Science.gov

Sample records for 3h carbon 13c

  1. Abundance Anomaly of the 13C Isotopic Species of c-C3H2 in the Low-mass Star Formation Region L1527

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Sakai, Nami; Tokudome, Tomoya; López-Sepulcre, Ana; Watanabe, Yoshimasa; Takano, Shuro; Lefloch, Bertrand; Ceccarelli, Cecilia; Bachiller, Rafael; Caux, Emmanuel; Vastel, Charlotte; Yamamoto, Satoshi

    2015-07-01

    The rotational spectral lines of c-C3H2 and two kinds of the 13C isotopic species, c-{}13{{CCCH}}2 ({C}2v symmetry) and c-{{CC}}13{{CH}}2 (Cs symmetry), have been observed in the 1-3 mm band toward the low-mass star-forming region L1527. We have detected 7, 3, and 6 lines of c-C3H2, c-{}13{{CCCH}}2, and c-{{CC}}13{{CH}}2, respectively, with the Nobeyama 45 m telescope and 34, 6, and 13 lines, respectively, with the IRAM 30 m telescope, where seven, two, and two transitions, respectively, are observed with both telescopes. With these data, we have evaluated the column densities of the normal and 13C isotopic species. The [c-C3H2]/[c-{}13{{CCCH}}2] ratio is determined to be 310 ± 80, while the [c-C3H2]/[c-{{CC}}13{{CH}}2] ratio is determined to be 61 ± 11. The [c-C3H2]/[c-{}13{{CCCH}}2] and [c-C3H2]/[c-{{CC}}13{{CH}}2] ratios expected from the elemental 12C/13C ratio are 60-70 and 30-35, respectively, where the latter takes into account the statistical factor of 2 for the two equivalent carbon atoms in c-C3H2. Hence, this observation further confirms the dilution of the 13C species in carbon-chain molecules and their related molecules, which are thought to originate from the dilution of 13C+ in the gas-phase C+ due to the isotope exchange reaction: {}13{{{C}}}++{CO}\\to {}13{CO}+{{{C}}}+. Moreover, the abundances of the two 13C isotopic species are different from each other. The ratio of c-{}13{{CCCH}}2 species relative to c-{{CC}}13{{CH}}2 is determined to be 0.20 ± 0.05. If 13C were randomly substituted for the three carbon atoms, the [c-{}13{{CCCH}}2]/[c-{{CC}}13{{CH}}2] ratio would be 0.5. Hence, the observed ratio indicates that c-{{CC}}13{{CH}}2 exists more favorably. Possible origins of the different abundances are discussed. Based on observations carried out with the IRAM 30 m Telescope and the NRO 45 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). NRO is a branch of the National Astronomical Observatory of Japan

  2. Determination of the (13)C/(12)C Carbon Isotope Ratio in Carbonates and Bicarbonates by (13)C NMR Spectroscopy.

    PubMed

    Pironti, Concetta; Cucciniello, Raffaele; Camin, Federica; Tonon, Agostino; Motta, Oriana; Proto, Antonio

    2017-10-09

    This paper is the first study focused on the innovative application of (13)C NMR (nuclear magnetic resonance) spectroscopy to determine the bulk (13)C/(12)C carbon isotope ratio, at natural abundance, in inorganic carbonates and bicarbonates. In the past, (13)C NMR spectroscopy (irm-(13)C NMR) was mainly used to measure isotope ratio monitoring with the potential of conducting (13)C position-specific isotope analysis of organic molecules with high precision. The reliability of the newly developed methodology for the determination of stable carbon isotope ratio was evaluated in comparison with the method chosen in the past for these measurements, i.e., isotope ratio mass spectrometry (IRMS), with very encouraging results. We determined the (13)C/(12)C ratio of carbonates and bicarbonates (∼50-100 mg) with a precision on the order of 1‰ in the presence of a relaxation agent, such as Cr(acac)3, and CH3(13)COONa as an internal standard. The method was first applied to soluble inorganic carbonates and bicarbonates and then extended to insoluble carbonates by converting them to Na2CO3, following a simple procedure and without observing isotopic fractionation. Here, we demonstrate that (13)C NMR spectroscopy can also be successfully adopted to characterize the (13)C/(12)C isotope ratio in inorganic carbonates and bicarbonates with applications in different fields, such as cultural heritage and geological studies.

  3. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  4. Synthesis of 3H, 13C,2H3,15N and 14C-labelled SCH 466036, a histamine 3 receptor antagonist.

    PubMed

    Hesk, D; Borges, S; Dumpit, R; Hendershot, S; Koharski, D; Lavey, C; McNamara, P; Voronin, K

    2015-02-01

    The synthesis of [(3)H]SCH 466036, [Me-(3)H3]SCH 466036, [(13)C,(2)H3,(15)N]SCH 466036 and [(14)C]SCH 466036 is described. [(3)H]SCH 466036 was prepared in two steps via Raney Ni-catalysed exchange with tritiated water. [Me-(3)H3]SCH 466036 was prepared in a single step from [(3)H]methyl iodide in 45% yield. [(13)C,(2)H3,(15)N]SCH 466036 was prepared in two steps from [(15)N]hydroxylamine and [(13)C,(2)H3]methyl iodide with an overall yield of 16%. [(14)C]SCH 466036 was prepared in seven steps from [(14)C]potassium cyanide in an overall yield of 13%.

  5. Tracing solid waste leachate in groundwater using δ13 C from dissolved inorganic carbon.

    PubMed

    Haarstad, Ketil; Mæhlum, Trond

    2013-01-01

    Tracers can be used to monitor emissions of leachate from landfills in order to detect hydrological pathways and to evaluate environmental pollution. We investigated the stable carbon isotope ratio (δ(13)C-Σ CO (2)) in dissolved inorganic carbon and tritium ((3)H) in water, in addition to the tracers of pollution commonly found in relatively high concentrations in leachate, such as chloride (Cl), organic matter (COD), nitrogen (total and NH(4)-N), iron (Fe), electrical conductivity (EC) and pH. The sampling was performed at seven landfills in the south-eastern part of Norway during a period of 5 years. The objective was to evaluate the potential for tracing leachate in the environment with emphasis on groundwater pollution. By measuring the δ(13)C-Σ CO (2) in leachates, groundwaters and surface waters, the influence of leachate can be identified. The value of δ(13)C-Σ CO (2) varied from-5.5 to 25.9 ‰ in leachate, from-25.4 to 14.7 ‰ in groundwater and from-19.7 to-13.1 ‰ in creeks. A comparison of the carbon isotope ratio with COD, EC and the concentrations of total and NH (4)-N, Cl and Fe showed that δ(13)C-Σ CO (2) is a good tracer for leachate due to higher sensitivity compared to other parameters. The mean concentrations of all the studied parameters were higher in the leachate samples; however, only the carbon isotope ratio showed significant differences between all the groups with strong and middle pollution and samples with low pollution, showing that it can be used as a convenient tracer for leachate in groundwater and surface water. The carbon isotope ratio showed strong correlation between nitrogen, EC and bicarbonate, but not with pH. Tritium was only sporadically found in measureable concentrations and is not considered as a suitable tracer at the sampled locations.

