgs solutions with spherical symmetry

    SciTech Connect

    Mondaini, R.P.; Santos, N.O.

    1983-10-15

    We solve the Einstein-Yang-Mills-Higgs equations in a conformally flat metric with spherical symmetry. Two solutions are obtained corresponding to magnetic monopoles in the Higgs vacuum and outside of it.

  8. General Yang-Mills type gauge theories for p-form gauge fields: From physics-based ideas to a mathematical framework or From Bianchi identities to twisted Courant algebroids

    NASA Astrophysics Data System (ADS)

    Grützmann, Melchior; Strobl, Thomas

    2015-10-01

    Starting with minimal requirements from the physical experience with higher gauge theories, i.e. gauge theories for a tower of differential forms of different form degrees, we discover that all the structural identities governing such theories can be concisely recombined into what is called a Q-structure or, equivalently, an L∞-algebroid. This has many technical and conceptual advantages: complicated higher bundles become just bundles in the category of Q-manifolds in this approach (the many structural identities being encoded in the one operator Q squaring to zero), gauge transformations are generated by internal vertical automorphisms in these bundles and even for a relatively intricate field content the gauge algebra can be determined in some lines and is given by what is called the derived bracket construction. This paper aims equally at mathematicians and theoretical physicists; each more physical section is followed by a purely mathematical one. While the considerations are valid for arbitrary highest form degree p, we pay particular attention to p = 2, i.e. 1- and 2-form gauge fields coupled nonlinearly to scalar fields (0-form fields). The structural identities of the coupled system correspond to a Lie 2-algebroid in this case and we provide different axiomatic descriptions of those, inspired by the application, including e.g. one as a particular kind of a vector-bundle twisted Courant algebroid.

  9. Gauge coupling field, currents, anomalies and N = 1 super-Yang-Mills effective actions

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Nicola; Arnold, Daniel; Derendinger, Jean-Pierre; Hartong, Jelle

    2017-02-01

    Working with a gauge coupling field in a linear superfield, we construct effective Lagrangians for N = 1 super-Yang-Mills theory fully compatible with the expected all-order behavior or physical quantities. Using the one-loop dependence on its ultraviolet cutoff and anomaly matching or cancellation of R and dilatation anomalies, we obtain the Wilsonian effective Lagrangian. With similar anomaly matching or cancellation methods, we derive the effective action for gaugino condensates, as a function of the real coupling field. Both effective actions lead to a derivation of the NSVZ β function from algebraic arguments only. The extension of results to N = 2 theories or to matter systems is briefly considered. The main tool for the discussion of anomalies is a generic supercurrent structure with 16B +16F operators (the S multiplet), which we derive using superspace identities and field equations for a fully general gauge theory Lagrangian with the linear gauge coupling superfield, and with various U(1)R currents. As a byproduct, we show under which conditions the S multiplet can be improved to contain the Callan-Coleman-Jackiw energy-momentum tensor whose trace measures the breaking of scale invariance.

  10. On the ground state of Yang-Mills theory

    SciTech Connect

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-08-15

    Highlights: > The ground state overlap for sets of meson potential trial states is measured. > Non-uniform gluonic distributions are probed via Wilson loop operator. > The locally UV-regulated flux-tube operators can optimize the ground state overlap. - Abstract: We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  11. Ice limit of Coulomb gauge Yang-Mills theory

    SciTech Connect

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.

    2008-10-01

    In this paper we describe gauge invariant multiquark states generalizing the path integral framework developed by Parrinello, Jona-Lasinio, and Zwanziger to amend the Faddeev-Popov approach. This allows us to produce states such that, in a limit which we call the ice limit, fermions are dressed with glue exclusively from the fundamental modular region associated with Coulomb gauge. The limit can be taken analytically without difficulties, avoiding the Gribov problem. This is illustrated by an unambiguous construction of gauge invariant mesonic states for which we simulate the static quark-antiquark potential.

  12. Nonminimal Isotropic Cosmological Model with Yang-Mills and Higgs Fields

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Dehnen, Heinz; Zayats, Alexei E.

    We establish a nonminimal Einstein-Yang-Mills-Higgs model, which contains six coupling parameters. The first three parameters relate to the nonminimal coupling of a non-Abelian gauge field and a gravity field, the next two parameters describe the so-called derivative nonminimal coupling of a scalar multiplet with a gravity field, and the sixth parameter introduces the standard coupling of a scalar field with a Ricci scalar. The formulated six-parameter nonminimal Einstein-Yang-Mills-Higgs model is applied to cosmology. We show that there exists a unique exact cosmological solution of the de Sitter type for a special choice of the coupling parameters. The nonminimally extended Yang-Mills and Higgs equations are satisfied for arbitrary gauge and scalar fields, when the coupling parameters are specifically related to the curvature constant of the isotropic space-time. Based on this special exact solution, we discuss the problem of a hidden anisotropy of the Yang-Mills field, and give an explicit example, when the nonminimal coupling effectively screens the anisotropy induced by the Yang-Mills field and thus restores the isotropy of the model.

  13. Parametric instability of classical Yang-Mills fields in a color magnetic background

    NASA Astrophysics Data System (ADS)

    Tsutsui, Shoichiro; Iida, Hideaki; Kunihiro, Teiji; Ohnishi, Akira

    2015-04-01

    We investigate instabilities of classical Yang-Mills fields in a time-dependent spatially homogeneous color magnetic background field in a nonexpanding geometry for elucidating the earliest stage dynamics of ultrarelativistic heavy-ion collisions. The background field configuration considered in this article is spatially homogeneous and temporally periodic and is introduced by Berges-Scheffler-Schlichting-Sexty (BSSS). We discuss the whole structure of instability bands of fluctuations around the BSSS background gauge field on the basis of Floquet theory, which enables us to discuss the stability in a systematic way. We find various instability bands on the (pz,pT) plane. These instability bands are caused by parametric resonance despite the fact that the momentum dependence of the growth rate for |p |≤√{B } is similar to a Nielsen-Olesen instability. Moreover, some of the instability bands are found to emerge not only in the low-momentum but also in the high-momentum region, typically of the order of the saturation momentum as |p |˜√{B }˜Qs .

  14. The temperature-dependent Yang-Mills trace anomaly as a function of the mass gap

    NASA Astrophysics Data System (ADS)

    Gogokhia, V.; Shurgaia, A.; Vasúth, M.

    2016-10-01

    The trace anomaly or, equivalently, the interaction measure is an important thermodynamic quantity/observable, since it is very sensitive to the non-perturbative effects in the gluon plasma. It has been calculated and its analytic and asymptotic properties have been investigated with the combined force of analytic and lattice approaches to the SU(3) Yang-Mills (YM) quantum gauge theory at finite temperature. The first one is based on the effective potential approach for composite operators properly generalized to finite temperature. This makes it possible to introduce into this formalism a dependence on the mass gap Δ2, which is responsible for the large-scale dynamical structure of the QCD ground state. The gluon plasma pressure as a function of the mass gap adjusted by this approach to the corresponding lattice data is shown to be a continuously growing function of temperature T in the whole temperature range [0,∞) with the correct Stefan-Boltzmann limit at very high temperature. The corresponding trace anomaly has a finite jump discontinuity at some characteristic temperature Tc = 266.5MeV with latent heat ɛLH = 1.41. This is a firm evidence of the first-order phase transition in SU(3) pure gluon plasma. It is exponentially suppressed below Tc and has a complicated and rather different dependence on the mass gap and temperature across Tc. In the very high temperature limit its non-perturbative part has a power-type fall off.

  15. The Temperature-Dependent Yang-Mills Trace Anomaly as a Function of the Mass Gap

    NASA Astrophysics Data System (ADS)

    Gogokhia, V.; Shurgaia, A.; Vasúth, M.

    The trace anomaly or, equivalently, the interaction measure is an important thermodynamic quantity/observable, since it is very sensitive to the nonperturbative effects in the gluon plasma. It has been calculated and its analytic and asymptotic properties have been investigated with the combined force of analytic and lattice approaches to the SU(3) Yang-Mills (YM) quantum gauge theory at finite temperature. The first one is based on the effective potential approach for composite operators properly generalized to finite temperature. This makes it possible to introduce into this formalism a dependence on the mass gap Δ2, which is responsible for the large-scale dynamical structure of the QCD ground state. The gluon plasma pressure as a function of the mass gap adjusted by this approach to the corresponding lattice data is shown to be a continuously growing function of temperature T in the whole temperature range [0,∞) with the correct Stefan-Boltzmann limit at very high temperature. The corresponding trace anomaly has a finite jump discontinuity at some characteristic temperature Tc = 266.5 MeV with latent heat ∈LH = 1.41. This is a firm evidence of the first-order phase transition in SU(3) pure gluon plasma. It is exponentially suppressed below Tc and has a complicated and rather different dependence on the mass gap and temperature across Tc. In the very high temperature limit its non-perturbative part has a power-type fall off.

  16. Explicit derivation of Yang-Mills self-dual solutions on non-commutative harmonic space

    NASA Astrophysics Data System (ADS)

    Belhaj, A.; Hssaini, M.; Sahraoui, E. M.; Saidi, E. H.

    2001-06-01

    We develop the non-commutative harmonic space (NHS) analysis to study the problem of solving the nonlinear constraint equations of non-commutative Yang-Mills self-duality in four dimensions. We show that this space, denoted also as NHS(η,θ), has two SU(2) isovector deformations η(ij) and θ(ij) parametrizing, respectively, two non-commutative harmonic subspaces NHS(η,0) and NHS(0, θ) used to study the self-dual and anti self-dual non-commutative Yang-Mills solutions. We reformulate the Yang-Mills self-dual constraint equations on NHS(η,0) by extending the idea of harmonic analyticity to linearize them. We then give a perturbative self-dual solution recovering the ordinary one. Finally, we present the explicit computation of an exact self-dual solution.

  17. Neutrino oscillation, finite self-mass and general Yang-Mills symmetry

    NASA Astrophysics Data System (ADS)

    Hsu, Jong-Ping

    2016-10-01

    The conservation of lepton number is assumed to be associated with a general Yang-Mills (gYM) symmetry. New transformations involve (Lorentz) vector gauge functions and characteristic phase functions, and they form a group. General Yang-Mills fields are associated with new fourth-order equations and linear potentials. Lepton self-masses turn out to be finite and proportional to the inverse of lepton masses, which implies that neutrinos should have nonzero masses. Thus, gYM symmetry could provide an understanding of neutrino oscillations and suggests that neutrinos with masses and very weak leptonic force may play a role in dark matter.

  18. Strongly coupled large N spectrum of two matrices coupled via a Yang-Mills interaction

    SciTech Connect

    Cook, Martin N. H.; Rodrigues, Joao P.

    2008-09-15

    We consider the large N spectrum of the quantum mechanical Hamiltonian of two Hermitian matrices coupled via a Yang-Mills interaction. In a framework where one of the matrices is treated exactly and the other is treated as a creation operator impurity, the difference equation associated with the Yang-Mills interaction is derived and solved exactly for two impurities. In this case, the full string tension corrected spectrum depends on two momenta. For a specific value of one of these momenta, the spectrum has the same structure as that of giant magnon bound states. States with general number of impurities are also discussed.

  19. - criticality of AdS black hole in the Einstein-Maxwell-power-Yang-Mills gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Yang, Zhan-Ying; Zou, De-Cheng; Xu, Wei; Yue, Rui-Hong

    2015-02-01

    We study the - critical behaivor of N-dimensional AdS black holes in Einstein-Maxwell-power-Yang-Mills gravity. Our results show the existence of the Van der Waals like small-large black hole phase transitions when taking some special values of charges of the Maxwell and Yang-Mills fields. Further to calculate the critical exponents of the black holes at the critical point, we find that they are the same as those in the Van der Waals liquid-gas system.

  20. 3D quantum gravity and effective noncommutative quantum field theory.

    PubMed

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  1. A hyperboloidal study of tail decay rates for scalar and Yang Mills fields

    NASA Astrophysics Data System (ADS)

    Zenginoğlu, Anıl

    2008-09-01

    We investigate the asymptotic behavior of spherically symmetric solutions to scalar wave and Yang Mills equations on a Schwarzschild background. The studies demonstrate the astrophysical relevance of null infinity in predicting radiation signals for gravitational wave detectors and show how test fields on unbounded domains in black hole spacetimes can be simulated conveniently by numerically solving hyperboloidal initial value problems.

  2. An L2-isolation theorem for Yang-Mills fields on Kähler surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Teng

    2017-02-01

    We prove an L2 energy gap result for Yang-Mills connections on principal G-bundles over compact Kähler surfaces with positive scalar curvature. We prove related results for compact simply-connected Calabi-Yau 2-folds.

  3. 3D RISM theory with fast reciprocal-space electrostatics

    SciTech Connect

    Heil, Jochen; Kast, Stefan M.

    2015-03-21

    The calculation of electrostatic solute-solvent interactions in 3D RISM (“three-dimensional reference interaction site model”) integral equation theory is recast in a form that allows for a computational treatment analogous to the “particle-mesh Ewald” formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.

  4. Yang-Mills instantons sitting on a Ricci-flat worldspace of double D4-branes

    SciTech Connect

    Kim, Hongsu; Yoon, Yongsung

    2001-06-15

    Thus far, there seem to be no complete criteria that can settle the issue as to what the correct generalization of the Dirac-Born-Infeld (DBI) action, describing the low-energy dynamics of the D-branes, to the non-Abelian case would be. According to recent suggestions, one might pass the issue of worldvolume solitons from an Abelian to non-Abelian setting by considering the stack of multiple, coincident D-branes and use it as a guideline to construct or censor the relevant non-Abelian version of the DBI action. In this spirit, here we are interested in the explicit construction of SU(2) Yang-Mills (YM) instanton solutions in the background geometry of two coincident probe D4-brane worldspaces, particularly when the metric of the target spacetime in which the probe branes are embedded is given by the Ricci-flat, magnetic extremal 4-brane solution in type IIA supergravity theory with its worldspace metric being given by that of Taub{endash}Newman-Unti-Tamburino (NUT) and Eguchi-Hanson solutions, the two best-known gravitational instantons. Then we demonstrate that, with this YM instanton-gravitational instanton configuration on the probe D4-brane worldvolume, the energy of the probe branes attains its minimum value and hence enjoys a stable state provided one employs Tseytlin's non-Abelian DBI action for the description of multiple probe D-branes. In this way, we support the arguments in the literature in favor of Tseytlin's proposal for the non-Abelian DBI action.

  5. Supersymmetric Yang-Mills fields as an integrable system and connections with other non-linear systems

    SciTech Connect

    Chau, L.L.

    1983-01-01

    Integrable properties, i.e., existence of linear systems, infinite number of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of Kac-Moody, and Bianchi-Baecklund transformation, are discussed for the constraint equations of the supersymmetric Yang-Mills fields. For N greater than or equal to 3 these constraint equations give equations of motion of the fields. These equations of motion reduce to the ordinary Yang-Mills equations as the spinor and scalar fields are eliminated. These understandings provide a possible method to solve the full Yang-Mills equations. Connections with other non-linear systems are also discussed. 53 references.

  6. A Yang-Mills field on the extremal Reissner-Nordström black hole

    NASA Astrophysics Data System (ADS)

    Bizoń, Piotr; Kahl, Michał

    2016-09-01

    We consider a spherically symmetric (magnetic) SU(2) Yang-Mills field propagating on the exterior of the extremal Reissner-Nordström black hole. Taking advantage of the conformal symmetry, we reduce the problem to the study of the Yang-Mills equation in a geodesically complete spacetime with two asymptotically flat ends. We prove the existence of infinitely many static solutions (two of which are found in closed form) and determine the spectrum of their linear perturbations and quasinormal modes. Finally, using the hyperboloidal approach to the initial value problem, we describe the process of relaxation to the static endstates of evolution, both stable (for generic initial data) and unstable (for codimension-one initial data).

  7. Equivariant dimensional reduction and quiver gauge theories

    NASA Astrophysics Data System (ADS)

    Dolan, Brian P.; Szabo, Richard J.

    2011-09-01

    We review recent applications of equivariant dimensional reduction techniques to the construction of Yang-Mills-Higgs-Dirac theories with dynamical mass generation and exactly massless chiral fermions.

  8. Bogomol'nyi equations and solutions for Einstein-Yang-Mills-dilaton-σ models

    NASA Astrophysics Data System (ADS)

    Braden, H. W.; Varela, V.

    1998-12-01

    We derive Bogomol'nyi equations for an Einstein-Yang-Mills-dilaton-σ model on a static spacetime, showing that the Einstein equations are satisfied if and only if the associated (conformally scaled) three-metric is flat. These are precisely the static metrics for which super-covariantly constant spinors exist. We study some general properties of these equations and then consider the problem of obtaining axially symmetric solutions for the gauge group SU(2).

  9. Quantum cosmological Friedman models with a Yang-Mills field and positive energy levels

    NASA Astrophysics Data System (ADS)

    Gerhardt, Claus

    2010-02-01

    We prove the existence of a spectral resolution of the Wheeler-DeWitt equation when the matter field is provided by a Yang-Mills field, with or without mass term, if the spatial geometry of the underlying spacetime is homothetic to {\\bb R}^{3} . The energy levels of the resulting quantum model, i.e. the eigenvalues of the corresponding self-adjoint Hamiltonian with a pure point spectrum, are strictly positive. This work has been supported by the DFG.

  10. An instability of hyperbolic space under the Yang-Mills flow

    SciTech Connect

    Gegenberg, Jack; Day, Andrew C.; Liu, Haitao; Seahra, Sanjeev S.

    2014-04-15

    We consider the Yang-Mills flow on hyperbolic 3-space. The gauge connection is constructed from the frame-field and (not necessarily compatible) spin connection components. The fixed points of this flow include zero Yang-Mills curvature configurations, for which the spin connection has zero torsion and the associated Riemannian geometry is one of constant curvature. We analytically solve the linearized flow equations for a large class of perturbations to the fixed point corresponding to hyperbolic 3-space. These can be expressed as a linear superposition of distinct modes, some of which are exponentially growing along the flow. The growing modes imply the divergence of the (gauge invariant) perturbative torsion for a wide class of initial data, indicating an instability of the background geometry that we confirm with numeric simulations in the partially compactified case. There are stable modes with zero torsion, but all the unstable modes are torsion-full. This leads us to speculate that the instability is induced by the torsion degrees of freedom present in the Yang-Mills flow.

  11. Quark confinement, new cosmic expansion and general Yang-Mills symmetry

    NASA Astrophysics Data System (ADS)

    Hsu, Jong-Ping

    2017-01-01

    We discuss a unified model of quark confinement and new cosmic expansion with linear potentials based on a general (SU 3)color×(U 1)baryon symmetry. The phase functions in the usual gauge transformations are generalized to new ‘action integrals’. The general Yang-Mills transformations have group properties and reduce to usual gauge transformations in special cases. Both quarks and ‘gauge bosons’ are permanently confined by linear potentials. In this unified model of particle-cosmology, physics in the largest cosmos and that in the smallest quark system appear to both be dictated by the general Yang-Mills symmetry and characterized by a universal length. The basic force between two baryons is independent of distance. However, the cosmic repulsive force exerted on a baryonic supernova by a uniform sphere of galaxies is proportional to the distance from the center of the sphere. The new general Yang-Mills field may give a field-theoretic explanation of the accelerated cosmic expansion. The prediction could be tested experimentally by measuring the frequency shifts of supernovae at different distances. Supported in part by the Jingshin Resealch Fund of the UMassD Foundation

  12. Azimuthal anisotropies in p + Pb collisions from classical Yang-Mills dynamics

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Schlichting, Sören; Venugopalan, Raju

    2015-07-01

    We compute single and double inclusive gluon distributions in classical Yang-Mills simulations of proton-lead collisions and extract the associated transverse momentum dependent Fourier harmonics v2 (pT) and v3 (pT). Gluons have a large v2 in the initial state, while odd harmonics such as v3 vanish identically at the initial time τ =0+. By the time τ ≲ 0.4 fm /c final state effects in the classical Yang-Mills evolution generate a non-zero v3 and only mildly modify the gluon v2. Unlike hydrodynamic flow, these momentum space anisotropies are uncorrelated with the global spatial anisotropy of the collision. A principal ingredient for the generation of v2 and v3 in this framework is the event-by-event breaking of rotational invariance in domains the size of the inverse of the saturation scale Qs. In contrast to our findings in p + Pb collisions Yang-Mills simulations of lead-lead collisions generate much smaller values of v2,3 (pT) and additional collective flow effects are needed to explain experimental data. This is because the locally generated anisotropy due to the breaking of rotational invariance is depleted with the increase in the number of uncorrelated domains.

  13. Fast Galerkin BEM for 3D Potential Theory

    SciTech Connect

    Nintcheu Fata, Sylvain

    2008-01-01

    This paper is concerned with the development of a fast spectral method for solving direct and indirect boundary integral equations in 3D-potential theory. Based on a Galerkin approximation and the Fast Fourier Transform, the proposed method is a generalization of the precorrected-FFT technique to handle not only single-layer potentials but also double-layer potentials and higher-order basis functions. Numerical examples utilizing piecewise linear shape functions are presented to illustrate the performance of the method.

