Science.gov

Sample records for 3d-qsar molecular docking

  1. 3D-QSAR and molecular docking studies on HIV protease inhibitors

    NASA Astrophysics Data System (ADS)

    Tong, Jianbo; Wu, Yingji; Bai, Min; Zhan, Pei

    2017-02-01

    In order to well understand the chemical-biological interactions governing their activities toward HIV protease activity, QSAR models of 34 cyclic-urea derivatives with inhibitory HIV were developed. The quantitative structure activity relationship (QSAR) model was built by using comparative molecular similarity indices analysis (CoMSIA) technique. And the best CoMSIA model has rcv2, rncv2 values of 0.586 and 0.931 for cross-validated and non-cross-validated. The predictive ability of CoMSIA model was further validated by a test set of 7 compounds, giving rpred2 value of 0.973. Docking studies were used to find the actual conformations of chemicals in active site of HIV protease, as well as the binding mode pattern to the binding site in protease enzyme. The information provided by 3D-QSAR model and molecular docking may lead to a better understanding of the structural requirements of 34 cyclic-urea derivatives and help to design potential anti-HIV protease molecules.

  2. Inhibitory mode of indole-2-carboxamide derivatives against HLGPa: molecular docking and 3D-QSAR analyses.

    PubMed

    Liu, Guixia; Zhang, Zhenshan; Luo, Xiaomin; Shen, Jianhua; Liu, Hong; Shen, Xu; Chen, Kaixian; Jiang, Hualiang

    2004-08-01

    The interaction of a series of indole-2-carboxamide compounds with human liver glycogen phosphorylase a (HLGPa) have been studied employing molecular docking and 3D-QSAR approaches. The Lamarckian Genetic Algorithm (LGA) of AutoDock 3.0 was employed to locate the binding orientations and conformations of the inhibitors interacting with HLGPa. The binding models were demonstrated in the aspects of inhibitor's conformation, subsite interaction, and hydrogen bonding. The very similar binding conformations of these inhibitors show that they interact with HLGPa in a very similar way. Good correlations between the calculated interaction free energies and experimental inhibitory activities suggest that the binding conformations of these inhibitors are reasonable. The structural and energetic differences in inhibitory potencies of indole-2-carboxamide compounds were reasonably explored. Using the binding conformations of indole-2-carboxamides, consistent and highly predictive 3D-QSAR models were developed by CoMFA and CoMSIA analyses. The q2 values are 0.697 and 0.622 for CoMFA and CoMSIA models, respectively. The predictive ability of these models was validated by four compounds that were not included in the training set. Mapping these models back to the topology of the active site of HLGPa leads to a better understanding of the vital indole-2-carboxamide-HLGPa interactions. Structure-based investigations and the final 3D-QSAR results provide clear guidelines and accurate activity predictions for novel inhibitor design.

  3. A structure-activity relationship study of catechol- O-methyltransferase inhibitors combining molecular docking and 3D QSAR methods

    NASA Astrophysics Data System (ADS)

    Tervo, Anu J.; Nyrönen, Tommi H.; Rönkkö, Toni; Poso, Antti

    2003-12-01

    A panel of 92 catechol- O-methyltransferase (COMT) inhibitors was used to examine the molecular interactions affecting their biological activity. COMT inhibitors are used as therapeutic agents in the treatment of Parkinson's disease, but there are limitations in the currently marketed compounds due to adverse side effects. This study combined molecular docking methods with three-dimensional structure-activity relationships (3D QSAR) to analyse possible interactions between COMT and its inhibitors, and to incite the design of new inhibitors. Comparative molecular field analysis (CoMFA) and GRID/GOLPE models were made by using bioactive conformations from docking experiments, which yielded q2 values of 0.594 and 0.636, respectively. The docking results, the COMT X-ray structure, and the 3D QSAR models are in agreement with each other. The models suggest that an interaction between the inhibitor's catechol oxygens and the Mg2+ ion in the COMT active site is important. Both hydrogen bonding with Lys144, Asn170 and Glu199, and hydrophobic contacts with Trp38, Pro174 and Leu198 influence inhibitor binding. Docking suggests that a large R1 substituent of the catechol ring can form hydrophobic contacts with side chains of Val173, Leu198, Met201 and Val203 on the COMT surface. Our models propose that increasing steric volume of e.g. the diethylamine tail of entacapone is favourable for COMT inhibitory activity.

  4. Molecular docking and 3D-QSAR studies on gag peptide analogue inhibitors interacting with human cyclophilin A.

    PubMed

    Cui, Meng; Huang, Xiaoqin; Luo, Xiaomin; Briggs, James M; Ji, Ruyun; Chen, Kaixian; Shen, Jianhua; Jiang, Hualiang

    2002-11-21

    The interaction of a series gag peptide analogues with human cyclophilin A (hCypA) have been studied employing molecular docking and 3D-QSAR approaches. The Lamarckian Genetic Algorithm (LGA) and divide-and-conquer methods were applied to locate the binding orientations and conformations of the inhibitors interacting with hCypA. Good correlations between the calculated interaction free energies and experimental inhibitory activities suggest that the binding conformations of these inhibitors are reasonable. A novel interaction model was identified for inhibitors 11, 15, and 17 whose N-termini were modified by addition of the deaminovaline (Dav) group and the C-termini of 15 and 17 were modified by addition of a benzyl group. Accordingly, two new binding sites (sites A and D in Figure 1) were revealed, which show a strong correlation with inhibitor potency and thus can be used as a starting point for new inhibitor design. In addition, two predictive 3D-QSAR models were obtained by CoMFA and CoMSIA analyses based on the binding conformations derived from the molecular docking calculations. The reasonable r(cross)(2) (cross-validated) values 0.738 and 0.762 were obtained for CoMFA and CoMSIA models, respectively. The predictive ability of these models was validated by four peptide analogues test set. The CoMFA and CoMSIA field distributions are in general agreement with the structural characteristics of the binding groove of hCypA. This indicates the reasonableness of the binding model of the inhibitors with hCypA. Considering all these results together with the valuable clues of binding from references published recently, reasonable pharmacophore elements have been suggested, demonstrating that the 3D-QSAR models about peptide analogue inhibitors are expected to be further employed in predicting activities of the novel compounds for inhibiting hCypA.

  5. Pharmacophore modeling, 3D-QSAR and molecular docking studies of benzimidazole derivatives as potential FXR agonists.

    PubMed

    Sindhu, Thangaraj; Srinivasan, Pappu

    2014-08-01

    Farnesoid X receptor (FXR) is a potential therapeutic target for the treatment of diabetes mellitus. Atom-based three-dimensional quantitative structure activity relationship (3D-QSAR) models were developed for a series of 48 benzimidazole-based agonists of FXR. A total of five pharmacophore hypotheses were generated based on the survival score to build QSAR models. HHHRR was considered as a best model that consisted of three hydrophobic features (H) and two aromatic rings (R). The best hypothesis, HHHRR yielded a 3D-QSAR model with good statistical value (R(2)) of 0.8974 for a training set of 39 compounds and also showed good predictive power with correlation coefficient (Q(2)) of 0.7559 for a test set of nine compounds. Furthermore, molecular docking simulation was performed to understand the binding affinity of 48 benzimidazole-based compounds against the active site of human FXR protein. Docking results revealed that both the most active and least active compounds showed similar binding mode to the experimentally observed binding mode of co-crystallized ligand. The generated 3D contour maps revealed the structure activity relationship of the compounds. Substitution effects at different positions of benzimidazole derivatives would lead to the discovery of new agonists against human FXR protein.

  6. 3D-QSAR, molecular docking and molecular dynamics studies of a series of RORγt inhibitors.

    PubMed

    Wang, Fangfang; Yang, Wei; Shi, Yonghui; Le, Guowei

    2015-09-01

    The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R(2)cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R(2)pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.

  7. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β

    SciTech Connect

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang; Wang, Xinzhou; Liu, Hongling; Zhu, Yongliang; Yu, Hongxia

    2012-12-15

    Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 and non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.

  8. Molecular docking and 3D-QSAR studies on the glucocorticoid receptor antagonistic activity of hydroxylated polychlorinated biphenyls.

    PubMed

    Liu, S; Luo, Y; Fu, J; Zhou, J; Kyzas, G Z

    2016-01-01

    The glucocorticoid receptor (GR) antagonistic activities of hydroxylated polychlorinated biphenyls (HO-PCBs) were recently characterised. To further explore the interactions between HO-PCBs and the GR, and to elucidate structural characteristics that influence the GR antagonistic activity of HO-PCBs, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed. Comparative molecular similarity indices analysis (CoMSIA) was performed using both ligand- and receptor-based alignment schemes. Results generated from the receptor-based model were found to be more satisfactory, with q(2) of 0.632 and r(2) of 0.931 compared with those from the ligand-based model. Some internal validation strategies (e.g. cross-validation analysis, bootstrapping analysis and Y-randomisation) and an external validation method were used respectively to further assess the stability and predictive ability of the derived model. Graphical interpretation of the model provided some insights into the structural features that affected the GR antagonistic activity of HO-PCBs. Molecular docking studies revealed that some key residues were critical for ligand-receptor interactions by forming hydrogen bonds (Glu540) and hydrophobic interactions with ligands (Ile539, Val543 and Trp577). Although CoMSIA sometimes depends on the alignment of the molecules, the information provided is beneficial for predicting the GR antagonistic activities of HO-PCB homologues and is helpful for understanding the binding mechanisms of HO-PCBs to GR.

  9. Combined 3D-QSAR modeling and molecular docking study on azacycles CCR5 antagonists

    NASA Astrophysics Data System (ADS)

    Ji, Yongjun; Shu, Mao; Lin, Yong; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Lin, Zhihua

    2013-08-01

    The beta chemokine receptor 5 (CCR5) is an attractive target for pharmaceutical industry in the HIV-1, inflammation and cancer therapeutic areas. In this study, we have developed quantitative structure activity relationship (QSAR) models for a series of 41 azacycles CCR5 antagonists using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA methods. The cross-validated coefficient q2 values of 3D-QASR (CoMFA, CoMSIA, and Topomer CoMFA) methods were 0.630, 0.758, and 0.852, respectively, the non-cross-validated R2 values were 0.979, 0.978, and 0.990, respectively. Docking studies were also employed to determine the most probable binding mode. 3D contour maps and docking results suggested that bulky groups and electron-withdrawing groups on the core part would decrease antiviral activity. Furthermore, docking results indicated that H-bonds and π bonds were favorable for antiviral activities. Finally, a set of novel derivatives with predicted activities were designed.

  10. 3D-QSAR and molecular docking studies of selective agonists for the thyroid hormone receptor beta.

    PubMed

    Du, Juan; Qin, Jin; Liu, Huanxiang; Yao, Xiaojun

    2008-09-01

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) on a series of agonists of thyroid hormone receptor beta (TRbeta), which may lead to safe therapies for non-thyroid disorders while avoiding the cardiac side effects. The reasonable q(2) (cross-validated) values 0.600 and 0.616 and non-cross-validated r(2) values of 0.974 and 0.974 were obtained for CoMFA and CoMSIA models for the training set compounds, respectively. The predictive ability of two models was validated using a test set of 12 molecules which gave predictive correlation coefficients (r(pred)(2)) of 0.688 and 0.674, respectively. The Lamarckian Genetic Algorithm (LGA) of AutoDock 4.0 was employed to explore the binding mode of the compound at the active site of TRbeta. The results not only lead to a better understanding of interactions between these agonists and the thyroid hormone receptor beta but also can provide us some useful information about the influence of structures on the activity which will be very useful for designing some new agonist with desired activity.

  11. Molecular docking and 3D-QSAR studies on the binding mechanism of statine-based peptidomimetics with beta-secretase.

    PubMed

    Zuo, Zhili; Luo, Xiaomin; Zhu, Weiliang; Shen, Jianhua; Shen, Xu; Jiang, Hualiang; Chen, Kaixian

    2005-03-15

    beta-Secretase is an important protease in the pathogenesis of Alzheimer's disease. Some statine-based peptidomimetics show inhibitory activities to the beta-secretase. To explore the inhibitory mechanism, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies on these analogues were performed. The Lamarckian Genetic Algorithm (LGA) was applied to locate the binding orientations and conformations of the peptidomimetics with the beta-secretase. A good correlation between the calculated binding free energies and the experimental inhibitory activities suggests that the identified binding conformations of these potential inhibitors are reliable. Based on the binding conformations, highly predictive 3D-QSAR models were developed with q(2) values of 0.582 and 0.622 for CoMFA and CoMSIA, respectively. The predictive abilities of these models were validated by some compounds that were not included in the training set. Furthermore, the 3D-QSAR models were mapped back to the binding site of the beta-secretase, to get a better understanding of vital interactions between the statine-based peptidomimetics and the protease. Both the CoMFA and the CoMSIA field distributions are in well agreement with the structural characteristics of the binding groove of the beta-secretase. Therefore, the final 3D-QSAR models and the information of the inhibitor-enzyme interaction would be useful in developing new drug leads against Alzheimer's disease.

  12. Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking.

    PubMed

    Huang, Dandan; Liu, Yonglan; Shi, Bozhi; Li, Yueting; Wang, Guixue; Liang, Guizhao

    2013-09-01

    The β-enzyme (BACE), which takes an active part in the processing of amyloid precursor protein, thereby leads to the production of amyloid-β (Aβ) in the brain, is a major therapeutic target against Alzheimer's disease. The present study is aimed at studying 3D-QSAR of BACE-1 inhibitors and their binding mode. We build a 3D-QSAR model involving 99 training BACE-1 inhibitors based on Topomer CoMFA, and 26 molecules are employed to validate the external predictive power of the model obtained. The multiple correlation coefficients of fitting modeling, leave one out cross validation, and external validation are 0.966, 0.767 and 0.784, respectively. Topomer search is used as a tool for virtual screening in lead-like compounds of ZINC databases (2012); as a result, we successfully design 30 new molecules with higher activity than that of all training and test inhibitors. Besides, Surflex-dock is employed to explore binding mode of the inhibitors studied when acting with BACE-1 enzyme. The result shows that the inhibitors closely interact with the key sites related to ASP93, THR133, GLN134, ASP289, GLY291, THR292, THR293, ASN294, ARG296 and SER386 of BACE-1.

  13. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors.

    PubMed

    Tripuraneni, Naga Srinivas; Azam, Mohammed Afzal

    2016-11-01

    Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R(2 )= .9949), cross validation coefficient (Q(2 )= .7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R(2) value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU-ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.

  14. Searching for anthranilic acid-based thumb pocket 2 HCV NS5B polymerase inhibitors through a combination of molecular docking, 3D-QSAR and virtual screening.

    PubMed

    Vrontaki, Eleni; Melagraki, Georgia; Mavromoustakos, Thomas; Afantitis, Antreas

    2016-01-01

    A combination of the following computational methods: (i) molecular docking, (ii) 3-D Quantitative Structure Activity Relationship Comparative Molecular Field Analysis (3D-QSAR CoMFA), (iii) similarity search and (iv) virtual screening using PubChem database was applied to identify new anthranilic acid-based inhibitors of hepatitis C virus (HCV) replication. A number of known inhibitors were initially docked into the "Thumb Pocket 2" allosteric site of the crystal structure of the enzyme HCV RNA-dependent RNA polymerase (NS5B GT1b). Then, the CoMFA fields were generated through a receptor-based alignment of docking poses to build a validated and stable 3D-QSAR CoMFA model. The proposed model can be first utilized to get insight into the molecular features that promote bioactivity, and then within a virtual screening procedure, it can be used to estimate the activity of novel potential bioactive compounds prior to their synthesis and biological tests.

  15. Combined 3D-QSAR modeling and molecular docking studies on pyrrole-indolin-2-ones as Aurora A kinase inhibitors.

    PubMed

    Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun

    2011-01-01

    Aurora kinases have emerged as attractive targets for the design of anticancer drugs. 3D-QSAR (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) and Surflex-docking studies were performed on a series of pyrrole-indoline-2-ones as Aurora A inhibitors. The CoMFA and CoMSIA models using 25 inhibitors in the training set gave r(2) (cv) values of 0.726 and 0.566, and r(2) values of 0.972 and 0.984, respectively. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to rationalize the key structural requirements responsible for the activity. Surflex-docking studies revealed that the sulfo group, secondary amine group on indolin-2-one, and carbonyl of 6,7-dihydro-1H-indol-4(5H)-one groups were significant for binding to the receptor, and some essential features were also identified. Based on the 3D-QSAR and docking results, a set of new molecules with high predicted activities were designed.

  16. A mechanistic approach to explore novel HDAC1 inhibitor using pharmacophore modeling, 3D- QSAR analysis, molecular docking, density functional and molecular dynamics simulation study.

    PubMed

    Choubey, Sanjay K; Jeyaraman, Jeyakanthan

    2016-11-01

    Deregulated epigenetic activity of Histone deacetylase 1 (HDAC1) in tumor development and carcinogenesis pronounces it as promising therapeutic target for cancer treatment. HDAC1 has recently captured the attention of researchers owing to its decisive role in multiple types of cancer. In the present study a multistep framework combining ligand based 3D-QSAR, molecular docking and Molecular Dynamics (MD) simulation studies were performed to explore potential compound with good HDAC1 binding affinity. Four different pharmacophore hypotheses Hypo1 (AADR), Hypo2 (AAAH), Hypo3 (AAAR) and Hypo4 (ADDR) were obtained. The hypothesis Hypo1 (AADR) with two hydrogen bond acceptors (A), one hydrogen bond donor (D) and one aromatics ring (R) was selected to build 3D-QSAR model on the basis of statistical parameter. The pharmacophore hypothesis produced a statistically significant QSAR model, with co-efficient of correlation r(2)=0.82 and cross validation correlation co-efficient q(2)=0.70. External validation result displays high predictive power with r(2) (o) value of 0.88 and r(2) (m) value of 0.58 to carry out further in silico studies. Virtual screening result shows ZINC70450932 as the most promising lead where HDAC1 interacts with residues Asp99, His178, Tyr204, Phe205 and Leu271 forming seven hydrogen bonds. A high docking score (-11.17kcal/mol) and lower docking energy -37.84kcal/mol) displays the binding efficiency of the ligand. Binding free energy calculation was done using MM/GBSA to access affinity of ligands towards protein. Density Functional Theory was employed to explore electronic features of the ligands describing intramolcular charge transfer reaction. Molecular dynamics simulation studies at 50ns display metal ion (Zn)-ligand interaction which is vital to inhibit the enzymatic activity of the protein.

  17. In silico study on β-aminoketone derivatives as thyroid hormone receptor inhibitors: a combined 3D-QSAR and molecular docking study.

    PubMed

    Wang, Fang-Fang; Yang, Wei; Shi, Yong-Hui; Le, Guo-Wei

    2016-12-01

    In order to explore the structure-activity correlation of a series of β-aminoketone analogs as inhibitors of thyroid hormone receptor (TR), a set of three-dimensional quantitative structure-activity relationship (3D-QSAR) models based on comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA), for the first time, were developed in the present work. The best CoMFA model with steric and electrostatic fields exhibited [Formula: see text], [Formula: see text] for TRβ, and [Formula: see text], [Formula: see text] for TRα. 3D contour maps produced from the optimal models were further analyzed individually, which provide the areas in space where interactive fields would affect the inhibitory activity. In addition, the binding modes of inhibitors at the active site of TRs were examined using molecular docking, the results indicated that this series of inhibitors fit into the active site of TRs by forming hydrogen bonding and electrostatic interactions. The docking studies also revealed that Leu305, Val458 for TRβ, and Asp407 for TRα are showing hydrogen bonds with the most active inhibitors. In any case, the 3D-QSAR models combined with the binding information will serve as a useful approach to explore the chemical space for improving the activity of TRβ and TRα inhibitors.

  18. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs.

  19. Molecular modeling study of CP-690550 derivatives as JAK3 kinase inhibitors through combined 3D-QSAR, molecular docking, and dynamics simulation techniques.

    PubMed

    Wang, Jing Li; Cheng, Li Ping; Wang, Tian Chi; Deng, Wei; Wu, Fan Hong

    2017-03-01

    To develop more potent JAK3 kinase inhibitors, a series of CP-690550 derivatives were investigated using combined molecular modeling techniques, such as 3D-QSAR, molecular docking and molecular dynamics (MD). The leave-one-out correlation (q(2)) and non-cross-validated correlation coefficient (r(2)) of the best CoMFA model are 0.715 and 0.992, respectively. The q(2) and r(2) values of the best CoMSIA model are 0.739 and 0.995, respectively. The steric, electrostatic, and hydrophobic fields played important roles in determining the inhibitory activity of CP-690550 derivatives. Some new JAK3 kinase inhibitors were designed. Some of them have better inhibitory activity than the most potent Tofacitinib (CP-690550). Molecular docking was used to identify some key amino acid residues at the active site of JAK3 protein. 10ns MD simulations were successfully performed to confirm the detailed binding mode and validate the rationality of docking results. The calculation of the binding free energies by MMPBSA method gives a good correlation with the predicted biological activity. To our knowledge, this is the first report on MD simulations and free energy calculations for this series of compounds. The combination results of this study will be valuable for the development of potent and novel JAK3 kinase inhibitors.

  20. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking.

    PubMed

    Sun, Guohui; Fan, Tengjiao; Zhang, Na; Ren, Ting; Zhao, Lijiao; Zhong, Rugang

    2016-06-23

    DNA repair enzyme O⁶-methylguanine-DNA methyltransferase (MGMT), which plays an important role in inducing drug resistance against alkylating agents that modify the O⁶ position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesized over the past decades to improve the chemotherapeutic effects of O⁶-alkylating agents. In the present study, we performed a three-dimensional quantitative structure activity relationship (3D-QSAR) study on 97 guanine derivatives as MGMT inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Three different alignment methods (ligand-based, DFT optimization-based and docking-based alignment) were employed to develop reliable 3D-QSAR models. Statistical parameters derived from the models using the above three alignment methods showed that the ligand-based CoMFA (Qcv² = 0.672 and Rncv² = 0.997) and CoMSIA (Qcv² = 0.703 and Rncv² = 0.946) models were better than the other two alignment methods-based CoMFA and CoMSIA models. The two ligand-based models were further confirmed by an external test-set validation and a Y-randomization examination. The ligand-based CoMFA model (Qext² = 0.691, Rpred² = 0.738 and slope k = 0.91) was observed with acceptable external test-set validation values rather than the CoMSIA model (Qext² = 0.307, Rpred² = 0.4 and slope k = 0.719). Docking studies were carried out to predict the binding modes of the inhibitors with MGMT. The results indicated that the obtained binding interactions were consistent with the 3D contour maps. Overall, the combined results of the 3D-QSAR and the docking obtained in this study provide an insight into the understanding of the interactions between guanine derivatives and MGMT protein, which will assist in designing novel MGMT inhibitors with desired activity.

  1. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations.

    PubMed

    Gao, Xiaodong; Han, Liping; Ren, Yujie

    2016-05-05

    Checkpoint kinase 1 (Chk1) is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q² values (0.531, 0.726), fitted correlation r² coefficients (higher than 0.90), and standard error of prediction (less than 0.250). These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity.

  2. Molecular modeling studies on series of Btk inhibitors using docking, structure-based 3D-QSAR and molecular dynamics simulation: a combined approach.

    PubMed

    Balasubramanian, Pavithra K; Balupuri, Anand; Cho, Seung Joo

    2016-03-01

    Bruton tyrosine kinase (Btk) is a non-receptor tyrosine kinase. It is a crucial component in BCR pathway and expressed only in hematopoietic cells except T cells and Natural killer cells. BTK is a promising target because of its involvement in signaling pathways and B cell diseases such as autoimmune disorders and lymphoma. In this work, a combined molecular modeling study of molecular docking, 3D-QSAR and molecular dynamic (MD) simulation were performed on a series of 2,5-diaminopyrimidine compounds as inhibitors targeting Btk kinase to understand the interaction and key residues involved in the inhibition. A structure based CoMFA (q (2) = 0.675, NOC = 5, r (2) = 0.961) and COMSIA (q (2) = 0.704, NOC = 6, r (2) = 0.962) models were developed from the conformation obtained by docking. The developed models were subjected to various validation techniques such as leave-five-out, external test set, bootstrapping, progressive sampling and rm (2) metrics and found to have a good predictive ability in both internal and external validation. Our docking results showed the important residues that interacts in the active site residues in inhibition of Btk kinase. Furthermore, molecular dynamics simulation was employed to study the stability of the docked conformation and to investigate the binding interactions in detail. The MD simulation analyses identified several important hydrogen bonds with Btk, including the gatekeeper residue Thr474 and Met477 at the hinge region. Hydrogen bond with active site residues Leu408 and Arg525 were also recognized. A good correlation between the MD results, docking studies and the contour map analysis are observed. This indicates that the developed models are reliable. Our results from this study can provide insights in the designing and development of more potent Btk kinase inhibitors.

  3. The 3D Structure of the Binding Pocket of the Human Oxytocin Receptor for Benzoxazine Antagonists, Determined by Molecular Docking, Scoring Functions and 3D-QSAR Methods

    NASA Astrophysics Data System (ADS)

    Jójárt, Balázs; Martinek, Tamás A.; Márki, Árpád

    2005-05-01

    Molecular docking and 3D-QSAR studies were performed to determine the binding mode for a series of benzoxazine oxytocin antagonists taken from the literature. Structural hypotheses were generated by docking the most active molecule to the rigid receptor by means of AutoDock 3.05. The cluster analysis yielded seven possible binding conformations. These structures were refined by using constrained simulated annealing, and the further ligands were aligned in the refined receptor by molecular docking. A good correlation was found between the estimated Δ G bind and the p K i values for complex F. The Connolly-surface analysis, CoMFA and CoMSIA models q CoMFA 2 = 0.653, q CoMSA 2 = 0.630 and r pred,CoMFA 2 = 0.852 , r pred,CoMSIA 2 = 0.815) confirmed the scoring function results. The structural features of the receptor-ligand complex and the CoMFA and CoMSIA fields are in closely connected. These results suggest that receptor-ligand complex F is the most likely binding hypothesis for the studied benzoxazine analogs.

  4. 3D-QSAR, homology modeling, and molecular docking studies on spiropiperidines analogues as agonists of nociceptin/orphanin FQ receptor.

    PubMed

    Liu, Ming; He, Lin; Hu, Xiaopeng; Liu, Peiqing; Luo, Hai-Bin

    2010-12-01

    The nociceptin/orphanin FQ receptor (NOP) has been implicated in a wide range of biological functions, including pain, anxiety, depression and drug abuse. Especially, its agonists have a great potential to be developed into anxiolytics. However, the crystal structure of NOP is still not available. In the present work, both structure-based and ligand-based modeling methods have been used to achieve a comprehensive understanding on 67N-substituted spiropiperidine analogues as NOP agonists. The comparative molecular-field analysis method was performed to formulate a reasonable 3D-QSAR model (cross-validated coefficient q(2)=0.819 and conventional r(2)=0.950), whose robustness and predictability were further verified by leave-eight-out, Y-randomization, and external test-set validations. The excellent performance of CoMFA to the affinity differences among these compounds was attributed to the contributions of electrostatic/hydrogen-bonding and steric/hydrophobic interactions, which was supported by the Surflex-Dock and CDOCKER molecular-docking simulations based on the 3D model of NOP built by the homology modeling method. The CoMFA contour maps and the molecular docking simulations were integrated to propose a binding mode for the spiropiperidine analogues at the binding site of NOP.

  5. Studies of new fused benzazepine as selective dopamine D3 receptor antagonists using 3D-QSAR, molecular docking and molecular dynamics.

    PubMed

    Liu, Jing; Li, Yan; Zhang, Shuwei; Xiao, Zhengtao; Ai, Chunzhi

    2011-02-18

    In recent years, great interest has been paid to the development of compounds with high selectivity for central dopamine (DA) D3 receptors, an interesting therapeutic target in the treatment of different neurological disorders. In the present work, based on a dataset of 110 collected benzazepine (BAZ) DA D3 antagonists with diverse kinds of structures, a variety of in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), homology modeling, molecular docking and molecular dynamics (MD) were carried out to reveal the requisite 3D structural features for activity. Our results show that both the receptor-based (Q(2) = 0.603, R(2) (ncv) = 0.829, R(2) (pre) = 0.690, SEE = 0.316, SEP = 0.406) and ligand-based 3D-QSAR models (Q(2) = 0.506, R(2) (ncv) =0.838, R(2) (pre) = 0.794, SEE = 0.316, SEP = 0.296) are reliable with proper predictive capacity. In addition, a combined analysis between the CoMFA, CoMSIA contour maps and MD results with a homology DA receptor model shows that: (1) ring-A, position-2 and R(3) substituent in ring-D are crucial in the design of antagonists with higher activity; (2) more bulky R(1) substituents (at position-2 of ring-A) of antagonists may well fit in the binding pocket; (3) hydrophobicity represented by MlogP is important for building satisfactory QSAR models; (4) key amino acids of the binding pocket are CYS101, ILE105, LEU106, VAL151, PHE175, PHE184, PRO254 and ALA251. To our best knowledge, this work is the first report on 3D-QSAR modeling of the new fused BAZs as DA D3 antagonists. These results might provide information for a better understanding of the mechanism of antagonism and thus be helpful in designing new potent DA D3 antagonists.

  6. Atom-based 3D-QSAR, molecular docking and molecular dynamics simulation assessment of inhibitors for thyroid hormone receptor α and β.

    PubMed

    Gupta, Manish Kumar; Misra, Krishna

    2014-06-01

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitors of thyroid hormone receptors (TR) α and (TR) β was studied. The training set of the TRα model generated a correlation coefficient (R(2)) =  0.9535, with standard deviation (SD) =  0.3016. From the test set of the TRα model, a Q(2) value for the predicted activities (= 0.4303), squared correlation (random selection R(2)-CV  =  0.6929), Pearson-R (= 0.7294) and root mean square error (RMSE  =  0.6342) were calculated. The P-value for TRα (= 1.411e-96) and TRβ (= 2.108e-165) models indicate a high degree of self-reliance. For the TRβ model, the training set yielded R(2) = 0.9424 with SD = 0.3719. From the test set of TRβ, Q(2) value (= 0.5336), the squared correlation (R(2)-CV  =  0.7201), the Pearson-R (= 0.7852) and RMSE for test set predictions (= 0.8630) all strengthen the good predictive competence of the QSAR model derived. Examination of internal as well as external validation supports the rationality and good predictive ability of the best model. Molecular docking explained the conformations of molecules and important amino acid residues at the docking pocket, and a molecular dynamics simulation study further uncovered the binding process and validated the rationality of docking results. The findings not only lead to a better understanding of interactions between these antagonists and thyroid hormone receptors α and β, but also provide valuable information about the impact of structure on activity that will be very beneficial in the design of novel antagonists with preferred activity.

  7. 3D-QSAR and molecular docking studies on designing inhibitors of the hepatitis C virus NS5B polymerase

    NASA Astrophysics Data System (ADS)

    Li, Wenlian; Si, Hongzong; Li, Yang; Ge, Cuizhu; Song, Fucheng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-08-01

    Viral hepatitis C infection is one of the main causes of the hepatitis after blood transfusion and hepatitis C virus (HCV) infection is a global health threat. The HCV NS5B polymerase, an RNA dependent RNA polymerase (RdRp) and an essential role in the replication of the virus, has no functional equivalent in mammalian cells. So the research and development of efficient NS5B polymerase inhibitors provides a great strategy for antiviral therapy against HCV. A combined three-dimensional quantitative structure-activity relationship (QSAR) modeling was accomplished to profoundly understand the structure-activity correlation of a train of indole-based inhibitors of the HCV NS5B polymerase to against HCV. A comparative molecular similarity indices analysis (COMSIA) model as the foundation of the maximum common substructure alignment was developed. The optimum model exhibited statistically significant results: the cross-validated correlation coefficient q2 was 0.627 and non-cross-validated r2 value was 0.943. In addition, the results of internal validations of bootstrapping and Y-randomization confirmed the rationality and good predictive ability of the model, as well as external validation (the external predictive correlation coefficient rext2 = 0.629). The information obtained from the COMSIA contour maps enables the interpretation of their structure-activity relationship. Furthermore, the molecular docking study of the compounds for 3TYV as the protein target revealed important interactions between active compounds and amino acids, and several new potential inhibitors with higher activity predicted were designed basis on our analyses and supported by the simulation of molecular docking. Meanwhile, the OSIRIS Property Explorer was introduced to help select more satisfactory compounds. The satisfactory results from this study may lay a reliable theoretical base for drug development of hepatitis C virus NS5B polymerase inhibitors.

  8. Use of molecular modeling, docking, and 3D-QSAR studies for the determination of the binding mode of benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3beta inhibitors.

    PubMed

    Kim, Ki Hwan; Gaisina, Irina; Gallier, Franck; Holzle, Denise; Blond, Sylvie Y; Mesecar, Andrew; Kozikowski, Alan P

    2009-12-01

    Molecular modeling and docking studies along with three-dimensional quantitative structure relationships (3D-QSAR) studies have been used to determine the correct binding mode of glycogen synthase kinase 3beta (GSK-3beta) inhibitors. The approaches of comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) are used for the 3D-QSAR of 51 substituted benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3beta inhibitors. Two binding modes of the inhibitors to the binding site of GSK-3beta are investigated. The binding mode 1 yielded better 3D-QSAR correlations using both CoMFA and CoMSIA methodologies. The three-component CoMFA model from the steric and electrostatic fields for the experimentally determined pIC(50) values has the following statistics: R(2)(cv) = 0.386 nd SE(cv) = 0.854 for the cross-validation, and R(2) = 0.811 and SE = 0.474 for the fitted correlation. F (3,47) = 67.034, and probability of R(2) = 0 (3,47) = 0.000. The binding mode suggested by the results of this study is consistent with the preliminary results of X-ray crystal structures of inhibitor-bound GSK-3beta. The 3D-QSAR models were used for the estimation of the inhibitory potency of two additional compounds.

  9. 3D-QSAR and molecular docking studies on derivatives of MK-0457, GSK1070916 and SNS-314 as inhibitors against Aurora B kinase.

    PubMed

    Zhang, Baidong; Li, Yan; Zhang, Huixiao; Ai, Chunzhi

    2010-11-02

    Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q(2) = 0.605, r(2) (pred) = 0.826), (q(2) = 0.52, r(2) (pred) = 0.798) and (q(2) = 0.582, r(2) (pred) = 0.971) for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors.

  10. Inhibitory mode of 1,5-diarylpyrazole derivatives against cyclooxygenase-2 and cyclooxygenase-1: molecular docking and 3D QSAR analyses.

    PubMed

    Liu, Hong; Huang, Xiaoqin; Shen, Jianhua; Luo, Xiaomin; Li, Minghui; Xiong, Bing; Chen, Gang; Shen, Jingkang; Yang, Yimin; Jiang, Hualiang; Chen, Kaixian

    2002-10-24

    The Lamarckian genetic algorithm of AutoDock 3.0 has been employed to dock 40 1,5-diarylpyrazole class compounds into the active sites of cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1). The binding models were demonstrated in the aspects of inhibitor's conformation, subsite interaction, and hydrogen bonding. The data of geometrical parameters and RMSD values compared with the known inhibitor, SC-558 (43), show that these inhibitors interact respectively with COX-2 and COX-1 in a very similar way. The r(2) values of 0.648 for COX-2 and 0.752 for COX-1 indicate that the calculated binding free energies correlate well with the inhibitory activities. The structural and energetic differences in inhibitory potencies of 1,5-diarylpyrazoles were reasonably explored, and the COX-2/COX-1 selectivity was demonstrated by the three-dimensional (3D) interaction models of inhibitors complexing with these two enzymes. Using the binding conformations of 1,5-diarylpyrazoles, consistent and highly predictive 3D quantitative structure-activity relationship (QSAR) models were developed by performing comparative molecular field analyses (CoMFA) and comparative molecular similarity analyses (CoMSIA). The q(2) values are 0.635 and 0.641 for CoMFA and CoMSIA models, respectively. The predictive ability of these models was validated by SC-558 (43) and a set of 10 other compounds that were not included in the training set. Mapping these models back to the topology of the active site of COX-2 leads to a better understanding of vital diarylpyrazole compounds and COX-2 interactions. Structure-based investigations and the final 3D QSAR results provided possible guidelines and accurate activity predictions for novel inhibitor design.

  11. Combined 3D-QSAR, molecular docking, molecular dynamics simulation, and binding free energy calculation studies on the 5-hydroxy-2H-pyridazin-3-one derivatives as HCV NS5B polymerase inhibitors.

    PubMed

    Yu, Haijing; Fang, Yu; Lu, Xia; Liu, Yongjuan; Zhang, Huabei

    2014-01-01

    The NS5B RNA-dependent RNA polymerase (RdRP) is a promising therapeutic target for developing novel anti-hepatitis C virus (HCV) drugs. In this work, a combined molecular modeling study was performed on a series of 193 5-hydroxy-2H-pyridazin-3-one derivatives as inhibitors of HCV NS5B Polymerase. The best 3D-QSAR models, including CoMFA and CoMSIA, are based on receptor (or docking). Furthermore, a 40-ns molecular dynamics (MD) simulation and binding free energy calculations using docked structures of NS5B with ten compounds, which have diverse structures and pIC50 values, were employed to determine the detailed binding process and to compare the binding modes of the inhibitors with different activities. On one side, the stability and rationality of molecular docking and 3D-QSAR results were validated by MD simulation. The binding free energies calculated by the MM-PBSA method gave a good correlation with the experimental biological activity. On the other side, by analyzing some differences between the molecular docking and the MD simulation results, we can find that the MD simulation could also remedy the defects of molecular docking. The analyses of the combined molecular modeling results have identified that Tyr448, Ser556, and Asp318 are the key amino acid residues in the NS5B binding pocket. The results from this study can provide some insights into the development of novel potent NS5B inhibitors.

  12. Molecular modeling studies of [6,6,5] Tricyclic Fused Oxazolidinones as FXa inhibitors using 3D-QSAR, Topomer CoMFA, molecular docking and molecular dynamics simulations.

    PubMed

    Xu, Cheng; Ren, Yujie

    2015-10-15

    Coagulation factor Xa (Factor Xa, FXa) is a particularly promising target for novel anticoagulant therapy. The first oral factor Xa inhibitor has been approved in the EU and Canada in 2008. In this work, 38 [6,6,5] Tricyclic Fused Oxazolidinones were studied using a combination of molecular modeling techniques including three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, molecular dynamics and Topomer CoMFA (comparative molecular field analysis) were used to build 3D-QSAR models. The results show that the best CoMFA model has q(2)=0.511 and r(2)=0.984, the best CoMSIA (comparative molecular similarity indices analysis) model has q(2)=0.700 and r(2)=0.993 and the Topomer CoMFA analysis has q(2)=0.377 and r(2)=0.886. The results indicated the steric, hydrophobic, H-acceptor and electrostatic fields play key roles in models. Molecular docking and molecular dynamics explored the binding relationship of the ligand and the receptor protein.

  13. A combined pharmacophore modeling, 3D-QSAR and molecular docking study of substituted bicyclo-[3.3.0]oct-2-enes as liver receptor homolog-1 (LRH-1) agonists

    NASA Astrophysics Data System (ADS)

    Lalit, Manisha; Gangwal, Rahul P.; Dhoke, Gaurao V.; Damre, Mangesh V.; Khandelwal, Kanchan; Sangamwar, Abhay T.

    2013-10-01

    A combined pharmacophore modelling, 3D-QSAR and molecular docking approach was employed to reveal structural and chemical features essential for the development of small molecules as LRH-1 agonists. The best HypoGen pharmacophore hypothesis (Hypo1) consists of one hydrogen-bond donor (HBD), two general hydrophobic (H), one hydrophobic aromatic (HYAr) and one hydrophobic aliphatic (HYA) feature. It has exhibited high correlation coefficient of 0.927, cost difference of 85.178 bit and low RMS value of 1.411. This pharmacophore hypothesis was cross-validated using test set, decoy set and Cat-Scramble methodology. Subsequently, validated pharmacophore hypothesis was used in the screening of small chemical databases. Further, 3D-QSAR models were developed based on the alignment obtained using substructure alignment. The best CoMFA and CoMSIA model has exhibited excellent rncv2 values of 0.991 and 0.987, and rcv2 values of 0.767 and 0.703, respectively. CoMFA predicted rpred2 of 0.87 and CoMSIA predicted rpred2 of 0.78 showed that the predicted values were in good agreement with the experimental values. Molecular docking analysis reveals that π-π interaction with His390 and hydrogen bond interaction with His390/Arg393 is essential for LRH-1 agonistic activity. The results from pharmacophore modelling, 3D-QSAR and molecular docking are complementary to each other and could serve as a powerful tool for the discovery of potent small molecules as LRH-1 agonists.

  14. Combined 3D-QSAR, Molecular Docking and Molecular Dynamics Study on Derivatives of Peptide Epoxyketone and Tyropeptin-Boronic Acid as Inhibitors Against the β5 Subunit of Human 20S Proteasome

    PubMed Central

    Liu, Jianling; Zhang, Hong; Xiao, Zhengtao; Wang, Fangfang; Wang, Xia; Wang, Yonghua

    2011-01-01

    An abnormal ubiquitin-proteasome is found in many human diseases, especially in cancer, and has received extensive attention as a promising therapeutic target in recent years. In this work, several in silico models have been built with two classes of proteasome inhibitors (PIs) by using 3D-QSAR, homology modeling, molecular docking and molecular dynamics (MD) simulations. The study resulted in two types of satisfactory 3D-QSAR models, i.e., the CoMFA model (Q2 = 0.462, R2pred = 0.820) for epoxyketone inhibitors (EPK) and the CoMSIA model (Q2 = 0.622, R2pred = 0.821) for tyropeptin-boronic acid derivatives (TBA). From the contour maps, some key structural factors responsible for the activity of these two series of PIs are revealed. For EPK inhibitors, the N-cap part should have higher electropositivity; a large substituent such as a benzene ring is favored at the C6-position. In terms of TBA inhibitors, hydrophobic substituents with a larger size anisole group are preferential at the C8-position; higher electropositive substituents like a naphthalene group at the C3-position can enhance the activity of the drug by providing hydrogen bond interaction with the protein target. Molecular docking disclosed that residues Thr60, Thr80, Gly106 and Ser189 play a pivotal role in maintaining the drug-target interactions, which are consistent with the contour maps. MD simulations further indicated that the binding modes of each conformation derived from docking is stable and in accord with the corresponding structure extracted from MD simulation overall. These results can offer useful theoretical references for designing more potent PIs. PMID:21673924

  15. Pharmacophore modeling, 3D-QSAR and docking study of 2-phenylpyrimidine analogues as selective PDE4B inhibitors.

    PubMed

    Tripuraneni, Naga Srinivas; Azam, Mohammed Afzal

    2016-04-07

    Pharmacophore modeling, molecular docking, and molecular dynamics (MD) simulation studies have been performed, to explore the putative binding modes of 2-phenylpyrimidine series as PDE4B selective inhibitors. A five point pharmacophore model was developed using 87 molecules having pIC50 ranging from 8.52 to 5.07. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R(2)=0.918), cross validation coefficient (Q(2)=0.852), and F value (175) at 4 component PLS factor. The external validation indicated that our QSAR model possessed high predictive power (R(2)=0.70). The generated model was further validated by enrichment studies using the decoy test. To evaluate the effectiveness of docking protocol in flexible docking, we have selected crystallographic bound compound to validate our docking procedure as evident from root mean square deviation. A 10ns molecular dynamics simulation confirmed the docking results of both stability of the 1XMU-ligand complex and the presumed active conformation. Further, similar orientation was observed between the superposition of the conformations of 85 after MD simulation and best XP-docking pose; MD simulation and 3D-QSAR pose; best XP-docking and 3D-QSAR poses. Outcomes of the present study provide insight in designing novel molecules with better PDE4B selective inhibitory activity.

  16. Docking and 3-D QSAR studies on the binding of tetrahydropyrimid-2-one HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Rao, Shashidhar N.; Balaji, Govardhan A.; Balaji, Vitukudi N.

    2013-06-01

    We present molecular docking and 3-D QSAR studies on a series of tetrahydropyrimid-2-one HIV-1 protease inhibitors whose binding affinities to the enzyme span nearly 6 orders of magnitude. The docking investigations have been carried out with Surflex (GEOM, GEOMX) and Glide (SP and XP) methodologies available through Tripos and Schrodinger suite of tools in the context of Sybyl-X and Maestro interfaces, respectively. The alignments for 3-D QSAR studies were obtained by using the automated Surflex-SIM methodology in Sybyl-X and the analyses were performed using the CoMFA and CoMSIA methods. Additionally, the top-ranked poses obtained from various docking protocols were also employed to generate CoMFA and CoMSIA models to evaluate the qualitative consistency of the docked models with experimental data. Our studies demonstrate that while there are a number of common features in the docked models obtained from Surflex-dock and Glide methodologies, the former sets of models are generally better correlated with deduced experimental binding modes based on the X-ray structures of known HIV-1 protease complexes with cyclic ureas. The urea moiety common to all the ligands are much more tightly aligned in Surflex docked structures than in the models obtained from Glide SP and XP dockings. The 3-D QSAR models are qualitatively and quantitatively similar to those previously reported, suggesting the utility of automatically generated alignments from Surflex-SIM methodology.

  17. 3D-QSAR, molecular dynamics simulations and molecular docking studies of benzoxazepine moiety as mTOR inhibitor for the treatment of lung cancer.

    PubMed

    Chaube, Udit; Chhatbar, Dhara; Bhatt, Hardik

    2016-02-01

    According to WHO statistics, lung cancer is one of the leading causes of death among all other types of cancer. Many genes get mutated in lung cancer but involvement of EGFR and KRAS are more common. Unavailability of drugs or resistance to the available drugs is the major problem in the treatment of lung cancer. In the present research, mTOR was selected as an alternative target for the treatment of lung cancer which involves PI3K/AKT/mTOR pathway. 28 synthetic mTOR inhibitors were selected from the literature. Ligand based approach (CoMFA and CoMSIA) and structure based approach (molecular dynamics simulations assisted molecular docking study) were applied for the identification of important features of benzoxazepine moiety, responsible for mTOR inhibition. Three different alignments were tried to obtain best QSAR model, of which, distil was found to be the best method, as it gave good statistical results. In CoMFA, Leave One Out (LOO) cross validated coefficients (q(2)), conventional coefficient (r(2)) and predicted correlation coefficient (r(2)pred) values were found to be 0.615, 0.990 and 0.930, respectively. Similarly in CoMSIA, q(2), r(2)ncv and r(2)pred values were found to be 0.748, 0.986 and 0.933, respectively. Molecular dynamics and simulations study revealed that B-chain of mTOR protein was stable at and above 500 FS with respect to temperature (at and above 298 K), Potential energy (at and above 7669.72 kJ/mol) and kinetic energy (at and above 4009.77 kJ/mol). Molecular docking study was performed on simulated protein of mTOR which helped to correlate interactions of amino acids surrounded to the ligand with contour maps generated by QSAR method. Important features of benzoxazepine were identified by contour maps and molecular docking study which would be useful to design novel molecules as mTOR inhibitors for the treatment of lung cancer.

  18. Molecular docking and 3D-QSAR study on 4-(1H-indazol-4-yl) phenylamino and aminopyrazolopyridine urea derivatives as kinase insert domain receptor (KDR) inhibitors.

    PubMed

    Wu, Xiaoyun; Wu, Shuguang; Chen, Wen-Hua

    2012-03-01

    Vascular endothselial growth factor (VEGF) and its receptor tyrosine kinase VEGFR-2 or kinase insert domain receptor (KDR) have been identified as new promising targets for the design of novel anticancer agents. It is reported that 4-(1H-indazol-4-yl)phenylamino and aminopyrazolopyridine urea derivatives exhibit potent inhibitory activities toward KDR. To investigate how their chemical structures relate to the inhibitory activities and to identify the key structural elements that are required in the rational design of potential drug candidates of this class, molecular docking simulations and three-dimensional quantitative structure-activity relationship (3D-QSAR) methods were performed on 78 4-(1H-indazol-4-yl)phenylamino and aminopyrazolopyridine urea derivatives as KDR inhibitors. Surflex-dock was used to determine the probable binding conformations of all the compounds at the active site of KDR. As a result, multiple hydrophobic and hydrogen-bonding interactions were found to be two predominant factors that may be used to modulate the inhibitory activities. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) 3D-QSAR models were developed based on the docking conformations. The CoMFA model produced statistically significant results with the cross-validated correlation coefficient q(2) of 0.504 and the non-cross-validated correlation coefficient r(2) of 0.913. The best CoMSIA model was obtained from the combination of steric, electrostatic and hydrophobic fields. Its q(2) and r(2) being 0.595 and 0.947, respectively, indicated that it had higher predictive ability than the CoMFA model. The predictive abilities of the two models were further validated by 14 test compounds, giving the predicted correction coefficients r (pred) (2) of 0.727 for CoMFA and 0.624 for CoMSIA, respectively. In addition, the CoMFA and CoMSIA models were used to guide the design of a series of new inhibitors of this class with

  19. 3D-QSAR studies and molecular docking on [5-(4-amino-1 H-benzoimidazol-2-yl)-furan-2-yl]-phosphonic acid derivatives as fructose-1,6-biphophatase inhibitors

    NASA Astrophysics Data System (ADS)

    Lan, Ping; Xie, Mei-Qi; Yao, Yue-Mei; Chen, Wan-Na; Chen, Wei-Min

    2010-12-01

    Fructose-1,6-biphophatase has been regarded as a novel therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). 3D-QSAR and docking studies were performed on a series of [5-(4-amino-1 H-benzoimidazol-2-yl)-furan-2-yl]-phosphonic acid derivatives as fructose-1,6-biphophatase inhibitors. The CoMFA and CoMSIA models using thirty-seven molecules in the training set gave r cv 2 values of 0.614 and 0.598, r 2 values of 0.950 and 0.928, respectively. The external validation indicated that our CoMFA and CoMSIA models possessed high predictive powers with r 0 2 values of 0.994 and 0.994, r m 2 values of 0.751 and 0.690, respectively. Molecular docking studies revealed that a phosphonic group was essential for binding to the receptor, and some key features were also identified. A set of forty new analogues were designed by utilizing the results revealed in the present study, and were predicted with significantly improved potencies in the developed models. The findings can be quite useful to aid the designing of new fructose-1,6-biphophatase inhibitors with improved biological response.

  20. 3D-QSAR and docking studies of pentacycloundecylamines at the sigma-1 (σ1) receptor.

    PubMed

    Geldenhuys, Werner J; Novotny, Nicholas; Malan, Sarel F; Van der Schyf, Cornelis J

    2013-03-15

    Pentacycloundecylamine (PCU) derived compounds have been shown to be promising lead structures for the development of novel drug candidates aimed at a variety of neurodegenerative and psychiatric diseases. Here we show for the first time a 3D quantitative structure-activity relationship (3D-QSAR) for a series of aza-PCU-derived compounds with activity at the sigma-1 (σ1) receptor. A comparative molecular field analysis (CoMFA) model was developed with a partial least squares cross validated (q(2)) regression value of 0.6, and a non-cross validated r(2) of 0.9. The CoMFA model was effective at predicting the sigma-1 activities of a test set with an r(2) >0.7. We also describe here the docking of the PCU-derived compounds into a homology model of the sigma-1 (σ1) receptor, which was developed to gain insight into binding of these cage compounds to the receptor. Based on docking studies we evaluated in a [(3)H]pentazocine binding assay an oxa-PCU, NGP1-01 (IC50=1.78μM) and its phenethyl derivative (IC50=1.54μM). Results from these studies can be used to develop new compounds with specific affinity for the sigma-1(σ1) receptor.

  1. Studies of tricyclic piperazine/piperidine furnished molecules as novel integrin αvβ3/αIIbβ3 dual antagonists using 3D-QSAR and molecular docking.

    PubMed

    Yan, Yulian; Li, Yan; Zhang, Shuwei; Ai, Chunzhi

    2011-02-01

    The development of injectable integrin α(v)β(3)/α(IIb)β(3) dual antagonists attracts much attention of research for treating of acute ischemic diseases in recent years. In this work, based on a dataset composed of 102 tricyclic piperazine/piperidine furnished dual α(v)β(3) and α(IIb)β(3) antagonists, a variety of in silico modeling approaches including the comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), and molecular docking were applied to reveal the requisite 3D structural features impacting the biological activities. Our statistical results show that the ligand-based 3D-QSAR models for both the α(v)β(3) and α(IIb)β(3) studies exhibited satisfactory internal and external predictability, i.e., for the CoMFA models, results of Q(2)=0.48, R(ncv)(2)=0.87, R(pred)(2)=0.71 for α(v)β(3) and Q(2)=0.50, R(ncv)(2)=0.85, R(pred)(2)=0.72 for α(IIb)β(3) analysis were obtained, and for the CoMSIA ones, the outcomes of Q(2)=0.55, R(ncv)(2)=0.90, R(pred)(2)=0.72 for α(v)β(3) and Q(2)=0.52, R(ncv)(2)=0.88, R(pred)(2)=0.74 for α(IIb)β(3) were achieved respectively. In addition, through a comparison between 3D-QSAR contour maps and docking results, it is revealed that that the most crucial interactions occurring between the tricyclic piperazine/piperidine derivatives and α(v)β(3)/α(IIb)β(3) receptor ligand binding pocket are H-bonding, and the key amino acids impacting the interactions are Arg214, Asn215, Ser123, and Lys253 for α(v)β(3), but Arg214, Asn215, Ser123 and Tyr190 for α(IIb)β(3) receptors, respectively. Halogen-containing groups at position 15 and 16, benzene sulfonamide substituent at position 23, and the replacement of piperazine with 4-aminopiperidine of ring B may increase the α(v)β(3)/α(IIb)β(3) antagonistic activity. The potencies for antagonists to inhibit isolated α(v)β(3) and α(IIb)β(3) are linear correlated, indicating that similar interaction mechanisms may exist for the series

  2. 3D-QSAR and molecular modeling of HIV-1 integrase inhibitors

    NASA Astrophysics Data System (ADS)

    Makhija, Mahindra T.; Kulkarni, Vithal M.

    2002-03-01

    Three-dimensional quantitative structure-activity relationship (3D QSAR) methods were applied on a series of inhibitors of HIV-1 integrase with respect to their inhibition of 3'-processing and 3'-end joining steps in vitro.The training set consisted of 27 compounds belonging to the class of thiazolothiazepines. The predictive ability of each model was evaluated using test set I consisting of four thiazolothiazepines and test set II comprised of seven compounds belonging to an entirely different structural class of coumarins. Maximum Common Substructure (MCS) based method was used to align the molecules and this was compared with other known methods of alignment. Two methods of 3D QSAR: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were analyzed in terms of their predictive abilities. CoMSIA produced significantly better results for all correlations. The results indicate a strong correlation between the inhibitory activity of these compounds and the steric and electrostatic fields around them. CoMSIA models with considerable internal as well as external predictive ability were obtained. A poor correlation obtained with hydrophobic field indicates that the binding of thiazolothiazepines to HIV-1 integrase is mainly enthalpic in nature. Further the most active compound of the series was docked into the active site using the crystal structure of integrase. The binding site was formed by the amino acid residues 64-67, 116, 148, 151-152, 155-156, and 159. The comparison of coefficient contour maps with the steric and electrostatic properties of the receptor shows high level of compatibility.

  3. Design of the influenza virus inhibitors targeting the PA endonuclease using 3D-QSAR modeling, side-chain hopping, and docking.

    PubMed

    Yan, Zhihui; Zhang, Lijie; Fu, Haiyang; Wang, Zhonghua; Lin, Jianping

    2014-01-15

    With the emergence of drug resistance and the structural determination of the PA N-terminal domain (PAN), influenza endonucleases have become an attractive target for antiviral therapies for influenza infection. Here, we combined 3D-QSAR with side-chain hopping and molecular docking to produce novel structures as endonuclease inhibitors. First, a new molecular library was generated with side-chain hopping on an existing template molecule, L-742001, using an in-house fragment library that targets bivalent-cation-binding proteins. Then, the best 3D-QSAR model (AAAHR.500), with q(2)=0.76 and r(2)=0.97 from phase modeling, was constructed from 23 endonuclease inhibitors and validated with 17 test compounds. The AAAHR.500 model was then used to select effective candidates from the new molecular library. Combining 3D-QSAR with docking using Glide and Autodock, 13 compounds were considered the most likely candidate inhibitors. Docking studies showed that the binding modes of these compounds were consistent with the crystal structures of known inhibitors. These compounds could serve as potential endonuclease inhibitors for further biological activity tests.

  4. 3D-QSAR and docking studies on 4-anilinoquinazoline and 4-anilinoquinoline epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors

    NASA Astrophysics Data System (ADS)

    Assefa, Haregewein; Kamath, Shantaram; Buolamwini, John K.

    2003-08-01

    The overexpression and/or mutation of the epidermal growth factor receptor (EGFR) tyrosine kinase has been observed in many human solid tumors, and is under intense investigation as a novel anticancer molecular target. Comparative 3D-QSAR analyses using different alignments were undertaken employing comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) for 122 anilinoquinazoline and 50 anilinoquinoline inhibitors of EGFR kinase. The SYBYL multifit alignment rule was applied to three different conformational templates, two obtained from a MacroModel Monte Carlo conformational search, and one from the bound conformation of erlotinib in complex with EGFR in the X-ray crystal structure. In addition, a flexible ligand docking alignment obtained with the GOLD docking program, and a novel flexible receptor-guided consensus dynamics alignment obtained with the DISCOVER program in the INSIGHTII modeling package were also investigated. 3D-QSAR models with q2 values up to 0.70 and r2 values up to 0.97 were obtained. Among the 4-anilinoquinazoline set, the q2 values were similar, but the ability of the different conformational models to predict the activities of an external test set varied considerably. In this regard, the model derived using the X-ray crystallographically determined bioactive conformation of erlotinib afforded the best predictive model. Electrostatic, hydrophobic and H-bond donor descriptors contributed the most to the QSAR models of the 4-anilinoquinazolines, whereas electrostatic, hydrophobic and H-bond acceptor descriptors contributed the most to the 4-anilinoquinoline QSAR, particularly the H-bond acceptor descriptor. A novel receptor-guided consensus dynamics alignment has also been introduced for 3D-QSAR studies. This new alignment method may incorporate to some extent ligand-receptor induced fit effects into 3D-QSAR models.

  5. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking

    NASA Astrophysics Data System (ADS)

    Prasanna, Sivaprakasam; Daga, Pankaj R.; Xie, Aihua; Doerksen, Robert J.

    2009-02-01

    Glycogen synthase kinase-3, a serine/threonine kinase, has been implicated in a wide variety of pathological conditions such as diabetes, Alzheimer's disease, stroke, bipolar disorder, malaria and cancer. Herein we report 3D-QSAR analyses using CoMFA and CoMSIA and molecular docking studies on 3-anilino-4-phenylmaleimides as GSK-3α inhibitors, in order to better understand the mechanism of action and structure-activity relationship of these compounds. Comparison of the active site residues of GSK-3α and GSK-3β isoforms shows that all the key amino acids involved in polar interactions with the maleimides for the β isoform are the same in the α isoform, except that Asp133 in the β isoform is replaced by Glu196 in the α isoform. We prepared a homology model for GSK-3α, and showed that the change from Asp to Glu should not affect maleimide binding significantly. Docking studies revealed the binding poses of three subclasses of these ligands, namely anilino, N-methylanilino and indoline derivatives, within the active site of the β isoform, and helped to explain the difference in their inhibitory activity.

  6. 3D-QSAR and docking studies on 1-hydroxypyridin-2-one compounds as mutant isocitrate dehydrogenase 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenya; Chang, Yiqun; Han, Yushui; Liu, Kangjia; Hou, Jinsong; Dai, Chengli; Zhai, Yuanhao; Guo, Jialiang; Sun, Pinghua; Lin, Jing; Chen, Weimin

    2016-11-01

    Mutation of isocitrate dehydrogenase 1 (IDH1) which is frequently found in certain cancers such as glioma, sarcoma and acute myeloid leukemia, has been proven to be a potent drug target for cancer therapy. In silico methodologies such as 3D-QSAR and molecular docking were performed to explore compounds with better mutant isocitrate dehydrogenase 1 (MIDH1) inhibitory activity using a series of 40 newly reported 1-hydroxypyridin-2-one compounds as MIDH1 inhibitors. The satisfactory CoMFA and CoMSIA models obtained after internal and external cross-validation gave q2 values of 0.691 and 0.535, r2 values of 0.984 and 0.936, respectively. 3D contour maps generated from CoMFA and CoMSIA along with the docking results provided information about the structural requirements for better MIDH1 inhibitory activity. Based on the structure-activity relationship, 17 new potent molecules with better predicted activity than the most active compound in the literature have been designed.

  7. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening.

    PubMed

    Chaudhari, Prashant; Bari, Sanjay

    2016-02-01

    c-KIT is a component of the platelet-derived growth factor receptor family, classified as type-III receptor tyrosine kinase. c-KIT has been reported to be involved in, small cell lung cancer, other malignant human cancers, and inflammatory and autoimmune diseases associated with mast cells. Available c-KIT inhibitors suffer from tribulations of growing resistance or cardiac toxicity. A combined in silico pharmacophore and structure-based virtual screening was performed to identify novel potential c-KIT inhibitors. In the present study, five molecules from the ZINC database were retrieved as new potential c-KIT inhibitors, using Schrödinger's Maestro 9.0 molecular modeling suite. An atom-featured 3D QSAR model was built using previously reported c-KIT inhibitors containing the indolin-2-one scaffold. The developed 3D QSAR model ADHRR.24 was found to be significant (R2 = 0.9378, Q2 = 0.7832) and instituted to be sufficiently robust with good predictive accuracy, as confirmed through external validation approaches, Y-randomization and GH approach [GH score 0.84 and Enrichment factor (E) 4.964]. The present QSAR model was further validated for the OECD principle 3, in that the applicability domain was calculated using a "standardization approach." Molecular docking of the QSAR dataset molecules and final ZINC hits were performed on the c-KIT receptor (PDB ID: 3G0E). Docking interactions were in agreement with the developed 3D QSAR model. Model ADHRR.24 was explored for ligand-based virtual screening followed by in silico ADME prediction studies. Five molecules from the ZINC database were obtained as potential c-KIT inhibitors with high in -silico predicted activity and strong key binding interactions with the c-KIT receptor.

  8. Virtual screening and rational drug design method using structure generation system based on 3D-QSAR and docking.

    PubMed

    Chen, H F; Dong, X C; Zen, B S; Gao, K; Yuan, S G; Panaye, A; Doucet, J P; Fan, B T

    2003-08-01

    An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.

  9. Docking, 3D-QSAR studies and in silico ADME prediction on c-Src tyrosine kinase inhibitors.

    PubMed

    Tintori, Cristina; Magnani, Matteo; Schenone, Silvia; Botta, Maurizio

    2009-03-01

    Docking simulations and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis were performed on a wide set of c-Src inhibitors. The study was conducted using a structure-based alignment and by applying the GRID/GOLPE approach. The present 3D-QSAR investigation proved to be of good statistical value, displaying r(2), q(2) and cross-validation SDEP values of 0.94, 0.84 and 0.42, respectively. Moreover, such a model also proved to be capable of predicting the activities of an external test set of compounds. The availability of the 3D structure of the target made possible the interpretation of steric and electrostatic maps within the binding site environment and provided useful insight into the structural requirements for inhibitory activity against c-Src. Two regions whose occupation by hydrophobic portions of ligands would favourably affect the activity were clearly identified. Moreover, hydrogen bond interactions involving residues Met343, Asp406 and Ser347 emerged as playing a key role in determining the affinity of the active inhibitors toward c-Src. Furthermore, the inhibitors bearing a basic nitrogen provided enhanced potency through protonation and salt bridge formation with Asp350. A preliminary pharmacokinetic profile of the molecules under analysis was also drawn on the basis of Volsurf predictions.

  10. 2D, 3D-QSAR and docking studies of 1,2,3-thiadiazole thioacetanilides analogues as potent HIV-1 non-nucleoside reverse transcriptase inhibitors

    PubMed Central

    2012-01-01

    Background The discovery of clinically relevant inhibitors of HIV-RT for antiviral therapy has proven to be a challenging task. To identify novel and potent HIV-RT inhibitors, the quantitative structure–activity relationship (QSAR) approach became very useful and largely widespread technique forligand-based drug design. Methods We perform the two- and three-dimensional (2D and 3D) QSAR studies of a series of 1,2,3-thiadiazole thioacetanilides analogues to elucidate the structural properties required for HIV-RT inhibitory activity. Results The 2D-QSAR studies were performed using multiple linear regression method, giving r2 = 0.97 and q2 = 0.94. The 3D-QSAR studies were performed using the stepwise variable selection k-nearest neighbor molecular field analysis approach; a leave-one-out cross-validated correlation coefficient q2 = 0.89 and a non-cross-validated correlation coefficient r2 = 0.97 were obtained. Docking analysis suggests that the new series have comparable binding affinity with the standard compounds. Conclusions This approach showed that hydrophobic and electrostatic effects dominantly determine binding affinities which will further useful for development of new NNRTIs. PMID:22691718

  11. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors

    PubMed Central

    Fang, Yajing; Lu, Yulin; Zang, Xixi; Wu, Ting; Qi, XiaoJuan; Pan, Siyi; Xu, Xiaoyun

    2016-01-01

    Flavonoids are potential antibacterial agents. However, key substituents and mechanism for their antibacterial activity have not been fully investigated. The quantitative structure-activity relationship (QSAR) and molecular docking of flavonoids relating to potent anti-Escherichia coli agents were investigated. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were developed by using the pIC50 values of flavonoids. The cross-validated coefficient (q2) values for CoMFA (0.743) and for CoMSIA (0.708) were achieved, illustrating high predictive capabilities. Selected descriptors for the CoMFA model were ClogP (logarithm of the octanol/water partition coefficient), steric and electrostatic fields, while, ClogP, electrostatic and hydrogen bond donor fields were used for the CoMSIA model. Molecular docking results confirmed that half of the tested flavonoids inhibited DNA gyrase B (GyrB) by interacting with adenosine-triphosphate (ATP) pocket in a same orientation. Polymethoxyl flavones, flavonoid glycosides, isoflavonoids changed their orientation, resulting in a decrease of inhibitory activity. Moreover, docking results showed that 3-hydroxyl, 5-hydroxyl, 7-hydroxyl and 4-carbonyl groups were found to be crucial active substituents of flavonoids by interacting with key residues of GyrB, which were in agreement with the QSAR study results. These results provide valuable information for structure requirements of flavonoids as antibacterial agents. PMID:27049530

  12. Molecular Determinants of Juvenile Hormone Action as Revealed by 3D QSAR Analysis in Drosophila

    PubMed Central

    Beňo, Milan; Farkaš, Robert

    2009-01-01

    Background Postembryonic development, including metamorphosis, of many animals is under control of hormones. In Drosophila and other insects these developmental transitions are regulated by the coordinate action of two principal hormones, the steroid ecdysone and the sesquiterpenoid juvenile hormone (JH). While the mode of ecdysone action is relatively well understood, the molecular mode of JH action remains elusive. Methodology/Principal Findings To gain more insights into the molecular mechanism of JH action, we have tested the biological activity of 86 structurally diverse JH agonists in Drosophila melanogaster. The results were evaluated using 3D QSAR analyses involving CoMFA and CoMSIA procedures. Using this approach we have generated both computer-aided and species-specific pharmacophore fingerprints of JH and its agonists, which revealed that the most active compounds must possess an electronegative atom (oxygen or nitrogen) at both ends of the molecule. When either of these electronegative atoms are replaced by carbon or the distance between them is shorter than 11.5 Å or longer than 13.5 Å, their biological activity is dramatically decreased. The presence of an electron-deficient moiety in the middle of the JH agonist is also essential for high activity. Conclusions/Significance The information from 3D QSAR provides guidelines and mechanistic scope for identification of steric and electrostatic properties as well as donor and acceptor hydrogen-bonding that are important features of the ligand-binding cavity of a JH target protein. In order to refine the pharmacophore analysis and evaluate the outcomes of the CoMFA and CoMSIA study we used pseudoreceptor modeling software PrGen to generate a putative binding site surrogate that is composed of eight amino acid residues corresponding to the defined molecular interactions. PMID:19547707

  13. Molecular modeling studies of 4,5-dihydro-1H-pyrazolo[4,3-h] quinazoline derivatives as potent CDK2/Cyclin a inhibitors using 3D-QSAR and docking.