  6. Biosynthesis of curdlan from culture media containing 13C-labeled glucose as the carbon source.

    PubMed

    Kai, A; Ishino, T; Arashida, T; Hatanaka, K; Akaike, T; Matsuzaki, K; Kaneko, Y; Mimura, T

    1993-02-24

    13C-Labeled curdlans were biosynthesized by Agrobacterium sp. (ATCC 31749) from culture media containing D-(1-13C)glucose, D-(6-13C)glucose, or D-(2-13C)glucose as the carbon source, and their structures were analyzed by 13C NMR spectroscopy. The labeling was mainly found in the original position, that is, C-1, C-6, or C-2, indicating direct polymerization of introduced glucose. In addition, C-3 in curdlan obtained from D-(1-13C)glucose, C-1 in curdlan obtained from D-(6-13C)glucose, and C-1 and C-3 in curdlan obtained from D-(2-13)glucose were labeled. From analysis of this labeling, the biosynthesis of curdlan was interpreted as involving five routes: (1) direct synthesis from glucose; (2) rearrangement (1-13C-->3-13C); and (3) isomerization (6-13C-->1-13C) of cleaved trioses by the Embden-Meyerhof pathway, followed by neogenesis of glucose and formation of curdlan; (4) from fructose 6-phosphate formed in the pentose cycle (2-13C-->1-13C, 3-13C); and (5) neogenesis of glucose from fragments produced in various pathways of glycolysis. The 13C-labeling at C-6 and C-2 in the starting glucoses is well preserved in the C-6 carbon and the C-1 to C-3 carbons, respectively, in the curdlan produced.

  7. The Nature of Carbonate and Organic δ13C Covariance Through Geological Time

    NASA Astrophysics Data System (ADS)

    Oehlert, A. M.; Swart, P. K.

    2014-12-01

    Significant evolutionary, climatic, and oceanographic events in Earth history are often accompanied by excursions in the carbon isotope composition (δ13C) of marine carbonates and co-occurring sedimentary organic material. The observation of synchronous excursions in the δ13C values of marine carbonates and coeval organic matter is commonly thought to prove that the deposit has not been altered by diagenesis, and that the variations in the δ13C records are the result of a significant change in global carbon cycling. Furthermore, this model suggests that the covariance of carbonate and organic δ13C records is driven only by changes in the δ13C value of the dissolved inorganic carbon in the surface waters of the ocean. However, recent work suggests that there may be at least two alternate models for generating covariance between carbonate and organic δ13C values in the geologic record. One of the models invokes sea-level driven syndepositional mixing between isotopically distinct sources of carbonate and organic material to produce positive covariance between carbonate and organic δ13C values. The second model suggests that post-depositional alteration to the carbonate δ13C values during meteoric diagenesis, in concert with concurrent contributions of terrestrial organic material during subaerial exposure, can also produce co-occurring negative excursions with tightly covariant δ13C records. In contrast to earlier interpretations of covariant δ13C values, these models suggest that both syndepositional and post-depositional factors can significantly influence the relationship between carbonate and organic δ13C values in a variety of depositional environments. The implications for reconstructions of ancient global carbon cycle events will be explored within the context of these three models, and their relative importance throughout geologic time will be discussed.

  8. 13C-NOESY-HSQC with Split Carbon Evolution for Increased Resolution with Uniformly Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Baur, Matthias; Gemmecker, Gerd; Kessler, Horst

    1998-06-01

    Two new pulse sequences are presented for the recording of 2D13C-HSQC and 3D13C-NOESY-HSQC experiments, containing two consecutive carbon evolution periods. The two periods are separated by az-filter which creates a clean CxHz-quantum state for evolution in the second period. Each period is incremented (in anon-constant-time fashion) only to the extent that the defocusing of carbon inphase magnetization throughJ-coupling with neighboring carbons remains insignificant. Therefore,13C homonuclearJ-couplings are rendered ineffective, reducing the loss of signal and peak splitting commonly associated with long13C evolution times. The two periods are incremented according to a special acquisition protocol employing a13C-13C gradient echo to yield a data set analogous to one obtained by evolution over the added duration of both periods. The spectra recorded with the new technique on uniformly13C-labeled proteins at twice the evolution time of the standard13C-HSQC experiment display a nearly twofold enhancement of resolution in the carbon domain, while maintaining a good sensitivity even in the case of large proteins. Applied to the IIAManprotein ofE. coli(31 kDa), the13C-HSQC experiment recorded with a carbon evolution time of 2 × 8 ms showed a 36% decrease in linewidths compared to the standard13C-HSQC experiment, and theS/Nratio of representative cross-peaks was reduced to 40%. This reduction reflects mostly the typical loss of intensity observed when recording with an increased resolution. The13C-NOESY-HSQC experiment derived from the13C-HSQC experiment yielded additional NOE restraints between resonances which previously had been unresolved.

  9. Extreme (13)C depletion of carbonates formed during oxidation of biogenic methane in fractured granite.

    PubMed

    Drake, Henrik; Åström, Mats E; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-05-07

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C13C as light as -69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to -125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.

  10. Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite

    NASA Astrophysics Data System (ADS)

    Drake, Henrik; Åström, Mats E.; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-05-01

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C13C as light as -69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to -125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.

  11. Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite

    PubMed Central

    Drake, Henrik; Åström, Mats E.; Heim, Christine; Broman, Curt; Åström, Jan; Whitehouse, Martin; Ivarsson, Magnus; Siljeström, Sandra; Sjövall, Peter

    2015-01-01

    Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C13C as light as −69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to −125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane. PMID:25948095

  12. Preparation of 7-hydroxy-2-oxoindolin-3-ylacetic acid and its [13C2], [5-n-3H], and [5-n-3H]-7-O-glucosyl analogues for use in the study of indol-3-ylacetic acid catabolism

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S. (Principal Investigator)

    1987-01-01

    An improved synthesis of 7-hydroxy-2-oxoindolin-3-ylacetic acid via the base-induced condensation reaction between oxalate esters and 7-benzyloxyindolin-2-one is described. 7-Benzyloxyindolin-2-one was prepared in four steps and 50% overall yield from 3-hydroxy-2-nitrotoluene. The yield of the title compound from 7-benzyloxyindolin-2-one was 56%. This route was used to prepare 7-hydroxy-2-oxoindolin-3-yl[13C2]acetic acid in 30% yield from [13C2]oxalic acid dihydrate. The method could not be extended to the preparation of the corresponding [14C2]-compound. However, an enzyme preparation from Zea mays roots catalysed the conversion of carrier-free [5-n-3H]indol-3-ylacetic acid with a specific activity of 16.7 Ci mmol-1 to a mixture of 7-hydroxy-2-oxo[5-n-3H]indolin-3-ylacetic acid and its [5-n-3H]-7-O-glucoside in ca. 3 and 40% radiochemical yield respectively. The glucoside was converted into the 7-hydroxy compound in 80% yield by means of beta-glucosidase.