  14. 3D weak lensing: Modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Pratten, Geraint; Munshi, Dipak; Valageas, Patrick; Brax, Philippe

    2016-05-01

    Weak lensing (WL) promises to be a particularly sensitive probe of both the growth of large-scale structure as well as the fundamental relation between matter density perturbations and metric perturbations, thus providing a powerful tool with which we may constrain modified theories of gravity (MG) on cosmological scales. Future deep, wide-field WL surveys will provide an unprecedented opportunity to constrain deviations from General Relativity. Employing a 3D analysis based on the spherical Fourier-Bessel expansion, we investigate the extent to which MG theories will be constrained by a typical 3D WL survey configuration including noise from the intrinsic ellipticity distribution σɛ of source galaxies. Here, we focus on two classes of screened theories of gravity: (i) f (R ) chameleon models and (ii) environmentally dependent dilaton models. We use one-loop perturbation theory combined with halo models in order to accurately model the evolution of the matter power spectrum with redshift in these theories. Using a χ2 analysis, we show that for an all-sky spectroscopic survey, the parameter fR0 can be constrained in the range fR0<5 ×10-6(9 ×10-6) for n =1 (2 ) with a 3 σ confidence level. This can be achieved by using relatively low-order angular harmonics ℓ<100 . Higher-order harmonics ℓ>100 could provide tighter constraints but are subject to nonlinear effects, such as baryonic feedback, that must be accounted for. We also employ a Principal Component Analysis in order to study the parameter degeneracies in the MG parameters. The confusion from intrinsic ellipticity correlation and modification of the matter power spectrum at a small scale due to feedback mechanisms is briefly discussed.

  15. Yang-Mills like instantons in eight and seven dimensions

    NASA Astrophysics Data System (ADS)

    Loginov, E. K.; Loginova, E. D.

    2014-10-01

    We consider a gauge theory in which a nonassociative Moufang loop takes the place of a structure group. We construct Belavin-Polyakov-Schwartz-Tyupkin (BPST) and t'Hooft like instanton solutions of the gauge theory in seven and eight dimensions.

  16. The soft-collinear bootstrap: mathcal{N} = {4} Yang-Mills amplitudes at six- and seven-loops

    NASA Astrophysics Data System (ADS)

    Bourjaily, J. L.; DiRe, A.; Shaikh, A.; Spradlin, M.; Volovich, A.

    2012-03-01

    Infrared divergences in scattering amplitudes arise when a loop momentum ℓ becomes collinear with a massless external momentum p. In gauge theories, it is known that the L-loop logarithm of a planar amplitude has much softer infrared singularities than the L-loop amplitude itself. We argue that planar amplitudes in mathcal{N} = {4} super-Yang-Mills theory enjoy softer than expected behavior as ℓ ∥ p already at the level of the integrand. Moreover, we conjecture that the four-point integrand can be uniquely determined, to any loop-order, by imposing the correct soft-behavior of the logarithm together with dual conformal invariance and dihedral symmetry. We use these simple criteria to determine explicit formulae for the four-point integrand through seven-loops, finding perfect agreement with previously known results through five-loops. As an input to this calculation, we enumerate all four-point dual conformally invariant (DCI) integrands through seven-loops, an analysis which is aided by several graph-theoretic theorems we prove about general DCI integrands at arbitrary loop-order. The six- and seven-loop amplitudes receive non-zero contributions from 229 and 1873 individual DCI diagrams respectively. PDF and Mathematica files with all of our results are provided at http://goo.gl/qIKe8 .

  17. Spinning superstrings at two loops: Strong-coupling corrections to dimensions of large-twist super Yang-Mills operators

    SciTech Connect

    Roiban, R.; Tseytlin, A. A.

    2008-03-15

    We consider folded (S,J) spinning strings in AdS{sub 5}xS{sup 5} (with one spin component in AdS{sub 5} and a one in S{sup 5}) corresponding to the Tr(D{sup S}{phi}{sup J}) operators in the sl(2) sector of the N=4 super Yang-Mills theory in the special scaling limit in which both the string mass {approx}{radical}({lambda})lnS and J are sent to infinity with their ratio fixed. Expanding in the parameter l=(J/{radical}({lambda})lnS) we compute the 2-loop string sigma-model correction to the string energy and show that it agrees with the expression proposed by Alday and Maldacena [J. High Energy Phys. 11 (2007) 019]. We suggest that a resummation of the logarithmic l{sup 2}ln{sup n}l terms is necessary in order to establish an interpolation to the weakly coupled gauge-theory results. In the process, we set up a general framework for the calculation of higher loop corrections to the energy of multispin string configurations. In particular, we find that in addition to the direct 2-loop term in the string energy there is a contribution from lower loop order due to a finite 'renormalization' of the relation between the parameters of the classical solution and the fixed spins, i.e., the charges of the SO(2,4)xSO(6) symmetry.

  18. Evolution of the Magnetic Component in Yang-Mills Condensate Dark Energy Models

    NASA Astrophysics Data System (ADS)

    Zhao, Wen; Xu, Donghui

    The evolution of the electric and magnetic components in an effective Yang-Mills condensate dark energy model is investigated. If the electric field is dominant, the magnetic component disappears with the expansion of the Universe. The total YM condensate tracks the radiation in the earlier Universe, and later it becomes wy ~ -1 and is thus similar to the cosmological constant. So the cosmic coincidence problem can be avoided in this model. However, if the magnetic field is dominant, wy > 1/3 holds for all time, suggesting that it cannot be a candidate for the dark energy in this case.

  19. Vacuum structure and string tension in Yang-Mills dimeron ensembles

    NASA Astrophysics Data System (ADS)

    Zimmermann, Falk; Forkel, Hilmar; Müller-Preußker, Michael

    2012-11-01

    We numerically simulate ensembles of SU(2) Yang-Mills dimeron solutions with a statistical weight determined by the classical action and perform a comprehensive analysis of their properties as a function of the bare coupling. In particular, we examine the extent to which these ensembles and their classical gauge interactions capture topological and confinement properties of the Yang-Mills vacuum. This also allows us to put the classic picture of meron-induced quark confinement, with the confinement-deconfinement transition triggered by dimeron dissociation, to stringent tests. In the first part of our analysis we study spacial, topological-charge and color correlations at the level of both the dimerons and their meron constituents. At small to moderate couplings, the dependence of the interactions between the dimerons on their relative color orientations is found to generate a strong attraction (repulsion) between nearest neighbors of opposite (equal) topological charge. Hence, the emerging short- to mid-range order in the gauge-field configurations screens topological charges. With increasing coupling this order weakens rapidly, however, in part because the dimerons gradually dissociate into their less localized meron constituents. Monitoring confinement properties by evaluating Wilson-loop expectation values, we find the growing disorder due to the long-range tails of these progressively liberated merons to generate a finite and (with the coupling) increasing string tension. The short-distance behavior of the static quark-antiquark potential, on the other hand, is dominated by small, “instantonlike” dimerons. String tension, action density and topological susceptibility of the dimeron ensembles in the physical coupling region turn out to be of the order of standard values. Hence, the above results demonstrate without reliance on weak-coupling or low-density approximations that the dissociating dimeron component in the Yang-Mills vacuum can indeed produce a

  20. Spherically symmetric solutions of a (4 + n)-dimensional Einstein Yang Mills model with cosmological constant

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Hartmann, Betti

    2005-01-01

    We construct solutions of an Einstein Yang Mills system including a cosmological constant in 4 + n spacetime dimensions, where the n-dimensional manifold associated with the extra dimensions is taken to be Ricci flat. Assuming the matter and metric fields to be independent of the n extra coordinates, a spherical symmetric ansatz for the fields leads to a set of coupled ordinary differential equations. We find that for n > 1 only solutions with either one non-zero Higgs field or with all Higgs fields constant and zero gauge field function (corresponding to a Wu Yang-type ansatz) exist. We give the analytic solutions available in this model. These are 'embedded' Abelian solutions with a diverging size of the manifold associated with the extra n dimensions. Depending on the choice of parameters, these latter solutions either represent naked singularities or they possess a single horizon. We also present solutions of the effective four-dimensional Einstein Yang Mills Higgs-dilaton model, where the higher-dimensional cosmological constant induces a Liouville-type potential. The solutions are non-Abelian solutions with diverging Higgs fields, which exist only up to a maximal value of the cosmological constant.

  1. Self-dual MacDowell-Mansouri gravity coupled to self-dual Yang-Mills fields

    NASA Astrophysics Data System (ADS)

    Chee, G. Y.

    2000-09-01

    A unified action for self-dual MacDowell-Mansouri gravity and Yang-Mills fields is proposed. The dual operation acting on the curvature and the self-dual and anti-self-dual decomposition are performed with respect to spacetime indices rather than internal indices, which makes the action simpler than the one given by Nieto and Socorro. In the new action the (anti-)self-dual Yang-Mills curvature couples only to the (anti-)self-dual curvature of the spacetime and then the self-dual and the anti-self-dual parts of the action are separated completely.

  2. The 3-D lattice theory of Flower Constellations

    NASA Astrophysics Data System (ADS)

    Davis, Jeremy J.; Avendaño, Martín E.; Mortari, Daniele

    2013-08-01

    Flower Constellations (FCs) have been extensively studied for use in optimal constellation design. The Harmonic FCs (HFCs) subset, representing the symmetric configurations, have recently been reformulated into 2-D Lattice Flower Constellations (2D-LFCs), encompassing the complete set of HFCs. Elliptic orbits are generally avoided due to the deleterious effects of Earth's oblateness on the constellation, but here we present a novel concept for avoiding this problem and enabling more effective global coverage utilizing elliptic orbits. This new 3D Lattice Flower Constellations (3D-LFCs) framework generalizes the 2D-LFCs, Walker constellations, elliptical Walker constellations, and many of Draim's global coverage constellations. Previous studies have shown FCs can provide improved performance in global navigation over existing Global Navigation Satellite Systems (GNSS). We found a 3D-LFC design that improved the average positioning accuracy by 3.5 % while reducing launch \\varDelta v requirements when compared to the existing Galileo GNSS constellation.

  3. Some exact solutions of (2+1)-dimensional Yang-Mills equations with the Chern-Simons term

    SciTech Connect

    Oh, C. H.; Sia, L. C.; Teh, R.

    1989-07-15

    Two /ital Ansa/$/ital uml/---/ital tze/ for the gauge field potential are given so that the(2+1)-dimensional Yang-Mills equations with the Chern-Simons termcan be solved in terms of the modified Bessel functions and the ellipticfunction respectively.

  4. Saddle-point dynamics of a Yang-Mills field on the exterior Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Bizoń, Piotr; Rostworowski, Andrzej; Zenginoǧlu, Anıl

    2010-09-01

    We consider the Cauchy problem for a spherically symmetric SU(2) Yang-Mills field propagating outside the Schwarzschild black hole. Although solutions starting from smooth finite energy initial data remain smooth for all times, not all of them scatter since there are non-generic solutions which asymptotically tend towards unstable static solutions. We show that a static solution with one unstable mode appears as an intermediate attractor in the evolution of initial data near a border between basins of attraction of two different vacuum states. We study the saddle-point dynamics near this attractor; in particular, we identify the universal phases of evolution: the ringdown approach, the exponential departure and the eventual decay to one of the vacuum states.

  5. Phase transitions of an anisotropic N=4 super Yang-Mills plasma via holography

    NASA Astrophysics Data System (ADS)

    Banks, Elliot

    2016-07-01

    Black hole solutions of type IIB supergravity were previously found that are dual to N=4 supersymmetric Yang-Mills plasma with an anisotropic spatial deformation. In the zero temperature limit, these black holes approach a Liftshitz like scaling solution in the IR. It was recently shown that these black holes are unstable, and at low temperatures there is a new class of black hole solutions that are thermodynamically preferred. We extend this analysis, by considering consistent truncations of the Kaluza-Klein reduction of IIB supergravity on a five-sphere that preserves multiple scalar and U(1) gauge fields. We show that the previously constructed black holes become unstable at low temperatures, and construct new classes of exotic black hole solutions. We study the DC thermo-electric conductivity of these U(1) charged black holes, and find a diverging DC conductivity at zero temperature due to the divergence of the gauge field coupling.

  6. Maxwell, Yang-Mills, Weyl and eikonal fields defined by any null shear-free congruence

    NASA Astrophysics Data System (ADS)

    Kassandrov, Vladimir V.; Rizcallah, Joseph A.

    We show that (specifically scaled) equations of shear-free null geodesic congruences on the Minkowski space-time possess intrinsic self-dual, restricted gauge and algebraic structures. The complex eikonal, Weyl 2-spinor, SL(2, ℂ) Yang-Mills and complex Maxwell fields, the latter produced by integer-valued electric charges (“elementary” for the Kerr-like congruences), can all be explicitly associated with any shear-free null geodesic congruence. Using twistor variables, we derive the general solution of the equations of the shear-free null geodesic congruence (as a modification of the Kerr theorem) and analyze the corresponding “particle-like” field distributions, with bounded singularities of the associated physical fields. These can be obtained in a straightforward algebraic way and exhibit nontrivial collective dynamics simulating physical interactions.

  7. Anisotropic N=4 Super-Yang-Mills Plasma and Its Instabilities

    SciTech Connect

    Mateos, David; Trancanelli, Diego

    2011-09-02

    We present a type-IIB supergravity solution dual to a spatially anisotropic finite-temperature N=4 super-Yang-Mills plasma. The solution is static and completely regular. The full geometry can be viewed as a renormalization group flow from an ultraviolet anti-de Sitter geometry to an infrared Lifshitz-like geometry. The anisotropy can be equivalently understood as resulting from a position-dependent {theta} term or from a nonzero number density of dissolved D7-branes. The holographic stress tensor is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the thermodynamics. The phase diagram exhibits homogeneous and inhomogeneous (i.e., mixed) phases. In some regions the homogeneous phase displays instabilities reminiscent of those of weakly coupled plasmas. We comment on similarities with QCD at finite baryon density and with the phenomenon of cavitation.

  8. Statefinder Parameters for the Quantum Effective Yang-Mills Condensate Dark Energy Model

    NASA Astrophysics Data System (ADS)

    Tong, Minglei; Zhang, Yang; Xia, Tianyang

    The quantum effective Yang-Mills condensate (YMC) dark energy model has some distinctive features so that it naturally solves the coincidence problem and, at the same time, is able to give an equation of state w crossing -1. In this work we further employ the statefinder pair (r,s), introduced by Sahni et al., to diagnose the YMC model for three cases: the noncoupling, the YMC decaying into matter only, and the YMC decaying into both matter and radiation. The trajectories (r,s) and (r,q), and the evolutions r(z) and s(z), are explicitly presented. It is found that the YMC model in all three cases has r ≃ 1 for z < 10 and s ≃ 0 for z < 5 with only small deviations, ≃ 0.02, quite close to the cosmological constant model (LCDM), but is obviously differentiated from other dark energy models, such as quiessence or kinessence.

  9. Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations

    SciTech Connect

    Rinaldi, Massimiliano

    2015-10-01

    We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to matter domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.

  10. Propagation properties and condensate formation of the confined Yang-Mills field

    NASA Astrophysics Data System (ADS)

    Stingl, M.

    1986-12-01

    The dynamical generation of a pole in the self-energy of a Yang-Mills field-an extension of the Schwinger mechanism-establishes a link between the tendency of the field to form nonperturbative vacuum condensates and its ``noninterpolating'' property in the confining phase-the fact that it has no particles associated with it. The nonvanishing residue of such a pole-a parameter b4 of dimension (mass)4-on the one hand provides for a nonvanishing value of <0||(∂μAν-∂νAμ)2 ||0>, a contribution to the ``gluon condensate.'' On the other hand, it implies a dominant nonperturbative form of the propagator that has no particle singularity on the real k2 axis; instead, it describes a quantized field whose elementary excitations are short lived. The dispersion law for these excitations is given and shows that they grow more particlelike (are asymptotically free) at large momenta, thus providing a qualitative description of the short-lived excitation at the origin of a gluon jet. At large k2, the nonperturbative propagator reproduces nonperturbative corrections derived from the operator-product expansion. Moreover, it is a solution to the Euclidean Dyson-Schwinger equation for the Yang-Mills field in the following sense: there exist nonperturbative three-vector vertices Γ3 and auxiliary ghost-ghost-vector vertices G3, satisfying all symmetry and invariance requirements, and in conjunction with which this propagator solves both the Euclidean Dyson-Schwinger equation through one-dressed-loop terms and the Γ3 Slavnov-Taylor identity up to perturbative corrections of order g2. The consistency conditions for this solution give b2=μ0 2exp[-(4π)2 /11g2] to this order, confirming the nonperturbative nature of the residue parameter, and providing a paradigm for the dynamical determination of condensates.

  11. MOM3D method of moments code theory manual

    NASA Technical Reports Server (NTRS)

    Shaeffer, John F.

    1992-01-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  12. K-decompositions and 3d gauge theories

    NASA Astrophysics Data System (ADS)

    Dimofte, Tudor; Gabella, Maxime; Goncharov, Alexander B.

    2016-11-01

    This paper combines several new constructions in mathematics and physics. Mathematically, we study framed flat PGL( K, ℂ)-connections on a large class of 3-manifolds M with boundary. We introduce a moduli space ℒ K ( M) of framed flat connections on the boundary ∂ M that extend to M. Our goal is to understand an open part of ℒ K ( M) as a Lagrangian subvariety in the symplectic moduli space {{X}}_K^{un}(partial M) of framed flat connections on the boundary — and more so, as a "K2-Lagrangian," meaning that the K2-avatar of the symplectic form restricts to zero. We construct an open part of ℒ K ( M) from elementary data associated with the hypersimplicial K-decomposition of an ideal triangulation of M, in a way that generalizes (and combines) both Thurston's gluing equations in 3d hyperbolic geometry and the cluster coordinates for framed flat PGL( K, ℂ)-connections on surfaces. By using a canonical map from the complex of configurations of decorated flags to the Bloch complex, we prove that any generic component of ℒ K ( M) is K2-isotropic as long as ∂ M satisfies certain topological constraints (theorem 4.2). In some cases this easily implies that ℒ K ( M) is K2-Lagrangian. For general M, we extend a classic result of Neumann and Zagier on symplectic properties of PGL(2) gluing equations to reduce the K2-Lagrangian property to a combinatorial statement.

  13. Black hole solution of Gauss-Bonnet massive gravity coupled to Maxwell and Yang-Mills fields in five dimensions

    NASA Astrophysics Data System (ADS)

    Meng, K.; Li, J.

    2016-10-01

    We construct a new static black hole solution of Gauss-Bonnet massive gravity coupled to Maxwell and Yang-Mills fields in five dimensions. We calculate the thermodynamical quantities of the black hole and check the first law of black hole thermodynamics. Thermal stability of the black hole is explored in the context of both canonical and grand canonical ensembles. By identifying the cosmological constant as the pressure of the gravitational system, we study the phase transitions of the black hole.

  14. Non-existence of black-hole solutions for the electroweak Einstein Dirac Yang/Mills equations

    NASA Astrophysics Data System (ADS)

    Bernard, Yann

    2006-07-01

    We consider a static, spherically symmetric system of a Dirac particle interacting with classical gravity and an electroweak Yang Mills field. It is shown that the only black-hole solutions of the corresponding coupled equations must be the extreme Reissner Nordström solutions, locally near the event horizon. This work generalizes a series of papers published by F Finster, J Smoller and S-T Yau.

  15. D3-D5 theories with unquenched flavors

    NASA Astrophysics Data System (ADS)

    Conde, Eduardo; Lin, Hai; Penín, José Manuel; Ramallo, Alfonso V.; Zoakos, Dimitrios

    2017-01-01

    We construct the string duals of the defect theories generated when Nf flavor D5-branes intersect Nc color D3-branes along a 2 + 1 dimensional subspace. We work in the Veneziano limit in which Nc and Nf are large and Nf /Nc is fixed. By smearing the D5-branes, we find supergravity solutions that take into account the backreaction of the flavor branes and preserve two supercharges. When the flavors are massless the resulting metric displays an anisotropic Lifshitz-like scale invariance. The case of massive quarks is also considered.

  16. Observational constraints on a Yang-Mills condensate dark energy model

    NASA Astrophysics Data System (ADS)

    Fu, Z. W.; Zhang, Y.; Tong, M. L.

    2011-11-01

    Using the recently released Union2 compilation with 557 Type Ia supernovae, the shift parameter of the cosmic microwave background given by the WMAP7 observations and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, we perform the χ2 analysis on the 1-loop Yang-Mills condensate (YMC) dark energy model. The analysis has been made for both non-coupling and coupling models with Ωm0 and w0 being treated as free parameters. It is found that χ2min = 542.870 at Ωm0 = 0.2701 and w0 = -0.9945 for the non-coupling model, and χ2min = 542.790 at γ = -0.015, Ωm0 = 0.2715 and w0 = -0.9969 for the coupling model. Comparing with the ΛCDM model, the YMC model has a smaller χ2min, but it has greater values of the Bayesian and Akaike information criteria. Overall, YMC is as robust as ΛCDM.

  17. Confinement of quarks and valence gluons in SU( N) Yang-Mills-Higgs models

    NASA Astrophysics Data System (ADS)

    Oxman, L. E.