    PubMed

    Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun

    2010-09-28

    CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r(2) (cv) values of 0.747 and 0.518 and r(2) values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity.

  14. Validation of TZD Scaffold as Potential ARIs: Pharmacophore Modelling, Atom-based 3D QSAR and Docking Studies.

    PubMed

    Dahiya, Lalita; Mahapatra, Manoj Kumar; Kaur, Ramandeep; Kumar, Vipin; Kumar, Manoj

    2017-03-15

    Metabolic disorders associated with diabetic patients are a serious concern. Aldose reductase (ALR2) has been identified as first rate-limiting enzyme in the polyol pathway which catalyzes the reduction of glucose to sorbitol. It represents one of the validated targets to develop potential new chemical entities for the prevention and subsequent progression of microvascular diabetic complications. In order to further understand the intricate structural prerequisites of molecules to act as ALR2 inhibitors, ligand-based pharmacophore model, atom-based 3D-QSAR and structure based drug design studies have been performed on a series of 2,4-thiazolidinedione derivatives with ALR2 inhibitory activity. In the present study, a validated six point pharmacophore model (AAADNR) with three hydrogen bond acceptor (A), one hydrogen bond donor (D), one negative ionic group (N) and one aromatic ring (R) was developed using PHASE module of Schrodinger suite with acceptable PLS statistics (survival score = 3.871, cross-validated correlation coefficient Q2 = 0.6902, correlation coefficient of multiple determination r2 = 0.9019, Pearson-R coefficient = 0.8354 and F distribution = 196.2). In silico predictive studies (pharmacophore modeling, atom-based 3D QSAR and docking combined with drug receptor binding free energetics and pharmacokinetic drug profile) highlighted some of the important structural features of thiazolidinedione analogues required for potential ALR2 inhibitory activity. The result of these studies may account to design a legitimate template for rational drug design of novel, potent and promising ALR2 inhibitors.

  15. 3-D QSAR studies on histone deacetylase inhibitors. A GOLPE/GRID approach on different series of compounds.

    PubMed

    Ragno, Rino; Simeoni, Silvia; Valente, Sergio; Massa, Silvio; Mai, Antonello

    2006-01-01

    Docking simulation and three-dimensional quantitative structure-activity relationships (3D-QSARs) analyses were conducted on four series of HDAC inhibitors. The studies were performed using the GRID/GOLPE combination using structure-based alignment. Twelve 3-D QSAR models were derived and discussed. Compared to previous studies on similar inhibitors, the present 3-D QSAR investigation proved to be of higher statistical value, displaying for the best global model r2, q2, and cross-validated SDEP values of 0.94, 0.83, and 0.41, respectively. A comparison of the 3-D QSAR maps with the structural features of the binding site showed good correlation. The results of 3D-QSAR and docking studies validated each other and provided insight into the structural requirements for anti-HDAC activity. To our knowledge this is the first 3-D QSAR application on a broad molecular diversity training set of HDACIs.

  16. Exploration of Novel Inhibitors for Bruton’s Tyrosine Kinase by 3D QSAR Modeling and Molecular Dynamics Simulation

    PubMed Central

    Choi, Light; Woo Lee, Keun

    2016-01-01

    Bruton’s tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase which is expressed in most of the hematopoietic cells and plays an important role in many cellular signaling pathways. B cell malignancies are dependent on BCR signaling, thus making BTK an efficient therapeutic target. Over the last few years, significant efforts have been made in order to develop BTK inhibitors to treat B-cell malignancies, and autoimmunity or allergy/hypersensitivity but limited success has been achieved. Here in this study, 3D QSAR pharmacophore models were generated for Btk based on known IC50 values and experimental energy scores with extensive validations. The five features pharmacophore model, Hypo1, includes one hydrogen bond acceptor lipid, one hydrogen bond donor, and three hydrophobic features, which has the highest correlation coefficient (0.98), cost difference (112.87), and low RMS (1.68). It was further validated by the Fisher’s randomization method and test set. The well validated Hypo1 was used as a 3D query to search novel Btk inhibitors with different chemical scaffold using high throughput virtual screening technique. The screened compounds were further sorted by applying ADMET properties, Lipinski’s rule of five and molecular docking studies to refine the retrieved hits. Furthermore, molecular dynamic simulation was employed to study the stability of docked conformation and to investigate the binding interactions in detail. Several important hydrogen bonds with Btk were revealed, which includes the gatekeeper residues Glu475 and Met 477 at the hinge region. Overall, this study suggests that the proposed hits may be more effective inhibitors for cancer and autoimmune therapy. PMID:26784025

  17. Molecular Modeling Studies of 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors through Receptor-Based 3D-QSAR and Molecular Dynamics Simulations.

    PubMed

    Qian, Haiyan; Chen, Jiongjiong; Pan, Youlu; Chen, Jianzhong

    2016-09-19

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a potential target for the treatment of numerous human disorders, such as diabetes, obesity, and metabolic syndrome. In this work, molecular modeling studies combining molecular docking, 3D-QSAR, MESP, MD simulations and free energy calculations were performed on pyridine amides and 1,2,4-triazolopyridines as 11β-HSD1 inhibitors to explore structure-activity relationships and structural requirement for the inhibitory activity. 3D-QSAR models, including CoMFA and CoMSIA, were developed from the conformations obtained by docking strategy. The derived pharmacophoric features were further supported by MESP and Mulliken charge analyses using density functional theory. In addition, MD simulations and free energy calculations were employed to determine the detailed binding process and to compare the binding modes of inhibitors with different bioactivities. The binding free energies calculated by MM/PBSA showed a good correlation with the experimental biological activities. Free energy analyses and per-residue energy decomposition indicated the van der Waals interaction would be the major driving force for the interactions between an inhibitor and 11β-HSD1. These unified results may provide that hydrogen bond interactions with Ser170 and Tyr183 are favorable for enhancing activity. Thr124, Ser170, Tyr177, Tyr183, Val227, and Val231 are the key amino acid residues in the binding pocket. The obtained results are expected to be valuable for the rational design of novel potent 11β-HSD1 inhibitors.

  18. 3D-QSAR and docking studies of 3-Pyridine heterocyclic derivatives as potent PI3K/mTOR inhibitors

    NASA Astrophysics Data System (ADS)

    Yang, Wenjuan; Shu, Mao; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Meng, Lingxin; Lin, Zhihua

    2013-12-01

    Phosphoinosmde-3-kinase/ mammalian target of rapamycin (PI3K/mTOR) dual inhibitors have attracted a great deal of interest as antitumor drugs research. In order to design and optimize these dual inhibitors, two types of 3D-quantitative structure-activity relationship (3D-QSAR) studies based on the ligand alignment and receptor alignment were applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). In the study based on ligands alignment, models of PI3K (CoMFA with r2, 0.770; q2, 0.622; CoMSIA with r2, 0.945; q2, 0.748) and mTOR (CoMFA with r2, 0.850; q2, 0.654; CoMSIA with r2, 0.983; q2, 0.676) have good predictability. And in the study based on receptor alignment, models of PI3K (CoMFA with r2, 0.745; q2, 0.538; CoMSIA with r2, 0.938; q2, 0.630) and mTOR (CoMFA with r2, 0.977; q2, 0.825; CoMSIA with r2, 0.985; q2, 0.728) also have good predictability. 3D contour maps and docking results suggested different groups on the core parts of the compounds could enhance the biological activities. Finally, ten derivatives as potential candidates of PI3K/mTOR inhibitors with good predicted activities were designed.

  19. Local indices for similarity analysis (LISA)-a 3D-QSAR formalism based on local molecular similarity.

    PubMed

    Verma, Jitender; Malde, Alpeshkumar; Khedkar, Santosh; Iyer, Radhakrishnan; Coutinho, Evans

    2009-12-01

    A simple quantitative structure activity relationship (QSAR) approach termed local indices for similarity analysis (LISA) has been developed. In this technique, the global molecular similarity is broken up as local similarity at each grid point surrounding the molecules and is used as a QSAR descriptor. In this way, a view of the molecular sites permitting favorable and rational changes to enhance activity is obtained. The local similarity index, calculated on the basis of Petke's formula, segregates the regions into "equivalent", "favored similar", and "disfavored similar" (alternatively "favored dissimilar") potentials with respect to a reference molecule in the data set. The method has been tested on three large and diverse data sets-thrombin, glycogen phosphorylase b, and thermolysin inhibitors. The QSAR models derived using genetic algorithm incorporated partial least square analysis statistics are found to be comparable to the ones obtained by the standard three-dimensional (3D)-QSAR methods, such as comparative molecular field analysis and comparative molecular similarity indices analysis. The graphical interpretation of the LISA models is straightforward, and the outcome of the models corroborates well with literature data. The LISA models give insight into the binding mechanisms of the ligand with the enzyme and allow fine-tuning of the molecules at the local level to improve their activity.

  20. Receptor-based 3D-QSAR in Drug Design: Methods and Applications in Kinase Studies.

    PubMed

    Fang, Cheng; Xiao, Zhiyan

    2016-01-01

    Receptor-based 3D-QSAR strategy represents a superior integration of structure-based drug design (SBDD) and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. It combines the accurate prediction of ligand poses by the SBDD approach with the good predictability and interpretability of statistical models derived from the 3D-QSAR approach. Extensive efforts have been devoted to the development of receptor-based 3D-QSAR methods and two alternative approaches have been exploited. One associates with computing the binding interactions between a receptor and a ligand to generate structure-based descriptors for QSAR analyses. The other concerns the application of various docking protocols to generate optimal ligand poses so as to provide reliable molecular alignments for the conventional 3D-QSAR operations. This review highlights new concepts and methodologies recently developed in the field of receptorbased 3D-QSAR, and in particular, covers its application in kinase studies.

  1. 3D-QSAR and molecular modeling studies on 2,3-dideoxy hexenopyranosid-4-uloses as anti-tubercular agents targeting alpha-mannosidase.

    PubMed

    Shah, Priyanka; Saquib, Mohammad; Sharma, Smriti; Husain, Irfan; Sharma, Sandeep K; Singh, Vinayak; Srivastava, Ranjana; Shaw, Arun K; Siddiqi, Mohammad Imran

    2015-04-01

    Ligand-based and structure-based methods were applied in combination to exploit the physicochemical properties of 2,3-dideoxy hex-2-enopyranosid-4-uloses against Mycobacterium tuberculosis H37Rv. Statistically valid 3D-QSAR models with good correlation and predictive power were obtained with CoMFA steric and electrostatic fields (r(2) = 0.797, q(2) = 0.589) and CoMSIA with combined steric, electrostatic, hydrophobic and hydrogen bond acceptor fields (r(2) = 0.867, q(2) = 0.570) based on training set of 33 molecules with predictive r(2) of 0.808 and 0.890 for CoMFA and CoMSIA respectively. The results illustrate the requirement of optimal alkyl chain length at C-1 position and acceptor groups along hydroxy methyl substituent of C-6 to enhance the anti-tubercular activity of the 2,3-dideoxy hex-2-enopyranosid-4-uloses while any substitution at C-3 position exert diminishing effect on anti-tubercular activity of these enulosides. Further, homology modeling of M. tuberculosis alpha-mannosidase followed by molecular docking and molecular dynamics simulations on co-complexed models were performed to gain insight into the rationale for binding affinity of selected inhibitors with the target of interest. The comprehensive information obtained from this study will help to better understand the structural basis of biological activity of this class of molecules and guide further design of more potent analogues as anti-tubercular agents.

  2. DYNAMIC 3D QSAR TECHNIQUES: APPLICATIONS IN TOXICOLOGY

    EPA Science Inventory

    Two dynamic techniques recently developed to account for conformational flexibility of chemicals in 3D QSARs are presented. In addition to the impact of conformational flexibility of chemicals in 3D QSAR models, the applicability of various molecular descriptors is discussed. The...

  3. 3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. Methodologies and applications.

    PubMed

    Ballante, Flavio; Ragno, Rino

    2012-06-25

    Since it first appeared in 1988 3-D QSAR has proved its potential in the field of drug design and activity prediction. Although thousands of citations now exist in 3-D QSAR, its development was rather slow with the majority of new 3-D QSAR applications just extensions of CoMFA. An alternative way to build 3-D QSAR models, based on an evolution of software, has been named 3-D QSAutogrid/R and has been developed to use only software freely available to academics. 3-D QSAutogrid/R covers all the main features of CoMFA and GRID/GOLPE with implementation by multiprobe/multiregion variable selection (MPGRS) that improves the simplification of interpretation of the 3-D QSAR map. The methodology is based on the integration of the molecular interaction fields as calculated by AutoGrid and the R statistical environment that can be easily coupled with many free graphical molecular interfaces such as UCSF-Chimera, AutoDock Tools, JMol, and others. The description of each R package is reported in detail, and, to assess its validity, 3-D QSAutogrid/R has been applied to three molecular data sets of which either CoMFA or GRID/GOLPE models were reported in order to compare the results. 3-D QSAutogrid/R has been used as the core engine to prepare more that 240 3-D QSAR models forming the very first 3-D QSAR server ( www.3d-qsar.com ) with its code freely available through R-Cran distribution.

  4. 3D-QSAR studies on unsaturated 4-azasteroids as human 5alpha-reductase inhibitors: a self organizing molecular field analysis approach.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Bhardwaj, T R; Kumar, Manoj

    2010-02-01

    Azasteroids have been reported as inhibitors of human 5alpha-reductase enzyme. These were designed by substitution of one carbon atom of steroidal A ring by heteroatom nitrogen. Due to lack of information on the crystal structure of human 5alpha-reductase, 3D-QSAR study has been performed on a series of unsaturated 4-azasteroids using Self Organizing Molecular Field Analysis (SOMFA) for rationalizing the molecular properties and human 5alpha-reductase inhibitory activities. The statistical results having good cross-validated r(2)(cv) (0.783), non cross-validated r(2) (0.806) and F-test value (87.282), showed satisfied predictive ability. Analysis of SOMFA models through electrostatic and shape grids provide useful information for the design and optimization of new steroidal human 5alpha-reductase inhibitors.

  5. Development of biologically active compounds by combining 3D QSAR and structure-based design methods

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang

    2002-11-01

    One of the major challenges in computational approaches to drug design is the accurate prediction of the binding affinity of novel biomolecules. In the present study an automated procedure which combines docking and 3D-QSAR methods was applied to several drug targets. The developed receptor-based 3D-QSAR methodology was tested on several sets of ligands for which the three-dimensional structure of the target protein has been solved - namely estrogen receptor, acetylcholine esterase and protein-tyrosine-phosphatase 1B. The molecular alignments of the studied ligands were determined using the docking program AutoDock and were compared with the X-ray structures of the corresponding protein-ligand complexes. The automatically generated protein-based ligand alignment obtained was subsequently taken as basis for a comparative field analysis applying the GRID/GOLPE approach. Using GRID interaction fields and applying variable selection procedures, highly predictive models were obtained. It is expected that concepts from receptor-based 3D QSAR will be valuable tools for the analysis of high-throughput screening as well as virtual screening data

  6. 3D QSAR STUDIES ON A SERIES OF QUINAZOLINE DERRIVATIVES AS TYROSINE KINASE (EGFR) INHIBITOR: THE K-NEAREST NEIGHBOR MOLECULAR FIELD ANALYSIS APPROACH

    PubMed Central

    Noolvi, Malleshappa N.; Patel, Harun M.

    2010-01-01

    Epidermal growth factor receptor (EGFR) protein tyrosine kinases (PTKs) are known for its role in cancer. Quinazoline have been reported to be the molecules of interest, with potent anticancer activity and they act by binding to ATP site of protein kinases. ATP binding site of protein kinases provides an extensive opportunity to design newer analogs. With this background, we report an attempt to discern the structural and physicochemical requirements for inhibition of EGFR tyrosine kinase. The k-Nearest Neighbor Molecular Field Analysis (kNN-MFA), a three dimensional quantitative structure activity relationship (3D- QSAR) method has been used in the present case to study the correlation between the molecular properties and the tyrosine kinase (EGFR) inhibitory activities on a series of quinazoline derivatives. kNNMFA calculations for both electrostatic and steric field were carried out. The master grid maps derived from the best model has been used to display the contribution of electrostatic potential and steric field. The statistical results showed significant correlation coefficient r2 (q2) of 0.846, r2 for external test set (pred_r2) 0.8029, coefficient of correlation of predicted data set (pred_r2se) of 0.6658, degree of freedom 89 and k nearest neighbor of 2. Therefore, this study not only casts light on binding mechanism between EGFR and its inhibitors, but also provides hints for the design of new EGFR inhibitors with observable structural diversity PMID:24825983

  7. Docking and 3-D QSAR studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl)carboxamide and N-(2-hydroxyethyl)carbohydrazide derivatives.

    PubMed

    Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Coluccia, Antonio; Di Pasquali, Alessandra; Silvestri, Romano

    2005-01-13

    Three-dimensional quantitative structure-activity relationship (3-D QSAR) studies and docking simulations were developed on indolyl aryl sulfones (IASs), a class of novel HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors (Silvestri, et al. J. Med. Chem. 2003, 46, 2482-2493) highly active against wild type and some clinically relevant resistant strains (Y181C, the double mutant K103N-Y181C, and the K103R-V179D-P225H strain, highly resistant to efavirenz). Predictive 3-D QSAR models using the combination of GRID and GOLPE programs were obtained using a receptor-based alignment by means of docking IASs into the non-nucleoside binding site (NNBS) of RT. The derived 3-D QSAR models showed conventional correlation (r(2)) and cross-validated (q(2)) coefficients values ranging from 0.79 to 0.93 and from 0.59 to 0.84, respectively. All described models were validated by an external test set compiled from previously reported pyrryl aryl sulfones (Artico, et al. J. Med. Chem. 1996, 39, 522-530). The most predictive 3-D QSAR model was then used to predict the activity of novel untested IASs. The synthesis of six designed derivatives (prediction set) allowed disclosure of new IASs endowed with high anti-HIV-1 activities.

  8. Understanding the Molecular Determinant of Reversible Human Monoamine Oxidase B Inhibitors Containing 2H-chromen-2-One Core: Structure-Based and Ligand-Based Derived 3-D QSAR Predictive Models.

    PubMed

    Mladenovic, Milan; Patsilinakos, Alexandros; Pirolli, Adele; Sabatino, Manuela; Ragno, Rino

    2017-03-14

    Monoamine oxidase B (MAO B) catalyzes the oxidative deamination of aryalkylamines neurotransmitters with concomitant reduction of oxygen to hydrogen peroxide. Consequently, the enzyme's malfunction can induce oxidative damage to mitochondrial DNA and mediates development of Parkinson's disease. Thus, MAO B emerges as a promising target for developing pharmaceuticals potentially useful to treat this vicious neurodegenerative condition. Aiming to contribute to the development of drugs with the reversible mechanism of MAO B inhibition only, herein, an extended in silico-in vitro procedure for the selection of novel MAO B inhibitors is demonstrated, including: (1) definition of optimized and validated structure-based (SB) 3-D QSAR models derived from available co-crystallized inhibitor-MAO B complexes; (2) elaboration of structure-activity relationships (SAR) features for either irreversible or reversible MAO B inhibitors to characterize and improve coumarin-based inhibitor activity (Protein Data Bank ID: 2V61) as the most potent reversible lead compound; (3) definition of structure-based (SB) and ligand-based (LB) alignment rules assessments by which virtually any untested potential MAO B inhibitor might be evaluated; (4) predictive ability validation of the best 3-D QSAR model through SB/LB modeling of four coumarin-based external test sets (267 compounds); (5) design and SB/LB alignment of novel coumarin-based scaffolds experimentally validated through synthesis and biological evaluation in vitro. Due to the wide range of molecular diversity within the 3-D QSARs training set and derived features, the selected N probe-derived 3-D QSAR model proves to be a valuable tool for virtual screening (VS) of novel MAO B inhibitors and a platform for design, synthesis and evaluation of novel active structures. Accordingly, six highly active and selective MAO B inhibitors (picomolar to low nanomolar range of activity) were disclosed as a result of rational SB/LB 3-D QSAR design

  9. 3D-QSAR and virtual screening studies of thiazolidine-2,4-dione analogs: Validation of experimental inhibitory potencies towards PIM-1 kinase

    NASA Astrophysics Data System (ADS)

    Asati, Vivek; Bharti, Sanjay Kumar; Budhwani, Ashok Kumar

    2017-04-01

    The proviral insertion site in moloney murine leukemia virus (PIM) is a family of serine/threonine kinase of Ca2+-calmodulin-dependent protein kinase (CAMK) group which is responsible for the activation and regulation of cellular transcription and translation. The three isoforms of PIM kinase (PIM-1, PIM-2 and PIM-3) share high homology and functional idleness are widely expressed and involved in a variety of biological processes including cell survival, proliferation, differentiation and apoptosis. Altered expression of PIM-1 kinase correlated with hematologic malignancies and solid tumors. In the present study, atom-based 3D-QSAR, docking and virtual screening studies have been performed on a series of thiazolidine-2,4-dione derivatives as PIM-1 kinase inhibitors. 3D-QSAR and docking approach has shortlisted the most active thiazolidine-2,4-dione derivatives such as 28, 31, 33 and 35 with the incorporation of more than one structural feature in a single molecule. External validations by various parameters and molecular docking studies at the active site of PIM-1 kinase have proved the reliability of the developed 3D-QSAR model. The generated pharmacophore (AADHR.33) from 3D-QSAR study was used for screening of drug like compounds from ZINC database, where ZINC15056464 and ZINC83292944 showed potential binding affinities at the active site amino acid residues (LYS67, GLU171, ASP128 and ASP186) of PIM-1 kinase (PDB ID: "pdb:4DTK").

  10. Pharmacophore modeling, comprehensive 3D-QSAR, and binding mode analysis of TGR5 agonists.

    PubMed

    Sindhu, Thangaraj; Srinivasan, Pappu

    2017-04-01

    Takeda G-protein-coupled receptor 5 (TGR5) is emerging as an important and promising target for the development of anti-diabetic drugs. Pharmacophore modeling and atom-based 3D-QSAR studies were carried out on a new series of 5-phenoxy-1,3-dimethyl-1H-pyrazole-4-carboxamides as highly potent agonists of TGR5. The generated best six featured pharmacophore model AAHHRR consists of two hydrogen bond acceptors (A): two hydrophobic groups (H) and two aromatic rings (R). The constructed 3D-QSAR model acquired excellent correlation coefficient value (R(2 )=( )0.9018), exhibited good predictive power (Q(2 )=( )0.8494) and high Fisher ratio (F = 61.2). The pharmacophore model was validated through Guner-Henry (GH) scoring method. The GH value of 0.5743 indicated that the AAHHRR model was statistically valuable and reliable in the identification of TGR5 agonists. Furthermore, the combined approach of molecular docking and binding free energy calculations were carried out for the 5-phenoxy-1,3-dimethyl-1H-pyrazole-4-carboxamides to explore the binding mode and interaction pattern. The generated contour maps revealed the important structural insights for the activity of the compounds. The results obtained from this study could be helpful in the development of novel and more potent agonists of TGR5.

  11. A Combined Pharmacophore Modeling, 3D QSAR and Virtual Screening Studies on Imidazopyridines as B-Raf Inhibitors.

    PubMed

    Xie, Huiding; Chen, Lijun; Zhang, Jianqiang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-05-29

    B-Raf kinase is an important target in treatment of cancers. In order to design and find potent B-Raf inhibitors (BRIs), 3D pharmacophore models were created using the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD). The best pharmacophore model obtained which was used in effective alignment of the data set contains two acceptor atoms, three donor atoms and three hydrophobes. In succession, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 39 imidazopyridine BRIs to build three dimensional quantitative structure-activity relationship (3D QSAR) models based on both pharmacophore and docking alignments. The CoMSIA model based on the pharmacophore alignment shows the best result (q(2) = 0.621, r(2)(pred) = 0.885). This 3D QSAR approach provides significant insights that are useful for designing potent BRIs. In addition, the obtained best pharmacophore model was used for virtual screening against the NCI2000 database. The hit compounds were further filtered with molecular docking, and their biological activities were predicted using the CoMSIA model, and three potential BRIs with new skeletons were obtained.

  12. 3D QSAR models built on structure-based alignments of Abl tyrosine kinase inhibitors.

    PubMed

    Falchi, Federico; Manetti, Fabrizio; Carraro, Fabio; Naldini, Antonella; Maga, Giovanni; Crespan, Emmanuele; Schenone, Silvia; Bruno, Olga; Brullo, Chiara; Botta, Maurizio

    2009-06-01

    Quality QSAR: A combination of docking calculations and a statistical approach toward Abl inhibitors resulted in a 3D QSAR model, the analysis of which led to the identification of ligand portions important for affinity. New compounds designed on the basis of the model were found to have very good affinity for the target, providing further validation of the model itself.The X-ray crystallographic coordinates of the Abl tyrosine kinase domain in its active, inactive, and Src-like inactive conformations were used as targets to simulate the binding mode of a large series of pyrazolo[3,4-d]pyrimidines (known Abl inhibitors) by means of GOLD software. Receptor-based alignments provided by molecular docking calculations were submitted to a GRID-GOLPE protocol to generate 3D QSAR models. Analysis of the results showed that the models based on the inactive and Src-like inactive conformations had very poor statistical parameters, whereas the sole model based on the active conformation of Abl was characterized by significant internal and external predictive ability. Subsequent analysis of GOLPE PLS pseudo-coefficient contour plots of this model gave us a better understanding of the relationships between structure and affinity, providing suggestions for the next optimization process. On the basis of these results, new compounds were designed according to the hydrophobic and hydrogen bond donor and acceptor contours, and were found to have improved enzymatic and cellular activity with respect to parent compounds. Additional biological assays confirmed the important role of the selected compounds as inhibitors of cell proliferation in leukemia cells.

  13. Ligand-based 3D QSAR analysis of reactivation potency of mono- and bis-pyridinium aldoximes toward VX-inhibited rat acetylcholinesterase.

    PubMed

    Dolezal, Rafael; Korabecny, Jan; Malinak, David; Honegr, Jan; Musilek, Kamil; Kuca, Kamil

    2015-03-01

    To predict unknown reactivation potencies of 12 mono- and bis-pyridinium aldoximes for VX-inhibited rat acetylcholinesterase (rAChE), three-dimensional quantitative structure-activity relationship (3D QSAR) analysis has been carried out. Utilizing molecular interaction fields (MIFs) calculated by molecular mechanical (MMFF94) and quantum chemical (B3LYP/6-31G*) methods, two satisfactory ligand-based CoMFA models have been developed: 1. R(2)=0.9989, Q(LOO)(2)=0.9090, Q(LTO)(2)=0.8921, Q(LMO(20%))(2)=0.8853, R(ext)(2)=0.9259, SDEP(ext)=6.8938; 2. R(2)=0.9962, Q(LOO)(2)=0.9368, Q(LTO)(2)=0.9298, Q(LMO(20%))(2)=0.9248, R(ext)(2)=0.8905, SDEP(ext)=6.6756. High statistical significance of the 3D QSAR models has been achieved through the application of several data noise reduction techniques (i.e. smart region definition SRD, fractional factor design FFD, uninformative/iterative variable elimination UVE/IVE) on the original MIFs. Besides the ligand-based CoMFA models, an alignment molecular set constructed by flexible molecular docking has been also studied. The contour maps as well as the predicted reactivation potencies resulting from 3D QSAR analyses help better understand which structural features are associated with increased reactivation potency of studied compounds.

  14. QSAR and 3D QSAR of inhibitors of the epidermal growth factor receptor

    NASA Astrophysics Data System (ADS)

    Pinto-Bazurco, Mariano; Tsakovska, Ivanka; Pajeva, Ilza

    This article reports quantitative structure-activity relationships (QSAR) and 3D QSAR models of 134 structurally diverse inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. Free-Wilson analysis was used to derive the QSAR model. It identified the substituents in aniline, the polycyclic system, and the substituents at the 6- and 7-positions of the polycyclic system as the most important structural features. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used in the 3D QSAR modeling. The steric and electrostatic interactions proved the most important for the inhibitory effect. Both QSAR and 3D QSAR models led to consistent results. On the basis of the statistically significant models, new structures were proposed and their inhibitory activities were predicted.

  15. 3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors

    NASA Astrophysics Data System (ADS)

    Ungwitayatorn, Jiraporn; Samee, Weerasak; Pimthon, Jutarat

    2004-02-01

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) approach using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) was applied to a series of 30 chromone derivatives, a new class of HIV-1 protease inhibitors. The best predictive CoMFA model gives cross-validated r2 ( q2)=0.763, non-cross-validated r2=0.967, standard error of estimate ( S)=5.092, F=90.701. The best CoMSIA model has q2=0.707, non-cross-validated r2=0.943, S=7.018, F=51.734, included steric, electrostatic, hydrophobic, and hydrogen bond donor fields. The predictive ability of these models was validated by a set of five compounds that were not included in the training set. The calculated (predicted) and experimental inhibitory activities were well correlated. The contour maps obtained from CoMFA and CoMSIA models were in agreement with the previous docking study for this chromone series.

  16. Free energy force field (FEFF) 3D-QSAR analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Santos-Filho, Osvaldo A.; Mishra, Rama K.; Hopfinger, A. J.

    2001-09-01

    Free energy force field (FEFF) 3D-QSAR analysis was used to construct ligand-receptor binding models for a set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines. The molecular target (`receptor') used was a 3D-homology model of a specific mutant type of Plasmodium falciparum (Pf) dihydrofolate reductase (DHFR). The dependent variable of the 3D-QSAR models is the IC50 inhibition constant for the specific mutant type of PfDHFR. The independent variables of the 3D-QSAR models (the descriptors) are scaled energy terms of a modified first-generation AMBER force field combined with a hydration shell aqueous solvation model and a collection of 2D-QSAR descriptors often used in QSAR studies. Multiple temperature molecular dynamics simulation (MDS) and the genetic function approximation (GFA) were employed using partial least square (PLS) and multidimensional linear regressions as the fitting functions to develop FEFF 3D-QSAR models for the binding process. The significant FEFF energy terms in the best 3D-QSAR models include energy contributions of the direct ligand-receptor interaction. Some changes in conformational energy terms of the ligand due to binding to the enzyme are also found to be important descriptors. The FEFF 3D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the PfDHFR to current antimalarials. The FEFF 3D-QSAR models are also compared to receptor-independent (RI) 4D-QSAR models developed in an earlier study and subsequently refined using recently developed generalized alignment rules.

  17. Receptor-based modeling and 3D-QSAR for a quantitative production of the butyrylcholinesterase inhibitors based on genetic algorithm.

    PubMed

    Zaheer-ul, Haq; Uddin, Reaz; Yuan, Hongbin; Petukhov, Pavel A; Choudhary, M Iqbal; Madura, Jeffry D

    2008-05-01

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a series of structurally related steroidal alkaloids as butyrylcholinesterase (BuChE) inhibitors. Docking studies were employed to position the inhibitors into the BuChE active site to determine the most probable binding mode. The strategy was to explore multiple inhibitor conformations in producing a more reliable 3D-QSAR model. These multiple conformations were derived using the FlexS program. The conformation selection step for CoMFA was done by genetic algorithm. The genetic algorithm based CoMFA approach was found to be the best. Both CoMFA and CoMSIA yielded significant cross-validated q(2) values of 0.701 and 0.627 and the r(2) values of 0.979 and 0.982, respectively. These statistically significant models were validated by a test set of five compounds. Comparison of CoMFA and CoMSIA contour maps helped to identify structural requirements for the inhibitors and serves as a basis for the design of the next generation of the inhibitor analogues. The results demonstrate that the combination of ligand-based and receptor-based modeling with use of a genetic algorithm is a powerful approach to build 3D-QSAR models. These data can be used for the lead optimization process with respect to inhibition enhancement which is important for the drug discovery and development for Alzheimer's disease.

  18. Prediction and evaluation of the lipase inhibitory activities of tea polyphenols with 3D-QSAR models

    PubMed Central

    Li, Yi-Fang; Chang, Yi-Qun; Deng, Jie; Li, Wei-Xi; Jian, Jie; Gao, Jia-Suo; Wan, Xin; Gao, Hao; Kurihara, Hiroshi; Sun, Ping-Hua; He, Rong-Rong

    2016-01-01

    The extraordinary hypolipidemic effects of polyphenolic compounds from tea have been confirmed in our previous study. To gain compounds with more potent activities, using the conformations of the most active compound revealed by molecular docking, a 3D-QSAR pancreatic lipase inhibitor model with good predictive ability was established and validated by CoMFA and CoMISA methods. With good statistical significance in CoMFA (r2cv = 0.622, r2 = 0.956, F = 261.463, SEE = 0.096) and CoMISA (r2cv = 0.631, r2 = 0.932, F = 75.408, SEE = 0.212) model, we summarized the structure-activity relationship between polyphenolic compounds and pancreatic lipase inhibitory activities and find the bulky substituents in R2, R4 and R5, hydrophilic substituents in R1 and electron withdrawing groups in R2 are the key factors to enhance the lipase inhibitory activities. Under the guidance of the 3D-QSAR results, (2R,3R,2′R,3′R)-desgalloyloolongtheanin-3,3′-O-digallate (DOTD), a potent lipase inhibitor with an IC50 of 0.08 μg/ml, was obtained from EGCG oxidative polymerization catalyzed by crude polyphenol oxidase. Furthermore, DOTD was found to inhibit lipid absorption in olive oil-loaded rats, which was related with inhibiting the activities of lipase in the intestinal mucosa and contents. PMID:27694956

  19. Synthesis and 3D-QSAR study of 1,4-dihydropyridine derivatives as MDR cancer reverters.

    PubMed

    Radadiya, Ashish; Khedkar, Vijay; Bavishi, Abhay; Vala, Hardevsinh; Thakrar, Shailesh; Bhavsar, Dhairya; Shah, Anamik; Coutinho, Evans

    2014-03-03

    A series of symmetrical and unsymmetrical 1,4-dihydropyridines were synthesized by a rapid, single pot microwave irradiation (MWI) based protocol along with conventional approach and characterized by NMR, IR and mass spectroscopic techniques. The compounds were evaluated for their tumor cell cytotoxicity in HL-60 tumor cells. A 3D-QSAR study using CoMFA and CoMSIA was carried out to decipher the factors governing MDR reversing ability in cancer. The resulting contour maps derived by the best 3D-QSAR models provide a good insight into the molecular features relevant to the biological activity in this series of analogs. 3D contour maps as a result of 3D-QSAR were utilized to identify some novel features that can be incorporated into the 1,4-dihydropyridine framework to enhance the activity.

  20. 3D-QSAR analysis of a series of S-DABO derivatives as anti-HIV agents by CoMFA and CoMSIA.

    PubMed

    Xu, H R; Fu, L; Zhan, P; Liu, X Y

    2016-12-01

    In this study, we retrieved a series of 59 dihydroalkylthio-benzyloxopyrimidine (S-DABO) derivatives, which is a class of highly potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) reported from published articles, and analysed them with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Statistically significant three-dimensional quantitative structure-activity relationship (3D-QSAR) models by CoMFA and CoMSIA were derived from a training set of 46 compounds on the basis of the rigid body alignment. Further, the predictive ability of the QSAR models was validated by a test set of 13 compounds. Based on the information derived from CoMFA and CoMSIA contour maps, we have identified some steric and electrostatic features for improving the activities of these inhibitors, and we validated the 3D-QSAR results by a molecular docking method. On the basis of the obtained results, we designed a new series of S-DABO derivatives with high activities. Therefore, this study could be utilized to design more potent S-DABO analogues as anti-HIV agents.

  1. Pharmacophore generation, atom-based 3D-QSAR, HQSAR and activity cliff analyses of benzothiazine and deazaxanthine derivatives as dual A2A antagonists/MAO‑B inhibitors.

    PubMed

    Bhayye, S S; Roy, K; Saha, A

    2016-02-12

    Dual inhibition of A2A and MAO-B is an emerging strategy in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). In this study, atom-based three-dimensional quantitative structure-activity relationship (3D-QSAR) and hologram quantitative structure-activity relationship (HQSAR) models were generated with benzothiazine and deazaxanthine derivatives. Based on activity against A2A and MAO-B, two statistically significant 3D-QSAR models (r(2) = 0.96, q(2) = 0.76 and r(2) = 0.91, q(2) = 0.63) and HQSAR models (r(2) = 0.93, q(2) = 0.68 and r(2) = 0.97, q(2) = 0.58) were developed. In an activity cliff analysis, structural outliers were identified by calculating the Mahalanobis distance for a pair of compounds with A2A and MAO-B inhibitory activities. The generated 3D-QSAR and HQSAR models, activity cliff analysis, molecular docking and dynamic studies for dual target protein inhibitors provide key structural scaffolds that serve as building blocks in designing drug-like molecules for neurodegenerative diseases.

  2. Pharmacophore modeling, 3D-QSAR, and in silico ADME prediction of N-pyridyl and pyrimidine benzamides as potent antiepileptic agents.

    PubMed

    Malik, Ruchi; Mehta, Pakhuri; Srivastava, Shubham; Choudhary, Bhanwar Singh; Sharma, Manish

    2016-09-08

    Biological mechanism attributing mutations in KCNQ2/Q3 results in benign familial neonatal epilepsy (BFNE), a rare form of epilepsy and thus neglected. It offers a potential target for antiepileptic drug discovery. In the present work, a pharmacophore-based 3D-QSAR model was generated for a series of N-pyridyl and pyrimidine benzamides possessing KCNQ2/Q3 opening activity. The pharmacophore model generated contains one hydrogen bond donor (D), one hydrophobic (H), and two aromatic rings (R). They are the crucial molecular write-up detailing predicted binding efficacy of high affinity and low affinity ligands for KCNQ2/Q3 opening activity. Furthermore, it has been validated by using a biological correlation between pharmacophore hypothesis-based 3D-QSAR variables and functional fingerprints of openers responsible for the receptor binding and also by docking of these benzamides into the validated homology model. Excellent statistical computational tools of QSAR model such as good correlation coefficient (R(2 )>( )0.80), higher F value (F > 39), and excellent predictive power (Q(2) > 0.7) with low standard deviation (SD <0.3) strongly suggest that the developed model could be used for prediction of antiepileptic activity of newer analogs. A preliminary pharmacokinetic profile of these derivatives was also performed on the basis of QikProp predictions.

  3. Structure-based rational quest for potential novel inhibitors of human HMG-CoA reductase by combining CoMFA 3D QSAR modeling and virtual screening.

    PubMed

    Zhang, Qing Y; Wan, Jian; Xu, Xin; Yang, Guang F; Ren, Yan L; Liu, Jun J; Wang, Hui; Guo, Yu

    2007-01-01

    3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the formation of mevalonate. In many classes of organisms, this is the committed step leading to the synthesis of essential compounds, such as cholesterol. However, a high level of cholesterol is an important risk factor for coronary heart disease, for which an effective clinical treatment is to block HMGR using inhibitors like statins. Recently the structures of catalytic portion of human HMGR complexed with six different statins have been determined by a delicate crystallography study (Istvan and Deisenhofer Science 2001, 292, 1160-1164), which established a solid basis of structure and mechanism for the rational design, optimization, and development of even better HMGR inhibitors. In this study, three-dimensional quantitative structure-activity relationship (3D QSAR) with comparative molecular field analysis (CoMFA) was performed on a training set of up to 35 statins and statin-like compounds. Predictive models were established by using two different ways: (1) Models-fit, obtained by SYBYL conventional fit-atom molecular alignment rule, has cross-validated coefficients (q2) up to 0.652 and regression coefficients (r2) up to 0.977. (2) Models-dock, obtained by FlexE by docking compounds into the HMGR active site, has cross-validated coefficients (q2) up to 0.731 and regression coefficients (r2) up to 0.947. These models were further validated by an external testing set of 12 statins and statin-like compounds. Integrated with CoMFA 3D QSAR predictive models, molecular surface property (electrostatic and steric) mapping and structure-based (both ligand and receptor) virtual screening have been employed to explore potential novel hits for the HMGR inhibitors. A representative set of eight new compounds of non-statin-like structures but with high pIC(50) values were sorted out in the present study.

  4. Design, synthesis and 3D-QSAR study of cytotoxic flavonoid derivatives.

    PubMed

    Ou, Lili; Han, Shuang; Ding, Wenbo; Chen, Zhe; Ye, Ziqi; Yang, Hongyu; Zhang, Goulin; Lou, Yijia; Chen, Jian-Zhong; Yu, Yongping

    2011-08-01

    Three series of flavonoid derivatives were designed and synthesized. All synthesized compounds were evaluated for cytotoxic activities against five human cancer cell lines, including K562, PC-3, MCF-7, A549, and HO8910. Among the compounds tested, compound 9 d exhibited the most potent cytotoxic activity with IC(50) values of 2.76-6.98 μM. Further comparative molecular field analysis was performed to conduct a 3D quantitative structure-activity relationship study. The generated 3D-QSAR model could be used for further rational design of novel flavonoid analogs as highly potent cytotoxic agents.

  5. Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang; Contreras, Jean-Marie; Parrot, Isabelle; Rival, Yveline M.; Wermuth, Camille G.

    2001-05-01

    The paper describes the construction, validation and application of a structure-based 3D QSAR model of novel acetylcholinesterase (AChE) inhibitors. Initial use was made of four X-ray structures of AChE complexed with small, non-specific inhibitors to create a model of the binding of recently developed aminopyridazine derivatives. Combined automated and manual docking methods were applied to dock the co-crystallized inhibitors into the binding pocket. Validation of the modelling process was achieved by comparing the predicted enzyme-bound conformation with the known conformation in the X-ray structure. The successful prediction of the binding conformation of the known inhibitors gave confidence that we could use our model to evaluate the binding conformation of the aminopyridazine compounds. The alignment of 42 aminopyridazine compounds derived by the docking procedure was taken as the basis for a 3D QSAR analysis applying the GRID/GOLPE method. A model of high quality was obtained using the GRID water probe, as confirmed by the cross-validation method (q2 LOO=0.937, q2 L50% O=0.910). The validated model, together with the information obtained from the calculated AChE-inhibitor complexes, were considered for the design of novel compounds. Seven designed inhibitors which were synthesized and tested were shown to be highly active. After performing our modelling study the X-ray structure of AChE complexed with donepezil, an inhibitor structurally related to the developed aminopyirdazines, has been made available. The good agreement found between the predicted binding conformation of the aminopyridazines and the one observed for donepezil in the crystal structure further supports our developed model.

  6. Mechanistic Insights into the Binding of Class IIa HDAC Inhibitors toward Spinocerebellar Ataxia Type-2: A 3D-QSAR and Pharmacophore Modeling Approach

    PubMed Central

    Sinha, Siddharth; Goyal, Sukriti; Somvanshi, Pallavi; Grover, Abhinav

    2017-01-01

    Spinocerebellar ataxia (SCA-2) type-2 is a rare neurological disorder among the nine polyglutamine disorders, mainly caused by polyQ (CAG) trinucleotide repeats expansion within gene coding ataxin-2 protein. The expanded trinucleotide repeats within the ataxin-2 protein sequesters transcriptional cofactors i.e., CREB-binding protein (CBP), Ataxin-2 binding protein 1 (A2BP1) leading to a state of hypo-acetylation and transcriptional repression. Histone de-acetylases inhibitors (HDACi) have been reported to restore transcriptional balance through inhibition of class IIa HDAC's, that leads to an increased acetylation and transcription as demonstrated through in-vivo studies on mouse models of Huntington's. In this study, 61 di-aryl cyclo-propanehydroxamic acid derivatives were used for developing three dimensional (3D) QSAR and pharmacophore models. These models were then employed for screening and selection of anti-ataxia compounds. The chosen QSAR model was observed to be statistically robust with correlation coefficient (r2) value of 0.6774, cross-validated correlation coefficient (q2) of 0.6157 and co-relation coefficient for external test set (pred_r2) of 0.7570. A high F-test value of 77.7093 signified the robustness of the model. Two potential drug leads ZINC 00608101 (SEI) and ZINC 00329110 (ACI) were selected after a coalesce procedure of pharmacophore based screening using the pharmacophore model ADDRR.20 and structural analysis using molecular docking and dynamics simulations. The pharmacophore and the 3D-QSAR model generated were further validated for their screening and prediction ability using the enrichment factor (EF), goodness of hit (GH), and receiver operating characteristics (ROC) curve analysis. The compounds SEI and ACI exhibited a docking score of −10.097 and −9.182 kcal/mol, respectively. An evaluation of binding conformation of ligand-bound protein complexes was performed with MD simulations for a time period of 30 ns along with free

  7. Mechanistic Insights into the Binding of Class IIa HDAC Inhibitors toward Spinocerebellar Ataxia Type-2: A 3D-QSAR and Pharmacophore Modeling Approach.

    PubMed

    Sinha, Siddharth; Goyal, Sukriti; Somvanshi, Pallavi; Grover, Abhinav

    2016-01-01

    Spinocerebellar ataxia (SCA-2) type-2 is a rare neurological disorder among the nine polyglutamine disorders, mainly caused by polyQ (CAG) trinucleotide repeats expansion within gene coding ataxin-2 protein. The expanded trinucleotide repeats within the ataxin-2 protein sequesters transcriptional cofactors i.e., CREB-binding protein (CBP), Ataxin-2 binding protein 1 (A2BP1) leading to a state of hypo-acetylation and transcriptional repression. Histone de-acetylases inhibitors (HDACi) have been reported to restore transcriptional balance through inhibition of class IIa HDAC's, that leads to an increased acetylation and transcription as demonstrated through in-vivo studies on mouse models of Huntington's. In this study, 61 di-aryl cyclo-propanehydroxamic acid derivatives were used for developing three dimensional (3D) QSAR and pharmacophore models. These models were then employed for screening and selection of anti-ataxia compounds. The chosen QSAR model was observed to be statistically robust with correlation coefficient (r(2)) value of 0.6774, cross-validated correlation coefficient (q(2)) of 0.6157 and co-relation coefficient for external test set (pred_r(2)) of 0.7570. A high F-test value of 77.7093 signified the robustness of the model. Two potential drug leads ZINC 00608101 (SEI) and ZINC 00329110 (ACI) were selected after a coalesce procedure of pharmacophore based screening using the pharmacophore model ADDRR.20 and structural analysis using molecular docking and dynamics simulations. The pharmacophore and the 3D-QSAR model generated were further validated for their screening and prediction ability using the enrichment factor (EF), goodness of hit (GH), and receiver operating characteristics (ROC) curve analysis. The compounds SEI and ACI exhibited a docking score of -10.097 and -9.182 kcal/mol, respectively. An evaluation of binding conformation of ligand-bound protein complexes was performed with MD simulations for a time period of 30 ns along with free

  8. 3D QSAR studies, pharmacophore modeling and virtual screening on a series of steroidal aromatase inhibitors.

    PubMed

    Xie, Huiding; Qiu, Kaixiong; Xie, Xiaoguang

    2014-11-14

    Aromatase inhibitors are the most important targets in treatment of estrogen-dependent cancers. In order to search for potent steroidal aromatase inhibitors (SAIs) with lower side effects and overcome cellular resistance, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of SAIs to build 3D QSAR models. The reliable and predictive CoMFA and CoMSIA models were obtained with statistical results (CoMFA: q² = 0.636, r²(ncv) = 0.988, r²(pred) = 0.658; CoMSIA: q² = 0.843, r²(ncv) = 0.989, r²(pred) = 0.601). This 3D QSAR approach provides significant insights that can be used to develop novel and potent SAIs. In addition, Genetic algorithm with linear assignment of hypermolecular alignment of database (GALAHAD) was used to derive 3D pharmacophore models. The selected pharmacophore model contains two acceptor atoms and four hydrophobic centers, which was used as a 3D query for virtual screening against NCI2000 database. Six hit compounds were obtained and their biological activities were further predicted by the CoMFA and CoMSIA models, which are expected to design potent and novel SAIs.

  9. QSAR analyses of organophosphates for insecticidal activity and its in-silico validation using molecular docking study.

    PubMed

    Niraj, Ravi Ranjan Kumar; Saini, Vandana; Kumar, Ajit

    2015-11-01

    The present work was carried out to design and develop novel QSAR models using 2D-QSAR and 3D-QSAR with CoMFA methodology for prediction of insecticidal activity of organophosphate (OP) molecules. The models were validated on an entirely different external dataset of in-house generated combinatorial library of OPs, by completely different computational approach of molecular docking against the target AChE protein of Musca domestica. The dock scores were observed to be in good correlation with 2D-QSAR and 3D-QSAR with CoMFA predicted activities and had the correlation coefficients (r(2)) of -0.62 and -0.63, respectively. The activities predicted by 2D-QSAR and 3D-QSAR with CoMFA were also observed to be highly correlated with r(2)=0.82. Also, the combinatorial library molecules were screened for toxicity in non-target organisms and degradability using USEPA-EPI Suite. The work was first step towards computer aided design and development of novel OP pesticide candidates with good insecticidal property but lower toxicity in non-targeted organisms and having biodegradation potential.

  10. Development of 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, molecular docking, and structure-based pharmacophore approaches

    EPA Science Inventory

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...

  11. Computational identification of novel histone deacetylase inhibitors by docking based QSAR.

    PubMed

    Nair, Syam B; Teli, Mahesh Kumar; Pradeep, H; Rajanikant, G K

    2012-06-01

    Histone deacetylases (HDACs) are enzymes that modify chromatin structure and contribute to aberrant gene expression in cancer. A series compounds with well-assigned HDAC inhibitory activity was used for docking based 3D-QSAR analysis. The 3D-QSAR acquired had excellent correlation coefficient value (q2=0.753) and high Fisher ratio (F=300.2). A validated pharmacophore model (AAAPR) was employed for virtual screening. After manual selection, molecular docking and further refinement, six compounds with good absorption, distribution, metabolism, and excretion (ADME) properties were selected as potential HDAC inhibitors. Further, the molecular interactions of these inhibitors with the HDAC active site residues were discussed in detail.

  12. QSAR and molecular docking studies on oxindole derivatives as VEGFR-2 tyrosine kinase inhibitors.

    PubMed

    Kang, Cong-Min; Liu, Dong-Qing; Zhao, Xu-Hao; Dai, Ying-Jie; Cheng, Jia-Gao; Lv, Ying-Tao

    2016-01-01

    The three-dimensional quantitative structure-activity relationships (3D-QSAR) were established for 30 oxindole derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by using comparative molecular field analysis (CoMFA) and comparative similarity indices analysis comparative molecular similarity indices analysis (CoMSIA) techniques. With the CoMFA model, the cross-validated value (q(2)) was 0.777, the non-cross-validated value (R(2)) was 0.987, and the external cross-validated value ([Formula: see text]) was 0.72. And with the CoMSIA model, the corresponding q(2), R(2) and [Formula: see text] values were 0.710, 0.988 and 0.78, respectively. Docking studies were employed to bind the inhibitors into the active site to determine the probable binding conformation. The binding mode obtained by molecular docking was in good agreement with the 3D-QSAR results. Based on the QSAR models and the docking binding mode, a set of new VEGFR-2 tyrosine kinase inhibitors were designed, which showed excellent predicting inhibiting potencies. The result revealed that both QSAR models have good predictive capability to guide the design and structural modification of homologic compounds. It is also helpful for further research and development of new VEGFR-2 tyrosine kinase inhibitors.

  13. Identification of potential influenza virus endonuclease inhibitors through virtual screening based on the 3D-QSAR model.

    PubMed

    Kim, J; Lee, C; Chong, Y

    2009-01-01

    Influenza endonucleases have appeared as an attractive target of antiviral therapy for influenza infection. With the purpose of designing a novel antiviral agent with enhanced biological activities against influenza endonuclease, a three-dimensional quantitative structure-activity relationships (3D-QSAR) model was generated based on 34 influenza endonuclease inhibitors. The comparative molecular similarity index analysis (CoMSIA) with a steric, electrostatic and hydrophobic (SEH) model showed the best correlative and predictive capability (q(2) = 0.763, r(2) = 0.969 and F = 174.785), which provided a pharmacophore composed of the electronegative moiety as well as the bulky hydrophobic group. The CoMSIA model was used as a pharmacophore query in the UNITY search of the ChemDiv compound library to give virtual active compounds. The 3D-QSAR model was then used to predict the activity of the selected compounds, which identified three compounds as the most likely inhibitor candidates.

  14. Generation of pharmacophore and atom based 3D-QSAR model of novel isoquinolin-1-one and quinazolin-4-one-type inhibitors of TNFα.

    PubMed

    Hanumanthappa, Pradeep; Teli, Mahesh K; Krishnamurthy, Rajanikant G

    2012-05-01

    In the present report, 3D-QSAR analysis was executed on the previously synthesized and evaluated derivatives of isoquinolin-1-ones and quinazolin-4-ones; potent inhibitors of tumor necrosis factor α (TNFα). Statistically significant 3D-QSAR models were generated using 42 molecules in the training set. The predictive ability of models was determined using a randomly chosen test set of 16 molecules, which gave excellent predictive correlation coefficients for 3-D models, suggesting good predictive index. Pharmacophore prediction generated a five point pharmacophore (AAHRR): two hydrogen bond acceptor (A), one hydrophobic (H) and two ring (RR) features. This pharmacophore hypothesis furnished a statistically meaningful 3D-QSAR model with partial least-square (PLS) factors seven having R2=0.9965, Q2=0.6185, Root Mean Squared Error=0.4284 and Pearson-R=0.853. Docking study revealed the important amino acid residues (His 15, Tyr 59, Tyr 151, Gly 121 and Gly 122) in the active site of TNFα that are involved in binding of the active ligand. Orientation of the pharmacophore hypothesis AAHRR.25 corresponded very closely with the binding mode recorded in the active site of ligand bound complex. The results of ligand based pharmacophore hypothesis and atom based 3D-QSAR furnished crucial structural insights and also highlighted the important binding features of isoquinolin-1-ones and quinazolin-4-ones derivatives, which may provide guidance for the rational design of novel and more potent TNFα inhibitors.

  15. Investigation of antigen-antibody interactions of sulfonamides with a monoclonal antibody in a fluorescence polarization immunoassay using 3D-QSAR models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MAbSMR) produced against sulfamerazine was carried out by Distance Comparison (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular si...

  16. Design, synthesis, and 3D QSAR of novel potent and selective aromatase inhibitors.

    PubMed

    Leonetti, Francesco; Favia, Angelo; Rao, Angela; Aliano, Rosaria; Paluszcak, Anja; Hartmann, Rolf W; Carotti, Angelo

    2004-12-30

    The design, synthesis, and biological evaluation of a series of new aromatase inhibitors bearing an imidazole or triazole ring linked to a fluorene (A), indenodiazine (B), or coumarin scaffold (C) are reported. Properly substituted coumarin derivatives displayed the highest aromatase inhibitory potency and selectivity over 17-alpha-hydroxylase/17-20 lyase. The modeling of the aromatase inhibition data by Comparative Molecular Field Analysis (CoMFA/GOLPE 3D QSAR approach) led to the development of a PLS model with good fitting and predictive powers (n = 22, ONC = 3, r(2) = 0.949, s = 0.216, and q(2) = 0.715). The relationship between aromatase inhibition and the steric and electrostatic fields generated by the examined azole inhibitors enables a clear understanding of the nature and spatial location of the main interactions modulating the aromatase inhibitory potency.

  17. 3D QSAR studies, pharmacophore modeling, and virtual screening of diarylpyrazole-benzenesulfonamide derivatives as a template to obtain new inhibitors, using human carbonic anhydrase II as a model protein.

    PubMed

    Entezari Heravi, Yeganeh; Sereshti, Hassan; Saboury, Ali Akbar; Ghasemi, Jahan; Amirmostofian, Marzieh; Supuran, Claudiu T

    2017-12-01

    A 3D-QSAR modeling was performed on a series of diarylpyrazole-benzenesulfonamide derivatives acting as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The compounds were collected from two datasets with the same scaffold, and utilized as a template for a new pharmacophore model to screen the ZINC database of commercially available derivatives. The datasets were divided into training, test, and validation sets. As the first step, comparative molecular field analysis (CoMFA), CoMFA region focusing and comparative molecular similarity indices analysis (CoMSIA) in parallel with docking studies were applied to a set of 41 human (h) CA II inhibitors. The validity and the prediction capacity of the resulting models were evaluated by leave-one-out (LOO) cross-validation approach. The reliability of the model for the prediction of possibly new CA inhibitors was also tested.

  18. 3-D QSARS FOR RANKING AND PRIORITIZATION OF LARGE CHEMICAL DATASETS: AN EDC CASE STUDY

    EPA Science Inventory

    The COmmon REactivity Pattern (COREPA) approach is a three-dimensional structure activity (3-D QSAR) technique that permits identification and quantification of specific global and local steroelectronic characteristics associated with a chemical's biological activity. It goes bey...

  19. Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists.

    PubMed

    Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam; Asadpour-Zeynali, Karim

    2012-01-01

    Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression (MLR), artificial neural network (ANN), and HASL as a 3D QSAR method, in predicting the receptor binding affinities of arylbenzofuran histamine H3 receptor antagonists. Genetic algorithm coupled partial least square as well as stepwise multiple regression methods were used to select a number of calculated molecular descriptors to be used in MLR and ANN-based QSAR studies. Using the leave-group-out cross-validation technique, the performances of the MLR and ANN methods were evaluated. The calculated values for the mean absolute percentage error (MAPE), ranging from 2.9 to 3.6, and standard deviation of error of prediction (SDEP), ranging from 0.31 to 0.36, for both MLR and ANN methods were statistically comparable, indicating that both methods perform equally well in predicting the binding affinities of the studied compounds toward the H3 receptors. On the other hand, the results from 3D-QSAR studies using HASL method were not as good as those obtained by 2D methods. It can be concluded that simple traditional approaches such as MLR method can be as reliable as those of more advanced and sophisticated methods like ANN and 3D-QSAR analyses.

  20. Molecular modeling studies of phenoxypyrimidinyl imidazoles as p38 kinase inhibitors using QSAR and docking.

    PubMed

    Ravindra, G K; Achaiah, G; Sastry, G N

    2008-04-01

    p38 Kinase plays a vital role in inflammation mediated by tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) pathways and inhibitors of p38 kinase provide effective approach for the treatment of inflammatory diseases. Pyridinyl and pyrimidinyl imidazoles, selectively inhibit p38alpha MAP kinase, are useful in the treatment of inflammatory diseases like rheumatoid arthritis. Three dimensional quantitative structure-activity relationship studies (3D-QSAR) involving comparative molecular field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA) and molecular docking were performed on 44 phenoxypyrimidinyl imidazole p38 kinase inhibitors to find out the structural relationship with the activity. The best predictive CoMFA model with atom fit alignment resulted in cross-validated r(2) value of 0.553, noncross-validated r(2) value of 0.908 and standard error of estimate 0.187. Similarly the best predictive CoMSIA model was derived with q(2) of 0.508, noncross-validated r(2) of 0.894 and standard error of estimate of 0.197, comprising steric, electrostatic, hydrophobic and hydrogen bond donor fields. These models were able to predict the activity of test set molecules efficiently within an acceptable error range. GOLD and FlexX were employed to dock the inhibitors into the active site of the p38 kinase and these docking studies revealed the vital interactions and binding conformation of the inhibitors. The information rendered by 3D-QSAR models and the docking interactions may afford valuable clues to optimize the lead and design new potential inhibitors.

  1. Elucidating the inhibiting mode of AHPBA derivatives against HIV-1 protease and building predictive 3D-QSAR models.

    PubMed

    Huang, Xaioqin; Xu, Liaosa; Luo, Xiaomin; Fan, Kangnian; Ji, Ruyun; Pei, Gang; Chen, Kaixian; Jiang, Hualiang

    2002-01-17

    The Lamarckian genetic algorithm of AutoDock 3.0 has been used to dock 27 3(S)-amino-2(S)-hydroxyl-4-phenylbutanoic acids (AHPBAs) into the active site of HIV-1 protease (HIVPR). The binding mode was demonstrated in the aspects of the inhibitor's conformation, subsite interaction, and hydrogen bonding. The data of geometrical parameters (tau(1), tau(2), and tau(3) listed in Table 2) and root mean square deviation values as compared with the known inhibitor, kni272,(28) show that both kinds of inhibitors interact with HIVPR in a very similar way. The r(2) value of 0.860 indicates that the calculated binding free energies correlate well with the inhibitory activities. The structural and energetic differences in inhibitory potencies of AHPBAs were reasonably explored. Using the binding conformations of AHPBAs, consistent and highly predictive 3D-QSAR models were developed by performing CoMFA, CoMSIA, and HQSAR analyses. The reasonable r(corss)(2) values were 0.613, 0.530, and 0.717 for CoMFA, CoMSIA, and HQSAR models, respectively. The predictive ability of these models was validated by kni272 and a set of nine compounds that were not included in the training set. Mapping these models back to the topology of the active site of HIVPR leads to a better understanding of vital AHPBA-HIVPR interactions. Structural-based investigations and the final 3D-QSAR results provide clear guidelines and accurate activity predictions for novel HIVPR inhibitors.

  2. Application of 3D-QSAR techniques in anti-HIV-1 drug design--an overview.

    PubMed

    Debnath, Asim Kumar

    2005-01-01

    Despite the availability of several classes of drugs against acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus type 1(HIV-1), this deadly disease showing very little sign of containment, especially in Sub-Saharan Africa and South-East Asia. More than 20 million people died since the first diagnosis of AIDS more than twenty years ago and almost 40 million people are currently living with HIV/AIDS. Structure-based drug design effort was immensely successful in identifying several drugs that are currently available for the treatment of HIV-1. Many applications have been reported on the use of quantitative structure-activity relationship (QSAR) studies to understand the drug-receptor interactions and help in the design of more effective analogs. Extensive application was also reported on the application of 3D-QSAR techniques, such as, Comparative Molecular Field Analysis (CoMFA), Comparative Molecular Similarity Analysis (CoMSIA), pharmacophore generation using Catalyst/HypoGen, free-energy binding analysis, GRID/GOLPE, HINT-based techniques, etc. in anti-HIV-1 drug discovery programs in academia and industry. We have attempted to put together a comprehensive overview on the 3D-QSAR applications in anti-HIV-1 drug design reported in the literature during the last decade.

  3. Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics

    NASA Astrophysics Data System (ADS)

    Debnath, Utsab; Verma, Saroj; Jain, Surabhi; Katti, Setu B.; Prabhakar, Yenamandra S.

    2013-07-01

    CoMFA and CoMSIA based 3D-QSAR of HIV-1 RT wild and mutant (K103, Y181C, and Y188L) inhibitory activities of 4-benzyl/benzoyl pyridin-2-ones followed by protein informatics of corresponding non-nucleoside inhibitors' binding pockets from pdbs 2BAN, 3MED, 1JKH, and 2YNF were analysed to discover consensus features of the compounds for broad-spectrum activity. The CoMFA/CoMSIA models indicated that compounds with groups which lend steric-cum-electropositive fields in the vicinity of C5, hydrophobic field in the vicinity of C3 of pyridone region and steric field in aryl region produce broad-spectrum anti-HIV-1 RT activity. Also, a linker rendering electronegative field between pyridone and aryl moieties is common requirement for the activities. The protein informatics showed considerable alteration in residues 181 and 188 characteristics on mutation. Also, mutants' isoelectric points shifted in acidic direction. The study offered fresh avenues for broad-spectrum anti-HIV-1 agents through designing new molecules seeded with groups satisfying common molecular fields and concerns of mutating residues.

  4. 3D-QSAR study of hallucinogenic phenylalkylamines by using CoMFA approach

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuoyong; An, Liying; Hu, Wenxiang; Xiang, Yuhong

    2007-04-01

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) has been studied on 90 hallucinogenic phenylalkylamines by the comparative molecular field analysis (CoMFA). Two conformations were compared during the modeling. Conformation I referred to the amino group close to ring position 6 and conformation II related to the amino group trans to the phenyl ring. Satisfactory results were obtained by using both conformations. There were still differences between the two models. The model based on conformation I got better statistical results than the one about conformation II. And this may suggest that conformation I be preponderant when the hallucinogenic phenylalkylamines interact with the receptor. To further confirm the predictive capability of the CoMFA model, 18 compounds with conformation I were randomly selected as a test set and the remaining ones as training set. The best CoMFA model based on the training set had a cross-validation coefficient q 2 of 0.549 at five components and non cross-validation coefficient R 2 of 0.835, the standard error of estimation was 0.219. The model showed good predictive ability in the external test with a coefficient R pre 2 of 0.611. The CoMFA coefficient contour maps suggested that both steric and electrostatic interactions play an important role. The contributions from the steric and electrostatic fields were 0.450 and 0.550, respectively.