  13. Preparation of 7-hydroxy-2-oxoindolin-3-ylacetic acid and its [13C2], [5-n-3H], and [5-n-3H]-7-O-glucosyl analogues for use in the study of indol-3-ylacetic acid catabolism

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S. (Principal Investigator)

    1987-01-01

    An improved synthesis of 7-hydroxy-2-oxoindolin-3-ylacetic acid via the base-induced condensation reaction between oxalate esters and 7-benzyloxyindolin-2-one is described. 7-Benzyloxyindolin-2-one was prepared in four steps and 50% overall yield from 3-hydroxy-2-nitrotoluene. The yield of the title compound from 7-benzyloxyindolin-2-one was 56%. This route was used to prepare 7-hydroxy-2-oxoindolin-3-yl[13C2]acetic acid in 30% yield from [13C2]oxalic acid dihydrate. The method could not be extended to the preparation of the corresponding [14C2]-compound. However, an enzyme preparation from Zea mays roots catalysed the conversion of carrier-free [5-n-3H]indol-3-ylacetic acid with a specific activity of 16.7 Ci mmol-1 to a mixture of 7-hydroxy-2-oxo[5-n-3H]indolin-3-ylacetic acid and its [5-n-3H]-7-O-glucoside in ca. 3 and 40% radiochemical yield respectively. The glucoside was converted into the 7-hydroxy compound in 80% yield by means of beta-glucosidase.

  14. SPECTROSCOPIC CONSTANTS FOR {sup 13}C AND DEUTERIUM ISOTOPOLOGUES OF CYCLIC AND LINEAR C{sub 3}H{sub 3}{sup +}

    SciTech Connect

    Huang Xinchuan; Lee, Timothy J. E-mail: Timothy.J.Lee@nasa.gov

    2011-07-20

    Recently, we reported ab initio quartic force fields (QFFs) for the cyclic and linear forms of the C{sub 3}H{sub 3}{sup +} molecular cation, referred to as c-C{sub 3}H{sub 3}{sup +} and l-C{sub 3}H{sub 3}{sup +}. These were computed using high levels of theory. Specifically the singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, CCSD(T), was used in conjunction with extrapolation to the one-particle basis set limit, and corrections for scalar relativity and core correlation were included. In the present study, we use these QFFs to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants for the c-{sup 13}CC{sub 2}H{sub 3}{sup +}, c-C{sub 3}H{sub 2}D{sup +}, c-{sup 13}CC{sub 2}H{sub 2}D{sup +} isotoplogues of c-C{sub 3}H{sub 3}{sup +}, and the H{sub 2}CCCD{sup +}, HDCCCH{sup +}, H{sub 2}{sup 13}CCCH{sup +}, H{sub 2}C{sup 13}CCH{sup +}, and H{sub 2}CC{sup 13}CH{sup +} isotopologues of l-C{sub 3}H{sub 3}{sup +}. Improvements in ab intitio methods have now made it possible to identify small molecules in an astronomical observation without the aid of high-resolution experimental data. We also report dipole moment values and show that the above-mentioned cyclic isotopologues have values of 0.094, 0.225, and 0.312 D, respectively, while the l-C{sub 3}H{sub 3}{sup +} isotopologues have values that range between 0.325 and 0.811 D. Thus, it is hoped that the highly accurate spectroscopic constants and data provided herein for the {sup 13}C and deuterium isotopologues of the cyclic and linear forms of C{sub 3}H{sub 3}{sup +} will enable their identification in astronomical observations from the Herschel Space Observatory, the Stratospheric Observatory for Infrared Astronomy, the Atacama Large Millimeter Array, and in the future, the James Webb Space Telescope.

  15. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: I. Patterns

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates frequently precipitate out of {sup 18}O and {sup 13}C equilibrium with ambient waters. Two patterns of isotopic disequilibrium are particularly common. Kinetic disequilibria, so designated because they apparently result from kinetic isotope effects during CO{sub 2} hydration and hydroxylation, involve simultaneous depletions of {sup 18}O and {sup 13}C as large as 4{per thousand} and 10 to 15{per thousand}, respectively. Rapid skeletogenesis favors strong kinetic effects, and approximately linear correlations between skeletal {delta}{sup 18}O and {delta}{sup 13}C are common in carbonates showing mainly the kinetic pattern. Metabolic effects involve additional positive or negative modulation of skeletal {delta}{sup 13}C, reflecting changes in the {delta}{sup 13}C of dissolved inorganic carbon, caused mainly by photosynthesis and respiration. Kinetic isotope disequilibria tend to be fairly consistent in rapidly growing parts of photosynthetic corals, and time dependent isotopic variations therefore reflect changes in environmental conditions. {delta}{sup 18}O variations from Galapagos corals yields meaningful clues regarding seawater temperature, while {delta}{sup 13}C variations reflect changes in photosynthesis, modulated by cloudiness.

  16. Quantitative identification of metastable magnesium carbonate minerals by solid-state 13C NMR spectroscopy.

    PubMed

    Moore, Jeremy K; Surface, J Andrew; Brenner, Allison; Wang, Louis S; Skemer, Philip; Conradi, Mark S; Hayes, Sophia E

    2015-01-06

    In the conversion of CO2 to mineral carbonates for the permanent geosequestration of CO2, there are multiple magnesium carbonate phases that are potential reaction products. Solid-state (13)C NMR is demonstrated as an effective tool for distinguishing magnesium carbonate phases and quantitatively characterizing magnesium carbonate mixtures. Several of these mineral phases include magnesite, hydromagnesite, dypingite, and nesquehonite, which differ in composition by the number of waters of hydration or the number of crystallographic hydroxyl groups. These carbonates often form in mixtures with nearly overlapping (13)C NMR resonances which makes their identification and analysis difficult. In this study, these phases have been investigated with solid-state (13)C NMR spectroscopy, including both static and magic-angle spinning (MAS) experiments. Static spectra yield chemical shift anisotropy (CSA) lineshapes that are indicative of the site-symmetry variations of the carbon environments. MAS spectra yield isotropic chemical shifts for each crystallographically inequivalent carbon and spin-lattice relaxation times, T1, yield characteristic information that assist in species discrimination. These detailed parameters, and the combination of static and MAS analyses, can aid investigations of mixed carbonates by (13)C NMR.

  17. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique.

  18. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced.

  19. Tracing carbon monoxide uptake by Clostridium ljungdahlii during ethanol fermentation using (13)C-enrichment technique.

    PubMed

    Yun, Seok-In; Gang, Seong-Joo; Ro, Hee-Myong; Lee, Min-Jin; Choi, Woo-Jung; Hong, Seong-Gu; Kang, Kwon-Kyoo

    2013-05-01

    Conversion of synthesis gas (CO and H2) to ethanol can be an alternative, promising technology to produce biofuels from renewable biomass. To distinguish microbial utilization of carbon source between fructose and synthesis gas CO and to evaluate biological production of ethanol from CO, we adopted the (13)C-enrichment of the CO substrate and hypothesized that the residual increase in δ(13)C of the cell biomass would reflect the increased contribution of (13)C-enriched CO. Addition of synthesis gas to live culture medium for ethanol fermentation by Clostridum ljungdahlii increased the microbial growth and ethanol production. Despite the high (13)C-enrichment in CO (99 atom % (13)C), however, microbial δ(13)C increased relatively small compared to the microbial growth. The uptake efficiency of CO estimated using the isotope mass balance equation was also very low: 0.0014 % for the low CO and 0.0016 % for the high CO treatment. Furthermore, the fast production of ethanol in the early stage indicated that the presence of sugar in fermentation medium would limit the utilization of CO as a carbon source by C. ljungdahlii.