    2013-03-01

    In this work, we analyze a class of Yang-Mills models containing adjoint Higgs fields, with SU( N) symmetry spontaneously broken down to Z( N), showing they contain center vortices, Y-junctions formed by them, and junctions where different center vortices are smoothly interpolated by monopole-like configurations. In the context of dual superconductors, these objects represent different states of the gluon field. Center vortices confine quarks to form normal hadron states. The interpolating monopole, which in our model cannot exist as an isolated configuration, is identified with a confined valence gluon. A junction containing a monopole can bind quarks in a color nonsinglet state to form an overall neutral object, identified with a hybrid hadron. These states, formed by quarks bound to a valence gluon, are allowed by QCD, and current experimental collaborations are aimed at identifying them. Finally, considering the general version of the model, based on a compact simple gauge group G, the picture is completed with a heuristic discussion about why it would be natural using as G the dual of the chromoelectric gauge group G e, and external pointlike monopoles to represent the mesonic and baryonic Wilson loops.

  18. The three-loop Yang-Mills condensate dark energy model and its cosmological constraints

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, Y.; Xia, T. Y.

    2008-10-01

    This work is a comprehensive investigation of the Yang-Mills condensate (YMC) dark energy (DE) model, which is extended to include the three-loop quantum corrections. We study its cosmic evolution and the possibility of crossing the phantom divide w = -1, examine in detail the Hubble parameter H, the deceleration parameter q, the statefinder (r,s) diagnostic and the w-w' diagnostic for the model without and with interaction, and compare our results with other DE models. Also, using the observational data for type Ia supernovae (SNIa), the shift parameter from the cosmic microwave background (CMB), and the baryon acoustic oscillation peak from large scale structures (LSS), we give the cosmological constraints on the three-loop YMC model. It is found that the model can solve the coincidence problem naturally, and its prediction of the aforementioned parameter is much closer to the ΛCDM (CDM: cold dark matter) model one than those from other dynamical DE models; the introduction of the matter-DE interaction will make the YMC model deviate from the ΛCDM model, and will give an equation of state crossing -1. Moreover, it is also found that, for fitting the latest SNIa data alone, the ΛCDM model is slightly better than the three-loop YMC model; but in fitting the combination of SNIa, CMB and LSS data, the three-loop YMC model performs better than the ΛCDM model.

  19. SU (2) Dirac-Yang-Mills quantum mechanics of spatially constant quark and gluon fields

    NASA Astrophysics Data System (ADS)

    Pavel, H.-P.

    2011-06-01

    The quantum mechanics of spatially constant SU (2) Yang-Mills- and Dirac-fields minimally coupled to each other is investigated as the strong coupling limit of 2-color-QCD. Using a canonical transformation of the quark and gluon fields, which Abelianises the Gauss law constraints to be implemented, the corresponding unconstrained Hamiltonian and total angular momentum are derived. In the same way as this reduces the colored spin-1 gluons to unconstrained colorless spin-0 and spin-2 gluons, it reduces the colored spin-1/2 quarks to unconstrained colorless spin-0 and spin-1 quarks. These however continue to satisfy anti-commutation relations and hence the Pauli-exclusion principle. The obtained unconstrained Hamiltonian is then rewritten into a form, which separates the rotational from the scalar degrees of freedom. In this form the low-energy spectrum can be obtained with high accuracy. As an illustrative example, the spin-0 energy-spectrum of the quark-gluon system is calculated for massless quarks of one flavor. It is found, that only for the case of 4 reduced quarks (half-filling) satisfying the boundary condition of particle-antiparticle C-symmetry, states with energy lower than for the pure-gluon case are obtained. These are the ground state, with an energy about 20% lower than for the pure-gluon case and the formation of a quark condensate, and the sigma-antisigma excitation with an energy about a fifth of that of the first glueball excitation.

  20. ahcal{N} = 4 super-Yang-Mills in LHC superspace part II: non-chiral correlation functions of the stress-tensor multiplet

    NASA Astrophysics Data System (ADS)

    Chicherin, Dmitry; Sokatchev, Emery

    2017-03-01

    We study the multipoint super-correlation functions of the full non-chiral stress-tensor multiplet in N = 4 super-Yang-Mills theory in the Born approximation. We derive effective supergraph Feynman rules for them. Surprisingly, the Feynman rules for the non-chiral correlators are obtained from those for the chiral correlators by a simple Grassmann shift of the space-time variables. We rely on the formulation of the theory in Lorentz harmonic chiral (LHC) superspace elaborated in the twin paper arXiv:1601.06803. In this approach only the chiral half of the supersymmetry is manifest. The other half is realized by nonlinear and nonlocal transformations of the LHC superfields. However, at Born level only the simple linear part of the transformations is relevant. It corresponds to effectively working in the self-dual sector of the theory. Our method is also applicable to a wider class of supermultiplets like all the half-BPS operators and the Konishi multiplet.

  1. Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems.

    PubMed

    Calaminici, Patrizia; Janetzko, Florian; Köster, Andreas M; Mejia-Olvera, Roberto; Zuniga-Gutierrez, Bernardo

    2007-01-28

    Density functional theory optimized basis sets for gradient corrected functionals for 3d transition metal atoms are presented. Double zeta valence polarization and triple zeta valence polarization basis sets are optimized with the PW86 functional. The performance of the newly optimized basis sets is tested in atomic and molecular calculations. Excitation energies of 3d transition metal atoms, as well as electronic configurations, structural parameters, dissociation energies, and harmonic vibrational frequencies of a large number of molecules containing 3d transition metal elements, are presented. The obtained results are compared with available experimental data as well as with other theoretical data from the literature.

  2. Nonsupersymmetric strong coupling background from the large N quantum mechanics of two matrices coupled via a Yang-Mills interaction

    SciTech Connect

    Rodrigues, Joao P.; Zaidi, Alia

    2010-10-15

    We derive a planar sector of the large N nonsupersymmetric background of the quantum mechanical Hamiltonian of two Hermitian matrices coupled via a Yang-Mills interaction, in terms of the density of eigenvalues of one of the matrices. This background satisfies an implicit nonlinear integral equation, with a perturbative small coupling expansion and a solvable large coupling solution, which is obtained. The energy of system and the expectation value of several correlators are obtained in this strong coupling limit. They are free of infrared divergences.

  3. Exploring center strings in S U (2 ) and S U (3 ) relativistic Yang-Mills-Higgs models

    NASA Astrophysics Data System (ADS)

    Oxman, L. E.; Vercauteren, D.

    2017-01-01

    We develop numerical tools and apply them to solve the relativistic Yang-Mills-Higgs equations in a model where the S U (N ) symmetry is spontaneously broken to its center. In S U (2 ) and S U (3 ), we obtain the different field profiles for infinite and finite center strings, with end points at external monopole sources. Exploration of parameter space permits the detection of a region where the equations get Abelianized. Finally, a general parametrization of the color structure of S U (2 ) fields leads us to a reference point where an Abelian-like Bogomol'nyi-Prasad-Sommereld (BPS) bound is reconciled with N -ality.

  4. Infrared suppression of the Coulomb gauge gluon propagator in SU(3) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Nakagawa, Y.

    We calculate the equal-time transverse gluon propagator in Coulomb gauge QCD using a SU(3) quenched lattice gauge simulation on large lattices, up to 114 [fm4 ]. We find that the equal-time gluon propagator shows scaling violation; namely, the data for different lattice spacings do not fall on top of one curve. This problem is cured by discarding data at large momenta, which suffer from discretization errors. In the infrared region, the transverse gluon propagator is strongly suppressed and shows a turnover at about 500 [MeV]. Fitting the power law ansatz to the data at small momenta predicts the vanishing gluon propagator at zero momentum, indicating the confinement of gluons.

  5. The Gribov problem in presence of background field for SU(2) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Hidalgo, Diego; Pais, Pablo

    2016-12-01

    The Gribov problem in the presence of a background field is analyzed: in particular, we study the Gribov copies equation in the Landau-De Witt gauge as well as the semi-classical Gribov gap equation. As background field, we choose the simplest non-trivial one which corresponds to a constant gauge potential with non-vanishing component along the Euclidean time direction. This kind of constant non-Abelian background fields is very relevant in relation with (the computation of) the Polyakov loop but it also appears when one considers the non-Abelian Schwinger effect. We show that the Gribov copies equation is affected directly by the presence of the background field, constructing an explicit example. The analysis of the Gribov gap equation shows that the larger the background field, the smaller the Gribov mass parameter. These results strongly suggest that the relevance of the Gribov copies (from the path integral point of view) decreases as the size of the background field increases.

  6. Three-point vertex functions in Yang-Mills Theory and QCD in Landau gauge

    NASA Astrophysics Data System (ADS)

    Blum, Adrian L.; Alkofer, Reinhard; Huber, Markus Q.; Windisch, Andreas

    2017-03-01

    Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks ("unquenching") change the three-gluon vertex via the quark-triangle diagrams which themselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the threegluon vertex the "unquenching" effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared.

  7. Dual Meissner Effect and Non-Abelian Magnetic Monopole in SU(3) Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Shibata, Akihiro; Kondo, Kei-Ichi; Shinohara, Toru

    2013-03-01

    We measure the color flux produced by a pair of quark and antiquark and examine whether or not the non-Abelian dual superconductivity claimed by us is indeed a mechanism of quark confinement. We present a preliminary result of the direct evidence for the non-abelian dual Meissner effect, that is to say, restricted U(2)-field part of the flux tube plays the dominant role in the quarkantiquark potential.

  8. Renormalization of composite operators in Yang-Mills theories using a general covariant gauge

    SciTech Connect

    Collins, J.C.; Scalise, R.J. )

    1994-09-15

    Essential to QCD applications of the operator product expansion, etc., is a knowledge of those operators that mix with gauge-invariant operators. A standard theorem asserts that the renormalization matrix is triangular: Gauge-invariant operators have alien'' gauge-variant operators among their counterterms, but, with a suitably chosen basis, the necessary alien operators have only themselves as counterterms. Moreover, the alien operators are supposed to vanish in physical matrix elements. A recent calculation by Hamberg and van Neerven apparently contradicts these results. By explicit calculations with the energy-momentum tensor, we show that the problems arise because of subtle infrared singularities that appear when gluonic matrix elements are taken on shell at zero momentum transfer.

  9. Stability of chromomagnetic condensation and mass generation for confinement in SU(2) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi

    2014-05-01

    We show that the Nielsen-Olesen instability of the Savvidy vacuum with a homogeneous chromomagnetic condensation disappears in the framework of the functional renormalization group. This result follows from our observations: (i) the vanishing imaginary part of the effective average action is realized for arbitrary infrared cutoff as a novel fixed point solution of the flow equation for the complex-valued effective average action and (ii) an approximate analytical solution for the effective average action is obtained without the pure imaginary part for large infrared cutoff. This result suggests that there exists a physical mechanism for maintaining the stability or staying on the fixed point even for sufficiently small infrared cutoff. We argue that dynamical gluon mass generation (related to two-gluon bound states identified with glueballs) occurs due to the Becchi-Rouet-Stora-Tyutin-invariant vacuum condensate of mass dimension two without causing instability.

  10. Boundaries, mirror symmetry, and symplectic duality in 3d N=4 gauge theory

    NASA Astrophysics Data System (ADS)

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; Hilburn, Justin

    2016-10-01

    We introduce several families of N=(2, 2) UV boundary conditions in 3d N=4 gaugetheoriesandstudytheirIRimagesinsigma-modelstotheHiggsandCoulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respec-tively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studying two-dimensional compactifications of 3d N=4 gauge theories and their boundary conditions, we propose a physical origin for symplectic duality — an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.

  11. Equations on knot polynomials and 3d/5d duality

    SciTech Connect

    Mironov, A.; Morozov, A.

    2012-09-24

    We briefly review the current situation with various relations between knot/braid polynomials (Chern-Simons correlation functions), ordinary and extended, considered as functions of the representation and of the knot topology. These include linear skein relations, quadratic Plucker relations, as well as 'differential' and (quantum) A-polynomial structures. We pay a special attention to identity between the A-polynomial equations for knots and Baxter equations for quantum relativistic integrable systems, related through Seiberg-Witten theory to 5d super-Yang-Mills models and through the AGT relation to the q-Virasoro algebra. This identity is an important ingredient of emerging a 3d- 5d generalization of the AGT relation. The shape of the Baxter equation (including the values of coefficients) depend on the choice of the knot/braid. Thus, like the case of KP integrability, where (some, so far torus) knots parameterize particular points of the Universal Grassmannian, in this relation they parameterize particular points in the moduli space of many-body integrable systems of relativistic type.

  12. Energy loss of a nonaccelerating quark moving through a strongly coupled N =4 super Yang-Mills vacuum or plasma in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Mamo, Kiminad A.

    2016-08-01

    Using AdS /CFT correspondence, we find that a massless quark moving at the speed of light v =1 , in arbitrary direction, through a strongly coupled N =4 super Yang-Mills (SYM) vacuum at T =0 , in the presence of strong magnetic field B , loses its energy at a rate linearly dependent on B , i.e., d/E d t =-√{λ/} 6 π B . We also show that a heavy quark of mass M ≠0 moving at near the speed of light v2=v*2=1 -4/π2T2 B ≃1 , in arbitrary direction, through a strongly coupled N =4 SYM plasma at finite temperature T ≠0 , in the presence of strong magnetic field B ≫T2, loses its energy at a rate linearly dependent on B , i.e., d/E d t =-√{λ/}6 π B v*2≃-√{λ/}6 π B . Moreover, we argue that, in the strong magnetic field B ≫T2 (IR) regime, N =4 SYM and adjoint QCD theories (when the adjoint QCD theory has four flavors of Weyl fermions and is at its conformal IR fixed point λ =λ*) have the same microscopic degrees of freedom (i.e., gluons and lowest Landau levels of Weyl fermions) even though they have quite different microscopic degrees of freedom in the UV when we consider higher Landau levels. Therefore, in the strong magnetic field B ≫T2 (IR) regime, the thermodynamic and hydrodynamic properties of N =4 SYM and adjoint QCD plasmas, as well as the rates of energy loss of a quark moving through the plasmas, should be the same.

  13. Twisted 3D N=4 supersymmetric YM on deformed A{sub 3}{sup *} lattice

    SciTech Connect

    Saidi, El Hassan

    2014-01-15

    We study a class of twisted 3D N=4 supersymmetric Yang-Mills (SYM) theory on particular 3-dimensional lattice L{sub 3D} formally denoted as L{sub 3D}{sup su{sub 3}×u{sub 1}} and given by non-trivial fibration L{sub 1D}{sup u{sub 1}}×L{sub 2D}{sup su{sub 3}} with base L{sub 2D}{sup su{sub 3}}=A{sub 2}{sup *}, the weight lattice of SU(3). We first, develop the twisted 3D N=4 SYM in continuum by using superspace method where the scalar supercharge Q is manifestly exhibited. Then, we show how to engineer the 3D lattice L{sub 3D}{sup su{sub 3}×u{sub 1}} that host this theory. After that we build the lattice action S{sub latt} invariant under the following three points: (i) U(N) gauge invariance, (ii) BRST symmetry, (iii) the S{sub 3} point group symmetry of L{sub 3D}{sup su{sub 3}×u{sub 1}}. Other features such as reduction to twisted 2D supersymmetry with 8 supercharges living on L{sub 2D}≡L{sub 2D}{sup su{sub 2}×u{sub 1}}, the extension to twisted maximal 5D SYM with 16 supercharges on lattice L{sub 5D}≡L{sub 5D}{sup su{sub 4}×u{sub 1}} as well as the relation with known results are also given.

  14. The cognitive apprenticeship theory for the teaching of mathematics in an online 3D virtual environment

    NASA Astrophysics Data System (ADS)

    Bouta, Hara; Paraskeva, Fotini

    2013-03-01

    Research spanning two decades shows that there is a continuing development of 3D virtual worlds and investment in such environments for educational purposes. Research stresses the need for these environments to be well-designed and for suitable pedagogies to be implemented in the teaching practice in order for these worlds to be fully effective. To this end, we propose a pedagogical framework based on the cognitive apprenticeship for deriving principles and guidelines to inform the design, development and use of a 3D virtual environment. This study examines how the use of a 3D virtual world facilitates the teaching of mathematics in primary education by combining design principles and guidelines based on the Cognitive Apprenticeship Theory and the teaching methods that this theory introduces. We focus specifically on 5th and 6th grade students' engagement (behavioral, affective and cognitive) while learning fractional concepts over a period of two class sessions. Quantitative and qualitative analyses indicate considerable improvement in the engagement of the students who participated in the experiment. This paper presents the findings regarding students' cognitive engagement in the process of comprehending basic fractional concepts - notoriously hard for students to master. The findings are encouraging and suggestions are made for further research.

  15. Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Staeckel transform and 3D classification theory

    SciTech Connect

    Kalnins, E.G.; Kress, J.M.; Miller, W. Jr.

    2006-04-15

    This article is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. In the first part of the article we study the Staeckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different three-dimensional spaces. We show first that all superintegrable systems with nondegenerate potentials are multiseparable and then that each such system on any conformally flat space is Staeckel equivalent to a system on a constant curvature space. In the second part of the article we classify all the superintegrable systems that admit separation in generic coordinates. We find that there are eight families of these systems.

  16. Two-phase region of vortex-solid melting: 3D XY theory

    NASA Astrophysics Data System (ADS)

    Friesen, M.; Muzikar, P.

    1998-07-01

    In clean enough samples of the high-Tc oxide materials, the phase transition into the superconducting state occurs along a first-order line in the H-T plane. This means that a two-phase region occurs in the B-T plane, in which the liquid and solid vortex phases coexist. We discuss the thermodynamics of this two-phase region, developing formulae relating experimental quantities of interest. We then apply the 3D XY scaling theory to the problem, obtaining detailed predictions for the boundaries of the coexistence region. By using published data, we are able to predict the width of the two-phase region, and determine the physical parameters involved in the 3D XY description.

  17. The large-N Yang-Mills S matrix is ultraviolet finite, but the large-N QCD S matrix is only renormalizable

    NASA Astrophysics Data System (ADS)

    Bochicchio, Marco

    2017-03-01

    Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or only renormalizable, order by order, in the large-N 't Hooft or Veneziano expansions. We demonstrate that the renormalization group (RG) and asymptotic freedom imply that in 't Hooft large-N expansion the S matrix in YM theory is UV finite, while in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N =1 supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both 't Hooft and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N =1 SUSY YM theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from renormalizing the 't Hooft and Veneziano expansions by deriving in confining massless QCD-like theories a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative with respect to the gauge coupling of a k -point correlator, or the log derivative with respect to the RG-invariant scale, to a (k +1 )-point correlator with the insertion of Tr F2 at zero momentum. Finally, we argue that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories, provided a renormalization scheme exists—as, for example, MS ¯ —in which the beta function is not dependent on the masses. Specifically, in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massive QCD and massive N =1 SUSY QCD is renormalizable but not UV finite.

  18. Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice

    PubMed Central

    Barr, Rachel

    2010-01-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a 2-Dimensional (2D) representation and a 3-Dimensional (3D) object. Understanding the conditions under which young children might accomplish this particular kind of transfer is important because by 2 years of age 90% of US children are viewing television on a daily basis. Recent research shows that children can imitate actions presented on television using the corresponding real-world objects, but this same research also shows that children learn less from television than they do from live demonstrations until they are at least 3 years old; termed the video deficit effect. At present, there is no coherent theory to account for the video deficit effect; how learning is disrupted by this change in context is poorly understood. The aims of the present review are (1) to review the conditions under which children transfer learning between 2D images and 3D objects during early childhood, and (2) to integrate developmental theories of memory processing into the transfer of learning from media literature using Hayne’s (2004) developmental representational flexibility account. The review will conclude that studies on the transfer of learning between 2D and 3D sources have important theoretical implications for general developmental theories of cognitive development, and in particular the development of a flexible representational system, as well as policy implications for early education regarding the potential use and limitations of media as effective teaching tools during early childhood. PMID:20563302

  19. Deconfinement Phase Transition in a 3D Nonlocal U(1) Lattice Gauge Theory

    SciTech Connect

    Arakawa, Gaku; Ichinose, Ikuo; Matsui, Tetsuo; Sakakibara, Kazuhiko

    2005-06-03

    We introduce a 3D compact U(1) lattice gauge theory having nonlocal interactions in the temporal direction, and study its phase structure. The model is relevant for the compact QED{sub 3} and strongly correlated electron systems like the t-J model of cuprates. For a power-law decaying long-range interaction, which simulates the effect of gapless matter fields, a second-order phase transition takes place separating the confinement and deconfinement phases. For an exponentially decaying interaction simulating matter fields with gaps, the system exhibits no signals of a second-order transition.

  20. On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity

    NASA Astrophysics Data System (ADS)

    Delcamp, Clement; Dittrich, Bianca; Riello, Aldo

    2016-11-01

    Entanglement entropy is a valuable tool for characterizing the correlation structure of quantum field theories. When applied to gauge theories, subtleties arise which prevent the factorization of the Hilbert space underlying the notion of entanglement entropy. Borrowing techniques from extended topological field theories, we introduce a new definition of entanglement entropy for both Abelian and non-Abelian gauge theories. Being based on the notion of excitations, it provides a completely relational way of defining regions. Therefore, it naturally applies to background independent theories, e.g. gravity, by circumventing the difficulty of specifying the position of the entangling surface. We relate our construction to earlier proposals and argue that it brings these closer to each other. In particular, it yields the non-Abelian analogue of the `magnetic centre choice', as obtained through an extended-Hilbert-space method, but applied to the recently introduced fusion basis for 3D lattice gauge theories. We point out that the different definitions of entanglement entropy can be related to a choice of (squeezed) vacuum state.