  5. Pharmacophore and 3D-QSAR Characterization of 6-Arylquinazolin-4-amines as Cdc2-like Kinase 4 (Clk4) and Dual Specificity Tyrosine-phosphorylation-regulated Kinase 1A (Dyrk1A) Inhibitors

    PubMed Central

    2013-01-01

    Cdc2-like kinase 4 (Clk4) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) are protein kinases that are promising targets for treatment of diseases caused by abnormal gene splicing. 6-Arylquinazolin-4-amines have been recently identified as potent Clk4 and Dyrk1A inhibitors. In order to understand the structure–activity correlation of these analogs, we have applied ligand-based pharmacophore and 3D-QSAR modeling combined with structure-based homology modeling and docking. The high R2 and Q2 (0.88 and 0.79 for Clk4, 0.85 and 0.82 for Dyrk1A, respectively) based on validation with training and test set compounds suggested that the generated 3D-QSAR models are reliable in predicting novel ligand activities against Clk4 and Dyrk1A. The binding mode identified through docking ligands to the ATP binding domain of Clk4 was consistent with the structural properties and energy field contour maps characterized by pharmacophore and 3D-QSAR models and gave valuable insights into the structure–activity profile of 6-arylquinazolin-4-amine analogs. The obtained 3D-QSAR and pharmacophore models in combination with the binding mode between inhibitor and residues of Clk4 will be helpful for future lead compound identification and optimization to design potent and selective Clk4 and Dyrk1A inhibitors. PMID:23496085

  6. 3D-QSAR-Assisted Design, Synthesis, and Evaluation of Novobiocin Analogues

    PubMed Central

    2012-01-01

    Hsp90 is an attractive therapeutic target for the treatment of cancer. Extensive structural modifications to novobiocin, the first Hsp90 C-terminal inhibitor discovered, have produced a library of novobiocin analogues and revealed some structure–activity relationships. On the basis of the most potent novobiocin analogues generated from prior studies, a three-dimensional quantitative structure–activity (3D QSAR) model was built. In addition, a new set of novobiocin analogues containing various structural features supported by the 3D QSAR model were synthesized and evaluated against two breast cancer cell lines. Several new inhibitors produced antiproliferative activity at midnanomolar concentrations, which results through Hsp90 inhibition. PMID:23606927

  7. Rigorous Incorporation of Tautomers, Ionization Species, and Different Binding Modes into Ligand-Based and Receptor-Based 3D-QSAR Methods

    PubMed Central

    Natesan, Senthil; Balaz, Stefan

    2013-01-01

    Speciation of drug candidates and receptors caused by ionization, tautomerism, and/or covalent hydration complicates ligand- and receptor-based predictions of binding affinities by 3-dimensional structure-activity relationships (3D-QSAR). The speciation problem is exacerbated by tendency of tautomers to bind in multiple conformations or orientations (modes) in the same binding site. New forms of the 3D-QSAR correlation equations, capable of capturing this complexity, can be developed using the time hierarchy of all steps that lie behind the monitored biological process – binding, enzyme inhibition or receptor activity. In most cases, reversible interconversions of individual ligand and receptor species can be treated as quickly established equilibria because they are finished in a small fraction of the exposure time that is used to determine biological effects. The speciation equilibria are satisfactorily approximated by invariant fractions of individual ligand and receptor species for buffered experimental or in vivo conditions. For such situations, the observed drug-receptor association constant of a ligand is expressed as the sum of products, for each ligand and receptor species pair, of the association microconstant and the fractions of involved species. For multiple binding modes, each microconstant is expressed as the sum of microconstants of individual modes. This master equation leads to new 3D-QSAR correlation equations integrating the results of all molecular simulations or calculations, which are run for each ligand-receptor species pair separately. The multispecies, multimode 3D-QSAR approach is illustrated by a ligand-based correlation of transthyretin binding of thyroxine analogs and by a receptor-based correlation of inhibition of MK2 by benzothiophenes and pyrrolopyrimidines. PMID:23170882

  8. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  9. An alignment independent 3D QSAR study of the antiproliferative activity of 1,2,4,5-tetraoxanes.

    PubMed

    Cvijetić, Ilija N; Zizak, Zeljko P; Stanojković, Tatjana P; Juranić, Zorica D; Terzić, Natasa; Opsenica, Igor M; Opsenica, Dejan M; Juranić, Ivan O; Drakulić, Branko J

    2010-10-01

    An alignment-free 3D QSAR study on antiproliferative activity of the thirty-three 1,2,4,5-tetraoxane derivatives toward two human dedifferentiated cell lines was reported. GRIND methodology, where descriptors are derived from GRID molecular interaction fields (MIF), were used. It was found that pharmacophoric pattern attributed to the most potent derivatives include amido NH of the primary or secondary amide, and the acetoxy fragments at positions 7 and 12 of steroid core which are, along with the tetraoxane ring, common for all studied compounds. Independently, simple multiple regression model obtained by using the whole-molecular properties, confirmed that the hydrophobicity and the H-bond donor properties are the main parameters influencing potency of compounds toward human cervix carcinoma (HeLa) and human malignant melanoma (FemX) cell lines. Corollary, similar structural motifs are found to be important for the potency toward both examined cell lines.

  10. Alignment-independent technique for 3D QSAR analysis.

    PubMed

    Wilkes, Jon G; Stoyanova-Slavova, Iva B; Buzatu, Dan A

    2016-04-01

    Molecular biochemistry is controlled by 3D phenomena but structure-activity models based on 3D descriptors are infrequently used for large data sets because of the computational overhead for determining molecular conformations. A diverse dataset of 146 androgen receptor binders was used to investigate how different methods for defining molecular conformations affect the performance of 3D-quantitative spectral data activity relationship models. Molecular conformations tested: (1) global minimum of molecules' potential energy surface; (2) alignment-to-templates using equal electronic and steric force field contributions; (3) alignment using contributions "Best-for-Each" template; (4) non-energy optimized, non-aligned (2D > 3D). Aggregate predictions from models were compared. Highest average coefficients of determination ranged from R Test (2) = 0.56 to 0.61. The best model using 2D > 3D (imported directly from ChemSpider) produced R Test (2) = 0.61. It was superior to energy-minimized and conformation-aligned models and was achieved in only 3-7 % of the time required using the other conformation strategies. Predictions averaged from models built on different conformations achieved a consensus R Test (2) = 0.65. The best 2D > 3D model was analyzed for underlying structure-activity relationships. For the compound strongest binding to the androgen receptor, 10 substructural features contributing to binding were flagged. Utility of 2D > 3D was compared for two other activity endpoints, each modeling a medium sized data set. Results suggested that large scale, accurate predictions using 2D > 3D SDAR descriptors may be produced for interactions involving endocrine system nuclear receptors and other data sets in which strongest activities are produced by fairly inflexible substrates.

  11. Alignment-independent technique for 3D QSAR analysis

    NASA Astrophysics Data System (ADS)

    Wilkes, Jon G.; Stoyanova-Slavova, Iva B.; Buzatu, Dan A.

    2016-04-01

    Molecular biochemistry is controlled by 3D phenomena but structure-activity models based on 3D descriptors are infrequently used for large data sets because of the computational overhead for determining molecular conformations. A diverse dataset of 146 androgen receptor binders was used to investigate how different methods for defining molecular conformations affect the performance of 3D-quantitative spectral data activity relationship models. Molecular conformations tested: (1) global minimum of molecules' potential energy surface; (2) alignment-to-templates using equal electronic and steric force field contributions; (3) alignment using contributions "Best-for-Each" template; (4) non-energy optimized, non-aligned (2D > 3D). Aggregate predictions from models were compared. Highest average coefficients of determination ranged from R Test 2 = 0.56 to 0.61. The best model using 2D > 3D (imported directly from ChemSpider) produced R Test 2 = 0.61. It was superior to energy-minimized and conformation-aligned models and was achieved in only 3-7 % of the time required using the other conformation strategies. Predictions averaged from models built on different conformations achieved a consensus R Test 2 = 0.65. The best 2D > 3D model was analyzed for underlying structure-activity relationships. For the compound strongest binding to the androgen receptor, 10 substructural features contributing to binding were flagged. Utility of 2D > 3D was compared for two other activity endpoints, each modeling a medium sized data set. Results suggested that large scale, accurate predictions using 2D > 3D SDAR descriptors may be produced for interactions involving endocrine system nuclear receptors and other data sets in which strongest activities are produced by fairly inflexible substrates.

  12. Fragment-based strategy for structural optimization in combination with 3D-QSAR.

    PubMed

    Yuan, Haoliang; Tai, Wenting; Hu, Shihe; Liu, Haichun; Zhang, Yanmin; Yao, Sihui; Ran, Ting; Lu, Shuai; Ke, Zhipeng; Xiong, Xiao; Xu, Jinxing; Chen, Yadong; Lu, Tao

    2013-10-01

    Fragment-based drug design has emerged as an important methodology for lead discovery and drug design. Different with other studies focused on fragment library design and active fragment identification, a fragment-based strategy was developed in combination with three-dimensional quantitative structure-activity relationship (3D-QSAR) for structural optimization in this study. Based on a validated scaffold or fragment hit, a series of structural optimization was conducted to convert it to lead compounds, including 3D-QSAR modelling, active site analysis, fragment-based structural optimization and evaluation of new molecules. 3D-QSAR models and active site analysis provided sufficient information for confirming the SAR and pharmacophoric features for fragments. This strategy was evaluated through the structural optimization on a c-Met inhibitor scaffold 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one, which resulted in an c-Met inhibitor with high inhibitory activity. Our study suggested the effectiveness of this fragment-based strategy and the druggability of our newly explored active region. The reliability of this strategy indicated it could also be applied to facilitate lead optimization of other targets.

  13. Fragment-based strategy for structural optimization in combination with 3D-QSAR

    NASA Astrophysics Data System (ADS)

    Yuan, Haoliang; Tai, Wenting; Hu, Shihe; Liu, Haichun; Zhang, Yanmin; Yao, Sihui; Ran, Ting; Lu, Shuai; Ke, Zhipeng; Xiong, Xiao; Xu, Jinxing; Chen, Yadong; Lu, Tao

    2013-10-01

    Fragment-based drug design has emerged as an important methodology for lead discovery and drug design. Different with other studies focused on fragment library design and active fragment identification, a fragment-based strategy was developed in combination with three-dimensional quantitative structure-activity relationship (3D-QSAR) for structural optimization in this study. Based on a validated scaffold or fragment hit, a series of structural optimization was conducted to convert it to lead compounds, including 3D-QSAR modelling, active site analysis, fragment-based structural optimization and evaluation of new molecules. 3D-QSAR models and active site analysis provided sufficient information for confirming the SAR and pharmacophoric features for fragments. This strategy was evaluated through the structural optimization on a c-Met inhibitor scaffold 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one, which resulted in an c-Met inhibitor with high inhibitory activity. Our study suggested the effectiveness of this fragment-based strategy and the druggability of our newly explored active region. The reliability of this strategy indicated it could also be applied to facilitate lead optimization of other targets.

  14. Molecular docking and 3D-quantitative structure activity relationship analyses of peptidyl vinyl sulfones: Plasmodium Falciparum cysteine proteases inhibitors

    NASA Astrophysics Data System (ADS)

    Teixeira, Cátia; Gomes, José R. B.; Couesnon, Thierry; Gomes, Paula

    2011-08-01

    Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (39 molecules) of peptidyl vinyl sulfone derivatives as potential Plasmodium Falciparum cysteine proteases inhibitors. Two different methods of alignment were employed: (i) a receptor-docked alignment derived from the structure-based docking algorithm GOLD and (ii) a ligand-based alignment using the structure of one of the ligands derived from a crystal structure from the PDB databank. The best predictions were obtained for the receptor-docked alignment with a CoMFA standard model ( q 2 = 0.696 and r 2 = 0.980) and with CoMSIA combined electrostatic, and hydrophobic fields ( q 2 = 0.711 and r 2 = 0.992). Both models were validated by a test set of nine compounds and gave satisfactory predictive r 2 pred values of 0.76 and 0.74, respectively. CoMFA and CoMSIA contour maps were used to identify critical regions where any change in the steric, electrostatic, and hydrophobic fields may affect the inhibitory activity, and to highlight the key structural features required for biological activity. Moreover, the results obtained from 3D-QSAR analyses were superimposed on the Plasmodium Falciparum cysteine proteases active site and the main interactions were studied. The present work provides extremely useful guidelines for future structural modifications of this class of compounds towards the development of superior antimalarials.

  15. Receptor-based 3D QSAR analysis of estrogen receptor ligands - merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang

    2000-08-01

    One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient ( r 2 = 0.617, q 2 LOO = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained ( r 2 = 0.991, q 2 LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment ( r 2 = 0.951, q 2 LOO = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model.

  16. Multipose binding in molecular docking.

    PubMed

    Atkovska, Kalina; Samsonov, Sergey A; Paszkowski-Rogacz, Maciej; Pisabarro, M Teresa

    2014-02-14

    Molecular docking has been extensively applied in virtual screening of small molecule libraries for lead identification and optimization. A necessary prerequisite for successful differentiation between active and non-active ligands is the accurate prediction of their binding affinities in the complex by use of docking scoring functions. However, many studies have shown rather poor correlations between docking scores and experimental binding affinities. Our work aimed to improve this correlation by implementing a multipose binding concept in the docking scoring scheme. Multipose binding, i.e., the property of certain protein-ligand complexes to exhibit different ligand binding modes, has been shown to occur in nature for a variety of molecules. We conducted a high-throughput docking study and implemented multipose binding in the scoring procedure by considering multiple docking solutions in binding affinity prediction. In general, improvement of the agreement between docking scores and experimental data was observed, and this was most pronounced in complexes with large and flexible ligands and high binding affinities. Further developments of the selection criteria for docking solutions for each individual complex are still necessary for a general utilization of the multipose binding concept for accurate binding affinity prediction by molecular docking.

  17. Investigation on the binding mode of benzothiophene analogues as potent factor IXa (FIXa) inhibitors in thrombosis by CoMFA, docking and molecular dynamic studies.

    PubMed

    Hao, Ming; Li, Yan; Zhang, Shu-Wei; Yang, Wei

    2011-12-01

    Recently, benzothiophenes attract much attention of interest due to its possible inhibitory activity targeting FIXa, a blood coagulation factor that is essential for the amplification or consolidation phase of blood coagulation. To explore this inhibitory mechanism, three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) studies on a series of 84 benzothiophene analogues, for the first time, were performed. As a result, a highly predictive CoMFA model was developed with the q(2) = 0.52, r(2) = 0.97 and r(2)(pred) = 0.81, respectively. The CoMFA contour maps, the docking analysis, as well as the MD simulation results are all in a good agreement, proving the reliability and robustness of the model. These models and the information, we hoped, would be helpful in screening and development of novel drugs against thrombosis prior to synthesis.

  18. Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling

    NASA Astrophysics Data System (ADS)

    Cappel, Daniel; Dixon, Steven L.; Sherman, Woody; Duan, Jianxin

    2015-02-01

    3-D ligand conformations are required for most ligand-based drug design methods, such as pharmacophore modeling, shape-based screening, and 3-D QSAR model building. Many studies of conformational search methods have focused on the reproduction of crystal structures (i.e. bioactive conformations); however, for ligand-based modeling the key question is how to generate a ligand alignment that produces the best results for a given query molecule. In this work, we study different conformation generation modes of ConfGen and the impact on virtual screening (Shape Screening and e-Pharmacophore) and QSAR predictions (atom-based and field-based). In addition, we develop a new search method, called common scaffold alignment, that automatically detects the maximum common scaffold between each screening molecule and the query to ensure identical coordinates of the common core, thereby minimizing the noise introduced by analogous parts of the molecules. In general, we find that virtual screening results are relatively insensitive to the conformational search protocol; hence, a conformational search method that generates fewer conformations could be considered "better" because it is more computationally efficient for screening. However, for 3-D QSAR modeling we find that more thorough conformational sampling tends to produce better QSAR predictions. In addition, significant improvements in QSAR predictions are obtained with the common scaffold alignment protocol developed in this work, which focuses conformational sampling on parts of the molecules that are not part of the common scaffold.

  19. Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors

    PubMed Central

    Zhou, Nannan; Xu, Yuan; Liu, Xian; Wang, Yulan; Peng, Jianlong; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang

    2015-01-01

    The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors. PMID:26110383

  20. Synthesis, in vitro antitubercular activity and 3D-QSAR study of 1,4-dihydropyridines.

    PubMed

    Manvar, Atul T; Pissurlenkar, Raghuvir R S; Virsodia, Vijay R; Upadhyay, Kuldip D; Manvar, Dinesh R; Mishra, Arun K; Acharya, Hrishikesh D; Parecha, Alpesh R; Dholakia, Chintan D; Shah, Anamik K; Coutinho, Evans C

    2010-05-01

    In continuation of our research program on new antitubercular agents, this article is a report of the synthesis of 97 various symmetrical, unsymmetrical, and N-substituted 1,4-dihydropyridines. The synthesized molecules were tested for their activity against M. tuberculosis H (37)Rv strain with rifampin as the standard drug. The percentage inhibition was found in the range 3-93%. In an effort to understand the relationship between structure and activity, 3D-QSAR studies were also carried out on a subset that is representative of the molecules synthesized. For the generation of the QSAR models, a training set of 35 diverse molecules representing the synthesized molecules was utilized. The molecules were aligned using the atom-fit technique. The CoMFA and CoMSIA models generated on the molecules aligned by the atom-fit method show a correlation coefficient (r (2)) of 0.98 and 0.95 with cross-validated r (2)(q (2)) of 0.56 and 0.62, respectively. The 3D-QSAR models were externally validated against a test set of 19 molecules (aligned previously with the training set) for which the predictive r(2)(r(r)(pred)) is recorded as 0.74 and 0.69 for the CoMFA and CoMSIA models, respectively. The models were checked for chance correlation through y-scrambling. The QSAR models revealed the importance of the conformational flexibility of the substituents in antitubercular activity.

  1. Synthesis, biological evaluation and 3D-QSAR studies of novel 4,5-dihydro-1H-pyrazole niacinamide derivatives as BRAF inhibitors.

    PubMed

    Li, Cui-Yun; Li, Qing-Shan; Yan, Li; Sun, Xiao-Guang; Wei, Ran; Gong, Hai-Bin; Zhu, Hai-Liang

    2012-06-15

    A series of novel 4,5-dihydropyrazole derivatives containing niacinamide moiety as potential V600E mutant BRAF kinase (BRAF(V600E)) inhibitors were designed and synthesized. Results of the bioassays against BRAF(V600E) and WM266.4 human melanoma cell line showed several compounds to be endowed potent activities with IC(50) and GI(50) value in low micromolar range, among which compound 27e, (5-(4-Chlorophenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)6-methylpyridin-3-yl methanone (IC(50)=0.20 μM, GI(50)=0.89 μM) was bearing the best bioactivity comparable with the positive control Sorafenib. Docking simulation was performed to determine the probable binding model and 3D-QSAR model was built to provide more pharmacophore understanding that could use to design new agents with more potent BRAF(V600E) inhibitory activity.

  2. CoMFA and CoMSIA 3D-QSAR analysis on hydroxamic acid derivatives as urease inhibitors.

    PubMed

    Ul-Haq, Zaheer-; Wadood, Abdul; Uddin, Reaz

    2009-02-01

    Urease (EC 3.5.1.5) serves as a virulence factor in pathogens that are responsible for the development of many diseases in humans and animals. Urease allows soil microorganisms to use urea as a source of nitrogen and aid in the rapid break down of urea-based fertilizers resulting in phytopathicity. It has been well established that hydroxamic acids are the potent inhibitors of urease activity. The 3D-QSAR studies on thirty five hydroxamic acid derivatives as known urease inhibitors were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The CoMFA model produced statistically significant results with cross-validated (q(2)) 0.532 and conventional (r(2)) correlation coefficients 0.969.The model indicated that the steric field (70.0%) has greater influence on hydroxamic acid inhibitors than the electrostatic field (30.0%). Furthermore, five different fields: steric, electrostatic, hydrophobic, H-bond donor and H-bond acceptor assumed to generate the CoMSIA model, which gave q(2) 0.665 and r(2) 0.976.This model showed that steric (43.0%), electrostatic (26.4%) and hydrophobic (20.3%) properties played a major role in urease inhibition. The analysis of CoMFA and CoMSIA contour maps provided insight into the possible modification of the hydroxamic acid derivatives for improved activity.

  3. Design, synthesis and 3D-QSAR of beta-carboline derivatives as potent antitumor agents.

    PubMed

    Cao, Rihui; Guan, Xiangdong; Shi, Buxi; Chen, Zhiyong; Ren, Zhenhua; Peng, Wenlie; Song, Huacan

    2010-06-01

    In a continuing effort to develop novel beta-carbolines endowed with better pharmacological profiles, a series of beta-carboline derivatives were designed and synthesized based on the previously developed SARs. Cytotoxicities in vitro of these compounds against a panel of human tumor cell lines were also investigated. The results demonstrated that the N2-benzylated beta-carbolinium bromides 56-60 represented the most potent compounds with IC50 values lower than 10 microM. The application of 3D-QSAR to these compounds explored the structural basis for their biological activities. CoMFA (q2=0.513, r2=0.862) and CoMSIA (q2=0.503, r2=0.831) models were developed for a set of 47 beta-carbolines. The results indicated that the antitumor pharmacophore of these molecules were marked at position-1, -2, -3, -7 and -9 of beta-carboline ring.

  4. DockingShop: A Tool for Interactive Molecular Docking

    SciTech Connect

    Lu, Ting-Cheng; Max, Nelson L.; Ding, Jinhui; Bethel, E. Wes; Crivelli, Silvia N.

    2005-04-24

    Given two independently determined molecular structures, the molecular docking problem predicts the bound association, or best fit between them, while allowing for conformational changes of the individual molecules during construction of a molecular complex. Docking Shop is an integrated environment that permits interactive molecular docking by navigating a ligand or protein to an estimated binding site of a receptor with real-time graphical feedback of scoring factors as visual guides. Our program can be used to create initial configurations for a protein docking prediction process. Its output--the structure of aprotein-ligand or protein-protein complex--may serve as an input for aprotein docking algorithm, or an optimization process. This tool provides molecular graphics interfaces for structure modeling, interactive manipulation, navigation, optimization, and dynamic visualization to aid users steer the prediction process using their biological knowledge.

  5. 3D-QSAR AND CONTOUR MAP ANALYSIS OF TARIQUIDAR ANALOGUES AS MULTIDRUG RESISTANCE PROTEIN-1 (MRP1) INHIBITORS

    PubMed Central

    Kakarla, Prathusha; Inupakutika, Madhuri; Devireddy, Amith R.; Gunda, Shravan Kumar; Willmon, Thomas Mark; Ranjana, KC; Shrestha, Ugina; Ranaweera, Indrika; Hernandez, Alberto J.; Barr, Sharla; Varela, Manuel F.

    2016-01-01

    One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2(non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D–contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates. PMID:26913287

  6. Design, synthesis and 3D-QSAR studies of novel 1,4-dihydropyridines as TGFβ/Smad inhibitors.

    PubMed

    Längle, Daniel; Marquardt, Viktoria; Heider, Elena; Vigante, Brigita; Duburs, Gunars; Luntena, Iveta; Flötgen, Dirk; Golz, Christopher; Strohmann, Carsten; Koch, Oliver; Schade, Dennis

    2015-05-05

    Targeting TGFβ/Smad signaling is an attractive strategy for several therapeutic applications given its role as a key player in many pathologies, including cancer, autoimmune diseases and fibrosis. The class of b-annelated 1,4-dihydropyridines (DHPs) represents promising novel pharmacological tools as they interfere with this pathway in a novel fashion, i.e. through induction of TGFβ receptor type II degradation. In the present work, >40 rationally designed, novel DHPs were synthesized and evaluated for TGFβ inhibition, substantially expanding the current understanding of the SAR profile. Key findings include that the 2-position tolerates a wide variety of polar functionalities, suggesting that this region could possibly be solvent-exposed within the (thus far) unknown cellular target. A structural explanation for pathway selectivity is provided based on a diverse series of 4″-substituted DHPs, including molecular electrostatic potential (MEP) calculations. Moreover, the absolute configuration for the chiral 4-position was determined by X-ray crystal analysis and revealed that the bioactive (+)-enantiomers are (R)-configured. Another key objective was to establish a 3D-QSAR model which turned out to be robust (r(2) = 0.93) with a good predictive power (r(2)pred = 0.69). This data further reinforces the hypothesis that this type of DHPs exerts its novel TGFβ inhibitory mode of action through binding a distinct target and that unspecific activities that would derive from intrinsic properties of the ligands (e.g., lipophilicity) play a negligible role. Therefore, the present study provides a solid basis for further ligand-based design of additional analogs or DHP scaffold-derived compounds for hit-to-lead optimization, required for more comprehensive pharmacological studies in vivo.

  7. 3D-QSAR study and design of 4-hydroxyamino α-pyranone carboxamide analogues as potential anti-HCV agents

    NASA Astrophysics Data System (ADS)

    Li, Wenlian; Xiao, Faqi; Zhou, Mingming; Jiang, Xuejin; Liu, Jun; Si, Hongzong; Xie, Meng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-09-01

    The three dimensional-quantitative structure activity relationship (3D-QSAR) study was performed on a series of 4-hydroxyamino α-pyranone carboxamide analogues using comparative molecular similarity indices analysis (COMSIA). The purpose of the present study was to develop a satisfactory model providing a reliable prediction based on 4-hydroxyamino α-pyranone carboxamide analogues as anti-HCV (hepatitis C virus) inhibitors. The statistical results and the results of validation of this optimum COMSIA model were satisfactory. Furthermore, analysis of the contour maps helped to provide guidelines for finding structural requirement. Therefore, the satisfactory results from this study may provide useful guidelines for drug development of anti-HCV inhibitors.

  8. Strategies to design pyrazolyl urea derivatives for p38 kinase inhibition: a molecular modeling study

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ravindra G.; Srivani, Palukuri; Achaiah, Garlapati; Sastry, G. Narahari

    2007-04-01

    The p38 protein kinase is a serine-threonine mitogen activated protein kinase, which plays an important role in inflammation and arthritis. A combined study of 3D-QSAR and molecular docking has been undertaken to explore the structural insights of pyrazolyl urea p38 kinase inhibitors. The 3D-QSAR studies involved comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA). The best CoMFA model was derived from the atom fit alignment with a cross-validated r 2 ( q 2) value of 0.516 and conventional r 2 of 0.950, while the best CoMSIA model yielded a q 2 of 0.455 and r 2 of 0.979 (39 molecules in training set, 9 molecules in test set). The CoMFA and CoMSIA contour maps generated from these models provided inklings about the influence of interactive molecular fields in the space on the activity. GOLD, Sybyl (FlexX) and AutoDock docking protocols were exercised to explore the protein-inhibitor interactions. The integration of 3D-QSAR and molecular docking has proffered essential structural features of pyrazolyl urea inhibitors and also strategies to design new potent analogues with enhanced activity.

  9. Aldose reductase inhibitors for diabetic complications: Receptor induced atom-based 3D-QSAR analysis, synthesis and biological evaluation.

    PubMed

    Vyas, Bhawna; Singh, Manjinder; Kaur, Maninder; Bahia, Malkeet Singh; Jaggi, Amteshwar Singh; Silakari, Om; Singh, Baldev

    2015-06-01

    Herein, atom-based 3D-QSAR analysis was performed using receptor-guided alignment of 46 flavonoid inhibitors of aldose reductase (ALR2) enzyme. 3D-QSAR models were generated in PHASE programme, and the best model corresponding to PLS factor four (QSAR4), was selected based on different statistical parameters (i.e., Rtrain(2), 0.96; Qtest(2) 0.81; SD, 0.26). The contour plots of different structural properties generated from the selected model were utilized for the designing of five new congener molecules. These designed molecules were duly synthesized, and evaluated for their in vitro ALR2 inhibitory activity that resulted in the micromolar (IC50<22μM) activity of all molecules. Thus, the newly designed molecules having ALR inhibitory potential could be employed for the management of diabetic complications.

  10. Azolium analogues as CDK4 inhibitors: Pharmacophore modeling, 3D QSAR study and new lead drug discovery

    NASA Astrophysics Data System (ADS)

    Rondla, Rohini; Padma Rao, Lavanya Souda; Ramatenki, Vishwanath; Vadija, Rajender; Mukkera, Thirupathi; Potlapally, Sarita Rajender; Vuruputuri, Uma

    2017-04-01

    The cyclin-dependent kinase 4 (CDK4) enzyme is a key regulator in cell cycle G1 phase progression. It is often overexpressed in variety of cancer cells, which makes it an attractive therapeutic target for cancer treatment. A number of chemical scaffolds have been reported as CDK4 inhibitors in the literature, and in particular azolium scaffolds as potential inhibitors. Here, a ligand based pharmacophore modeling and an atom based 3D-QSAR analyses for a series of azolium based CDK4 inhibitors are presented. A five point pharmacophore hypothesis, i.e. APRRR with one H-bond acceptor (A), one positive cationic feature (P) and three ring aromatic sites (R) is developed, which yielded an atom based 3D-QSAR model that shows an excellent correlation coefficient value- R2 = 0.93, fisher ratio- F = 207, along with good predictive ability- Q2 = 0.79, and Pearson R value = 0.89. The visual inspection of the 3D-QSAR model, with the most active and the least active ligands, demonstrates the favorable and unfavorable structural regions for the activity towards CDK4. The roles of positively charged nitrogen, the steric effect, ligand flexibility, and the substituents on the activity are in good agreement with the previously reported experimental results. The generated 3D QSAR model is further applied as query for a 3D database screening, which identifies 23 lead drug candidates with good predicted activities and diverse scaffolds. The ADME analysis reveals that, the pharmacokinetic parameters of all the identified new leads are within the acceptable range.

  11. Prediction of octanol-air partition coefficients for polychlorinated biphenyls (PCBs) using 3D-QSAR models.

    PubMed

    Chen, Ying; Cai, Xiaoyu; Jiang, Long; Li, Yu

    2016-02-01

    Based on the experimental data of octanol-air partition coefficients (KOA) for 19 polychlorinated biphenyl (PCB) congeners, two types of QSAR methods, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), are used to establish 3D-QSAR models using the structural parameters as independent variables and using logKOA values as the dependent variable with the Sybyl software to predict the KOA values of the remaining 190 PCB congeners. The whole data set (19 compounds) was divided into a training set (15 compounds) for model generation and a test set (4 compounds) for model validation. As a result, the cross-validation correlation coefficient (q(2)) obtained by the CoMFA and CoMSIA models (shuffled 12 times) was in the range of 0.825-0.969 (>0.5), the correlation coefficient (r(2)) obtained was in the range of 0.957-1.000 (>0.9), and the SEP (standard error of prediction) of test set was within the range of 0.070-0.617, indicating that the models were robust and predictive. Randomly selected from a set of models, CoMFA analysis revealed that the corresponding percentages of the variance explained by steric and electrostatic fields were 23.9% and 76.1%, respectively, while CoMSIA analysis by steric, electrostatic and hydrophobic fields were 0.6%, 92.6%, and 6.8%, respectively. The electrostatic field was determined as a primary factor governing the logKOA. The correlation analysis of the relationship between the number of Cl atoms and the average logKOA values of PCBs indicated that logKOA values gradually increased as the number of Cl atoms increased. Simultaneously, related studies on PCB detection in the Arctic and Antarctic areas revealed that higher logKOA values indicate a stronger PCB migration ability. From CoMFA and CoMSIA contour maps, logKOA decreased when substituents possessed electropositive groups at the 2-, 3-, 3'-, 5- and 6- positions, which could reduce the PCB migration ability. These results are

  12. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing triaryl pyrazoline derivatives as potential B-Raf inhibitors.

    PubMed

    Yang, Yu-Shun; Yang, Bing; Zou, Yan; Li, Guigen; Zhu, Hai-Liang

    2016-07-01

    A series of novel dioxin-containing triaryl pyrazoline derivatives C1-C20 have been synthesized. Their B-Raf inhibitory and anti-proliferation activities were evaluated. Compound C6 displayed the most potent biological activity against B-Raf(V600E) and WM266.4 human melanoma cell line with corresponding IC50 value of 0.04μM and GI50 value of 0.87μM, being comparable with the positive controls and more potent than our previous best compounds. Moreover, C6 was selective for B-Raf(V600E) from B-Raf(WT), C-Raf and EGFR and low toxic. The docking simulation suggested the potent bioactivity might be caused by breaking the limit of previous binding pattern. A new 3D QSAR model was built with the activity data and binding conformations to conduct visualized SAR discussion as well as to introduce new directions. Stretching the backbone to outer space or totally reversing the backbone are both potential orientations for future researches.

  13. Pharmacophore modelling, atom-based 3D-QSAR generation and virtual screening of molecules projected for mPGES-1 inhibitory activity.

    PubMed

    Misra, S; Saini, M; Ojha, H; Sharma, D; Sharma, K

    2017-01-01

    COX-2 inhibitors exhibit anticancer effects in various cancer models but due to the adverse side effects associated with these inhibitors, targeting molecules downstream of COX-2 (such as mPGES-1) has been suggested. Even after calls for mPGES-1 inhibitor design, to date there are only a few published inhibitors targeting the enzyme and displaying anticancer activity. In the present study, we have deployed both ligand and structure-based drug design approaches to hunt novel drug-like candidates as mPGES-1 inhibitors. Fifty-four compounds with tested mPGES-1 inhibitory value were used to develop a model with four pharmacophoric features. 3D-QSAR studies were undertaken to check the robustness of the model. Statistical parameters such as r(2) = 0.9924, q(2) = 0.5761 and F test = 1139.7 indicated significant predictive ability of the proposed model. Our QSAR model exhibits sites where a hydrogen bond donor, hydrophobic group and the aromatic ring can be substituted so as to enhance the efficacy of the inhibitor. Furthermore, we used our validated pharmacophore model as a three-dimensional query to screen the FDA-approved Lopac database. Finally, five compounds were selected as potent mPGES-1 inhibitors on the basis of their docking energy and pharmacokinetic properties such as ADME and Lipinski rule of five.

  14. Computational methods for molecular docking

    SciTech Connect

    Klebe, G.; Lengauer, T.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Recently, it has been demonstrated that the knowledge of the three-dimensional structure of the protein can be used to derive new protein ligands with improved binding properties. This tutorial focuses on the following questions: What is its binding affinity toward a particular receptor? What are putative conformations of a ligand at the binding site? What are the similarities of different ligands in terms of their recognition capabilities? Where and in which orientation will a ligand bind to the active site? How is a new putative protein ligand selected? An overview is presented of the algorithms which are presently used to handle and predict protein-ligand interactions and to dock small molecule ligands into proteins.

  15. 3-Heterocycle-phenyl N-alkylcarbamates as FAAH inhibitors: design, synthesis and 3D-QSAR studies.

    PubMed

    Käsnänen, Heikki; Myllymäki, Mikko J; Minkkilä, Anna; Kataja, Antti O; Saario, Susanna M; Nevalainen, Tapio; Koskinen, Ari M P; Poso, Antti

    2010-02-01

    Carbamates are a well-established class of fatty acid amide hydrolase (FAAH) inhibitors. Here we describe the synthesis of meta-substituted phenolic N-alkyl/aryl carbamates and their in vitro FAAH inhibitory activities. The most potent compound, 3-(oxazol-2yl)phenyl cyclohexylcarbamate (2 a), inhibited FAAH with a sub-nanomolar IC(50) value (IC(50)=0.74 nM). Additionally, we developed and validated three-dimensional quantitative structure-activity relationships (QSAR) models of FAAH inhibition combining the newly disclosed carbamates with our previously published inhibitors to give a total set of 99 compounds. Prior to 3D-QSAR modeling, the degree of correlation between FAAH inhibition and in silico reactivity was also established. Both 3D-QSAR methods used, CoMSIA and GRID/GOLPE, produced statistically significant models with coefficient of correlation for external prediction (R(2) (PRED)) values of 0.732 and 0.760, respectively. These models could be of high value in further FAAH inhibitor design.

  16. Synthesis, antiviral activity, 3D-QSAR, and interaction mechanisms study of novel malonate derivatives containing quinazolin-4(3H)-one moiety.

    PubMed

    Chen, Meihang; Li, Pei; Hu, Deyu; Zeng, Song; Li, Tianxian; Jin, Linhong; Xue, Wei; Song, Baoan

    2016-01-01

    A series of novel malonate derivatives containing quinazolin-4(3H)-one moiety were synthesized and evaluated for their antiviral activities against cucumber mosaic virus (CMV). Results indicated that the title compounds exhibited good antiviral activities. Notably, compounds g15, g16, g17, and g18 exhibited excellent curative activities in vivo against CMV, with 50% effective concentration (EC50) values of 208.36, 153.78, 181.47, and 164.72μg/mL, respectively, which were better than that of Ningnanmycin (256.35μg/mL) and Ribavirin (523.34μg/mL). Moreover, statistically valid three-dimensional quantitative structure-activity relationship (3D-QSAR) models with good correlation and predictive power were obtained with comparative molecular field analysis (CoMFA) steric and electrostatic fields (r(2)=0.990, q(2)=0.577) and comparative molecular similarity indices analysis (CoMSIA) with combined steric, electrostatic, hydrophobic and hydrogen bond acceptor fields (r(2)=0.977, q(2)=0.516), respectively. Based on those models, compound g25 was designed, synthesized, and showed better curative activity (146.30μg/mL) than that of compound g16. The interaction of between cucumber mosaic virus coat protein (CMV CP) and g25 with 1:1.83 ratio is typically spontaneous and exothermic with micromole binding affinity by isothermal titration calorimetry (ITC) and fluorescence spectroscopy investigation.

  17. Combined CoMFA and CoMSIA 3D-QSAR study of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor.

    PubMed

    Romero-Parra, Javier; Chung, Hery; Tapia, Ricardo A; Faúndez, Mario; Morales-Verdejo, Cesar; Lorca, Marcos; Lagos, Carlos F; Di Marzo, Vincenzo; David Pessoa-Mahana, C; Mella, Jaime

    2017-04-01

    The preceding years have brought an exponential increase in our understanding of the endocannabinoid system (ECS), including the knowledge of CB1 and CB2 cannabinoid receptors, endocannabinoids, and the enzymes that synthesize and degrade endocannabinoids. Among these ECS components CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential to treat numerous pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. Recently, our research group has reported a new series of non-cytotoxic benzo[d]imidazoles and benzo[b]thiophenes displaying high CB2/CB1 selectivity index. In order to investigate the structural requirements for CB2 ligands and to derive a predictive model that can be used for the design of novel selective CB2 ligands, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on the above mentioned chemical series employing comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques. The CoMFA and CoMSIA models displayed high external predictability (rpred(2) 0.919 and 0.908) and good statistical robustness. Valuable information regarding the steric, electrostatic and hydrophobic properties of the molecules was obtained, and several modifications around both heterocycles were evaluated with the aim to generate new promising series of benzo[d]imidazoles and benzo[b]thiophenes derivatives displaying high CB2 selectivity and low toxicity.

  18. 3D-QSAR Studies on Barbituric Acid Derivatives as Urease Inhibitors and the Effect of Charges on the Quality of a Model.

    PubMed

    Ul-Haq, Zaheer; Ashraf, Sajda; Al-Majid, Abdullah Mohammed; Barakat, Assem

    2016-04-30

    Urease enzyme (EC 3.5.1.5) has been determined as a virulence factor in pathogenic microorganisms that are accountable for the development of different diseases in humans and animals. In continuance of our earlier study on the helicobacter pylori urease inhibition by barbituric acid derivatives, 3D-QSAR (three dimensional quantitative structural activity relationship) advance studies were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods. Different partial charges were calculated to examine their consequences on the predictive ability of the developed models. The finest developed model for CoMFA and CoMSIA were achieved by using MMFF94 charges. The developed CoMFA model gives significant results with cross-validation (q²) value of 0.597 and correlation coefficients (r²) of 0.897. Moreover, five different fields i.e., steric, electrostatic, and hydrophobic, H-bond acceptor and H-bond donors were used to produce a CoMSIA model, with q² and r² of 0.602 and 0.98, respectively. The generated models were further validated by using an external test set. Both models display good predictive power with r²pred ≥ 0.8. The analysis of obtained CoMFA and CoMSIA contour maps provided detailed insight for the promising modification of the barbituric acid derivatives with an enhanced biological activity.

  19. 3D-QSAR Studies on Barbituric Acid Derivatives as Urease Inhibitors and the Effect of Charges on the Quality of a Model

    PubMed Central

    Ul-Haq, Zaheer; Ashraf, Sajda; Al-Majid, Abdullah Mohammed; Barakat, Assem

    2016-01-01

    Urease enzyme (EC 3.5.1.5) has been determined as a virulence factor in pathogenic microorganisms that are accountable for the development of different diseases in humans and animals. In continuance of our earlier study on the helicobacter pylori urease inhibition by barbituric acid derivatives, 3D-QSAR (three dimensional quantitative structural activity relationship) advance studies were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods. Different partial charges were calculated to examine their consequences on the predictive ability of the developed models. The finest developed model for CoMFA and CoMSIA were achieved by using MMFF94 charges. The developed CoMFA model gives significant results with cross-validation (q2) value of 0.597 and correlation coefficients (r2) of 0.897. Moreover, five different fields i.e., steric, electrostatic, and hydrophobic, H-bond acceptor and H-bond donors were used to produce a CoMSIA model, with q2 and r2 of 0.602 and 0.98, respectively. The generated models were further validated by using an external test set. Both models display good predictive power with r2pred ≥ 0.8. The analysis of obtained CoMFA and CoMSIA contour maps provided detailed insight for the promising modification of the barbituric acid derivatives with an enhanced biological activity. PMID:27144563

  20. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates.

  1. Structural insights of JAK2 inhibitors: pharmacophore modeling and ligand-based 3D-QSAR studies of pyrido-indole derivatives.

    PubMed

    Gade, Deepak Reddy; Kunala, Pavan; Raavi, Divya; Reddy, Pavan Kumar K; Prasad, Rajendra V V S

    2015-04-01

    In this study we have performed pharmacophore modeling and built a 3D QSAR model for pyrido-indole derivatives as Janus Kinase 2 inhibitors. An efficient pharmacophore has been identified from a data set of 51 molecules and the identified pharmacophore hypothesis consisted of one hydrogen bond acceptor, two hydrogen bond donors and three aromatic rings, i.e. ADDRRR. A powerful 3D-QSAR model has also been constructed by employing Partial Least Square regression analysis with a regression coefficient of 0.97 (R(2)) and Q(2) of 0.95, and Pearson-R of 0.98.

  2. An anchor-dependent molecular docking process for docking small flexible molecules into rigid protein receptors.

    PubMed

    Lin, Thy-Hou; Lin, Guan-Liang

    2008-08-01

    A molecular docking method designated as ADDock, anchor-dependent molecular docking process for docking small flexible molecules into rigid protein receptors, is presented in this article. ADDock makes the bond connection lists for atoms based on anchors chosen for building molecular structures for docking small flexible molecules or ligands into rigid active sites of protein receptors. ADDock employs an extended version of piecewise linear potential for scoring the docked structures. Since no translational motion for small molecules is implemented during the docking process, ADDock searches the best docking result by systematically changing the anchors chosen, which are usually the single-edge connected nodes or terminal hydrogen atoms of ligands. ADDock takes intact ligand structures generated during the docking process for computing the docked scores; therefore, no energy minimization is required in the evaluation phase of docking. The docking accuracy by ADDock for 92 receptor-ligand complexes docked is 91.3%. All these complexes have been docked by other groups using other docking methods. The receptor-ligand steric interaction energies computed by ADDock for some sets of active and inactive compounds selected and docked into the same receptor active sites are apparently separated. These results show that based on the steric interaction energies computed between the docked structures and receptor active sites, ADDock is able to separate active from inactive compounds for both being docked into the same receptor.

  3. A class of novel Schiff's bases: Synthesis, therapeutic action for chronic pain, anti-inflammation and 3D QSAR analysis.

    PubMed

    Zhou, Yinjian; Zhao, Ming; Wu, Yingting; Li, Chunyu; Wu, Jianhui; Zheng, Meiqing; Peng, Li; Peng, Shiqi

    2010-03-15

    To discover analgesics for treating chronic pain 17 novel Schiff's bases, N,N'-(Z-allylidene-1,3-diyl)bisamino acid methyl esters were prepared from 1,1,3,3,-tetramethoxypropane and amino acid methyl esters. On tail-flick mouse model 20 micromol/kg of these Schiff's bases were orally administered, the analgesic action started 30 min after administration, reached the maximum 120 min after administration, and at 180 min this action was still observed. On a xylene-induced ear edema mouse model 20 micromol/kg of these Schiff's bases exhibited desirable anti-inflammation. Thus the present Schiff's bases are able to treat chronic pain from inflammation. The effect of the side chains of the amino acid residues of these Schiff's bases on the analgesic activity was explained with 3D QSAR.

  4. Pharmacophore modeling and atom-based 3D-QSAR studies on amino derivatives of indole as potent isoprenylcysteine carboxyl methyltransferase (Icmt) inhibitors

    NASA Astrophysics Data System (ADS)

    Bhadoriya, Kamlendra Singh; Sharma, Mukesh C.; Jain, Shailesh V.

    2015-02-01

    Icmt enzymes are of particular importance in the post-translational modification of proteins that are involved in the regulation of cell growth. Thus, effective Icmt inhibitors may be of significant therapeutic importance in oncogenesis. To determine the structural requirements responsible for high affinity of previously reported amino derivatives of indole as Icmt inhibitors, a successful pharmacophore generation and atom-based 3D-QSAR analysis have been carried out. The best four-point pharmacophore model with four features HHRR: two hydrophobic groups (H) and two aromatic rings (R) as pharmacophore features was developed by PHASE module of Schrodinger suite. In this study, highly predictive 3D-QSAR models have been developed for Icmt inhibition using HHRR.191 hypothesis. The pharmacophore hypothesis yielded a 3D-QSAR model with good partial least-square (PLS) statistics results. The validation of the PHASE model was done by dividing the dataset into training and test set. The statistically significant the four-point pharmacophore hypothesis yielded a 3D-QSAR model with good PLS statistics results (R2 = 0.9387, Q2 = 0.8132, F = 114.8, SD = 0.1567, RMSE = 0.2682, Pearson-R = 0.9147). The generated model showed excellent predictive power, with a correlation coefficient of Q2 = 0.8132. The results of ligand-based pharmacophore hypothesis and atom-based 3D-QSAR provide detailed structural insights as well as highlights important binding features of novel amino derivatives of indole as Icmt inhibitors which can afford guidance for the rational drug design of novel, potent and promising Icmt inhibitors with enhanced potencies and may prove helpful for further lead optimization and virtual screening.

  5. The 3-D QSAR study of anticancer 1-N-substituted imidazo- and pyrrolo-quinoline-4,9-dione derivatives by CoMFA and CoMSIA.

    PubMed

    Suh, M E; Kang, M J; Park, S Y

    2001-11-01

    The 3-D QSAR analysis with new imidazo- and pyrrolo-quinolinedione derivatives was conducted by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). When crossvalidation value (q(2)) is 0.844 at four components, the Pearson correlation coefficient (r(2)) of the CoMFA is 0.964. In the CoMSIA, q(2) is 0.709 at six components and r(2) is 0.969. Unknown samples were analyzed, using QSAR analyzed results from the CoMFA and CoMSIA methods. Excellent agreement was obtained between, with an error range of 0.01-0.15 the calculated values and measured in vitro cytotoxic activities against human lung A-549 cancer cell lines.

  6. Structure Optimization of Neuraminidase Inhibitors as Potential Anti-Influenza (H1N1Inhibitors) Agents Using QSAR and Molecular Docking Studies.

    PubMed

    Inamdar, Poonam; Bhandari, Shashikant; Sonawane, Bhagyashri; Hole, Asha; Jadhav, Chintamani

    2014-01-01

    The urgent need of neuraminidase inhibitors (NI) has provided an impetus for understanding the structure requisite at molecular level. Our search for selective inhibitors of neuraminidase has led to the identification of pharmacophoric requirements at various positions around acyl thiourea pharmacophore. The main objective of present study is to develop selective NI, with least toxicity and drug like ADMET properties. Electronic, Steric requirements were defined using kohnone nearest neighbour- molecular field analysis (kNN-MFA) model of 3D-QSAR studies. Results generated by QSAR studies showed that model has good internal as well as external predictivity. Such defined requirements were used to generate new chemical entities which exhibit higher promising predicted activities. To check selective binding of designed NCE's docking studies were carried out using the crystal structure of the neuraminidase enzyme having co-crystallized ligand Oseltamivir. Thus, molecular modelling provided a good platform to optimize the acyl thiourea pharmacophore for designing its derivatives having potent anti-viral activity.

  7. A Mechanism-based 3D-QSAR Approach for Classification ...

    EPA Pesticide Factsheets

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π–π interaction with Trp86

  8. Three-dimensional quantitative structure-activity relationship (3D QSAR) and pharmacophore elucidation of tetrahydropyran derivatives as serotonin and norepinephrine transporter inhibitors

    NASA Astrophysics Data System (ADS)

    Kharkar, Prashant S.; Reith, Maarten E. A.; Dutta, Aloke K.

    2008-01-01

    Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of -OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.

  9. Molecular docking to ensembles of protein structures.

    PubMed

    Knegtel, R M; Kuntz, I D; Oshiro, C M

    1997-02-21

    Until recently, applications of molecular docking assumed that the macromolecular receptor exists in a single, rigid conformation. However, structural studies involving different ligands bound to the same target biomolecule frequently reveal modest but significant conformational changes in the target. In this paper, two related methods for molecular docking are described that utilize information on conformational variability from ensembles of experimental receptor structures. One method combines the information into an "energy-weighted average" of the interaction energy between a ligand and each receptor structure. The other method performs the averaging on a structural level, producing a "geometry-weighted average" of the inter-molecular force field score used in DOCK 3.5. Both methods have been applied in docking small molecules to ensembles of crystal and solution structures, and we show that experimentally determined binding orientations and computed energies of known ligands can be reproduced accurately. The use of composite grids, when conformationally different protein structures are available, yields an improvement in computational speed for database searches in proportion to the number of structures.

  10. Identification of potential Gly/NMDA receptor antagonists by cheminformatics approach: a combination of pharmacophore modelling, virtual screening and molecular docking studies.

    PubMed

    Ugale, V G; Bari, S B

    2016-01-01

    The Gly/NMDA receptor has become known as potential target for the management of neurodegenerative diseases. Discovery of Gly/NMDA antagonists has thus attracted much attention in recent years. In the present research, a cheminformatics approach has been used to determine structural requirements for Gly/NMDA antagonism and to identify potential antagonists. Here, 37 quinoxaline derivatives were selected to develop a significant pharmacophore model with good certainty. The selected model was validated by leave-one-out cross-validation, an external test set, decoy set and Y-randomization test. Applicability domain was verified by the standardization approach. The validated 3D-QSAR model was used to screen virtual hits from the ZINC database by pharmacophore mapping. Molecular docking was used for assessment of receptor-ligand binding modes and binding affinities. The GlideScore and molecular interactions with critical amino acids were considered as crucial features to identify final hits. Furthermore, hits were analysed for in silico pharmacokinetic parameters and Lipinski's rule of five, demonstrating their potential as drug-like candidates. The PubChem and SciFinder search tools were used to authenticate the novelty of leads retrieved. Finally, five different leads have been suggested as putative novel candidates for the exploration of potent Gly/NMDA receptor antagonists.

  11. Quantitative studies on structure-ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR.

    PubMed

    Jing, Pu; Zhao, Shujuan; Ruan, Siyu; Sui, Zhongquan; Chen, Lihong; Jiang, Linlei; Qian, Bingjun

    2014-02-15

    The 3-dimensional quantitative structure activity relationship (3D-QSAR) models were established from 21 anthocyanins based on their oxygen radical absorbing capacity (ORAC) and were applied to predict anthocyanins in eggplant and radish for their ORAC values. The cross-validated q(2)=0.857/0.729, non-cross-validated r(2) = 0.958/0.856, standard error of estimate = 0.153/0.134, and F = 73.267/19.247 were for the best QSAR (CoMFA/CoMSIA) models, where the correlation coefficient r(2)pred = 0.998/0.997 (>0.6) indicated a high predictive ability for each. Additionally, the contour map results suggested that structural characteristics of anthocyanins favourable for the high ORAC. Four anthocyanins from eggplant and radish have been screened based on the QSAR models. Pelargonidin-3-[(6''-p-coumaroyl)-glucosyl(2 → 1)glucoside]-5-(6''-malonyl)-glucoside, delphinidin-3-rutinoside-5-glucoside, and delphinidin-3-[(4''-p-coumaroyl)-rhamnosyl(1 → 6)glucoside]-5-glucoside potential with high ORAC based the QSAR models were isolated and also confirmed for their relative high antioxidant ability, which might attribute to the bulky and/or electron-donating substituent at the 3-position in the C ring or/and hydrogen bond donor group/electron donating group on the R1 position in the B ring.

  12. The 3D-QSAR study of 110 diverse, dual binding, acetylcholinesterase inhibitors based on alignment independent descriptors (GRIND-2). The effects of conformation on predictive power and interpretability of the models.

    PubMed

    Vitorović-Todorović, Maja D; Cvijetić, Ilija N; Juranić, Ivan O; Drakulić, Branko J

    2012-09-01

    The 3D-QSAR analysis based on alignment independent descriptors (GRIND-2) was performed on the set of 110 structurally diverse, dual binding AChE reversible inhibitors. Three separate models were built, based on different conformations, generated following next criteria: (i) minimum energy conformations, (ii) conformation most similar to the co-crystalized ligand conformation, and (iii) docked conformation. We found that regardless on conformation used, all the three models had good statistic and predictivity. The models revealed the importance of protonated pyridine nitrogen of tacrine moiety for anti AChE activity, and recognized HBA and HBD interactions as highly important for the potency. This was revealed by the variables associated with protonated pyridinium nitrogen, and the two amino groups of the linker. MIFs calculated with the N1 (pyridinium nitrogen) and the DRY GRID probes in the AChE active site enabled us to establish the relationship between amino acid residues within AChE active site and the variables having high impact on models. External predictive power of the models was tested on the set of 40 AChE reversible inhibitors, most of them structurally different from the training set. Some of those compounds were tested on the different enzyme source. We found that external predictivity was highly sensitive on conformations used. Model based on docked conformations had superior predictive ability, emphasizing the need for the employment of conformations built by taking into account geometrical restrictions of AChE active site gorge.

  13. Vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors: development and validation of predictive 3-D QSAR models through extensive ligand- and structure-based approaches

    NASA Astrophysics Data System (ADS)

    Ragno, Rino; Ballante, Flavio; Pirolli, Adele; Wickersham, Richard B.; Patsilinakos, Alexandros; Hesse, Stéphanie; Perspicace, Enrico; Kirsch, Gilbert

    2015-08-01

    Vascular endothelial growth factor receptor-2, (VEGFR-2), is a key element in angiogenesis, the process by which new blood vessels are formed, and is thus an important pharmaceutical target. Here, 3-D quantitative structure-activity relationship (3-D QSAR) were used to build a quantitative screening and pharmacophore model of the VEGFR-2 receptors for design of inhibitors with improved activities. Most of available experimental data information has been used as training set to derive optimized and fully cross-validated eight mono-probe and a multi-probe quantitative models. Notable is the use of 262 molecules, aligned following both structure-based and ligand-based protocols, as external test set confirming the 3-D QSAR models' predictive capability and their usefulness in design new VEGFR-2 inhibitors. From a survey on literature, this is the first generation of a wide-ranging computational medicinal chemistry application on VEGFR2 inhibitors.

  14. Pharmacophore modelling and atom-based 3D-QSAR studies on N-methyl pyrimidones as HIV-1 integrase inhibitors.

    PubMed

    Reddy, Karnati Konda; Singh, Sanjeev Kumar; Dessalew, Nigus; Tripathi, Sunil Kumar; Selvaraj, Chandrabose

    2012-06-01

    Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to N-methyl pyrimidones as HIV-1 integrase inhibitors. Based on the ligand-based pharmacophore model, we got 5-point pharmacophore model AADDR, with two hydrogen bond acceptors (A), two hydrogen bond donors (D) and one aromatic ring (R). The generated pharmacophore-based alignment was used to derive a predictive atom-based 3D-QSAR model for the training set (r(2) = 0.92, SD = 0.16, F = 84.8, N = 40) and for test set (Q(2) = 0.71, RMSE = 0.06, Pearson R = 0.90, N = 10). From these results, AADDR pharmacophore feature was selected as best common pharmacophore hypothesis, and atom-based 3D-QSAR results also support the outcome by means of favourable and unfavourable regions of hydrophobic and electron-withdrawing groups for the most potent compound 30. These results can be useful for further design of new and potent HIV-1 IN inhibitors.

  15. Optimization, pharmacophore modeling and 3D-QSAR studies of sipholanes as breast cancer migration and proliferation inhibitors.

    PubMed

    Foudah, Ahmed I; Sallam, Asmaa A; Akl, Mohamed R; El Sayed, Khalid A

    2014-02-12

    Sipholenol A, a triterpene isolated from the Red Sea sponge Callyspongia siphonella, was previously shown to reverse multidrug resistance in P-glycoprotein-overexpressing cancer cells. Moreover, sipholanes showed promising in vitro inhibitory effects against the invasion and migration of the metastatic human breast cancer cell line MDA-MB-231. The breast tumor kinase (Brk), a mediator of cancer cell phenotypes important for proliferation, survival, and migration, was proposed as a potential target. This study reports additional semisynthetic optimization of sipholenol A esters to improve the breast cancer antimigratory and antiproliferative activities as well as Brk phosphorylation inhibition. Fifteen new sipholenol A analogs (25-39) were semisynthesized. Sipholenol A 4β-4',5'-dichlorobenzoate ester (29) was the most potent, with an IC50 value of 1.3 μM in the migration assay. The level of Brk phosphorylation inhibition of 29 was assessed using the Z'-LYTE™ kinase assay and Western blot analysis. Active analogs showed no toxicity on the non-tumorigenic epithelial breast cell line MCF10A at doses equal to their IC50 values or higher in migration and proliferation assays, suggesting their selectivity towards malignant cells. Pharmacophore modeling and 3D-QSAR studies were conducted to identify important pharmacophoric features and correlate 3D-chemical structure with activity. These studies provided the evidence for future design of novel antimigratory compounds based on a simplified sipholane structure possessing rings A and B (perhydrobenzoxepine) connected to substituted aromatic esters, with the elimination of rings C and D ([5,3,0]bicyclodecane system). This will enable the future synthesis of the new active entities feasibly and cost-effectively. These results demonstrate the potential of marine natural products for the discovery of novel scaffolds for the control and management of metastatic breast cancer.

  16. Molecular Crowding Accelerates Ribozyme Docking and Catalysis

    PubMed Central

    2015-01-01

    All biological processes take place in highly crowded cellular environments. However, the effect that molecular crowding agents have on the folding and catalytic properties of RNA molecules remains largely unknown. Here, we have combined single-molecule fluorescence resonance energy transfer (smFRET) and bulk cleavage assays to determine the effect of a molecular crowding agents on the folding and catalysis of a model RNA enzyme, the hairpin ribozyme. Our single-molecule data reveal that PEG favors the formation of the docked (active) structure by increasing the docking rate constant with increasing PEG concentrations. Furthermore, Mg2+ ion-induced folding in the presence of PEG occurs at concentrations ∼7-fold lower than in the absence of PEG, near the physiological range (∼1 mM). Lastly, bulk cleavage assays in the presence of the crowding agent show that the ribozyme’s activity increases while the heterogeneity decreases. Our data is consistent with the idea that molecular crowding plays an important role in the stabilization of ribozyme active conformations in vivo. PMID:25399908

  17. Docking, molecular dynamics and quantitative structure-activity relationship studies for HEPTs and DABOs as HIV-1 reverse transcriptase inhibitors.

    PubMed

    Mao, Yating; Li, Yan; Hao, Ming; Zhang, Shuwei; Ai, Chunzhi

    2012-05-01

    As a key component in combination therapy for acquired immunodeficiency syndrome (AIDS), non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been proven to be an essential way in stopping HIV-1 replication. In the present work, in silico studies were conducted on a series of 119 NNRTIs, including 1-(2-hydroxyethoxymethyl)-6-(phenylthio)thymine (HEPT) and dihydroalkoxybenzyloxopyrimidine (DABO) derivatives by using the comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), docking simulations and molecular dynamics (MD). The statistical results of the optimal model, the ligand-based CoMSIA one (Q(2) = 0.48, R(ncv)(2) =0.847, R(pre)(2) = 0.745) validates its satisfactory predictive capacity both internally and externally. The contour maps, docking and MD results correlate well with each other, drawing conclusions as follows: 1) Compounds with bulky substituents in position-6 of ring A, hydrophobic groups around position- 1, 2, 6 are preferable to the biological activities; 2) Two hydrogen bonds between RT inhibitor and the Tyr 318, Lys 101 residues, respectively, and a π-π bond between the inhibitor and Trp 188 are formed and crucial to the orientation of the active conformation of the molecules; 3) The binding pocket is essentially hydrophobic, which are determined by residues such as Trp 229, Tyr 318, Val 179, Tyr 188 and Val 108, and hydrophobic substituents may bring an improvement to the biological activity; 4) DABO and HEPT derivatives have different structures but take a similar mechanism to inhibit RT. The potency difference between two isomers in HEPTs can be explained by the distinct locations of the 6-naphthylmethyl substituent and the reasons are explained in details. All these results could be employed to alter the structural scaffold in order to develop new HIV-1 RT inhibitors that have an improved biological property. To the best of our knowledge, this is the first report on 3D-QSAR

  18. Molecular docking and QSAR of aplyronine A and analogues: potent inhibitors of actin

    NASA Astrophysics Data System (ADS)

    Hussain, Abrar; Melville, James L.; Hirst, Jonathan D.

    2010-01-01

    Actin-binding natural products have been identified as a potential basis for the design of cancer therapeutic agents. We report flexible docking and QSAR studies on aplyronine A analogues. Our findings show the macrolide `tail' to be fundamental for the depolymerisation effect of actin-binding macrolides and that it is the tail which forms the initial interaction with the actin rather than the macrocycle, as previously believed. Docking energy scores for the compounds were highly correlated with actin depolymerisation activity. The 3D-QSAR models were predictive, with the best model giving a q 2 value of 0.85 and a r 2 of 0.94. Results from the docking simulations and the interpretation from QSAR "coeff*stdev" contour maps provide insight into the binding mechanism of each analogue and highlight key features that influence depolymerisation activity. The results herein may aid the design of a putative set of analogues that can help produce efficacious and tolerable anti-tumour agents. Finally, using the best QSAR model, we have also made genuine predictions for an independent set of recently reported aplyronine analogues.

  19. Drug Design for CNS Diseases: Polypharmacological Profiling of Compounds Using Cheminformatic, 3D-QSAR and Virtual Screening Methodologies

    PubMed Central

    Nikolic, Katarina; Mavridis, Lazaros; Djikic, Teodora; Vucicevic, Jelica; Agbaba, Danica; Yelekci, Kemal; Mitchell, John B. O.

    2016-01-01

    ligands targeting AChE/MAO-A/MAO-B and also D1-R/D2-R/5-HT2A-R/H3-R are promising novel drug candidates with improved efficacy and beneficial neuroleptic and procognitive activities in treatment of Alzheimer's and related neurodegenerative diseases. Structural information for drug targets permits docking and virtual screening and exploration of the molecular determinants of binding, hence facilitating the design of multi-targeted drugs. The crystal structures and models of enzymes of the monoaminergic and cholinergic systems have been used to investigate the structural origins of target selectivity and to identify molecular determinants, in order to design MTDLs. PMID:27375423

  20. Analysis of stereoelectronic properties, mechanism of action and pharmacophore of synthetic indolo[2,1-b]quinazoline-6,12-dione derivatives in relation to antileishmanial activity using quantum chemical, cyclic voltammetry and 3-D-QSAR CATALYST procedures.

    PubMed

    Bhattacharjee, Apurba K; Skanchy, David J; Jennings, Barton; Hudson, Thomas H; Brendle, James J; Werbovetz, Karl A

    2002-06-01

    Several indolo[2,1-b]quinazoline-6,12-dione (tryptanthrin) derivatives exhibited remarkable activity at concentrations below 100 ng/mL when tested against in vitro Leishmania donovani amastigotes. The in vitro toxicity studies indicate that the compounds are fairly well tolerated in both macrophage and neuronal lines. An analysis based on qualitative and quantitative structure-activity relationship studies between in vitro antileishmanial activity and molecular electronic structure of 27 analogues of indolo[2,1-b]quinazoline-6,12-dione is presented here by using a combination of semi-empirical AM1 quantum chemical, cyclic voltammetry and a pharmacophore generation (CATALYST) methods. A modest to good correlation is observed between activity and a few calculated molecular properties such as molecular density, octanol-water partition coefficient, molecular orbital energies, and redox potentials. Electron transfer seems to be a plausible path in the mechanism of action of the compounds. A pharmacophore generated by using the 3-D QSAR of CATALYST produced a fairly accurate predictive model of antileishmanial activity of the tryptanthrins. The validity of the pharmacophore model extends to structurally different class of compounds that could open new frontiers for study. The carbonyl group of the five- and six-membered rings in the indolo[2,1-b]quinazoline-6,12-dione skeleton and the electron transfer ability to the carbonyl atom appear to be crucial for activity.

  1. New ligands with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors. Synthesis, receptor binding, and 3D-QSAR modeling.

    PubMed

    Audouze, Karine; Nielsen, Elsebet Østergaard; Olsen, Gunnar M; Ahring, Philip; Jørgensen, Tino Dyhring; Peters, Dan; Liljefors, Tommy; Balle, Thomas

    2006-06-01

    A new series of piperazines, diazepanes, diazocanes, diazabicyclononanes, and diazabicyclodecanes with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors were synthesized on the basis of results from a previous computational study. A predictive 3D-QSAR model was developed using the GRID/GOLPE approach (R2 = 0.94, Q2 = 0.83, SDEP = 0.34). The SAR was interpreted in terms of contour maps of the PLS coefficients and in terms of a homology model of the alpha4beta2 subtype of the nicotinic acetylcholine receptors. The results reveal that hydrogen bonding from both hydrogens on the protonated amine and from the pyridine nitrogen to a water molecule as well as van der Waals interactions between the substituent bearing the protonated amine and the receptor is of importance for ligand affinity. The combination of 3D-QSAR and homology modeling proved successful for the interpretation of structure-affinity relationships as well as the validation of the individual modeling approaches.