  20. Stable Carbon Isotopes (δ 13C) in Coral Skeletons: Experimental Approach and Applications for Paleoceanography

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.

    2004-12-01

    Scleractinian corals obtain fixed carbon via photosynthesis by their endosymbiotic algae (zooxanthellae) and via hetertrophy (injestion of zooplankton, δ 13C ≈ -17 to -22‰ ). Carbon dioxide (CO2) used for photosynthesis is obtained from seawater (δ 13C ≈ 0%) or from respired CO2 within the coral host. The δ 13C of the carbon used in the formation of the underlying coral skeleton is fractionated as a result of both of these metabolic processes. Here I have pooled evidence from several field and tank experiments on the effect of photosynthesis and heterotrophy of coral skeletal δ 13C. In the experiments, decreases in light levels due to shading or depth resulted in a significant decrease in skeletal δ 13C in all species studied (Pavona gigantea, Pavona clavus, Porites compressa). Decreases in photosynthesis in bleached corals also resulted in a decrease in skeletal δ 13C compared to non-bleached corals growing under the same conditions and at the same location. Skeletal δ 13C also decreased at higher than normal light levels most likely due to photoinhibition. Thus, decreases in photosynthesis due to reduced light levels, due to bleaching-induced decreases in chlorophyll a concentrations, or due to photodamage-induced decreases in functional cholorphyll a, results in significant δ 13C decreases. Comprehensive interpretation of all of the data showed that changes in photosynthesis itself can drive the changes in δ 13C. In field experiments, the addition of natural concentrations of zooplankton to the diet resulted in decreases in skeletal δ 13C. Such a decrease was more pronounced with depth and in P. gigantea compared to P. clavus. In situ feeding experiments have since confirmed these findings. However under tank conditions with unaturally high feeding rates, enhanced nitrogen supply in the diet can disrupt the coral-algal symbiosis, stimlate zooxanthellae growth and photosynthesis, and cause an incrase in skeletal δ 13C. It is proposed that under

  1. Whole-stream 13C tracer addition reveals distinct fates of newly fixed carbon.

    PubMed

    Hotchkiss, Erin R; Hall, Robert O

    2015-02-01

    Many estimates of freshwater carbon (C) fluxes focus on inputs, processing, and storage of terrestrial C; yet inland waters have high rates of internally fixed (autochthonous) C production. Some fraction of newly fixed C may be released as biologically available, dissolved organic C (DOC) and stimulate microbial-driven biogeochemical cycles soon after fixation, but the fate of autochthonous C is difficult to measure directly. Tracing newly fixed C can increase our understanding of fluxes and fate of autochthonous C in the context of freshwater food webs and C cycling. We traced autochthonous C fixation and fate using a dissolved inorganic C stable isotope addition (13C(DIC)). We added 13C(DIC) to North Fork French Creek, Wyoming, USA during two days in August. We monitored changes in 13C pools, fluxes, and storage for 44 d after the addition. Two-compartment flux models were used to quantify net release of newly fixed 13C(DOC) and 13C(DIC) into the water column. We compared net 13C fixation with tracer 13C(DIC) removal and gross primary production (GPP) to account for the mass of tracer fixed, released, lost to the atmosphere, and exported downstream. Much of the fixed C turned over rapidly and did not enter longer-term storage pools. Net C fixed was 70% of GPP measured with O2. Algae likely released the remaining 30% via 13C(DOC) exudation and respiration of newly fixed C. Primary producers released 13C(DOC) at rates of up to 16% per day during the 13C addition, but exudation of new labile C declined to near zero by day 6. DIC production from newly fixed C accounted for 21% of ecosystem respiration the day after the 13C addition. All measured organic C (OC) pools were enriched with 13C 1 d after the tracer addition. 20% of fixed 13C remained in benthic OC by day 44, and average residence time of autochthonous C in benthic OC was 62 d. Newly fixed C had two distinct fates: short-term (< 1 week) exudation and respiration or longer-term storage and downstream export

  2. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    NASA Astrophysics Data System (ADS)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichment of leaf respired CO2 relative to leaf WSOM may have left behind relatively depleted carbon to be loaded into the phloem resulting in d13C depletion

  3. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Frye, J. S.

    1987-01-01

    13C NMR spectra have been obtained of the insoluble carbon residues resulting from HF-digestion of three carbonaceous chondrites, Orgueil (C1), Murchison (CM2), and Allende (CV3). Spectra obtained using the cross polarization magic-angle spinning technique show two major features attributable respectively to carbon in aliphatic/olefinic structures. The spectrum obtained from the Allende sample was weak, presumably as a consequence of its low hydrogen content. Single pulse excitation spectra, which do not depend on 1H-13C polarization transfer for signal enhancement were also obtained. These spectra, which may be more representative of the total carbon in the meteorite samples, indicate a greater content of carbon in aromatic/olefinic structures. These results suggest that extensive polycyclic aromatic sheets are important structural features of the insoluble carbon of all three meteorites. The Orgueil and Murchison materials contain additional hydrogenated aromatic/olefinic and aliphatic groups.

  4. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Frye, J. S.

    1987-01-01

    13C NMR spectra have been obtained of the insoluble carbon residues resulting from HF-digestion of three carbonaceous chondrites, Orgueil (C1), Murchison (CM2), and Allende (CV3). Spectra obtained using the cross polarization magic-angle spinning technique show two major features attributable respectively to carbon in aliphatic/olefinic structures. The spectrum obtained from the Allende sample was weak, presumably as a consequence of its low hydrogen content. Single pulse excitation spectra, which do not depend on 1H-13C polarization transfer for signal enhancement were also obtained. These spectra, which may be more representative of the total carbon in the meteorite samples, indicate a greater content of carbon in aromatic/olefinic structures. These results suggest that extensive polycyclic aromatic sheets are important structural features of the insoluble carbon of all three meteorites. The Orgueil and Murchison materials contain additional hydrogenated aromatic/olefinic and aliphatic groups.

  5. Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation.