  1. A geometric method of constructing exact solutions in modified f(R, T)-gravity with Yang-Mills and Higgs interactions

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.; Veliev, Elşen Veli; Yazici, Enis

    2014-09-01

    We show that geometric techniques can be elaborated and applied for constructing generic off-diagonal exact solutions in f(R, T)-modified gravity for systems of gravitational-Yang-Mills-Higgs equations. The corresponding classes of metrics and generalized connections are determined by generating and integration functions which depend, in general, on all space and time coordinates and may possess, or not, Killing symmetries. For nonholonomic constraints resulting in Levi-Civita configurations, we can extract solutions of the Einstein-Yang-Mills-Higgs equations. We show that the constructions simplify substantially for metrics with at least one Killing vector. Some examples of exact solutions describing generic off-diagonal modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed.

  2. On the instability of the n = 1 Einstein-Yang-Mills black holes and mathematically related systems.

    NASA Astrophysics Data System (ADS)

    Wald, R. M.

    1992-01-01

    The usual approach to analyze the linear stability of a static solution of some system of equations consists of searching for linearized solutions which satisfy suitable boundary conditions spatially and which grow exponentially in time. In the case of the n = 1 Einstein-Yang-Mills (EYM) black hole, an interesting situation occurs. There exists a perturbation which grows exponentially in time-and spatially decreases to zero at the horizon-but nevertheless is physically singular on the horizon. Thus, this unstable mode is unacceptable as initial data, and the question arises as to whether the n = 1 EYM black hole is stable. The author analyzes this issue here in the more general case. He proves that there exists smooth initial data of compact support in M which give rise to a solution which grows unboundedly with time. This implies that the n = 1 EYM black hole and other mathematically similar systems are unstable despite the nonexistence of physically acceptable exponentially growing modes.

  3. Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge-string duality.

    PubMed

    Andreev, Oleg

    2009-05-29

    We use gauge-string duality to analytically evaluate the renormalized Polyakov loop in pure Yang-Mills theories. For SU(3), the result is in quite good agreement with lattice simulations for a broad temperature range.

  4. GARN: Sampling RNA 3D Structure Space with Game Theory and Knowledge-Based Scoring Strategies.

    PubMed

    Boudard, Mélanie; Bernauer, Julie; Barth, Dominique; Cohen, Johanne; Denise, Alain

    2015-01-01

    Cellular processes involve large numbers of RNA molecules. The functions of these RNA molecules and their binding to molecular machines are highly dependent on their 3D structures. One of the key challenges in RNA structure prediction and modeling is predicting the spatial arrangement of the various structural elements of RNA. As RNA folding is generally hierarchical, methods involving coarse-grained models hold great promise for this purpose. We present here a novel coarse-grained method for sampling, based on game theory and knowledge-based potentials. This strategy, GARN (Game Algorithm for RNa sampling), is often much faster than previously described techniques and generates large sets of solutions closely resembling the native structure. GARN is thus a suitable starting point for the molecular modeling of large RNAs, particularly those with experimental constraints. GARN is available from: http://garn.lri.fr/.

  5. Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.

    PubMed

    Estrada-Salas, Rubén E; Valladares, Ariel A

    2009-09-24

    Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.

  6. Theory of topological quantum phase transitions in 3D noncentrosymmetric systems.

    PubMed

    Yang, Bohm-Jung; Bahramy, Mohammad Saeed; Arita, Ryotaro; Isobe, Hiroki; Moon, Eun-Gook; Nagaosa, Naoto

    2013-02-22

    We construct a general theory describing the topological quantum phase transitions in 3D systems with broken inversion symmetry. While the consideration of the system's codimension generally predicts the appearance of a stable metallic phase between the normal and topological insulators, it is shown that a direct topological phase transition between two insulators is also possible when an accidental band crossing occurs along directions with high crystalline symmetry. At the quantum critical point, the energy dispersion becomes quadratic along one direction while the dispersions along the other two orthogonal directions are linear, which manifests the zero chirality of the band touching point. Because of the anisotropic dispersion at quantum critical point, various thermodynamic and transport properties show unusual temperature dependence and anisotropic behaviors.

  7. Perturbative and non-perturbative aspects of the two-dimensional string/Yang-Mills correspondence

    NASA Astrophysics Data System (ADS)

    Lelli, Simone; Maggiore, Michele; Rissone, Anna

    2003-04-01

    It is known that YM 2 with gauge group SU( N) is equivalent to a string theory with coupling gs=1/ N, order by order in the 1/ N expansion. We show how this result can be obtained from the bosonization of the fermionic formulation of YM 2, improving on results in the literature, and we examine a number of non-perturbative aspects of this string/YM correspondence. We find contributions to the YM 2 partition function of order exp{- kA/( πα' gs)} with k an integer and A the area of the target space, which would correspond, in the string interpretation, to D1-branes. Effects which could be interpreted as D0-branes are instead strictly absent, suggesting a non-perturbative structure typical of type 0B string theories. We discuss effects from the YM side that are interpreted in terms of the stringy exclusion principle of Maldacena and Strominger. We also find numerically an interesting phase structure, with a region where YM 2 is described by a perturbative string theory separated from a region where it is described by a topological string theory.

  8. Charged D3-D7 plasmas: novel solutions, extremality and stability issues

    NASA Astrophysics Data System (ADS)

    Bigazzi, Francesco; Cotrone, Aldo L.; Tarrío, Javier

    2013-07-01

    We study finite temperature Super Yang-Mills (and more general gauge theories realized on intersecting D3-D7 branes) in the presence of dynamical massless fundamental matter fields at finite baryon charge density. We construct the holographic dual charged black hole solutions at first order in the flavor backreaction but exact in the charge density. The thermodynamical properties of the dual gauge theories coincide with the ones found in the usual charged D7-probe limit and the system turns out to be thermodynamically stable. By analyzing the higher order correction in the flavor backreaction, we provide a novel argument for the un-reliability of the charged probe approximation (and the present solution) in the extremality limit, i.e. at zero temperature. We then consider scalar mesonic-like bound states, whose spectrum is dual to that of linearized fluctuations of D7-brane worldvolume fields around our gravity backgrounds. In particular we focus on a scalar field saturating the Breitenlohner-Freedman bound in the flavorless limit, and coupled to fields dual to irrelevant operators. By looking at quasinormal modes of this scalar, we find no signals of instabilities in the regime of validity of the solutions.

  9. Localization and Dualities in Three-dimensional Superconformal Field Theories

    NASA Astrophysics Data System (ADS)

    Willett, Brian

    In this thesis we apply the technique of localization to three-dimensional N = 2 superconformal field theories. We consider both theories which are exactly superconformal, and those which are believed to flow to nontrivial superconformal fixed points, for which we consider implicitly these fixed points. We find that in such theories, the partition function and certain supersymmetric observables, such as Wilson loops, can be computed exactly by a matrix model. This matrix model consists of an integral over g , the Lie algebra of the gauge group of the theory, of a certain product of 1-loop factors and classical contributions. One can also consider a space of supersymmetric deformations of the partition function corresponding to the set of abelian global symmetries. In the second part of the thesis we apply these results to test dualities. We start with the case of ABJM theory, which is dual to M-theory on an asymptotically AdS4 x S7 background. We extract strong coupling results in the field theory, which can be compared to semiclassical, weak coupling results in the gravity theory, and a nontrivial agreement is found. We also consider several classes of dualities between two three-dimensional field theories, namely, 3D mirror symmetry, Aharony duality, and Giveon-Kutasov duality. Here the dualities are typically between the IR limits of two Yang-Mills theories, which are strongly coupled in three dimensions since Yang-Mills theory is asymptotically free here. Thus the comparison is again very nontrivial, and relies on the exactness of the localization computation. We also compare the deformed partition functions, which tests the mapping of global symmetries of the dual theories. Finally, we discuss some recent progress in the understanding of general three-dimensional theories in the form of the F-theorem, a conjectured analogy to the a-theorem in four dimensions and c-theorem in two dimensions, which is closely related to the localization computation.

  10. Systematics of one-loop Yang-Mills diagrams from bosonic string amplitudes

    NASA Astrophysics Data System (ADS)

    Frizzo, Alberto; Magnea, Lorenzo; Russo, Rodolfo

    2001-06-01

    We present a general algorithm to compute off-shell, one-loop multigluon Green functions using bosonic string amplitudes. We identify and parametrize the regions in the space of moduli of one-loop Riemann surfaces that contribute to the field theory limit of string amplitudes. Each of these regions can be precisely associated with a Feynman-like scalar graph with cubic and quartic vertices, whose lines represent the joint propagation of ghosts and gluons. We give a procedure to compute the contribution of each graph to a gluon Green function, for arbitrarily polarized off-shell gluons, reducible and irreducible diagrams, planar and non-planar topologies. Explicit examples are given for up to six gluons.

  11. A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings

    NASA Technical Reports Server (NTRS)

    Yates, John E.

    1991-01-01

    A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced with specific applications to three cases of interest: (1) constant angle of attack; (2) parabolic camber; and (3) a flapped airfoil. The first case is also extended to a profiled leading edge foil. The well-known drag due to absence of leading edge suction is derived from the viscous theory. It is independent of Reynolds number for zero thickness and varies inversely with the square root of the Reynolds number based on the leading edge radius for profiled sections. The role of turbulence in the section induced drag problem is discussed. A theory of minimum section induced drag is derived and applied. For low Reynolds number the minimum drag load tends to the constant angle of attack solution and for high Reynolds number to an approximation of the parabolic camber solution. The parabolic camber section induced drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new concepts, the viscous induced drag angle and the viscous induced separation potential are introduced. The separation potential is calculated for three 2-D cases and for a 3-D rectangular wing. The potential is calculated with input from a standard doublet lattice wing code without recourse to any boundary layer calculations. Separation is indicated in regions where it is observed experimentally. The classical induced drag is recovered in the 3-D high Reynolds number limit with an additional contribution that is Reynold number dependent. The 3-D viscous theory of minimum induced drag yields an equation for the optimal spanwise and chordwise load distribution. The design of optimal wing tip planforms and camber distributions is possible with the viscous 3-D wing theory.

  12. 3D kinematics using dual quaternions: theory and applications in neuroscience

    PubMed Central

    Leclercq, Guillaume; Lefèvre, Philippe; Blohm, Gunnar

    2013-01-01

    In behavioral neuroscience, many experiments are developed in 1 or 2 spatial dimensions, but when scientists tackle problems in 3-dimensions (3D), they often face problems or new challenges. Results obtained for lower dimensions are not always extendable in 3D. In motor planning of eye, gaze or arm movements, or sensorimotor transformation problems, the 3D kinematics of external (stimuli) or internal (body parts) must often be considered: how to describe the 3D position and orientation of these objects and link them together? We describe how dual quaternions provide a convenient way to describe the 3D kinematics for position only (point transformation) or for combined position and orientation (through line transformation), easily modeling rotations, translations or screw motions or combinations of these. We also derive expressions for the velocities of points and lines as well as the transformation velocities. Then, we apply these tools to a motor planning task for manual tracking and to the modeling of forward and inverse kinematics of a seven-dof three-link arm to show the interest of dual quaternions as a tool to build models for these kinds of applications. PMID:23443667

  13. Dimension two condensates in the Gribov-Zwanziger theory in Coulomb gauge

    NASA Astrophysics Data System (ADS)

    Guimaraes, M. S.; Mintz, B. W.; Sorella, S. P.

    2015-06-01

    We investigate the dimension two condensate ⟨ϕ¯ia bϕia b-ω¯ia bωia b⟩ within the Gribov-Zwanziger approach to Euclidean Yang-Mills theories in the Coulomb gauge, in both 3 and 4 dimensions. An explicit calculation shows that, at the first order, the condensate ⟨ϕ¯i a bϕia b-ω¯i a bωia b⟩ is plagued by a nonintegrable IR divergence in 3 D , while in 4 D it exhibits a logarithmic UV divergence, being proportional to the Gribov parameter γ2. These results indicate that in 3D the transverse spatial Coulomb gluon two-point correlation function exhibits a scaling behavior, in agreement with Gribov's expression. In 4D, however, they suggest that, next to the scaling behavior, a decoupling solution might emerge too.

  14. Assessing the performance of density functional theory for the electronic structure of metal-salens: the 3d(0)-metals.

    PubMed

    Sears, John S; Sherrill, C David

    2008-04-17

    A series of metal-salen complexes of the 3d(0) metals Sc(III), Ti(IV), V(V), Cr(VI), and Mn(VII) have been explored using high-level electronic structure methods including coupled-cluster theory with singles, doubles, and perturbative triples as well as complete active-space third-order perturbation theory. The performance of three common density functional theory approaches has been assessed for both the geometries and the relative energies of the low-lying electronic states. The nondynamical correlation effects are demonstrated to be extremely large in all of the systems examined. Although density functional theory provides reasonable results for some of the systems, the overall agreement is quite poor. This said, the density functional theory approaches are shown to outperform the single-reference perturbation theory and coupled-cluster theory approaches for cases of strong nondynamical correlation.

  15. 4d/3d reduction of s-confining theories: the role of the "exotic" D instantons

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio

    2016-02-01

    The reduction of 4d Seiberg duality to 3d by compactification on a circle is possible if finite size effects are considered. These effects boil down to the contribution of KK monopole operators acting as instantons in 3d, and they are crucial to preserve the 4d duality in 3d. This mechanism has been reproduced in string theory by T-duality on the type IIA brane setup. In some cases the 4d dual "magnetic" theories are IR confined descriptions of the UV gauge theories. In these cases the monopoles are absent in the IR dynamics and the mechanism of reduction of the 4d duality has to be modified. In this paper we investigate such modification in the brane setup. The main observation behind our analysis is that in the 4d case the superpotential of the confined theories can been obtained also from the "exotic" contribution of a D0 brane, a stringy instanton. When considering these configurations we reproduce the field theory results in the brane setup. We study both the unitary and the symplectic case. As a further check we provide the interpretation of the mechanism in terms of localization.

  16. Transfer of Learning between 2D and 3D Sources during Infancy: Informing Theory and Practice

    ERIC Educational Resources Information Center

    Barr, Rachel

    2010-01-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a two-dimensional (2D) representation and a three-dimensional (3D) object. Understanding the conditions under which young children might accomplish this…

  17. The Cognitive Apprenticeship Theory for the Teaching of Mathematics in an Online 3D Virtual Environment

    ERIC Educational Resources Information Center

    Bouta, Hara; Paraskeva, Fotini

    2013-01-01

    Research spanning two decades shows that there is a continuing development of 3D virtual worlds and investment in such environments for educational purposes. Research stresses the need for these environments to be well-designed and for suitable pedagogies to be implemented in the teaching practice in order for these worlds to be fully effective.…

  18. Confinement and lattice gauge theory

    SciTech Connect

    Creutz, M

    1980-06-01

    The motivation for formulating gauge theories on a lattice to study non-perturbative phenomena is reviewed, and recent progress supporting the compatibility of asymptotic freedom and quark confinement in the standard SU(3) Yang-Mills theory of the strong interaction is discussed.

  19. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    PubMed

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  20. Wave optics theory and 3-D deconvolution for the light field microscope.

    PubMed

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-10-21

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method.

  1. Wave optics theory and 3-D deconvolution for the light field microscope

    PubMed Central

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-01-01

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383

  2. A new algorithm for determining 3D biplane imaging geometry: theory and implementation

    NASA Astrophysics Data System (ADS)

    Singh, Vikas; Xu, Jinhui; Hoffmann, Kenneth R.; Xu, Guang; Chen, Zhenming; Gopal, Anant

    2005-04-01

    Biplane imaging is a primary method for visual and quantitative assessment of the vasculature. A key problem called Imaging Geometry Determination problem (IGD for short) in this method is to determine the rotation-matrix R and the translation-vector t which relate the two coordinate systems. In this paper, we propose a new approach, called IG-Sieving, to calculate R and t using corresponding points in the two images. Our technique first generates an initial estimate of R and t from the gantry angles of the imaging system, and then optimizes them by solving an optimal-cell-search problem in a 6-D parametric space (three variables defining R plus the three variables of t). To efficiently find the optimal imaging geometry (IG) in 6-D, our approach divides the high dimensional search domain into a set of lower-dimensional regions, thereby reducing the optimal-cell-search problem to a set of optimization problems in 3D sub-spaces. For each such sub-space, our approach first applies efficient computational geometry techniques to identify "possibly-feasible"" IG"s, and then uses a criterion we call fall-in-number to sieve out good IGs. We show that in a bounded number of optimization steps, a (possibly infinite) set of near-optimal IGs can be determined. Simulation results indicate that our method can reconstruct 3D points with average 3D center-of-mass errors of about 0.8cm for input image-data errors as high as 0.1cm. More importantly, our algorithm provides a novel insight into the geometric structure of the solution-space, which could be exploited to significantly improve the accuracy of other biplane algorithms.

  3. 3d N = 1 Chern-Simons-matter theory and localization

    NASA Astrophysics Data System (ADS)

    Tsimpis, Dimitrios; Zhu, Yaodong

    2016-10-01

    We consider the most general, classically-conformal, three-dimensional N = 1 Chern-Simons-matter theory with global symmetry Sp (2) and gauge group U (N) × U (N). We show that the Lagrangian in the on-shell formulation of the theory admits one more free parameter as compared to the theory formulated in off-shell N = 1 superspace. The theory on T3 can be formally localized. We partially carry out the localization procedure for the theory on T3 with periodic boundary conditions. In particular we show that restricting to the saddle points with vanishing gauge connection gives a trivial contribution to the partition function, i.e. the bosonic and fermionic contributions exactly cancel each other.

  4. Holographic Screening Length on Parallel Motion of Quark-Antiquark Pair in Four Dimensional Strongly Coupled = 4 super-Yang-Mills plasma

    NASA Astrophysics Data System (ADS)

    Nata Atmaja, Ardian

    2014-10-01

    We study the screening length of a quark-antiquark pair moving in a strongly coupled hot plasma of = 4 super-Yang-Mills using AdS/CFT correspondence where the background metric is five dimensional AdS black hole. We take the string solution as such the separation length L of quark-antiquark pair is parallel to the string velocity v. The screening length and the bound energy are computed numerically using Mathematica. We find that the plots are bounded from below by some functions that are related to the momentum flow of the drag force configuration Pc. We compare the result by computing the screening length in the quark-antiquark reference frame by boosting the AdS black hole.

  5. Quantum tunneling of spin-1 particles from a 5D Einstein-Yang-Mills-Gauss-Bonnet black hole beyond semiclassical approximation

    NASA Astrophysics Data System (ADS)

    Jusufi, K.

    2016-12-01

    In the present paper we study the Hawking radiation as a quantum tunneling effect of spin-1 particles from a five-dimensional, spherically symmetric, Einstein-Yang-Mills-Gauss-Bonnet (5D EYMGB) black hole. We solve the Proca equation (PE) by applying the WKB approximation and separation of variables via Hamilton-Jacobi (HJ) equation which results in a set of five differential equations, and reproduces, in this way, the Hawking temperature. In the second part of this paper, we extend our results beyond the semiclassical approximation. In particular, we derive the logarithmic correction to the entropy of the EYMGB black hole and show that the quantum corrected specific heat indicates the possible existence of a remnant.

  6. Flat holography: aspects of the dual field theory

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Basu, Rudranil; Kakkar, Ashish; Mehra, Aditya

    2016-12-01

    Assuming the existence of a field theory in D dimensions dual to ( D + 1)-dimensional flat space, governed by the asymptotic symmetries of flat space, we make some preliminary remarks about the properties of this field theory. We review briefly some successes of the 3d bulk - 2d boundary case and then focus on the 4d bulk - 3d boundary example, where the symmetry in question is the infinite dimensional BMS4 algebra. We look at the constraints imposed by this symmetry on a 3d field theory by constructing highest weight representations of this algebra. We construct two and three point functions of BMS primary fields and surprisingly find that symmetries constrain these correlators to be identical to those of a 2d relativistic conformal field theory. We then go one dimension higher and construct prototypical examples of 4d field theories which are putative duals of 5d Minkowski spacetimes. These field theories are ultra-relativistic limits of electrodynamics and Yang-Mills theories which exhibit invariance under the conformal Carroll group in D = 4. We explore the different sectors within these Carrollian gauge theories and investigate the symmetries of the equations of motion to find that an infinite ultra-relativistic conformal structure arises in each case.

  7. Localization and visualization of excess chemical potential in statistical mechanical integral equation theory 3D-HNC-RISM.

    PubMed

    Du, Qi-Shi; Liu, Peng-Jun; Huang, Ri-Bo

    2008-02-01

    In this study the excess chemical potential of the integral equation theory, 3D-RISM-HNC [Q. Du, Q. Wei, J. Phys. Chem. B 107 (2003) 13463-13470], is visualized in three-dimensional form and localized at interaction sites of solute molecule. Taking the advantage of reference interaction site model (RISM), the calculation equations of chemical excess potential are reformulized according to the solute interaction sites s in molecular space. Consequently the solvation free energy is localized at every interaction site of solute molecule. For visualization of the 3D-RISM-HNC calculation results, the excess chemical potentials are described using radial and three-dimensional diagrams. It is found that the radial diagrams of the excess chemical potentials are more sensitive to the bridge functions than the radial diagrams of solvent site density distributions. The diagrams of average excess chemical potential provide useful information of solute-solvent electrostatic and van der Waals interactions. The local description of solvation free energy at active sites of solute in 3D-RISM-HNC may broaden the application scope of statistical mechanical integral equation theory in solution chemistry and life science.