  2. Pharmacophore generation and atom-based 3D-QSAR of novel quinoline-3-carbonitrile derivatives as Tpl2 kinase inhibitors.

    PubMed

    Teli, Mahesh Kumar; Rajanikant, G K

    2012-08-01

    Tumour progression locus-2 (Tpl2) is a serine/threonine kinase, which regulates the expression of tumour necrosis factor α. The article describes the development of a robust pharmacophore model and the investigation of structure-activity relationship analysis of quinoline-3-carbonitrile derivatives reported for Tpl2 kinase inhibition. A five point pharmacophore model (ADRRR) was developed and used to derive a predictive atom-based 3-dimensional quantitative structure activity relationship (3D-QSAR) model. The obtained 3D-QSAR model has an excellent correlation coefficient value (r(2)= 0.96), Fisher ratio (F = 131.9) and exhibited good predictive power (q(2) = 0.79). The QSAR model suggests that the inclusion of hydrophobic substituents will enhance the Tpl2 kinase inhibition. In addition, H-bond donating groups, negative ionic groups and electron withdrawing groups positively contribute to the Tpl2 kinase inhibition. Further, pharmacophoric model was validated by the receiver operating characteristic curve analysis and was employed for virtual screening to identify six potential Tpl2 kinase inhibitors. The findings of this study provide a set of guidelines for designing compounds with better Tpl2 kinase inhibitory potency.

  3. A hierarchical method for molecular docking using cloud computing.

    PubMed

    Kang, Ling; Guo, Quan; Wang, Xicheng

    2012-11-01

    Discovering small molecules that interact with protein targets will be a key part of future drug discovery efforts. Molecular docking of drug-like molecules is likely to be valuable in this field; however, the great number of such molecules makes the potential size of this task enormous. In this paper, a method to screen small molecular databases using cloud computing is proposed. This method is called the hierarchical method for molecular docking and can be completed in a relatively short period of time. In this method, the optimization of molecular docking is divided into two subproblems based on the different effects on the protein-ligand interaction energy. An adaptive genetic algorithm is developed to solve the optimization problem and a new docking program (FlexGAsDock) based on the hierarchical docking method has been developed. The implementation of docking on a cloud computing platform is then discussed. The docking results show that this method can be conveniently used for the efficient molecular design of drugs.

  4. 2D- and 3D-QSAR studies of a series of benzopyranes and benzopyrano[3,4b][1,4]-oxazines as inhibitors of the multidrug transporter P-glycoprotein

    NASA Astrophysics Data System (ADS)

    Jabeen, Ishrat; Wetwitayaklung, Penpun; Chiba, Peter; Pastor, Manuel; Ecker, Gerhard F.

    2013-02-01

    The ATP-binding cassette efflux transporter P-glycoprotein (P-gp) is notorious for contributing to multidrug resistance in antitumor therapy. Due to its expression in many blood-organ barriers, it also influences the pharmacokinetics of drugs and drug candidates and is involved in drug/drug- and drug/nutrient interactions. However, due to lack of structural information the molecular basis of ligand/transporter interaction still needs to be elucidated. Towards this goal, a series of Benzopyranes and Benzopyrano[3,4b][1,4]oxazines have been synthesized and pharmacologically tested for their ability to inhibit P-gp mediated daunomycin efflux. Both quantitative structure-activity relationship (QSAR) models using simple physicochemical and novel GRID-independent molecular descriptors (GRIND) were established to shed light on the structural requirements for high P-gp inhibitory activity. The results from 2D-QSAR showed a linear correlation of vdW surface area (Å2) of hydrophobic atoms with the pharmacological activity. GRIND (3D-QSAR) studies allowed to identify important mutual distances between pharmacophoric features, which include one H-bond donor, two H-bond acceptors and two hydrophobic groups as well as their distances from different steric hot spots of the molecules. Activity of the compounds particularly increases with increase of the distance of an H-bond donor or a hydrophobic feature from a particular steric hot spot of the benzopyrane analogs.

  5. PTools: an opensource molecular docking library

    PubMed Central

    Saladin, Adrien; Fiorucci, Sébastien; Poulain, Pierre; Prévost, Chantal; Zacharias, Martin

    2009-01-01

    Background Macromolecular docking is a challenging field of bioinformatics. Developing new algorithms is a slow process generally involving routine tasks that should be found in a robust library and not programmed from scratch for every new software application. Results We present an object-oriented Python/C++ library to help the development of new docking methods. This library contains low-level routines like PDB-format manipulation functions as well as high-level tools for docking and analyzing results. We also illustrate the ease of use of this library with the detailed implementation of a 3-body docking procedure. Conclusion The PTools library can handle molecules at coarse-grained or atomic resolution and allows users to rapidly develop new software. The library is already in use for protein-protein and protein-DNA docking with the ATTRACT program and for simulation analysis. This library is freely available under the GNU GPL license, together with detailed documentation. PMID:19409097

  6. 2D-QSAR and 3D-QSAR/CoMSIA Studies on a Series of (R)-2-((2-(1H-Indol-2-yl)ethyl)amino)-1-Phenylethan-1-ol with Human β₃-Adrenergic Activity.

    PubMed

    Apablaza, Gastón; Montoya, Luisa; Morales-Verdejo, Cesar; Mellado, Marco; Cuellar, Mauricio; Lagos, Carlos F; Soto-Delgado, Jorge; Chung, Hery; Pessoa-Mahana, Carlos David; Mella, Jaime

    2017-03-05

    The β₃ adrenergic receptor is raising as an important drug target for the treatment of pathologies such as diabetes, obesity, depression, and cardiac diseases among others. Several attempts to obtain selective and high affinity ligands have been made. Currently, Mirabegron is the only available drug on the market that targets this receptor approved for the treatment of overactive bladder. However, the FDA (Food and Drug Administration) in USA and the MHRA (Medicines and Healthcare products Regulatory Agency) in UK have made reports of potentially life-threatening side effects associated with the administration of Mirabegron, casting doubts on the continuity of this compound. Therefore, it is of utmost importance to gather information for the rational design and synthesis of new β₃ adrenergic ligands. Herein, we present the first combined 2D-QSAR (two-dimensional Quantitative Structure-Activity Relationship) and 3D-QSAR/CoMSIA (three-dimensional Quantitative Structure-Activity Relationship/Comparative Molecular Similarity Index Analysis) study on a series of potent β₃ adrenergic agonists of indole-alkylamine structure. We found a series of changes that can be made in the steric, hydrogen-bond donor and acceptor, lipophilicity and molar refractivity properties of the compounds to generate new promising molecules. Finally, based on our analysis, a summary and a regiospecific description of the requirements for improving β₃ adrenergic activity is given.

  7. QSAR analyses of DDT analogues and their in silico validation using molecular docking study against voltage-gated sodium channel of Anopheles funestus.

    PubMed

    Saini, V; Kumar, A

    2014-01-01

    DDT has enjoyed the reputation of a successful pesticide in disease control programme and agricultural practices along with the serious opposition and ban later on due to its biomagnification and toxic action against non-target organisms. The present work was carried out to develop QSAR models for analysing DDT analogues for their pesticidal activity and in silico validation of these models. A 2D-QSAR model was generated using stepwise with multiple regression, and the model with a value of r(2) = 0.7324; q(2) = 0.6215; pred r(2) = 0.7038, containing five descriptors, was selected for further study. The 3D QSAR with CoMFA analysis showed that steric contribution of 21% and electrostatic contribution of about 79% were required for larvicidal activity of DDT analogues. A set of 3430 molecules was generated using the basic DDT skeleton as template, and these were evaluated for their mosquito larvicidal activity using the generated QSAR models and DDT as standard. Eleven molecules were selected for in silico validation of these models. For this, a docking study of the selected molecules against the homology-modelled voltage-gated sodium channel of Anopheles funestus was conducted. The study showed that the activities of these analogues as predicted by 2D-QSAR, 3D-QSAR with CoMFA and dock score were observed to be well correlated.

  8. Modifying tetramethyl–nitrophenyl–imidazoline with amino acids: design, synthesis, and 3D-QSAR for improving inflammatory pain therapy

    PubMed Central

    Jiang, Xueyun; Wang, Yuji; Zhu, Haimei; Wang, Yaonan; Zhao, Ming; Zhao, Shurui; Wu, Jianhui; Li, Shan; Peng, Shiqi

    2015-01-01

    With the help of pharmacophore analysis and docking investigation, 15 novel 1-(4,4,5,5-tetramethyl-2-(3-nitrophenyl)-4,5-dihydroimidazol-1-yl)-oxyacetyl-L-amino acids (6a–o) were designed, synthesized, and assayed. On tail-flick and xylene-induced ear edema models, 10 μmol/kg 6a–o exhibited excellent oral anti-inflammation and analgesic activity. The dose-dependent assay of their representative 6f indicates that the effective dose should be 3.3 μmol/kg. The correlation of the three-dimensional quantitative structure–activity relationship with the docking analysis provides a basis for the rational design of drugs to treat inflammatory pain. PMID:25960636

  9. Microwave assistant one pot synthesis, crystal structure, antifungal activities and 3D-QSAR of novel 1,2,4-triazolo[4,3-a]pyridines.

    PubMed

    Liu, Xing-Hai; Sun, Zhao-Hui; Yang, Ming-Yan; Tan, Cheng-Xia; Weng, Jian-Quan; Zhang, Yong-Gang; Ma, Yi

    2014-09-01

    A series of novel 1,2,4-triazolo[4,3-a]pyridines were synthesized, and their structures were characterized by (1) H NMR, MS, elemental analysis, and single-crystal X-ray diffraction analysis. The antifungal activities were evaluated. The antifungal activity results indicated that the compound 2b, 2g, 2p, and 2i exhibited good activities. The activity of compound 2b, 2g, 2p, and 2i can compare with the commercial pesticide. The 3D-QSAR model was developed using CoMFA method. Both the steric and electronic field distributions of CoMFA are in good agreement in this work and will be very helpful in designing a new set of analogues.

  10. The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activators

    NASA Astrophysics Data System (ADS)

    Taha, Mutasem O.; Habash, Maha; Khanfar, Mohammad A.

    2014-05-01

    Glucokinase (GK) is involved in normal glucose homeostasis and therefore it is a valid target for drug design and discovery efforts. GK activators (GKAs) have excellent potential as treatments of hyperglycemia and diabetes. The combined recent interest in GKAs, together with docking limitations and shortages of docking validation methods prompted us to use our new 3D-QSAR analysis, namely, docking-based comparative intermolecular contacts analysis (dbCICA), to validate docking configurations performed on a group of GKAs within GK binding site. dbCICA assesses the consistency of docking by assessing the correlation between ligands' affinities and their contacts with binding site spots. Optimal dbCICA models were validated by receiver operating characteristic curve analysis and comparative molecular field analysis. dbCICA models were also converted into valid pharmacophores that were used as search queries to mine 3D structural databases for new GKAs. The search yielded several potent bioactivators that experimentally increased GK bioactivity up to 7.5-folds at 10 μM.

  11. Yada: a novel tool for molecular docking calculations

    NASA Astrophysics Data System (ADS)

    Piotto, S.; Di Biasi, L.; Fino, R.; Parisi, R.; Sessa, L.; Concilio, S.

    2016-09-01

    Molecular docking is a computational method employed to estimate the binding between a small ligand (the drug candidate) and a protein receptor that has become a standard part of workflow in drug discovery. Generally, when the binding site is known and a molecule is similar to known ligands, the most popular docking methods are rather accurate in the prediction of the geometry. Unfortunately, when the binding site is unknown, the blind docking analysis requires large computational resources and the results are often not accurate. Here we present Yada, a new tool for molecular docking that is capable to distribute efficiently calculations onto general purposes computer grid and that combines biological and structural information of the receptor. Yada is available for Windows and Linux and it is free to download at >www.yada.unisa.it.

  12. Yada: a novel tool for molecular docking calculations.

    PubMed

    Piotto, S; Di Biasi, L; Fino, R; Parisi, R; Sessa, L; Concilio, S

    2016-09-01

    Molecular docking is a computational method employed to estimate the binding between a small ligand (the drug candidate) and a protein receptor that has become a standard part of workflow in drug discovery. Generally, when the binding site is known and a molecule is similar to known ligands, the most popular docking methods are rather accurate in the prediction of the geometry. Unfortunately, when the binding site is unknown, the blind docking analysis requires large computational resources and the results are often not accurate. Here we present Yada, a new tool for molecular docking that is capable to distribute efficiently calculations onto general purposes computer grid and that combines biological and structural information of the receptor. Yada is available for Windows and Linux and it is free to download at www.yada.unisa.it .

  13. Docking and three-dimensional quantitative structure-activity relationship analyses of imidazole and thiazolidine derivatives as Aurora A kinase inhibitors.

    PubMed

    Im, Chaeuk

    2016-12-01

    Aurora A kinase is involved in the inactivation of apoptosis leading to ovarian, breast, colon, and pancreatic cancers. Inhibitors of Aurora A kinase promote aberrant mitosis resulting in arrest at a pseudo G1 state to induce mitotic catastrophe, ultimately leading to apoptosis. In this study, ligand-based and docking-based three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses of imidazole and thiazolidine derivatives as potential Aurora A kinase inhibitors were performed. The results provided highly reliable and predictive 3D-QSAR comparative molecular similarity index analysis (CoMSIA) models with a cross-validated q(2) value of 0.768, non-cross-validated r(2) value of 0.983, and predictive coefficient [Formula: see text] value of 0.978. CoMSIA contour maps suggested that the NH and benzyl hydroxy groups in R9, and the CO group in the thiazolidine ring and pyridine ring were important components for biological activity. The maps also suggest that the introduction of hydroxy groups at C2 of the imino-phenyl ring, C5 in the pyridine ring, or the substitution of the imino-phenyl ring for the imino-2-pyridine ring could be applied to enhance biological activity.

  14. STALK : an interactive virtual molecular docking system.

    SciTech Connect

    Levine, D.; Facello, M.; Hallstrom, P.; Reeder, G.; Walenz, B.; Stevens, F.; Univ. of Illinois

    1997-04-01

    Several recent technologies-genetic algorithms, parallel and distributed computing, virtual reality, and high-speed networking-underlie a new approach to the computational study of how biomolecules interact or 'dock' together. With the Stalk system, a user in a virtual reality environment can interact with a genetic algorithm running on a parallel computer to help in the search for likely geometric configurations.

  15. Insight into the interactions between novel isoquinolin-1,3-dione derivatives and cyclin-dependent kinase 4 combining QSAR and molecular docking.

    PubMed

    Zheng, Junxia; Kong, Hao; Wilson, James M; Guo, Jialiang; Chang, Yiqun; Yang, Mengjia; Xiao, Gaokeng; Sun, Pinghua

    2014-01-01

    Several small-molecule CDK inhibitors have been identified, but none have been approved for clinical use in the past few years. A new series of 4-[(3-hydroxybenzylamino)-methylene]-4H-isoquinoline-1,3-diones were reported as highly potent and selective CDK4 inhibitors. In order to find more potent CDK4 inhibitors, the interactions between these novel isoquinoline-1,3-diones and cyclin-dependent kinase 4 was explored via in silico methodologies such as 3D-QSAR and docking on eighty-one compounds displaying potent selective activities against cyclin-dependent kinase 4. Internal and external cross-validation techniques were investigated as well as region focusing, bootstraping and leave-group-out. A training set of 66 compounds gave the satisfactory CoMFA model (q2 = 0.695, r2 = 0.947) and CoMSIA model (q2 = 0.641, r2 = 0.933). The remaining 15 compounds as a test set also gave good external predictive abilities with r2pred values of 0.875 and 0.769 for CoMFA and CoMSIA, respectively. The 3D-QSAR models generated here predicted that all five parameters are important for activity toward CDK4. Surflex-dock results, coincident with CoMFA/CoMSIA contour maps, gave the path for binding mode exploration between the inhibitors and CDK4 protein. Based on the QSAR and docking models, twenty new potent molecules have been designed and predicted better than the most active compound 12 in the literatures. The QSAR, docking and interactions analysis expand the structure-activity relationships of constrained isoquinoline-1,3-diones and contribute towards the development of more active CDK4 subtype-selective inhibitors.

  16. New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis

    PubMed Central

    Korhonen, L E; Turpeinen, M; Rahnasto, M; Wittekindt, C; Poso, A; Pelkonen, O; Raunio, H; Juvonen, R O

    2007-01-01

    Background and purpose: The cytochrome P450 2B6 (CYP2B6) enzyme metabolises a number of clinically important drugs. Drug-drug interactions resulting from inhibition or induction of CYP2B6 activity may cause serious adverse effects. The aims of this study were to construct a three-dimensional structure-activity relationship (3D-QSAR) model of the CYP2B6 protein and to identify novel potent and selective inhibitors of CYP2B6 for in vitro research purposes. Experimental approach: The inhibition potencies (IC50 values) of structurally diverse chemicals were determined with recombinant human CYP2B6 enzyme. Two successive models were constructed using Comparative Molecular Field Analysis (CoMFA). Key results: Three compounds proved to be very potent and selective competitive inhibitors of CYP2B6 in vitro (IC50<1 μM): 4-(4-chlorobenzyl)pyridine (CBP), 4-(4-nitrobenzyl)pyridine (NBP), and 4-benzylpyridine (BP). A complete inhibition of CYP2B6 activity was achieved with 0.1 μM CBP, whereas other CYP-related activities were not affected. Forty-one compounds were selected for further testing and construction of the final CoMFA model. The created CoMFA model was of high quality and predicted accurately the inhibition potency of a test set (n=7) of structurally diverse compounds. Conclusions and implications: Two CoMFA models were created which revealed the key molecular characteristics of inhibitors of the CYP2B6 enzyme. The final model accurately predicted the inhibitory potencies of several structurally unrelated compounds. CBP, BP and NBP were identified as novel potent and selective inhibitors of CYP2B6 and CBP especially is a suitable inhibitor for in vitro screening studies. PMID:17325652

  17. Molecular docking studies in factor XIa binding site

    NASA Astrophysics Data System (ADS)

    Balaji, Govardhan A.; Balaji, Vitukudi N.; Rao, Shashidhar N.

    2016-03-01

    Factor XIa inhibitors have been identified to have potential as anticoagulants with robust efficacy and low bleeding risks. In light of their significance and the availability of their 3-D X-ray data in the PDB, we present molecular docking studies carried out with a view to obtain docking protocols that will successfully reproduce the experimentally observed protein-ligand interactions in the case of various X-ray ligands. In this context, we have specifically investigated the efficacy of various cross-docking protocols in reproducing experimental data. Our studies demonstrate that an ensemble of the three apo proteins is capable of accurately docking a majority of the X-ray ligands accurately without invoking any additional conformational flexibility than that present in their experimental structures. Further, we demonstrate that such an ensemble is successfully able to enrich a collection of known active factor XIa inhibitors embedded in a decoy database of drug-like molecules.

  18. Development of a 3D-QSAR model for acetylcholinesterase inhibitors using a combination of fingerprint, docking, and structure-based pharmacophore approaches - Conference Abstract

    EPA Science Inventory

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based appr...

  19. Simulation of carbohydrates, from molecular docking to dynamics in water.

    PubMed

    Sapay, Nicolas; Nurisso, Alessandra; Imberty, Anne

    2013-01-01

    Modeling of carbohydrates is particularly challenging because of the variety of structures resulting for the high number of monosaccharides and possible linkages and also because of their intrinsic flexibility. The development of carbohydrate parameters for molecular modeling is still an active field. Nowadays, main carbohydrates force fields are GLYCAM06, CHARMM36, and GROMOS 45A4. GLYCAM06 includes the largest choice of compounds and is compatible with the AMBER force fields and associated. Furthermore, AMBER includes tools for the implementation of new parameters. When looking at protein-carbohydrate interaction, the choice of the starting structure is of importance. Such complex can be sometimes obtained from the Protein Data Bank-although the stereochemistry of sugars may require some corrections. When no experimental data is available, molecular docking simulation is generally used to the obtain protein-carbohydrate complex coordinates. As molecular docking parameters are not specifically dedicated to carbohydrates, inaccuracies should be expected, especially for the docking of polysaccharides. This issue can be addressed at least partially by combining molecular docking with molecular dynamics simulation in water.

  20. 3D-QSAR Studies on Thiazolidin-4-one S1P1 Receptor Agonists by CoMFA and CoMSIA

    PubMed Central

    Qian, Chuiwen; Zheng, Junxia; Xiao, Gaokeng; Guo, Jialiang; Yang, Zhaoqi; Huang, Li; Chao, Wei; Rao, Longyi; Sun, Pinghua

    2011-01-01

    Selective S1P1 receptor agonists have therapeutic potential to treat a variety of immune-mediated diseases. A series of 2-imino-thiazolidin-4-one derivatives displaying potent S1P1 receptor agonistic activity were selected to establish 3D-QSAR models using CoMFA and CoMSIA methods. Internal and external cross-validation techniques were investigated as well as some measures including region focusing, progressive scrambling, bootstraping and leave-group-out. The satisfactory CoMFA model predicted a q2 value of 0.751 and an r2 value of 0.973, indicating that electrostatic and steric properties play a significant role in potency. The best CoMSIA model, based on a combination of steric, electrostatic, hydrophobic and H-bond donor descriptors, predicted a q2 value of 0.739 and an r2 value of 0.923. The models were graphically interpreted using contour plots which gave more insight into the structural requirements for increasing the activity of a compound, providing a solid basis for future rational design of more active S1P1 receptor agonists. PMID:22072901

  1. New series of morpholine and 1,4-oxazepane derivatives as dopamine D4 receptor ligands: synthesis and 3D-QSAR model.

    PubMed

    Audouze, Karine; Nielsen, Elsebet Østergaard; Peters, Dan

    2004-06-03

    Since the identification of the dopamine D(4) receptor subtype and speculations about its possible involvement in schizophrenia, much work has been put into development of selective D(4) ligands. These selective ligands may be effective antipsychotics without extrapyramidal side effects. This work describes the synthesis of a new series of 2,4-disubstituted morpholines and 2,4-disubstituted 1,4-oxazepanes with selectivity for the dopamine D(4) receptor. A 3D-QSAR analysis using the GRID/GOLPE methodology was performed with the purpose to get a better understanding of the relationship between chemical structure and biological activity. Inspection of the coefficient plots allowed us to identify that regions which are important for affinity are situated around the two benzene ring systems, a p-chlorobenzyl group, and the aliphatic amine belonging to the morpholine or 1,4-oxazepane system. In addition, the size of the morpholine or 1,4-oxazepane ring seems to be important for affinity.

  2. A Structure-Activity Relationship Study of Imidazole-5-Carboxylic Acid Derivatives as Angiotensin II Receptor Antagonists Combining 2D and 3D QSAR Methods.

    PubMed

    Sharma, Mukesh C

    2016-03-01

    Two-dimensional (2D) and three-dimensional (3D) quantitative structure-activity relationship (QSAR) studies were performed for correlating the chemical composition of imidazole-5-carboxylic acid analogs and their angiotensin II [Formula: see text] receptor antagonist activity using partial least squares and k-nearest neighbor, respectively. For comparing the three different feature selection methods of 2D-QSAR, k-nearest neighbor models were used in conjunction with simulated annealing (SA), genetic algorithm and stepwise coupled with partial least square (PLS) showed variation in biological activity. The statistically significant best 2D-QSAR model having good predictive ability with statistical values of [Formula: see text] and [Formula: see text] was developed by SA-partial least square with the descriptors like [Formula: see text]count, 5Chain count, SdsCHE-index, and H-acceptor count, showing that increase in the values of these descriptors is beneficial to the activity. The 3D-QSAR studies were performed using the SA-PLS. A leave-one-out cross-validated correlation coefficient [Formula: see text] and predicate activity [Formula: see text] = 0.7226 were obtained. The information rendered by QSAR models may lead to a better understanding of structural requirements of substituted imidazole-5-carboxylic acid derivatives and also aid in designing novel potent antihypertensive molecules.

  3. Combined pharmacophore and 3D-QSAR study on a series of Staphylococcus aureus Sortase A inhibitors.

    PubMed

    Uddin, Reaz; Lodhi, Mazhar U; Ul-Haq, Zaheer

    2012-08-01

    Methicillin resistant Staphylococcus aureus has become a major health concern and it requires new therapeutic agents. Staphylococcus aureus Sortase A enzyme contributes in adherence of bacteria with the cell wall of host cell; consequently, inhibition of S. aureus Sortase A by small molecules could be employed as potential antibacterial agents against methicillin resistant S. aureus. Current study focused on the identification of 3D pharmacophoric features within a series of rhodanine, pyridazinone, and pyrazolethione analogs as S. aureus Sortase A inhibitors. Pharmacophore model was constructed employing representative molecules using Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database. The identified pharmacophoric points were then utilized to create alignment hypothesis for three-dimensional quantitative structure-activity relationships. Outcome of comparative molecular field analysis and comparative molecular similarity indices analysis experiments were in good agreement (comparative molecular field analysis: q(2) = 0.562 and r(2) = 0.995, comparative molecular similarity indices analysis: q(2) = 0.549 and r(2) = 0.978) and capable of explaining the variance in biological activities coherently with respect to the structural features of compounds. The results were also found in concurrence with the outcome of pharmacophoric features.

  4. Finding new scaffolds of JAK3 inhibitors in public database: 3D-QSAR models & shape-based screening.

    PubMed

    Gadhe, Changdev G; Lee, Eunhee; Kim, Mi-Hyun

    2015-11-01

    The STAT/JAK3 pathway is a well-known therapeutic target in various diseases (ex. rheumatoid arthritis and psoriasis). The therapeutic advantage of JAK3 inhibition motivated to find new scaffolds with desired DMPK. For the purpose, in silico high-throughput sieves method is developed consisting of a receptor-guided three-dimensional quantitative structure-activity relationship study and shape-based virtual screening. We developed robust and predictive comparative molecular field analysis (q (2) = 0.760, r (2) = 0.915) and comparative molecular similarity index analysis (q (2) = 0.817, r (2) = 0.981) models and validated these using a test set, which produced satisfactory predictions of 0.925 and 0.838, respectively.

  5. Virtual screening of RAGE inhibitors using molecular docking

    PubMed Central

    Devi Alaparthi, Malini; Gopinath, Gudipudi; Bandaru, Srinivas; Sankeshi, Venu; Mangalarapu, Madhavi; Sudha Nagamalla, Swetha; Sudhakar, Kota; Roja Rani, Anupalli; Rao Sagurthi, Someswar

    2016-01-01

    Advanced Glycation End products (AGEs) interaction with Receptor for AGEs (RAGE) activates downstream signaling and evokes inflammatory responses in vascular cells. Therefore, it is of interest to design a novel series of molecules with a library of 352 compounds based on natural Isoflavone and Argpyrimidine moities. The compounds screened against the optimized structure of RAGE (PDB code: 3CJJ) using MolDock aided with molecular docking algorithm. This exercise identified compound number 62 with appreciable ADME properties having no toxicity and pharmacophore features. Therefore, compound 62 identified as a RAGE inhibitor is proposed for further validation in the context of Diabetic Retinopathy (DR) and vascular complications. PMID:28149046

  6. Combining docking and molecular dynamic simulations in drug design.

    PubMed

    Alonso, Hernán; Bliznyuk, Andrey A; Gready, Jill E

    2006-09-01

    A rational approach is needed to maximize the chances of finding new drugs, and to exploit the opportunities of potential new drug targets emerging from genomic and proteomic initiatives, and from the large libraries of small compounds now readily available through combinatorial chemistry. Despite a shaky early history, computer-aided drug design techniques can now be effective in reducing costs and speeding up drug discovery. This happy outcome results from development of more accurate and reliable algorithms, use of more thoughtfully planned strategies to apply them, and greatly increased computer power to allow studies with the necessary reliability to be performed. Our review focuses on applications and protocols, with the main emphasis on critical analysis of recent studies where docking calculations and molecular dynamics (MD) simulations were combined to dock small molecules into protein receptors. We highlight successes to demonstrate what is possible now, but also point out drawbacks and future directions. The review is structured to lead the reader from the simpler to more compute-intensive methods. Thus, while inexpensive and fast docking algorithms can be used to scan large compound libraries and reduce their size, more accurate but expensive MD simulations can be applied when a few selected ligand candidates remain. MD simulations can be used: during the preparation of the protein receptor before docking, to optimize its structure and account for protein flexibility; for the refinement of docked complexes, to include solvent effects and account for induced fit; to calculate binding free energies, to provide an accurate ranking of the potential ligands; and in the latest developments, during the docking process itself to find the binding site and correctly dock the ligand a priori.

  7. 3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Menezes, Irwin R. A.; Lopes, Julio C. D.; Montanari, Carlos A.; Oliva, Glaucius; Pavão, Fernando; Castilho, Marcelo S.; Vieira, Paulo C.; Pupo, M.^onica T.

    2003-05-01

    Drug design strategies based on Comparative Molecular Field Analysis (CoMFA) have been used to predict the activity of new compounds. The major advantage of this approach is that it permits the analysis of a large number of quantitative descriptors and uses chemometric methods such as partial least squares (PLS) to correlate changes in bioactivity with changes in chemical structure. Because it is often difficult to rationalize all variables affecting the binding affinity of compounds using CoMFA solely, the program GRID was used to describe ligands in terms of their molecular interaction fields, MIFs. The program VolSurf that is able to compress the relevant information present in 3D maps into a few descriptors can treat these GRID fields. The binding affinities of a new set of compounds consisting of 13 coumarins, for one of which the three-dimensional ligand-enzyme bound structure is known, were studied. A final model based on the mentioned programs was independently validated by synthesizing and testing new coumarin derivatives. By relying on our knowledge of the real physical data (i.e., combining crystallographic and binding affinity results), it is also shown that ligand-based design agrees with structure-based design. The compound with the highest binding affinity was the coumarin chalepin, isolated from Rutaceae species, with an IC50 value of 55.5 μM towards the enzyme glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from glycosomes of the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. The proposed models from GRID MIFs have revealed the importance of lipophilic interactions in modulating the inhibition, but without excluding the dependence on stereo-electronic properties as found from CoMFA fields.

  8. Accelerating molecular docking calculations using graphics processing units.

    PubMed

    Korb, Oliver; Stützle, Thomas; Exner, Thomas E

    2011-04-25

    The generation of molecular conformations and the evaluation of interaction potentials are common tasks in molecular modeling applications, particularly in protein-ligand or protein-protein docking programs. In this work, we present a GPU-accelerated approach capable of speeding up these tasks considerably. For the evaluation of interaction potentials in the context of rigid protein-protein docking, the GPU-accelerated approach reached speedup factors of up to over 50 compared to an optimized CPU-based implementation. Treating the ligand and donor groups in the protein binding site as flexible, speedup factors of up to 16 can be observed in the evaluation of protein-ligand interaction potentials. Additionally, we introduce a parallel version of our protein-ligand docking algorithm PLANTS that can take advantage of this GPU-accelerated scoring function evaluation. We compared the GPU-accelerated parallel version to the same algorithm running on the CPU and also to the highly optimized sequential CPU-based version. In terms of dependence of the ligand size and the number of rotatable bonds, speedup factors of up to 10 and 7, respectively, can be observed. Finally, a fitness landscape analysis in the context of rigid protein-protein docking was performed. Using a systematic grid-based search methodology, the GPU-accelerated version outperformed the CPU-based version with speedup factors of up to 60.

  9. Homology Modeling and Molecular Docking for the Science Curriculum

    PubMed Central

    McDougal, Owen M.; Comia, Nic; Sambasivarao, S.V.; Remm, Andrew; Mallory, Chris; Oxford, Julia Thom; Maupin, C. Mark; Andersen, Tim

    2015-01-01

    DockoMatic 2.0 is a powerful open source software program (downloadable from sourceforge.net) that simplifies the exploration of computational biochemistry. This manuscript describes a practical tutorial for use in the undergraduate curriculum that introduces students to macromolecular structure creation, ligand binding calculations, and visualization of docking results. A student procedure is provided that illustrates use of DockoMatic to create a homology model for the amino propeptide region (223 amino acids with two disulfide bonds) of collagen α1 (XI), followed by molecular docking of the commercial drug Arixtra® to the homology model of the amino propeptide domain of collagen α1 (XI), and finally, analysis of the results of the docking experiment. The activities and supplemental materials described are intended to educate students in the use of computational tools to create and investigate homology models for other systems of interest and to train students to be proficient with molecular docking and analyzing results. The tutorial also serves as a foundation for investigators seeking to explore the viability of using computational biochemistry to study their receptor-ligand binding motifs. PMID:24376157

  10. Identification of novel histone deacetylase 1 inhibitors by combined pharmacophore modeling, 3D-QSAR analysis, in silico screening and Density Functional Theory (DFT) approaches

    NASA Astrophysics Data System (ADS)

    Choubey, Sanjay K.; Mariadasse, Richard; Rajendran, Santhosh; Jeyaraman, Jeyakanthan

    2016-12-01

    Overexpression of HDAC1, a member of Class I histone deacetylase is reported to be implicated in breast cancer. Epigenetic alteration in carcinogenesis has been the thrust of research for few decades. Increased deacetylation leads to accelerated cell proliferation, cell migration, angiogenesis and invasion. HDAC1 is pronounced as the potential drug target towards the treatment of breast cancer. In this study, the biochemical potential of 6-aminonicotinamide derivatives was rationalized. Five point pharmacophore model with one hydrogen-bond acceptor (A3), two hydrogen-bond donors (D5, D6), one ring (R12) and one hydrophobic group (H8) was developed using 6-aminonicotinamide derivatives. The pharmacophore hypothesis yielded a 3D-QSAR model with correlation-coefficient (r2 = 0.977, q2 = 0.801) and it was externally validated with (r2pred = 0.929, r2cv = 0.850 and r2m = 0.856) which reveals the statistical significance of the model having high predictive power. The model was then employed as 3D search query for virtual screening against compound libraries (Zinc, Maybridge, Enamine, Asinex, Toslab, LifeChem and Specs) in order to identify novel scaffolds which can be experimentally validated to design future drug molecule. Density Functional Theory (DFT) at B3LYP/6-31G* level was employed to explore the electronic features of the ligands involved in charge transfer reaction during receptor ligand interaction. Binding free energy (ΔGbind) calculation was done using MM/GBSA which defines the affinity of ligands towards the receptor.

  11. Probing Molecular Docking in a Charged Model Binding Site

    PubMed Central

    Brenk, Ruth; Vetter, Stefan W.; Boyce, Sarah E.; Goodin, David B.; Shoichet, Brian K.

    2011-01-01

    A model binding site was used to investigate charge–charge interactions in molecular docking. This simple site, a small (180 Å3) engineered cavity in cyctochrome c peroxidase (CCP), is negatively charged and completely buried from solvent, allowing us to explore the balance between electrostatic energy and ligand desolvation energy in a system where many of the common approximations in docking do not apply. A database with about 5300 molecules was docked into this cavity. Retrospective testing with known ligands and decoys showed that overall the balance between electrostatic interaction and desolvation energy was captured. More interesting were prospective docking scre”ens that looked for novel ligands, especially those that might reveal problems with the docking and energy methods. Based on screens of the 5300 compound database, both high-scoring and low-scoring molecules were acquired and tested for binding. Out of 16 new, high-scoring compounds tested, 15 were observed to bind. All of these were small heterocyclic cations. Binding constants were measured for a few of these, they ranged between 20 μM and 60 μM. Crystal structures were determined for ten of these ligands in complex with the protein. The observed ligand geometry corresponded closely to that predicted by docking. Several low-scoring alkyl amino cations were also tested and found to bind. The low docking score of these molecules owed to the relatively high charge density of the charged amino group and the corresponding high desolvation penalty. When the complex structures of those ligands were determined, a bound water molecule was observed interacting with the amino group and a backbone carbonyl group of the cavity. This water molecule mitigates the desolvation penalty and improves the interaction energy relative to that of the “naked” site used in the docking screen. Finally, six low-scoring neutral molecules were also tested, with a view to looking for false negative predictions

  12. Ligand Pose and Orientational Sampling in Molecular Docking

    PubMed Central

    Coleman, Ryan G.; Carchia, Michael; Sterling, Teague; Irwin, John J.; Shoichet, Brian K.

    2013-01-01

    Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys - Enhanced (DUD-E) benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20000 molecular orientations in the binding site (and so from about 1×1010 to 4×1010 to 1×1011 to 2×1011 to 5×1011 mean atoms scored per target, since multiple conformations are sampled per orientation), the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field. PMID:24098414

  13. GPU Optimizations for a Production Molecular Docking Code.

    PubMed

    Landaverde, Raphael; Herbordt, Martin C

    2014-09-01

    Modeling molecular docking is critical to both understanding life processes and designing new drugs. In previous work we created the first published GPU-accelerated docking code (PIPER) which achieved a roughly 5× speed-up over a contemporaneous 4 core CPU. Advances in GPU architecture and in the CPU code, however, have since reduced this relalative performance by a factor of 10. In this paper we describe the upgrade of GPU PIPER. This required an entire rewrite, including algorithm changes and moving most remaining non-accelerated CPU code onto the GPU. The result is a 7× improvement in GPU performance and a 3.3× speedup over the CPU-only code. We find that this difference in time is almost entirely due to the difference in run times of the 3D FFT library functions on CPU (MKL) and GPU (cuFFT), respectively. The GPU code has been integrated into the ClusPro docking server which has over 4000 active users.

  14. Solving molecular docking problems with multi-objective metaheuristics.

    PubMed

    García-Godoy, María Jesús; López-Camacho, Esteban; García-Nieto, José; Aldana-Montes, Antonio J Nebroand José F

    2015-06-02

    Molecular docking is a hard optimization problem that has been tackled in the past with metaheuristics, demonstrating new and challenging results when looking for one objective: the minimum binding energy. However, only a few papers can be found in the literature that deal with this problem by means of a multi-objective approach, and no experimental comparisons have been made in order to clarify which of them has the best overall performance. In this paper, we use and compare, for the first time, a set of representative multi-objective optimization algorithms applied to solve complex molecular docking problems. The approach followed is focused on optimizing the intermolecular and intramolecular energies as two main objectives to minimize. Specifically, these algorithms are: two variants of the non-dominated sorting genetic algorithm II (NSGA-II), speed modulation multi-objective particle swarm optimization (SMPSO), third evolution step of generalized differential evolution (GDE3), multi-objective evolutionary algorithm based on decomposition (MOEA/D) and S-metric evolutionary multi-objective optimization (SMS-EMOA). We assess the performance of the algorithms by applying quality indicators intended to measure convergence and the diversity of the generated Pareto front approximations. We carry out a comparison with another reference mono-objective algorithm in the problem domain (Lamarckian genetic algorithm (LGA) provided by the AutoDock tool). Furthermore, the ligand binding site and molecular interactions of computed solutions are analyzed, showing promising results for the multi-objective approaches. In addition, a case study of application for aeroplysinin-1 is performed, showing the effectiveness of our multi-objective approach in drug discovery.

  15. pso@autodock: a fast flexible molecular docking program based on Swarm intelligence.

    PubMed

    Namasivayam, Vigneshwaran; Günther, Robert

    2007-12-01

    On the quest of novel therapeutics, molecular docking methods have proven to be valuable tools for screening large libraries of compounds determining the interactions of potential drugs with the target proteins. A widely used docking approach is the simulation of the docking process guided by a binding energy function. On the basis of the molecular docking program autodock, we present pso@autodock as a tool for fast flexible molecular docking. Our novel Particle Swarm Optimization (PSO) algorithms varCPSO and varCPSO-ls are suited for rapid docking of highly flexible ligands. Thus, a ligand with 23 rotatable bonds was successfully docked within as few as 100 000 computing steps (rmsd = 0.87 A), which corresponds to only 10% of the computing time demanded by autodock. In comparison to other docking techniques as gold 3.0, dock 6.0, flexx 2.2.0, autodock 3.05, and sodock, pso@autodock provides the smallest rmsd values for 12 in 37 protein-ligand complexes. The average rmsd value of 1.4 A is significantly lower then those obtained with the other docking programs, which are all above 2.0 A. Thus, pso@autodock is suggested as a highly efficient docking program in terms of speed and quality for flexible peptide-protein docking and virtual screening studies.

  16. Bio-inspired algorithms applied to molecular docking simulations.

    PubMed

    Heberlé, G; de Azevedo, W F

    2011-01-01

    Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.

  17. Metronidazole hydrazone conjugates: Design, synthesis, antiamoebic and molecular docking studies.

    PubMed

    Ansari, Mohammad Fawad; Siddiqui, Shadab Miyan; Agarwal, Subhash M; Vikramdeo, Kunwar Somesh; Mondal, Neelima; Azam, Amir

    2015-09-01

    Metronidazole hydrazone conjugates (2-13) were synthesized and screened in vitro for antiamoebic activity against HM1: IMSS strain of Entamoeba histolytica. Six compounds were found to be better inhibitors of E. histolytica than the reference drug metronidazole. These compounds showed greater than 50-60% viability against HeLa cervical cancer cell line after 72 h treatment. Also, molecular docking study was undertaken on E. histolytica thioredoxin reductase (EhTHRase) protein which showed significant binding affinity in the active site. Out of the six actives, some of the compounds showed lipophilic characteristics.

  18. Three-dimensional quantitative structure-activity relationship analysis for human pregnane X receptor for the prediction of CYP3A4 induction in human hepatocytes: structure-based comparative molecular field analysis.

    PubMed

    Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi

    2015-01-01

    The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process.

  19. Context-based preprocessing of molecular docking data

    PubMed Central

    2013-01-01

    Background Data preprocessing is a major step in data mining. In data preprocessing, several known techniques can be applied, or new ones developed, to improve data quality such that the mining results become more accurate and intelligible. Bioinformatics is one area with a high demand for generation of comprehensive models from large datasets. In this article, we propose a context-based data preprocessing approach to mine data from molecular docking simulation results. The test cases used a fully-flexible receptor (FFR) model of Mycobacterium tuberculosis InhA enzyme (FFR_InhA) and four different ligands. Results We generated an initial set of attributes as well as their respective instances. To improve this initial set, we applied two selection strategies. The first was based on our context-based approach while the second used the CFS (Correlation-based Feature Selection) machine learning algorithm. Additionally, we produced an extra dataset containing features selected by combining our context strategy and the CFS algorithm. To demonstrate the effectiveness of the proposed method, we evaluated its performance based on various predictive (RMSE, MAE, Correlation, and Nodes) and context (Precision, Recall and FScore) measures. Conclusions Statistical analysis of the results shows that the proposed context-based data preprocessing approach significantly improves predictive and context measures and outperforms the CFS algorithm. Context-based data preprocessing improves mining results by producing superior interpretable models, which makes it well-suited for practical applications in molecular docking simulations using FFR models. PMID:24564276

  20. 3D-QSAR methods on the basis of ligand-receptor complexes. Application of COMBINE and GRID/GOLPE methodologies to a series of CYP1A2 ligands.

    PubMed

    Lozano, J J; Pastor, M; Cruciani, G; Gaedt, K; Centeno, N B; Gago, F; Sanz, F

    2000-05-01

    Many heterocyclic amines (HCA) present in cooked food exert a genotoxic activity when they are metabolised (N-oxidated) by the human cytochrome P450 1A2 (CYP1A2h). In order to rationalize the observed differences in activity of this enzyme on a series of 12 HCA, 3D-QSAR methods were applied on the basis of models of HCA-CYP1A2h complexes. The CYP1A2h enzyme model has been previously reported and was built by homology modeling based on cytochrome P450 BM3. The complexes were automatically generated applying the AUTODOCK software and refined using AMBER. A COMBINE analysis on the complexes identified the most important enzyme-ligand interactions that account for the differences in activity within the series. A GRID/GOLPE analysis was then performed on just the ligands, in the conformations and orientations found in the modeled complexes. The results from both methods were concordant and confirmed the advantages of incorporating structural information from series of ligand-receptor complexes into 3D-QSAR methodologies.

  1. 3D-QSAR methods on the basis of ligand-receptor complexes. Application of COMBINE and GRID/GOLPE methodologies to a series of CYP1A2 ligands

    NASA Astrophysics Data System (ADS)

    Lozano, Juan José; Pastor, Manuel; Cruciani, Gabriele; Gaedt, Katrin; Centeno, Nuria B.; Gago, Federico; Sanz, Ferran

    2000-05-01

    Many heterocyclic amines (HCA) present in cooked food exert a genotoxic activity when they are metabolised (N-oxidated) by the human cytochrome P450 1A2 (CYP1A2h). In order to rationalize the observed differences in activity of this enzyme on a series of 12 HCA, 3D-QSAR methods were applied on the basis of models of HCA-CYP1A2h complexes. The CYP1A2h enzyme model has been previously reported and was built by homology modeling based on cytochrome P450 BM3. The complexes were automatically generated applying the AUTODOCK software and refined using AMBER. A COMBINE analysis on the complexes identified the most important enzyme-ligand interactions that account for the differences in activity within the series. A GRID/GOLPE analysis was then performed on just the ligands, in the conformations and orientations found in the modeled complexes. The results from both methods were concordant and confirmed the advantages of incorporating structural information from series of ligand-receptor complexes into 3D-QSAR methodologies.

  2. Stepwise development of structure-activity relationship of diverse PARP-1 inhibitors through comparative and validated in silico modeling techniques and molecular dynamics simulation.

    PubMed

    Halder, Amit K; Saha, Achintya; Saha, Krishna Das; Jha, Tarun

    2015-01-01

    Inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) enzyme are useful for the treatment of various diseases including cancer. Comparative in silico studies were performed on different ligand-based (2D-QSAR, Kernel-based partial least square (KPLS) analysis, Pharmacophore Search Engine (PHASE) pharmacophore mapping), and structure-based (molecular docking, MM-GBSA analyses, Gaussian-based 3D-QSAR analyses on docked poses) modeling techniques to explore the structure-activity relationship of a diverse set of PARP-1 inhibitors. Two-dimensional (2D)-QSAR highlighted the importance of charge topological index (JGI7), fractional polar surface area (JursFPSA3), and connectivity index (CIC2) along with different molecular fragments. Favorable and unfavorable fingerprints were demonstrated in KPLS analysis, whereas important pharmacophore features (one acceptor, one donor, and two ring aromatic) along with favorable and unfavorable field effects were demonstrated in PHASE-based pharmacophore model. MM-GBSA analyses revealed significance of different polar, non-polar, and solvation energies. Docking-based alignment of ligands was used to perform Gaussian-based 3D-QSAR study that further demonstrated importance of different field effects. Overall, it was found that polar interactions (hydrogen bonding, bridged hydrogen bonding, and pi-cation) play major roles for higher activity. Steric groups increase the total contact surface area but it should have higher fractional polar surface area to adjust solvation energy. Structure-based pharmacophore mapping spotted the positive ionizable feature of ligands as the most important feature for discriminating highly active compounds from inactives. Molecular dynamics simulation, conducted on highly active ligands, described the dynamic behaviors of the protein complexes and supported the interpretations obtained from other modeling analyses. The current study may be useful for designing PARP-1 inhibitors.

  3. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments

    PubMed Central

    De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944

  4. Clustering molecular dynamics trajectories for optimizing docking experiments.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.

  5. Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine

    NASA Astrophysics Data System (ADS)

    Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing

    2016-12-01

    Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.

  6. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    PubMed

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed.

  7. Molecular docking of balanol to dynamics snapshots of protein kinase A.

    PubMed

    Wong, Chung F; Kua, Jeremy; Zhang, Yingkai; Straatsma, T P; McCammon, J Andrew

    2005-12-01

    Even if the structure of a receptor has been determined experimentally, it may not be a conformation to which a ligand would bind when induced fit effects are significant. Molecular docking using such a receptor structure may thus fail to recognize a ligand to which the receptor can bind with reasonable affinity. Here, we examine one way to alleviate this problem by using an ensemble of receptor conformations generated from a molecular dynamics simulation for molecular docking. Two molecular dynamics simulations were conducted to generate snapshots for protein kinase A: one with the ligand bound, the other without. The ligand, balanol, was then docked to conformations of the receptors presented by these trajectories. The Lamarckian genetic algorithm in Autodock [Goodsell et al. J Mol Recognit 1996;9(1):1-5; Morris et al. J Comput Chem 1998;19(14):1639-1662] was used in the docking. Three ligand models were used: rigid, flexible, and flexible with torsional potentials. When the snapshots were taken from the molecular dynamics simulation of the protein-ligand complex, the correct docking structure could be recovered easily by the docking algorithm in all cases. This was an easier case for challenging the docking algorithm because, by using the structure of the protein in a protein-ligand complex, one essentially assumed that the protein already had a pocket to which the ligand can fit well. However, when the snapshots were taken from the ligand-free protein simulation, which is more useful for a practical application when the structure of the protein-ligand complex is not known, several clusters of structures were found. Of the 10 docking runs for each snapshot, at least one structure was close to the correctly docked structure when the flexible-ligand models were used. We found that a useful way to identify the correctly docked structure was to locate the structure that appeared most frequently as the lowest energy structure in the docking experiments to different

  8. Inhibition of immune complex-mediated neutrophil oxidative metabolism: a pharmacophore model for 3-phenylcoumarin derivatives using GRIND-based 3D-QSAR and 2D-QSAR procedures.

    PubMed

    Kabeya, Luciana M; da Silva, Carlos H T P; Kanashiro, Alexandre; Campos, Joaquín M; Azzolini, Ana Elisa C S; Polizello, Ana Cristina M; Pupo, Mônica T; Lucisano-Valim, Yara M

    2008-05-01

    In this study, twenty hydroxylated and acetoxylated 3-phenylcoumarin derivatives were evaluated as inhibitors of immune complex-stimulated neutrophil oxidative metabolism and possible modulators of the inflammatory tissue damage found in type III hypersensitivity reactions. By using lucigenin- and luminol-enhanced chemiluminescence assays (CL-luc and CL-lum, respectively), we found that the 6,7-dihydroxylated and 6,7-diacetoxylated 3-phenylcoumarin derivatives were the most effective inhibitors. Different structural features of the other compounds determined CL-luc and/or CL-lum inhibition. The 2D-QSAR analysis suggested the importance of hydrophobic contributions to explain these effects. In addition, a statistically significant 3D-QSAR model built applying GRIND descriptors allowed us to propose a virtual receptor site considering pharmacophoric regions and mutual distances. Furthermore, the 3-phenylcoumarins studied were not toxic to neutrophils under the assessed conditions.

  9. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  10. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.

    PubMed

    Cross, Jason B; Thompson, David C; Rai, Brajesh K; Baber, J Christian; Fan, Kristi Yi; Hu, Yongbo; Humblet, Christine

    2009-06-01

    Molecular docking programs are widely used modeling tools for predicting ligand binding modes and structure based virtual screening. In this study, six molecular docking programs (DOCK, FlexX, GLIDE, ICM, PhDOCK, and Surflex) were evaluated using metrics intended to assess docking pose and virtual screening accuracy. Cognate ligand docking to 68 diverse, high-resolution X-ray complexes revealed that ICM, GLIDE, and Surflex generated ligand poses close to the X-ray conformation more often than the other docking programs. GLIDE and Surflex also outperformed the other docking programs when used for virtual screening, based on mean ROC AUC and ROC enrichment values obtained for the 40 protein targets in the Directory of Useful Decoys (DUD). Further analysis uncovered general trends in accuracy that are specific for particular protein families. Modifying basic parameters in the software was shown to have a significant effect on docking and virtual screening results, suggesting that expert knowledge is critical for optimizing the accuracy of these methods.

  11. Molecular interactions of flavonoids to pepsin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Zeng, Hua-Jin; Yang, Ran; Liang, Huili; Qu, Ling-Bo

    2015-01-01

    In the work described on this paper, the inhibitory effect of 10 flavonoids on pepsin and the interactions between them were investigated by a combination of spectroscopic and molecular docking methods. The results indicated that all flavonoids could bind with pepsin to form flavonoid-pepsin complexes. The binding parameters obtained from the data at different temperatures revealed that flavonoids could spontaneously interact with pepsin mainly through electrostatic forces and hydrophobic interactions with one binding site. According to synchronous and three-dimensional fluorescence spectra and molecular docking results, all flavonoids bound directly into the enzyme cavity site and the binding influenced the microenvironment and conformation of the pepsin activity site which resulted in the reduced enzyme activity. The present study provides direct evidence at a molecular level to understand the mechanism of digestion caused by flavonoids.

  12. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review.

    PubMed

    Yuriev, Elizabeth; Holien, Jessica; Ramsland, Paul A

    2015-10-01

    Molecular docking is a computational method for predicting the placement of ligands in the binding sites of their receptor(s). In this review, we discuss the methodological developments that occurred in the docking field in 2012 and 2013, with a particular focus on the more difficult aspects of this computational discipline. The main challenges and therefore focal points for developments in docking, covered in this review, are receptor flexibility, solvation, scoring, and virtual screening. We specifically deal with such aspects of molecular docking and its applications as selection criteria for constructing receptor ensembles, target dependence of scoring functions, integration of higher-level theory into scoring, implicit and explicit handling of solvation in the binding process, and comparison and evaluation of docking and scoring methods.

  13. Synthesis, characterization, biological evaluation and molecular docking of steroidal spirothiazolidinones

    NASA Astrophysics Data System (ADS)

    Shamsuzzaman; Abdul Baqi, Khan A. A.; Ali, Abad; Asif, Mohd; Mashrai, Ashraf; Khanam, Hena; Sherwani, Asif; Yaseen, Zahid; Owais, Mohammad

    2015-04-01

    The present work describes a convenient synthesis of steroidal spirothiazolidinone derivatives (3, 10-12) in a two-step process. All the newly synthesized compounds have been characterized by means of elemental analyses, IR, 1H NMR, 13C NMR and MS. Lipinski's 'Rule of Five' analysis and biological score predicted higher intrinsic quality of the synthesized compounds and revealed that these compounds have good passive oral absorption. The DNA binding studies of the synthesized compounds with CT-DNA were carried out by UV-vis and fluorescence spectroscopy. The molecular docking study suggested electrostatic interaction between synthesized compounds and nucleotide base pairs. The antitumor activity was tested in vitro against human leukemia cancer cell (Jurkat) and blood peripheral mononuclear normal cell (PBMCs) lines by MTT method. In addition, apoptosis and nonenzymatic degradation of DNA have been investigated. The acetylcholinesterase (AChE) inhibitor activities of the derivatives were also evaluated using Ellman's method. The present study has shown that steroidal spirothiazolidinone derivatives (3, 10-12) can be used as template to design more potent and selective cytotoxic and AChE inhibition agents through modification and derivatization.

  14. Pharmacophore Modeling and Docking Studies on Some Nonpeptide-Based Caspase-3 Inhibitors

    PubMed Central

    Sharma, Simant; Basu, Arijit; Agrawal, R. K.

    2013-01-01

    Neurodegenerative disorders are major consequences of excessive apoptosis caused by a proteolytic enzyme known as caspase-3. Therefore, caspase-3 inhibition has become a validated therapeutic approach for neurodegenerative disorders. We performed pharmacophore modeling on some synthetic derivatives of caspase-3 inhibitors (pyrrolo[3,4-c]quinoline-1,3-diones) using PHASE 3.0. This resulted in the common pharmacophore hypothesis AAHRR.6 which might be responsible for the biological activity: two aromatic rings (R) mainly in the quinoline nucleus, one hydrophobic (H) group (CH3), and two acceptor (A) groups (–C=O). After identifying a valid hypothesis, we also developed an atom-based 3D-QSAR model applying the PLS algorithm. The developed model was statistically robust (q2 = 0.53; pred_r2 = 0.80). Additionally, we have performed molecular docking studies, cross-validated our results, and gained a deeper insight into its molecular recognition process. Our developed model may serve as a query tool for future virtual screening and drug designing for this particular target. PMID:24089669

  15. Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90

    PubMed Central

    Singh, Salam Pradeep; Deb, Chitta Ranjan; Ahmed, Sharif Udin; Saratchandra, Yenisetti; Konwar, Bolin Kumar

    2016-01-01

    Abstract Hsp90 is a major protein involved in the stabilization of various proteins in cancer cells. The present investigation focused on the molecular docking simulation studies of flavanols as inhibitors of Hsp90 at the high affinity adenosine triphosphate (ATP) binding site and analyzed absorption, distribution, metabolism, excretion and toxicity (ADME-toxicity). The molecular docking analysis revealed that the flavanols showed competitive inhibition with ATP molecule at the active site and enhanced pharmacological parameters.

  16. Feasibility of using molecular docking-based virtual screening for searching dual target kinase inhibitors.

    PubMed

    Zhou, Shunye; Li, Youyong; Hou, Tingjun

    2013-04-22

    Multitarget agents have been extensively explored for solving limited efficacies, poor safety, and resistant profiles of an individual target. Theoretical approaches for searching and designing multitarget agents are critically useful. Here, the performance of molecular docking to search dual-target inhibitors for four kinase pairs (CDK2-GSK3B, EGFR-Src, Lck-Src, and Lck-VEGFR2) was assessed. First, the representative structures for each kinase target were chosen by structural clustering of available crystal structures. Next, the performance of molecular docking to distinguish inhibitors from noninhibitors for each individual kinase target was evaluated. The results show that molecular docking-based virtual screening illustrates good capability to find known inhibitors for individual targets, but the prediction accuracy is structurally dependent. Finally, the performance of molecular docking to identify the dual-target kinase inhibitors for four kinase pairs was evaluated. The analyses show that molecular docking successfully filters out most noninhibitors and achieves promising performance for identifying dual-kinase inhibitors for CDK2-GSK3B and Lck-VEGFR2. But a high false-positive rate leads to low enrichment of true dual-target inhibitors in the final list. This study suggests that molecular docking serves as a useful tool in searching inhibitors against dual or even multiple kinase targets, but integration with other virtual screening tools is necessary for achieving better predictions.

  17. Comparative residue interaction analysis (CoRIA): a 3D-QSAR approach to explore the binding contributions of active site residues with ligands

    NASA Astrophysics Data System (ADS)

    Datar, Prasanna A.; Khedkar, Santosh A.; Malde, Alpeshkumar K.; Coutinho, Evans C.

    2006-06-01

    A novel approach termed comparative residue-interaction analysis (CoRIA), emphasizing the trends and principles of QSAR in a ligand-receptor environment has been developed to analyze and predict the binding affinity of enzyme inhibitors. To test this new approach, a training set of 36 COX-2 inhibitors belonging to nine families was selected. The putative binding (bioactive) conformations of inhibitors in the COX-2 active site were searched using the program DOCK. The docked configurations were further refined by a combination of Monte Carlo and simulated annealing methods with the Affinity program. The non-bonded interaction energies of the inhibitors with the individual amino acid residues in the active site were then computed. These interaction energies, plus specific terms describing the thermodynamics of ligand-enzyme binding, were correlated to the biological activity with G/PLS. The various QSAR models obtained were validated internally by cross validation and boot strapping, and externally using a test set of 13 molecules. The QSAR models developed on the CoRIA formalism were robust with good r 2, q 2 and r pred 2 values. The major highlights of the method are: adaptation of the QSAR formalism in a receptor setting to answer both the type (qualitative) and the extent (quantitative) of ligand-receptor binding, and use of descriptors that account for the complete thermodynamics of the ligand-receptor binding. The CoRIA approach can be used to identify crucial interactions of inhibitors with the enzyme at the residue level, which can be gainfully exploited in optimizing the inhibitory activity of ligands. Furthermore, it can be used with advantage to guide point mutation studies. As regards the COX-2 dataset, the CoRIA approach shows that improving Coulombic interaction with Pro528 and reducing van der Waals interaction with Tyr385 will improve the binding affinity of inhibitors.

  18. Identification of Potential PPAR γ Agonists as Hypoglycemic Agents: Molecular Docking Approach.

    PubMed

    Mishra, Ganesh Prasad; Sharma, Rajesh

    2016-09-01

    Peroxisome proliferator-activated receptor gamma (PPAR γ) has become an attractive molecular target for drugs that aim to treat hyperglycemia. The object of our study is to identify the required molecular descriptor and essential amino acid residues for effective PPAR γ agonistic activity. In this work, we employed Molegro Virtual Docker program in all molecular docking simulations. Accuracy of receptor-compound docking was validated on a set of 15 PPAR γ-compound complexes for which crystallographic structures were available. The reliability of the docking results was acceptable with good root-mean-square deviation value (<2 Å). A significant correlation between different data derived from docking calculations and experimental data was revealed. Our results allowed identification of compounds with potential to become drugs against hyperglycemia.

  19. Flexibility and explicit solvent in molecular-dynamics-based docking of protein-glycosaminoglycan systems.

    PubMed

    Samsonov, Sergey A; Gehrcke, Jan-Philip; Pisabarro, M Teresa

    2014-02-24

    We present Dynamic Molecular Docking (DMD), a novel targeted molecular dynamics-based protocol developed to address ligand and receptor flexibility as well as the inclusion of explicit solvent in local molecular docking. A class of ligands for which docking performance especially benefits from overcoming these challenges is the glycosaminoglycans (GAGs). GAGs are periodic, highly flexible, and negatively charged polysaccharides playing an important role in the extracellular matrix via interaction with proteins such as growth factors and chemokines. The goal of our work has been to develop a proof of concept for an MD-based docking approach and to analyze its applicability for protein-GAG systems. DMD exploits the electrostatics-driven attraction of a ligand to its receptor, treats both as entirely flexible, and considers solvent explicitly. We show that DMD has high predictive significance for systems dominated by electrostatic attraction and demonstrate its capability to reliably identify the receptor residues contributing most to binding.

  20. Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol.

    PubMed

    Gabrielsen, Mari; Kurczab, Rafał; Ravna, Aina W; Kufareva, Irina; Abagyan, Ruben; Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2012-01-01

    The two main groups of antidepressant drugs, the tricyclic antidepressants (TCAs) and the selective serotonin reuptake inhibitors (SSRIs), as well as several other compounds, act by inhibiting the serotonin transporter (SERT). However, the binding mode and molecular mechanism of inhibition in SERT are not fully understood. In this study, five classes of SERT inhibitors were docked into an outward-facing SERT homology model using a new 4D ensemble docking protocol. Unlike other docking protocols, where protein flexibility is not considered or is highly dependent on the ligand structure, flexibility was here obtained by side chain sampling of the amino acids of the binding pocket using biased probability Monte Carlo (BPMC) prior to docking. This resulted in the generation of multiple binding pocket conformations that the ligands were docked into. The docking results showed that the inhibitors were stacked between the aromatic amino acids of the extracellular gate (Y176, F335) presumably preventing its closure. The inhibitors interacted with amino acids in both the putative substrate binding site and more extracellular regions of the protein. A general structure-docking-based pharmacophore model was generated to explain binding of all studied classes of SERT inhibitors. Docking of a test set of actives and decoys furthermore showed that the outward-facing ensemble SERT homology model consistently and selectively scored the majority of active compounds above decoys, which indicates its usefulness in virtual screening.

  1. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors.

    PubMed

    Yang, Bing; Yang, Yu-Shun; Yang, Na; Li, Guigen; Zhu, Hai-Liang

    2016-06-08

    A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future.

  2. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Yang, Yu-Shun; Yang, Na; Li, Guigen; Zhu, Hai-Liang

    2016-06-01

    A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future.

  3. Molecular docking studies of withanolides against Cox-2 enzyme.

    PubMed

    Prabhakaran, Yogeswaran; Dinakaran, Sathis Kumar; Macharala, Sravan Prasad; Ghosh, Somsubhra; Karanam, Sridevi Ranjitha; Kanthasamy, Naveena; Avasarala, Harani

    2012-07-01

    Withaniasomnifera (Ashwaganda) belonging to the family solanaceae is the subject of our present study. Withanoloides which are the major chemical constituents have been proved of interest because of their structural variations in the hybrids of different races. Docking is the process which brings the two structures together. In the present study we focus the extensive use of tool and graphical software for the identification of the binding energy of selected Withanolides like Withaferin -A, Withanolide-D from Withaniasomnifera and to screen the phytoconstituents that will dock/bind to the active sites of COX-2 enzyme. The relief from the symptoms of inflammation and pain can be by the Pharmacological inhibition of COX which involves the prediction of potential ligand for the treatment of inflammation. The energy value of docking between the target and the phytoconstituents under investigation and comparison with Diclofenac sodium was taken into consideration for coming into conclusion regarding the best pose and the binding ability.

  4. A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs

    NASA Astrophysics Data System (ADS)

    Lee, Sehan; Barron, Mace G.

    2016-04-01

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π-π interaction with Trp86 is necessary for strong inhibition of AChE. Our combined computation approach provided detailed understanding of the mechanism of action of OP and carbamate compounds and may be useful for screening a diversity of chemical structures for AChE inhibitory potency.

  5. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors

    PubMed Central

    Yang, Bing; Yang, Yu-Shun; Yang, Na; Li, Guigen; Zhu, Hai-Liang

    2016-01-01

    A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future. PMID:27273260

  6. Multiple receptor conformation docking and dock pose clustering as tool for CoMFA and CoMSIA analysis - a case study on HIV-1 protease inhibitors.

    PubMed

    Sivan, Sree Kanth; Manga, Vijjulatha

    2012-02-01

    Multiple receptors conformation docking (MRCD) and clustering of dock poses allows seamless incorporation of receptor binding conformation of the molecules on wide range of ligands with varied structural scaffold. The accuracy of the approach was tested on a set of 120 cyclic urea molecules having HIV-1 protease inhibitory activity using 12 high resolution X-ray crystal structures and one NMR resolved conformation of HIV-1 protease extracted from protein data bank. A cross validation was performed on 25 non-cyclic urea HIV-1 protease inhibitor having varied structures. The comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were generated using 60 molecules in the training set by applying leave one out cross validation method, r (loo) (2) values of 0.598 and 0.674 for CoMFA and CoMSIA respectively and non-cross validated regression coefficient r(2) values of 0.983 and 0.985 were obtained for CoMFA and CoMSIA respectively. The predictive ability of these models was determined using a test set of 60 cyclic urea molecules that gave predictive correlation (r (pred) (2) ) of 0.684 and 0.64 respectively for CoMFA and CoMSIA indicating good internal predictive ability. Based on this information 25 non-cyclic urea molecules were taken as a test set to check the external predictive ability of these models. This gave remarkable out come with r (pred) (2) of 0.61 and 0.53 for CoMFA and CoMSIA respectively. The results invariably show that this method is useful for performing 3D QSAR analysis on molecules having different structural motifs.

  7. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor "thiophene-2-carboxylicacid"

    NASA Astrophysics Data System (ADS)

    Karthick, T.; Balachandran, V.; Perumal, S.