    PubMed

    Tremblay, Pascale; Grover, Renaud; Maguer, Jean François; Legendre, Louis; Ferrier-Pagès, Christine

    2012-04-15

    Corals live in symbiosis with dinoflagellates of the genus Symbiodinum. These dinoflagellates translocate a large part of the photosynthetically fixed carbon to the host, which in turn uses it for its own needs. Assessing the carbon budget in coral tissue is a central question in reef studies that still vexes ecophysiologists. The amount of carbon fixed by the symbiotic association can be determined by measuring the rate of photosynthesis, but the amount of carbon translocated by the symbionts to the host and the fate of this carbon are more difficult to assess. In the present study, we propose a novel approach to calculate the budget of autotrophic carbon in the tissue of scleractinian corals, based on a new model and measurements made with the stable isotope (13)C. Colonies of the scleractinian coral Stylophora pistillata were incubated in H(13)CO (-)(3)-enriched seawater, after which the fate of (13)C was followed in the symbionts, the coral tissue and the released particulate organic carbon (i.e. mucus). Results obtained showed that after 15 min, ca. 60% of the carbon fixed was already translocated to the host, and after 48 h, this value reached 78%. However, ca. 48% of the photosynthetically fixed carbon was respired by the symbiotic association, and 28% was released as dissolved organic carbon. This is different from other coral species, where <1% of the total organic carbon released is from newly fixed carbon. Only 23% of the initially fixed carbon was retained in the symbionts and coral tissue after 48 h. Results show that our (13)C-based model could successfully trace the carbon flow from the symbionts to the host, and the photosynthetically acquired carbon lost from the symbiotic association.

  6. Determination of the δ13C of dissolved inorganic carbon in water; RSIL lab code 1710

    USGS Publications Warehouse

    Singleton, Glenda L.; Revesz, Kinga; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1710 is to present a method to determine the δ13C of dissolved inorganic carbon (DIC) of water. The DIC of water is precipitated using ammoniacal strontium chloride (SrCl2) solution to form strontium carbonate (SrCO3). The δ13C is analyzed by reacting SrCO3 with 100-percent phosphoric acid (H3PO4) to liberate carbon quantitatively as carbon dioxide (CO2), which is collected, purified by vacuum sublimation, and analyzed by dual inlet isotope-ratio mass spectrometry (DI-IRMS). The DI-IRMS is a DuPont double-focusing mass spectrometer. One ion beam passes through a slit in a forward collector and is collected in the rear collector. The other measurable ion beams are collected in the front collector. By changing the ion-accelerating voltage under computer control, the instrument is capable of measuring mass/charge (m/z) 45 or 46 in the rear collector and m/z 44 and 46 or 44 and 45, respectively, in the front collector. The ion beams from these m/z values are as follows: m/z 44 = CO2 = 12C16O16O, m/z 45 = CO2 = 13C16O16O primarily, and m/z 46 = CO2 = 12C16O18O primarily. The data acquisition and control software calculates δ13C values.

  7. Calibration of the carbon isotope composition (δ13C) of benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Schmittner, Andreas; Bostock, Helen C.; Cartapanis, Olivier; Curry, William B.; Filipsson, Helena L.; Galbraith, Eric D.; Gottschalk, Julia; Herguera, Juan Carlos; Hoogakker, Babette; Jaccard, Samuel L.; Lisiecki, Lorraine E.; Lund, David C.; Martínez-Méndez, Gema; Lynch-Stieglitz, Jean; Mackensen, Andreas; Michel, Elisabeth; Mix, Alan C.; Oppo, Delia W.; Peterson, Carlye D.; Repschläger, Janne; Sikes, Elisabeth L.; Spero, Howard J.; Waelbroeck, Claire

    2017-06-01

    The carbon isotope composition (δ13C) of seawater provides valuable insight on ocean circulation, air-sea exchange, the biological pump, and the global carbon cycle and is reflected by the δ13C of foraminifera tests. Here more than 1700 δ13C observations of the benthic foraminifera genus Cibicides from late Holocene sediments (δ13CCibnat) are compiled and compared with newly updated estimates of the natural (preindustrial) water column δ13C of dissolved inorganic carbon (δ13CDICnat) as part of the international Ocean Circulation and Carbon Cycling (OC3) project. Using selection criteria based on the spatial distance between samples, we find high correlation between δ13CCibnat and δ13CDICnat, confirming earlier work. Regression analyses indicate significant carbonate ion (-2.6 ± 0.4) × 10-3‰/(μmol kg-1) [CO32-] and pressure (-4.9 ± 1.7) × 10-5‰ m-1 (depth) effects, which we use to propose a new global calibration for predicting δ13CDICnat from δ13CCibnat. This calibration is shown to remove some systematic regional biases and decrease errors compared with the one-to-one relationship (δ13CDICnat = δ13CCibnat). However, these effects and the error reductions are relatively small, which suggests that most conclusions from previous studies using a one-to-one relationship remain robust. The remaining standard error of the regression is generally σ ≅ 0.25‰, with larger values found in the southeast Atlantic and Antarctic (σ ≅ 0.4‰) and for species other than Cibicides wuellerstorfi. Discussion of species effects and possible sources of the remaining errors may aid future attempts to improve the use of the benthic δ13C record.

  8. Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of (13) C metabolomics.

    PubMed

    Hillyer, Katie E; Dias, Daniel A; Lutz, Adrian; Roessner, Ute; Davy, Simon K

    2017-03-08

    Coral bleaching is a major threat to the persistence of coral reefs. Yet we lack detailed knowledge of the metabolic interactions that determine symbiosis function and bleaching-induced change. We mapped autotrophic carbon fate within the free metabolite pools of both partners of a model cnidarian-dinoflagellate symbiosis (Aiptasia-Symbiodinium) during exposure to thermal stress via the stable isotope tracer ((13) C bicarbonate), coupled to GC-MS. Symbiont photodamage and pronounced bleaching coincided with substantial increases in the turnover of non(13) C-labelled pools in the dinoflagellate (lipid and starch store catabolism). However, (13) C enrichment of multiple compounds associated with ongoing carbon fixation and de novo biosynthesis pathways was maintained (glucose, fatty acid and lipogenesis intermediates). Minimal change was also observed in host pools of (13) C-enriched glucose (a major symbiont-derived mobile product). However, host pathways downstream showed altered carbon fate and/or pool composition, with accumulation of compatible solutes and nonenzymic antioxidant precursors. In hospite symbionts continue to provide mobile products to the host, but at a significant cost to themselves, necessitating the mobilization of energy stores. These data highlight the need to further elucidate the role of metabolic interactions between symbiotic partners, during the process of thermal acclimation and coral bleaching.

  9. Paleoclimate Reconstruction From the d13C Organic and d13C Carbonate Proxies in Triassic Paleosols and Sediments, Ischigualasto Basin Argentina

    NASA Astrophysics Data System (ADS)

    Moore, K. A.; Tabor, N. J.; Montañez, I. P.; Currie, B.; Shipman, T.

    2001-12-01

    Stable carbon isotopes of organic matter and paleosol carbonate from the Triassic Ischigualasto Formation, Argentina are used as a proxy of paleoatmospheric pCO2 and d13CO2. Carbon and Oxygen isotope values were determined for over 100 Triassic pedogenic carbonate nodules and associated organic matter. The d13C of carbonate ranges from -3.29 per mil to -10.56 per mil. The d13C of organic matter ranges from -21.07 per mil to -24.24 per mil. The Hydrogen and Oxygen indices and TOC values indicate that the best preserved organic matter samples yield the most negative d13C values. Reconstructed pCO2 levels were around 1000 ppm V in the early to mid- Triassic and increased to around 2000 ppm V later in the Triassic. This maximum is followed by a fall in pCO2 in the late Triassic. This previously undocumented rapid change in paleo-CO2 levels likely accompanied the evolution of mammal-like reptiles to true dinosaurs as well as rapid climate change.