  8. Local mode theory for C3v molecules: CH3D, CHD3, SiH3D, and SiHD3

    NASA Astrophysics Data System (ADS)

    Halonen, L.; Child, M. S.

    1983-11-01

    A three parameter potential model for the stretching vibrations of AH3D and AHD3 species (A=C or Si) is shown to give good agreement with experimental data thereby justifying predictions for the term values of unobserved levels. The structures of the overtone manifolds for different molecules are rationalized by means of an AH3 local mode to normal mode correlation diagram.

  9. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  10. Operator counting and eigenvalue distributions for 3D supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Gulotta, Daniel R.; Herzog, Christopher P.; Pufu, Silviu S.

    2011-11-01

    We give further support for our conjecture relating eigenvalue distributions of the Kapustin-Willett-Yaakov matrix model in the large N limit to numbers of operators in the chiral ring of the corresponding supersymmetric three-dimensional gauge theory. We show that the relation holds for non-critical R-charges and for examples with mathcal{N} = {2} instead of mathcal{N} = {3} supersymmetry where the bifundamental matter fields are nonchiral. We prove that, for non-critical R-charges, the conjecture is equivalent to a relation between the free energy of the gauge theory on a three sphere and the volume of a Sasaki manifold that is part of the moduli space of the gauge theory. We also investigate the consequences of our conjecture for chiral theories where the matrix model is not well understood.

  11. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    SciTech Connect

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  12. Exact results for vortex loop operators in 3d supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Drukker, Nadav; Okuda, Takuya; Passerini, Filippo

    2014-07-01

    Three dimensional field theories admit disorder line operators, dubbed vortex loop operators. They are defined by the path integral in the presence of prescribed singularities along the defect line. We study half-BPS vortex loop operators for = 2 supersymmetric theories on 3, its deformation and 1 × 2. We construct BPS vortex loops defined by the path integral with a fixed gauge or flavor holonomy for infinitesimal curves linking the loop. It is also possible to include a singular profile for matter fields. For vortex loops defined by holonomy, we perform supersymmetric localization by calculating the fluctuation modes, or alternatively by applying the index theory for transversally elliptic operators. We clarify how the latter method works in situations without fixed points of relevant isometries. Abelian mirror symmetry transforms Wilson and vortex loops in a specific way. In particular an ordinary Wilson loop transforms into a vortex loop for a flavor symmetry. Our localization results confirm the predictions of abelian mirror symmetry.

  13. Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-09-01

    This article examines the application of nonlocal strain gradient elasticity theory to wave dispersion behavior of a size-dependent functionally graded (FG) nanobeam in thermal environment. The theory contains two scale parameters corresponding to both nonlocal and strain gradient effects. A quasi-3D sinusoidal beam theory considering shear and normal deformations is employed to present the formulation. Mori-Tanaka micromechanical model is used to describe functionally graded material properties. Hamilton's principle is employed to obtain the governing equations of nanobeam accounting for thickness stretching effect. These equations are solved analytically to find the wave frequencies and phase velocities of the FG nanobeam. It is indicated that wave dispersion behavior of FG nanobeams is significantly affected by temperature rise, nonlocality, length scale parameter and material composition.

  14. 3D SIMULATIONS OF REALISTIC POWER HALOS IN MAGNETOHYDROSTATIC SUNSPOT ATMOSPHERES: LINKING THEORY AND OBSERVATION

    SciTech Connect

    Rijs, Carlos; Przybylski, Damien; Moradi, Hamed; Cally, Paul S.; Shelyag, Sergiy; Rajaguru, S. P.

    2016-01-20

    The well-observed acoustic halo is an enhancement in time-averaged Doppler velocity and intensity power with respect to quiet-Sun values that is prominent for the weak and highly inclined field around the penumbra of sunspots and active regions. We perform 3D linear wave modeling with realistic distributed acoustic sources in a magnetohydrostatic sunspot atmosphere and compare the resultant simulation enhancements with multiheight SDO observations of the phenomenon. We find that simulated halos are in good qualitative agreement with observations. We also provide further proof that the underlying process responsible for the halo is the refraction and return of fast magnetic waves that have undergone mode conversion at the critical a = c atmospheric layer. In addition, we also find strong evidence that fast Alfvén mode conversion plays a significant role in the structure of the halo, taking energy away from photospheric and chromospheric heights in the form of field-aligned Alfvén waves. This conversion process may explain the observed “dual-ring” halo structure at higher (>8 mHz) frequencies.

  15. A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.; Parrott, T. L.

    2005-01-01

    A 2-D impedance eduction methodology is extended to quasi-3-D sound fields in uniform or shearing mean flow. We introduce a nonlocal, nonreflecting boundary condition to terminate the duct and then educe the impedance by minimizing an objective function. The introduction of a parallel, sparse, equation solver significantly reduces the wall clock time for educing the impedance when compared to that of the sequential band solver used in the 2-D methodology. The accuracy, efficiency, and robustness of the methodology is demonstrated using two examples. In the first example, we show that the method reproduces the known impedance of a ceramic tubular test liner. In the second example, we illustrate that the approach educes the impedance of a four-segment liner where the first, second, and fourth segments consist of a perforated face sheet bonded to honeycomb, and the third segment is a cut from the ceramic tubular test liner. The ability of the method to educe the impedances of multisegmented liners has the potential to significantly reduce the amount of time and cost required to determine the impedance of several uniform liners by allowing them to be placed in series in the test section and to educe the impedance of each segment using a single numerical experiment. Finally, we probe the objective function in great detail and show that it contains a single minimum. Thus, our objective function is ideal for use with local, inexpensive, gradient-based optimizers.

  16. Comparison of 3D Classical Trajectory and Transition-State Theory Reaction Cross Sections

    DOE R&D Accomplishments Database

    Koeppl, G. W.; Karplus, Martin

    1970-10-01

    Although there is excellent agreement for a system such as H+H{sub 2} --> H{sub 2}+H, in which both the potential and the particle masses are symmetric, significant deviations occur for more asymmetric reactions. A detailed analysis show that the calculated differences are from the violation of two assumptions of transition-state theory.

  17. Plane shear flows of frictionless spheres: Kinetic theory and 3D soft-sphere discrete element method simulations

    SciTech Connect

    Vescovi, D.; Berzi, D.; Richard, P.

    2014-05-15

    We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature.

  18. Simplifying Multi-loop Integrands of Gauge Theory and Gravity Amplitudes

    SciTech Connect

    Bern, Z.; Carrasco, J.J.M.; Dixon, L.J.; Johansson, H.; Roiban, R.

    2012-02-15

    We use the duality between color and kinematics to simplify the construction of the complete four-loop four-point amplitude of N = 4 super-Yang-Mills theory, including the nonplanar contributions. The duality completely determines the amplitude's integrand in terms of just two planar graphs. The existence of a manifestly dual gauge-theory amplitude trivializes the construction of the corresponding N = 8 supergravity integrand, whose graph numerators are double copies (squares) of the N = 4 super-Yang-Mills numerators. The success of this procedure provides further nontrivial evidence that the duality and double-copy properties hold at loop level. The new form of the four-loop four-point supergravity amplitude makes manifest the same ultraviolet power counting as the corresponding N = 4 super-Yang-Mills amplitude. We determine the amplitude's ultraviolet pole in the critical dimension of D = 11/2, the same dimension as for N = 4 super-Yang-Mills theory. Strikingly, exactly the same combination of vacuum integrals (after simplification) describes the ultraviolet divergence of N = 8 supergravity as the subleading-in-1/N{sub c}{sup 2} single-trace divergence in N = 4 super-Yang-Mills theory.

  19. Coulomb branches for rank 2 gauge groups in 3 d N=4 gauge theories

    NASA Astrophysics Data System (ADS)

    Hanany, Amihay; Sperling, Marcus

    2016-08-01

    The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.

  20. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory EMSP Project No. 73836

    SciTech Connect

    Morgan, F. Dale

    2003-06-01

    considered invertible by our existing 2D/3D complex resistivity codes. The results of this exercise were inconclusive because the ground-truthing phase of the operation failed to detect ny concentration of NAPL above a requisite threshold of 40-50{micro}g/g. It is our understanding that this threshold level is based upon analytic chemical partition analysis, which is dependent upon the physicochemical properties of the soil, its pore-fluid, and organic constituents [Cohen and Mercer, 1993], and thus represents a necessary and sufficient condition to confirm the presence of NAPL. Therefore, since the round-truthing phase never found PCE concentrations in excess of {approx}3mg/g, there is no irrefutable evidence of NAPL; hence, the objective of the FY01 exercise could not be completed. Nonetheless, ERL's conversion results agree well with the ground truth considering the sparseness of the CRS boreholes, low concentrations of ''PCE'' (< 3{micro}g/g), and despite poor electrodes. Note that the displacement of the enter of the SIP phase anomaly from that of the ground truth data might be due to inaccuracies in the SIP conversion (which we are still working on improving) or sampling depth errors during the ground-truthing phase which could cumulatively amount to a meter or more. (3) As a continuation of the FY01 efforts, another et of surface and borehole SIP measurements were planned at another SRS site during FY02, which unlike he FY01 site,had been verified to have substantial DNAPL presence by SRS engineers. The plan to use phoenix Geophysics SIP equipment could not materialize because Phoenix discontinued its SIP line and planned to introduce a new line in the Spring/Summer of 2003, which will be too late for us. So our planned second fieldwork of FY02 defaults again to Zonge Engineering and Research Organization equipment. (4) developments on the modeling and inversion of the new complex resistivity code, that will incorporate conductive coupling, stalled to give way to the

  1. Gauge theories in anti-selfdual variables

    NASA Astrophysics Data System (ADS)

    Bochicchio, Marco; Pilloni, Alessandro

    2013-09-01

    Some years ago the Nicolai map, viewed as a change of variables from the gauge connection in a fixed gauge to the anti-selfdual part of the curvature, has been extended by the first named author to pure Yang-Mills from its original definition in = 1 supersymmetric Yang-Mills. We study here the perturbative one-particle irreducible effective action in the anti-selfdual variables of any gauge theory, in particular pure Yang-Mills, QCD and = 1 supersymmetric Yang-Mills. We prove that the one-loop one-particle irreducible effective action of a gauge theory mapped to the anti-selfdual variables in any gauge is identical to the one of the original theory. This is due to the conspiracy between the Jacobian of the change to the anti-selfdual variables and an extra functional determinant that arises from the non-linearity of the coupling of the anti-selfdual curvature to an external source in the Legendre transform that defines the one-particle irreducible effective action. Hence we establish the one-loop perturbative equivalence of the mapped and original theories on the basis of the identity of the one-loop one-particle irreducible effective actions. Besides, we argue that the identity of the perturbative one-particle irreducible effective actions extends order by order in perturbation theory.

  2. Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution.

    PubMed

    Miyata, Tatsuhiko; Hirata, Fumio

    2008-04-30

    We have developed an algorithm for sampling the conformational space of large flexible molecules in solution, which combines the molecular dynamics (MD) method and the three-dimensional reference interaction site model (3D-RISM) theory. The solvent-induced force acting on solute atoms was evaluated as the gradient of the solvation free energy with respect to the solute-atom coordinates. To enhance the computation speed, we have applied a multiple timestep algorithm based on the RESPA (Reversible System Propagator Algorithm) to the combined MD/3D-RISM method. By virtue of the algorithm, one can choose a longer timestep for renewing the solvent-induced force compared with that of the conformational update. To illustrate the present MD/3D-RISM simulation, we applied the method to a model of acetylacetone in aqueous solution. The multiple timestep algorithm succeeded in enhancing the computation speed by 3.4 times for this model case. Acetylacetone possesses an intramolecular hydrogen-bonding capability between the hydroxyl group and the carbonyl oxygen atom, and the molecule is significantly stabilized due to this hydrogen bond, especially in gas phase. The intramolecular hydrogen bond was kept intact during almost entire course of the MD simulation in gas phase, while in the aqueous solutions the bond is disrupted in a significant number of conformations. This result qualitatively agrees with the behavior on a free energy barrier lying upon the process for rotating a torsional degree of freedom of the hydroxyl group, where it is significantly reduced in aqueous solution by a cancellation between the electrostatic interaction and the solvation free energy.

  3. Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations.

    PubMed

    Luo, Sijie; Averkiev, Boris; Yang, Ke R; Xu, Xuefei; Truhlar, Donald G

    2014-01-14

    The 3d-series transition metals (also called the fourth-period transition metals), Sc to Zn, are very important in industry and biology, but they provide unique challenges to computing the electronic structure of their compounds. In order to successfully describe the compounds by theory, one must be able to describe their components, in particular the constituent atoms and cations. In order to understand the ingredients required for successful computations with density functional theory, it is useful to examine the performance of various exchange-correlation functionals; we do this here for 4s(N)3d(N') transition-metal atoms and their cations. We analyze the results using three ways to compute the energy of the open-shell states: the direct variational method, the weighted-averaged broken symmetry (WABS) method, and a new broken-symmetry method called the reinterpreted broken symmetry (RBS) method. We find the RBS method to be comparable in accuracy with the WABS method. By examining the overall accuracy in treating 18 multiplicity-changing excitations and 10 ionization potentials with the RBS method, 10 functionals are found to have a mean-unsigned error of <5 kcal/mol, with ωB97X-D topping the list. For local density functionals, which are more practical for extended systems, the M06-L functional is the most accurate. And by combining the results with our previous studies of p-block and 4d-series elements as well as databases for alkyl bond dissociation, main-group atomization energies, and π-π noncovalent interactions, we find five functionals, namely, PW6B95, MPW1B95, M08-SO, SOGGA11-X, and MPWB1K, to be highly recommended. We also studied the performance of PW86 and C09 exchange functionals, which have drawn wide interest in recent studies due to their claimed ability to reproduce Hartree-Fock exchange at long distance. By combining them with four correlation functionals, we find the performance of the resulting functionals disappointing both for 3d

  4. Viscosity Solutions for the One-Body Liouville Equation in Yang-Mills Charged Bianchi Models with Non-Zero Mass

    NASA Astrophysics Data System (ADS)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert; Etoua, Remy Magloire; Tchagna, Hugues Paulin Mbeutcha

    2015-09-01

    Recently in 2005, Briani and Rampazzo (Nonlinear Differ Equ Appl 12:71-91, 2005) gave, using results of Crandall and Lions (Ill J Math 31:665-688, 1987), Ishii (Indiana Univ Math J 33: 721-748, 1984, Bull Fac Sci Eng 28: 33-77, 1985) and Ley (Adv Diff Equ 6:547-576, 2001) a density approach to Hamilton-Jacobi equations with t-measurable Hamiltonians. In this paper we show, using an important result of Briani and Rampazzo (Nonlinear Differ Equ Appl 12:71-91, 2005) the existence and uniqueness of viscosity solutions to the one-body Liouville relativistic equation in Yang-Mills charged Bianchi space times with non-zero mass. To our knowledge, the method used here is original and thus, totally different from those used in Alves (C R Acad Sci Paris Sér A 278:1151-1154, 1975), Choquet-Bruhat and Noutchegueme (C R Acad Sci Paris Sér I 311, 1973), Choquet-Bruhat and Noutchegueme (Ann Inst Henri Poincaré 55:759-787, 1991), Choquet-Bruhat and Noutchegueme (Pitman Res Notes Math Ser 253:52-71, 1992), Noutchegueme and Noundjeu (Ann Inst Henri Poincaré 1:385-404, 2000), Wollman (J Math Anal Appl 127:103-121, 1987) and Choquet-Bruhat (Existence and uniqueness for the Einstein-Maxwell-Liouville system. Volume dedicated to Petrov, Moscow, 1971) who have studied the same equation.

  5. Modified Iterated perturbation theory in the strong coupling regime and its application to the 3d FCC lattice

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-François; Sémon, Patrick; Shastry, B. Sriram; Tremblay, A.-M. S.

    2012-02-01

    The Dynamical Mean-Field theory(DMFT) approach to the Hubbard model requires a method to solve the problem of a quantum impurity in a bath of non-interacting electrons. Iterated Perturbation Theory(IPT)[1] has proven its effectiveness as a solver in many cases of interest. Based on general principles and on comparisons with an essentially exact Continuous-Time Quantum Monte Carlo (CTQMC)[2], here we show that the standard implementation of IPT fails when the interaction is much larger than the bandwidth. We propose a slight modification to the IPT algorithm by requiring that double occupancy calculated with IPT gives the correct value. We call this method IPT-D. We show how this approximate impurity solver compares with respect to CTQMC. We consider a face centered cubic lattice(FCC) in 3d for different physical properties. We also use IPT-D to study the thermopower using two recently proposed approximations[3]S^* and SKelvin that do not require analytical continuation and show how thermopower is essentially the entropy per particle in the incoherent regime but not in the coherent one.[1]H.Kajueter et al. Phys. Rev. Lett. 77, 131(1996)[2]P. Werner, et al. Phys. Rev. Lett. 97, 076405(2006)[3]B.S. Sriram Shastry Rep. Prog. Phys. 72 016501(2009)

  6. On the validity of 2D critical taper theory in 3D wedges: defining a lateral deformation length scale

    NASA Astrophysics Data System (ADS)

    Leever, Karen; Oncken, Onno; Thorden Haug, Øystein

    2015-04-01

    For 2D critical taper theory to be applicable to 3D natural cases, cylindric deformation is a requirement. The assumption of cylindricity is violated in case of localized perturbations (subducting seamount, localized sedimentation) or due to a lateral change in decollement strength or depth. In natural accretionary wedges and fold-and-thrust belts, along strike changes may occur in a variety of ways: geometrical (due to a protruding indenter or a change in decollement depth), through a lateral change in basal friction (leading to laterally different tapers), or through a change in surface slope (by strongly localized fan sedimentation on accretionary wedges). Recent numerical modelling results (Ruh et al., 2013) have shown that lateral coupling preferentially occurs for relatively small perturbations, i.e. the horizontal shear stress caused by the perturbation is supported by the system. Lateral linking of the wedge in front of a protruding indenter to the wedge in front of the trailing edge of the back stop leads to curved thrust fronts and importantly it has been noted that even outside the curved zone, where the wedge front is again parallel to the direction of tectonic transport, the lateral effect is still evident: both tapers are different from the analytical prediction. We present results from a 3D analogue modelling parameter study to investigate this behavior more quantitatively, with the objective of empirically finding a lateral length scale of deformation in brittle contractional wedges. For a given wedge strength (angle of internal friction), we infer this to be a function of the size (width) of the perturbation and its magnitude (difference in basal friction). To this end we run different series of models in which we systematically vary the width and/or magnitude of a local perturbation. In the first series, the width of a zone of high basal friction is varied, in the second series we vary the width of an indenter and in the third series

  7. The Stagger-grid: A grid of 3D stellar atmosphere models. III. The relation to mixing length convection theory

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Weiss, A.; Asplund, M.

    2015-01-01

    Aims: We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. Methods: The adiabatic entropy value of the deep convection zone, sbot, and the entropy jump, Δs, determined from the 3D RHD models, were matched with the mixing length parameter, αMLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derived the mass mixing length parameter, αm, and the vertical correlation length of the vertical velocity, C[vz,vz], directly from the 3D hydrodynamical simulations of stellar subsurface convection. Results: The calibrated mixing length parameter for the Sun is α๏MLT (Sbot) = 1.98. . For different stellar parameters, αMLT varies systematically in the range of 1.7 - 2.4. In particular, αMLT decreases towards higher effective temperature, lower surface gravity and higher metallicity. We find equivalent results for α๏MLT (ΔS). In addition, we find a tight correlation between the mixing length parameter and the inverse entropy jump. We derive an analytical expression from the hydrodynamic mean-field equations that motivates the relation to the mass mixing length parameter, αm, and find that it qualitatively shows a similar variation with stellar parameter (between 1.6 and 2.4) with the solar value of α๏m = 1.83.. The vertical correlation length scaled with the pressure scale height yields 1.71 for the Sun, but only displays a small systematic variation with stellar parameters, the correlation length slightly increases with Teff. Conclusions: We derive mixing length parameters for various stellar parameters that can be used to replace a constant value. Within any convective envelope, αm and related quantities vary strongly. Our results will help to replace a constant αMLT. Appendices are available in electronic form at http

  8. Topological obstructions in Lagrangian field theories, with an application to 3D Chern-Simons gauge theory

    NASA Astrophysics Data System (ADS)

    Palese, Marcella; Winterroth, Ekkehart

    2017-02-01

    We relate the existence of Noether global conserved currents associated with locally variational field equations to the existence of global solutions for a local variational problem generating global equations. Both can be characterized as the vanishing of certain cohomology classes. In the case of a 3-dimensional Chern-Simons gauge theory, the variationally featured cohomological obstruction to the existence of global solutions is sharp and equivalent to the usual obstruction in terms of the Chern characteristic class for the flatness of a principal connection. We suggest a parallelism between the geometric interpretation of characteristic classes as obstruction to the existence of flat principal connections and the interpretation of certain de Rham cohomology classes to be the obstruction to the existence of global extremals for a local variational principle.