    2015-04-01

    Thiophene derivatives have been focused in the past decades due to their remarkable biological and pharmacological activities. In connection with that the conformational stability, spectroscopic characterization, molecular (inter- and intra-) interactions, and molecular docking studies on thiophene-2-carboxylicacid have been performed in this work by experimental FT-IR and theoretical quantum chemical computations. Experimentally recorded FT-IR spectrum in the region 4000-400 cm-1 has been compared with the scaled theoretical spectrum and the spectral peaks have been assigned on the basis of potential energy distribution results obtained from MOLVIB program package. The conformational stability of monomer and dimer conformers has been examined. The presence of inter- and intramolecular interactions in the monomer and dimer conformers have been explained by natural bond orbital analysis. The UV-Vis spectra of the sample in different solvents have been simulated and solvent effects were predicted by polarisable continuum model with TD-DFT/B3LYP/6-31+G(d,p) method. To test the biological activity of the sample, molecular docking (ligand-protein) simulations have been performed using SWISSDOCK web server. The full fitness (FF) score and binding affinity values revealed that thiophene-2-carboxylicacid can act as potential inhibitor against inflammation.

  8. Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors

    NASA Astrophysics Data System (ADS)

    Murumkar, Prashant Revan; Zambre, Vishal Prakash; Yadav, Mange Ram

    2010-02-01

    A chemical feature-based pharmacophore model was developed for Tumor Necrosis Factor-α converting enzyme (TACE) inhibitors. A five point pharmacophore model having two hydrogen bond acceptors (A), one hydrogen bond donor (D) and two aromatic rings (R) with discrete geometries as pharmacophoric features was developed. The pharmacophore model so generated was then utilized for in silico screening of a database. The pharmacophore model so developed was validated by using four compounds having proven TACE inhibitory activity which were grafted into the database. These compounds mapped well onto the five listed pharmacophoric features. This validated pharmacophore model was also used for alignment of molecules in CoMFA and CoMSIA analysis. The contour maps of the CoMFA/CoMSIA models were utilized to provide structural insight for activity improvement of potential novel TACE inhibitors. The pharmacophore model so developed could be used for in silico screening of any commercial/in house database for identification of TACE inhibiting lead compounds, and the leads so identified could be optimized using the developed CoMSIA model. The present work highlights the tremendous potential of the two mutually complementary ligand-based drug designing techniques (i.e. pharmacophore mapping and 3D-QSAR analysis) using TACE inhibitors as prototype biologically active molecules.

  9. Combining pharmacophore search, automated docking, and molecular dynamics simulations as a novel strategy for flexible docking. Proof of concept: docking of arginine-glycine-aspartic acid-like compounds into the alphavbeta3 binding site.

    PubMed

    Moitessier, Nicolas; Henry, Christophe; Maigret, Bernard; Chapleur, Yves

    2004-08-12

    A novel and highly efficient flexible docking approach is presented where the conformations (internal degrees of freedom) and orientations (external degrees of freedom) of the ligands are successively considered. This hybrid method takes advantage of the synergistic effects of structure-based and ligand-based drug design techniques. Preliminary antagonist-derived pharmacophore determination provides the postulated bioactive conformation. Subsequent docking of this pharmacophore to the receptor crystal structure results in a postulated pharmacophore/receptor binding mode. Pharmacophore-oriented docking of antagonists is subsequently achieved by matching ligand interacting groups with pharmacophore points. Molecular dynamics in water refines the proposed complexes. To validate the method, arginine-glycine-aspartic acid (RGD) containing peptides, pseudopeptides, and RGD-like antagonists were docked to the crystal structure of alphavbeta3 holoprotein and apoprotein. The proposed directed docking was found to be more accurate, faster, and less biased with respect to the protein structure (holo and apoprotein) than DOCK, Autodock, and FlexX docking methods. The successful docking of an antagonist recently cocrystallized with the receptor to both apo and holoprotein is particularly appealing. The results summarized in this report illustrated the efficiency of our light CoMFA/rigid body docking hybrid method.

  10. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives

    NASA Astrophysics Data System (ADS)

    Jagiello, Karolina; Grzonkowska, Monika; Swirog, Marta; Ahmed, Lucky; Rasulev, Bakhtiyor; Avramopoulos, Aggelos; Papadopoulos, Manthos G.; Leszczynski, Jerzy; Puzyn, Tomasz

    2016-09-01

    In this contribution, the advantages and limitations of two computational techniques that can be used for the investigation of nanoparticles activity and toxicity: classic nano-QSAR (Quantitative Structure-Activity Relationships employed for nanomaterials) and 3D nano-QSAR (three-dimensional Quantitative Structure-Activity Relationships, such us Comparative Molecular Field Analysis, CoMFA/Comparative Molecular Similarity Indices Analysis, CoMSIA analysis employed for nanomaterials) have been briefly summarized. Both approaches were compared according to the selected criteria, including: efficiency, type of experimental data, class of nanomaterials, time required for calculations and computational cost, difficulties in the interpretation. Taking into account the advantages and limitations of each method, we provide the recommendations for nano-QSAR modellers and QSAR model users to be able to determine a proper and efficient methodology to investigate biological activity of nanoparticles in order to describe the underlying interactions in the most reliable and useful manner.

  11. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis.

    PubMed

    Li, Jiazhong; Li, Shuyan; Bai, Chongliang; Liu, Huanxiang; Gramatica, Paola

    2013-07-01

    Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure-activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities.

  12. Exploring binding properties of naringenin with bovine β-lactoglobulin: a fluorescence, molecular docking and molecular dynamics simulation study.

    PubMed

    Gholami, Samira; Bordbar, Abdol-Khalegh

    2014-01-01

    In the present study, the binding properties of naringenin (NG) to β-lactoglobulin (BLG) were explored using spectrofluorimetric and molecular modeling techniques. Analysis of spectrofluorimetric titration data represented the formation of 1:1 complex, significant binding affinity, negative values of entropy and enthalpy changes and the essential role of hydrogen bonding and van der Waals interactions in binding of NG to BLG. The value of determined Förster's distance represents the static mechanism for quenching of BLG by NG. The results of fluorescence competitive binding experiments characterize the location of NG binding site in the outer surface of BLG. Molecular docking study showed that NG binds in the outer surface site of BLG which is accompanied with three hydrogen bonds. The support of molecular docking results by biochemical fluorescence experiments confirms the validity of docking calculation. Analysis of molecular dynamics results indicated that NG can interact with BLG without affecting the secondary structure of protein.

  13. Rigorous Treatment of Multi-species Multi-mode Ligand-Receptor Interactions in 3D-QSAR: CoMFA Analysis of Thyroxine Analogs Binding to Transthyretin

    PubMed Central

    Natesan, Senthil; Wang, Tiansheng; Lukacova, Viera; Bartus, Vladimir; Khandelwal, Akash; Balaz, Stefan

    2011-01-01

    For a rigorous analysis of the receptor-ligand binding, speciation of the ligands caused by ionization, tautomerism, covalent hydration, and dynamic stereoisomerism needs to be considered. Each species may bind in several orientations or conformations (modes), especially for flexible ligands and receptors. A thermodynamic description of the multi-species (MS), multi-mode (MM) binding events shows that the overall association constant is equal to the weighted sum of the sums of microscopic association constants of individual modes for each species, with the weights given by the unbound fractions of individual species. This expression is a prerequisite for a precise quantitative characterization of the ligand-receptor interactions in both structure-based and ligand-based structure-activity analyses. We have implemented the MS-MM correlation expression into the Comparative Molecular Field Analysis (CoMFA), which deduces a map of the binding site from structures and binding affinities of a ligand set, in the absence of experimental structural information on the receptor. The MS-MM CoMFA approach was applied to published data for binding to transthyretin of 28 thyroxine analogs, each forming up to four ionization species under physiological conditions. The published X-ray structures of several analogs, exhibiting multiple binding modes, served as templates for the MS-MM superposition of thyroxine analogs. Additional modes were generated for compounds with flexible alkyl substituents, to identify bound conformations. The results demonstrate that the MS-MM modification improved predictive abilities of the CoMFA models, even for the standard procedure with MS-MM selected species and modes. The predicted prevalences of individual modes and the generated receptor site model are in reasonable agreement with the available X-ray data. The calibrated model can help in the design of inhibitors of transthyretin amyloid fibril formation. PMID:21476521

  14. Synthesis, molecular docking and antiamnesic activity of selected 2- naphthyloxy derivatives.

    PubMed

    Piplani, Poonam; Singh, Paramveer; Sharma, Anuradha

    2013-05-01

    The present paper describes the design and synthesis of a series of some 2-naphthyloxy derivatives with their antiamnesic activity using mice as the animal model and piracetam as the reference drug. All the synthesized compounds were characterized by spectroscopic techniques and were screened for their efficacy as cognition enhancers by elevated plus maze test and acetylcholinestrase inhibitory assay. Molecular modeling and docking studies of the selected compounds into the crystal structure of acetylcholinestrase complexed with functional ligand succinylcholine using GRAMM software was performed in order to predict the affinity and orientation of the synthesized derivatives at the active site. The binding energy of ligands was calculated using ArgusLab software. The docking score and hydrogen bonds formed with surrounding amino acids show the good agreement with predicted binding affinities obtained by molecular docking studies, as verified by acetylcholinestrase activity.

  15. A real-time proximity querying algorithm for haptic-based molecular docking.

    PubMed

    Iakovou, Georgios; Hayward, Steven; Laycock, Stephen

    2014-01-01

    Intermolecular binding underlies every metabolic and regulatory processes of the cell, and the therapeutic and pharmacological properties of drugs. Molecular docking systems model and simulate these interactions in silico and allow us to study the binding process. Haptic-based docking provides an immersive virtual docking environment where the user can interact with and guide the molecules to their binding pose. Moreover, it allows human perception, intuition and knowledge to assist and accelerate the docking process, and reduces incorrect binding poses. Crucial for interactive docking is the real-time calculation of interaction forces. For smooth and accurate haptic exploration and manipulation, force-feedback cues have to be updated at a rate of 1 kHz. Hence, force calculations must be performed within 1 ms. To achieve this, modern haptic-based docking approaches often utilize pre-computed force grids and linear interpolation. However, such grids are time-consuming to pre-compute (especially for large molecules), memory hungry, can induce rough force transitions at cell boundaries and cannot be applied to flexible docking. Here we propose an efficient proximity querying method for computing intermolecular forces in real time. Our motivation is the eventual development of a haptic-based docking solution that can model molecular flexibility. Uniquely in a haptics application we use octrees to decompose the 3D search space in order to identify the set of interacting atoms within a cut-off distance. Force calculations are then performed on this set in real time. The implementation constructs the trees dynamically, and computes the interaction forces of large molecular structures (i.e. consisting of thousands of atoms) within haptic refresh rates. We have implemented this method in an immersive, haptic-based, rigid-body, molecular docking application called Haptimol_RD. The user can use the haptic device to orientate the molecules in space, sense the interaction

  16. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations.

    PubMed

    Uehara, Shota; Tanaka, Shigenori

    2017-04-07

    Protein flexibility is a major hurdle in current structure-based virtual screening (VS). In spite of the recent advances in high-performance computing, protein-ligand docking methods still demand tremendous computational cost to take into account the full degree of protein flexibility. In this context, ensemble docking has proven its utility and efficiency for VS studies, but it still needs a rational and efficient method to select and/or generate multiple protein conformations. Molecular dynamics (MD) simulations are useful to produce distinct protein conformations without abundant experimental structures. In this study, we present a novel strategy that makes use of cosolvent-based molecular dynamics (CMD) simulations for ensemble docking. By mixing small organic molecules into a solvent, CMD can stimulate dynamic protein motions and induce partial conformational changes of binding pocket residues appropriate for the binding of diverse ligands. The present method has been applied to six diverse target proteins and assessed by VS experiments using many actives and decoys of DEKOIS 2.0. The simulation results have revealed that the CMD is beneficial for ensemble docking. Utilizing cosolvent simulation allows the generation of druggable protein conformations, improving the VS performance compared with the use of a single experimental structure or ensemble docking by standard MD with pure water as the solvent.

  17. Vibrational spectroscopic, molecular docking and density functional theory studies on 2-acetylamino-5-bromo-6-methylpyridine.

    PubMed

    Premkumar, S; Rekha, T N; Mohamed Asath, R; Mathavan, T; Milton Franklin Benial, A

    2016-01-20

    Conformational and molecular docking analysis of 2-acetylamino-5-bromo-6-methylpyridine molecule was carried out and the vibrational spectral analysis was also carried out using experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies of the molecule were assigned and compared. The pyridine ring CH stretching and CH3 stretching vibrational modes were shifted towards higher wavenumber (blue shift). The C=O stretching vibrational frequency was shifted towards lower wavenumber (red shift). Ultraviolet-visible spectrum of the molecule simulated theoretically was further validated experimentally. Molecular reactivity and stability were investigated using the frontier molecular orbital analysis and the related quantum chemical molecular properties. Natural bond orbital analysis and the structure activity relations were also studied to confirm the bioactivity of the molecule. Anticancer activity was examined based on molecular docking analysis and it has been identified that the AABMP molecule can act as a good inhibitor against lung cancer.

  18. Molecular Docking of Enzyme Inhibitors: A Computational Tool for Structure-Based Drug Design

    ERIC Educational Resources Information Center

    Rudnitskaya, Aleksandra; Torok, Bela; Torok, Marianna

    2010-01-01

    Molecular docking is a frequently used method in structure-based rational drug design. It is used for evaluating the complex formation of small ligands with large biomolecules, predicting the strength of the bonding forces and finding the best geometrical arrangements. The major goal of this advanced undergraduate biochemistry laboratory exercise…

  19. Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations.

    PubMed

    Shen, Mingyun; Zhou, Shunye; Li, Youyong; Pan, Peichen; Zhang, Liling; Hou, Tingjun

    2013-03-01

    Rho-associated protein kinases (ROCK1 and ROCK2) are promising targets for a number of diseases, including cardiovascular disorders, nervous system diseases, cancers, etc. Recently, we have successfully identified a ROCK1 inhibitor (1) with the triazine core. In order to gain a deeper insight into the microscopic binding of this inhibitor with ROCK1 and design derivatives with improved potency, the interactions between ROCK1 and a series of triazine/pyrimidine-based inhibitors were studied by using an integrated computational protocol that combines molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and binding energy decomposition analysis. First, three docking protocols, rigid receptor docking, induced fit docking, QM-polarized ligand docking, were used to determine the binding modes of the studied inhibitors in the active site of ROCK1. The results illustrate that rigid receptor docking achieves the best performance to rank the binding affinities of the studied inhibitors. Then, based on the predicted structures from molecular docking, MD simulations and MM/GBSA free energy calculations were employed to determine the dynamic binding process and compare the binding modes of the inhibitors with different activities. The binding free energies predicted by MM/GBSA are in good agreement with the experimental bioactivities, and the analysis of the individual energy terms suggests that the van der Waals interaction is the major driving force for ligand binding. In addition, the residue-inhibitor interaction spectra were obtained by the MM/GBSA free energy decomposition analysis, and the important residues for achieving strong binding were highlighted, which affords important guidance for the rational design of novel ROCK inhibitors. Finally, a variety of derivatives of inhibitor 1 were designed and four of them showed promising potency according to the predictions. We expect that our study can provide significant insight into the

  20. Incorporating replacement free energy of binding-site waters in molecular docking.

    PubMed

    Sun, Hanzi; Zhao, Lifeng; Peng, Shiming; Huang, Niu

    2014-09-01

    Binding-site water molecules play a crucial role in protein-ligand recognition, either being displaced upon ligand binding or forming water bridges to stabilize the complex. However, rigorously treating explicit binding-site waters is challenging in molecular docking, which requires to fully sample ensembles of waters and to consider the free energy cost of replacing waters. Here, we describe a method to incorporate structural and energetic properties of binding-site waters into molecular docking. We first developed a solvent property analysis (SPA) program to compute the replacement free energies of binding-site water molecules by post-processing molecular dynamics trajectories obtained from ligand-free protein structure simulation in explicit water. Next, we implemented a distance-dependent scoring term into DOCK scoring function to take account of the water replacement free energy cost upon ligand binding. We assessed this approach in protein targets containing important binding-site waters, and we demonstrated that our approach is reliable in reproducing the crystal binding geometries of protein-ligand-water complexes, as well as moderately improving the ligand docking enrichment performance. In addition, SPA program (free available to academic users upon request) may be applied in identifying hot-spot binding-site residues and structure-based lead optimization.

  1. Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics.

    PubMed

    Iakovou, Georgios; Hayward, Steven; Laycock, Stephen D

    2015-09-01

    Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates.

  2. Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors.

    PubMed

    Raj, Utkarsh; Kumar, Himansu; Varadwaj, Pritish Kumar

    2016-08-05

    Bromodomains (BRDs) are the epigenetic proteins responsible for transcriptional regulation through its interaction with methylated or acetylated histone residues. The lysine residues of Bromodomain-1 (BD1) of Brd4 undergo ε-N-Acetylation posttranslational modifications to control transcription of genes. Due to its role in diverse cellular functions, Brd4 of bromodomain family, was considered as a prominent target for many diseases such as cancer, obesity, kidney disease, lung fibrosis, inflammatory diseases, etc. In this study, an attempt has been made to screen compounds from flavonoids and extended flavonoids libraries targeting acetylated lysine (KAc) binding site of BD1 of Brd4 using docking and molecular dynamics simulations. Two different docking programs AutoDock and Glide were used to compare their suitability for the receptor. Interestingly, in both the docking programs, the screened flavonoids have occupied the same binding pocket confirming the selection of active site. Further the MMGBSA binding free energy calculations and ADME analysis were carried out on screened compounds to establish their anti-cancerous properties. We have identified a flavonoid which shows docking and Glide e-model score comparatively much higher than those of already reported known inhibitors against Brd4. The protein-ligand complex with top-ranked flavonoid was used for dynamics simulation study for 50 ns in order to validate its stability inside the active site of Brd4 receptor. The results provide valuable information for structure-based drug design of Brd4 inhibitors.

  3. In silico predictive studies of mAHR congener binding using homology modelling and molecular docking.

    PubMed

    Panda, Roshni; Cleave, A Suneetha Susan; Suresh, P K

    2014-09-01

    The aryl hydrocarbon receptor (AHR) is one of the principal xenobiotic, nuclear receptor that is responsible for the early events involved in the transcription of a complex set of genes comprising the CYP450 gene family. In the present computational study, homology modelling and molecular docking were carried out with the objective of predicting the relationship between the binding efficiency and the lipophilicity of different polychlorinated biphenyl (PCB) congeners and the AHR in silico. Homology model of the murine AHR was constructed by several automated servers and assessed by PROCHECK, ERRAT, VERIFY3D and WHAT IF. The resulting model of the AHR by MODWEB was used to carry out molecular docking of 36 PCB congeners using PatchDock server. The lipophilicity of the congeners was predicted using the XLOGP3 tool. The results suggest that the lipophilicity influences binding energy scores and is positively correlated with the same. Score and Log P were correlated with r = +0.506 at p = 0.01 level. In addition, the number of chlorine (Cl) atoms and Log P were highly correlated with r = +0.900 at p = 0.01 level. The number of Cl atoms and scores also showed a moderate positive correlation of r = +0.481 at p = 0.01 level. To the best of our knowledge, this is the first study employing PatchDock in the docking of AHR to the environmentally deleterious congeners and attempting to correlate structural features of the AHR with its biochemical properties with regards to PCBs. The result of this study are consistent with those of other computational studies reported in the previous literature that suggests that a combination of docking, scoring and ranking organic pollutants could be a possible predictive tool for investigating ligand-mediated toxicity, for their subsequent validation using wet lab-based studies.

  4. Spectroscopy and molecular docking study on the interaction behavior between nobiletin and pepsin.

    PubMed

    Zeng, Hua-jin; Qi, Tingting; Yang, Ran; You, Jing; Qu, Ling-bo

    2014-07-01

    In this study, the binding mode of nobiletin (NOB) with pepsin was investigated by spectroscopic and molecular docking methods. NOB can interact with pepsin to form a NOB-pepsin complex. The binding constant, number of binding sites and thermodynamic parameters were measured, which indicated that NOB could spontaneously bind with pepsin through hydrophobic and electrostatic forces with one binding site. Molecular docking results revealed that NOB bound into the pepsin cavity. Synchronous and three-dimensional fluorescence spectra results provide data concerning conformational and some micro-environmental changes of pepsin. Furthermore, the binding of NOB can inhibit pepsin activity in vitro. The present study provides direct evidence at a molecular level to show that NOB could induce changes in the enzyme pepsin structure and function.

  5. Investigation on the binding interaction between silybin and pepsin by spectral and molecular docking.

    PubMed

    Zeng, Hua-jin; You, Jing; Liang, Hui-li; Qi, Tingting; Yang, Ran; Qu, Ling-bo

    2014-06-01

    In this study, the binding mode of silybin with pepsin was investigated by spectroscopic and molecular docking methods. Silybin can interact with pepsin to form a silybin-pepsin complex. The binding constant, number of binding sites and thermodynamic parameters were measured, which indicated that silybin could spontaneously bind with pepsin mainly through hydrophobic interaction with one binding site. Molecular docking results revealed that silybin bound into the pepsin cavity site. Synchronous fluorescence and three-dimensional fluorescence results provide data concerning conformational and some micro-environmental changes of pepsin. Furthermore, in order to reveal whether the binding process can inhibit the activity of pepsin in vivo, the effect of silybin on pepsin activity in rat was investigated. The present study provides direct evidence at a molecular level to show that exposure to silybin could induce changes in the enzyme pepsin structure and function.

  6. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study

    PubMed Central

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors. PMID:26384019

  7. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study.

    PubMed

    Antony, Priya; Vijayan, Ranjit

    2015-01-01

    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.

  8. Identifying Potential Protein Targets for Toluene Using a Molecular Similarity Search, in Silico Docking and in Vitro Validation

    DTIC Science & Technology

    2015-01-01

    the applicability of an exploratory in silico toxicity tool, based on a molecular similarity search and protein-ligand docking for identification of...toluene-induced aggregation. These results demonstrate the applicability of an exploratory in silico toxicity tool, based on a molecular simi- larity... Molecular Similarity Search, in Silico Docking and in Vitro Validation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  9. Molecular dynamics simulation of a myosin subfragment-1 docking with an actin filament.

    PubMed

    Masuda, Tadashi

    2013-09-01

    Myosins are typical molecular motor proteins, which convert the chemical energy of ATP into mechanical work. The fundamental mechanism of this energy conversion is still unknown. To explain the experimental results observed in molecular motors, Masuda has proposed a theory called the "Driven by Detachment (DbD)" mechanism for the working principle of myosins. Based on this theory, the energy used during the power stroke of the myosins originates from the attractive force between a detached myosin head and an actin filament, and does not directly arise from the energy of ATP. According to this theory, every step in the myosin working process may be reproduced by molecular dynamics (MD) simulations, except for the ATP hydrolysis step. Therefore, MD simulations were conducted to reproduce the docking process of a myosin subfragment-1 (S1) against an actin filament. A myosin S1 directed toward the barbed end of an actin filament was placed at three different positions by shifting it away from the filament axis. After 30 ns of MD simulations, in three cases out of ten trials on average, the myosin made a close contact with two actin monomers by changing the positions and the orientation of both the myosin and the actin as predicted in previous studies. Once the docking was achieved, the distance between the myosin and the actin showed smaller fluctuations, indicating that the docking is stable over time. If the docking was not achieved, the myosin moved randomly around the initial position or moved away from the actin filament. MD simulations thus successfully reproduced the docking of a myosin S1 with an actin filament. By extending the similar MD simulations to the other steps of the myosin working process, the validity of the DbD theory may be computationally demonstrated.

  10. Vibrational spectroscopic analysis, molecular dynamics simulations and molecular docking study of 5-nitro-2-phenoxymethyl benzimidazole

    NASA Astrophysics Data System (ADS)

    Menon, Vidya V.; Foto, Egemen; Mary, Y. Sheena; Karatas, Esin; Panicker, C. Yohannan; Yalcin, Gözde; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Yildiz, Ilkay

    2017-02-01

    FT-IR and FT-Raman spectra of 5-nitro-2-phenoxymethylbenzimidazole were recorded and analyzed theoretically and experimentally. The splitting of Nsbnd H stretching mode in the IR spectrum with a red shift from the calculated value indicates the weakening of the NH bond. The theoretical calculations give the phenyl ring breathing modes at 999 cm-1 for mono substituted benzene ring and at 1040 cm-1 for tri-substituted benzene ring. The theoretical NMR chemical shifts are in agreement with the experimental chemical shifts. The most reactive sites for electrophilic and nucleophilic attack are predicted from the MEP analysis. HOMO of π nature is delocalized over the entire molecule whereas the LUMO is located over the complete molecule except mono-substituted phenyl ring and oxygen atom. Reactive sites of the title molecule have been located with the help of ALIE surfaces and Fukui functions. In order to determine locations prone to autoxidation and locations interesting for starting of degradation, bond dissociation energies have been calculated for all single acyclic bonds. For the determination of atoms with pronounced interactions with water we have calculated radial distribution functions obtained after molecular dynamics simulations. The calculated first hyperpolarizability of the title compound is 58.03 times that of standard nonlinear optical material urea. The substrate binding site interactions of the title compound with Topo II enzyme is reported by using molecular docking study. Biological activity studies show that the title compound can be leaded for developing new anticancer agents.

  11. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Vladimir B.; Serbin, Alexander V.

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 ( HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [ HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics ( MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  12. Flavanoids as Potential NEDD-4 Inhibitors: In Silico Discovery Using Molecular Docking and ADME Studies.

    PubMed

    Chaudhary, Kamal Kumar; Gupta, Sarvesh Kumar; Mishra, Nidhi

    2017-03-01

    NEDD-4 are closely related E3 ubiquitin-protein ligases that include a C2 domain, three or four WW domains and a catalytic HECT ubiquitin ligase domain. The WW domains of NEDD-4 proteins recognize substrates for ubiquitination by binding the sequence L/PPxY (the PY-motif) present in target proteins. NEDD-4 functions as a suppressor of the epithelial Na+ channel (ENaC), which interacts with NEDD-4 WW domains via PY-motifs located at its C-terminus. Fifty compounds, all of them flavanoids, were subjected to molecular docking studies. The chemical structures were built, and docking studies were done using Schrodinger. ADMET studies were also performed. Furthermore, evidence is presented suggesting that interaction between NEDD-4 and the selected compounds from the database may also serve to regulate NEDD-4 stability, as this interaction leads to decreased NEDD-4 self-ubiquitination. Collectively, the studies presented here further our understanding of the substrate specificity and regulation of NEDD-4. We have performed molecular docking and molecular dynamics simulation to study the interactions. The results of molecular dynamics simulation confirmed the binding mode of compounds.

  13. Studies on Pidotimod Enantiomers With Chiralpak-IA: Crystal Structure, Thermodynamic Parameters and Molecular Docking.

    PubMed

    Dou, Xiaorui; Su, Xin; Wang, Yue; Chen, Yadong; Shen, Weiyang

    2015-11-01

    Pidotimod, a synthetic dipeptide, has two chiral centers with biological and immunological activity. Its enantiomers were characterized by x-ray crystallographic analysis. A chiral stationary phase (CSP) Chiralpak-IA based on amylose derivatized with tris-(3, 5-dimethylphenyl carbamate) was used to separate pidotimod enantiomers. The mobile phase was prepared in a ratio of 35:65:0.2 of methyl-tert-butyl-ether and acetonitrile trifluoroaceticacid. In addition, thermodynamics and molecular docking methods were used to explain the enantioseparation mechanism by Chiralpak-IA. Thermodynamic studies were carried out from 10 to 45 °C. In general, both retention and enantioselectivity decreased as the temperature increased. Thermodynamic parameters indicate that the interaction force between the pidotimod enantiomer (4S, 2'R) and IA CSP is stronger and their complex model is more stable. According to GOLD molecular docking simulation, Van der Waals force is the leading cause of pidotimod enantiomers separation by IA CSP.

  14. Impact of Aromatase protein variants and drug interactions in breast cancer: a molecular docking approach.

    PubMed

    Setti, Aravind; Venugopal Rao, V; Priyamvada Devi, A; Pawar, Smita C; Naresh, B; Kalyan, C S V V

    2012-08-01

    Breast cancer is a frequently reported cancer in women all over the world. Several methods available to cure the breast cancer based on stage. This study focused on chemoprevention drugs of Aromatase, a potential target in breast cancer. Natural variants of Aromatase are very common; they have been collected and modeled, optimized the energy of mutated Aromatase protein. Reversible (Anastrozole) and irreversible (Exemestane) Aromatase inhibitors are selected and performed molecular docking studies of each drug against each variant to see the binding affinity impact on protein variant and drugs. In this comparative study, Anastrozole, a cumene derivative showed more binding affinity and Diethylstilbestrol showed weak binding affinity against among all drugs. The comparative molecular docking revealed that the binding affinity between drug and Aromatase protein variant is imprecise but fairly close; therefore the protein variants of Aromatase can be conceived to be equal for chemoprevention of breast cancer therapy.

  15. Synthesis, In Vivo Anti-Inflammatory Activity, and Molecular Docking Studies of New Isatin Derivatives

    PubMed Central

    Jarapula, Ravi; Gangarapu, Kiran; Manda, Sarangapani; Rekulapally, Sriram

    2016-01-01

    A novel synthesis of 2-hydroxy-N′-(2-oxoindolin-3-ylidene) benzohydrazide derivatives was synthesized by the condensation of 2-hydroxybenzohydrazide with substituted isatins. The synthesized compounds were characterized by FT-IR, 1H-NMR, and mass spectral data. Further, the compounds were screened for in vivo anti-inflammatory activity by carrageenan induced paw edema method. The tested compounds have shown mild-to-moderate anti-inflammatory activity. The compounds VIIc and VIId exhibited 65% and 63% of paw edema reduction, respectively. The molecular docking studies were also carried out into the active site of COX-1 and COX-2 enzymes (PDB ID: 3N8Y, 3LN1, resp.) using VLife MDS 4.3. The compounds VIIc, VIId, and VIIf exhibited good docking scores of −57.27, −62.02, and −58.18 onto the active site of COX-2 and least dock scores of −8.03, −9.17, and −8.94 on COX-1 enzymes and were comparable with standard COX-2 inhibitor celecoxib. A significant correlation was observed between the in silico and the in vivo studies. The anti-inflammatory and docking results highlight the fact that the synthesized compounds VIIc, VIId, and VIIf could be considered as possible hit as therapeutic agents. PMID:27022484

  16. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation.

    PubMed

    Pandey, Rajan Kumar; Kumbhar, Bajarang Vasant; Srivastava, Shubham; Malik, Ruchi; Sundar, Shyam; Kunwar, Ambarish; Prajapati, Vijay Kumar

    2017-01-01

    Visceral leishmaniasis affects people from 70 countries worldwide, mostly from Indian, African and south American continent. The increasing resistance to antimonial, miltefosine and frequent toxicity of amphotericin B drives an urgent need to develop an antileishmanial drug with excellent efficacy and safety profile. In this study we have docked series of febrifugine analogues (n = 8813) against trypanothione reductase in three sequential docking modes. Extra precision docking resulted into 108 ligands showing better docking score as compared to two reference ligand. Furthermore, 108 febrifugine analogues and reference inhibitor clomipramine were subjected to ADMET, QikProp and molecular mechanics, the generalized born model and solvent accessibility study to ensure the toxicity caused by compounds and binding-free energy, respectively. Two best ligands (FFG7 and FFG2) qualifying above screening parameters were further subjected to molecular dynamics simulation. Conducting these studies, here we confirmed that 6-chloro-3-[3-(3-hydroxy-2-piperidyl)-2-oxo-propyl]-7-(4-pyridyl) quinazolin-4-one can be potential drug candidate to fight against Leishmania donovani parasites.

  17. Characterization of interaction of calf thymus DNA with gefitinib: spectroscopic methods and molecular docking.

    PubMed

    Shi, Jie-Hua; Liu, Ting-Ting; Jiang, Min; Chen, Jun; Wang, Qi

    2015-06-01

    The binding interaction of gefitinib with calf thymus DNA (ct-DNA) under the simulated physiological pH condition was studied employing UV absorption, fluorescence, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results revealed that gefitinib preferred to bind to the minor groove of ct-DNA with the binding constant (Kb) of 1.29 × 10(4)Lmol(-1) at 298K. Base on the signs and magnitudes of the enthalpy change (ΔH(0)=-60.4 kJ mol(-1)) and entropy change (ΔS(0)=-124.7 J mol(-1)K(-1)) in the binding process and the results of molecular docking, it can be concluded that the main interaction forces between gefitinib and ct-DNA in the binding process were van der Waals force and hydrogen bonding interaction. The results of CD experiments revealed that gefitinib did not disturb native B-conformation of ct-DNA. And, the significant change in the conformation of gefitinib in gefitinib-ct-DNA complex was observed from the molecular docking results and the change was close relation with the structure of B-DNA fragments, indicating that the flexibility of gefitinib molecule also plays an important role in the formation of the stable gefitinib-ct-DNA complex.

  18. Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking.

    PubMed

    Shi, Jie-Hua; Chen, Jun; Wang, Jing; Zhu, Ying-Yao; Wang, Qi

    2015-01-01

    The binding interaction of sorafenib with bovine serum albumin (BSA) was studied using fluorescence, circular dichrosim (CD) and molecular docking methods. The results revealed that there was a static quenching of BSA induced by sorafenib due to the formation of sorafenib-BSA complex. The binding constant and number of binding site of sorafenib with BSA under simulated physiological condition (pH=7.4) were 6.8×10(4) M(-1) and 1 at 310 K, respectively. Base on the sign and magnitude of the enthalpy and entropy changes (ΔH(0)=-72.2 kJ mol(-1) and ΔS(0)=-140.4J mol(-1) K(-1)) and the results of molecular docking, it could be suggested that the binding process of sorafenib and BSA was spontaneous and the main interaction forces of sorafenib with BSA were van der Waals force and hydrogen bonding interaction. From the results of site marker competitive experiments and molecular docking, it could be deduced that sorafenib was inserted into the subdomain IIA (site I) of BSA and leads to a slight change of the conformation of BSA. And, the significant change of conformation of sorafenib occurred in the binding process with BSA to increase the stability of the sorafenib-BSA system, implying that the flexibility of sorafenib played an important role in the binding process.

  19. FReDoWS: a method to automate molecular docking simulations with explicit receptor flexibility and snapshots selection

    PubMed Central

    2011-01-01

    Background In silico molecular docking is an essential step in modern drug discovery when driven by a well defined macromolecular target. Hence, the process is called structure-based or rational drug design (RDD). In the docking step of RDD the macromolecule or receptor is usually considered a rigid body. However, we know from biology that macromolecules such as enzymes and membrane receptors are inherently flexible. Accounting for this flexibility in molecular docking experiments is not trivial. One possibility, which we call a fully-flexible receptor model, is to use a molecular dynamics simulation trajectory of the receptor to simulate its explicit flexibility. To benefit from this concept, which has been known since 2000, it is essential to develop and improve new tools that enable molecular docking simulations of fully-flexible receptor models. Results We have developed a Flexible-Receptor Docking Workflow System (FReDoWS) to automate molecular docking simulations using a fully-flexible receptor model. In addition, it includes a snapshot selection feature to facilitate acceleration the virtual screening of ligands for well defined disease targets. FReDoWS usefulness is demonstrated by investigating the docking of four different ligands to flexible models of Mycobacterium tuberculosis’ wild type InhA enzyme and mutants I21V and I16T. We find that all four ligands bind effectively to this receptor as expected from the literature on similar, but wet experiments. Conclusions A work that would usually need the manual execution of many computer programs, and the manipulation of thousands of files, was efficiently and automatically performed by FReDoWS. Its friendly interface allows the user to change the docking and execution parameters. Besides, the snapshot selection feature allowed the acceleration of docking simulations. We expect FReDoWS to help us explore more of the role flexibility plays in receptor-ligand interactions. FReDoWS can be made available upon

  20. Interactions of cephalexin with bovine serum albumin: displacement reaction and molecular docking

    PubMed Central

    Hamishehkar, Hamed; Hosseini, Soheila; Naseri, Abdolhossein; Safarnejad, Azam; Rasoulzadeh, Farzaneh

    2016-01-01

    Introduction: The drug-plasma protein interaction is a fundamental issue in guessing and checking the serious drug side effects related with other drugs. The purpose of this research was to study the interaction of cephalexin with bovine serum albumin (BSA) and displacement reaction using site probes. Methods: The interaction mechanism concerning cephalexin (CPL) with BSA was investigated using various spectroscopic methods and molecular modeling method. The binding sites number, n, apparent binding constant, K, and thermodynamic parameters, ΔG0, ΔH0, and ΔS0 were considered at different temperatures. To evaluate the experimental results, molecular docking modeling was calculated. Results: The distance, r=1.156 nm between BSA and CPL were found in accordance with the Forster theory of non-radiation energy transfer (FRET) indicating energy transfer occurs between BSA and CPL. According to the binding parameters and ΔG0= negative values and ΔS0= 28.275 j mol-1K-1, a static quenching process is effective in the CPL-BSA interaction spontaneously. ΔG0 for the CPL-BSA complex obtained from the docking simulation is -28.99 kj mol-1, which is close to experimental ΔG of binding, -21.349 kj mol-1 that indicates a good agreement between the results of docking methods and experimental data. Conclusion: The outcomes of spectroscopic methods revealed that the conformation of BSA changed during drug-BSA interaction. The results of FRET propose that CPL quenches the fluorescence of BSA by static quenching and FRET. The displacement study showed that phenylbutazon and ketoprofen displaced CPL, indicating that its binding site on albumin is site I and Gentamicin cannot be displaced from the binding site of CPL. All results of molecular docking method agreed with the results of experimental data. PMID:27853676

  1. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors.

    PubMed

    Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-11-16

    In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.

  2. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors

    PubMed Central

    Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-01-01

    In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors. PMID:26580609

  3. An investigation of molecular dynamics simulation and molecular docking: interaction of citrus flavonoids and bovine β-lactoglobulin in focus.

    PubMed

    Sahihi, M; Ghayeb, Y

    2014-08-01

    Citrus flavonoids are natural compounds with important health benefits. The study of their interaction with a transport protein, such as bovine β-lactoglobulin (BLG), at the atomic level could be a valuable factor to control their transport to biological sites. In the present study, molecular docking and molecular dynamics simulation methods were used to investigate the interaction of hesperetin, naringenin, nobiletin and tangeretin as citrus flavonoids and BLG as transport protein. The molecular docking results revealed that these flavonoids bind in the internal cavity of BLG and the BLG affinity for binding the flavonoids follows naringenin>hesperetin>tangeretin>nobiletin. The docking results also indicated that the BLG-flavonoid complexes are stabilized through hydrophobic interactions, hydrogen bond interactions and π-π stacking interactions. The analysis of molecular dynamics (MD) simulation trajectories showed that the root mean square deviation (RMSD) of various systems reaches equilibrium and fluctuates around the mean value at various times. Time evolution of the radius of gyration, total solvent accessible surface of the protein and the second structure of protein showed as well that BLG and BLG-flavonoid complexes were stable around 2500ps, and there was not any conformational change as for BLG-flavonoid complexes. Further, the profiles of atomic fluctuations indicated the rigidity of the ligand binding site during the simulation.

  4. 4-Aryl-4-oxo-N-phenyl-2-aminylbutyramides as acetyl- and butyrylcholinesterase inhibitors. Preparation, anticholinesterase activity, docking study, and 3D structure-activity relationship based on molecular interaction fields.

    PubMed

    Vitorović-Todorović, Maja D; Juranić, Ivan O; Mandić, Ljuba M; Drakulić, Branko J

    2010-02-01

    Synthesis and anticholinesterase activity of 4-aryl-4-oxo-N-phenyl-2-aminylbutyramides, novel class of reversible, moderately potent cholinesterase inhibitors, are reported. Simple substituent variation on aroyl moiety changes anti-AChE activity for two orders of magnitude; also substitution and type of hetero(ali)cycle in position 2 of butanoic moiety govern AChE/BChE selectivity. The most potent compounds showed mixed-type inhibition, indicating their binding to free enzyme and enzyme-substrate complex. Alignment-independent 3D QSAR study on reported compounds, and compounds having similar potencies obtained from the literature, confirmed that alkyl substitution on aroyl moiety of molecules is requisite for inhibition activity. The presence of hydrophobic moiety at close distance from hydrogen bond acceptor has favorable influence on inhibition potency. Docking studies show that compounds probably bind in the middle of the AChE active site gorge, but are buried deeper inside BChE active site gorge, as a consequence of larger BChE gorge void.

  5. Isatin based thiosemicarbazone derivatives as potential bioactive agents: Anti-oxidant and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Haribabu, J.; Subhashree, G. R.; Saranya, S.; Gomathi, K.; Karvembu, R.; Gayathri, D.

    2016-04-01

    A new series of isatin based thiosemicarbazones has been synthesized from benzylisatin and unsubstituted/substituted thiosemicarbazides (1-5). The synthesized compounds were characterized by elemental analyses, and UV-Visible, FT-IR, 1H &13C NMR and mass spectroscopic techniques. Three dimensional molecular structure of three compounds (1, 3 and 4) was determined by single crystal X-ray crystallography. Anti-oxidant activity of the thiosemicarbazone derivatives showed their excellent scavenging effect against free radicals. In addition, all the compounds showed good anti-haemolytic activity. In silico molecular docking studies were performed to screen the anti-inflammatory and anti-tuberculosis properties of thiosemicarbazone derivatives.

  6. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking.

    PubMed

    Jahanban-Esfahlan, Ali; Panahi-Azar, Vahid

    2016-07-01

    This study aims to investigate the interaction between glutathione and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopies under simulated physiological conditions (pH 7.4) and molecular docking methods. The results of fluorescence spectroscopy indicated that the fluorescence intensity of BSA was decreased considerably upon the addition of glutathione through a static quenching mechanism. The fluorescence quenching obtained was related to the formation of BSA-glutathione complex. The values of KSV, Ka and Kb for the glutathione and BSA interaction were in the order of 10(5). The thermodynamic parameters including enthalpy change (ΔH), entropy change (ΔS) and also Gibb's free energy (ΔG) were determined using Van't Hoff equation. These values showed that hydrogen bonding and van der Waals forces were the main interactions in the binding of glutathione to BSA and the stabilization of the complex. Also, the interaction of glutathione and BSA was spontaneous. The effects of glutathione on the BSA conformation were determined using UV-vis spectroscopy. Moreover, glutathione was docked in BSA using ArgusLab as a molecular docking program. It was recognized that glutathione binds within the sub-domain IIA pocket in domain II of BSA.

  7. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA.

    PubMed

    Subastri, A; Ramamurthy, C H; Suyavaran, A; Mareeswaran, R; Lokeswara Rao, P; Harikrishna, M; Suresh Kumar, M; Sujatha, V; Thirunavukkarasu, C

    2015-01-01

    Troxerutin (TXER) is a derivative of naturally occurring bioflavonoid rutin. It possesses different biological activities in rising clinical world. The biological activity possessed by most of the drugs mainly targets on macromolecules. Hence, in the current study we have examined the interaction mechanism of TXER with calf thymus DNA (CT-DNA) by using various spectroscopic methods, isothermal titration calorimetry (ITC) and molecular docking studies. Further, DNA cleavage study was carried out to find the DNA protection activity of TXER. UV-absorption and emission spectroscopy showed low binding constant values via groove binding. Circular dichroism study indicates that TXER does not modify native B-form of DNA, and it retains the native B-conformation. Furthermore, no effective positive potential peak shift was observed in TXER-DNA complex during electrochemical analysis by which it represents an interaction of TXER with DNA through groove binding. Molecular docking study showed thymine guanine based interaction with docking score -7.09 kcal/mol. This result was compared to experimental ITC value. The DNA cleavage study illustrates that TXER does not cause any DNA damage as well as TXER showed DNA protection against hydroxyl radical induced DNA damage. From this study, we conclude that TXER interacts with DNA by fashion of groove binding.

  8. Molecular docking and pharmacophore studies of heterocyclic compounds as Heat shock protein 90 (Hsp90) Inhibitors

    PubMed Central

    Baby, Suby T; Sharma, Shailendra; Enaganti, Sreenivas; Cherian, P. Roby

    2016-01-01

    Heat Shock Protein 90 was a key molecular chaperone involved in the proteome stability maintenance and its interference in many signaling networks associated with cancer progression, makes it of an important target for cancer therapeutics. The present study aimed to identify potential lead molecule among the selected heterocyclic compounds against Human Hsp90 (PDB: 1YET) through docking using GOLD 3.1 and pharmacophore studies using Discovery studio 2.1. On the basis of the GOLD Fitness scores, the compounds Q1G and T21 showed better binding affinity. Further the analyzed structure pharmacophore results are in consistence with the docking results indicating that both these compounds show antagonistic activity towards HSP90 respectively.

  9. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Thulasidhasan, J.

    2015-06-01

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  10. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    PubMed

    Rajendiran, N; Thulasidhasan, J

    2015-06-05

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules.

  11. Synthesis, Urease Inhibition, Antioxidant, Antibacterial, and Molecular Docking Studies of 1,3,4-Oxadiazole Derivatives

    PubMed Central

    Hanif, Muhammad; Shoaib, Khurram; Saleem, Muhammad; Hasan Rama, Nasim; Zaib, Sumera; Iqbal, Jamshed

    2012-01-01

    A series of eighteen 1,3,4-oxadiazole derivatives have been synthesized by treating aromatic acid hydrazides with carbon disulfide in ethanolic potassium hydroxide yielding potassium salts of 1,3,4-oxadiazoles. Upon neutralization with 1 N hydrochloric acid yielded crude crystals of 1,3,4-oxadiazoles, which were purified by recrystallization in boiling methanol. The synthesized 1,3,4-oxadiazoles derivatives were evaluated in vitro for their urease inhibitory activities, most of the investigated compounds were potent inhibitors of Jack bean urease. The molecular docking studies were performed by docking them into the crystal structure of Jack bean urease to observe the mode of interaction of synthesized compounds. The synthesized compounds were also tested for antibacterial and antioxidant activities and some derivatives exhibited very promising results. PMID:22934191

  12. Molecular docking analysis of UniProtKB nitrate reductase enzyme with known natural flavonoids

    PubMed Central

    Shaik, Ayub; Thumma, Vishnu; Kotha, Aruna Kumari; Kramadhati, Sandhya; Pochampally, Jalapathy; Bandi, Seshagiri

    2016-01-01

    The functional inference of UniProtKB nitrate reductase enzyme (UniProtKB - P0AF33) through structural modeling is of interest in plant biology. Therefore, a homology model for UniProtKB variant of the enzyme was constructed using available data with the MODELER software tool. The model was further docked with five natural flavonoid structures such as hesperetin, naringenin, leucocyanidin, quercetin and hesperetin triacetate using the AUTODOCK (version 4.2) software tool. The structure aided molecular interactions of these flavonoids with nitrate reductase is documented in this study. The binding features (binding energy (ΔG) value, H bonds and docking score) hesperetin to the enzyme model is relatively high, satisfactory and notable. This data provides valuable insights to the relative binding of several naturally occurring flavonoids to nitrate reductase enzyme and its relevance in plant biology.

  13. Molecular docking and analgesic studies of Erythrina variegata׳s derived phytochemicals with COX enzymes.

    PubMed

    Uddin, Mir Muhammad Nasir; Emran, Talha Bin; Mahib, Muhammad Mamunur Rashid; Dash, Raju

    2014-01-01

    Secondary metabolites from plants are a good source for the NSAID drug development. We studied the analgesic activity of ethanolic extract of Erythrina variegata L. (Fabaceae) followed by molecular docking analysis. The analgesic activity of Erythrina variegata L. is evaluated by various methods viz., acetic acid-induced writhing test, hot plate and tail immersion test. Subsequently, molecular docking analysis has been performed to identify compounds having activity against COX-1 and COX-2 enzymes by using GOLD docking fitness. The result of preliminary phytochemical screening revealed that the extract contains alkaloids and flavonoids. In analgesic activity tests, the extract at the doses of 50, 100 and 200 mg/kg body weight (b.w.) produced a increase in pain threshold in a dose dependent manner. In acetic acid induced writhing test, the inhibitory effect was similar to the reference drug diclofenac sodium. The extract showed 18.89% writhing inhibitory effect at the dose 200 mg/kg b.w., whereas diclofenac sodium showed 79.42% inhibition of writhing at a dose of 10 mg/kg b.w. The results of tail immersion and hot plate test also showed potential analgesic activity of the extract which is also comparable to the standard drug morphine (5 mg/kg b.w.). Docking studies shows that phaseollin of Erythrina variegata L. has the best fitness score against the COX-1 which is 56.64 and 59.63 for COX- 2 enzyme. Phaseollin of Erythrina variegata L. detected with significant fitness score and hydrogen bonding against COX-1 and COX-2 is reported for further validation.

  14. Antimicrobial, antioxidant, cytotoxic and molecular docking properties of N-benzyl-2,2,2-trifluoroacetamide

    NASA Astrophysics Data System (ADS)

    Balachandran, C.; Kumar, P. Saravana; Arun, Y.; Duraipandiyan, V.; Sundaram, R. Lakshmi; Vijayakumar, A.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N. A.; Perumal, P. T.

    2015-02-01

    N-Benzyl-2,2,2-trifluoroacetamide was obtained by acylation of benzylamine with trifluoroacetic anhydride using Friedel-Crafts acylation method. The synthesised compound was confirmed by spectroscopic and crystallographic techniques. N-Benzyl-2,2,2 -trifluoroacetamide was assessed for its antimicrobial, antioxidant, cytotoxic and molecular docking properties. It showed good antifungal activity against tested fungi and moderate antibacterial activity. The minimum inhibitory concentration values of N-benzyl-2,2,2 -trifluoroacetamide against fungi were 15.62 μg/mL against A. flavus, 31.25 μg/mL against B. Cinerea and 62.5 μg/mL against T. mentagrophytes, Scopulariopsis sp., C. albicans and M. pachydermatis. N-Benzyl-2,2,2-trifluoroacetamide showed 78.97 ± 2.24 of antioxidant activity at 1,000 μg/mL. Cupric ion reducing antioxidant capacity of N-benzyl-2,2,2-trifluoroacetamide was dependent on the concentration. Ferric reducing antioxidant power assay of N-benzyl-2,2,2-trifluoroacetamide showed (1.352 ± 0.04 mM Fe(II)/g) twofold higher value compared to the standard. N-Benzyl-2,2,2-trifluoroacetamide showed 75.3 % cytotoxic activity at the dose of 200 μg/mL with IC50 (54.7 %) value of 100 μg/mL. N-Benzyl-2,2,2-trifluoroacetamide was subjected to molecular docking studies for the inhibition AmpC beta-lactamase, Glucosamine-6-Phosphate Synthase and lanosterol 14 alpha-demethylase (CYP51) enzymes which are targets for antibacterial and antifungal drugs. Docking studies of N-benzyl-2,2,2-trifluoroacetamide showed low docking energy. N-Benzyl-2,2,2-trifluoroacetamide can be evaluated further for drug development.

  15. Discovery of Potential Inhibitors of Aldosterone Synthase from Chinese Herbs Using Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Simulation Studies

    PubMed Central

    Lu, Fang; Qiao, Liansheng; Chen, Xi; Li, Gongyu

    2016-01-01

    Aldosterone synthase (CYP11B2) is a key enzyme for the biosynthesis of aldosterone, which plays a significant role for the regulation of blood pressure. Excess aldosterone can cause the dysregulation of the renin-angiotensin-aldosterone system (RAAS) and lead to hypertension. Therefore, research and development of CYP11B2 inhibitor are regarded as a novel approach for the treatment of hypertension. In this study, the pharmacophore models of CYP11B2 inhibitors were generated and the optimal model was used to identify potential CYP11B2 inhibitors from the Traditional Chinese Medicine Database (TCMD, Version 2009). The hits were further refined by molecular docking and the interactions between compounds and CYP11B2 were analyzed. Compounds with high Fitvalue, high docking score, and expected interactions with key residues were selected as potential CYP11B2 inhibitors. Two most promising compounds, ethyl caffeate and labiatenic acid, with high Fitvalue and docking score were reserved for molecular dynamics (MD) study. All of them have stability of ligand binding which suggested that they might perform the inhibitory effect on CYP11B2. This study provided candidates for novel drug-like CYP11B2 inhibitors by molecular simulation methods for the hypertension treatment. PMID:27781210

  16. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines

    PubMed Central

    2013-01-01

    Background N-Acetylserotonin O-methyltransferase (ASMT) is an enzyme which by converting nor-melatonin to melatonin catalyzes the final reaction in melatonin biosynthesis in tryptophan metabolism pathway. High Expression of ASMT gene is evident in PPTs. The presence of abnormally high levels of ASMT in pineal gland could serve as an indication of the existence of pineal parenchymal tumors (PPTs) in the brain (J Neuropathol Exp Neurol 65: 675–684, 2006). Different levels of melatonin are used as a trait marker for prescribing the mood disorders e.g. Seasonal affective disorder, bipolar disorder, or major depressive disorder. In addition, melatonin levels can also be used to calculate the severity of a patient’s illness at a given point in time. Methods Seventy three melatoninergic inhibitors were docked with acetylserotonin-O-methyltransferase in order to identify the potent inhibitor against the enzyme. The chemical nature of the protein and ligands greatly influence the performance of docking routines. Keeping this fact in view, critical evaluation of the performance of four different commonly used docking routines: AutoDock/Vina, GOLD, FlexX and FRED were performed. An evaluation criterion was based on the binding affinities/docking scores and experimental bioactivities. Results and conclusion Results indicated that both hydrogen bonding and hydrophobic interactions contributed significantly for its ligand binding and the compound selected as potent inhibitor is having minimum binding affinity, maximum GoldScore and minimum FlexX energy. The correlation value of r2 = 0. 66 may be useful in the selection of correct docked complexes based on the energy without having prior knowledge of the active site. This may lead to further understanding of structures, their reliability and Biomolecular activity especially in connection with bipolar disorders. PMID:24156411

  17. Molecular docking studies of a group of hydroxamate inhibitors with gelatinase-A by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hou, Tingjun; Zhang, Wei; Xu, Xiaojie

    2002-01-01

    We have performed docking and molecular dynamics simulations of hydroxamates complexed with human gelatinase-A (MMP-2) to gain insight into the structural and energetic preferences of these inhibitors. The study was conducted on a selected set of eleven compounds with variation in structure and activity. Molecular dynamics simulations were performed at 300 K for 100 ps with equilibration for 50 ps. The structural analyses of the trajectories indicate that the coordinate bond interactions, the hydrogen bond interactions, the van der Waals interactions as well as the hydrophobic interactions between ligand and receptor are responsible simultaneously for the preference of inhibition and potency. The ligand hydroxamate group is coordinated to the catalytic zinc ion and form stable hydrogen bonds with the carbonyl oxygen of Gly 162. The P1' group makes extensive van der Waals and hydrophobic contacts with the nonpolar side chains of several residues in the S1' subsite, including Leu 197, Val 198, Leu 218 and Tyr 223. Moreover, four to eight hydrogen bonds between hydroxamates and MMP-2 are formed to stabilize the inhibitors in the active site. Compared with the P2' and P3' groups, the P1' groups of inhibitors are oriented regularly, which is produced by the restrain of the S1' subsite. From the relationship between the length of the nonpolar P1' group and the biological activity, we confirm that MMP-2 has a pocket-like S1' subsite, not a channel-like S1' subsite proposed by Kiyama (Kiyama, R. et al., J. Med. Chem. 42 (1999), 1723). The energetic analyses show that the experimental binding free energies can be well correlated with the interactions between the inhibitors and their environments, which could be used as a simple score function to evaluate the binding affinities for other similar hydroxamates. The validity of the force field parameters and the MD simulations can be fully testified by the satisfactory agreements between the experimental structure

  18. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization

    NASA Astrophysics Data System (ADS)

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-08-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer’s disease.

  19. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization

    PubMed Central

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-01-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer’s disease. PMID:27507101

  20. Molecular docking studies and in vitro cholinesterase enzyme inhibitory activities of chemical constituents of Garcinia hombroniana.

    PubMed

    Jamila, Nargis; Yeong, Khaw Kooi; Murugaiyah, Vikneswaran; Atlas, Amir; Khan, Imran; Khan, Naeem; Khan, Sadiq Noor; Khairuddean, Melati; Osman, Hasnah

    2015-01-01

    Garcinia species are reported to possess antimicrobial, anti-inflammatory, anticancer, anti-HIV and anti-Alzheimer's activities. This study aimed to investigate the in vitro cholinesterase enzyme inhibitory activities of garcihombronane C (1), garcihombronane F (2), garcihombronane I (3), garcihombronane N (4), friedelin (5), clerosterol (6), spinasterol glucoside (7) and 3β-hydroxy lup-12,20(29)-diene (8) isolated from Garcinia hombroniana, and to perform molecular docking simulation to get insight into the binding interactions of the ligands and enzymes. The cholinesterase inhibitory activities were evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. In this study, compound 4 displayed the highest concentration-dependent inhibition of both AChE and BChE. Docking studies exhibited that compound 4 binds through hydrogen bonds to amino acid residues of AChE and BChE. The calculated docking and binding energies also supported the in vitro inhibitory profiles of IC50. In conclusion, garcihombronanes C, F, I and N (1-4) exhibited dual and moderate inhibitory activities against AChE and BChE.

  1. Molecular docking based screening of compounds against VP40 from Ebola virus

    PubMed Central

    M Alam El-Din, Hanaa; A. Loutfy, Samah; Fathy, Nasra; H Elberry, Mostafa; M Mayla, Ahmed; Kassem, Sara; Naqvi, Asif

    2016-01-01

    Ebola virus causes severe and often fatal hemorrhagic fevers in humans. The 2014 Ebola epidemic affected multiple countries. The virus matrix protein (VP40) plays a central role in virus assembly and budding. Since there is no FDA-approved vaccine or medicine against Ebola viral infection, discovering new compounds with different binding patterns against it is required. Therefore, we aim to identify small molecules that target the Arg 134 RNA binding and active site of VP40 protein. 1800 molecules were retrieved from PubChem compound database based on Structure Similarity and Conformers of pyrimidine-2, 4-dione. Molecular docking approach using Lamarckian Genetic Algorithm was carried out to find the potent inhibitors for VP40 based on calculated ligand-protein pairwise interaction energies. The grid maps representing the protein were calculated using auto grid and grid size was set to 60*60*60 points with grid spacing of 0.375 Ǻ. Ten independent docking runs were carried out for each ligand and results were clustered according to the 1.0 Ǻ RMSD criteria. The post-docking analysis showed that binding energies ranged from -8.87 to 0.6 Kcal/mol. We report 7 molecules, which showed promising ADMET results, LD-50, as well as H-bond interaction in the binding pocket. The small molecules discovered could act as potential inhibitors for VP40 and could interfere with virus assembly and budding process. PMID:28149054

  2. Molecular docking based screening of compounds against VP40 from Ebola virus.

    PubMed

    M Alam El-Din, Hanaa; A Loutfy, Samah; Fathy, Nasra; H Elberry, Mostafa; M Mayla, Ahmed; Kassem, Sara; Naqvi, Asif

    2016-01-01

    Ebola virus causes severe and often fatal hemorrhagic fevers in humans. The 2014 Ebola epidemic affected multiple countries. The virus matrix protein (VP40) plays a central role in virus assembly and budding. Since there is no FDA-approved vaccine or medicine against Ebola viral infection, discovering new compounds with different binding patterns against it is required. Therefore, we aim to identify small molecules that target the Arg 134 RNA binding and active site of VP40 protein. 1800 molecules were retrieved from PubChem compound database based on Structure Similarity and Conformers of pyrimidine-2, 4-dione. Molecular docking approach using Lamarckian Genetic Algorithm was carried out to find the potent inhibitors for VP40 based on calculated ligand-protein pairwise interaction energies. The grid maps representing the protein were calculated using auto grid and grid size was set to 60*60*60 points with grid spacing of 0.375 Ǻ. Ten independent docking runs were carried out for each ligand and results were clustered according to the 1.0 Ǻ RMSD criteria. The post-docking analysis showed that binding energies ranged from -8.87 to 0.6 Kcal/mol. We report 7 molecules, which showed promising ADMET results, LD-50, as well as H-bond interaction in the binding pocket. The small molecules discovered could act as potential inhibitors for VP40 and could interfere with virus assembly and budding process.

  3. Docking and molecular dynamics simulations of the ternary complex nisin2:lipid II

    PubMed Central

    Mulholland, Sam; Turpin, Eleanor R.; Bonev, Boyan B.; Hirst, Jonathan D.

    2016-01-01

    Lanthionine antibiotics are an important class of naturally-occurring antimicrobial peptides. The best-known, nisin, is a commercial food preservative. However, structural and mechanistic details on nisin-lipid II membrane complexes are currently lacking. Recently, we have developed empirical force-field parameters to model lantibiotics. Docking and molecular dynamics (MD) simulations have been used to study the nisin2:lipid II complex in bacterial membranes, which has been put forward as the building block of nisin/lipid II binary membrane pores. An Ile1Trp mutation of the N-terminus of nisin has been modelled and docked onto lipid II models; the computed binding affinity increased compared to wild-type. Wild-type nisin was also docked onto three different lipid II structures and a stable 2:1 nisin:lipid II complex formed. This complex was inserted into a membrane. Six independent MD simulations revealed key interactions in the complex, specifically the N-terminal engagement of nisin with lipid II at the pyrophosphate and C-terminus of the pentapeptide chain. Nisin2 inserts into the membrane and we propose this as the first step in pore formation, mediated by the nisin N-terminus–lipid II pentapeptide hydrogen bond. The lipid II undecaprenyl chain adopted different conformations in the presence of nisin, which may also have implications for pore formation. PMID:26888784

  4. Molecular Docking Analysis of Steroid-based Copper Transporter 1 Inhibitors.

    PubMed

    Kadioglu, Onat; Serly, Julianna; Seo, Ean-Jeong; Vincze, Irén; Somlai, Csaba; Saeed, Mohamed E M; Molnár, József; Efferth, Thomas

    2015-12-01

    Copper transporter 1 (CTR1) represents an important determinant of cisplatin resistance. A series of 35 semi-substituted steroids were recently investigated on cisplatin-resistant CTR1-expressing A2780cis ovarian carcinoma cells as well as their parental sensitive counterparts regarding their cytotoxic and resistance-reversing features. In the present investigation, three compounds ( 4: , 5: , 25: ) were selected for molecular docking analysis on the homology-modelled human CTR1 transmembrane domain. Steroids 4: , 5: and 25: interacted with CTR1 at a similar docking pose and with even higher binding affinities than the known CTR1 inhibitor, cimetidine. Applying the defined docking mode, the binding energies were found to be -7.15±<0.001 kcal/mol (compound 4: ), -8.71±0.06 kcal/mol (compound 5: ), -7.63±0.01 kcal/mol (compound 25: ), and -5.05±0.02 kcal/mol (for cimetidine). These steroids have the potential for further development as CTR1 inhibitors overcoming cisplatin resistance.

  5. FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm.

    PubMed

    Liu, Yu; Zhao, Lei; Li, Wentao; Zhao, Dongyu; Song, Miao; Yang, Yongliang

    2013-01-05

    The accurate prediction of protein-ligand binding is of great importance for rational drug design. We present herein a novel docking algorithm called as FIPSDock, which implements a variant of the Fully Informed Particle Swarm (FIPS) optimization method and adopts the newly developed energy function of AutoDock 4.20 suite for solving flexible protein-ligand docking problems. The search ability and docking accuracy of FIPSDock were first evaluated by multiple cognate docking experiments. In a benchmarking test for 77 protein/ligand complex structures derived from GOLD benchmark set, FIPSDock has obtained a successful predicting rate of 93.5% and outperformed a few docking programs including particle swarm optimization (PSO)@AutoDock, SODOCK, AutoDock, DOCK, Glide, GOLD, FlexX, Surflex, and MolDock. More importantly, FIPSDock was evaluated against PSO@AutoDock, SODOCK, and AutoDock 4.20 suite by cross-docking experiments of 74 protein-ligand complexes among eight protein targets (CDK2, ESR1, F2, MAPK14, MMP8, MMP13, PDE4B, and PDE5A) derived from Sutherland-crossdock-set. Remarkably, FIPSDock is superior to PSO@AutoDock, SODOCK, and AutoDock in seven out of eight cross-docking experiments. The results reveal that FIPS algorithm might be more suitable than the conventional genetic algorithm-based algorithms in dealing with highly flexible docking problems.

  6. The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARγ dysregulation.

    PubMed

    Al Sharif, Merilin; Tsakovska, Ivanka; Pajeva, Ilza; Alov, Petko; Fioravanzo, Elena; Bassan, Arianna; Kovarich, Simona; Yang, Chihae; Mostrag-Szlichtyng, Aleksandra; Vitcheva, Vessela; Worth, Andrew P; Richarz, Andrea-N; Cronin, Mark T D

    2016-02-04

    The aim of this paper was to provide a proof of concept demonstrating that molecular modelling methodologies can be employed as a part of an integrated strategy to support toxicity prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken in which molecular modelling methodologies were employed to predict the activation of the peroxisome proliferator-activated nuclear receptor γ (PPARγ) as a potential molecular initiating event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches (virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was developed to screen for PPARγ full agonists and to predict their transactivation activity (EC50). The performance metrics of the classification model to predict PPARγ full agonists were balanced accuracy=81%, sensitivity=85% and specificity=76%. The 3D QSAR model developed to predict EC50 of PPARγ full agonists had the following statistical parameters: q(2)cv=0.610, Nopt=7, SEPcv=0.505, r(2)pr=0.552. To support the linkage of PPARγ agonism predictions to prosteatotic potential, molecular modelling was combined with independently performed mechanistic mining of available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype development.