  10. Fungal carbon sources in a pine forest: evidence from a 13C-labeled global change experiment

    Treesearch

    Erik A. Hobbie; Kirsten S. Hofmockel; Linda T.A. Van Diepen; Erik A. Lilleskov; Andrew P. Oiumette; Adrien C. Finzi

    2014-01-01

    We used natural abundance 13C:12C (δ13C) and 8 yr of labeling with 13C-depleted CO2 in a Pinus taeda Free Air CO2 Enrichment (FACE) experiment to investigate carbon sources of saprotrophic fungi, ectomycorrhizal...

  11. Quantifying the chemical composition of soil organic carbon with solid-state 13C NMR

    NASA Astrophysics Data System (ADS)

    Baldock, J. A.; Sanderman, J.

    2011-12-01

    The vulnerability of soil organic carbon (SOC) to biological decomposition and mineralisation to CO2 is defined at least partially by its chemical composition. Highly aromatic charcoal-like SOC components are more stable to biological decomposition than other forms of carbon including cellulose. Solid-state 13C NMR has gained wide acceptance as a method capable of defining SOC chemical composition and mathematical fitting processes have been developed to estimate biochemical composition. Obtaining accurate estimates depends on an ability to quantitatively detect all carbon present in a sample. Often little attention has been paid to defining the proportion of organic carbon present in a soil that is observable in solid-state 13C NMR analyses of soil samples. However, if such data is to be used to inform carbon cycling studies, it is critical that quantitative assessments of SOC observability be undertaken. For example, it is now well established that a significant discrimination exists against the detection of the low proton content polyaromatic structures typical of charcoal using cross polarisation 13C NMR analyses. Such discrimination does not exist where direct polarisation analyses are completed. In this study, the chemical composition of SOC as defined by cross polarisation and direct polarisation13C NMR analyses will be compared for Australian soils collected from under a diverse range of agricultural managements and climatic conditions. Results indicate that where significant charcoal C contents exist, it is highly under-represented in the acquired CP spectra. For some soils, a discrimination against alkyl carbon was also evident. The ability to derive correction factors to compensate for such discriminations will be assessed and presented.

  12. (13)C-Labeling the carbon-fixation pathway of a highly efficient artificial photosynthetic system.

    PubMed

    Liu, Chong; Nangle, Shannon N; Colón, Brendan C; Silver, Pamela A; Nocera, Daniel G

    2017-03-15

    Interfacing the CO2-fixing microorganism, Ralstonia eutropha, to the energy derived from hydrogen produced by water splitting is a viable approach to achieving renewable CO2 reduction at high efficiencies. We employ (13)C-labeling to report on the nature of CO2 reduction in the inorganic water splitting|R. eutropha hybrid system. Accumulated biomass in a reactor under a (13)C-enriched CO2 atmosphere may be sampled at different time points during CO2 reduction. Converting the sampled biomass into gaseous CO2 allows the (13)C/(12)C ratio to be determined by gas chromatography-mass spectrometry. After 2 hours of inoculation and the initiation of water splitting, the microbes adapted and began to convert CO2 into biomass. The observed time evolution of the (13)C/(12)C ratio in accumulated biomass is consistent with a Monod model for carbon fixation. Carbon dioxide produced by catabolism was found to be minimal. This rapid response of the bacteria to a hydrogen input and to subsequent CO2 reduction at high efficiency are beneficial to achieving artificial photosynthesis for the storage of renewable energy.

  13. δ13C Analysis of Dissolved Organic Carbon in Eastern Canadian Coastal Waters

    NASA Astrophysics Data System (ADS)

    Gelinas, Y.; Barber, A.

    2016-12-01

    The application of carbon stable isotope analysis on dissolved organic carbon13C-DOC) from natural seawater samples has been limited owing to the difficulty of such analysis, with order of magnitude differences between interfering ions and analyte concentrations. High temperature catalytic oxidation allows for the separation of interferences from the organic carbon by precipitation on quartz chips upstream from the oxidation catalyst. Unlike wet chemical oxidation, where salts inhibit the oxidation of organic matter to CO2 via side reactions between the salt anions and the persulfate oxidizing agent, high temperature combustion ensures complete organic matter oxidation in a stream of O2. Using a programmable chemical trap to switch carrier gasses from O2 to He, the OI 1030C combustion unit can be coupled to and IRMS, allowing for the analysis of low DOC content saline waters with relatively high throughput. The analytical limitations and large water volumes traditionally required for these types of analyses have prevented any large-scale δ13C-DOC studies. Here we present DOC concentrations and δ13C-DOC signatures for surface and bottom waters obtained along Canada's East Coast. Included in the study are samples from the Esquiman channel (between Newfoundland and Labrador), Lake Melville, the Saglek and Nachvak Fjords, the Hudson Strait and finally covering the salinity gradient across the Gulf of the St. Lawrence, the St. Lawrence Estuary and the Saguenay Fjord. Measured δ13C-DOC signatures ranged from predominantly marine values of -21.3 ± 0.6 ‰ (vs. VPDB) off the coast of Newfoundland to predominantly terrestrial signatures of -25.8 ± 0.1‰ in Lake Melville. Overall, proper blank subtraction using the isotope mass balance equation and four replicate injections are crucial for the collection of meaningful high quality δ13C-DOC signatures on natural abundance, seawater samples.

  14. 13C NMR investigations of the metallic state of Li intercalated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Goze-Bac, C.; Mehring, M.; Roth, S.; Bernier, P.

    2003-10-01

    13C Nuclear Magnetic Resonance measurements were performed on pristine and lithium intercalated single wall carbon nanotubes (SWNT). We investigated the NMR signatures by means of static and high resolution Magic Angle Spinning experiments. This allows us to measure in detail the modifications of the lineshape with the Li concentration. Our results can be explained in terms of charge transfer and changes of the metallic state with an increasing density of states at the Fermi level compared to the pristine SWNT.

  15. Organic carbon isotope ratios (δ13C) of Arctic Amerasian Continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Naidu, A. S.; Cooper, L. W.; Finney, B. P.; Macdonald, R. W.; Alexander, C.; Semiletov, I. P.