  9. 3D Progressive Damage Modeling for Laminated Composite Based on Crack Band Theory and Continuum Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.

    2015-01-01

    A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.

  10. Invariants from classical field theory

    SciTech Connect

    Diaz, Rafael; Leal, Lorenzo

    2008-06-15

    We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.

  11. Renormalization constants from string theory.

    NASA Astrophysics Data System (ADS)

    di Vecchia, P.; Magnea, L.; Lerda, A.; Russo, R.; Marotta, R.

    The authors review some recent results on the calculation of renormalization constants in Yang-Mills theory using open bosonic strings. The technology of string amplitudes, supplemented with an appropriate continuation off the mass shell, can be used to compute the ultraviolet divergences of dimensionally regularized gauge theories. The results show that the infinite tension limit of string amplitudes corresponds to the background field method in field theory.

  12. Induced QCD I: theory

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Lohmayer, Robert; Wettig, Tilo

    2016-11-01

    We explore an alternative discretization of continuum SU( N c ) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N b auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N b can be as small as N c . In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U( N c ) to SU( N c ), (ii) derive refined bounds on N b for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.

  13. Noncommutative topological theories of gravity

    NASA Astrophysics Data System (ADS)

    García-Compeán, H.; Obregón, O.; Ramírez, C.; Sabido, M.

    2003-08-01

    The possibility of noncommutative topological gravity arising in the same manner as Yang-Mills theory is explored. We use the Seiberg-Witten map to construct such a theory based on a SL(2,C) complex connection, from which the Euler characteristic and the signature invariant are obtained. Finally, we speculate on the description of noncommutative gravitational instantons, as well as noncommutative local gravitational anomalies.

  14. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  15. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D.

  16. Black holes in the Einstein-Gauss-Bonnet theory and the geometry of their thermodynamics—II

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata; Chakraborty, Subenoy

    2010-03-01

    In the present work we study (i) the charged black hole in Einstein-Gauss-Bonnet (EGB) theory, known as the Einstein-Maxwell-Gauss-Bonnet (EMGB) black hole and (ii) the black hole in EGB gravity with a Yang-Mills field. The thermodynamic geometry of these two black hole solutions has been investigated, using the modified entropy in Gauss-Bonnet theory.

  17. New set of 2D/3D thermodynamic indices for proteins. A formalism based on “ Molten Globule” theory

    NASA Astrophysics Data System (ADS)

    Ruiz-Blanco Yasser, B.; García, Y.; Sotomayor-Torres, C. M.; Yovani, Marrero-Ponce

    We define eight new macromolecular indices, and several related descriptors for proteins. The coarse grained methodology used for its deduction ensures its fast execution and becomes a powerful potential tool to explore large databases of protein structures. The indices are intended for stability studies, predicting Φ-values, predicting folding rate constants, protein QSAR/QSPR as well as protein alignment studies. Also, these indices could be used as scoring function in protein-protein docking or 3D protein structure prediction algorithms and any others applications which need a numerical code for proteins and/or residues from 2D or 3D format.

  18. The importance of 3D local averaging in turbulence theory: some examples from high-resolution DNS

    NASA Astrophysics Data System (ADS)

    Yeung, Pui-Kuen; Zhai, X. M.; Iyer, K. P.; Sreenivasan, K. R.

    2016-11-01

    Dissipation fluctuations in turbulence become increasingly intermittent as the Reynolds number increases. Both theoretical and practical reasons then force us to consider the fluctuations averaged locally over three-dimensional (3D) volumes of various sizes. Often, the practice has been to supplant 3D averages by 1D averages, and to replace proper 3D quantities by convenient 1D surrogates. We examine the consequence of these practices using DNS data on a large grid of 81923 at a Taylor-microscale Reynolds number 1300. We show that these common practices can often lead to erroneous results and significant ambiguities. For instance, both the dissipation and enstrophy turn out to possess the same inertial-range intermittency exponent; moments of locally-averaged dissipation and enstrophy become closer to each other with increasing order (because extreme events in both are spatially co-located); the longitudinal and transverse velocity increments scale similarly-all in contrast to results obtained using the simplifying practices mentioned above. Supported by NSF Grants ACI-1036170 and ACI-1640771.

  19. A New Approach for Investigating the Molecular Recognition of Protein: Toward Structure-Based Drug Design Based on the 3D-RISM Theory.

    PubMed

    Kiyota, Yasuomi; Yoshida, Norio; Hirata, Fumio

    2011-11-08

    A new approach to investigate a molecular recognition process of protein is presented based on the three-dimensional reference interaction site model (3D-RISM) theory, a statistical mechanics theory of molecular liquids. Numerical procedure for solving the conventional 3D-RISM equation consists of two steps. In step 1, we solve ordinary RISM (or 1D-RISM) equations for a solvent mixture including target ligands in order to obtain the density pair correlation functions (PCF) among molecules in the solution. Then, we solve the 3D-RISM equation for a solute-solvent system to find three-dimensional density distribution functions (3D-DDF) of solvent species around a protein, using PCF obtained in the first step. A key to the success of the method was to regard a target ligand as one of "solvent" species. However, the success is limited due to a difficulty of solving the 1D-RISM equation for a solvent mixture, including large ligand molecules. In the present paper, we propose a method which eases the limitation concerning solute size in the conventional method. In this approach, we solve a solute-solute 3D-RISM equations for a protein-ligand system in which both proteins and ligands are regarded as "solutes" at infinite dilution. The 3D- and 1D-RISM equations are solved for protein-solvent and ligand-solvent systems, respectively, in order to obtain the 3D- and 1D-DDF of solvent around the solutes, which are required for solving the solute-solute 3D-RISM equation. The method is applied to two practical and noteworthy examples concerning pharmaceutical design. One is an odorant binding protein in the Drosophila melanogaster , which binds an ethanol molecule. The other is phospholipase A2, which is known as a receptor of acetylsalicylic acid or aspirin. The result indicates that the method successfully reproduces the binding mode of the ligand molecules in the binding sites measured by the experiments.

  20. Gauge theory of defects in continuous media I

    NASA Astrophysics Data System (ADS)

    Sahoo, D.

    2006-11-01

    We present a selective review of the gauge theory of defects in the elastic continuum. After introducing the essential geometric concepts of continuum mechanics in the presence of defects, the classical defect dynamics equations involving dislocation and disclination density tensors are introduced. The mathematical structure of gauge theories is briefly discussed. Typical recent works covering Yang-Mills type gauge theories and gravity type gauge theories are touched upon in a qualitative way.

  1. Characteristics of 3D instability of a 35-degree swept wing to CF and TS modes. Experiment and theory

    NASA Astrophysics Data System (ADS)

    Borodulin, V. I.; Ivanov, A. V.; Kachanov, Y. S.; Örlü, R.; Hanifi, A.; Hein, S.

    2016-10-01

    An extensive experimental investigation of linear evolution of Cross-Flow (CF) and Tollmien-Schlichting (TS) modes of 3D boundary layer oscillations on a swept wing has been carried out. TS-instability characteristics have been studied experimentally for the first time. The characteristics of development of the two kinds of instability modes are compared with calculations and display a very good agreement. The whole dataset may be used for promotion of theoretical methods of investigation of laminar-turbulent transition in swept wing boundary layers.

  2. Modified coupling procedure for the Poincare gauge theory of gravity

    SciTech Connect

    Kazmierczak, Marcin

    2009-06-15

    The minimal coupling procedure, which is employed in standard Yang-Mills theories, appears to be ambiguous in the case of gravity. We propose a slight modification of this procedure, which removes the ambiguity. Our modification justifies some earlier results concerning the consequences of the Poincare gauge theory of gravity. In particular, the predictions of the Einstein-Cartan theory with fermionic matter are rendered unique.

  3. Perturbative quantum gravity as a double copy of gauge theory.

    PubMed

    Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik

    2010-08-06

    In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.

  4. Large N matrix models for 3d {N} = 2 theories: twisted index, free energy and black holes

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Morteza; Zaffaroni, Alberto

    2016-08-01

    We provide general formulae for the topologically twisted index of a general three-dimensional {N} ≥ 2 gauge theory with an M-theory or massive type IIA dual in the large N limit. The index is defined as the supersymmetric path integral of the theory on S 2 × S 1 in the presence of background magnetic fluxes for the R- and global symmetries and it is conjectured to reproduce the entropy of magnetically charged static BPS AdS4 black holes. For a class of theories with an M-theory dual, we show that the logarithm of the index scales indeed as N 3/2 (and N 5/3 in the massive type IIA case). We find an intriguing relation with the (apparently unrelated) large N limit of the partition function on S 3. We also provide a universal formula for extracting the index from the large N partition function on S 3 and its derivatives and point out its analogy with the attractor mechanism for AdS black holes.

  5. Performance of density functional theory for 3d transition metal-containing complexes: utilization of the correlation consistent basis sets.

    PubMed

    Tekarli, Sammer M; Drummond, Michael L; Williams, T Gavin; Cundari, Thomas R; Wilson, Angela K

    2009-07-30

    The performance of 44 density functionals used in conjunction with the correlation consistent basis sets (cc-pVnZ where n = T and Q) has been assessed for the gas-phase enthalpies of formation at 298.15 K of 3d transition metal (TM) containing systems. Nineteen molecules were examined: ScS, VO, VO(2), Cr(CO)(6), MnS, MnCl(2), Mn(CO)(5)Cl, FeCl(3), Fe(CO)(5), CoH(CO)(4), NiCl(2), Ni(CO)(4), CuH, CuF, CuCl, ZnH, ZnO, ZnCl, and Zn(CH(3))(2). Of the functionals examined, the functionals that resulted in the smallest mean absolute deviation (MAD, in parentheses, kcal mol(-1)) from experiment were B97-1 (6.9), PBE1KCIS (8.1), TPSS1KCIS (9.6), B97-2 (9.7), and B98 (10.7). All five of these functionals include some degree of Hartree-Fock (HF) exchange. The impact of increasing the basis set from cc-pVTZ to cc-pVQZ was found to be slight for the generalized gradient approximation (GGA) and meta-GGA (MGGA) functionals studied, indicating basis set saturation at the triple-zeta level. By contrast, for most of the generalized gradient exchange (GGE), hybrid GGA (HGGA), and hybrid meta-GGA (HMGGA) functionals considered, improvements in the average MAD of 2-3 kcal mol(-1) were seen upon progressing to a quadruple-zeta level basis set. Overall, it was found that the functionals that include Hartree-Fock exchange performed best overall, but those with greater than 40% HF exchange exhibit significantly poor performance for the prediction of enthalpies of formation for 3d TM complexes. Carbonyl-containing complexes, a mainstay in organometallic TM chemistry, are demonstrated to be exceedingly difficult to describe accurately with all but 2 of the 44 functionals considered. The most accurate functional, for both CO-containing and CO-free compounds, is B97-1/cc-pVQZ, which is shown to be capable of yielding results within 1 kcal mol(-1) of high-level ab initio composite methodologies.

  6. New phase transitions in Chern-Simons matter theory

    NASA Astrophysics Data System (ADS)

    Zahabi, Ali

    2016-02-01

    Applying the machinery of random matrix theory and Toeplitz determinants we study the level k, U (N) Chern-Simons theory coupled with fundamental matter on S2 ×S1 at finite temperature T. This theory admits a discrete matrix integral representation, i.e. a unitary discrete matrix model of two-dimensional Yang-Mills theory. In this study, the effective partition function and phase structure of the Chern-Simons matter theory, in a special case with an effective potential namely the Gross-Witten-Wadia potential, are investigated. We obtain an exact expression for the partition function of the Chern-Simons matter theory as a function of k, N, T, for finite values and in the asymptotic regime. In the Gross-Witten-Wadia case, we show that ratio of the Chern-Simons matter partition function and the continuous two-dimensional Yang-Mills partition function, in the asymptotic regime, is the Tracy-Widom distribution. Consequently, using the explicit results for free energy of the theory, new second-order and third-order phase transitions are observed. Depending on the phase, in the asymptotic regime, Chern-Simons matter theory is represented either by a continuous or discrete two-dimensional Yang-Mills theory, separated by a third-order domain wall.

  7. Historical Curiosity: how Asymptotic Freedom of the Yang-Mills Theory Could have been Discovered Three Times Before Gross, Wilczek, and Politzer, but was not

    NASA Astrophysics Data System (ADS)

    Shifman, M.

    Asymptotic freedom as the basic property of QCD was discovered by Gross, Wilczek, and Politzer in 1973. Personal recollections of David Gross which are being published in this Volume vividly describe the historical background and the chain of events which led to this fundamental breakthrough. Unfortunately, I failed to obtain Politzer's side of the story. Some details can be found in an interview which Prof. Politzer gave to R. Crease and C. Mann on February 21, 1985. Below I acquaint the reader with the pre-1973 appearances of asymptotic freedom which, unfortunately, were not recognized.

  8. Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory

    NASA Astrophysics Data System (ADS)

    Yazdani Sarvestani, H.; Naghashpour, A.; Heidari-Rarani, M.

    2015-12-01

    In this study, the analytical solution of interlaminar stresses near the free edges of a general (symmetric and unsymmetric layups) cross-ply composite laminate subjected to pure bending loading is presented based on Reddy's layerwise theory (LWT) for the first time. First, the reduced form of displacement field is obtained for a general cross-ply composite laminate subjected to a bending moment by elasticity theory. Then, first-order shear deformation theory of plates and LWT is utilized to determine the global and local deformation parameters appearing in the displacement fields, respectively. One of the main advantages of the developed solution based on the LWT is exact prediction of interlaminar stresses at the boundary layer regions. To show the accuracy of this solution, three-dimensional elasticity bending problem of a laminated composite is solved for special set of boundary conditions as well. Finally, LWT results are presented for edge-effect problems of several symmetric and unsymmetric cross-ply laminates under the bending moment. The obtained results indicate high stress gradients of interlaminar stresses near the edges of laminates.

  9. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    PubMed

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor.

  10. Potential theory method for 3D crack and contact problems of multi-field coupled media: a survey.

    PubMed

    Chen, Wei-qiu; Ding, Hao-jiang

    2004-09-01

    This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field coupled media. This method was used to derive a series of exact three dimensional solutions which should be of great theoretical significance because most of them usually cannot be derived by other methods such as the transform method and the trial-and-error method. Further, many solutions are obtained in terms of elementary functions that enable us to treat more complicated problems easily. It is pointed out here that the method is usually only applicable to media characterizing transverse isotropy, from which, however, the results for the isotropic case can be readily obtained.

  11. Plasmon mass scale in classical nonequilibrium gauge theory

    NASA Astrophysics Data System (ADS)

    Lappi, T.; Peuron, J.

    2017-01-01

    Classical lattice Yang-Mills calculations provide a good way to understand different nonequilibrium phenomena in nonperturbatively overoccupied systems. Above the Debye scale the classical theory can be matched smoothly to kinetic theory. The aim of this work is to study the limits of this quasiparticle picture by determining the plasmon mass in classical real-time Yang-Mills theory on a lattice in three spatial dimensions. We compare three methods to determine the plasmon mass: a hard thermal loop expression in terms of the particle distribution, an effective dispersion relation constructed from fields and their time derivatives, and the measurement of oscillations between electric and magnetic field modes after artificially introducing a homogeneous color electric field. We find that a version of the dispersion relation that uses electric fields and their time derivatives agrees with the other methods within 50%.

  12. Universal effective coupling constant ratios of 3D scalar ϕ4 field theory and pseudo-ɛ expansion

    NASA Astrophysics Data System (ADS)

    Sokolov, A. I.; Nikitina, M. A.; Kudlis, A.

    2016-10-01

    The ratios R2k = g2k/gk - 14 of renormalized coupling constants g2k entering the small-field equation of state approach universal values R*2k at criticality. They are calculated for the three-dimensional λϕ4 field theory within the pseudo-ɛ expansion approach. Pseudo-ɛ expansions for R*6, R*8, R*10 are derived in the five-loop approximation, numerical estimates are obtained with a help of the Padé-Borel-Leroy resummation technique. Its use gives R*6 = 1.6488, the number which perfectly agrees with the most recent lattice result R*6 = 1.649. For the octic coupling the pseudo-ɛ expansion is less favorable numerically. Nevertheless the Padé-Borel-Leroy resummation leads to the estimate R*8 = 0.890 close to the values R*8 = 0.87, R*8 = 0.857 extracted from the lattice and field-theoretical calculations. The pseudo-ɛ expansion for R*10 turns out to have big and rapidly increasing coefficients. This makes correspondent estimates strongly dependent on the Borel-Leroy shift parameter b and prevents proper evaluation of R*10

  13. Molecular thermodynamics of trifluoroethanol-induced helix formation: analysis of the solvation structure and free energy by the 3D-RISM theory.

    PubMed

    Imai, Takashi; Kovalenko, Andriy; Hirata, Fumio; Kidera, Akinori

    2009-06-01

    It has been shown that trifluoroethanol (TFE) induces helical structure in peptides and proteins. The molecular mechanism is, however, still not completely elucidated. In this study, the TFE effects on the solvation structure and on the free energy change associated with the helix-coil transition of a polypeptide are analyzed by using the three-dimensional reference interaction site model (3D-RISM) molecular theory of solvation. The theoretical result shows that TFE preferentially solvates at low concentrations around 30 vol% both for the helix and coil structures. However, the characteristic preferential solvation is not as significant in the TFE-induced helix stabilization as generally considered. It is also found that the overall energy contributes to the free energy difference more substantially than the solvation entropy.

  14. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  15. Complete Construction of Magical, Symmetric, and Homogeneous N =2 Supergravities as Double Copies of Gauge Theories

    NASA Astrophysics Data System (ADS)

    Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.

    2016-07-01

    We show that scattering amplitudes in magical, symmetric or homogeneous N =2 Maxwell-Einstein supergravities can be obtained as double copies of two gauge theories, using the framework of color-kinematics duality. The left-hand copy is N =2 super-Yang-Mills theory coupled to a hypermultiplet, whereas the right-hand copy is a nonsupersymmetric theory that can be identified as the dimensional reduction of a D -dimensional Yang-Mills theory coupled to P fermions. For generic D and P , the double copy gives homogeneous supergravities. For P =1 and D =7 , 8, 10, 14, it gives the magical supergravities. We compute explicit amplitudes, discuss their soft limits, and study the UV behavior at one loop.

  16. Quantum spectral curve of the N=6 supersymmetric Chern-Simons theory.

    PubMed

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-11

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N=6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

  17. Quantum Spectral Curve of the N =6 Supersymmetric Chern-Simons Theory

    NASA Astrophysics Data System (ADS)

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-01

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N =6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

  18. N >= 4 Supergravity Amplitudes from Gauge Theory at One Loop

    SciTech Connect

    Bern, Z.; Boucher-Veronneau, C.; Johansson, H.; /Saclay

    2011-08-19

    We expose simple and practical relations between the integrated four- and five-point one-loop amplitudes of N {ge} 4 supergravity and the corresponding (super-)Yang-Mills amplitudes. The link between the amplitudes is simply understood using the recently uncovered duality between color and kinematics that leads to a double-copy structure for gravity. These examples provide additional direct confirmations of the duality and double-copy properties at loop level for a sample of different theories.

  19. Dualities, CPT symmetry and dimensional reduction in string theory

    NASA Astrophysics Data System (ADS)

    Bertolami, O.

    1997-08-01

    In this lecture we address the following issues in the context of string theories: i) The role played by S and T dualities in obtaining topological inflation in N=1 supergravity models, ii) A mechanism for generating the baryon asymmetry of the universe based on the string interactions that violate CPT symmetry and iii) The quantum cosmology of the dimensionally reduced multidimensional Einstein-Yang-Mills system.

  20. Identification of novel histone deacetylase 1 inhibitors by combined pharmacophore modeling, 3D-QSAR analysis, in silico screening and Density Functional Theory (DFT) approaches

    NASA Astrophysics Data System (ADS)

    Choubey, Sanjay K.; Mariadasse, Richard; Rajendran, Santhosh; Jeyaraman, Jeyakanthan

    2016-12-01

    Overexpression of HDAC1, a member of Class I histone deacetylase is reported to be implicated in breast cancer. Epigenetic alteration in carcinogenesis has been the thrust of research for few decades. Increased deacetylation leads to accelerated cell proliferation, cell migration, angiogenesis and invasion. HDAC1 is pronounced as the potential drug target towards the treatment of breast cancer. In this study, the biochemical potential of 6-aminonicotinamide derivatives was rationalized. Five point pharmacophore model with one hydrogen-bond acceptor (A3), two hydrogen-bond donors (D5, D6), one ring (R12) and one hydrophobic group (H8) was developed using 6-aminonicotinamide derivatives. The pharmacophore hypothesis yielded a 3D-QSAR model with correlation-coefficient (r2 = 0.977, q2 = 0.801) and it was externally validated with (r2pred = 0.929, r2cv = 0.850 and r2m = 0.856) which reveals the statistical significance of the model having high predictive power. The model was then employed as 3D search query for virtual screening against compound libraries (Zinc, Maybridge, Enamine, Asinex, Toslab, LifeChem and Specs) in order to identify novel scaffolds which can be experimentally validated to design future drug molecule. Density Functional Theory (DFT) at B3LYP/6-31G* level was employed to explore the electronic features of the ligands involved in charge transfer reaction during receptor ligand interaction. Binding free energy (ΔGbind) calculation was done using MM/GBSA which defines the affinity of ligands towards the receptor.