  7. Investigations on Binding Pattern of Kinase Inhibitors with PPARγ: Molecular Docking, Molecular Dynamic Simulations, and Free Energy Calculation Studies

    PubMed Central

    Mazumder, Mohit; Das, Umashankar; Gourinath, Samudrala

    2017-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a potential target for the treatment of several disorders. In view of several FDA approved kinase inhibitors, in the current study, we have investigated the interaction of selected kinase inhibitors with PPARγ using computational modeling, docking, and molecular dynamics simulations (MDS). The docked conformations and MDS studies suggest that the selected KIs interact with PPARγ in the ligand binding domain (LBD) with high positive predictive values. Hence, we have for the first time shown the plausible binding of KIs in the PPARγ ligand binding site. The results obtained from these in silico investigations warrant further evaluation of kinase inhibitors as PPARγ ligands in vitro and in vivo. PMID:28321247

  8. Studies of molecular docking between fibroblast growth factor and heparin using generalized simulated annealing

    NASA Astrophysics Data System (ADS)

    Pita, Samuel Silva Da Rocha; Fernandes, Tácio Vinício Amorim; Caffarena, Ernesto Raul; Pascutti, Pedro Geraldo

    Since the middle 70s, the main molecular docking problem consists in limitations to treat adequately the degrees of freedom of protein (or a receptor) due to the energy landscape roughness and the high computational cost. Until recently, only few algorithms considering flexible simultaneously both ligand and receptor at low computational cost were developed. As a recent proposed Statistical Mechanics, generalized simulated annealing (GSA) has been employed at diverse works concerning global optimization problems. In this work, we used this method exploring the molecular docking problem taking into account the FGF-2 and heparin complex. Since the requirements of an efficient docking algorithm are accuracy and velocity, we tested the influence of GSA parameters qA (new configuration acceptance index), qV (energy surface visiting index), and qT (temperature decreasing control) on the performance of GSADOCK program. Our simulations showed that as temperature parameter qT increases, qA parameter follows this behavior in the interval ranging from 1.1 to 2.3. We found that the GSA parameters have the best performance for the qA values ranging from 1.1 to 1.3, qV values from 1.3 to 1.5, and qT values from 1.1 to 1.7. Most of good qV values were equal or next the good qT values. Finally, the implemented algorithm is trustworthy and can be employed as a tool of molecular modeling methods. The final version of the program will be free of charge and will be accessible at our home-page or could be requested to the authors for e-mail.

  9. Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study.

    PubMed

    Tayyab, Saad; Izzudin, Mohamad Mirza; Kabir, Md Zahirul; Feroz, Shevin R; Tee, Wei-Ven; Mohamad, Saharuddin B; Alias, Zazali

    2016-09-01

    Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT.

  10. Study of the Binding between Camptothecin Analogs and FTO by Spectroscopy and Molecular Docking.

    PubMed

    Ren, Ting; Wang, Zechun; Zhang, Lijiao; Wang, Ning; Han, Xinxin; Wang, Ruiyong; Chang, Junbiao

    2017-04-11

    In this work, the interaction between camptothecin (CPT) analogs and fat mass and obesity associated (FTO) was investigated using spectroscopy and molecular docking. From the experimental results, it was found that the CPT analogs caused the fluorescence quenching of FTO through a static quenching procedure. The binding constants and thermodynamic parameters at three different temperatures, the number of binding sites were obtained, which suggested that the hydrophobic interaction and electrostatic force played major role in the reaction between CPT analogs and FTO. Results revealed that 10-hydroxycamptothecin was the strongest quencher.

  11. Molecular docking studies and anti-tyrosinase activity of Thai mango seed kernel extract.

    PubMed

    Nithitanakool, Saruth; Pithayanukul, Pimolpan; Bavovada, Rapepol; Saparpakorn, Patchreenart

    2009-01-07

    The alcoholic extract from seed kernels of Thai mango (Mangifera indica L. cv. 'Fahlun') (Anacardiaceae) and its major phenolic principle (pentagalloylglucopyranose) exhibited potent, dose-dependent inhibitory effects on tyrosinase with respect to L-DOPA. Molecular docking studies revealed that the binding orientations of the phenolic principles were in the tyrosinase binding pocket and their orientations were located in the hydrophobic binding pocket surrounding the binuclear copper active site. The results indicated a possible mechanism for their anti-tyrosinase activity which may involve an ability to chelate the copper atoms which are required for the catalytic activity of tyrosinase.

  12. Synthesis of 2-acylated and sulfonated 4-hydroxycoumarins: In vitro urease inhibition and molecular docking studies.

    PubMed

    Rashid, Umer; Rahim, Fazal; Taha, Muhammad; Arshad, Muhammad; Ullah, Hayat; Mahmood, Tariq; Ali, Muhammad

    2016-06-01

    Sixteen 4-hydroxycoumarin derivatives were synthesized, characterized through EI-MS and (1)H NMR and screened for urease inhibitory potential. Three compounds exhibited better urease inhibition than the standard inhibitor thiourea (IC50=21±0.11μM) while other four compounds exhibited good to moderate inhibition with IC50 values between 29.45±1.1μM and 69.53±0.9μM. Structure activity relationship was established on the basis of molecular docking studies, which helped to predict the binding interactions of the most active compounds.

  13. Docking, molecular dynamics and free energy studies on aspartoacylase mutations involved in Canavan disease.

    PubMed

    Kocak, Abdulkadir; Yildiz, Muslum

    2017-03-19

    The disruption of aspartoacylase enzyme's catalytic activity causes fatal neurodegenerative Canavan disease. By molecular dynamics and docking methods, here we studied two deleterious mutations that have been identified in the Canavan patients' genotype E285A, F295S, and revealed the possible cause for the enzyme inhibition due to the drastic changes in active site dynamics, loss of interactions among Arg 71, Arg 168 and the substrate and pKa value of critical Glu178 residue. In addition to changes in the enzyme dynamics, free energy calculations show that the binding energy of substrate decreases dramatically up on mutations.

  14. Synthesis, biological evaluation and molecular docking of aryl hydrazines and hydrazides for anticancer activity.

    PubMed

    Gohil, Vikrantsinh M; Agrawal, Satyam K; Saxena, Ajit K; Garg, Divita; Gopimohan, C; Bhutani, Kamlesh K

    2010-03-01

    Aryl hydrazine and hydrazide analogues were synthesized based on p-tolyl hydrazine, isolated as a breakdown product of a secondary metabolite from the mushroom, Agaricus bisporus, and tested to be highly active molecule than 5-fluorouracil in in vitro anticancer studies. The synthesized analogues were tested for anticancer activity using NCI protocol. Anolgues 12 and 15 emerged as molecules with significant in vitro anticancer activity. Molecular docking study revealed the binding orientations of aryl hydrazines and hydrazides analogues in the active sites of thymidylate synthase.

  15. Implicit ligand theory: Rigorous binding free energies and thermodynamic expectations from molecular docking

    NASA Astrophysics Data System (ADS)

    Minh, David D. L.

    2012-09-01

    A rigorous formalism for estimating noncovalent binding free energies and thermodynamic expectations from calculations in which receptor configurations are sampled independently from the ligand is derived. Due to this separation, receptor configurations only need to be sampled once, facilitating the use of binding free energy calculations in virtual screening. Demonstrative calculations on a host-guest system yield good agreement with previous free energy calculations and isothermal titration calorimetry measurements. Implicit ligand theory provides guidance on how to improve existing molecular docking algorithms and insight into the concepts of induced fit and conformational selection in noncovalent macromolecular recognition.

  16. Effect of HIV-1 Subtype C integrase mutations implied using molecular modeling and docking data.

    PubMed

    Sachithanandham, Jaiprasath; Konda Reddy, Karnati; Solomon, King; David, Shoba; Kumar Singh, Sanjeev; Vadhini Ramalingam, Veena; Alexander Pulimood, Susanne; Cherian Abraham, Ooriyapadickal; Rupali, Pricilla; Sridharan, Gopalan; Kannangai, Rajesh

    2016-01-01

    The degree of sequence variation in HIV-1 integrase genes among infected patients and their impact on clinical response to Anti retroviral therapy (ART) is of interest. Therefore, we collected plasma samples from 161 HIV-1 infected individuals for subsequent integrase gene amplification (1087 bp). Thus, 102 complete integrase gene sequences identified as HIV-1 subtype-C was assembled. This sequence data was further used for sequence analysis and multiple sequence alignment (MSA) to assess position specific frequency of mutations within pol gene among infected individuals. We also used biophysical geometric optimization technique based molecular modeling and docking (Schrodinger suite) methods to infer differential function caused by position specific sequence mutations towards improved inhibitor selection. We thus identified accessory mutations (usually reduce susceptibility) leading to the resistance of some known integrase inhibitors in 14% of sequences in this data set. The Stanford HIV-1 drug resistance database provided complementary information on integrase resistance mutations to deduce molecular basis for such observation. Modeling and docking analysis show reduced binding by mutants for known compounds. The predicted binding values further reduced for models with combination of mutations among subtype C clinical strains. Thus, the molecular basis implied for the consequence of mutations in different variants of integrase genes of HIV-1 subtype C clinical strains from South India is reported. This data finds utility in the design, modification and development of a representative yet an improved inhibitor for HIV-1 integrase.

  17. Effect of HIV-1 Subtype C integrase mutations implied using molecular modeling and docking data

    PubMed Central

    Sachithanandham, Jaiprasath; Konda Reddy, Karnati; Solomon, King; David, Shoba; Kumar Singh, Sanjeev; Vadhini Ramalingam, Veena; Alexander Pulimood, Susanne; Cherian Abraham, Ooriyapadickal; Rupali, Pricilla; Sridharan, Gopalan; Kannangai, Rajesh

    2016-01-01

    The degree of sequence variation in HIV-1 integrase genes among infected patients and their impact on clinical response to Anti retroviral therapy (ART) is of interest. Therefore, we collected plasma samples from 161 HIV-1 infected individuals for subsequent integrase gene amplification (1087 bp). Thus, 102 complete integrase gene sequences identified as HIV-1 subtype-C was assembled. This sequence data was further used for sequence analysis and multiple sequence alignment (MSA) to assess position specific frequency of mutations within pol gene among infected individuals. We also used biophysical geometric optimization technique based molecular modeling and docking (Schrodinger suite) methods to infer differential function caused by position specific sequence mutations towards improved inhibitor selection. We thus identified accessory mutations (usually reduce susceptibility) leading to the resistance of some known integrase inhibitors in 14% of sequences in this data set. The Stanford HIV-1 drug resistance database provided complementary information on integrase resistance mutations to deduce molecular basis for such observation. Modeling and docking analysis show reduced binding by mutants for known compounds. The predicted binding values further reduced for models with combination of mutations among subtype C clinical strains. Thus, the molecular basis implied for the consequence of mutations in different variants of integrase genes of HIV-1 subtype C clinical strains from South India is reported. This data finds utility in the design, modification and development of a representative yet an improved inhibitor for HIV-1 integrase. PMID:28149058

  18. Halogen-directed drug design for Alzheimer's disease: a combined density functional and molecular docking study.

    PubMed

    Rahman, Adhip; Ali, Mohammad Tuhin; Shawan, Mohammad Mahfuz Ali Khan; Sarwar, Mohammed Golam; Khan, Mohammad A K; Halim, Mohammad A

    2016-01-01

    A series of halogen-directed donepezil drugs has been designed to inhibit acetyl cholinesterase (AChE). Density Functional theory (DFT) has been employed to optimize the chair as well as boat conformers of the parent drug and modified ligands at B3LYP/MidiX and B3LYP/6-311G + (d,p) level of theories. Charge distribution, dipole moment, enthalpy, free energy and molecular orbitals of these ligands are also investigated to understand how the halogen-directed modifications impact the ligand structure and govern the non-bonding interactions with the receptors. Molecular docking calculation has been performed to understand the similarities and differences between the binding modes of unmodified and halogenated chair-formed ligands. Molecular docking indicated donepezil and modified ligands had non-covalent interactions with hydrophobic gorges and anionic subsites of AChE. The -CF3-directed ligand possessed the most negative binding affinity. Non-covalent interactions within the ligand-receptor systems were found to be mostly hydrophobic and π- stacking type. F, Cl and -CF3 containing ligands emerge as effective and selective AChE inhibitors, which can strongly interact with the two active sites of AChE. In addition, we have also investigated selected pharmacokinetic parameters of the parent and modified ligands.

  19. Molecular docking as a popular tool in drug design, an in silico travel

    PubMed Central

    de Ruyck, Jerome; Brysbaert, Guillaume; Blossey, Ralf; Lensink, Marc F

    2016-01-01

    New molecular modeling approaches, driven by rapidly improving computational platforms, have allowed many success stories for the use of computer-assisted drug design in the discovery of new mechanism-or structure-based drugs. In this overview, we highlight three aspects of the use of molecular docking. First, we discuss the combination of molecular and quantum mechanics to investigate an unusual enzymatic mechanism of a flavoprotein. Second, we present recent advances in anti-infectious agents’ synthesis driven by structural insights. At the end, we focus on larger biological complexes made by protein–protein interactions and discuss their relevance in drug design. This review provides information on how these large systems, even in the presence of the solvent, can be investigated with the outlook of drug discovery. PMID:27390530

  20. Molecular modeling of methyl-α-Neu5Ac analogues docked against cholera toxin--a molecular dynamics study.

    PubMed

    Blessy, J Jino; Sharmila, D Jeya Sundara

    2015-02-01

    Molecular modeling of synthetic methyl-α-Neu5Ac analogues modified in C-9 position was investigated by molecular docking and molecular dynamics (MD) simulation methods. Methyl-α-Neu5Ac analogues were docked against cholera toxin (CT) B subunit protein and MD simulations were carried out for three Methyl-α-Neu5Ac analogue-CT complexes (30, 10 and 10 ns) to estimate the binding activity of cholera toxin-Methyl-α-Neu5Ac analogues using OPLS_2005 force field. In this study, direct and water mediated hydrogen bonds play a vital role that exist between the methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ)-cholera toxin active site residues. The Energy plot, RMSD and RMSF explain that the simulation was stable throughout the simulation run. Transition of phi, psi and omega angle for the complex was calculated. Molecular docking studies could be able to identify the binding mode of methyl-α-Neu5Ac analogues in the binding site of cholera toxin B subunit protein. MD simulation for Methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ), Methyl-α-9-N-acetyl-9-deoxy-9-amino-Neu5Ac and Methyl-α-9-N-biphenyl-4-acetyl-deoxy-amino-Neu5Ac complex with CT B subunit protein was carried out, which explains the stable nature of interaction. These methyl-α-Neu5Ac analogues that have computationally acceptable pharmacological properties may be used as novel candidates for drug design for cholera disease.

  1. Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations.

    PubMed

    Sixto-López, Yudibeth; Bello, Martiniano; Rodríguez-Fonseca, Rolando Alberto; Rosales-Hernández, Martha Cecilia; Martínez-Archundia, Marlet; Gómez-Vidal, José Antonio; Correa-Basurto, José

    2016-09-23

    Histone deacetylases (HDACs) are a family of proteins involved in the deacetylation of histones and other non-histones substrates. HDAC6 belongs to class II and shares similar biological functions with others of its class. Nevertheless, its three-dimensional structure that involves the catalytic site remains unknown for exploring the ligand recognition properties. Therefore, in this contribution, homology modeling, 100-ns-long Molecular Dynamics (MD) simulation and docking calculations were combined to explore the conformational complexity and binding properties of the catalytic domain 2 from HDAC6 (DD2-HDAC6), for which activity and affinity toward five different ligands have been reported. Clustering analysis allowed identifying the most populated conformers present during the MD simulation, which were used as starting models to perform docking calculations with five DD2-HDAC6 inhibitors: Cay10603 (CAY), Rocilinostat (RCT), Tubastatin A (TBA), Tubacin (TBC), and Nexturastat (NXT), and then were also submitted to 100-ns-long MD simulations. Docking calculations revealed that the five inhibitors bind at the DD2-HDAC6 binding site with the lowest binding free energy, the same binding mode is maintained along the 100-ns-long MD simulations. Overall, our results provide structural information about the molecular flexibility of apo and holo DD2-HDAC6 states as well as insight of the map of interactions between DD2-HDAC6 and five well-known DD2-HDAC6 inhibitors allowing structural details to guide the drug design. Finally, we highlight the importance of combining different theoretical approaches to provide suitable structural models for structure-based drug design.

  2. Molecular docking study of the binding of aminopyridines within the K+ channel.

    PubMed

    Caballero, Norma Angélica; Meléndez, Francisco Javier; Niño, Alfonso; Muñoz-Caro, Camelia

    2007-05-01

    We present a molecular docking study aimed to identify the binding site of protonated aminopyridines for the blocking of voltage dependent K(+) channels. Several active aminopyridines are considered: 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, 3,4-diaminopyridine, and 4-aminoquinoleine. We apply the AutoDock force field with a lamarckian genetic algorithm, using atomic charges for the ligands derived from the electrostatic potential obtained at the B3LYP/cc-pVDZ level. We find a zone in the alpha-subunit of the K(+) channel bearing common binding sites. This zone corresponds to five amino acids comprised between residuals Thr107 and Ala111, in the KcsA K(+) channel (1J95 pdb structure). The 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, and 3,4-diaminopyridine bind to the carboxylic oxygens of Thr107 and Ala111. In all cases aminopyridines are perpendicular to the axis of the pore. 4-aminoquinoleine binds to the carboxylic oxygen of Ala111. Due to its large size, the molecular plane is parallel to the axis of the pore. The charge distributions and the structures of the binding complexes suggest that the interaction is driven by formation of several hydrogen bonds. We find 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, and 3,4-diaminopyridine with similar binding energy. Considering the standard error of the estimate of the AutoDock force field, this energy should lie, as a rough estimation, in the interval 3-7 kcal mol(-1). On the other hand, 4-aminoquinoleine seems to have a smaller binding energy.

  3. Study on the interactions of mapenterol with serum albumins using multi-spectroscopy and molecular docking.

    PubMed

    Bi, Shuyun; Zhao, Tingting; Wang, Yu; Zhou, Huifeng

    2016-03-01

    The interactions of mapenterol with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated systematically using fluorescence spectroscopy, absorption spectroscopy, circular dichroism (CD) and molecular docking techniques. Mapenterol has a strong ability to quench the intrinsic fluorescence of BSA and HSA through static quenching procedures. At 291 K, the binding constants, Ka, were 1.93 × 10(3) and 2.73 × 10(3) L/mol for mapenterol-BSA and mapenterol-HAS, respectively. Electrostatic forces and hydrophobic interactions played important roles in stabilizing the mapenterol-BSA/has complex. Using site marker competitive studies, mapenterol was found to bind at Sudlow site I on BSA/HSA. There was little effect of K(+), Ca(2+), Cu(2+), Zn(2+) and Fe(3+) on the binding. The conformation of BSA/HSA was changed by mapenterol, as seen from the synchronous fluorescence spectra. The CD spectra showed that the binding of mapenterol to BSA/HSA changed the secondary structure of BSA/HSA. Molecular docking further confirmed that mapenterol could bind to Sudlow site I of BSA/HSA. According to Förster non-radiative energy transfer theory (FRET), the distances r0 between the donor and acceptor were calculated as 3.18 and 2.75 nm for mapenterol-BSA and mapenterol-HAS, respectively.

  4. Eco-friendly synthesis, physicochemical studies, biological assay and molecular docking of steroidal oxime-ethers

    PubMed Central

    Alam, Mahboob; Lee, Dong-Ung

    2015-01-01

    The aim of this study was to report the synthesis of biologically active compounds; 7-(2′-aminoethoxyimino)-cholest-5-ene (4), a steroidal oxime-ether and its derivatives (5, 6) via a facile microwave assisted solvent free reaction methodology. This new synthetic, eco-friendly, sustainable protocol resulted in a remarkable improvement in the synthetic efficiency (85-93 % yield) and high purity using basic alumina. The synthesized compounds were screened for their antibacterial against six bacterial strains by disc diffusion method and antioxidant potential by DPPH assay. The binding capabilities of a compound 6 exhibiting good antibacterial potential were assessed on the basis of molecular docking studies and four types of three-dimensional molecular field descriptors. Moreover the structure-antimicrobial activity relationships were studied using some physicochemical and quantum-chemical parameters with GAMESS interface as well as WebMO Job Manager by using the basic level of theory. Hence, this synthetic approach is believed to provide a better scope for the synthesis of steroidal oxime-ether analogues and will be a more practical alternative to the presently existing procedures. Moreover, detailed in silico docking studies suggested the plausible mechanism of steroidal oxime-ethers as effective antimicrobial agents. PMID:27330525

  5. Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking

    NASA Astrophysics Data System (ADS)

    Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin

    2009-06-01

    Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.

  6. Functionalized imidazolium and benzimidazolium salts as paraoxonase 1 inhibitors: Synthesis, characterization and molecular docking studies.

    PubMed

    Karataş, Mert Olgun; Uslu, Harun; Alıcı, Bülent; Gökçe, Başak; Gencer, Nahit; Arslan, Oktay; Arslan, N Burcu; Özdemir, Namık

    2016-03-15

    Paraoxonase (PON) is a key enzyme in metabolism of living organisms and decreased activity of PON1 was acknowledged as a risk for atherosclerosis and organophosphate toxicity. The present study describes the synthesis, characterization, PON1 inhibitory properties and molecular docking studies of functionalized imidazolium and benzimidazolium salts (1a-5g). The structures of all compounds were elucidated by IR, NMR, elemental analysis and structures of compounds 2b and 2c were characterized by single-crystal X-ray diffraction. Compound 1c, a coumarin substituted imidazolium salt showed the best inhibitory effect on the activity of PON1 with good IC50 value (6.37 μM). Kinetic investigation was evaluated for this compound and results showed that this compound is competitive inhibitor of PON1 with Ki value of 2.39 μM. Molecular docking studies were also performed for most active compound 1c and one of least active compound 2c in order to determine the probable binding model into active site of PON1 and validation of the experimental results.

  7. Design, synthesis, α-glucosidase inhibitory activity, molecular docking and QSAR studies of benzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Dinparast, Leila; Valizadeh, Hassan; Bahadori, Mir Babak; Soltani, Somaieh; Asghari, Behvar; Rashidi, Mohammad-Reza

    2016-06-01

    In this study the green, one-pot, solvent-free and selective synthesis of benzimidazole derivatives is reported. The reactions were catalyzed by ZnO/MgO containing ZnO nanoparticles as a highly effective, non-toxic and environmentally friendly catalyst. The structure of synthesized benzimidazoles was characterized using spectroscopic technics (FT-IR, 1HNMR, 13CNMR). Synthesized compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 3c, 3e, 3l and 4n were potent inhibitors with IC50 values ranging from 60.7 to 168.4 μM. In silico studies were performed to explore the binding modes and interactions between enzyme and synthesized benzimidazoles. Developed linear QSAR model based on density and molecular weight could predict bioactivity of newly synthesized compounds well. Molecular docking studies revealed the availability of some hydrophobic interactions. In addition, the bioactivity of most potent compounds had good correlation with estimated free energy of binding (ΔGbinding) which was calculated according to docked best conformations.

  8. Study on the interaction of catalase with pesticides by flow injection chemiluminescence and molecular docking.

    PubMed

    Tan, Xijuan; Wang, Zhuming; Chen, Donghua; Luo, Kai; Xiong, Xunyu; Song, Zhenghua

    2014-08-01

    The interaction mechanisms of catalase (CAT) with pesticides (including organophosphates: disulfoton, isofenphos-methyl, malathion, isocarbophos, dimethoate, dipterex, methamidophos and acephate; carbamates: carbaryl and methomyl; pyrethroids: fenvalerate and deltamethrin) were first investigated by flow injection (FI) chemiluminescence (CL) analysis and molecular docking. By homemade FI-CL model of lg[(I0-I)/I]=lgK+nlg[D], it was found that the binding processes of pesticides to CAT were spontaneous with the apparent binding constants K of 10(3)-10(5) L mol(-1) and the numbers of binding sites about 1.0. The binding abilities of pesticides to CAT followed the order: fenvalerate>deltamethrin>disulfoton>isofenphos-methyl>carbaryl>malathion>isocarbophos>dimethoate>dipterex>acephate>methomyl>methamidophos, which was generally similar to the order of determination sensitivity of pesticides. The thermodynamic parameters revealed that CAT bound with hydrophobic pesticides by hydrophobic interaction force, and with hydrophilic pesticides by hydrogen bond and van der Waals force. The pesticides to CAT molecular docking study showed that pesticides could enter into the cavity locating among the four subdomains of CAT, giving the specific amino acid residues and hydrogen bonds involved in CAT-pesticides interaction. It was also found that the lgK values of pesticides to CAT increased regularly with increasing lgP, Mr, MR and MV, suggesting that the hydrophobicity and steric property of pesticide played essential roles in its binding to CAT.

  9. In vitro acetylcholinesterase inhibition by psoralen using molecular docking and enzymatic studies

    PubMed Central

    Somani, Gauresh; Kulkarni, Chinmay; Shinde, Prashant; Shelke, Rupesh; Laddha, Kirti; Sathaye, Sadhana

    2015-01-01

    Introduction: Alzheimer's disease (AD) has increased at an alarming rate and is now a worldwide health problem. Inhibitors of acetylcholinesterase (AChE) leading to inhibition of acetylcholine breakdown constitute the main therapeutic strategy for AD. Psoralen was investigated as inhibitor of AChE enzyme in an attempt to explore its potential for the management of AD. Materials and Methods: Psoralen was isolated from powdered Psoralea corylifolia fruits. AChE enzyme inhibitory activity of different concentrations of psoralen was investigated by use of in vitro enzymatic and molecular docking studies. Further, the enzyme kinetics were studied using Lineweaver-Burk plot. Results: Psoralen was found to inhibit AChE enzyme activity in a concentration-dependent manner. Kinetic studies showed psoralen inhibits AChE in a competitive manner. Molecular docking study revealed that psoralen binds well within the binding site of the enzyme showing interactions such as π-π stacking and hydrogen bonding with residues present therein. Conclusion: The result of AChE enzyme inhibitory activity of the psoralen in this study is promising. It could be further explored as a potential candidate for further development of new drugs against AD. PMID:25709334

  10. Structural and molecular docking studies of biologically active mercaptopyrimidine Schiff bases

    NASA Astrophysics Data System (ADS)

    Kirubavathy, S. Jone; Velmurugan, R.; Karvembu, R.; Bhuvanesh, N. S. P.; Enoch, Israel V. M. V.; Selvakumar, P. Mosae; Premnath, D.; Chitra, S.

    2017-01-01

    Novel Schiff bases derived from the treatment of mercapto-diamino pyrimidine with two different aldehydes are characterized using elemental analysis, single crystal X-ray diffraction and 1H NMR spectroscopy. The pharmacological action of the synthesized compounds viz., antimicrobial, anticancer and antitubercular activities is studied. The Schiff bases show a very good activity against various test pathogens. DNA and β-CD binding interactions of the compounds are studied using UV-Visible absorption and fluorescence spectral measurements. The binding constants of the compounds towards β-CD are in the order of 103 to 104. Molecular docking is done using MOE program on the 3D structure of the enzymes, viz., human thymidylate synthase complexed with dump and raltitrex, candida albicans N-myristoyltransferasepeptidic inhibitor, catalytic domain of protein kinase pKnb from mycobacterium tuberculosis in complex with mitoxantrone, pare, topoisomerase atpase inhibitor, E. coli and lactobacillus casdihydrofolatereductase. The MIC/IC50 values of the Schiff bases are compared with the glide scores from the molecular docking studies. The number of hydrogen bonding interactions between the Schiff bases and amino acid residues are also reported.

  11. Potential toxicity of sarafloxacin to catalase: spectroscopic, ITC and molecular docking descriptions.

    PubMed

    Cao, Zhaozhen; Liu, Rutao; Yang, Bingjun

    2013-11-01

    The interaction between sarafloxacin and catalase (CAT) was studied by fluorescence spectroscopy, UV-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration microcalorimetry (ITC) and molecular docking method. After deducting the inner filter effect, the fluorescence of CAT was quenched regularly by different concentrations of sarafloxacin. The quenching mechanism was studied by lifetime measurement, and it was proved to be mostly due to static quenching. The formation of sarafloxacin-CAT complex alters the micro-environment of amide moieties and tryptophan (Trp) residues, reduces the α-helix content of the enzyme, changes the peripheral substituents on the porphyrin ring of heme and leads to the inhibition of the enzyme activity. Molecular docking study reveals that sarafloxacin is located between two α-helix of CAT near to Trp 182 and Trp 185 residues, which supports the experimental results and helps to have a more clear understanding about the interaction mechanism. The change in the relative position of His 74 to heme induced by the variation of secondary structure is considered to be the major reason for the reduction of CAT activity. Moreover, sarafloxacin binds into a hydrophobic area of CAT mainly through hydrophobic interactions, which is consistent with the ITC analysis.

  12. Potential toxicity of sarafloxacin to catalase: Spectroscopic, ITC and molecular docking descriptions

    NASA Astrophysics Data System (ADS)

    Cao, Zhaozhen; Liu, Rutao; Yang, Bingjun

    2013-11-01

    The interaction between sarafloxacin and catalase (CAT) was studied by fluorescence spectroscopy, UV-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration microcalorimetry (ITC) and molecular docking method. After deducting the inner filter effect, the fluorescence of CAT was quenched regularly by different concentrations of sarafloxacin. The quenching mechanism was studied by lifetime measurement, and it was proved to be mostly due to static quenching. The formation of sarafloxacin-CAT complex alters the micro-environment of amide moieties and tryptophan (Trp) residues, reduces the α-helix content of the enzyme, changes the peripheral substituents on the porphyrin ring of heme and leads to the inhibition of the enzyme activity. Molecular docking study reveals that sarafloxacin is located between two α-helix of CAT near to Trp 182 and Trp 185 residues, which supports the experimental results and helps to have a more clear understanding about the interaction mechanism. The change in the relative position of His 74 to heme induced by the variation of secondary structure is considered to be the major reason for the reduction of CAT activity. Moreover, sarafloxacin binds into a hydrophobic area of CAT mainly through hydrophobic interactions, which is consistent with the ITC analysis.

  13. Toxic interaction between acid yellow 23 and trypsin: spectroscopic methods coupled with molecular docking.

    PubMed

    Wang, Jing; Liu, Rutao; Qin, Pengfei

    2012-09-01

    Acid yellow 23 (AY23) is a pervasive azo dye used in many fields which is potentially harmful to the environment and human health. This paper studied the toxic effects of AY23 on trypsin by spectroscopic and molecular docking methods. The addition of AY23 effectively quenched the intrinsic fluorescence of trypsin via static quenching with association constants of K(290 K) = 3.67 × 10(5) L mol(-1) and K(310 K) = 1.83 × 10(5) L mol(-1). The calculated thermodynamic parameters conformed that AY23 binds to trypsin predominantly via electrostatic forces with one binding site. Conformational investigations indicated the skeletal structure of trypsin unfolded and the microenvironment of tryptophan changed with the addition of AY23. Molecular docking study showed that AY23 interacted with the His 57 and Lys 224 residue of trypsin and led to the inhibition of enzyme activity. This study offers a more comprehensive picture of AY23-trypsin interaction and indicates their interaction may perform toxic effects within the organism.

  14. Trends in the Binding of Cell Penetrating Peptides to siRNA: A Molecular Docking Study

    PubMed Central

    Gunathunge, B. G. C. M.; Wimalasiri, P. N.; Karunaratne, D. N.

    2017-01-01

    The use of gene therapeutics, including short interfering RNA (siRNA), is limited by the lack of efficient delivery systems. An appealing approach to deliver gene therapeutics involves noncovalent complexation with cell penetrating peptides (CPPs) which are able to penetrate the cell membranes of mammals. Although a number of CPPs have been discovered, our understanding of their complexation and translocation of siRNA is as yet insufficient. Here, we report on computational studies comparing the binding affinities of CPPs with siRNA, considering a variety of CPPs. Specifically, seventeen CPPs from three different categories, cationic, amphipathic, and hydrophobic CPPs, were studied. Molecular mechanics were used to minimize structures, while molecular docking calculations were used to predict the orientation and favorability of sequentially binding multiple peptides to siRNA. Binding scores from docking calculations were highest for amphipathic peptides over cationic and hydrophobic peptides. Results indicate that initial complexation of peptides will likely occur along the major groove of the siRNA, driven by electrostatic interactions. Subsequent binding of CPPs is likely to occur in the minor groove and later on bind randomly, to siRNA or previously bound CPPs, through hydrophobic interactions. However, hydrophobic CPPs do not show this binding pattern. Ultimately binding yields a positively charged nanoparticle capable of noninvasive cellular import of therapeutic molecules. PMID:28321253

  15. Innovative interactive flexible docking method for multi-scale reconstruction elucidates dystrophin molecular assembly.

    PubMed

    Molza, A-E; Férey, N; Czjzek, M; Le Rumeur, E; Hubert, J-F; Tek, A; Laurent, B; Baaden, M; Delalande, O

    2014-01-01

    At present, our molecular knowledge of dystrophin, the protein encoded by the DMD gene and mutated in myopathy patients, remains limited. To get around the absence of its atomic structure, we have developed an innovative interactive docking method based on the BioSpring software in combination with Small-angle X-ray Scattering (SAXS) data. BioSpring allows interactive handling of biological macromolecules thanks to an augmented Elastic Network Model (aENM) that combines the spring network with non-bonded terms between atoms or pseudo-atoms. This approach can be used for building molecular assemblies even on a desktop or a laptop computer thanks to code optimizations including parallel computing and GPU programming. By combining atomistic and coarse-grained models, the approach significantly simplifies the set-up of multi-scale scenarios. BioSpring is remarkably efficient for the preparation of numeric simulations or for the design of biomolecular models integrating qualitative experimental data restraints. The combination of this program and SAXS allowed us to propose the first high-resolution models of the filamentous central domain of dystrophin, covering repeats 11 to 17. Low-resolution interactive docking experiments driven by a potential grid enabled us to propose how dystrophin may associate with F-actin and nNOS. This information provides an insight into medically relevant discoveries to come.

  16. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study

    NASA Astrophysics Data System (ADS)

    Islam, Mullah Muhaiminul; Sonu, Vikash K.; Gashnga, Pynsakhiat Miki; Moyon, N. Shaemningwar; Mitra, Sivaprasad

    2016-01-01

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0 × 104 M-1) in comparison with CAF (∼9.3 × 102 M-1) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure.

  17. Molecular docking and multivariate analysis of xanthones as antimicrobial and antiviral agents.

    PubMed

    Bernal, Freddy A; Coy-Barrera, Ericsson

    2015-07-21

    Xanthones are secondary metabolites which have drawn considerable interest over the last decades due to their antimicrobial properties, among others. A great number of this kind of compounds has been therefore reported, but there is a limited amount of studies on screening for biological activity. Thus, as part of our research on antimicrobial agents of natural origin, a set of 272 xanthones were submitted to molecular docking (MD) calculations with a group of seven fungal and two viral enzymes. The results indicated that prenylated xanthones are important hits for inhibition of the analyzed enzymes. The MD scores were also analyzed by multivariate statistics. Important structural details were found to be crucial for the inhibition of the tested enzymes by the xanthones. In addition, the classification of active xanthones can be achieved by statistical analysis on molecular docking scores by an affinity-antifungal activity relationship approach. The obtained results therefore are a suitable starting point for the development of antifungal and antiviral agents based on xanthones.

  18. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study.

    PubMed

    Islam, Mullah Muhaiminul; Sonu, Vikash K; Gashnga, Pynsakhiat Miki; Moyon, N Shaemningwar; Mitra, Sivaprasad

    2016-01-05

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0×10(4)M(-1)) in comparison with CAF (∼9.3×10(2)M(-1)) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure.

  19. Inhibitory effects of daidzein and genistein on trypsin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Zeng, Hua-Jin; Wang, Ya-Ping; Yang, Ran; You, Jing; Qu, Ling-Bo

    2016-08-01

    In this work, the inhibitory effect of two isoflavonoids including daidzein and genistein on trypsin and their binding mechanism were determined by spectroscopic and molecular docking approaches. The results indicated that both daidzein and genistein reversibly inhibited trypsin in a competitive manner with IC50 values of 68.01×10(-6)molL(-1) and 64.70×10(-6)molL(-1) and Ki values of 62.12×10(-6)molL(-1) and 59.83×10(-6)molL(-1), respectively. They could spontaneously bind with trypsin mainly through hydrophobic force and electrostatic interactions with a single binding site. Analysis of circular dichrosim spectra and molecular docking revealed that both isoflavonoids bound directly into the catalytic cavity and the microenvironment and secondary structure of trypsin were changed in this process, which caused the inhibition of trypsin activity. All these experimental results and theoretical data in this work would be help in understanding the mechanism of inhibitory effects of daidzein and genistein against trypsin and the potential of isoflavonoid to relieve symptoms of pancreatitis.

  20. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides

    PubMed Central

    Muhammad, Syed Aun; Fatima, Nighat

    2015-01-01

    The purpose of this study was to analyze the inhibitory action of quercetin glycosides by computational docking studies. For this, natural metabolite quercetin glycosides isolated from buckwheat and onions were used as ligand for molecular interaction. The crystallographic structure of molecular target angiotensin-converting enzyme (ACE) (peptidyl-dipeptidase A) was obtained from PDB database (PDB ID: 1O86). Enalapril, a well-known brand of ACE inhibitor was taken as the standard for comparative analysis. Computational docking analysis was performed using PyRx, AutoDock Vina option based on scoring functions. The quercetin showed optimum binding affinity with a molecular target (angiotensin-converting-enzyme) with the binding energy of −8.5 kcal/mol as compared to the standard (−7.0 kcal/mol). These results indicated that quercetin glycosides could be one of the potential ligands to treat hypertension, myocardial infarction, and congestive heart failure. PMID:26109757

  1. Identification of critical chemical features for Aurora kinase-B inhibitors using Hip-Hop, virtual screening and molecular docking

    NASA Astrophysics Data System (ADS)

    Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; John, Shalini; Lee, Keun Woo

    2011-01-01

    This study was performed to find the selective chemical features for Aurora kinase-B inhibitors using the potent methods like Hip-Hop, virtual screening, homology modeling, molecular dynamics and docking. The best hypothesis, Hypo1 was validated toward a wide range of test set containing the selective inhibitors of Aurora kinase-B. Homology modeling and molecular dynamics studies were carried out to perform the molecular docking studies. The best hypothesis Hypo1 was used as a 3D query to screen the chemical databases. The screened molecules from the databases were sorted based on ADME and drug like properties. The selective hit compounds were docked and the hydrogen bond interactions with the critical amino acids present in Aurora kinase-B were compared with the chemical features present in the Hypo1. Finally, we suggest that the chemical features present in the Hypo1 are vital for a molecule to inhibit the Aurora kinase-B activity.

  2. Furoquinoline Alkaloids from the Leaves of Evodia lepta as Potential Cholinesterase Inhibitors and their Molecular Docking.

    PubMed

    Sichaem, Jirapast; Rojpitikul, Thanawan; Sawasdee, Pattara; Lugsannangarm, Kiattisak; Santi, Tip-pyang

    2015-08-01

    Nine furoquinoline alkaloids (1-9) were isolated from the leaves of Evodia lepta based on bioassay-guided fractionation and chromatographic techniques. All isolates were evaluated for their cholinesterase (ChEs) inhibitory activities, in which kokusaginine (7) and melineurine (5) exhibited the highest activity toward AChE and BChE, respectively. Lineweaver-Burk plots indicated that 5 and 7 were mixed mode inhibitors of both ChE enzymes. Molecular docking studies on the binding sites of AChE and BChE were performed in order to afford a molecular insight into the mode of action of these active compounds. From this study these compounds have emerged as promising molecules for Alzheimer's disease therapy.

  3. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  4. Synthesis, crystal structure, and in vitro and in silico molecular docking of novel acyl thiourea derivatives

    NASA Astrophysics Data System (ADS)

    Haribabu, Jebiti; Subhashree, Govindarajulu Rangabashyam; Saranya, Sivaraj; Gomathi, Kannayiram; Karvembu, Ramasamy; Gayathri, Dasararaju

    2015-08-01

    In the present study, a series of six biologically active substituted acyl thiourea compounds (1-6) has been synthesized from cyclohexanecarbonyl isothiocyanate and various primary amines (2-methyl aniline, aniline, 4-methoxy aniline, 4-ethoxy aniline, benzyl amine and 2-methoxy aniline). The synthesized compounds were characterized by elemental analyses, UV-Visible, FT-IR, 1H & 13C NMR and mass spectroscopic techniques. Three dimensional molecular structure of two compounds (1 and 5) was determined by single crystal X-ray crystallography. All the synthesized compounds show good anti-oxidant and anti-haemolytic activities. In silico molecular docking studies were performed to screen against DprE1 and HSP90 enzymes targeting tuberculosis and cancer respectively.

  5. Nitromethylene neonicotinoids analogues with tetrahydropyrimidine fixed cis-configuration: synthesis, insecticidal activities, and molecular docking studies.

    PubMed

    Sun, Chuanwen; Yang, Dingrong; Xing, Jiahua; Wang, Haifeng; Jin, Jia; Zhu, Jun

    2010-03-24

    Two series of new nitromethylene neonicotinoid analogues (2a-2h and 3a-3h) were designed and prepared, with the cis-configuration confirmed by X-ray diffraction. Preliminary bioassays showed that most analogues exhibited excellent insecticidal activities at 500 mg/L, and analogues with optical activity (2c-2g) were highly potent at 100 mg/L, while compound 2d had >90% mortality at 20 mg/L, which suggested that it could be used as a lead for future insecticides development. Modeling the ligand-receptor complexes by molecular docking study explained the structure-activity relationships observed in vitro and revealed an intriguing molecular binding mode at the active site of the nAChR model, thereby possibly providing some useful information for future receptor structure-based designs of novel insecticidal compounds.

  6. Indazoles as potential c-Met inhibitors: design, synthesis and molecular docking studies.

    PubMed

    Ye, Lianbao; Ou, Xiaomin; Tian, Yuanxin; Yu, Bangwei; Luo, Yan; Feng, Binghong; Lin, Hansen; Zhang, Jiajie; Wu, Shuguang

    2013-07-01

    Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is considered as an attractive target for small molecule drug discovery. In this study, a series of indazoles were designed, synthesized and evaluated as novel c-Met inhibitors. The results showed that the majority of the compounds exhibited significant inhibition on c-Met and compound 4d showed highest activity against c-Met with IC50 value of 0.17 μM in TR-FRET-based assay and IC50 value of 5.45 μM in cell-based assay as compared to other tested compounds. Molecular docking experiments verified the results and explained the molecular mechanism of pretty activities to c-Met.

  7. Active site binding modes of inhibitors of Staphylococcus aureus mevalonate diphosphate decarboxylase from docking and molecular dynamics simulations.

    PubMed

    Addo, James K; Skaff, D Andrew; Miziorko, Henry M

    2016-01-01

    Bacterial mevalonate diphosphate decarboxylase (MDD) is an attractive therapeutic target for antibacterial drug development. In this work, we discuss a combined docking and molecular dynamics strategy toward inhibitor binding to bacterial MDD. The docking parameters utilized in this study were first validated with observations for the inhibitors 6-fluoromevalonate diphosphate (FMVAPP) and diphosphoglycolylproline (DPGP) using existing structures for the Staphylococcus epidermidis enzyme. The validated docking protocol was then used to predict structures of the inhibitors bound to Staphylococcus aureus MDD using the unliganded crystal structure of Staphylococcus aureus MDD. We also investigated a possible interactions improvement by combining this docking method with molecular dynamics simulations. Thus, the predicted docking structures were analyzed in a molecular dynamics trajectory to generate dynamic models and reinforce the predicted binding modes. FMVAPP is predicted to make more extensive contacts with S. aureus MDD, forming stable hydrogen bonds with Arg144, Arg193, Lys21, Ser107, and Tyr18, as well as making stable hydrophobic interactions with Tyr18, Trp19, and Met196. The differences in predicted binding are supported by experimentally determined Ki values of 0.23 ± 0.02 and 34 ± 8 μM, for FMVAPP and DPGP, respectively. The structural information coupled with the kinetic characterization obtained from this study should be useful in defining the requirements for inhibition as well as in guiding the selection of active compounds for inhibitor optimization.

  8. Molecular Docking Studies of Catechin and Its Derivatives as Anti-bacterial Inhibitor for Glucosamine-6-Phosphate Synthase

    NASA Astrophysics Data System (ADS)

    Fikrika, H.; Ambarsari, L.; Sumaryada, T.

    2016-01-01

    Molecular docking simulation of catechin and its derivatives on Glucosamine-6- Phosphate Synthase (GlmS) has been performed in this research. GlmS inhibition by a particular ligand will suppress the production of bacterial cell wall and significantly reduce the population of invading bacteria. In this study, catechin derivatives i.e epicatechin, galloatechin and epigalloatechin were found to have stronger binding affinities as compared to natural ligand of GlmS, Fructose-6-Phosphate (F6P). Those three ligands were docked on the same pocket in GlmS target as F6P, with 70% binding sites similarity. Based on the docking results, gallocatechin turns out to be the most potent ligand for anti-bacterial agent with ΔG= -8.00 kcal/mol. The docking between GlmS and catechin derivatives are characterized by a constant present of a strong hydrogen bond between functional group O3 and Ser-349. This hydrogen bond most likely plays a significant role in the docking mechanism and binding modes selection. The surprising result is catechin itself exhibited a quite strong binding with GlmS (ΔG= -7.80 kcal.mol), but docked on a completely different pocket compared to other ligands. This results suggest that catechin might still have a curing effect but with a completely different pathway and mechanism as compared to its derivatives.

  9. Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction

    NASA Astrophysics Data System (ADS)

    Ciemny, Maciej Pawel; Debinski, Aleksander; Paczkowska, Marta; Kolinski, Andrzej; Kurcinski, Mateusz; Kmiecik, Sebastian

    2016-12-01

    Protein-peptide interactions are often associated with large-scale conformational changes that are difficult to study either by classical molecular modeling or by experiment. Recently, we have developed the CABS-dock method for flexible protein-peptide docking that enables large-scale rearrangements of the protein chain. In this study, we use CABS-dock to investigate the binding of the p53-MDM2 complex, an element of the cell cycle regulation system crucial for anti-cancer drug design. Experimental data suggest that p53-MDM2 binding is affected by significant rearrangements of a lid region - the N-terminal highly flexible MDM2 fragment; however, the details are not clear. The large size of the highly flexible MDM2 fragments makes p53-MDM2 intractable for exhaustive binding dynamics studies using atomistic models. We performed extensive dynamics simulations using the CABS-dock method, including large-scale structural rearrangements of MDM2 flexible regions. Without a priori knowledge of the p53 peptide structure or its binding site, we obtained near-native models of the p53-MDM2 complex. The simulation results match well the experimental data and provide new insights into the possible role of the lid fragment in p53 binding. The presented case study demonstrates that CABS-dock methodology opens up new opportunities for protein-peptide docking with large-scale changes of the protein receptor structure.

  10. Molecular docking and structure-based virtual screening studies of potential drug target, CAAX prenyl proteases, of Leishmania donovani.

    PubMed

    Singh, Shalini; Vijaya Prabhu, Sitrarasu; Suryanarayanan, Venkatesan; Bhardwaj, Ruchika; Singh, Sanjeev Kumar; Dubey, Vikash Kumar

    2016-11-01

    Targeting CAAX prenyl proteases of Leishmania donovani can be a good approach towards developing a drug molecule against Leishmaniasis. We have modeled the structure of CAAX prenyl protease I and II of L. donovani, using homology modeling approach. The structures were further validated using Ramachandran plot and ProSA. Active site prediction has shown difference in the amino acid residues present at the active site of CAAX prenyl protease I and CAAX prenyl protease II. The electrostatic potential surface of the CAAX prenyl protease I and II has revealed that CAAX prenyl protease I has more electropositive and electronegative potentials as compared CAAX prenyl protease II suggesting significant difference in their activity. Molecular docking with known bisubstrate analog inhibitors of protein farnesyl transferase and peptidyl (acyloxy) methyl ketones reveals significant binding of these molecules with CAAX prenyl protease I, but comparatively less binding with CAAX prenyl protease II. New and potent inhibitors were also found using structure-based virtual screening. The best docked compounds obtained from virtual screening were subjected to induced fit docking to get best docked configurations. Prediction of drug-like characteristics has revealed that the best docked compounds are in line with Lipinski's rule. Moreover, best docked protein-ligand complexes of CAAX prenyl protease I and II are found to be stable throughout 20 ns simulation. Overall, the study has identified potent drug molecules targeting CAAX prenyl protease I and II of L. donovani whose drug candidature can be verified further using biochemical and cellular studies.

  11. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines.

    PubMed

    Zhang, Xiaohua; Wong, Sergio E; Lightstone, Felice C

    2013-04-30

    A mixed parallel scheme that combines message passing interface (MPI) and multithreading was implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was tested on the petascale high performance computing (HPC) machines at Lawrence Livermore National Laboratory. To exploit the typical cluster-type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes, where each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory. Input and output of the program and the data handling within the program were carefully designed to deal with large databases and ultimately achieve HPC on a large number of CPU cores. Parallel performance analysis of the VinaLC program shows that the code scales up to more than 15K CPUs with a very low overhead cost of 3.94%. One million flexible compound docking calculations took only 1.4 h to finish on about 15K CPUs. The docking accuracy of VinaLC has been validated against the DUD data set by the re-docking of X-ray ligands and an enrichment study, 64.4% of the top scoring poses have RMSD values under 2.0 Å. The program has been demonstrated to have good enrichment performance on 70% of the targets in the DUD data set. An analysis of the enrichment factors calculated at various percentages of the screening database indicates VinaLC has very good early recovery of actives.

  12. Pharmacoinformatic and molecular docking studies reveal potential novel antidepressants against neurodegenerative disorders by targeting HSPB8

    PubMed Central

    Sehgal, Sheikh Arslan; Mannan, Shazia; Ali, Sannia

    2016-01-01

    Charcot–Marie–Tooth (CMT) disease is an inherited peripheral neuromuscular disorder characterized by length-dependent and progressive degeneration of peripheral nerves, leading to muscular weakness. Research has shown that mutated HSPB8 may be responsible for depression, neurodegenerative disorders, and improper functioning of peripheral nerves, resulting in neuromuscular disorders like CMT. In the current work, a hybrid approach of virtual screening and molecular docking studies was followed by homology modeling and pharmacophore identification. Detailed screening analyses were carried out by 2-D similarity search against prescribed antidepressant drugs with physicochemical properties. LigandScout was employed to ascertain novel molecules and pharmacophore properties. In this study, we report three novel compounds that showed maximum binding affinity with HSPB8. Docking analysis elucidated that Met37, Ser57, Ser58, Trp60, Thr63, Thr114, Lys115, Asp116, Gly117, Val152, Val154, Leu186, Asp189, Ser190, Gln191, and Glu192 are critical residues for ligand–receptor interactions. Our analyses suggested paroxetine as a potent compound for targeting HSPB8. Selected compounds have more effective energy scores than the selected drug analogs. Additionally, site-directed mutagenesis could be significant for further analysis of the binding pocket. The novel findings based on an in silico approach may be momentous for potent drug design against depression and CMT. PMID:27226709

  13. Hologram quantitative structure activity relationship, docking, and molecular dynamics studies of inhibitors for CXCR4.

    PubMed

    Zhang, Chongqian; Du, Chunmiao; Feng, Zhiwei; Zhu, Jingyu; Li, Youyong

    2015-02-01

    CXCR4 plays a crucial role as a co-receptor with CCR5 for HIV-1 anchoring to mammalian cell membrane and is implicated in cancer metastasis and inflammation. In the current work, we study the relationship of structure and activity of AMD11070 derivatives and other inhibitors of CXCR4 using HQSAR, docking and molecular dynamics (MD) simulations. We obtain an HQSAR model (q(2) = 0.779), and the HQSAR result illustrates that AMD11070 shows a high antiretroviral activity. As HQSAR only provides 2D information, we perform docking and MD to study the interaction of It1t, AMD3100, and AMD3465 with CXCR4. Our results illustrate that the binding are affected by two crucial residues Asp97 and Glu288. The butyl amine moiety of AMD11070 contributes to its high antiretroviral activity. Without a butyl amine moiety, (2,7a-Dihydro-1H-benzoimidazol-2-ylmethyl)-methyl-(5,6,7,8-tetrahydro-quinolin-8-yl)-amine (compound 5a) shows low antiretroviral activity. Our results provide structural details about the interactions between the inhibitors and CXCR4, which are useful for rational drug design of CXCR4.

  14. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking.

    PubMed

    Islam, Barira; Sharma, Charu; Adem, Abdu; Aburawi, Elhadi; Ojha, Shreesh

    2015-01-01

    Statins are hypolipidemic drugs that are effective in the treatment of hypercholesterolemia by attenuating cholesterol synthesis in the liver via competitive inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Recently, dietary changes associated with drug therapy have garnered attention as novel drugs to mitigate or ameliorate hypercholesterolemia. The present study was undertaken to observe different dietary polyphenols that can bind to the active site of HMGR and inhibit it. Results from the 12 dietary polyphenols tested reveal that polyphenols can bind to HMGR and block the binding of nicotinamide adenine dinucleotide phosphate (NADP(+)). We observed that the rigidity of phenolic rings prevents the polyphenols from docking to the enzyme activity site. The presence of an ester linkage between the phenolic rings in (-)-epigallocatechin-3-gallate (EGCG) and the alkyl chain in curcumin allows them to orient in the active site of the HMGR and bind to the catalytic residues. EGCG and curcumin showed binding to the active site residues with a low GRID score, which may be a potential inhibitor of HMGR. Kaempferol showed binding to HMG-CoA, but with low binding affinity. These observations provide a rationale for the consistent hypolipidemic effect of EGCG and curcumin, which has been previously reported in several epidemiological and animal studies. Therefore, this study substantiates the mechanism of polyphenols on the activity of HMGR by molecular docking and provides the impetus for drug design involving further structure-function relationship studies.

  15. Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking

    NASA Astrophysics Data System (ADS)

    Shi, Jie-Hua; Chen, Jun; Wang, Jing; Zhu, Ying-Yao

    2015-02-01

    The binding interaction of sorafenib with calf thymus DNA (ct-DNA) was studied using UV-vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results revealed that there was obvious binding interaction between sorafenib and ct-DNA. The binding constant (Kb) of sorafenib with ct-DNA was 5.6 × 103 M-1 at 298 K. The enthalpy and entropy changes (ΔH0 and ΔS0) in the binding process of sorafenib with ct-DNA were -27.66 KJ mol-1 and -21.02 J mol-1 K-1, respectively, indicating that the main binding interaction forces were van der Waals force and hydrogen bonding. The docking results suggested that sorafenib preferred to bind on the minor groove of A-T rich DNA and the binding site of sorafenib was 4 base pairs long. The conformation change of sorafenib in the sorafenib-DNA complex was obviously observed and the change was close relation with the structure of DNA, implying that the flexibility of sorafenib molecule played an important role in the formation of the stable sorafenib-ct-DNA complex.

  16. DNA topoisomerase-directed anticancerous alkaloids: ADMET-based screening, molecular docking, and dynamics simulation.

    PubMed

    Singh, Swati; Das, Tamal; Awasthi, Manika; Pandey, Veda P; Pandey, Brijesh; Dwivedi, Upendra N

    2016-01-01

    Topoisomerases (Topo I and II) have been looked as crucial targets against various types of cancers. In the present paper, 100 anticancerous alkaloids were subjected to in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses to investigate their pharmacokinetic properties. Out of 100 alkaloids, only 18 were found to fulfill all the ADMET descriptors and obeyed the Lipinski's rule of five. All the 18 alkaloids were found to dock successfully within the active site of both Topo I and II. A comparison of the inhibitory potential of 18 screened alkaloids with those of selected drugs revealed that four alkaloids (oliveroline, coptisine, aristolactam, and piperine) inhibited Topo I, whereas six alkaloids (oliveroline, aristolactam, anonaine, piperine, coptisine, and liriodenine) inhibited Topo II more strongly than those of their corresponding drugs, topotecan and etoposide, respectively, with oliveroline being the outstanding. The stability of the complexes of Topo I and II with the best docked alkaloid, oliveroline, was further analyzed using 10 nSec molecular dynamics simulation and compared with those of the respective drugs, namely, topotecan and etoposide, which revealed stabilization of these complexes within 5 nSec of simulation with better stability of Topo II complex than that of Topo I.

  17. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking

    PubMed Central

    Islam, Barira; Sharma, Charu; Adem, Abdu; Aburawi, Elhadi; Ojha, Shreesh

    2015-01-01

    Statins are hypolipidemic drugs that are effective in the treatment of hypercholesterolemia by attenuating cholesterol synthesis in the liver via competitive inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Recently, dietary changes associated with drug therapy have garnered attention as novel drugs to mitigate or ameliorate hypercholesterolemia. The present study was undertaken to observe different dietary polyphenols that can bind to the active site of HMGR and inhibit it. Results from the 12 dietary polyphenols tested reveal that polyphenols can bind to HMGR and block the binding of nicotinamide adenine dinucleotide phosphate (NADP+). We observed that the rigidity of phenolic rings prevents the polyphenols from docking to the enzyme activity site. The presence of an ester linkage between the phenolic rings in (–)-epigallocatechin-3-gallate (EGCG) and the alkyl chain in curcumin allows them to orient in the active site of the HMGR and bind to the catalytic residues. EGCG and curcumin showed binding to the active site residues with a low GRID score, which may be a potential inhibitor of HMGR. Kaempferol showed binding to HMG-CoA, but with low binding affinity. These observations provide a rationale for the consistent hypolipidemic effect of EGCG and curcumin, which has been previously reported in several epidemiological and animal studies. Therefore, this study substantiates the mechanism of polyphenols on the activity of HMGR by molecular docking and provides the impetus for drug design involving further structure–function relationship studies. PMID:26357462

  18. In Silico Design of Human IMPDH Inhibitors Using Pharmacophore Mapping and Molecular Docking Approaches

    PubMed Central

    Li, Rui-Juan; Wang, Ya-Li; Wang, Qing-He; Wang, Jian; Cheng, Mao-Sheng

    2015-01-01

    Inosine 5′-monophosphate dehydrogenase (IMPDH) is one of the crucial enzymes in the de novo biosynthesis of guanosine nucleotides. It has served as an attractive target in immunosuppressive, anticancer, antiviral, and antiparasitic therapeutic strategies. In this study, pharmacophore mapping and molecular docking approaches were employed to discover novel Homo sapiens IMPDH (hIMPDH) inhibitors. The Güner-Henry (GH) scoring method was used to evaluate the quality of generated pharmacophore hypotheses. One of the generated pharmacophore hypotheses was found to possess a GH score of 0.67. Ten potential compounds were selected from the ZINC database using a pharmacophore mapping approach and docked into the IMPDH active site. We find two hits (i.e., ZINC02090792 and ZINC00048033) that match well the optimal pharmacophore features used in this investigation, and it is found that they form interactions with key residues of IMPDH. We propose that these two hits are lead compounds for the development of novel hIMPDH inhibitors. PMID:25784957

  19. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation.

    PubMed

    Byler, Kendall G; Collins, Jasmine T; Ogungbe, Ifedayo Victor; Setzer, William N

    2016-10-01

    Alphaviruses such as Chikungunya virus (CHIKV), O'Nyong-Nyong virus (ONNV), Ross River virus (RRV), Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV), and Western equine encephalitis virus (WEEV), are mosquito-transmitted viruses that can cause fevers, rash, and rheumatic diseases (CHIKV, ONNV, RRV) or potentially fatal encephalitis (EEEV, VEEV, WEEV) in humans. These diseases are considered neglected tropical diseases for which there are no current antiviral therapies or vaccines available. The alphavirus non-structural protein 2 (nsP2) contains a papain-like protease, which is considered to be a promising target for antiviral drug discovery. In this work, molecular docking analyses have been carried out on a library of 2174 plant-derived natural products (290 alkaloids, 664 terpenoids, 1060 polyphenolics, and 160 miscellaneous phytochemicals) with the nsP2 proteases of CHIKV, ONNV, RRV, EEEV, VEEV, WEEV, as well as Aura virus (AURV), Barmah Forest Virus (BFV), Semliki Forest virus (SFV), and Sindbis virus (SINV) in order to identity structural scaffolds for inhibitor design or discovery. Of the 2174 phytochemicals examined, a total of 127 showed promising docking affinities and poses to one or more of the nsP2 proteases, and this knowledge can be used to guide experimental investigation of potential inhibitors.

  20. A spectroscopic and molecular docking approach on the binding of tinzaparin sodium with human serum albumin

    NASA Astrophysics Data System (ADS)

    Abdullah, Saleh M. S.; Fatma, Sana; Rabbani, Gulam; Ashraf, Jalaluddin M.

    2017-01-01

    Protein bound toxins are poorly removed by conventional extracorporeal therapies. Venous thromboembolism (VTE) is a major cause of morbidity and mortality in patients with cancer. The interaction between tinzaparin, an inhibitor of angiotensin converting enzyme and human serum albumin, a principal plasma protein in the liver has been investigated in vitro under a simulated physiological condition by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of human serum albumin was strongly quenched by tinzaparin (TP). The binding constants and binding stoichiometry can be calculated from the data obtained from fluorescence quenching experiments. The negative value of ΔG° reveals that the binding process is a spontaneous process. Thermodynamic analysis shows that the HSA-TP complex formation occurs via hydrogen bonds, hydrophobic interactions and undergoes slight structural changes as evident by far-UV CD. It indicated that the hydrophobic interactions play a main role in the binding of TP to human serum albumin. In addition, the distance between TP (acceptor) and tryptophan residues of human serum albumin (donor) was estimated to be 2.21 nm according to the Förster's resonance energy transfer theory. For the deeper understanding of the interaction, thermodynamic, and molecular docking studies were performed as well. Our docking results suggest that TP forms stable complex with HSA (Kb ∼ 104) and its primary binding site is located in subdomain IIA (Sudlow Site I). The results obtained herein will be of biological significance in pharmacology and clinical medicine.

  1. Synthesis, Evaluation of Pharmacological Activity, and Molecular Docking of 1,4-Dihydropyridines as Calcium Antagonists.

    PubMed

    Shaldam, Moataz Ahmed; El-Hamamsy, Mervat Hamed; Saleh, Dalia Osama; El-Moselhy, Tarek Fathy

    2016-01-01

    1,4-Dihydropyridine (DHP) is an important class of calcium antagonist. It inhibits the influx of extracellular Ca(2+) through L-type voltage-dependent calcium channels. Two series of nifedipine analogues were synthesized and evaluated as calcium antagonists. The ortho-nitrophenyl ring of nifedipine was replaced with an ortho- or a meta-chlorophenyl substituent. The IC50 values revealed that some of the compounds are similar to or more active than nifedipine. Substitution with groups of suitable bulkiness, such as ethyl ester, at the 3- and 5-positions of the DHP ring gave 3h, which is approximately three-fold more active than nifedipine as a calcium antagonist. A docking study with the DHP receptor model was performed to interpret the differences in calcium antagonist activities. The molecular docking study demonstrated that the lipophilicity of the substituted phenyl group at the 4-position of the DHP ring is an important factor that could increase the activity of the calcium antagonist taking the steric factor into consideration. Bulky groups interfere with ring-to-ring hydrophobic interaction with Tyr(1460) and limit the efficiency of increasing the length of the hydrocarbon chain of esters at the 3- and 5-positions of the DHP ring as an approach to increase activity. The presence of a chelating substituent on the phenyl ring at the 4-position of the DHP ring may ensure strong binding to the receptor and hence stabilization of the closed-channel conformation.

  2. DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.

    PubMed

    Shahabadi, Nahid; Falsafi, Monireh; Maghsudi, Maryam

    2017-01-02

    The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 10(4) L mol(-1) and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure -20.61 KJ mol(-1). This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.

  3. Vibrational spectroscopic, molecular docking and quantum chemical studies on 6-aminonicotinamide

    NASA Astrophysics Data System (ADS)

    Mohamed Asath, R.; Premkumar, S.; Mathavan, T.; Milton Franklin Benial, A.

    2017-04-01

    The most stable molecular structure of 6-aminonicotinamide (ANA) molecule was predicted by conformational analysis and vibrational spectral analysis was carried out by experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies were assigned and compared. The π→π* electronic transition of the molecule was predicted by theoretically calculated ultraviolet-visible spectra in gas and liquid phase and further validated experimentally using ethanol as a solvent. Frontier molecular orbitals analysis was carried out to probe the reactive nature of the ANA molecule and further the site selectivity to specific chemical reactions were effectively analyzed by Fukui function calculation. The molecular electrostatic potential surface was simulated to confirm the reactive sites of the molecule. The natural bond orbital analysis was also performed to understand the intra molecular interactions, which confirms the bioactivity of the ANA molecule. Neuroprotective nature of the ANA molecule was analyzed by molecular docking analysis and the ANA molecule was identified as a good inhibitor against Alzheimer's disease.

  4. Hybrid benzothiazole analogs as antiurease agent: Synthesis and molecular docking studies.

    PubMed

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Wadood, Abdul; Rahim, Fazal; Khan, Khalid Muhammad; Riaz, Muhammad

    2016-06-01

    Benzothiazole analogs (1-20) have been synthesized, characterized by EI-MS and (1)H NMR, and evaluated for urease inhibition activity. All compounds showed excellent urease inhibitory potential varying from 1.4±0.10 to 34.43±2.10μM when compared with standard thiourea (IC50 19.46±1.20μM). Among the series seventeen (17) analogs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, and 18 showed outstanding urease inhibitory potential. Analogs 15 and 19 also showed good urease inhibition activity. When we compare the activity of N-phenylthiourea 20 with all substituted phenyl derivatives (1-18) we found that compound 15 showed less activity than compound 20 having 3-methoxy substituent. The binding interactions of these active analogs were confirmed through molecular docking.

  5. Synthesis, antimalarial evaluation and molecular docking studies of some thiolactone derivatives

    NASA Astrophysics Data System (ADS)

    Sainy, Jitendra; Sharma, Rajesh

    2017-04-01

    In present study novel thiolactone derivatives were designed, synthesized and characterized by various analytical techniques such as IR, 1H NMR, 13C NMR, mass spectral data and elemental analysis. All synthesized compounds were evaluated for in vitro antimalarial activity against Dd2 and 3d7 strain of P. falciparum. All synthesized compounds were also subjected for molecular docking study with pf KASI/II enzyme to analyze their binding orientation in the active site of the enzyme. Compounds 5d, 5e, and 5i found to be most potent with IC50 in the range of 0.09-0.19 μM and 0.03-0.04 μM against the Dd2 strain and 3D7 strain respectively as well as they showed good binding affinities with the residues of the active site of pf KASI/II.

  6. Synthesis, molecular docking and biological evaluation of coumarin derivatives containing piperazine skeleton as potential antibacterial agents.