    2000-09-01

    Organic matter origins are inferred from carbon isotope ratios (δ13C) in recent continental shelf sediments and major rivers from 465 locations from the north Bering-Chukchi-East Siberian-Beaufort Sea, Arctic Amerasia. Generally, there is a cross-shelf increase in δ13C, which is due to progressive increased contribution seaward of marine-derived organic carbon to surface sediments. This conclusion is supported by the correlations between sediment δ13C, OC/N, and δ15N. The sources of total organic carbon (TOC) to the Amerasian margin sediments are primarily from marine water-column phytoplankton and terrigenous C3 plants constituted of tundra taiga and angiosperms. In contrast to more temperate regions, the source of TOC from terrigenous C4 and CAM plants to the study area is probably insignificant because these plants do not exist in the northern high latitudes. The input of carbon to the northern Alaskan shelf sediments from nearshore kelp community (Laminaria solidungula) is generally insignificant as indicated by the absence of high sediment δ13C values (-16.5 to -13.6‰) which are typical of the macrophytes. Our study suggests that the isotopic composition of sediment TOC has potential application in reconstructing temporal changes in delivery and accumulation of organic matter resulting from glacial-interglacial changes in sea level and environments. Furthermore, recycling and advection of the extensive deposits of terrestrially derived organic matter from land, or the wide Amerasian margin, could be a mechanism for elevating total CO2 and pCO2 in the Arctic Basin halocline.

  16. Neoproterozoic diamictite-cap carbonate succession and δ13C chemostratigraphy from eastern Sonora, Mexico

    USGS Publications Warehouse

    Corsetti, Frank A.; Stewart, John H.; Hagadorn, James W.

    2007-01-01

    Despite the occurrence of Neoproterozoic strata throughout the southwestern U.S. and Sonora, Mexico, glacial units overlain by enigmatic cap carbonates have not been well-documented south of Death Valley, California. Here, we describe in detail the first glaciogenic diamictite and cap carbonate succession from Mexico, found in the Cerro Las Bolas Group. The diamictite is exposed near Sahuaripa, Sonora, and is overlain by a 5 m thick very finely-laminated dolostone with soft sediment folds. Carbon isotopic chemostratigraphy of the finely-laminated dolostone reveals a negative δ13C anomaly (down to − 3.2‰ PDB) characteristic of cap carbonates worldwide. Carbon isotopic values rise to + 10‰ across ∼ 400 m of section in overlying carbonates of the Mina el Mezquite and Monteso Formations. The pattern recorded here is mostly characteristic of post-Sturtian (ca. ≤ 700 Ma), but pre-Marinoan (ca. ≥ 635 Ma) time. However, the Cerro Las Bolas Group shares ambiguity common to most Neoproterozoic successions: it lacks useful radiometric age constraints and biostratigraphically useful fossils, and its δ13C signature is oscillatory and therefore somewhat equivocal.

  17. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination

    NASA Astrophysics Data System (ADS)

    Lehmeier, Christoph A.; Ballantyne, Ford, IV; Min, Kyungjin; Billings, Sharon A.

    2016-06-01

    Understanding how carbon dioxide (CO2) flux from ecosystems feeds back to climate warming depends in part on our ability to quantify the efficiency with which microorganisms convert organic carbon (C) into either biomass or CO2. Quantifying ecosystem-level respiratory CO2 losses often also requires assumptions about stable C isotope fractionations associated with the microbial transformation of organic substrates. However, the diversity of organic substrates' δ13C and the challenges of measuring microbial C use efficiency (CUE) in their natural environment fundamentally limit our ability to project ecosystem C budgets in a warming climate. Here, we quantify the effect of temperature on C fluxes during metabolic transformations of cellobiose, a common microbial substrate, by a cosmopolitan microorganism growing at a constant rate. Biomass C specific respiration rate increased by 250 % between 13 and 26.5 °C, decreasing CUE from 77 to 56 %. Biomass C specific respiration rate was positively correlated with an increase in respiratory 13C discrimination from 4.4 to 6.7 ‰ across the same temperature range. This first demonstration of a direct link between temperature, microbial CUE, and associated isotope fluxes provides a critical step towards understanding δ13C of respired CO2 at multiple scales, and towards a framework for predicting future ecosystem C fluxes.

  18. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination

    NASA Astrophysics Data System (ADS)

    Lehmeier, C. A.; Ballantyne, F., IV; Min, K.; Billings, S. A.

    2015-10-01

    Understanding how carbon dioxide (CO2) flux from soils feeds back to climate warming depends in part on our ability to quantify the efficiency with which microorganisms convert soil organic carbon (C) into either biomass or CO2. Quantifying ecosystem-level respiratory CO2 losses often also requires assumptions about stable C isotope fractionations associated with the microbial transformation of soil organic substrates. However, the diversity of organic substrates' δ13C and the challenges of measuring microbial C use efficiency (CUE) in soils fundamentally limit our ability to project soil, and thus ecosystem, C budgets in a warming climate. Here, we quantify the effect of temperature on C fluxes during metabolic transformations of cellobiose, a common microbial substrate, by a cosmopolitan soil microorganism growing at a constant rate. Specific respiration rate increased by 250 % between 13 and 26.5 °C, decreasing CUE from 77 to 56 %. Specific respiration rate was positively correlated with an increase in respiratory 13C discrimination from 4.4 to 6.7 ‰ across the same temperature range. This first demonstration of a direct link between temperature, microbial CUE and associated isotope fluxes provides a critical step towards understanding δ13C of respired CO2 at multiple scales, and towards a framework for predicting future soil C fluxes.

  19. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  20. A novel method for concurrent measurements of dissolved inorganic carbon concentration and its carbon isotope composition δ13C

    NASA Astrophysics Data System (ADS)

    Huang, K.; Cai, W. J.; Kim-Hak, D.; Jonsson, B. F.

    2016-02-01

    The concentration of dissolved inorganic carbon ([DIC]) and its stable carbon isotopic composition (δ13C) in the surface ocean are key to studying the important processes in the carbon cycle, e.g., photosynthesis and respiration, calcification, water mass mixing, and, in particularly, the Suess effect as well as the penetration of anthropogenic carbon into the surface ocean and the subsequent ocean acidification. Real-time, shipboard measurements of these properties are highly desired. Here we present a new method that concurrently measures [DIC] and δ13C of DIC in the surface ocean. The method couples sample acidification and delivery techniques (Apollo Scitech) with a cavity ring-down spectrometer (CRDS, Picarro), and works automatically to analyzer samples at the throughput of 8 minutes/sample. In each sampling cycle, a syringe pump withdraws a fixed volume of phosphoric acid and seawater sample, and injects them slowly into a reaction chamber where they were mixed. In the meantime, the CO2 evolved from the acidified sample is purged by a CO2-free gas flow into a CRDS carbon isotope analyzer for measurements of the CO2 concentration and δ13C-CO2. The concurrent injection, acidification, and purging yield a broad, flat peak of CO2 which is precisely and frequently measured by the CRDS analyzer. [DIC] and δ13C can then be calculated by integrating the concentration and δ13C of the CO2 peak. The precision of the [DIC] and δ13C is <0.15% (3 mmol kg-1 when [DIC] = 2000 μmol kg-1), and <0.1‰, relatively. The system is automated to run continuously onboard a research vessel as well as discrete samples in a lab environment.

  1. 13C-engineered carbon quantum dots for in vivo magnetic resonance and fluorescence dual-response.