  1. Dyson-Schwinger Approach to Strongly Coupled Theories

    NASA Astrophysics Data System (ADS)

    Popovici, Carina

    2013-03-01

    Although non-perturbative functional methods are often associated with low energy Quantum Chromodynamics, contemporary studies indicate that they provide reliable tools to characterize a much wider spectrum of strongly interacting many-body systems. In this paper, we aim to provide a modest overview on a few notable applications of Dyson-Schwinger equations to QCD and condensed matter physics. After a short introduction, we lay out some formal considerations and proceed by addressing the confinement problem. We discuss in some detail the heavy quark limit of Coulomb gauge QCD, in particular the simple connection between the non-perturbative Green's functions of Yang-Mills theory and the confinement potential. Landau gauge results on the infrared Yang-Mills propagators are also briefly reviewed. We then focus on less common applications, in graphene and high-temperature superconductivity. We discuss recent developments, and present theoretical predictions that are supported by experimental findings.

  2. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  3. Numerical Solution of 3D Poisson-Nernst-Planck Equations Coupled with Classical Density Functional Theory for Modeling Ion and Electron Transport in a Confined Environment

    SciTech Connect

    Meng, Da; Zheng, Bin; Lin, Guang; Sushko, Maria L.

    2014-08-29

    We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is the number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.

  4. 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors.

    PubMed

    Gogoi, Dhrubajyoti; Baruah, Vishwa Jyoti; Chaliha, Amrita Kashyap; Kakoti, Bibhuti Bhushan; Sarma, Diganta; Buragohain, Alak Kumar

    2016-12-21

    Human epidermal growth factor receptor 2 (HER2) is one of the four members of the epidermal growth factor receptor (EGFR) family and is expressed to facilitate cellular proliferation across various tissue types. Therapies targeting HER2, which is a transmembrane glycoprotein with tyrosine kinase activity, offer promising prospects especially in breast and gastric/gastroesophageal cancer patients. Persistence of both primary and acquired resistance to various routine drugs/antibodies is a disappointing outcome in the treatment of many HER2 positive cancer patients and is a challenge that requires formulation of new and improved strategies to overcome the same. Identification of novel HER2 inhibitors with improved therapeutics index was performed with a highly correlating (r=0.975) ligand-based pharmacophore model (Hypo1) in this study. Hypo1 was generated from a training set of 22 compounds with HER2 inhibitory activity and this well-validated hypothesis was subsequently used as a 3D query to screen compounds in a total of four databases of which two were natural product databases. Further, these compounds were analyzed for compliance with Veber's drug-likeness rule and optimum ADMET parameters. The selected compounds were then subjected to molecular docking and Density Functional Theory (DFT) analysis to discern their molecular interactions at the active site of HER2. The findings thus presented would be an important starting point towards the development of novel HER2 inhibitors using well-validated computational techniques.

  5. Overview of K-Theory Applied to Strings

    NASA Astrophysics Data System (ADS)

    Witten, Edward

    2001-04-01

    K-theory provides a framework for classifying Ramond-Ramond (RR) charges and fields.K-theory of manifolds has a natural extension to K-theory of noncommutative algebras, such as the algebras considered in noncommutative Yang-Mills theory or in open string field theory. In a number of concrete problems, the K-theory analysis proceeds most naturally if one starts out with an infinite set of D-branes, reduced by tachyon condensation to a finite set. This suggests that string field theory should be reconsidered for N = ∞.

  6. Quantum Field Theory Tools:. a Mechanism of Mass Generation of Gauge Fields

    NASA Astrophysics Data System (ADS)

    Flores-Baez, F. V.; Godina-Nava, J. J.; Ordaz-Hernandez, G.

    We present a simple mechanism for mass generation of gauge fields for the Yang-Mills theory, where two gauge SU(N)-connections are introduced to incorporate the mass term. Variations of these two sets of gauge fields compensate each other under local gauge transformations with the local gauge transformations of the matter fields, preserving gauge invariance. In this way the mass term of gauge fields is introduced without violating the local gauge symmetry of the Lagrangian. Because the Lagrangian has strict local gauge symmetry, the model is a renormalizable quantum model. This model, in the appropriate limit, comes from a class of universal Lagrangians which define a new massive Yang-Mills theories without Higgs bosons.

  7. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  8. Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory

    SciTech Connect

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia

    2016-03-14

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N = 4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. Finally, we observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  9. Gauge theory of fermions on R X S{sup 3} spacetime

    SciTech Connect

    Dariescu, M.A.; Dariescu, C.; Gottlieb, I.

    1995-06-01

    A Lorentz-invariant gauge theory for massive fermions on R X S{sup 3} spacetime is built up. Using the symmetry of S{sup 3}, the authors obtain Dirac-type equations and derive the expression of the fermionic propagator. Finally, starting from the SU(N) gauge-invariant Lagrangian, they obtain the set of Dirac-Yang-Mills equations on R X S{sup 3} spacetime, pointing out major differences from the Minkowskian case.

  10. Entanglement in weakly coupled lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Radičević, Ðorđe

    2016-04-01

    We present a direct lattice gauge theory computation that, without using dualities, demonstrates that the entanglement entropy of Yang-Mills theories with arbitrary gauge group G contains a generic logarithmic term at sufficiently weak coupling e. In two spatial dimensions, for a region of linear size r, this term equals 1/2 dim( G) log( e 2 r) and it dominates the universal part of the entanglement entropy. Such logarithmic terms arise from the entanglement of the softest mode in the entangling region with the environment. For Maxwell theory in two spatial dimensions, our results agree with those obtained by dualizing to a compact scalar with spontaneous symmetry breaking.

  11. Local renormalizable gauge theories from nonlocal operators

    SciTech Connect

    Capri, M.A.L. Lemes, V.E.R. Sobreiro, R.F. Sorella, S.P. Thibes, R.

    2008-03-15

    The possibility that nonlocal operators might be added to the Yang-Mills action is investigated. We point out that there exists a class of nonlocal operators which lead to renormalizable gauge theories. These operators turn out to be localizable by means of the introduction of auxiliary fields. The renormalizability is thus ensured by the symmetry content exhibited by the resulting local theory. The example of the nonlocal operator Tr{integral}A{sub {mu}}1/(D{sup 2}) A{sub {mu}} is analyzed in detail. A few remarks on the possible role that these operators might have for confining theories are outlined.

  12. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  13. Field Theories from the Relativistic Law of Motion

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet; Dadhich, Naresh

    From the relativistic law of motion we attempt to deduce the field theories corresponding to the force law being linear and quadratic in four-velocity of the particle. The linear law leads to the vector gauge theory which could be the Abelian Maxwell electrodynamics or the non-Abelian Yang-Mills theory. On the other hand, the quadratic law demands space-time metric as its potential which is equivalent to demanding the principle of equivalence. It leads to the tensor theory of gravitational field - general relativity. It is remarkable that a purely dynamical property of the force law leads uniquely to the corresponding field theories.

  14. Dual field theory of strong interactions

    SciTech Connect

    Akers, D.

    1987-07-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant ..cap alpha.. = 1/137.

  15. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  16. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  17. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  18. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  19. Topics in N = 1 supergravity in four dimensions and superstring effective field theories beyond tree-level

    SciTech Connect

    Saririan, Kamran

    1997-05-01

    In this thesis, the author presents some works in the direction of studying quantum effects in locally supersymmetric effective field theories that appear in the low energy limit of superstring theory. After reviewing the Kaehler covariant formulation of supergravity, he shows the calculation of the divergent one-loop contribution to the effective boson Lagrangian for supergravity, including the Yang-Mills sector and the helicity-odd operators that arise from integration over fermion fields. The only restriction is on the Yang-Mills kinetic energy normalization function, which is taken diagonal in gauge indices, as in models obtained from superstrings. He then presents the full result for the divergent one-loop contribution to the effective boson Lagrangian for supergravity coupled to chiral and Yang-Mills supermultiplets. He also considers the specific case of dilaton couplings in effective supergravity Lagrangians from superstrings, for which the one-loop result is considerably simplified. He studies gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, the author includes in the Kaehler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new running behavior of the dilaton arises which he attributes to S-duality. He also discusses the effects of the intermediate scale, and possible phenomenological implications of this model.

  20. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  1. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  2. 6D Interpretation of 3D Gravity

    NASA Astrophysics Data System (ADS)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  3. Field theory on R×S 3 topology. V: SU 2 gauge theory

    NASA Astrophysics Data System (ADS)

    Carmeli, M.; Malin, S.

    1987-02-01

    A gauge theory on R×S 3 topology is developed. It is a generalization to the previously obtained field theory on R×S 3 topology and in which equations of motion were obtained for a scalar particle, a spin one-half particle, the electromagnetic field of magnetic moments, and a Shrödinger-type equation, as compared to ordinary field equations defined on a Minkowskian manifold. The new gauge field equations are presented and compared to the ordinary Yang-Mills field equations, and the mathematical and physical differences between them are discussed.

  4. Calculation of Local Water Densities in Biological Systems — A Comparison of Molecular Dynamics Simulations and the 3D-RISM-KH Molecular Theory of Solvation

    PubMed Central

    Stumpe, Martin C.; Blinov, Nikolay; Wishart, David; Kovalenko, Andriy; Pande, Vijay S.

    2010-01-01

    Water plays a unique role in all living organisms. Not only is it nature’s ubiquitous solvent, but it also actively takes part in many cellular processes. In particular, the structure and properties of interfacial water near biomolecules like proteins are often related to the function of the respective molecule. It can therefore be highly instructive to study the local water density around solutes in cellular systems, particularly when solvent-mediated forces like the hydrophobic effect are relevant. Computational methods like molecular dynamics (MD) simulations seem well suited to study these systems at the atomic level. However, due to sampling requirements, it is not clear that MD simulations are indeed the method of choice to obtain converged densities at a given level of precision. We here compare the calculation of local water densities with two different methods, MD simulations and the three-dimensional reference interaction site model with the Kovalenko-Hirata closure (3D-RISM-KH). In particular, we investigate the convergence of the local water density to assess the required simulation times for different levels of resolution. Moreover, we provide a quantitative comparison of the densities calculated with MD and with 3D-RISM-KH, and investigate the effect of the choice of the water model for both methods. Our results show that 3D-RISM-KH yields density distributions that are very similar to those from MD up to a 0.5 Å resolution, but for significantly reduced computational cost. The combined use of MD and 3D-RISM-KH emerges as an auspicious perspective for efficient solvent sampling in dynamical systems. PMID:21174421

  5. Large N phase transitions in massive N = 2 gauge theories

    SciTech Connect

    Russo, J. G.

    2014-07-23

    Using exact results obtained from localization on S{sup 4}, we explore the large N limit of N = 2 super Yang-Mills theories with massive matter multiplets. In this talk we discuss two cases: N = 2* theory, describing a massive hypermultiplet in the adjoint representation, and super QCD with massive quarks. When the radius of the four-sphere is sent to infinity these theories are described by solvable matrix models, which exhibit a number of interesting phenomena including quantum phase transitions at finite 't Hooft coupling.

  6. Massless fermions and Kaluza--Klein theory with torsion

    SciTech Connect

    Wu, Y.; Zee, A.

    1984-09-01

    A pure Kaluza--Klein theory contains no massless fermion in four-dimensional theory. We investigate the effect of introducing torsion on the internal manifold and find that there are massless fermions. The hope is that given an isometry group the representation to which these fermions belong is fixed, in contrast to the situation in Yang--Mills theory. We show that this is indeed the case, but the representations do not appear to be the ones favored by current theoretical prejudice. The cases with parallelizable torsions on a group manifold as the internal manifold are analyzed in detail.

  7. The Seiberg-Witten map for noncommutative gauge theories

    SciTech Connect

    Cerchiai, B.L.; Pasqua, A.F.; Zumino, B.

    2002-06-26

    The Seiberg-Witten map for noncommutative Yang-Mills theories is studied and methods for its explicit construction are discussed which are valid for any gauge group. In particular the use of the evolution equation is described in some detail and its relation to the cohomological approach is elucidated. Cohomological methods which are applicable to gauge theories requiring the Batalin-Vilkoviskii antifield formalism are briefly mentioned. Also, the analogy of the Weyl-Moyal star product with the star product of opestring field theory and possible ramifications of this analogy are briefly mentioned.

  8. 1-D, 2-D and 3-D Negative-Refraction Metamaterials at Optical Frequencies: Optical Nano-Transmission-Line and Circuit Theory

    NASA Astrophysics Data System (ADS)

    Engheta, Nader; Alu, Andrea

    2006-03-01

    In recent years metamaterials have offered new possibilities for overcoming some of the intrinsic limitations in wave propagation. Their realization at microwave frequencies has followed two different paths; one consisting of embedding resonant inclusions in a host dielectric, and the other following a transmission-line approach, i.e., building 1-D, 2-D, or 3-D cascades of circuit elements, respectively, as linear, planar or bulk right- or left-handed metamaterials. The latter is known to provide larger bandwidth and better robustness to ohmic losses. Extending these concepts to optical frequencies is a challenging task, due to changes in material response to electromagnetic waves at these frequencies. However, recently we have studied theoretically how it may be possible to have circuit nano-elements at these frequencies by properly exploiting plasmonic resonances. Here we present our theoretical work on translating the circuit concepts of right- and left-handed metamaterials into optical frequencies by applying the analogy between nanoparticles and nanocircuit elements in transmission lines. We discuss how it is possible to synthesize optical negative-refraction metamaterials by properly cascading plasmonic and non-plasmonic elements in 1-D, 2-D and 3-D geometries.

  9. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  11. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  12. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  13. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. Gravity as the square of gauge theory

    SciTech Connect

    Bern, Zvi; Dennen, Tristan; Huang Yutin; Kiermaier, Michael

    2010-09-15

    We explore consequences of the recently discovered duality between color and kinematics, which states that kinematic numerators in a diagrammatic expansion of gauge-theory amplitudes can be arranged to satisfy Jacobi-like identities in one-to-one correspondence to the associated color factors. Using on-shell recursion relations, we give a field-theory proof showing that the duality implies that diagrammatic numerators in gravity are just the product of two corresponding gauge-theory numerators, as previously conjectured. These squaring relations express gravity amplitudes in terms of gauge-theory ingredients, and are a recasting of the Kawai, Lewellen, and Tye relations. Assuming that numerators of loop amplitudes can be arranged to satisfy the duality, our tree-level proof immediately carries over to loop level via the unitarity method. We then present a Yang-Mills Lagrangian whose diagrams through five points manifestly satisfy the duality between color and kinematics. The existence of such Lagrangians suggests that the duality also extends to loop amplitudes, as confirmed at two and three loops in a concurrent paper. By ''squaring'' the novel Yang-Mills Lagrangian we immediately obtain its gravity counterpart. We outline the general structure of these Lagrangians for higher points. We also write down various new representations of gauge-theory and gravity amplitudes that follow from the duality between color and kinematics.

  15. Photoemission spectra and density functional theory calculations of 3d transition metal-aqua complexes (Ti-Cu) in aqueous solution.

    PubMed

    Yepes, Diana; Seidel, Robert; Winter, Bernd; Blumberger, Jochen; Jaque, Pablo

    2014-06-19

    Photoelectron spectroscopy measurements and density functional calculations are combined to determine the lowest electron binding energies of first-row transition-metal aqua ions, titanium through copper, with 3d(1) through 3d(9) electronic configurations, in their most common oxidation states. Vertical ionization energies are found to oscillate considerably between 6.76 and 9.65 eV for the dications and between 7.05 and 10.28 eV for the respective trivalent cations. The metal cations are modeled as [M(H2O)n](q+) clusters (q = 2, 3, and 4; n = 6 and 18) surrounded by continuum solvent. The performance of 10 exchange-correlation functionals, two GGAs, three MGGAs, two HGGAs and three HMGGAs, combined with the MDF10(ECP)/6-31+G(d,p) basis set is assessed for 11 M-O bond distances, 10 vertical ionization energies, 6 adiabatic ionization energies, and the associated reorganization free energies. We find that for divalent cations the HGGA and HMGGA functionals in combination with the 18 water model show the best agreement with experimental vertical ionization energies and geometries; for trivalent ions, the MGGA functionals perform best. The corresponding reorganization free energies (λo) of the oxidized ions are significantly underestimated with all DFT functionals and cluster models. This indicates that the structural reorganization of the solvation shell upon ionization is not adequately accounted for by the simple solvation models used, emphasizing the importance of extended sampling of thermally accessible solvation structures for an accurate computation of this quantity. The photoelectron spectroscopy measurements reported herein provide a comprehensive set of transition-metal redox energetic quantities for future electronic structure benchmarks.

  16. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  17. New implementation of the trajectory surface hopping method with use of the Zhu-Nakamura theory. II. Application to the charge transfer processes in the 3D DH2+ system

    NASA Astrophysics Data System (ADS)

    Zhu, Chaoyuan; Kamisaka, Hideyuki; Nakamura, Hiroki

    2002-02-01

    The newly implemented trajectory surface hopping (TSH) method for the collinear system with use of the Zhu-Nakamura semiclassical theory of nonadiabatic transition [C. Zhu, K. Nobusada, and H. Nakamura, J. Chem. Phys. 115, 3031 (2001)] is extended to treat 3D nonadiabatic reactions. Since the avoided crossing seam becomes a two-dimensional surface in the 3D system, the nonadiabatic transition region and the possibility of classically forbidden hops are enlarged very much in comparison with those in the collinear case. As a result, the contribution of the classically forbidden hops is quite a bit enhanced in the 3D system. Conservation of total angular momentum J is taken into account by slightly rotating the direction of momentum during the hop in the classically forbidden case. The method is tested by applying to the charge transfer processes in the 3D DH2+ system for J=0. Numerical results clearly demonstrate that the new TSH method works very well at all energies and for all initial vibrational states considered compared to the old TSH method based on the Landau-Zener formula. The significant discrepancy between the two TSH methods survives even at high collision energy and high vibrational states in contrast to the collinear case, indicating the importance of the classically forbidden hops in 3D systems. The new TSH method is considered to be a very promising method to deal with high dimensional nonadiabatic dynamics. It should also be noted that the new TSH method does not require any knowledge of nonadiabatic coupling and is based only on adiabatic potentials.

  18. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  19. Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories.

    PubMed

    Huang, Yu-tin; Johansson, Henrik

    2013-04-26

    We show that three-dimensional supergravity amplitudes can be obtained as double copies of either three-algebra super-Chern-Simons matter theory or two-algebra super-Yang-Mills theory when either theory is organized to display the color-kinematics duality. We prove that only helicity-conserving four-dimensional gravity amplitudes have nonvanishing descendants when reduced to three dimensions, implying the vanishing of odd-multiplicity S-matrix elements, in agreement with Chern-Simons matter theory. We explicitly verify the double-copy correspondence at four and six points for N = 12,10,8 supergravity theories and discuss its validity for all multiplicity.

  20. Designing Multimedia Learning Application with Learning Theories: A Case Study on a Computer Science Subject with 2-D and 3-D Animated Versions

    ERIC Educational Resources Information Center

    Rias, Riaza Mohd; Zaman, Halimah Badioze

    2011-01-01

    Higher learning based instruction may be primarily concerned in most cases with the content of their academic lessons, and not very much with their instructional delivery. However, the effective application of learning theories and technology in higher education has an impact on student performance. With the rapid progress in the computer and…

  1. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  2. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  3. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  4. Random center vortex lines in continuous 3D space-time

    SciTech Connect

    Höllwieser, Roman; Altarawneh, Derar; Engelhardt, Michael

    2016-01-22

    We present a model of center vortices, represented by closed random lines in continuous 2+1-dimensional space-time. These random lines are modeled as being piece-wise linear and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a cuboid with periodic boundary conditions. Besides moving, growing and shrinking of the vortex configuration, also reconnections are allowed. Our ensemble therefore contains not a fixed, but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. Using the model, we study both vortex percolation and the potential V(R) between quark and anti-quark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions and at different temperatures. We have found three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature. The model reproduces the qualitative features of confinement physics seen in SU(2) Yang-Mills theory.

  5. Complex angular momentum theory of state-to-state integral cross sections: resonance effects in the F + HD → HF(v' = 3) + D reaction.

    PubMed

    Sokolovski, D; Akhmatskaya, E; Echeverría-Arrondo, C; De Fazio, D

    2015-07-28

    State-to-state reactive integral cross sections (ICSs) are often affected by quantum mechanical resonances, especially near a reactive threshold. An ICS is usually obtained by summing partial waves at a given value of energy. For this reason, the knowledge of pole positions and residues in the complex energy plane is not sufficient for a quantitative description of the patterns produced by resonance. Such description is available in terms of the poles of an S-matrix element in the complex plane of the total angular momentum. The approach was recently implemented in a computer code ICS_Regge, available in the public domain [Comput. Phys. Commun., 2014, 185, 2127]. In this paper, we employ the ICS_Regge package to analyse in detail, for the first time, the resonance patterns predicted for integral cross sections (ICSs) of the benchmark F + HD → HF(v' = 3) + D reaction. The v = 0, j = 0, Ω = 0 → v' = 3, j' = 0, 1, 2, and Ω' = 0, 1, 2 transitions are studied for collision energies from 58.54 to 197.54 meV. For these energies, we find several resonances, whose contributions to the ICS vary from symmetric and asymmetric Fano shapes to smooth sinusoidal Regge oscillations. Complex energies of metastable states and Regge pole positions and residues are found by Padé reconstruction of the scattering matrix elements. The accuracy of the ICS_Regge code, relation between complex energies and Regge poles, various types of Regge trajectories, and the origin of the J-shifting approximation are also discussed.