    PubMed

    Wang, She-Feng; Yin, Yong; Wu, Xun; Qiao, Fang; Sha, Shao; Lv, Peng-Cheng; Zhao, Jing; Zhu, Hai-Liang

    2014-11-01

    A series of 4-hydroxycoumarin derivatives were designed and synthesized in order to find some more potent antibacterial drugs. Their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4 g represented the most potent antibacterial activity against Bacillus subtilis and S. aureus with MIC of 0.236, 0.355 μg/mL, respectively. What's more, it showed the most potent activity against SaFabI with IC50 of 0.57 μM. Molecular docking of 4 g into S. aureus Enoyl-ACP-reductase active site were performed to determine the probable binding mode, while the QSAR model was built to check the previous work as well as to introduce new directions.

  7. Molecular docking studies and anti-snake venom metalloproteinase activity of Thai mango seed kernel extract.

    PubMed

    Pithayanukul, Pimolpan; Leanpolchareanchai, Jiraporn; Saparpakorn, Patchreenart

    2009-08-27

    Snakebite envenomations cause severe local tissue necrosis and the venom metalloproteinases are thought to be the key toxins involved. In this study, the ethanolic extract from seed kernels of Thai mango (Mangifera indica L. cv. 'Fahlun') (Anacardiaceae) and its major phenolic principle (pentagalloylglucopyranose) exhibited potent and dose-dependent inhibitory effects on the caseinolytic and fibrinogenolytic activities of Malayan pit viper and Thai cobra venoms in in vitro tests. molecular docking studies revealed that the binding orientations of the phenolic principles were in the binding pockets of snake venom metalloproteinases (SVMPs). The phenolic principles could form hydrogen bonds with the three histidine residues in the conserved zinc-binding motif and could chelate the Zn(2+) atom of the SVMPs, which could potentially result in inhibition of the venom enzymatic activities and thereby inhibit tissue necrosis.

  8. Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor.

    PubMed

    Prasad, C V S Siva; Gupta, Saurabh; Gaponenko, Alex; Tiwari, Murlidhar

    2013-08-01

    Many plants do produce various defense proteins like proteinase inhibitors (PIs) to protect them against various pests. PIs function as pseudosubstrates of digestive proteinase, which inhibits proteolysis in pests and leads to amino acid deficiency-based mortality. This work reports the structural interaction studies of serine proteinase of Heterodera glycines (SPHG) with Vigna mungo proteinase inhibitor (VMPI). 3D protein structure modeling, validation of SPHG and VMPI, and their putative protein-protein binding sites were predicted. Protein-protein docking followed by molecular dynamic simulation was performed to find the reliable confirmation of SPHG-VMPI complex. Trajectory analysis of each successive conformation concludes better interaction of first loop in comparison with second loop. Lysine residues of first loop were actively participating in complex formation. Overall, this study discloses the structural aspects and interaction mechanisms of VMPI with SPHG, and it would be helpful in the development of pest-resistant genetically modified crops.

  9. Homology modeling, substrate docking, and molecular simulation studies of mycobacteriophage Che12 lysin A.

    PubMed

    Saadhali, Shainaba A; Hassan, Sameer; Hanna, Luke Elizabeth; Ranganathan, Uma Devi; Kumar, Vanaja

    2016-08-01

    Mycobacteriophages produce lysins that break down the host cell wall at the end of lytic cycle to release their progenies. The ability to lyse mycobacterial cells makes the lysins significant. Mycobacteriophage Che12 is the first reported temperate phage capable of infecting and lysogenising Mycobacterium tuberculosis. Gp11 of Che12 was found to have Chitinase domain that serves as endolysin (lysin A) for Che12. Structure of gp11 was modeled and evaluated using Ramachandran plot in which 98 % of the residues are in the favored and allowed regions. Che12 lysin A was predicted to act on NAG-NAM-NAG molecules in the peptidoglycan of cell wall. The tautomers of NAG-NAM-NAG molecule were generated and docked with lysin A. The stability and binding affinity of lysin A - NAG-NAM-NAG tautomers were studied using molecular dynamics simulations.

  10. Synthesis, molecular docking and biological evaluation of metronidazole derivatives containing piperazine skeleton as potential antibacterial agents.

    PubMed

    Wang, She-Feng; Yin, Yong; Qiao, Fang; Wu, Xun; Sha, Shao; Zhang, Li; Zhu, Hai-Liang

    2014-04-15

    Metronidazole has a broad-spectrum antibacterial activity. Hereby a series of novel metronidazole derivatives were designed and synthesized based on nitroimidazole scaffold in order to find some more potent antibacterial drugs. For these compounds which were reported for the first time, their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4m represented the most potent antibacterial activity against S. aureus ATCC 25923 with MIC of 0.003 μg/mL and it showed the most potent activity against S. aureus TyrRS with IC50 of 0.0024 μM. Molecular docking of 4m into S. aureus tyrosyl-tRNA synthetase active site were also performed to determine the probable binding mode.

  11. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Ascherl, Laura; Sick, Torben; Margraf, Johannes T.; Lapidus, Saul H.; Calik, Mona; Hettstedt, Christina; Karaghiosoff, Konstantin; Döblinger, Markus; Clark, Timothy; Chapman, Karena W.; Auras, Florian; Bein, Thomas

    2016-04-01

    Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guided the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.

  12. Molecular modeling of Mycobacterium tuberculosis dUTpase: docking and catalytic mechanism studies.

    PubMed

    Ramalho, Teodorico C; Caetano, Melissa S; Josa, Daniela; Luz, Gustavo P; Freitas, Elisangela A; da Cunha, Elaine F F

    2011-06-01

    Mycobacterium tuberculosis is a leading cause of infectious disease in the world today. This outlook is aggravated by a growing number of M. tuberculosis infections in individuals who are immunocompromised as a result of HIV infections. Thus, new and more potent anti-TB agents are necessary. Therefore, dUTpase was selected as a target enzyme to combat M. tuberculosis. In this work, molecular modeling methods involving docking and QM/MM calculations were carried out to investigate the binding orientation and predict binding affinities of some potential dUTpase inhibitors. Our results suggest that the best potential inhibitor investigated, among the compounds studied in this work, is the compound dUPNPP. Regarding the reaction mechanism, we concluded that the decisive stage for the reaction is the stage 1. Furthermore, it was also observed that the compounds with a -1 electrostatic charge presented lower activation energy in relation to the compounds with a -2 charge.

  13. Identification of Potential Herbal Inhibitor of Acetylcholinesterase Associated Alzheimer's Disorders Using Molecular Docking and Molecular Dynamics Simulation

    PubMed Central

    Seniya, Chandrabhan; Khan, Ghulam Jilani; Uchadia, Kuldeep

    2014-01-01

    Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer's dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite from Cannabis plant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration of C28H34N2O6 as a valuable small ligand molecule in treatment and prevention of AD associated disorders and further in vitro and in vivo investigations may prove its therapeutic potential. PMID:25054066

  14. Identification of potential herbal inhibitor of acetylcholinesterase associated Alzheimer's disorders using molecular docking and molecular dynamics simulation.

    PubMed

    Seniya, Chandrabhan; Khan, Ghulam Jilani; Uchadia, Kuldeep

    2014-01-01

    Cholinesterase inhibitors (ChE-Is) are the standard for the therapy of AD associated disorders and are the only class of approved drugs by the Food and Drug Administration (FDA). Additionally, acetylcholinesterase (AChE) is the target for many Alzheimer's dementia drugs which block the function of AChE but have some side effects. Therefore, in this paper, an attempt was made to elucidate cholinesterase inhibition potential of secondary metabolite from Cannabis plant which has negligible or no side effect. Molecular docking of 500 herbal compounds, against AChE, was performed using Autodock 4.2 as per the standard protocols. Molecular dynamics simulations have also been carried out to check stability of binding complex in water for 1000 ps. Our molecular docking and simulation have predicted high binding affinity of secondary metabolite (C28H34N2O6) to AChE. Further, molecular dynamics simulations for 1000 ps suggest that ligand interaction with the residues Asp72, Tyr70-121-334, and Phe288 of AChE, all of which fall under active site/subsite or binding pocket, might be critical for the inhibitory activity of AChE. This approach might be helpful to understand the selectivity of the given drug molecule in the treatment of Alzheimer's disease. The study provides evidence for consideration of C28H34N2O6 as a valuable small ligand molecule in treatment and prevention of AD associated disorders and further in vitro and in vivo investigations may prove its therapeutic potential.

  15. Structural and dynamical aspects of Streptococcus gordonii FabH through molecular docking and MD simulations.

    PubMed

    Shamim, Amen; Abbasi, Sumra Wajid; Azam, Syed Sikander

    2015-07-01

    β-Ketoacyl-ACP-synthase III (FabH or KAS III) has become an attractive target for the development of new antibacterial agents which can overcome the multidrug resistance. Unraveling the fatty acid biosynthesis (FAB) metabolic pathway and understanding structural coordinates of FabH will provide valuable insights to target Streptococcus gordonii for curing oral infection. In this study, we designed inhibitors against therapeutic target FabH, in order to block the FAB pathway. As compared to other targets, FabH has more interactions with other proteins, located on the leading strand with higher codon adaptation index value and associated with lipid metabolism category of COG. Current study aims to gain in silico insights into the structural and dynamical aspect of S. gordonii FabH via molecular docking and molecular dynamics (MD) simulations. The FabH protein is catalytically active in dimerization while it can lock in monomeric state. Current study highlights two residues Pro88 and Leu315 that are close to each other by dimerization. The active site of FabH is composed of the catalytic triad formed by residues Cys112, His249, and Asn279 in which Cys112 is involved in acetyl transfer, while His249 and Asn279 play an active role in decarboxylation. Docking analysis revealed that among the studied compounds, methyl-CoA disulfide has highest GOLD score (82.75), binding affinity (-11 kcal/mol) and exhibited consistently better interactions. During MD simulations, the FabH structure remained stable with the average RMSD value of 1.7 Å and 1.6 Å for undocked protein and docked complex, respectively. Further, crucial hydrogen bonding of the conserved catalytic triad for exhibiting high affinity between the FabH protein and ligand is observed by RDF analysis. The MD simulation results clearly demonstrated that binding of the inhibitor with S. gordonii FabH enhanced the structure and stabilized the dimeric FabH protein. Therefore, the inhibitor has the potential to become

  16. Interaction between phillygenin and human serum albumin based on spectroscopic and molecular docking

    NASA Astrophysics Data System (ADS)

    Song, W.; Ao, M. Z.; Shi, Y.; Yuan, L. F.; Yuan, X. X.; Yu, L. J.

    2012-01-01

    In this paper, the interaction of human serum albumin (HSA) with phillygenin was investigated by fluorescence, circular dichroism (CD), UV-vis spectroscopic and molecular docking methods under physiological conditions. The Stern-Volmer analysis indicated that the fluorescence quenching of HSA by phillygenin resulted from static mechanism, and the binding constants were 1.71 × 10 5, 1.61 × 10 5 and 1.47 × 10 4 at 300, 305 and 310 K, respectively. The results of UV-vis spectra show that the secondary structure of the protein has been changed in the presence of phillygenin. The CD spectra showed that HSA conformation was altered by phillygenin with a major reduction of α-helix and an increase in β-sheet and random coil structures, indicating a partial protein unfolding. The distance between donor (HSA) and acceptor (phillygenin) was calculated to be 3.52 nm and the results of synchronous fluorescence spectra showed that binding of phillygenin to HSA can induce conformational changes in HSA. Molecular docking experiments found that phillygenin binds with HSA at IIIA domain of hydrophobic pocket with hydrogen bond interactions. The ionic bonds were formed with the O (4), O (5) and O (6) of phillygenin with nitrogen of ASN109, ARG186 and LEU115, respectively. The hydrogen bonds are formed between O (2) of phillygenin and SER419. In the presence of copper (II), iron (III) and alcohol, the apparent association constant KA and the number of binding sites of phillygenin on HSA were both decreased in the range of 88.84-91.97% and 16.09-18.85%, respectively. In view of the evidence presented, it is expected to enrich our knowledge of the interaction dynamics of phillygenin to the important plasma protein HSA, and it is also expected to provide important information of designs of new inspired drugs.

  17. Quorum sensing inhibitory potential and molecular docking studies of sesquiterpene lactones from Vernonia blumeoides.

    PubMed

    Aliyu, Abubakar Babando; Koorbanally, Neil Anthony; Moodley, Brenda; Singh, Parvesh; Chenia, Hafizah Yousuf

    2016-06-01

    The increasing incidence of multidrug-resistant Gram-negative bacterial pathogens has focused research on the suppression of bacterial virulence via quorum sensing inhibition strategies, rather than the conventional antimicrobial approach. The anti-virulence potential of eudesmanolide sesquiterpene lactones previously isolated from Vernonia blumeoides was assessed by inhibition of quorum sensing and in silico molecular docking. Inhibition of quorum sensing-controlled violacein production in Chromobacterium violaceum was quantified using violacein inhibition assays. Qualitative modulation of quorum sensing activity and signal synthesis was investigated using agar diffusion double ring assays and C. violaceum and Agrobacterium tumefaciens biosensor systems. Inhibition of violacein production was concentration-dependent, with ⩾90% inhibition being obtained with ⩾2.4 mg ml(-1) of crude extracts. Violacein inhibition was significant for the ethyl acetate extract with decreasing inhibition being observed with dichloromethane, hexane and methanol extracts. Violacein inhibition ⩾80% was obtained with 0.071 mg ml(-1) of blumeoidolide B in comparison with ⩾3.6 mg ml(-1) of blumeoidolide A. Agar diffusion double ring assays indicated that only the activity of the LuxI synthase homologue, CviI, was modulated by blumeoidolides A and B, and V. blumeoides crude extracts, suggesting that quorum sensing signal synthesis was down-regulated or competitively inhibited. Finally, molecular docking was conducted to explore the binding conformations of sesquiterpene lactones into the binding sites of quorum sensing regulator proteins, CviR and CviR'. The computed binding energy data suggested that the blumeoidolides have a tendency to inhibit both CviR and CviR' with varying binding affinities. Vernonia eudesmanolide sesquiterpene lactones have the potential to be novel therapeutic agents, which might be important in reducing virulence and pathogenicity of drug-resistant bacteria

  18. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis.

    PubMed

    Fakhar, Zeynab; Naiker, Suhashni; Alves, Claudio N; Govender, Thavendran; Maguire, Glenn E M; Lameira, Jeronimo; Lamichhane, Gyanu; Kruger, Hendrik G; Honarparvar, Bahareh

    2016-11-01

    An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.

  19. In silico evaluation, molecular docking and QSAR analysis of quinazoline-based EGFR-T790M inhibitors.

    PubMed

    Asadollahi-Baboli, M

    2016-08-01

    Mutated epidermal growth factor receptor (EGFR-T790M) inhibitors hold promise as new agents against cancer. Molecular docking and QSAR analysis were performed based on a series of fifty-three quinazoline derivatives to elucidate key structural and physicochemical properties affecting inhibitory activity. Molecular docking analysis identified the true conformations of ligands in the receptor's active pocket. The structural features of the ligands, expressed as molecular descriptors, were derived from the obtained docked conformations. Non-linear and spline QSAR models were developed through novel genetic algorithm and artificial neural network (GA-ANN) and multivariate adaptive regression spline techniques, respectively. The former technique was employed to consider non-linear relation between molecular descriptors and inhibitory activity of quinazoline derivatives. The later technique was also used to describe the non-linearity using basis functions and sub-region equations for each descriptor. Our QSAR model gave a high predictive performance [Formula: see text] and [Formula: see text]) using diverse validation techniques. Eight new compounds were designed using our QSAR model as potent EGFR-T790M inhibitors. Overall, the proposed in silico strategy based on docked derived descriptor and non-linear descriptor subset selection may help design novel quinazoline derivatives with improved EGFR-T790M inhibitory activity.

  20. Docking and Migration of Carbon Monoxide in Nitrogenase: The Case for Gated Pockets from IR Spectroscopy and Molecular Dynamics

    PubMed Central

    Gee, Leland B.; Leontyev, Igor; Stuchebrukhov, Alexei; Scott, Aubrey D.; Pelmenschikov, Vladimir; Cramer, Stephen P.

    2015-01-01

    Evidence for a CO docking site near the FeMo-cofactor in nitrogenase has been obtained by FT-IR monitored low temperature photolysis. We investigated the possible migration paths for CO from this docking site using molecular dynamics calculations. The simulations support the notion of a gas channel with multiple internal pockets from the active site to the protein exterior. Travel between pockets is gated by motion of protein residues. Implications for the mechanism of nitrogenase reactions with CO and N2 are discussed. PMID:25919807

  1. Docking and molecular dynamics studies of peripheral site ligand-oximes as reactivators of sarin-inhibited human acetylcholinesterase.

    PubMed

    de Almeida, Joyce S F D; Cuya Guizado, Teobaldo R; Guimarães, Ana P; Ramalho, Teodorico C; Gonçalves, Arlan S; de Koning, Martijn C; França, Tanos C C

    2016-12-01

    In the present work, we performed docking and molecular dynamics simulations studies on two groups of long-tailored oximes designed as peripheral site binders of acetylcholinesterase (AChE) and potential penetrators on the blood brain barrier. Our studies permitted to determine how the tails anchor in the peripheral site of sarin-inhibited human AChE, and which aminoacids are important to their stabilization. Also the energy values obtained in the docking studies corroborated quite well with the experimental results obtained before for these oximes.

  2. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles.

    PubMed

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Parastar, Hadi

    2013-10-05

    The interaction of quercetin with β-casein nanoparticle micelle was studied at various temperatures in order to do a complete thermodynamic and molecular analysis on the binding process. The results of fluorescence studies showed the possibility of fluorescence energy transfer between excited tryptophan and quercetin. The determined values of critical transfers distance and the mean distance of ligand from Trp-143 residues in β-casein micelle represents a non-radiative energy transfer mechanism for quenching and the existence of a significant interaction between this flavonoid and β-casein nanoparticle. The equilibrium binding of quercetin with β-casein micelle at different temperatures was studied by using UV-Vis absorption spectroscopy. The chemometric analysis (principal component analysis (PCA) and multivariate curve resolution-alternating least squares (MCR-ALS) methods) on spectrophotometric data revealed the existence of two components in solution (quercetin and β-casein-quercetin complex) and resolved their pure concentration and spectral profiles. This information let us to calculate the equilibrium binding constant at various temperatures and the relevant thermodynamic parameters of interaction (enthalpy, entropy and Gibbs free energy) with low uncertainty. The negative values of entropy and enthalpy changes represent the predominate role of hydrogen binding and van der Waals interactions in the binding process. Docking calculations showed the probable binding site of quercetin is located in the hydrophobic core of β-casein where the quercetin molecule is lined by hydrophobic residues and make five hydrogen bonds and several van der Waals contacts with them. Moreover, molecular dynamic (MD) simulation results suggested that this flavonoid can interact with β-casein, without affecting the secondary structure of β-casein. Simulations, molecular docking and experimental data reciprocally supported each other.

  3. QSAR, molecular docking studies of thiophene and imidazopyridine derivatives as polo-like kinase 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Cao, Shandong

    2012-08-01

    The purpose of the present study was to develop in silico models allowing for a reliable prediction of polo-like kinase inhibitors based on a large diverse dataset of 136 compounds. As an effective method, quantitative structure activity relationship (QSAR) was applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The proposed QSAR models showed reasonable predictivity of thiophene analogs (Rcv2=0.533, Rpred2=0.845) and included four molecular descriptors, namely IC3, RDF075m, Mor02m and R4e+. The optimal model for imidazopyridine derivatives (Rcv2=0.776, Rpred2=0.876) was shown to perform good in prediction accuracy, using GATS2m and BEHe1 descriptors. Analysis of the contour maps helped to identify structural requirements for the inhibitors and served as a basis for the design of the next generation of the inhibitor analogues. Docking studies were also employed to position the inhibitors into the polo-like kinase active site to determine the most probable binding mode. These studies may help to understand the factors influencing the binding affinity of chemicals and to develop alternative methods for prescreening and designing of polo-like kinase inhibitors.

  4. Docking and Molecular Dynamics of Steviol Glycoside-Human Bitter Receptor Interactions.

    PubMed

    Acevedo, Waldo; González-Nilo, Fernando; Agosin, Eduardo

    2016-10-12

    Stevia is one of the sweeteners with the greatest consumer demand because of its natural origin and minimal calorie content. Steviol glycosides (SG) are the main active compounds present in the leaves of Stevia rebaudiana and are responsible for its sweetness. However, recent in vitro studies in HEK 293 cells revealed that SG specifically activate the hT2R4 and hT2R14 bitter taste receptors, triggering this mouth feel. The objective of this study was to characterize the interaction of SG with these two receptors at the molecular level. The results showed that SG have only one site for orthosteric binding to these receptors. The binding free energy (ΔGbinding) between the receptor and SG was negatively correlated with SG bitterness intensity, for both hT2R4 (r = -0.95) and hT2R14 (r = -0.89). We also determined, by steered molecular dynamics simulations, that the force required to extract stevioside from the receptors was greater than that required for rebaudioside A, in accordance with the ΔG values obtained by molecular docking. Finally, we identified the loop responsible for the activation by SG of both receptors. As a whole, these results contribute to a better understanding of the resulting off-flavor perception of these natural sweeteners in foods and beverages, allowing for better prediction, and control, of the resulting bitterness.

  5. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations.

    PubMed

    Liu, Ya-Lin; Jang, Soonmin; Wang, Shih-Min; Chen, Chiu-Hao; Li, Feng-Yin

    2016-06-01

    The glucocorticoid receptor (GR), a transcription factor regulating gene expression in a ligand-dependent fashion, is known for flexibility in adapting various ligands with their structures ranging from steroid to non-steroid. However, in our previous study, GR shows a stringent discrimination against a set of steroid ligands with highly similar structures for triggering its nuclear migration. In order to resolve this puzzle, we employed molecular docking simulations to investigate the origin of this structural discrimination. By analyzing the docking orientations and the related ligand-GR interaction patterns, we found that the hydrophilicity mismatch between the docking ligand and the GR ligand-binding site is the main cause combined with the steric hindrance and structural rigidness of these steroid ligands. Furthermore, we utilized this knowledge to rationalize how the structure-binding interaction of non-steroid ligands triggers GR nuclear migration with their structures available in Protein Data Bank.

  6. Investigation of the Effect of Bilayer Composition on PKCα-C2 Domain Docking Using Molecular Dynamics Simulations.

    PubMed

    Alwarawrah, Mohammad; Wereszczynski, Jeff

    2017-01-12

    The protein kinase Cα (PKCα) enzyme is a member of a broad family of serine/threonine kinases, which are involved in varied cellular signaling pathways. The initial step of PKCα activation involves the C2 subunit docking with the cell membrane, which is followed by interactions of the C1 domains with diacylglycerol (DAG) in the membrane. Notably, the molecular mechanisms of these interactions remain poorly understood, especially what effects, if any, DAG may have on the initial C2 docking. To further understand this process, we have performed a series of conventional molecular dynamics simulations to systematically investigate the interaction between PKCα-C2 domains and lipid bilayers with different compositions to examine the effects of POPS, PIP2, and 1-palmitoyl-2-oleoyl-sn-glycerol (POG) on domain docking. Our results show that the PKCα-C2 domain does not interact with the bilayer surface in the absence of POPS and PIP2. In contrast, the inclusion of POPS and PIP2 to the bilayer resulted in strong domain docking in both perpendicular and parallel orientations, whereas the further inclusion of POG resulted in only parallel domain docking. In addition, lysine residues in the C2 domain formed hydrogen bonds with PIP2 molecule bilayers containing POG. These effects were further explored with umbrella sampling calculations to estimate the free energy of domain docking to the lipid bilayer in the presence of one or two PIP2 molecules. The results show that the binding of one or two PIP2 molecules is thermodynamically favorable, although stronger in bilayers lacking POG. However, in POG-containing bilayers, the binding mode of the C2 domain appears to be more flexible, which may have implications for activation of full-length PKCα. Together, our results shed new insights into the process of C2 bilayer binding and suggest new mechanisms for the roles of different phospholipids in the activation process of PKCα.

  7. Design, synthesis, cytotoxic activity and molecular docking studies of new 20(S)-sulfonylamidine camptothecin derivatives.

    PubMed

    Song, Zi-Long; Wang, Mei-Juan; Li, Lanlan; Wu, Dan; Wang, Yu-Han; Yan, Li-Ting; Morris-Natschke, Susan L; Liu, Ying-Qian; Zhao, Yong-Long; Wang, Chih-Ya; Liu, Huanxiang; Goto, Masuo; Liu, Heng; Zhu, Gao-Xiang; Lee, Kuo-Hsiung

    2016-06-10

    In an ongoing investigation of 20-sulfonylamidine derivatives (9, YQL-9a) of camptothecin (1) as potential anticancer agents directly and selectively inhibiting topoisomerase (Topo) I, the sulfonylamidine pharmacophore was held constant, and a camptothecin derivatives with various substitution patterns were synthesized. The new compounds were evaluated for antiproliferative activity against three human tumor cell lines, A-549, KB, and multidrug resistant (MDR) KB subline (KBvin). Several analogs showed comparable or superior antiproliferative activity compared to the clinically prescribed 1 and irinotecan (3). Significantly, the 20-sulfonylamidine derivatives exhibited comparable cytotoxicity against KBvin, while 1 and 3 were less active against this cell line. Among them, compound 15c displayed much better cytotoxic activity than the controls 1, 3, and 9. Novel key structural features related to the antiproliferative activities were identified by structure-activity relationship (SAR) analysis. In a molecular docking model, compounds 9 and 15c interacted with Topo I-DNA through a different binding mode from 1 and 3. The sulfonylamidine side chains of 9 and 15c could likely form direct hydrogen bonds with Topo I, while hydrophobic interaction with Topo I and π-π stacking with double strand DNA were also confirmed as binding driving forces. The results from docking models were consistent with the SAR conclusions. The introduction of bulky substituents at the 20-position contributed to the altered binding mode of the compound by allowing them to form new interactions with Topo I residues. The information obtained in this study will be helpful for the design of new derivatives of 1 with most promising anticancer activity.

  8. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of novel quinoline bearing dihydropyridines.

    PubMed

    Nkosi, S'busiso Mfan'vele; Anand, Krishnan; Anandakumar, S; Singh, Sanil; Chuturgoon, Anil Amichund; Gengan, Robert Moonsamy

    2016-12-01

    A new series of eight quinoline bearing dihydropyridine derivatives (A1-A8) were synthesized in high yield and in short reaction time by a four component reaction of 2-chloro-3-fomyl quinoline, malononitrile, arylamines and dimethyl acetylenedicarboxylate in the presence of a catalytic amount of triethylamine. The compounds were fully characterized by IR, NMR and GC-MS. These compounds were screened for potential biological activity in an A549 lung cancer cell line and were also evaluated for their antibacterial activities against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213 whilst their molecular docking properties in an enzymatic system were also determined. Compounds A2, A3, A4 and A8 showed anti-proliferative activity; with A4 having the highest toxicity at 250μg/mL and A8 has high toxicity at 125, 250 and 500μg/mL, respectively. Antibacterial results indicated that A4 have significant activity against tested microorganisms at the minimum inhibitory concentration (MIC) values of 32μg/mL against Pseudomonas aeruginosa and Escherichia coli, and 16μg/mL against Staphylococcus aureus. Docking of A1 with human mdm2 indicated the lowest binding energy (-6.111Kcal/mol) thereby showing strong affinity of the ligand molecule with the receptor which has been stabilized by strong hydrogen bond interactions in the binding pocket. This confirms that A1 is a better inhibitor for E3 ubiquitin-protein ligase mdm2.

  9. RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug

    PubMed Central

    2012-01-01

    Background Bed bugs (Cimex lectularius) are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance. Results We performed a next-generation RNA sequencing (RNA-Seq) experiment to find differentially expressed genes between pesticide-resistant (PR) and pesticide-susceptible (PS) strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs) was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs) and our previous 454 pyrosequenced database (21,088 ESTs). The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase) involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2) revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid. Conclusions We developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide resistance in C. lectularius

  10. Identification of promising DNA GyrB inhibitors for Tuberculosis using pharmacophore-based virtual screening, molecular docking and molecular dynamics studies.

    PubMed

    Islam, Md Ataul; Pillay, Tahir S

    2017-01-21

    In this study, we searched for potential DNA GyrB inhibitors using pharmacophore-based virtual screening followed by molecular docking and molecular dynamics simulation approaches. For this purpose, a set of 248 DNA GyrB inhibitors was collected from the literature and a well-validated pharmacophore model was generated. The best pharmacophore model explained that two each of hydrogen bond acceptors and hydrophobicity regions were critical for inhibition of DNA GyrB. Good statistical results of the pharmacophore model indicated that the model was robust in nature. Virtual screening of molecular databases revealed three molecules as potential antimycobacterial agents. The final screened promising compounds were evaluated in molecular docking and molecular dynamics simulation studies. In the molecular dynamics studies, RMSD and RMSF values undoubtedly explained that the screened compounds formed stable complexes with DNA GyrB. Therefore, it can be concluded that the compounds identified may have potential for the treatment of TB.

  11. Template engineered biopotent macrocyclic complexes involving furan moiety: Molecular modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Singh, D. P.

    2015-08-01

    Bioactive cobalt(II), nickel(II), copper(II) and zinc(II) complexes of octaazamacrocycle, 19, 20-dioxa-2,3,5,6,11,12,14,15-octaazatricyclo[14.2.1.1]icosa-1,6,8,10,15,17-hexaene-4,13-dithione, derived from furan-2,5-dione and thiocarbonohydrazide in the mole ratio 2:2:1 have been engineered via template methodology. The synthesized metal complexes have also been structurally characterized in the light of various physicochemical techniques and evaluated for antimicrobial and antioxidant activities. All these studies point toward the formation of divalent macrocyclic complexes possessing distorted octahedral geometry and having significant antimicrobial and antioxidant properties as compared to the starting precursors. Virtual screening of a representative complex was done through docking to the binding site of COX-2 to evaluate the anti-inflammatory activity of the series. Non-electrolytic nature of the complexes has been predicted on the basis of low value of molar conductivity in DMSO. All the complexes were having notable activities against pathogenic microbes as compared to precursors-thiocarbonohydrazide and furan-2,5-dione however, the complex 5, [Ni (C10H8N8O2S2) (NO3)2], shows the best antimicrobial activity.

  12. Investigate the Binding of Catechins to Trypsin Using Docking and Molecular Dynamics Simulation

    PubMed Central

    Cui, Fengchao; Yang, Kecheng; Li, Yunqi

    2015-01-01

    To explore the inhibitory mechanism of catechins for digestive enzymes, we investigated the binding mode of catechins to a typical digestive enzyme-trypsin and analyzed the structure-activity relationship of catechins, using an integration of molecular docking, molecular dynamics simulation and binding free energy calculation. We found that catechins with different structures bound to a conservative pocket S1 of trypsin, which is comprised of residues 189–195, 214–220 and 225–228. In the trypsin-catechin complexes, Asp189 by forming strong hydrogen bonding, and Gln192, Trp215 and Gly216 through hydrophobic interactions, all significantly contribute to the binding of catechins. The number and the position of hydroxyl and aromatic groups, the structure of stereoisomers, and the orientation of catechins in the binding pocket S1 of trypsin all affect the binding affinity. The binding affinity is in the order of Epigallocatechin gallate (EGCG) > Epicatechin gallate (ECG) > Epicatechin (EC) > Epigallocatechin (EGC), and 2R-3R EGCG shows the strongest binding affinity out of other stereoisomers. Meanwhile, the synergic conformational changes of residues and catechins were also analyzed. These findings will be helpful in understanding the knowledge of interactions between catechins and trypsin and referable for the design of novel polyphenol based functional food and nutriceutical formulas. PMID:25938485

  13. Interaction of prometryn to human serum albumin: insights from spectroscopic and molecular docking studies.

    PubMed

    Wang, Yaping; Zhang, Guowen; Wang, Langhong

    2014-01-01

    Prometryn possesses much potential hazard to environment because of its chemical stability and biological toxicity. Here, the binding properties of prometryn with human serum albumin (HSA) and the protein structural changes were determined under simulative physiological conditions (pH 7.4) by multispectroscopic methods including fluorescence, UV-vis absorption, Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy, coupled with molecular modeling technique. The result of fluorescence titration suggested that the fluorescence quenching of HSA by prometryn was considered as a static quenching procedure. The negative enthalpy change (ΔH(○)) and positive entropy change (ΔS(○)) values indicated that the binding process was governed mainly by hydrophobic interactions and hydrogen bonds. The site marker displacement experiments suggested the location of prometryn binding to HSA was Sudlow's site I in subdomain IIA. Furthermore, molecular docking studies revealed prometryn can bind in the large hydrophobic activity of subdomain IIA. Analysis of UV-vis absorption, synchronous fluorescence, CD and FT-IR spectra demonstrated that the addition of prometryn resulted in rearrangement and conformational alteration of HSA with reduction in α-helix and increases in β-sheet, β-turn and random coil structures. This work provided reasonable model helping us further understand the transportation, distribution and toxicity effect of prometryn when it spreads into human blood serum.

  14. Structure and functional features of olive pollen pectin methylesterase using homology modeling and molecular docking methods.

    PubMed

    Jimenez-Lopez, Jose C; Kotchoni, Simeon O; Rodríguez-García, María I; Alché, Juan D

    2012-12-01

    Pectin methylesterases (PMEs), a multigene family of proteins with multiple differentially regulated isoforms, are key enzymes implicated in the carbohydrates (pectin) metabolism of cell walls. Olive pollen PME has been identified as a new allergen (Ole e 11) of potential relevance in allergy amelioration, since it exhibits high prevalence among atopic patients. In this work, the structural and functional characterization of two olive pollen PME isoforms and their comparison with other PME plants was performed by using different approaches: (1) the physicochemical properties and functional-regulatory motifs characterization, (2) primary sequence analysis, 2D and 3D comparative structural features study, (3) conservation and evolutionary analysis, (4) catalytic activity and regulation based on molecular docking analysis of a homologue PME inhibitor, and (5) B-cell epitopes prediction by sequence and structural based methods and protein-protein interaction tools, while T-cell epitopes by inhibitory concentration and binding score methods. Our results indicate that the structural differences and low conservation of residues, together with differences in physicochemical and posttranslational motifs might be a mechanism for PME isovariants generation, regulation, and differential surface epitopes generation. Olive PMEs perform a processive catalytic mechanism, and a differential molecular interaction with specific PME inhibitor, opening new possibilities for PME activity regulation. Despite the common function of PMEs, differential features found in this study will lead to a better understanding of the structural and functional characterization of plant PMEs and help to improve the component-resolving diagnosis and immunotherapy of olive pollen allergy by epitopes identification.

  15. Interaction study of ciprofloxacin with human telomeric DNA by spectroscopy and molecular docking

    NASA Astrophysics Data System (ADS)

    Li, Huihui; Bu, Xiaoyang; Lu, Jia; Xu, Chongzheng; Wang, Xianlong; Yang, Xiaodi

    2013-04-01

    The interaction of ciprofloxacin (CIP) with human telomeric DNA was studied in vitro using multi-spectroscopy and molecular modeling methods. The hypochromic effect with a red shift in ultraviolet (UV) absorption indicated the occurrence of the interaction between CIP and DNA. The fluorescence quenching of CIP was observed with the addition of DNA and was proved to be the static quenching. The binding constant was found to be 9.62 × 104 L mol-1. Electrospray ionization mass spectrometry (ESI-MS) result further confirmed the formation of 1:1 non-covalent complex between DNA and CIP. Combined with the UV melting results, circular dichroism (CD) results confirmed the existence of groove binding mode, as well as conformational changes of DNA. Molecular docking studies illustrated the visual display of the CIP binding to the GC region in the minor groove of DNA. Specific hydrogen bonds and van der Waals forces were demonstrated as main acting forces between CIP and guanine bases of DNA.

  16. Study on the binding of chlorogenic acid to pepsin by spectral and molecular docking.

    PubMed

    Zeng, Hua-jin; Liang, Hui-li; You, Jing; Qu, Ling-bo

    2014-11-01

    The interaction of pepsin with chlorogenic acid (CHA) was investigated using fluorescence, UV/vis spectroscopy and molecular modeling methods. Stern-Volmer analysis indicated that the fluorescence quenching of pepsin by CHA resulted from a static mechanism, and the binding constant was 1.1846 × 10(5) and 1.1587 × 10(5) L/mol at 288 and 310 K, respectively. The distance between donor (pepsin) and acceptor (CHA) was calculated to be 2.39 nm and the number of binding sites for CHA binding on pepsin was ~ 1. The results of synchronous fluorescence and three-dimensional fluorescence showed that binding of CHA to pepsin could induce conformational changes in pepsin. Molecular docking experiments found that CHA bonded with pepsin in the area of the hydrophobic cavity with Van der Waals' forces or hydrogen bonding interaction, which were consistent with the results obtained from the thermodynamic parameter analysis. Furthermore, the binding of CHA can inhibit pepsin activity in vitro.

  17. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  18. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies.

    PubMed

    Taha, Muhammad; Ismail, Nor Hadiani; Khan, Ajmal; Shah, Syed Adnan Ali; Anwar, Ammarah; Halim, Sobia Ahsan; Fatmi, M Qaiser; Imran, Syahrul; Rahim, Fazal; Khan, Khalid Mohammed

    2015-08-15

    We synthesized a series of novel 5-24 derivatives of oxindole. The synthesis started from 5-chlorooxindole, which was condensed with methyl 4-carboxybezoate and result in the formation of benzolyester derivatives of oxindole which was then treated with hydrazine hydrate. The oxindole benzoylhydrazide was treated with aryl acetophenones and aldehydes to get target compounds 5-24. The synthesized compounds were evaluated for urease inhibition; the compound 5 (IC50 = 13.00 ± 0.35 μM) and 11 (IC50 = 19.20 ± 0.50 μM) showed potent activity as compared to the standard drug thiourea (IC50 = 21.00 ± 0.01 μM). Other compounds showed moderate to weak activity. All synthetic compounds were characterized by different spectroscopic techniques including (1)H NMR, (13)C NMR, IR and EI MS. The molecular interactions of the active compounds within the binding site of urease enzyme were studied through molecular docking simulations.

  19. Towards better modelling of drug-loading in solid lipid nanoparticles: Molecular dynamics, docking experiments and Gaussian Processes machine learning.

    PubMed

    Hathout, Rania M; Metwally, Abdelkader A

    2016-11-01

    This study represents one of the series applying computer-oriented processes and tools in digging for information, analysing data and finally extracting correlations and meaningful outcomes. In this context, binding energies could be used to model and predict the mass of loaded drugs in solid lipid nanoparticles after molecular docking of literature-gathered drugs using MOE® software package on molecularly simulated tripalmitin matrices using GROMACS®. Consequently, Gaussian processes as a supervised machine learning artificial intelligence technique were used to correlate the drugs' descriptors (e.g. M.W., xLogP, TPSA and fragment complexity) with their molecular docking binding energies. Lower percentage bias was obtained compared to previous studies which allows the accurate estimation of the loaded mass of any drug in the investigated solid lipid nanoparticles by just projecting its chemical structure to its main features (descriptors).

  20. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches.

    PubMed

    Filiz, Ertugrul; Vatansever, Recep; Ozyigit, Ibrahim Ilker

    2016-03-01

    Urease (EC 3.5.1.5) is a nickel-dependent metalloenzyme catalyzing the hydrolysis of urea into ammonia and carbon dioxide. It is present in many bacteria, fungi, yeasts and plants. Most species, with few exceptions, use nickel metalloenzyme urease to hydrolyze urea, which is one of the commonly used nitrogen fertilizer in plant growth thus its enzymatic hydrolysis possesses vital importance in agricultural practices. Considering the essentiality and importance of urea and urease activity in most plants, this study aimed to comparatively investigate the ureases of two important legume species such as Glycine max (soybean) and Medicago truncatula (barrel medic) from Fabaceae family. With additional plant species, primary and secondary structures of 37 plant ureases were comparatively analyzed using various bioinformatics tools. A structure based phylogeny was constructed using predicted 3D models of G. max and M. truncatula, whose crystallographic structures are not available, along with three additional solved urease structures from Canavalia ensiformis (PDB: 4GY7), Bacillus pasteurii (PDB: 4UBP) and Klebsiella aerogenes (PDB: 1FWJ). In addition, urease structures of these species were docked with urea to analyze the binding affinities, interacting amino acids and atom distances in urease-urea complexes. Furthermore, mutable amino acids which could potentially affect the protein active site, stability and flexibility as well as overall protein stability were analyzed in urease structures of G. max and M. truncatula. Plant ureases demonstrated similar physico-chemical properties with 833-878 amino acid residues and 89.39-90.91 kDa molecular weight with mainly acidic (5.15-6.10 pI) nature. Four protein domain structures such as urease gamma, urease beta, urease alpha and amidohydro 1 characterized the plant ureases. Secondary structure of plant ureases also demonstrated conserved protein architecture, with predominantly α-helix and random coil structures. In

  1. Screening of Toxic Effects of Bisphenol A and Products of Its Degradation: Zebrafish (Danio rerio) Embryo Test and Molecular Docking.

    PubMed

    Makarova, Katerina; Siudem, Pawel; Zawada, Katarzyna; Kurkowiak, Justyna

    2016-10-01

    Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation.

  2. Investigation of the Interaction of Naringin Palmitate with Bovine Serum Albumin: Spectroscopic Analysis and Molecular Docking

    PubMed Central

    Zhang, Xia; Li, Lin; Xu, Zhenbo; Liang, Zhili; Su, Jianyu; Huang, Jianrong; Li, Bing

    2013-01-01

    Background Bovine serum albumin (BSA) contains high affinity binding sites for several endogenous and exogenous compounds and has been used to replace human serum albumin (HSA), as these two compounds share a similar structure. Naringin palmitate is a modified product of naringin that is produced by an acylation reaction with palmitic acid, which is considered to be an effective substance for enhancing naringin lipophilicity. In this study, the interaction of naringin palmitate with BSA was characterised by spectroscopic and molecular docking techniques. Methodology/Principal Findings The goal of this study was to investigate the interactions between naringin palmitate and BSA under physiological conditions, and differences in naringin and naringin palmitate affinities for BSA were further compared and analysed. The formation of naringin palmitate-BSA was revealed by fluorescence quenching, and the Stern-Volmer quenching constant (KSV) was found to decrease with increasing temperature, suggesting that a static quenching mechanism was involved. The changes in enthalpy (ΔH) and entropy (ΔS) for the interaction were detected at −4.11±0.18 kJ·mol−1 and −76.59±0.32 J·mol−1·K−1, respectively, which indicated that the naringin palmitate-BSA interaction occurred mainly through van der Waals forces and hydrogen bond formation. The negative free energy change (ΔG) values of naringin palmitate at different temperatures suggested a spontaneous interaction. Circular dichroism studies revealed that the α-helical content of BSA decreased after interacting with naringin palmitate. Displacement studies suggested that naringin palmitate was partially bound to site I (subdomain IIA) of the BSA, which was also substantiated by the molecular docking studies. Conclusions/Significance In conclusion, naringin palmitate was transported by BSA and was easily removed afterwards. As a consequence, an extension of naringin applications for use in food, cosmetic and medicinal

  3. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase.

    PubMed

    Pandey, Rajan Kumar; Kumbhar, Bajarang Vasant; Sundar, Shyam; Kunwar, Ambarish; Prajapati, Vijay Kumar

    2017-02-01

    Visceral leishmaniasis (VL) is the most fatal form of leishmaniasis and it affects 70 countries worldwide. Increasing drug resistant for antileishmanial drugs such as miltefosine, sodium stibogluconate and pentamidine has been reported in the VL endemic region. Amphotericin B has shown potential antileishmanial activity in different formulations but its cost of treatment and associated nephrotoxicity have limited its use by affected people living in the endemic zone. To control the VL infection in the affected countries, it is necessary to develop new antileishmanial compounds with high efficacy and negligible toxicity. Computer aided programs such as binding free energy estimation; ADMET prediction and molecular dynamics simulation can be used to investigate novel antileishmanial molecules in shorter duration. To develop antileishmanial lead molecule, we performed standard precision (SP) docking for 1160 benzoxaborole analogs along with reference inhibitors against trypanothione reductase of Leishmania parasite. Furthermore, extra precision (XP) docking, ADMET prediction, prime MM-GBSA was conducted over 115 ligands, showing better docking score than reference inhibitors to get potential antileishmanial compounds. Simultaneously, area under the curve (AUC) was estimated using ROC plot to validate the SP and XP docking protocol. Later on, two benzoxaborole analogs with best MM-GBSA ΔG-bind were subjected to molecular simulation and docking confirmation to ensure the ligand interaction with TR. The presented drug discovery based on computational study confirms that BOB27 can be used as a potential drug candidate and warrants further experimental investigation to fight against VL in endemic areas.

  4. Exploration of Novel Human Tyrosinase Inhibitors by Molecular Modeling, Docking and Simulation Studies.

    PubMed

    Hassan, Mubashir; Ashraf, Zaman; Abbas, Qamar; Raza, Hussain; Seo, Sung-Yum

    2016-04-21

    Research studies on human tyrosinase inhibitors and exploration for better cytotoxic agents remain an important line in drug discovery and development at the present time. Recently, multiple inhibitors are being used to cure melanogenesis by targeting human tyrosinase. A series of coumarin (C1-C9)-, thymol (T1-T8)- and vanillin (V1-V8)-based derivatives have been theoretically analyzed for their inhibitory effects against human tyrosinase. The crystal structure of human tyrosinase is not available in Protein Data Bank. Therefore, homology modeling approach was used to predict three-dimensional (3D) crystal structure of human tyrosinase. The reliability and efficacy of predicted 3D structure were validated by using Ramachandran plots which indicate that 95.01 % residues are present in favored regions. Moreover, multiple computational approaches such as molecular docking and molecular dynamic (MD) simulation along with various online tools were employed to screen the best inhibitor against melanogenesis. The results revealed that V7 and C9 compounds showed significant binding energy values (-7.79 and -7.40 kcal/mol, respectively) compared with the standard drugs such as kojic acid (-4.21 kcal/mol) and arbutin (-4.62 kcal/mol). Moreover, MD simulation results also justified that V7 showed little fluctuations throughout the simulation period as depicted by the root mean square deviation and root mean square fluctuation graphs. Thus, the present in silico study provides a deeper insight into the structural attributes of V7 compound and its overall molecular interactions against human tyrosinase and gives a hypothetical gateway to use this compound as a potential inhibitor against melanogenesis.

  5. Computational modeling on the recognition of the HRE motif by HIF-1: molecular docking and molecular dynamics studies.

    PubMed

    Sokkar, Pandian; Sathis, Vani; Ramachandran, Murugesan

    2012-05-01

    Hypoxia inducible factor-1 (HIF-1) is a bHLH-family transcription factor that controls genes involved in glycolysis, angiogenesis, migration, as well as invasion factors that are important for tumor progression and metastasis. HIF-1, a heterodimer of HIF-1α and HIF-1β, binds to the hypoxia responsive element (HRE) present in the promoter regions of hypoxia responsive genes, such as vascular endothelial growth factor (VEGF). Neither the structure of free HIF-1 nor that of its complex with HRE is available. Computational modeling of the transcription factor-DNA complex has always been challenging due to their inherent flexibility and large conformational space. The present study aims to model the interaction between the DNA-binding domain of HIF-1 and HRE. Experiments showed that rigid macromolecular docking programs (HEX and GRAMM-X) failed to predict the optimal dimerization of individually modeled HIF-1 subunits. Hence, the HIF-1 heterodimer was modeled based on the phosphate system positive regulatory protein (PHO4) homodimer. The duplex VEGF-DNA segment containing HRE with flanking nucleotides was modeled in the B form and equilibrated via molecular dynamics (MD) simulation. A rigid docking approach was used to predict the crude binding mode of HIF-1 dimer with HRE, in which the putative contacts were found to be present. An MD simulation (5 ns) of the HIF-1-HRE complex in explicit water was performed to account for its flexibility and to optimize its interactions. All of the conserved amino acid residues were found to play roles in the recognition of HRE. The present work, which sheds light on the recognition of HRE by HIF-1, could be beneficial in the design of peptide or small molecule therapeutics that can mimic HIF-1 and bind with the HRE sequence.

  6. Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis.

    PubMed

    Sarkar, Jaganmay; Nandy, Suman Kumar; Chowdhury, Animesh; Chakraborti, Tapati; Chakraborti, Sajal

    2016-12-01

    Green tea polyphenolic catechins have been shown to prevent various types of diseases such as pulmonary hypertension (PAH), cancer and cardiac and neurological disorders. Matrix metalloproteinases (MMPs) play an important role in the development of PAH. The present study demonstrated that among the four green tea catechins (EGCG, ECG, EC and EGC), EGCG and ECG inhibit pro-/active MMP-9 activities in pulmonary artery smooth muscle cell culture supernatant. Based on the above, we investigated the interactions of pro-/active MMP-9 with the green tea catechins by computational methods. In silico molecular docking analysis revealed a strong interaction between pro-/active MMP-9 and EGCG/ECG, and galloyl group appears to be responsible for this enhanced interaction. The molecular docking studies corroborate our experimental observation that EGCG and ECG are mainly active in preventing both the proMMP-9 and MMP-9 activities.

  7. Connecting simulated, bioanalytical, and molecular docking data on the stereoselective binding of (±)-catechin to human serum albumin.

    PubMed

    Sabela, Myalowenkosy I; Gumede, Njabulo J; Escuder-Gilabert, Laura; Martín-Biosca, Yolanda; Bisetty, Khirsna; Medina-Hernández, María-Jose; Sagrado, Salvador

    2012-02-01

    The stereoselective binding of the frequently ingested nutraceutical (±)-catechin, with demonstrated differential biological activity between enantiomers, to human serum albumin (HSA), with the largest complexation and enantioselectivity potential among the plasmatic proteins, is studied by combining simulations to optimize the experimental design, robust in vitro electrokinetic chromatographic data, and molecular docking-chiral recognition estimates. Methodological and mathematical drawbacks in previous reports on (±)-catechin-HSA are detected and eliminated. Recent and novel direct equations extracted from the classical interaction model allows advantageous univariate mathematical data treatment, providing the first evidence of quantitative (±)-catechin-HSA enantioselectivity. Also, the binding site in HSA of the enantiomers is approached, and both the experimental enantioselectivity and the main binding site information are contrasted with a molecular docking approach.

  8. Molecular docking studies of Traditional Chinese Medicinal compounds against known protein targets to treat non-small cell lung carcinomas

    PubMed Central

    Zhao, Guo-Fang; Huang, Zuo-An; Du, Xue-Kui; Yang, Ming-Lei; Huang, Dan-Dan; Zhang, Shun

    2016-01-01

    In silico drug design using virtual screening, absorption, distribution, metabolism and excretion (ADME)/Tox data analysis, automated docking and molecular dynamics simulations for the determination of lead compounds for further in vitro analysis is a cost effective strategy. The present study used this strategy to discover novel lead compounds from an in-house database of Traditional Chinese Medicinal (TCM) compounds against epithelial growth factor receptor (EGFR) protein for targeting non-small cell lung cancer (NSCLC). After virtual screening of an initial dataset of 2,242 TCM compounds, leads were identified based on binding energy and ADME/Tox data and subjected to automated docking followed by molecular dynamics simulation. Triptolide, a top compound identified by this vigorous in silico screening, was then tested in vitro on the H2347 cell line carrying wild-type EGFR, revealing an anti-proliferative potency similar to that of known drugs against NSCLC. PMID:27279494

  9. Molecular Docking Studies with Rabies Virus Glycoprotein to Design Viral Therapeutics

    PubMed Central

    Tomar, N. R.; Singh, V.; Marla, S. S.; Chandra, R.; Kumar, R.; Kumar, A.

    2010-01-01

    The genome of rabies virus encodes five proteins; the nucleoprotein, the phosphoprotein, the matrix protein, the glycoprotein, and the RNA-dependent RNA polymerase. Among these, the glycoprotein is the most important as it is the major contributor to pathogenicity and virus neutralizing antibody response. Keeping in mind that glycoprotein is the only protein exposed on the surface of virus and is thought to be responsible for the interaction with the cell membrane, it was attempted to target glycoprotein by a ligand polyethylene glycol 4000, which blocks its active site, as seen by molecular operating environment software, so that it may be possible to prevent the spread of virus into the host. The ligand polyethylene glycol 4000 was retrieved from Research Collaboratory for Structural Bioinformatics protein data bank by providing the glycoprotein sequence to the databank. In this study it was observed that the ligand was successfully docked on a major portion of antigenic site II of glycoprotein by mimicking the virus neutralizing antibodies. This knowledge may be important for the development of novel therapies for the treatment of rabies and other viral diseases in the future. PMID:21218060

  10. Coumarin or benzoxazinone based novel carbonic anhydrase inhibitors: synthesis, molecular docking and anticonvulsant studies.

    PubMed

    Karataş, Mert Olgun; Uslu, Harun; Sarı, Suat; Alagöz, Mehmet Abdullah; Karakurt, Arzu; Alıcı, Bülent; Bilen, Cigdem; Yavuz, Emre; Gencer, Nahit; Arslan, Oktay

    2016-10-01

    Among many others, coumarin derivatives are known to show human carbonic anhydrase (hCA) inhibitory activity. Since hCA inhibition is one of the underlying mechanisms that account for the activities of some antiepileptic drugs (AEDs), hCA inhibitors are expected to have anti-seizure properties. There are also several studies reporting compounds with an imidazole and/or benzimidazole moiety which exert these pharmacological properties. In this study, we prepared fifteen novel coumarin-bearing imidazolium and benzimidazolium chloride, nine novel benzoxazinone-bearing imidazolium and benzimidazolium chloride derivatives and evaluated their hCA inhibitory activities and along with fourteen previously synthesized derivatives we scanned their anticonvulsant effects. As all compounds inhibited purified hCA isoforms I and II, some of them also proved protective against Maximal electroshock seizure (MES) and ScMet induced seizures in mice. Molecular docking studies with selected coumarin derivatives have revealed that these compounds bind to the active pocket of the enzyme in a similar fashion to that previously described for coumarin derivatives.

  11. Molecular docking NS4B of DENV 1-4 with known bioactive phyto-chemicals

    PubMed Central

    Paul, Anubrata; Vibhuti, Arpana; Raj, Samuel

    2016-01-01

    Dengue disease is a global disease that has no effective treatment. The dengue virus (DENV) NS4B is a target for designing specific antivirals due to its importance in viral replication. Medicinal plants have been a savior for dengue virus as they consist of a class of phytochemicals having anti-viral activity and can pose a new approach ofstrong drug against viruses. The present study analyzes the activity of compounds against NS4B of DENV (1-4) serotypes. In this study Catechin, Cianidanol, Epicatechin, Eupatoretin, Glabranin, Laurifolin, DL-Catechin, astherapeutic agents were filtered by using Lipinski rule’s five and the drug-likeness property of these agents were used for assessment of pharmacological properties. The molecular docking results presented the 2-D structures of bioactive complex, which interacted with especially conserved residues of target domains. Interestingly, we find the Catechin, Laurifolin, Cianidanol have highest binding energy against NS4B in DENV-1,2,4 which is evident by the formation of more hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results revealed that the bioactive compound, especially Catechin has significant anti-dengue activities. In addition, this study may be helpful in further experimental investigations. PMID:28149049

  12. Resistance Mechanisms and Molecular Docking Studies of Four Novel QoI Fungicides in Peronophythora litchii.

    PubMed

    Zhou, Yuxin; Chen, Lei; Hu, Jian; Duan, Hongxia; Lin, Dong; Liu, Pengfei; Meng, Qingxiao; Li, Bin; Si, Naiguo; Liu, Changling; Liu, Xili

    2015-12-14

    Peronophythora litchii is the causal agent of litchi downy blight. Enestroburin, SYP-1620, SYP-2815 and ZJ0712 are four novel QoI fungicides developed by China. Eight mutants of P. litchii resistant to these QoI fungicides and azoxystrobin (as a known QoI fungicide) were obtained in our preliminary work. In this study, the full length of the cytochrome b gene in P. litchii, which has a full length of 382 amino acids, was cloned from both sensitive isolates and resistant mutants, and single-site mutations G142A, G142S, Y131C, or F128S were found in resistant mutants. Molecular docking was used to predict how the mutations alter the binding of the five QoI fungicides to the Qo-binding pockets. The results have increased our understanding of QoI fungicide-resistance mechanisms and may help in the development of more potent inhibitors against plant diseases in the fields.

  13. Toll-Like Receptor 7 Agonists: Chemical Feature Based Pharmacophore Identification and Molecular Docking Studies

    PubMed Central

    Sun, Lidan; Zhang, Liangren; Sun, Gang; Wang, Zhanli; Yu, Yongchun

    2013-01-01

    Chemical feature based pharmacophore models were generated for Toll-like receptors 7 (TLR7) agonists using HypoGen algorithm, which is implemented in the Discovery Studio software. Several methods tools used in validation of pharmacophore model were presented. The first hypothesis Hypo1 was considered to be the best pharmacophore model, which consists of four features: one hydrogen bond acceptor, one hydrogen bond donor, and two hydrophobic features. In addition, homology modeling and molecular docking studies were employed to probe the intermolecular interactions between TLR7 and its agonists. The results further confirmed the reliability of the pharmacophore model. The obtained pharmacophore model (Hypo1) was then employed as a query to screen the Traditional Chinese Medicine Database (TCMD) for other potential lead compounds. One hit was identified as a potent TLR7 agonist, which has antiviral activity against hepatitis virus in vitro. Therefore, our current work provides confidence for the utility of the selected chemical feature based pharmacophore model to design novel TLR7 agonists with desired biological activity. PMID:23526932

  14. Development of Dual Inhibitors against Alzheimer's Disease Using Fragment-Based QSAR and Molecular Docking

    PubMed Central

    Goyal, Manisha; Dhanjal, Jaspreet Kaur; Goyal, Sukriti; Tyagi, Chetna; Hamid, Rabia; Grover, Abhinav

    2014-01-01

    Alzheimer's (AD) is the leading cause of dementia among elderly people. Considering the complex heterogeneous etiology of AD, there is an urgent need to develop multitargeted drugs for its suppression. β-amyloid cleavage enzyme (BACE-1) and acetylcholinesterase (AChE), being important for AD progression, have been considered as promising drug targets. In this study, a robust and highly predictive group-based QSAR (GQSAR) model has been developed based on the descriptors calculated for the fragments of 20 1,4-dihydropyridine (DHP) derivatives. A large combinatorial library of DHP analogues was created, the activity of each compound was predicted, and the top compounds were analyzed using refined molecular docking. A detailed interaction analysis was carried out for the top two compounds (EDC and FDC) which showed significant binding affinity for BACE-1 and AChE. This study paves way for consideration of these lead molecules as prospective drugs for the effective dual inhibition of BACE-1 and AChE. The GQSAR model provides site-specific clues about the molecules where certain modifications can result in increased biological activity. This information could be of high value for design and development of multifunctional drugs for combating AD. PMID:25019089

  15. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking

    PubMed Central

    Ballester, Pedro J.; Mitchell, John B.O.

    2012-01-01

    Motivation Accurately predicting the binding affinities of large sets of diverse protein-ligand complexes is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for analysing the outputs of Molecular Docking, which is in turn an important technique for drug discovery, chemical biology and structural biology. Each scoring function assumes a predetermined theory-inspired functional form for the relationship between the variables that characterise the complex, which also include parameters fitted to experimental or simulation data, and its predicted binding affinity. The inherent problem of this rigid approach is that it leads to poor predictivity for those complexes that do not conform to the modelling assumptions. Moreover, resampling strategies, such as cross-validation or bootstrapping, are still not systematically used to guard against the overfitting of calibration data in parameter estimation for scoring functions. Results We propose a novel scoring function (RF-Score) that circumvents the need for problematic modelling assumptions via non-parametric machine learning. In particular, Random Forest was used to implicitly capture binding effects that are hard to model explicitly. RF-Score is compared with the state of the art on the demanding PDBbind benchmark. Results show that RF-Score is a very competitive scoring function. Importantly, RF-Score’s performance was shown to improve dramatically with training set size and hence the future availability of more high quality structural and interaction data is expected to lead to improved versions of RF-Score. PMID:20236947

  16. Synthesis and spectroscopic characterization of fluorescent 4-aminoantipyrine analogues: Molecular docking and in vitro cytotoxicity studies

    NASA Astrophysics Data System (ADS)

    Premnath, D.; Mosae Selvakumar, P.; Ravichandiran, P.; Tamil Selvan, G.; Indiraleka, M.; Jannet Vennila, J.

    2016-01-01

    Two substituted aromatic carbonyl compounds (compounds 1 and 2) of 4-aminoantipyrine were synthesized by condensation of fluorine substituted benzoyl chlorides and 4-aminoantipyrine. The structures of synthesized derivatives were established on the basis of UV-Vis, IR, and Mass, 1H, 13C NMR and Fluorescence spectroscopy. Both compounds showed significant fluorescence emission and two broad emission bands were observed in the region at 340 nm and 450 nm on excitation at 280 nm. Theoretically to prove that the molecule has anticancer activity against cervical cancer cells, the compounds were analyzed for molecular docking interactions with HPV16-E7 target protein by Glide protocol. Furthermore, 4-aminoantipyrine derivatives were evaluated for their in vitro cytotoxic activity against human cervical cancer cells (SiHa) by MTT assay. Compound 1 showed two fold higher activity (IC50 = 0.912 μM) over compound 2, and its activity was similar to that of Pazopanib, suggesting that although the two compounds were chemically very similar the difference in substituent on the phenyl moiety caused changes in properties.

  17. Insights into the Interactions between Maleimide Derivates and GSK3β Combining Molecular Docking and QSAR

    PubMed Central

    Quesada-Romero, Luisa; Mena-Ulecia, Karel; Tiznado, William; Caballero, Julio

    2014-01-01

    Many protein kinase (PK) inhibitors have been reported in recent years, but only a few have been approved for clinical use. The understanding of the available molecular information using computational tools is an alternative to contribute to this process. With this in mind, we studied the binding modes of 77 maleimide derivates inside the PK glycogen synthase kinase 3 beta (GSK3β) using docking experiments. We found that the orientations that these compounds adopt inside GSK3β binding site prioritize the formation of hydrogen bond (HB) interactions between the maleimide group and the residues at the hinge region (residues Val135 and Asp133), and adopt propeller-like conformations (where the maleimide is the propeller axis and the heterocyclic substituents are two slanted blades). In addition, quantitative structure–activity relationship (QSAR) models using CoMSIA methodology were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. We found a model to explain the structure–activity relationship of non-cyclic maleimide (NCM) derivatives (54 compounds). The best CoMSIA model (training set included 44 compounds) included steric, hydrophobic, and HB donor fields and had a good Q2 value of 0.539. It also predicted adequately the most active compounds contained in the test set. Furthermore, the analysis of the plots of the steric CoMSIA field describes the elements involved in the differential potency of the inhibitors that can be considered for the selection of suitable inhibitors. PMID:25010341

  18. Synthesis, alkaline phosphatase inhibition studies and molecular docking of novel derivatives of 4-quinolones.

    PubMed

    Miliutina, Mariia; Ejaz, Syeda Abida; Khan, Shafi Ullah; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter

    2017-01-27

    New and convenient methods for the functionalization of the 4-quinolone scaffold at positions C-1, C-3 and C-6 were developed. The 4-quinolone derivatives were evaluated for their inhibitory potential on alkaline phosphatase isozymes. Most of the compounds exhibit excellent inhibitory activity and moderate selectivity. The IC50 values on tissue non-specific alkaline phosphatase (TNAP) were in the range of 1.34 ± 0.11 to 44.80 ± 2.34 μM, while the values on intestinal alkaline phosphatase (IAP) were in the range of 1.06 ± 0.32 to 192.10 ± 3.78 μM. The most active derivative exhibits a potent inhibition on IAP with a ≈14 fold higher selectivity as compared to TNAP. Furthermore, molecular docking calculations were performed for the most potent inhibitors to show their binding interactions within the active site of the respective enzymes.

  19. Novel biphenyl ester derivatives as tyrosinase inhibitors: Synthesis, crystallographic, spectral analysis and molecular docking studies

    PubMed Central

    Kwong, Huey Chong; Chidan Kumar, C. S.; Mah, Siau Hui; Chia, Tze Shyang; Loh, Zi Han; Chandraju, Siddegowda; Lim, Gin Keat

    2017-01-01

    Biphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl benzoates, 2(a-q), and 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl pyridinecarboxylate, 2(r-s) were synthesized by reacting 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety. Five of the compounds among the reported series exhibited significant anti-tyrosinase activities, in which 2p, 2r and 2s displayed good inhibitions which are comparable to standard inhibitor kojic acid at concentrations of 100 and 250 μg/mL. The inhibitory effects of these active compounds were further confirmed by computational molecular docking studies and the results revealed the primary binding site is active-site entrance instead of inner copper binding site which acted as the secondary binding site. PMID:28241010

  20. Resistance Mechanisms and Molecular Docking Studies of Four Novel QoI Fungicides in Peronophythora litchii

    PubMed Central

    Zhou, Yuxin; Chen, Lei; Hu, Jian; Duan, Hongxia; Lin, Dong; Liu, Pengfei; Meng, Qingxiao; Li, Bin; Si, Naiguo; Liu, Changling; Liu, Xili

    2015-01-01

    Peronophythora litchii is the causal agent of litchi downy blight. Enestroburin, SYP-1620, SYP-2815 and ZJ0712 are four novel QoI fungicides developed by China. Eight mutants of P. litchii resistant to these QoI fungicides and azoxystrobin (as a known QoI fungicide) were obtained in our preliminary work. In this study, the full length of the cytochrome b gene in P. litchii, which has a full length of 382 amino acids, was cloned from both sensitive isolates and resistant mutants, and single-site mutations G142A, G142S, Y131C, or F128S were found in resistant mutants. Molecular docking was used to predict how the mutations alter the binding of the five QoI fungicides to the Qo-binding pockets. The results have increased our understanding of QoI fungicide-resistance mechanisms and may help in the development of more potent inhibitors against plant diseases in the fields. PMID:26657349

  1. The crystal structure of sulfamethoxazole, interaction with DNA, DFT calculation, and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L.; Sinha, Chittaranjan

    2015-02-01

    Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)sbnd H(7A)---O(2), N(7)sbnd H(7B)---O(3), N(1)sbnd H(1)---N(2), C(5)sbnd H(5)---O(3)sbnd S(1) and N(7)sbnd (H7A)---O(2)sbnd S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37 × 104 M-1. The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.

  2. The crystal structure of sulfamethoxazole, interaction with DNA, DFT calculation, and molecular docking studies.

    PubMed

    Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L; Sinha, Chittaranjan

    2015-02-25

    Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)-H(7A)-O(2), N(7)-H(7B)-O(3), N(1)-H(1)-N(2), C(5)-H(5)-O(3)-S(1) and N(7)-(H7A)-O(2)-S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37×10(4)M(-1). The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.

  3. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking.

    PubMed

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-05

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH=7.4) were 1.41 × 10(5) M(-1) and about 1 at 310K, respectively. The values of the enthalpic change (ΔH(0)), entropic change (ΔS(0)) and Gibbs free energy (ΔG(0)) in the binding process of atorvastatin with BSA at 310K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.

  4. Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Huang, Chuan-ren; Jiang, Min; Zhu, Ying-yao; Wang, Jing; Chen, Jun; Shi, Jie-hua

    2016-03-01

    The interaction of atorvastatin with bovine serum albumin (BSA) was investigated using multi-spectroscopic methods and molecular docking technique for providing important insight into further elucidating the store and transport process of atorvastatin in the body and the mechanism of action and pharmacokinetics. The experimental results revealed that the fluorescence quenching mechanism of BSA induced atorvastatin was a combined dynamic and static quenching. The binding constant and number of binding site of atorvastatin with BSA under simulated physiological conditions (pH = 7.4) were 1.41 × 105 M- 1 and about 1 at 310 K, respectively. The values of the enthalpic change (ΔH0), entropic change (ΔS0) and Gibbs free energy (ΔG0) in the binding process of atorvastatin with BSA at 310 K were negative, suggesting that the binding process of atorvastatin and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen bonding interaction. Moreover, atorvastatin was bound into the subdomain IIA (site I) of BSA, resulting in a slight change of the conformation of BSA.

  5. Part I: Synthesis, cancer chemopreventive activity and molecular docking study of novel quinoxaline derivatives.

    PubMed

    Galal, Shadia A; Abdelsamie, Ahmed S; Tokuda, Harukuni; Suzuki, Nobutaka; Lida, Akira; Elhefnawi, Mahmoud M; Ramadan, Raghda A; Atta, Mona H E; El Diwani, Hoda I

    2011-01-01

    The reaction of o-phenylene diamine and ethyl oxamate is reinvestigated and led to 3-aminoquinoxalin-2(1H)-one rather than benzimidazole-2-carboxamide as was previously reported. The structure of the obtained quinoxaline has been confirmed by X-ray. The anti-tumor activity of synthesized quinoxalines 1-21 has been evaluated by studying their possible inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Among the studied compounds 1-21, compounds 12, 8, 13, 18, 17 and 19, respectively, demonstrated strong inhibitory effects on the EBV-EA activation without showing any cytotoxicity and their effects being stronger than that of a representative control, oleanolic acid. Furthermore, compound 12 exhibited a remarkable inhibitory effect on skin tumor promotion in an in vivo two-stage mouse skin carcinogenesis test using 7,12-dimethylbenz[a]anthracene (DMBA) as an initiator and TPA as a promoter. The result of the present investigation indicated that compound 12 might be valuable as a potent cancer chemopreventive agent. Moreover, the molecular docking into PTK (PDB: 1t46) has been done for lead optimization of the aforementioned compounds as potential PTK inhibitors.

  6. Synthesis, molecular docking studies of hybrid benzimidazole as α-glucosidase inhibitor.

    PubMed

    Zawawi, Nik Khairunissa Nik Abdullah; Taha, Muhammad; Ahmat, Norizan; Ismail, Nor Hadiani; Wadood, Abdul; Rahim, Fazal

    2017-02-01

    Thiourea derivatives having benzimidazole 1-17 have been synthesized, characterized by (1)H NMR, (13)C NMR and EI-MS and evaluated for α-glucosidase inhibition. Identification of potential α-glucosidase inhibitors were done by in vitro screening of 17 thiourea bearing benzimidazole derivatives using Baker's yeast α-glucosidase enzyme. Compounds 1-17 exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values between 35.83±0.66 and 297.99±1.20μM which are more better than the standard acarbose (IC50=774.5±1.94μM). Compound 10 and 14 showed significant inhibitory effects with IC50 value 50.57±0.81 and 35.83±0.66μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.

  7. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  8. Structural Elucidation and Molecular Docking of a Novel Antibiotic Compound from Cyanobacterium Nostoc sp. MGL001

    PubMed Central

    Niveshika; Verma, Ekta; Mishra, Arun K.; Singh, Angad K.; Singh, Vinay K.

    2016-01-01

    Cyanobacteria are rich source of array of bioactive compounds. The present study reports a novel antibacterial bioactive compound purified from cyanobacterium Nostoc sp. MGL001 using various chromatographic techniques viz. thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Further characterization was done using electrospray ionization mass spectroscopy (ESIMS) and nuclear magnetic resonance (NMR) and predicted structure of bioactive compound was 9-Ethyliminomethyl-12-(morpholin - 4 - ylmethoxy) -5, 8, 13, 16–tetraaza–hexacene - 2, 3 dicarboxylic acid (EMTAHDCA). Structure of EMTAHDCA clearly indicated that it is a novel compound that was not reported in literature or natural product database. The compound exhibited growth inhibiting effects mainly against the gram negative bacterial strains and produced maximum zone of inhibition at 150 μg/mL concentration. The compound was evaluated through in silico studies for its ability to bind 30S ribosomal fragment (PDB ID: 1YRJ, 1MWL, 1J7T, and 1LC4) and OmpF porin protein (4GCP, 4GCQ, and 4GCS) which are the common targets of various antibiotic drugs. Comparative molecular docking study revealed that EMTAHDCA has strong binding affinity for these selected targets in comparison to a number of most commonly used antibiotics. The ability of EMTAHDCA to bind the active sites on the proteins and 30S ribosomal fragments where the antibiotic drugs generally bind indicated that it is functionally similar to the commercially available drugs. PMID:27965634

  9. Structural Elucidation and Molecular Docking of a Novel Antibiotic Compound from Cyanobacterium Nostoc sp. MGL001.

    PubMed

    Niveshika; Verma, Ekta; Mishra, Arun K; Singh, Angad K; Singh, Vinay K

    2016-01-01

    Cyanobacteria are rich source of array of bioactive compounds. The present study reports a novel antibacterial bioactive compound purified from cyanobacterium Nostoc sp. MGL001 using various chromatographic techniques viz. thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Further characterization was done using electrospray ionization mass spectroscopy (ESIMS) and nuclear magnetic resonance (NMR) and predicted structure of bioactive compound was 9-Ethyliminomethyl-12-(morpholin - 4 - ylmethoxy) -5, 8, 13, 16-tetraaza-hexacene - 2, 3 dicarboxylic acid (EMTAHDCA). Structure of EMTAHDCA clearly indicated that it is a novel compound that was not reported in literature or natural product database. The compound exhibited growth inhibiting effects mainly against the gram negative bacterial strains and produced maximum zone of inhibition at 150 μg/mL concentration. The compound was evaluated through in silico studies for its ability to bind 30S ribosomal fragment (PDB ID: 1YRJ, 1MWL, 1J7T, and 1LC4) and OmpF porin protein (4GCP, 4GCQ, and 4GCS) which are the common targets of various antibiotic drugs. Comparative molecular docking study revealed that EMTAHDCA has strong binding affinity for these selected targets in comparison to a number of most commonly used antibiotics. The ability of EMTAHDCA to bind the active sites on the proteins and 30S ribosomal fragments where the antibiotic drugs generally bind indicated that it is functionally similar to the commercially available drugs.

  10. 20(S)-Protopanaxadiol Phospholipid Complex: Process Optimization, Characterization, In Vitro Dissolution and Molecular Docking Studies.

    PubMed

    Pu, Yiqiong; Zhang, Xitong; Zhang, Qi; Wang, Bing; Chen, Yuxi; Zang, Chuanqi; Wang, Yuqin; Dong, Tina Ting-Xia; Zhang, Tong

    2016-10-19

    20(S)-Protopanaxadiol (PPD), a bioactive compound extracted from ginseng, possesses cardioprotective, neuroprotective, anti-inflammatory, antiestrogenic, anticancer and anxiolytic effects. However, the clinical application of PPD is limited by its weak aqueous solubility. In this study, we optimized an efficient method of preparing its phospholipid complex (PPD-PLC) using a central composite design and response surface analysis. The prepared PPD-PLC was characterized by differential scanning calorimetric, powder X-ray diffraction, Fourier-transformed infrared spectroscopy and nuclear magnetic resonance analyses associated with molecular docking calculation. The equilibrium solubility of PPD-PLC in water and n-octanol increased 6.53- and 1.53-times, respectively. Afterwards, using PPD-PLC as the intermediate, the PPD-PLC-loaded dry suspension (PPD-PLC-SU) was prepared with our previous method. In vitro evaluations were conducted on PPD-PLC and PPD-PLC-SU, including dissolution behaviors and stability properties under different conditions. Results of in vitro dissolution behavior revealed the improved dissolution extents and rates of PPD-PLC and PPD-PLC-SU (p < 0.05). Results of the formulation stability investigation also exposed the better stability of PPD-PLC-SU compared with free PPD. Therefore, phospholipid complex technology is a useful formulation strategy for BCS II drugs, as it could effectively improve their hydrophilicity and lipophilicity.

  11. Insights into the interactions between maleimide derivates and GSK3β combining molecular docking and QSAR.

    PubMed

    Quesada-Romero, Luisa; Mena-Ulecia, Karel; Tiznado, William; Caballero, Julio

    2014-01-01

    Many protein kinase (PK) inhibitors have been reported in recent years, but only a few have been approved for clinical use. The understanding of the available molecular information using computational tools is an alternative to contribute to this process. With this in mind, we studied the binding modes of 77 maleimide derivates inside the PK glycogen synthase kinase 3 beta (GSK3β) using docking experiments. We found that the orientations that these compounds adopt inside GSK3β binding site prioritize the formation of hydrogen bond (HB) interactions between the maleimide group and the residues at the hinge region (residues Val135 and Asp133), and adopt propeller-like conformations (where the maleimide is the propeller axis and the heterocyclic substituents are two slanted blades). In addition, quantitative structure-activity relationship (QSAR) models using CoMSIA methodology were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. We found a model to explain the structure-activity relationship of non-cyclic maleimide (NCM) derivatives (54 compounds). The best CoMSIA model (training set included 44 compounds) included steric, hydrophobic, and HB donor fields and had a good Q(2) value of 0.539. It also predicted adequately the most active compounds contained in the test set. Furthermore, the analysis of the plots of the steric CoMSIA field describes the elements involved in the differential potency of the inhibitors that can be considered for the selection of suitable inhibitors.

  12. DESIGN, SYNTHESIS, MOLECULAR DOCKING AND ANTI-BREAST CANCER ACTIVITY OF NOVEL QUINAZOLINONES TARGETING ESTROGEN RECEPTOR α.

    PubMed

    Ahmed, Marwa F; Youns, Mahmoud; Belal, Amany

    2016-01-01

    A new series of 6,8-dibromo-2-(4-chlorophenyl)-4-oxo-4H-quinazoline derivatives II-VI were syn- thesized, their chemical structures were confirmed by spectroscopic means and elemental analyses. All these compounds were tested in vitro against human breast cancer cell line (MCF-7) using resazurin reduction assay method and doxorubicin as a reference drug. Most of the tested compounds showed better activity than dox- orubicin. Compound IVh was the best active one, its IC₅₀ is 8.52 µg/mL. Molecular docking studies for the best active compounds IVb, IVc, IVf, IVh and Va were performed on the active site of estrogen receptor α (ERα) subtype to explore the estrogen receptor binding ability of these compounds. All the docked compounds showed good fitting score energy with the active site of ERα subtype and compound IVh showed the best docking score energy(-25.3 kcal/mol). Estrogen binding evaluation assay was performed for the docked compounds to ensure that their activity against MCF7 go through inhibition of ERα, they showed ERα inhibition at 41-85% and compound IVh was the most active one (85%).

  13. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps.

    PubMed

    Oliva, Romina; Chermak, Edrisse; Cavallo, Luigi

    2015-07-01

    In view of the increasing interest both in inhibitors of protein-protein interactions and in protein drugs themselves, analysis of the three-dimensional structure of protein-protein complexes is assuming greater relevance in drug design. In the many cases where an experimental structure is not available, protein-protein docking becomes the method of choice for predicting the arrangement of the complex. However, reliably scoring protein-protein docking poses is still an unsolved problem. As a consequence, the screening of many docking models is usually required in the analysis step, to possibly single out the correct ones. Here, making use of exemplary cases, we review our recently introduced methods for the analysis of protein complex structures and for the scoring of protein docking poses, based on the use of inter-residue contacts and their visualization in inter-molecular contact maps. We also show that the ensemble of tools we developed can be used in the context of rational drug design targeting protein-protein interactions.

  14. Pharmacophore modeling, in silico screening, molecular docking and molecular dynamics approaches for potential alpha-delta bungarotoxin-4 inhibitors discovery

    PubMed Central

    Kumar, R. Barani; Suresh, M. Xavier; Priya, B. Shanmuga

    2015-01-01

    Background: The alpha-delta bungartoxin-4 (α-δ-Bgt-4) is a potent neurotoxin produced by highly venomous snake species, Bungarus caeruleus, mainly targeting neuronal acetylcholine receptors (nAchRs) and producing adverse biological malfunctions leading to respiratory paralysis and mortality. Objective: In this study, we predicted the three-dimensional structure of α-δ-Bgt-4 using homology modeling and investigated the conformational changes and the key residues responsible for nAchRs inhibiting activity. Materials and Methods: From the selected plants, which are traditionally used for snake bites, the active compounds are taken and performed molecular interaction studies and also used for modern techniques like pharmacophore modeling and mapping and absorption, distribution, metabolism, elimination and toxicity analysis which may increase the possibility of success. Results: Moreover, 100's of drug-like compounds were retrieved and analyzed through computational virtual screening and allowed for pharmacokinetic profiling, molecular docking and dynamics simulation. Conclusion: Finally the top five drug-like compounds having competing level of inhibition toward α-δ-Bgt-4 toxin were suggested based on their interaction with α-δ-Bgt-4 toxin. PMID:26109766

  15. Studies on molecular structure, vibrational spectra and molecular docking analysis of 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate.

    PubMed

    Suresh, D M; Amalanathan, M; Joe, I Hubert; Jothy, V Bena; Diao, Yun-Peng

    2014-09-15

    The molecular structure, vibrational analysis and molecular docking analysis of the 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate (MDDNAB) molecule have been carried out using FT-IR and FT-Raman spectroscopic techniques and DFT method. The equilibrium geometry, harmonic vibrational wave numbers, various bonding features have been computed using density functional method. The calculated molecular geometry has been compared with experimental data. The detailed interpretation of the vibrational spectra has been carried out by using VEDA program. The hyper-conjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The simulated FT-IR and FT-Raman spectra satisfactorily coincide with the experimental spectra. The PES and charge analysis have been made. The molecular docking was done to identify the binding energy and the Hydrogen bonding with the cancer protein molecule.

  16. Studies on molecular structure, vibrational spectra and molecular docking analysis of 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate

    NASA Astrophysics Data System (ADS)

    Suresh, D. M.; Amalanathan, M.; Hubert Joe, I.; Bena Jothy, V.; Diao, Yun-Peng

    2014-09-01

    The molecular structure, vibrational analysis and molecular docking analysis of the 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate (MDDNAB) molecule have been carried out using FT-IR and FT-Raman spectroscopic techniques and DFT method. The equilibrium geometry, harmonic vibrational wave numbers, various bonding features have been computed using density functional method. The calculated molecular geometry has been compared with experimental data. The detailed interpretation of the vibrational spectra has been carried out by using VEDA program. The hyper-conjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The simulated FT-IR and FT-Raman spectra satisfactorily coincide with the experimental spectra. The PES and charge analysis have been made. The molecular docking was done to identify the binding energy and the Hydrogen bonding with the cancer protein molecule.

  17. Characterization of intermolecular interaction between cyanidin-3-glucoside and bovine serum albumin: spectroscopic and molecular docking methods.

    PubMed

    Shi, Jie-hua; Wang, Jing; Zhu, Ying-yao; Chen, Jun

    2014-08-01

    The intermolecular interaction between cyanidin-3-glucoside (Cy-3-G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy-3-G resulted from the formation of Cy-3-G-BSA complex. The number of binding sites (n) for Cy-3-G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy-3-G to BSA, Cy-3-G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy-3-G with BSA is spontaneous, and Cy-3-G can be inserted into the hydrophobic cavity of BSA (site II') in the binding process of Cy-3-G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH(0)  = - 29.64 kcal/mol and ΔS(0)  = - 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy-3-G with BSA are Van der Waals and hydrogen bonding interactions.

  18. Binding interaction of ramipril with bovine serum albumin (BSA): Insights from multi-spectroscopy and molecular docking methods.

    PubMed

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2016-11-01

    The binding interaction between a typical angiotensin-converting enzyme inhibitor (ACEI), ramipril, and a transport protein, bovine serum albumin (BSA), was studied in vitro using UV-vis absorption spectroscopy, steady-state fluorescence spectroscopic titration, synchronous fluorescence spectroscopy, three dimensional fluorescence spectroscopy, circular dichroism and molecular docking under the imitated physiological conditions (pH=7.4). The experimental results suggested that the intrinsic fluorescence of BSA was quenched by ramipril thought a static quenching mechanism, indicating that the stable ramipril-BSA complex was formed by the intermolecular interaction. The number of binding sites (n) and binding constant of ramipril-BSA complex were about 1 and 3.50×10(4)M(-1) at 298K, respectively, suggesting that there was stronger binding interaction of ramipril with BSA. The thermodynamic parameters together with molecular docking study revealed that both van der Waal's forces and hydrogen bonding interaction dominated the formation of the ramipril-BSA complex and the binding interaction of BSA with ramipril is enthalpy-driven processes due to |ΔH°|>|TΔS°| and ΔG°<0. The spatial distance between ramipril and BSA was calculated to be 3.56nm based on Förster's non-radiative energy transfer theory. The results of the competitive displacement experiments and molecular docking confirmed that ramipril inserted into the subdomain IIA (site I) of BSA, resulting in a slight change in the conformation of BSA but BSA still retained its secondary structure α-helicity.

  19. Probing the origins of aromatase inhibitory activity of disubstituted coumarins via QSAR and molecular docking.

    PubMed

    Worachartcheewan, Apilak; Suvannang, Naravut; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2014-01-01

    This study investigated the quantitative structure-activity relationship (QSAR) of imidazole derivatives of 4,7-disubstituted coumarins as inhibitors of aromatase, a potential therapeutic protein target for the treatment of breast cancer. Herein, a series of 3,7- and 4,7-disubstituted coumarin derivatives (1-34) with R1 and R2 substituents bearing aromatase inhibitory activity were modeled as a function of molecular and quantum chemical descriptors derived from low-energy conformer geometrically optimized at B3LYP/6-31G(d) level of theory. Insights on origins of aromatase inhibitory activity was afforded by the computed set of 7 descriptors comprising of F10[N-O], Inflammat-50, Psychotic-80, H-047, BELe1, B10[C-O] and MAXDP. Such significant descriptors were used for QSAR model construction and results indicated that model 4 afforded the best statistical performance. Good predictive performance were achieved as verified from the internal (comprising the training and the leave-one-out cross-validation (LOO-CV) sets) and external sets affording the following statistical parameters: R (2) Tr = 0.9576 and RMSETr = 0.0958 for the training set; Q (2) CV = 0.9239 and RMSECV = 0.1304 for the LOO-CV set as well as Q (2) Ext = 0.7268 and RMSEExt = 0.2927 for the external set. Significant descriptors showed correlation with functional substituents, particularly, R1 in governing high potency as aromatase inhibitor. Molecular docking calculations suggest that key residues interacting with the coumarins were predominantly lipophilic or non-polar while a few were polar and positively-charged. Findings illuminated herein serve as the impetus that can be used to rationally guide the design of new aromatase inhibitors.

  20. Morphological docking of secretory vesicles

    PubMed Central

    2010-01-01

    Calcium-dependent secretion of neurotransmitters and hormones is essential for brain function and neuroendocrine-signaling. Prior to exocytosis, neurotransmitter-containing vesicles dock to the target membrane. In electron micrographs of neurons and neuroendocrine cells, like chromaffin cells many synaptic vesicles (SVs) and large dense-core vesicles (LDCVs) are docked. For many years the molecular identity of the morphologically docked state was unknown. Recently, we resolved the minimal docking machinery in adrenal medullary chromaffin cells using embryonic mouse model systems together with electron-microscopic analyses and also found that docking is controlled by the sub-membrane filamentous (F-)actin. Currently it is unclear if the same docking machinery operates in synapses. Here, I will review our docking assay that led to the identification of the LDCV docking machinery in chromaffin cells and also discuss whether identical docking proteins are required for SV docking in synapses. PMID:20577884

  1. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation

    PubMed Central

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  2. wFReDoW: A Cloud-Based Web Environment to Handle Molecular Docking Simulations of a Fully Flexible Receptor Model

    PubMed Central

    De Paris, Renata; Frantz, Fábio A.; Norberto de Souza, Osmar; Ruiz, Duncan D. A.

    2013-01-01

    Molecular docking simulations of fully flexible protein receptor (FFR) models are coming of age. In our studies, an FFR model is represented by a series of different conformations derived from a molecular dynamic simulation trajectory of the receptor. For each conformation in the FFR model, a docking simulation is executed and analyzed. An important challenge is to perform virtual screening of millions of ligands using an FFR model in a sequential mode since it can become computationally very demanding. In this paper, we propose a cloud-based web environment, called web Flexible Receptor Docking Workflow (wFReDoW), which reduces the CPU time in the molecular docking simulations of FFR models to small molecules. It is based on the new workflow data pattern called self-adaptive multiple instances (P-SaMIs) and on a middleware built on Amazon EC2 instances. P-SaMI reduces the number of molecular docking simulations while the middleware speeds up the docking experiments using a High Performance Computing (HPC) environment on the cloud. The experimental results show a reduction in the total elapsed time of docking experiments and the quality of the new reduced receptor models produced by discarding the nonpromising conformations from an FFR model ruled by the P-SaMI data pattern. PMID:23691504

  3. Ligand-based and e-pharmacophore modeling, 3D-QSAR and hierarchical virtual screening to identify dual inhibitors of spleen tyrosine kinase (Syk) and janus kinase 3 (JAK3).

    PubMed

    Kaur, Maninder; Silakari, Om

    2016-11-11

    The clinical efficacy of multiple kinase inhibitors has caught the interest of Pharmaceutical and Biotech researchers to develop potential drugs with multi-kinase inhibitory activity for complex diseases. In the present work, we attempted to identify dual inhibitors of spleen tyrosine kinase (Syk) and janus kinase 3 (JAK3), keys players in immune signaling, by developing ideal pharmacophores integrating Ligand-based pharmacophore models (LBPMs) and Structure-based pharmacophore models (SBPMs), thereby projecting the optimum pharmacophoric required for inhibition of both the kinases. The four point LBPM; ADPR.14 suggested the presence of one hydrogen bond acceptor, one hydrogen bond donor, one positive ionizable, and one ring aromatic feature for Syk inhibitory activity and AADH.54 proposed the necessity of two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature for JAK3 inhibitory activity. To our interest, SBPMs identified additional ring aromatic features required for inhibition of both the kinases. For Syk inhibitory activity, the hydrogen bond acceptor feature indicated by LBPM was devoid of forming hydrogen bonding interaction with the hinge region amino acid residue (Ala451). Thus merging the information revealed by both LBPMs and SBPMs, ideal pharmacophore models i.e. ADPRR.14 (Syk) and AADHR.54 (JAK3) were generated. These models after rigorous statistical validation were used for screening of Asinex database. The systematic virtual screening protocol, including pharmacophore and docking-based screening, ADME property, and MM-GBSA energy calculations, retrieved final 10 hits as dual inhibitors of Syk and JAK3. Final 10 hits thus obtained can aid in the development of potential therapeutic agents for autoimmune disorders. Also the top two hits were evaluated against both the enzymes.

  4. Molecular modelling studies on the ORL1-receptor and ORL1-agonists

    NASA Astrophysics Data System (ADS)

    Bröer, Britta M.; Gurrath, Marion; Höltje, Hans-Dieter

    2003-11-01

    The ORL1 ( opioid receptor like 1)- receptor is a member of the family of rhodopsin-like G protein-coupled receptors (GPCR) and represents an interesting new therapeutical target since it is involved in a variety of biomedical important processes, such as anxiety, nociception, feeding, and memory. In order to shed light on the molecular basis of the interactions of the GPCR with its ligands, the receptor protein and a dataset of specific agonists were examined using molecular modelling methods. For that purpose, the conformational space of a very potent non-peptide ORL1-receptor agonist (Ro 64-6198) with a small number of rotatable bonds was analysed in order to derive a pharmacophoric arrangement. The conformational analyses yielded a conformation that served as template for the superposition of a set of related analogues. Structural superposition was achieved by employing the program FlexS. Using the experimental binding data and the superposition of the ligands, a 3D-QSAR analysis applying the GRID/GOLPE method was carried out. After the ligand-based modelling approach, a 3D model of the ORL1-receptor has been constructed using homology modelling methods based on the crystal structure of bovine rhodopsin. A representative structure of the model taken from molecular dynamics simulations was used for a manual docking procedure. Asp-130 and Thr-305 within the ORL1-receptor model served as important hydrophilic interaction partners. Furthermore, a hydrophobic cavity was identified stabilizing the agonists within their binding site. The manual docking results were supported using FlexX, which identified the same protein-ligand interaction points.

  5. Molecular Docking Studies of Flavonoids Derivatives on the Flavonoid 3- O-Glucosyltransferase.

    PubMed

    Harsa, Alexandra M; Harsa, Teodora E; Diudea, Mircea V; Janezic, Dusanka

    2015-01-01

    A study of 30 flavonoid derivatives, taken from PubChem database and docked on flavonoid 3-O-glucosyltransferase 3HBF, next submitted to a QSAR study, performed within a hypermolecule frame, to model their LD50 values, is reported. The initial set of molecules was split into a training set and the test set (taken from the best scored molecules in the docking test); the predicted LD50 values, computed on similarity clusters, built up for each of the molecules of the test set, surpassed in accuracy the best model. The binding energies to 3HBF protein, provided by the docking step, are not related to the LD50 of these flavonoids, more protein targets are to be investigated in this respect. However, the docking step was useful in choosing the test set of molecules.

  6. Flexibases: A way to enhance the use of molecular docking methods

    NASA Astrophysics Data System (ADS)

    Kearsley, Simon K.; Underwood, Dennis J.; Sheridan, Robert P.; Miller, Michael D.

    1994-10-01

    Specially expanded databases containing three-dimensional structures are created to enhance the utility of docking methods to find new leads, i.e., active compounds of pharmacological interest. The expansion is based on the automatic generation of a set of maximally dissimilar conformations. The ligand receptor system of methotrexate and dihydrofolate reductase is used to demonstrate the feasibility of creating flexibases and their utility in docking studies.

  7. Lipoxygenase directed anti-inflammatory and anti-cancerous secondary metabolites: ADMET-based screening, molecular docking and dynamics simulation.

    PubMed

    Singh, Swati; Awasthi, Manika; Pandey, Veda P; Dwivedi, Upendra N

    2017-02-01

    Lipoxygenases (LOXs), key enzymes involved in the biosynthesis of leukotrienes, are well known to participate in the inflammatory and immune responses. With the recent reports of involvement of 5-LOX (one of the isozymes of LOX in human) in cancer, there is a need to find out selective inhibitors of 5-LOX for their therapeutic application. In the present study, plant-derived 300 anti-inflammatory and anti-cancerous secondary metabolites (100 each of alkaloids, flavonoids and terpenoids) have been screened for their pharmacokinetic properties and subsequently docked for identification of potent inhibitors of 5-LOX. Pharmacokinetic analyses revealed that only 18 alkaloids, 26 flavonoids, and 9 terpenoids were found to fulfill all the absorption, distribution, metabolism, excretion, and toxicity descriptors as well as those of Lipinski's Rule of Five. Docking analyses of pharmacokinetically screened metabolites and their comparison with a known inhibitor (drug), namely zileuton revealed that only three alkaloids, six flavonoids and three terpenoids were found to dock successfully with 5-LOX with the flavonoid, velutin being the most potent inhibitor among all. The results of the docking analyses were further validated by performing molecular dynamics simulation and binding energy calculations for the complexes of 5-LOX with velutin, galangin, chrysin (in order of LibDock scores), and zileuton. The data revealed stabilization of all the complexes within 15 ns of simulation with velutin complex exhibiting least root-mean-square deviation value (.285 ± .007 nm) as well as least binding energy (ΔGbind = -203.169 kJ/mol) as compared to others during the stabilization phase of simulation.

  8. Molecular Docking Studies to Explore Potential Binding Pockets and Inhibitors for Chikungunya Virus Envelope Glycoproteins.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2017-03-11

    The chikungunya virus (CHIKV) envelope glycoproteins are considered important potential targets for anti-CHIKV drug discovery due to their crucial roles in virus attachment and virus entry. In this study, using two available crystal structures of the immature and mature forms of envelope glycoproteins, virtual screenings based on blind dockings and focused dockings were carried out to identify potential binding pockets and hit compounds for the virus. The chemical library database of compounds, NCI Diversity Set II, was used in these docking studies. In addition to reproducing previously reported examples, new binding pockets were identified, e.g., Pocket 2 in the 3N40, and Pocket 2 and Pocket 3 in the 3N42. Convergences in conformational sampling in docking using AutoDock Vina were evaluated. An analysis of docking results was carried out to understand interactions of the envelope glycoproteins complexes. Some key residues for interactions, for example Gly91 and His230, are identified as possessing important roles in the fusion process.

  9. Molecular recognition of malachite green by hemoglobin and their specific interactions: insights from in silico docking and molecular spectroscopy.

    PubMed

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Sun, Ying

    2014-01-01

    Malachite green is an organic compound that can be widely used as a dyestuff for various materials; it has also emerged as a controversial agent in aquaculture. Since malachite green is proven to be carcinogenic and mutagenic, it may become a hazard to public health. For this reason, it is urgently required to analyze this controversial dye in more detail. In our current research, the interaction between malachite green and hemoglobin under physiological conditions was investigated by the methods of molecular modeling, fluorescence spectroscopy, circular dichroism (CD) as well as hydrophobic ANS displacement experiments. From the molecular docking, the central cavity of hemoglobin was assigned to possess high-affinity for malachite green, this result was corroborated by time-resolved fluorescence and hydrophobic ANS probe results. The recognition mechanism was found to be of static type, or rather the hemoglobin-malachite green complex formation occurred via noncovalent interactions such as π-π interactions, hydrogen bonds and hydrophobic interactions with an association constant of 10(4) M(-1). Moreover, the results also show that the spatial structure of the biopolymer was changed in the presence of malachite green with a decrease of the α-helix and increase of the β-sheet, turn and random coil suggesting protein damage, as derived from far-UV CD and three-dimensional fluorescence. Results of this work will help to further comprehend the molecular recognition of malachite green by the receptor protein and the possible toxicological profiles of other compounds, which are the metabolites and ramifications of malachite green.

  10. Structural, spectroscopic and molecular docking studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A potential bioactive agent

    NASA Astrophysics Data System (ADS)

    Mohamed Asath, R.; Premkumar, R.; Mathavan, T.; Milton Franklin Benial, A.

    2017-03-01

    The most stable, optimized structure of the 2-amino-3-chloro-5-trifluoromethyl pyridine (ACTP) molecule was predicted by the density functional theory calculations using the B3LYP method with cc-pVQZ basis set. Antitumor activity of the ACTP molecule was evaluated by molecular docking analysis. The structural parameters and vibrational wavenumbers were calculated for the optimized molecular structure. The experimental and theoretical vibrational wavenumbers were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the ACTP molecule. The molecular docking analysis reveals the better inhibitory nature of the ACTP molecule against the colony-stimulating factor 1 (CSF1) gene which causes tenosynovial giant-cell tumor. Hence, the ACTP molecule can act as a potential inhibitor against tenosynovial giant-cell tumor.

  11. Structural, spectroscopic and molecular docking studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A potential bioactive agent.

    PubMed

    Mohamed Asath, R; Premkumar, R; Mathavan, T; Milton Franklin Benial, A

    2017-03-15

    The most stable, optimized structure of the 2-amino-3-chloro-5-trifluoromethyl pyridine (ACTP) molecule was predicted by the density functional theory calculations using the B3LYP method with cc-pVQZ basis set. Antitumor activity of the ACTP molecule was evaluated by molecular docking analysis. The structural parameters and vibrational wavenumbers were calculated for the optimized molecular structure. The experimental and theoretical vibrational wavenumbers were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the ACTP molecule. The molecular docking analysis reveals the better inhibitory nature of the ACTP molecule against the colony-stimulating factor 1 (CSF1) gene which causes tenosynovial giant-cell tumor. Hence, the ACTP molecule can act as a potential inhibitor against tenosynovial giant-cell tumor.

  12. Combining Molecular Docking and Molecular Dynamics to Predict the Binding Modes of Flavonoid Derivatives with the Neuraminidase of the 2009 H1N1 Influenza A Virus

    PubMed Central

    Lu, Shih-Jen; Chong, Fok-Ching

    2012-01-01

    Control of flavonoid derivatives inhibitors release through the inhibition of neuraminidase has been identified as a potential target for the treatment of H1N1 influenza disease. We have employed molecular dynamics simulation techniques to optimize the 2009 H1N1 influenza neuraminidase X-ray crystal structure. Molecular docking of the compounds revealed the possible binding mode. Our molecular dynamics simulations combined with the solvated interaction energies technique was applied to predict the docking models of the inhibitors in the binding pocket of the H1N1 influenza neuraminidase. In the simulations, the correlation of the predicted and experimental binding free energies of all 20 flavonoid derivatives inhibitors is satisfactory, as indicated by R2 = 0.75. PMID:22605992

  13. Prediction of anticancer property of bowsellic acid derivatives by quantitative structure activity relationship analysis and molecular docking study

    PubMed Central

    Satpathy, Raghunath; Guru, R. K.; Behera, R.; Nayak, B.

    2015-01-01

    Context: Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. Aims: To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. Materials and Methods: In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Statistical Analysis Used: Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. Results: From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Conclusions: Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. PMID:25709332

  14. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico.

    PubMed

    Jhong, Chien-Hung; Riyaphan, Jirawat; Lin, Shih-Hung; Chia, Yi-Chen; Weng, Ching-Feng

    2015-01-01

    The alpha-glucosidase inhibitor is a common oral anti-diabetic drug used for controlling carbohydrates normally converted into simple sugars and absorbed by the intestines. However, some adverse clinical effects have been observed. The present study seeks an alternative drug that can regulate the hyperglycemia by down-regulating alpha-glucosidase and alpha-amylase activity by molecular docking approach to screen the hyperglycemia antagonist against alpha-glucosidase and alpha-amylase activities from the 47 natural compounds. The docking data showed that Curcumin, 16-hydroxy-cleroda-3,13-dine-16,15-olide (16-H), Docosanol, Tetracosanol, Antroquinonol, Berberine, Catechin, Quercetin, Actinodaphnine, and Rutin from 47 natural compounds had binding ability towards alpha-amylase and alpha-glucosidase as well. Curcumin had a better biding ability of alpha-amylase than the other natural compounds. Analyzed alpha-glucosidase activity reveals natural compound inhibitors (below 0.5 mM) are Curcumin, Actinodaphnine, 16-H, Quercetin, Berberine, and Catechin when compared to the commercial drug Acarbose (3 mM). A natural compound with alpha-amylase inhibitors (below 0.5 mM) includes Curcumin, Berberine, Docosanol, 16-H, Actinodaphnine/Tetracosanol, Catechin, and Quercetin when compared to Acarbose (1 mM). When taken together, the implication is that molecular docking is a fast and effective way to screen alpha-glucosidase and alpha-amylase inhibitors as lead compounds of natural sources isolated from medicinal plants.

  15. Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking

    PubMed Central

    Shoombuatong, Watshara; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E.S.

    2016-01-01

    {mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{CV }}^{2}$\\end{document}QCV2 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${Q}_{\\mathrm{Ext}}^{2}$\\end{document}QExt2 values of 0.92 ± 0.01, 0.78 ± 0.06 and 0.78 ± 0.05, respectively. Furthermore, Y-scrambling was applied to evaluate the possibility of chance correlation of the predictive model. Subsequently, a thorough analysis of the substructure fingerprint count was conducted to provide informative insights on the inhibitory activity of AChE inhibitors. Moreover, Kennard–Stone sampling of the actives were applied to select 30 diverse compounds for further molecular docking studies in order to gain structural insights on the origin of AChE inhibition. Site-moiety mapping of compounds from the diversity set revealed three binding anchors encompassing both hydrogen bonding and van der Waals interaction. Molecular docking revealed that compounds 13, 5 and 28 exhibited the lowest binding energies of −12.2, −12.0 and −12.0 kcal/mol, respectively, against human AChE, which is modulated by hydrogen bonding, π–π stacking and hydrophobic interaction inside the binding pocket. These information may be used as guidelines for the design of novel and robust AChE inhibitors. PMID:27602288

  16. Design, synthesis and molecular docking of amide and urea derivatives as Escherichia coli PDHc-E1 inhibitors.

    PubMed

    He, Jun-Bo; Ren, Yan-Liang; Sun, Qiu-Shuang; You, Ge-Yun; Zhang, Li; Zou, Peng; Feng, Ling-Ling; Wan, Jian; He, Hong-Wu

    2014-06-15

    By targeting the ThDP binding site of Escherichia coli PDHc-E1, two new 'open-chain' classes of E. coli PDHc-E1 inhibitors, amide and urea derivatives, were designed, synthesized, and evaluated. The amide derivatives of compound 6d, with 4-NO2 in the benzene ring, showed the most potent inhibition of E. coli PDHc-E1. The urea derivatives displayed more potent inhibitory activity than the corresponding amide derivatives with the same substituent. Molecular docking studies confirmed that the urea derivatives have more potency due to the two hydrogen bonds formed by two NH of urea with Glu522. The docking results also indicate it might help us to design more efficient PDHc-E1 inhibitors that could interact with Glu522.

  17. Interaction of ganoderic acid on HIV related target: molecular docking studies

    PubMed Central

    Akbar, Rahmad; Yam, Wai Keat

    2011-01-01

    Finding the ultimate HIV cure remain a challenging tasks for decades. Various active compounds have been tested against various components of the virus in the effort to halt the virus development in infected host. The idea of finding cure from known pharmacologically active natural occurring compounds is intriguing and practical. Ganoderma lucidum (Ling-Zhi or Reishi) is one of the most productive and pharmacologically active compounds found in Asian countries. It has been used traditionally for many years throughout different cultures. More than a decade ago, el-Mekkawy and co-workers (1998) have tested several active compounds found in this plant. They have successfully identified several active compounds with reasonable inhibitory activity against HIV protease however; no further studies were done on these compounds. This study aimed to elucidate interactions for one of the active compounds of Ganoderma lucidum namely ganoderic acid with HIV-1 protease using molecular docking simulation. This study revealed four hydrogen bonds formed between model34 of ganoderic acid B and 1HVR. Hydrogen bonds in 1HVR-Model34 complex were formed through ILE50, ILE50', ASP29 and ASP30 residues. Interestingly similar interactions were also observed in the native ligand in 1HVR. Furthermore, interactions involving ILE50 and ILE50' residues have been previously identified to play central roles in HIV-1 protease-ligand interactions.These observed interactions not only suggested HIV-1 protease in general is a suitable target for ganoderic acid B, they also indicated a huge potential for HIV drug discovery based on this compound. PMID:22347784

  18. Interaction between 8-methoxypsoralen and trypsin: Monitoring by spectroscopic, chemometrics and molecular docking approaches

    NASA Astrophysics Data System (ADS)

    Liu, Yingying; Zhang, Guowen; Zeng, Ni; Hu, Song

    2017-02-01

    8-Methoxypsoralen (8-MOP) is a naturally occurring furanocoumarin with various biological activities. However, there is little information on the binding mechanism of 8-MOP with trypsin. Here, the interaction between 8-MOP and trypsin in vitro was determined by multi-spectroscopic methods combined with the multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics approach. An expanded UV-vis spectral data matrix was analysed by MCR-ALS, the concentration profiles and pure spectra for the three reaction species (trypsin, 8-MOP and 8-MOP-trypsin) were obtained to monitor the interaction between 8-MOP and trypsin. The fluorescence data suggested that a static type of quenching mechanism occurred in the binding of 8-MOP to trypsin. Hydrophobic interaction dominated the formation of the 8-MOP-trypsin complex on account of the positive enthalpy and entropy changes, and trypsin had one high affinity binding site for 8-MOP with a binding constant of 3.81 × 104 L mol- 1 at 298 K. Analysis of three dimensional fluorescence, UV-vis absorption and circular dichroism spectra indicated that the addition of 8-MOP induced the rearrangement of the polypeptides carbonyl hydrogen-bonding network and the conformational changes in trypsin. The molecular docking predicted that 8-MOP interacted with the catalytic residues His57, Asp102 and Ser195 in trypsin. The binding patterns and trypsin conformational changes may result in the inhibition of trypsin activity. This study has provided insights into the binding mechanism of 8-MOP with trypsin.

  19. Chiral lactic hydrazone derivatives as potential bioactive antibacterial agents: Synthesis, spectroscopic, structural and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Noshiranzadeh, Nader; Heidari, Azam; Haghi, Fakhri; Bikas, Rahman; Lis, Tadeusz

    2017-01-01

    A series of novel chiral lactic-hydrazone derivatives were synthesized by condensation of (S)-lactic acid hydrazide with salicylaldehyde derivatives and characterized by elemental analysis and spectroscopic studies (FT-IR, 1H NMR and 13C NMR spectroscopy). The structure of one compound was determined by single crystal X-ray analysis. Antibacterial activity of the synthesized compounds was studied against Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli and Pseudomonas aeruginosa as bacterial cultures by broth microdilution method. All of the synthesized compounds showed good antibacterial activity with MIC range of 64-512 μg/mL. Compounds (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propanehydrazide (5) and (S,E)-2-hydroxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propanehydrazide (7) were the most effective antibacterial derivatives against S. aureus and E. coli respectively with a MIC value of 64 μg/mL. Bacterial biofilm formation assay showed that these compounds significantly inhibited biofilm formation of P. aeruginosa. Also, in silico molecular docking studies were performed to show lipoteichoic acid synthase (LtaS) inhibitory effect of lactic hydrazone derivatives. The association between electronic and structural effects of some substituents on the benzylidene moiety and the biological activity of these chiral compounds were studied. Structural studies show that compound with higher hydrogen bonding interactions show higher antibacterial activity. The results show chiral hydrazone derivatives based on lactic acid hydrazide could be used as potential lead compounds for developing novel antibacterial agents.

  20. Vibrational, spectroscopic, molecular docking and density functional theory studies on N-(5-aminopyridin-2-yl)acetamide

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Rekha, T. N.; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin

    2016-12-01

    Conformational analysis was carried out for N-(5-aminopyridin-2-yl)acetamide (APA) molecule. The most stable, optimized structure was predicted by the density functional theory calculations using the B3LYP functional with cc-pVQZ basis set. The optimized structural parameters and vibrational frequencies were calculated. The experimental and theoretical vibrational frequencies were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed, which reveals that the higher molecular reactivity and stability of the APA molecule and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the APA molecule. Antidiabetic activity was studied based on the molecular docking analysis and the APA molecule was identified that it can act as a good inhibitor against diabetic nephropathy.

  1. Sensitivity of molecular docking to induced fit effects in influenza virus neuraminidase

    NASA Astrophysics Data System (ADS)

    Birch, Louise; Murray, Christopher W.; Hartshorn, Michael J.; Tickle, Ian J.; Verdonk, Marcel L.

    2002-12-01

    Many proteins undergo small side chain or even backbone movements on binding of different ligands into the same protein structure. This is known as induced fit and is potentially problematic for virtual screening of databases against protein targets. In this report we investigate the limits of the rigid protein approximation used by the docking program, GOLD, through cross-docking using protein structures of influenza neuraminidase. Neuraminidase is known to exhibit small but significant induced fit effects on ligand binding. Some neuraminidase crystal structures caused concern due to the bound ligand conformation and GOLD performed poorly on these complexes. A `clean' set, which contained unique, unambiguous complexes, was defined. For this set, the lowest energy structure was correctly docked (i.e. RMSD < 1.5 Å away from the crystal reference structure) in 84% of proteins, and the most promiscuous protein (1mwe) was able to dock all 15 ligands accurately including those that normally required an induced fit movement. This is considerably better than the 70% success rate seen with GOLD against general validation sets. Inclusion of specific water molecules involved in water-mediated hydrogen bonds did not significantly improve the docking performance for ligands that formed water-mediated contacts but it did prevent docking of ligands that displaced these waters. Our data supports the use of a single protein structure for virtual screening with GOLD in some applications involving induced fit effects, although care must be taken to identify the protein structure that performs best against a wide variety of ligands. The performance of GOLD was significantly better than the GOLD implementation of ChemScore and the reasons for this are discussed. Overall, GOLD has shown itself to be an extremely good, robust docking program for this system.

  2. Molecular Modeling on Berberine Derivatives toward BuChE: An Integrated Study with Quantitative Structure-Activity Relationships Models, Molecular Docking, and Molecular Dynamics Simulations.

    PubMed

    Fang, Jiansong; Pang, Xiaocong; Wu, Ping; Yan, Rong; Gao, Li; Li, Chao; Lian, Wenwen; Wang, Qi; Liu, Ai-lin; Du, Guan-hua

    2016-05-01

    A dataset of 67 berberine derivatives for the inhibition of butyrylcholinesterase (BuChE) was studied based on the combination of quantitative structure-activity relationships models, molecular docking, and molecular dynamics methods. First, a series of berberine derivatives were reported, and their inhibitory activities toward butyrylcholinesterase (BuChE) were evaluated. By 2D- quantitative structure-activity relationships studies, the best model built by partial least-square had a conventional correlation coefficient of the training set (R(2)) of 0.883, a cross-validation correlation coefficient (Qcv2) of 0.777, and a conventional correlation coefficient of the test set (Rpred2) of 0.775. The model was also confirmed by Y-randomization examination. In addition, the molecular docking and molecular dynamics simulation were performed to better elucidate the inhibitory mechanism of three typical berberine derivatives (berberine, C2, and C55) toward BuChE. The predicted binding free energy results were consistent with the experimental data and showed that the van der Waals energy term (ΔEvdw) difference played the most important role in differentiating the activity among the three inhibitors (berberine, C2, and C55). The developed quantitative structure-activity relationships models provide details on the fine relationship linking structure and activity and offer clues for structural modifications, and the molecular simulation helps to understand the inhibitory mechanism of the three typical inhibitors. In conclusion, the results of this study provide useful clues for new drug design and discovery of BuChE inhibitors from berberine derivatives.

  3. Molecular docking and QSAR analyses for understanding the antimalarial activity of some 7-substituted-4-aminoquinoline derivatives.

    PubMed

    Shibi, I G; Aswathy, L; Jisha, R S; Masand, V H; Divyachandran, A; Gajbhiye, J M

    2015-09-18

    The quinoline moiety is one of the widely studied scaffolds for generating derivatives with various pharmacophoric groups due to its potential antimalarial activities. In the present study, a series of 7-substituted-4-aminoquinoline derivatives were selected to understand their antimalarial properties computationally by molecular modeling techniques including 2D QSAR, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and molecular docking. The 2D-QSAR model built with four descriptors selected by genetic algorithm technique and CoMFA model showed satisfactory statistical results (Q(2)=0.540, R(2)ncv=0.881, F value=157.09). A reliable CoMSIA model out of the fourteen different combinations has a Q(2) value of 0.638. The molecular docking studies of the compounds for 1CET as the protein target revealed that ten compounds showed maximum interactions with the binding site of the protein. The present study highlights the unique binding signatures of the ligands within the active site groove of the target and it explains the subtle differences in their EC50 values and their mechanism of inhibition.

  4. Understanding the comparative molecular field analysis (CoMFA) in terms of molecular quantum similarity and DFT-based reactivity descriptors.

    PubMed

    Morales-Bayuelo, Alejandro; Matute, Ricardo A; Caballero, Julio

    2015-06-01

    The three-dimensional quantitative structure-activity relationship (3D QSAR) models have many applications, although the inherent complexity to understand the results coming from 3D-QSAR arises the necessity of new insights in the interpretation of them. Hence, the quantum similarity field as well as reactivity descriptors based on the density functional theory were used in this work as a consistent approach to better understand the 3D-QSAR studies in drug design. For this purpose, the quantification of steric and electrostatic effects on a series of bicycle [4.1.0] heptane derivatives as melanin-concentrating hormone receptor 1 antagonists were performed on the basis of molecular quantum similarity measures. The maximum similarity superposition and the topo-geometrical superposition algorithms were used as molecular alignment methods to deal with the problem of relative molecular orientation in quantum similarity. In addition, a chemical reactivity analysis using global and local descriptors such as chemical hardness, softness, electrophilicity, and Fukui functions, was developed. Overall, our results suggest that the application of this methodology in drug design can be useful when the receptor is known or even unknown.

  5. Interaction of the minocycline with extracelluar protein and intracellular protein by multi-spectral techniques and molecular docking

    NASA Astrophysics Data System (ADS)

    Fang, Qing; Wang, Yirun; Hu, Taoying; Liu, Ying

    2017-02-01

    The interaction of minocyeline (MNC) with extracelluar protein (lysozyme, LYSO) or intracellular protein (bovine hemoglobin, BHb) was investigated using multi-spectral techniques and molecular docking in vitro. Fluorescence studies suggested that MNC quenched LYSO/BHb fluorescence in a static mode with binding constants of 2.01 and 0.26 × 104 L•mol-1 at 298 K, respectively. The LYZO-MNC system was more easily influenced by temperature (298 and 310 K) than the BHb-MNC system. The thermodynamic parameters demonstrated that hydrogen bonds and van der Waals forces played the major role in the binding process. Based on the Förster theory of nonradiative energy transfer, the binding distances between MNC and the inner tryptophan residues of LYSO and BHb were calculated to be 4.34 and 3.49 nm, respectively. Furthermore, circular dichroism spectra (CD), Fourier transforms infrared (FTIR), UV-vis, and three-dimensional fluorescence spectra results indicated the secondary structures of LYSO and BHb were partially destroyed by MNC with the α-helix percentage of LYZO-MNC increased (17.8-28.6%) while that of BHb-MNC was decreased (41.6-39.6%). UV-vis spectral results showed these binding interactions could cause conformational and some micro-environmental changes of LYSO and BHb. In accordance with the results of molecular docking, In LYZO-MNC system, MNC was mainly bound in the active site hinge region where Trp-62 and Trp-63 are located, and in MNC-BHb system, MNC was close to the subunit α 1 of BHb, molecular docking analysis supported the thermodynamic results well. The work contributes to clarify the mechanism of MNC with two proteins at molecular level.

  6. Open Syntaxin Docks Synaptic Vesicles

    PubMed Central

    Olsen, Shawn; Jorgensen, Erik M

    2007-01-01

    Synaptic vesicles dock to the plasma membrane at synapses to facilitate rapid exocytosis. Docking was originally proposed to require the soluble N-ethylmaleimide–sensitive fusion attachment protein receptor (SNARE) proteins; however, perturbation studies suggested that docking was independent of the SNARE proteins. We now find that the SNARE protein syntaxin is required for docking of all vesicles at synapses in the nematode Caenorhabditis elegans. The active zone protein UNC-13, which interacts with syntaxin, is also required for docking in the active zone. The docking defects in unc-13 mutants can be fully rescued by overexpressing a constitutively open form of syntaxin, but not by wild-type syntaxin. These experiments support a model for docking in which UNC-13 converts syntaxin from the closed to the open state, and open syntaxin acts directly in docking vesicles to the plasma membrane. These data provide a molecular basis for synaptic vesicle docking. PMID:17645391

  7. Interactions of human P-glycoprotein transport substrates and inhibitors at the drug binding domain: Functional and molecular docking analyses.

    PubMed

    Kadioglu, Onat; Saeed, Mohamed E M; Valoti, Massimo; Frosini, Maria; Sgaragli, Giampietro; Efferth, Thomas

    2016-03-15

    Rhodamine 123 (R123) transport substrate sensitizes P-glycoprotein (P-gp) to inhibition by compound 2c (cis-cis) N,N-bis(cyclohexanolamine)aryl ester isomer in a concentration-dependent manner in human MDR1-gene transfected mouse T-lymphoma L5178 cells as shown previously. By contrast, epirubicin (EPI) concentration changes left unaltered 2c IC50 values of EPI efflux. To clarify this discrepancy, defined molecular docking (DMD) analyses of 12 N,N-bis(cyclohexanolamine)aryl esters, the highly flexible aryl ester analog 4, and several P-gp substrate/non-substrate inhibitors were performed on human P-gp drug- or nucleotide-binding domains (DBD or NBD). DMD measurements yielded lowest binding energy (LBE, kcal/mol) values (mean ± SD) ranging from -11.8 ± 0.54 (valspodar) to -3.98 ± 0.01 (4). Lys234, Ser952 and Tyr953 residues formed H-bonds with most of the compounds. Only 2c docked also at ATP binding site (LBE value of -6.9 ± 0.30 kcal/mol). Inhibition of P-gp-mediated R123 efflux by 12 N,N-bis(cyclohexanolamine)aryl esters and 4 significantly correlated with LBE values. DMD analysis of EPI, (3)H-1EPI, (3)H-2EPI, (14)C-1EPI, (14)C-2EPI, R123 and 2c before and after previous docking of each of them indicated that pre-docking of either 2c or EPI significantly reduced LBE of both EPI and R123, and that of both (3)H-2EPI and (14)C-2EPI, respectively. Since the clusters of DBD amino acid residues interacting with EPI were different, if EPI docked alone or after pre-docking of EPI or 2c, the existence of alternative secondary binding site for EPI on P-gp is credible. In conclusion, 2c may allocate the drug-binding pocket and reduce strong binding of EPI and R123 in agreement with P-gp inhibition experiments, where 2c reduced efflux of EPI and R123.

  8. Molecular Docking, Molecular Dynamics Simulations, Computational Screening to Design Quorum Sensing Inhibitors Targeting LuxP of Vibrio harveyi and Its Biological Evaluation.

    PubMed

    Rajamanikandan, Sundaraj; Jeyakanthan, Jeyaraman; Srinivasan, Pappu

    2017-01-01

    Quorum sensing (QS) plays an important role in the biofilm formation, production of virulence factors and stress responses in Vibrio harveyi. Therefore, interrupting QS is a possible approach to modulate bacterial behavior. In the present study, three docking protocols, such as Rigid Receptor Docking (RRD), Induced Fit Docking (IFD), and Quantum Polarized Ligand Docking (QPLD) were used to elucidate the binding mode of boronic acid derivatives into the binding pocket of LuxP protein in V. harveyi. Among the three docking protocols, IFD accurately predicted the correct binding mode of the studied inhibitors. Molecular dynamics (MD) simulations of the protein-ligand complexes indicates that the inter-molecular hydrogen bonds formed between the protein and ligand complex remains stable during the simulation time. Pharmacophore and shape-based virtual screening were performed to find selective and potent compounds from ChemBridge database. Five hit compounds were selected and subjected to IFD and MD simulations to validate the binding mode. In addition, enrichment calculation was performed to discriminate and separate active compounds from the inactive compounds. Based on the computational studies, the potent Bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid-2,6-dimethylpyridine 1-oxide (ChemBridge_5144368) was selected for in vitro assays. The compound exhibited dose dependent inhibition in bioluminescence and also inhibits biofilm formation in V. harveyi to the level of 64.25 %. The result from the study suggests that ChemBridge_5144368 could serve as an anti-quorum sensing molecule for V. harveyi.

  9. Molecular Docking Studies of Marine Diterpenes as Inhibitors of Wild-Type and Mutants HIV-1 Reverse Transcriptase

    PubMed Central

    Miceli, Leonardo A.; Teixeira, Valéria L.; Castro, Helena C.; Rodrigues, Carlos R.; Mello, Juliana F. R.; Albuquerque, Magaly G.; Cabral, Lucio M.; de Brito, Monique A.; de Souza, Alessandra M. T.

    2013-01-01

    AIDS is a pandemic responsible for more than 35 million deaths. The emergence of resistant mutations due to drug use is the biggest cause of treatment failure. Marine organisms are sources of different molecules, some of which offer promising HIV-1 reverse transcriptase (RT) inhibitory activity, such as the diterpenes dolabelladienotriol (THD, IC50 = 16.5 µM), (6R)-6-hydroxydichotoma-3,14-diene-1,17-dial (HDD, IC50 = 10 µM) and (6R)-6-acetoxydichotoma-3,14-diene-1,17-dial (ADD, IC50 = 35 µM), isolated from a brown algae of the genus Dictyota, showing low toxicity. In this work, we evaluated the structure-activity relationship (SAR) of THD, HDD and ADD as anti HIV-1 RT, using a molecular modeling approach. The analyses of stereoelectronic parameters revealed a direct relationship between activity and HOMO (Highest Occupied Molecular Orbital)-LUMO (Lowest Unoccupied Molecular Orbital) gap (ELUMO–EHOMO), where antiviral profile increases with larger HOMO-LUMO gap values. We also performed molecular docking studies of THD into HIV-1 RT wild-type and 12 different mutants, which showed a seahorse conformation, hydrophobic interactions and hydrogen bonds with important residues of the binding pocket. Based on in vitro experiments and docking studies, we demonstrated that mutations have little influence in positioning and interactions of THD. Following a rational drug design, we suggest a modification of THD to improve its biological activity. PMID:24172210

  10. 3D Structure Generation, Molecular Dynamics and Docking Studies of IRHOM2 Protein Involved in Cancer & Rheumatoid Arthritis.

    PubMed

    Raj, Utkarsh; Kumar, Himansu; Varadwaj, Pritish Kumar

    2015-01-01

    A short-lived membrane protein IRHOM2 pedals a cascade of events by regulating Epidermal Growth Factor Receptor (EGFR) signalling in parallel with metalloproteases which results their involvement in cancer as well as in rheumatoid arthritis. Therefore, IRHOM2 is a potential therapeutic drug target for these diseases, but its 3D-structure has not been reported yet. In this study, the three-dimensional structure of the IRHOM2 protein was generated using I-TASSER (Iterative Threading Assembly Refinement) server. The modeled structure of IRHOM2 receptor was validated using various Structural Analysis and Verification Server (SAVES) in which 99.7% of amino acid residues are present in the favoured regions of the Ramachandran Plot. Further, the refined modeled structure was subjected to molecular dynamics simulation & docking analysis. Virtual screening studies were carried out using Glide with various selective libraries containing 24552 compounds and the analysis indicated extensive hydrogen bonding network and hydrophobic interactions which play a significant role in its binding. Docking results were analyzed for high ranking compounds using a consensus based docking score to calculate the binding affinity as a measure of protein-ligand interactions. The top ranking molecule against IRHOM2 active site has a glide g-score of -12.565 kcal/mol and glide e-model score of -74.967 with 3 hydrogen bonds and 11 hydrophobic contacts. This compound may act as probable inhibitor against these chronic diseases but further in vitro studies are required.

  11. Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening.

    PubMed

    Pierri, Ciro Leonardo; Parisi, Giovanni; Porcelli, Vito

    2010-09-01

    The functional characterization of proteins represents a daily challenge for biochemical, medical and computational sciences. Although finally proved on the bench, the function of a protein can be successfully predicted by computational approaches that drive the further experimental assays. Current methods for comparative modeling allow the construction of accurate 3D models for proteins of unknown structure, provided that a crystal structure of a homologous protein is available. Binding regions can be proposed by using binding site predictors, data inferred from homologous crystal structures, and data provided from a careful interpretation of the multiple sequence alignment of the investigated protein and its homologs. Once the location of a binding site has been proposed, chemical ligands that have a high likelihood of binding can be identified by using ligand docking and structure-based virtual screening of chemical libraries. Most docking algorithms allow building a list sorted by energy of the lowest energy docking configuration for each ligand of the library. In this review the state-of-the-art of computational approaches in 3D protein comparative modeling and in the study of protein-ligand interactions is provided. Furthermore a possible combined/concerted multistep strategy for protein function prediction, based on multiple sequence alignment, comparative modeling, binding region prediction, and structure-based virtual screening of chemical libraries, is described by using suitable examples. As practical examples, Abl-kinase molecular modeling studies, HPV-E6 protein multiple sequence alignment analysis, and some other model docking-based characterization reports are briefly described to highlight the importance of computational approaches in protein function prediction.

  12. Comparative molecular field analysis and molecular docking studies on novel aryl chalcone derivatives against an important drug target cysteine protease in Plasmodium falciparum.

    PubMed

    Thillainayagam, Mahalakshmi; Anbarasu, Anand; Ramaiah, Sudha

    2016-08-21

    The computational studies namely molecular docking simulations and Comparative Molecular Field Analysis (CoMFA) are executed on series of 52 novel aryl chalcones derivatives using Plasmodium falciparum cysteine proteases (falcipain - 2) as vital target. In the present study, the correlation between different molecular field effects namely steric and electrostatic interactions and chemical structures to the inhibitory activities of novel aryl chalcone derivatives is inferred to perceive the major structural prerequisites for the rational design and development of potent and novel lead anti-malarial compound. The apparent binding conformations of all the compounds at the active site of falcipain - 2 and the hydrogen-bond interactions which could be used to modify the inhibitory activities are identified by using Surflex-dock study. Statistically significant CoMFA model has been developed with the cross-validated correlation coefficient (q(2)) of 0.912 and the non-cross-validated correlation coefficient (r(2)) of 0.901. Standard error of estimation (SEE) of 0.210, with the optimum number of components is ten. The predictability of the derived model is examined with a test set consists of sixteen compounds and the predicted r(2) value is found to be 0.924. The docking and QSAR study results confer crucial suggestions for the optimization of novel 1,3-diphenyl-2-propen-1-one derivatives and synthesis of effective anti- malarial compounds.

  13. Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking.

    PubMed

    Saeed, Mohamed; Kadioglu, Onat; Khalid, Hassan; Sugimoto, Yoshikazu; Efferth, Thomas

    2015-01-01

    Apigenin is a common dietary flavonoid with considerable cytotoxic activity in vitro and in vivo. Despite many mechanistic studies, less is known about resistance factors hampering apigenin's activity. We investigated the ATP-binding cassette (ABC) transporters BCRP/ABCG2, P-glycoprotein/ABCB1 and its close relative ABCB5. Multidrug-resistant cells overexpressing these ABC transporters were not cross-resistant toward apigenin. Moreover, apigenin inhibited not only P-glycoprotein but also BCRP by increasing cellular uptake of doxorubicin and synergistic inhibition of cell viability in combination with doxorubicin or docetaxel in multidrug-resistant cells. To perform in silico molecular docking studies, we first generated homology models for human P-glycoprotein and ABCB5 based on the crystal structure of murine P-glycoprotein. Their nucleotide binding domains (NDBs) revealed the highest degrees of sequence homologies (89%-100%), indicating that ATP binding and cleavage is of crucial importance for ABC transporters. Molecular docking of apigenin bound to the NDBs of P-glycoprotein and ABCB5 in molecular docking studies. Hence, apigenin may compete with ATP for NDB-binding leading to energy depletion to fuel the transport of ABC transporter substrates. Furthermore, we performed COMPARE and hierarchical cluster analyses of transcriptome-wide mRNA expression profiles of the National Cancer Institute tumor cell line panel. Microarray-based mRNA expressions of genes of diverse biological functions (signal transduction, transcriptional regulation, ubiquitination, autophagy, metabolic activity, xenobiotic detoxification and microtubule formation) significantly predicted responsiveness of tumor cells to apigenin. In conclusion, apigenin's activity is not hampered by classical mechanisms of multidrug resistance and the inhibition of ABC transporters by apigenin indicates that apigenin may overcome multidrug resistance in otherwise refractory tumors.

  14. Kinetic, structural and molecular docking studies on the inhibition of tyrosinase induced by arabinose.

    PubMed

    Hu, Wei-Jiang; Yan, Li; Park, Daeui; Jeong, Hyoung Oh; Chung, Hae Young; Yang, Jun-Mo; Ye, Zhuo Ming; Qian, Guo-Ying

    2012-04-01

    Tyrosinase plays a central role in biological pigment formation, and hence knowledge of tyrosinase catalytic mechanisms and regulation may have medical, cosmetic, and agricultural applications. We found in this study that arabinose significantly inhibited tyrosinase, and this was accompanied by conformational changes in enzyme structure. Kinetic analysis showed that arabinose-mediated inactivation followed first-order kinetics, and single and multiple classes of rate constants were measured. Arabinose displayed a mixed-type inhibitory mechanism with K(i)=0.22±0.07 mM. Measurements of intrinsic and ANS-binding fluorescence showed that arabinose induced tyrosinase to unfold and expose inner hydrophobic regions. We simulated the docking between tyrosinase and arabinose (binding energies were -26.28 kcal/mol for Dock6.3 and -2.02 kcal/mol for AutoDock4.2) and results suggested that arabinose interacts mostly with His61, Asn260, and Met280. The present strategy of predicting tyrosinase inhibition by simulation of docking by hydroxyl groups may prove useful in screening for potential tyrosinase inhibitors, as shown here for arabinose.

  15. Synthesis, molecular docking and biological evaluation of 1,3,4-oxadiazole derivatives as potential immunosuppressive agents.

    PubMed

    Yan, Ru; Zhang, Zhi-Ming; Fang, Xian-Ying; Hu, Yang; Zhu, Hai-Liang

    2012-02-15

    A series of novel 1,3,4-oxadiazole derivatives (5a-5s) have been designed, synthesized and evaluated for their immunosuppressive activity. Most of these synthesized compounds were proved to have potent immunosuppressive activity and low toxicity. Among them, compounds (5m-5r) showed the most potent biological activity against lymph node cells. The results of flow cytometry (FCM) and western blotting demonstrated that compound 5q induce cell apoptosis by the inhibition of PI3K/AKT pathway. Molecular docking was performed to position compound 5q into PI3Kγ binding site in order to explore the potential target.

  16. Synthesis, α-glucosidase inhibitory and molecular docking studies of prenylated and geranylated flavones, isoflavones and chalcones.

    PubMed

    Sun, Hua; Li, Yashan; Zhang, Xiaoting; Lei, Yanan; Ding, Weina; Zhao, Xue; Wang, Haomeng; Song, Xiaotong; Yao, Qingwei; Zhang, Yongmin; Ma, Ying; Wang, Runling; Zhu, Tao; Yu, Peng

    2015-10-15

    Three series of prenylated and/or geranylated flavonoids were synth