  6. 3-D Color Wheels

    ERIC Educational Resources Information Center

    DuBois, Ann

    2010-01-01

    The blending of information from an academic class with projects from art class can do nothing but strengthen the learning power of the student. Creating three-dimensional color wheels provides the perfect opportunity to combine basic geometry knowledge with color theory. In this article, the author describes how her seventh-grade painting…

  7. Topological resolution of gauge theory singularities

    SciTech Connect

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  8. All conjugate-maximal-helicity-violating amplitudes from topological open string theory in twistor space.

    PubMed

    Roiban, Radu; Volovich, Anastasia

    2004-09-24

    It has recently been proposed that the D-instanton expansion of the open topological B model on P(3|4) is equivalent to the perturbative expansion of the maximally supersymmetric Yang-Mills theory in four dimensions. In this letter we show how to construct the gauge theory results for all n-point conjugate-maximal-helicity-violating amplitudes by computing the integral over the moduli space of curves of degree n-3 in P(3|4), providing strong support to the string theory construction.

  9. Time-Dependent Variational Approach to the pure Gauge Theory for Evaluating the Shear Viscosity

    NASA Astrophysics Data System (ADS)

    Tsue, Yasuhiko; Lee, Tong-Gyu; Ishii, Hiroshi

    2009-10-01

    The time-dependent variational approach to the pure Yang-Mills gauge theory, especially a color su(3) gauge theory, is formulated in the functional Schr"odinger picture with a Gaussian wave functional approximation. The equations of motion for the quantum gauge fields are formulated in the Liouville-von Neumann form. This variational approach is applied in order to derive the shear viscosity, which is one of the transport coefficients for the pure gluonic matter, by using the linear response theory. As a result, the contribution to the shear viscosity from the quantum gluons is zero up to the lowest order of the coupling g in the quantum gluonic matter.

  10. Noncommutative Geometry in M-Theory and Conformal Field Theory

    SciTech Connect

    Morariu, Bogdan

    1999-05-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Funq (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.

  11. PB3D: A new code for edge 3-D ideal linear peeling-ballooning stability

    NASA Astrophysics Data System (ADS)

    Weyens, T.; Sánchez, R.; Huijsmans, G.; Loarte, A.; García, L.

    2017-02-01

    A new numerical code PB3D (Peeling-Ballooning in 3-D) is presented. It implements and solves the intermediate-to-high-n ideal linear magnetohydrodynamic stability theory extended to full edge 3-D magnetic toroidal configurations in previous work [1]. The features that make PB3D unique are the assumptions on the perturbation structure through intermediate-to-high mode numbers n in general 3-D configurations, while allowing for displacement of the plasma edge. This makes PB3D capable of very efficient calculations of the full 3-D stability for the output of multiple equilibrium codes. As first verification, it is checked that results from the stability code MISHKA [2], which considers axisymmetric equilibrium configurations, are accurately reproduced, and these are then successfully extended to 3-D configurations, through comparison with COBRA [3], as well as using checks on physical consistency. The non-intuitive 3-D results presented serve as a tentative first proof of the capabilities of the code.

  12. Task reports on developing techniques for scattering by 3D composite structures and to generate new solutions in diffraction theory using higher order boundary conditions

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1991-01-01

    There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. A Fourier series expansion of the vector electric and magnetic fields is employed to reduce the dimensionality of the system, and an exact boundary condition is employed to terminate the mesh. The mesh termination boundary is chosen such that it leads to convolutional boundary operators for low O(n) memory demand. Second, rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. Ray solutions are obtained which remain valid in the transition region and reduce uniformly those in the deep lit and shadow regions. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder.

  13. Application of recursive Gibbs-Appell formulation in deriving the equations of motion of N-viscoelastic robotic manipulators in 3D space using Timoshenko Beam Theory

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Shafei, A. M.

    2013-02-01

    The goal of this paper is to describe the application of Gibbs-Appell (G-A) formulation and the assumed modes method to the mathematical modeling of N-viscoelastic link manipulators. The paper's focus is on obtaining accurate and complete equations of motion which encompass the most related structural properties of lightweight elastic manipulators. In this study, two important damping mechanisms, namely, the structural viscoelasticity (Kelvin-Voigt) effect (as internal damping) and the viscous air effect (as external damping) have been considered. To include the effects of shear and rotational inertia, the assumption of Timoshenko beam (TB) theory (TBT) has been applied. Gravity, torsion, and longitudinal elongation effects have also been included in the formulations. To systematically derive the equations of motion and improve the computational efficiency, a recursive algorithm has been used in the modeling of the system. In this algorithm, all the mathematical operations are carried out by only 3×3 and 3×1 matrices. Finally, a computational simulation for a manipulator with two elastic links is performed in order to verify the proposed method.

  14. Focus-distance-controlled 3D TV

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Nobuaki; Kim, Kyung-tae; Son, Jung-Young; Murata, Tatsuya; Orima, Takatoshi

    1996-09-01

    There is a phenomenon that a 3D image appears in proportion to a focus distance when something is watched through a convex lens. An adjustable focus lens which can control the focus distance of the convex lens is contrived and applied to 3D TV. We can watch 3D TV without eyeglasses. The 3D TV image meets the NTSC standard. A parallax data and a focus data about the image can be accommodated at the same time. A continuous image method realizes much wider views. An anti 3D image effect can be avoided by using this method. At present, an analysis of proto-type lens and experiment are being carried out. As a result, a phantom effect and a viewing area can be improved. It is possible to watch the 3D TV at any distance. Distance data are triangulated by two cameras. A plan of AVI photo type using ten thousand lenses is discussed. This method is compared with four major conventional methods. As a result, it is revealed that this method can make the efficient use of Integral Photography and Varifocal type method. In the case of Integral Photography, a miniaturization of this system is possible. But it is difficult to get actual focus. In the case of varifocal type method, there is no problem with focusing, but the miniaturization is impossible. The theory investigated in this paper makes it possible to solve these problems.

  15. Focus-distance-controlled 3D TV

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Nobuaki; Kim, Kyung-tae; Son, Jung-Young; Murata, Tatsuya; Orima, Takatoshi

    1997-05-01

    There is a phenomenon that a 3D image appears in proportion to a focus distance when something is watched through a convex lens. An adjustable focus lens which can control the focus distance of the convex lens is contrived and applied to 3D TV. We can watch 3D TV without eyeglasses. The 3D TV image meets the NTSC standard. A parallax data and a focus data about the image can be accommodated at the same time. A continuous image method realizes much wider views. An anti 3D image effect can be avoided by using this method. At present, an analysis of proto-type lens and experiment are being carried out. As a result, a phantom effect and a viewing area can be improved. It is possible to watch the 3D TV at any distance. Distance data are triangulated by two cameras. A plan of AVI proto type using ten thousands lenses is discussed. This method is compared with four major conventional methods. As a result, it is revealed that this method can make the efficient use of integral photography and varifocal type method. In the case of integral photography, a miniaturization of this system is possible. But it is difficult to get actual focus. In the case of varifocal type method, there is no problem with focusing, but the miniaturization is impossible. The theory investigated in this paper makes it possible to solve these problems.

  16. Hadronic density of states from string theory.

    PubMed

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  17. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application.

    PubMed

    Marrero-Ponce, Yovani; Santiago, Oscar Martínez; López, Yoan Martínez; Barigye, Stephen J; Torrens, Francisco

    2012-11-01

    In this report, we present a new mathematical approach for describing chemical structures of organic molecules at atomic-molecular level, proposing for the first time the use of the concept of the derivative ([Formula: see text]) of a molecular graph (MG) with respect to a given event (E), to obtain a new family of molecular descriptors (MDs). With this purpose, a new matrix representation of the MG, which generalizes graph's theory's traditional incidence matrix, is introduced. This matrix, denominated the generalized incidence matrix, Q, arises from the Boolean representation of molecular sub-graphs that participate in the formation of the graph molecular skeleton MG and could be complete (representing all possible connected sub-graphs) or constitute sub-graphs of determined orders or types as well as a combination of these. The Q matrix is a non-quadratic and unsymmetrical in nature, its columns (n) and rows (m) are conditions (letters) and collection of conditions (words) with which the event occurs. This non-quadratic and unsymmetrical matrix is transformed, by algebraic manipulation, to a quadratic and symmetric matrix known as relations frequency matrix, F, which characterizes the participation intensity of the conditions (letters) in the events (words). With F, we calculate the derivative over a pair of atomic nuclei. The local index for the atomic nuclei i, Δ(i), can therefore be obtained as a linear combination of all the pair derivatives of the atomic nuclei i with all the rest of the j's atomic nuclei. Here, we also define new strategies that generalize the present form of obtaining global or local (group or atom-type) invariants from atomic contributions (local vertex invariants, LOVIs). In respect to this, metric (norms), means and statistical invariants are introduced. These invariants are applied to a vector whose components are the values Δ(i) for the atomic nuclei of the molecule or its fragments. Moreover, with the purpose of differentiating

  18. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  19. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  20. Non-Abelian discrete flavor symmetries of 10D SYM theory with magnetized extra dimensions

    NASA Astrophysics Data System (ADS)

    Abe, Hiroyuki; Kobayashi, Tatsuo; Ohki, Hiroshi; Sumita, Keigo; Tatsuta, Yoshiyuki

    2014-06-01

    We study discrete flavor symmetries of the models based on a ten-dimensional supersymmetric Yang-Mills (10D SYM) theory compactified on magnetized tori. We assume non-vanishing non-factorizable fluxes as well as the orbifold projections. These setups allow model-building with more various flavor structures. Indeed, we show that there exist various classes of non-Abelian discrete flavor symmetries. In particular, we find that S 3 flavor symmetries can be realized in the framework of the magnetized 10D SYM theory for the first time.

  1. Generalized Lorentz-Dirac equation for a strongly coupled gauge theory.

    PubMed

    Chernicoff, Mariano; García, J Antonio; Güijosa, Alberto

    2009-06-19

    We derive a semiclassical equation of motion for a "composite" quark in strongly coupled large-N_{c} N = 4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.

  2. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  3. Hitchin’s equations and M-theory phenomenology

    NASA Astrophysics Data System (ADS)

    Pantev, Tony; Wijnholt, Martijn

    2011-07-01

    Phenomenological compactifications of M-theory involve seven-manifolds with G2 holonomy and various singularities. Here we study local geometries with such singularities, by thinking of them as compactifications of 7d supersymmetric Yang-Mills theory on a three-manifold Q3. We give a general discussion of compactifications of 7d Yang-Mills theory in terms of Higgs bundles on Q3. We show that they can be constructed using spectral covers, which are Lagrangian branes with a flat connection in the cotangent bundle T∗Q3. We explain the dictionary with ALE fibrations over Q3 and conjecture that these configurations have G2 holonomy. We further develop tools to study the low energy effective theory of such a model. We show that the naive massless spectrum is corrected by instanton effects. Taking the instanton effects into account, we find that the massless spectrum and many of the interactions can be computed with Morse theoretic methods.

  4. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  5. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  6. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  7. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  8. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  9. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  10. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  11. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  12. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  13. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  14. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  15. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  16. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  17. Introduction to string and superstring theory II

    SciTech Connect

    Peskin, M.E.

    1987-03-01

    Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)

  18. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  19. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  20. Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theory

    NASA Astrophysics Data System (ADS)

    Cirafici, Michele; Sinkovics, Annamaria; Szabo, Richard J.

    2009-03-01

    We study the relation between Donaldson-Thomas theory of Calabi-Yau threefolds and a six-dimensional topological Yang-Mills theory. Our main example is the topological U(N) gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use equivariant localization techniques on its noncommutative deformation. As a result the gauge theory localizes on noncommutative instantons which can be classified in terms of N-coloured three-dimensional Young diagrams. We give to these noncommutative instantons a geometrical description in terms of certain stable framed coherent sheaves on projective space by using a higher-dimensional generalization of the ADHM formalism. From this formalism we construct a topological matrix quantum mechanics which computes an index of BPS states and provides an alternative approach to the six-dimensional gauge theory.

  1. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  2. Testing the master constraint programme for loop quantum gravity: V. Interacting field theories

    NASA Astrophysics Data System (ADS)

    Dittrich, B.; Thiemann, T.

    2006-02-01

    This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein Yang Mills theory and 2 + 1 gravity. Interestingly, while Yang Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity.

  3. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  4. Supersymmetry and String Theory

    NASA Astrophysics Data System (ADS)

    Dine, Michael

    2016-01-01

    Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi-Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang-Mills theory; References; Index.

  5. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  6. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  7. Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT

    NASA Astrophysics Data System (ADS)

    Je, U. K.; Lee, M. S.; Cho, H. S.; Hong, D. K.; Park, Y. O.; Park, C. K.; Cho, H. M.; Choi, S. I.; Woo, T. H.

    2015-06-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient sampling data. In computed tomography (CT), for example, image reconstruction from sparse views and/or limited-angle (<360°) views would enable fast scanning with reduced imaging doses to the patient. In this study, we investigated and implemented a reconstruction algorithm based on the compressed-sensing (CS) theory, which exploits the sparseness of the gradient image with substantially high accuracy, for potential applications to low-dose, high-accurate dental cone-beam CT (CBCT). We performed systematic simulation works to investigate the image characteristics and also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images of superior accuracy from insufficient sampling data and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from insufficient data indicate that the CS-based algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  8. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  9. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  10. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  11. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  12. B-V quantization and field-anti-field duality for p-form gauge fields, topological field theories and 2D gravity

    NASA Astrophysics Data System (ADS)

    Baulieu, Laurent

    1996-02-01

    We construct a framework which unifies in pairs the fields and anti-fields of the Batalin and Vilkovisky quantization method. We consider gauge theories of p-forms coupled to Yang-Mills fields. Our algorithm generates many topological models of the Chern-Simons type or of the Donaldson-Witten type. Some of these models can undergo a partial breaking of their topological symmetries. We investigate the properties of 2D gravity in the Batalin and Vilkovisky quantization scheme. We find a structure which satisfies the holomorphic factorization and also properties analogous to those existing in the topological theories of forms. New conformal fields are introduced with their invariant action.

  13. The World of 3-D.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1991-01-01

    Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)

  14. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  15. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  16. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  17. Lévy/Anomalous Diffusion as a Mean-Field Theory for 3D Cloud Effects in SW-RT: Empirical Support, New Analytical Formulation, and Impact on Atmospheric Absorption

    NASA Astrophysics Data System (ADS)

    Pfeilsticker, K.; Davis, A.; Marshak, A.; Suszcynsky, D. M.; Buldryrev, S.; Barker, H.

    2001-12-01

    2-stream RT models, as used in all current GCMs, are mathematically equivalent to standard diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. In other words, after the conventional van de Hulst rescaling by 1/(1-g) in R3 and also by (1-g) in t, solar photons follow convoluted fractal trajectories in the atmosphere. For instance, we know that transmitted light is typically scattered about (1-g)τ 2 times while reflected light is scattered on average about τ times, where τ is the optical depth of the column. The space/time spread of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows from directly from first principles (the RT equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the '1-g' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as anomalous diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics to investigate a wide variety of

  18. Lévy/Anomalous Diffusion as a Mean-Field Theory for 3D Cloud Effects in Shortwave Radiative Transfer: Empirical Support, New Analytical Formulation, and Impact on Atmospheric Absorption

    NASA Astrophysics Data System (ADS)

    Buldyrev, S.; Davis, A.; Marshak, A.; Stanley, H. E.

    2001-12-01

    Two-stream radiation transport models, as used in all current GCM parameterization schemes, are mathematically equivalent to ``standard'' diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. The space/time spread (technically, the Green function) of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows directly from first principles (the radiative transfer equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the ``1-g'' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as ``anomalous'' diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics literature to investigate a wide variety of systems with strongly nonlinear dynamics; these applications range from random advection in turbulent fluids to the erratic behavior of financial time-series and, most recently, self-regulating ecological systems. We will briefly survey the state

  19. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  20. Ultraviolet divergences in non-renormalizable supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Smilga, A.

    2017-03-01

    We present a pedagogical review of our current understanding of the ultraviolet structure of N = (1,1) 6D supersymmetric Yang-Mills theory and of N = 8 4 D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higherdimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially, of extended supersymmetric theories) is that these counterterms may not be invariant off shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behaviour.

  1. Schwarzschild Black Holes from Matrix Theory

    SciTech Connect

    Banks, T.; Fischler, W.; Klebanov, I.R.; Susskind, L.

    1998-01-01

    We consider matrix theory compactified on T{sup 3} and show that it correctly describes the properties of Schwarzschild black holes in 7+1 dimensions, including the mass-entropy relation, the Hawking temperature, and the physical size, up to numerical factors of order unity. The most economical description involves setting the cutoff N in the discretized light-cone quantization to be of order the black hole entropy. A crucial ingredient necessary for our work is the recently proposed equation of state for 3+1 dimensional supersymmetric Yang-Mills theory with 16supercharges. We give detailed arguments for the range of validity of this equation following the methods of Horowitz and Polchinski. {copyright} {ital 1998} {ital The American Physical Society}

  2. Gauge Theories on the Coulomb Branch

    NASA Astrophysics Data System (ADS)

    Schwarz, John H.

    We construct the world-volume action of a probe D3-brane in AdS5 × S5 with N units of flux. It has the field content, symmetries, and dualities of the U(1) factor of 𝒩 = 4 U(N + 1) super Yang-Mills theory, spontaneously broken to U(N) × U(1) by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a highly effective action (HEA). We construct an SL(2, Z) multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that they reproduce the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a soliton bubble, which is interpreted as a phase boundary.

  3. The 3D rocket combustor acoustics model

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1992-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, and three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1-D, 2-D, and 3-D assumptions with regards to capturing the physical phenomena of interest and computational requirements.

  4. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  5. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  6. Comparing swimsuits in 3D.

    PubMed

    van Geer, Erik; Molenbroek, Johan; Schreven, Sander; deVoogd-Claessen, Lenneke; Toussaint, Huib

    2012-01-01

    In competitive swimming, suits have become more important. These suits influence friction, pressure and wave drag. Friction drag is related to the surface properties whereas both pressure and wave drag are greatly influenced by body shape. To find a relationship between the body shape and the drag, the anthropometry of several world class female swimmers wearing different suits was accurately defined using a 3D scanner and traditional measuring methods. The 3D scans delivered more detailed information about the body shape. On the same day the swimmers did performance tests in the water with the tested suits. Afterwards the result of the performance tests and the differences found in body shape was analyzed to determine the deformation caused by a swimsuit and its effect on the swimming performance. Although the amount of data is limited because of the few test subjects, there is an indication that the deformation of the body influences the swimming performance.

  7. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  8. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  9. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  10. GPU-Accelerated Denoising in 3D (GD3D)

    SciTech Connect

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.

  11. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  12. 3D reconstruction of tensors and vectors

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  13. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  14. 3D Nanostructuring of Semiconductors

    NASA Astrophysics Data System (ADS)

    Blick, Robert

    2000-03-01

    Modern semiconductor technology allows to machine devices on the nanometer scale. I will discuss the current limits of the fabrication processes, which enable the definition of single electron transistors with dimensions down to 8 nm. In addition to the conventional 2D patterning and structuring of semiconductors, I will demonstrate how to apply 3D nanostructuring techniques to build freely suspended single-crystal beams with lateral dimension down to 20 nm. In transport measurements in the temperature range from 30 mK up to 100 K these nano-crystals are characterized regarding their electronic as well as their mechanical properties. Moreover, I will present possible applications of these devices.

  15. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  16. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  17. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  18. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  19. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  20. Sasakian quiver gauge theory on the Aloff-Wallach space X1,1

    NASA Astrophysics Data System (ADS)

    Geipel, Jakob C.

    2017-03-01

    We consider the SU (3)-equivariant dimensional reduction of gauge theories on spaces of the form Md ×X1,1 with d-dimensional Riemannian manifold Md and the Aloff-Wallach space X1,1 = SU (3) / U (1) endowed with its Sasaki-Einstein structure. The condition of SU (3)-equivariance of vector bundles, which has already occurred in the studies of Spin (7)-instantons on cones over Aloff-Wallach spaces, is interpreted in terms of quiver diagrams, and we construct the corresponding quiver bundles, using (parts of) the weight diagram of SU (3). We consider three examples thereof explicitly and then compare the results with the quiver gauge theory on Q3 = SU (3) / (U (1) × U (1)), the leaf space underlying the Sasaki-Einstein manifold X1,1. Moreover, we study instanton solutions on the metric cone C (X1,1) by evaluating the Hermitian Yang-Mills equation. We briefly discuss some features of the moduli space thereof, following the main ideas of a treatment of Hermitian Yang-Mills instantons on cones over generic Sasaki-Einstein manifolds in the literature.