    PubMed

    Xu, Yang; Li, Yu-Hao; Wang, Yue; Cui, Jian-Lin; Yin, Xue-Bo; He, Xi-Wen; Zhang, Yu-Kui

    2014-10-21

    (13)C-engineered carbon quantum dots ((13)C-QDs) were used as magnetic resonance (MR) and fluorescence dual-response probe. The enhanced (13)C-MR signal was observed at 171 ppm from carboxylic and carboxyl carbons in (13)C-QDs with 160-fold improvement on signal-to-noise ratio even when no hyperpolarization was applied, whereas the intrinsic fluorescence of C-QDs was still maintained. The stable MR and fluorescence dual-response was successfully used for long-term observation of zebrafish embryonic development. Cross-validation between MR and fluorescence confirmed the distribution of (13)C-QD in zebrafish. (13)C-MR provides specific information about the presence, magnitude, and progression of (13)C-QDs by defining MR intensity, whereas fluorescence reveals the location of (13)C-QDs with its high sensitivity. (13)C-MR and fluorescence was simultaneously observed within (13)C-QDs, and this work may expand the applications of isotope-engineered nanomaterials.

  2. Model description of photonuclear 13C(γ, p)12B activation detection of carbon

    NASA Astrophysics Data System (ADS)

    Dzhilavyan, L. Z.; Pokotilovski, Yu. N.

    2017-09-01

    A model description of the activation detection of carbon with the use of registering 12B-activity produced in a graphite target by a beam of electrons with an energy of 50 MeV due to the photonuclear reaction 13C(γ, p) is presented. This description is carried out with consideration for the influence of the main background process related to the generation of potoneutrons under radiation and secondary background γ' quanta caused by them. A satisfactory agreement with experimental results is obtained taking into account the incompleteness of data on the conditions of these experiments.

  3. Evaluating North Sea carbon sources using radiogenic (224Ra and 228Ra) and stable carbon isotope (DI13C) tracers

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Paetsch, Johannes; Clargo, Nikki

    2015-04-01

    In the North Sea, much uncertainty still exists regarding the role of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) in the overall biogeochemical cycling of the system. The stable carbon isotope signature of dissolved inorganic carbon13C-DIC) is a common tool for following transformations of carbon in the water column and identifying carbon sources and sinks. Here, analyses of the first basin-wide observations of δ13C-DIC reveal that a balance between biological production and respiration, as well as a freshwater input near the European continental coast, predominantly control surface distributions in the North Sea. A strong relationship between the biological component of DIC (DICbio) and δ13C-DIC is then used to quantify the metabolic DIC flux associated with changes in the carbon isotopic signature. Correlations are also found between δ13C-DIC and naturally-occurring Radium isotopes (224Ra and 228Ra), which have well-identified sources from the seafloor and coastal boundaries. The relationship between δ13C-DIC and the longer-lived 228Ra isotope (half-life = 5.8 years) is used to derive a metabolic DIC flux from the European continental coastline. 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (TA) compared to the more conventional use of salinity as a tracer. Coastal alkalinity inputs are calculated using relationships with 228Ra, and ratios of DIC and TA suggest denitrification as the main metabolic pathway for the formation of these coastal inputs. Finally, coastal TA inputs are translated into inputs of protons to quantify their impact on the buffering capacity of the Southern North Sea.

  4. Silicate or Carbonate Weathering: Fingerprinting Sources of Dissolved Inorganic Carbon Using δ13C in a Tropical River, Southern India

    NASA Astrophysics Data System (ADS)

    Bhagat, H.; Ghosh, P.

    2015-12-01

    Rivers are an inherently vital resource for the development of any region and their importance is highlighted by the presence of many ancient human civilizations adjacent to river systems. δ13C - Si/HCO3 systematics has been applied to large south Indian rivers which drain the Deccan basaltic traps in order to quantify their relative contributions from silicate and carbonate weathering. This study investigates δ13C - Si/HCO3 systematics of the Cauvery River basin which flows through silicate lithology in the higher reaches and carbonate lithology with pedogenic and marine carbonates dominating the terrain in the lower reaches of the basin. The samples for the present study were collected at locations within the watershed during Pre-Monsoon and Monsoon Season 2014. The measurements of stable isotope ratios of δ13CDIC and were accomplished through a Thermo Scientific GasBench II interface connected to a MAT 253 IRMS. We captured a large spatial variation in δ13C and Si/HCO3 values during both seasons; Pre-Monsoon δ13C values ranges between -17.57‰ to -4.02‰ and during Monsoon it varies between -9.19‰ to +0.61‰. These results indicate a two end-member mixing component i.e. a silicate and a carbonate end member; governing the weathering interactions of the Cauvery River. Within the drainage basin, we identified silicate and carbonate dominating sources by using contributions of DIC and δ13C. Si/HCO3 values for Pre-Monsoon ranges between 0.028 - 0.67 and for Monsoon it varies between 0.073 - 0.80. Lighter δ13C composition was observed at sampling sites at higher altitude in contrast to sampling sites at flood plain which show relatively enriched δ13C which indicate mixing of soil derived CO2 with C4 plants. Result suggests dominance of carbonate weathering during the Monsoon Period, while silicate weathering is pronounced during Pre- Monsoon period.

  5. {sup 13}C-enrichment at carbons 8 and 2 of uric acid after {sup 13}C-labeled folate dose in man

    SciTech Connect

    Baggott, Joseph E.; Gorman, Gregory S.; Morgan, Sarah L.; Tamura, Tsunenobu . E-mail: tamurat@uab.edu

    2007-09-21

    To evaluate folate-dependent carbon incorporation into the purine ring, we measured {sup 13}C-enrichment independently at C{sub 2} and C{sub 8} of urinary uric acid (the final catabolite of purines) in a healthy male after an independent oral dose of [6RS]-5-[{sup 13}C]-formyltetrahydrofolate ([6RS]-5-H{sup 13}CO-H{sub 4}folate) or 10-H{sup 13}CO-7,8-dihydrofolate (10-H{sup 13}CO-H{sub 2}folate). The C{sub 2} position was {sup 13}C-enriched more than C{sub 8} after [6RS]-5-H{sup 13}CO-H{sub 4}folate, and C{sub 2} was exclusively enriched after 10-H{sup 13}CO-H{sub 2}folate. The enrichment of C{sub 2} was greater from [6RS]-5-H{sup 13}CO-H{sub 4}folate than 10-H{sup 13}CO-H{sub 2}folate using equimolar bioactive doses. Our data suggest that formyl C of [6RS]-10-H{sup 13}CO-H{sub 4}folate was not equally utilized by glycinamide ribotide transformylase (enriches C{sub 8}) and aminoimidazolecarboxamide ribotide (AICAR) transformylase (enriches C{sub 2}), and the formyl C of 10-H{sup 13}CO-H{sub 2}folate was exclusively used by AICAR transformylase. 10-HCO-H{sub 2}folate may function in vivo as the predominant substrate for AICAR transformylase in humans.

  6. Experimental 25Mg and 13C NMR and Computational Modeling Studies of Amorphous Mg-Ca Carbonates

    NASA Astrophysics Data System (ADS)

    Singer, J. W.; Yazaydin, A. O.; Kirkpatrick, R. J.; Saharay, M.; Bowers, G. M.

    2012-12-01

    Nuclear magnetic resonance (NMR) spectroscopy of synthetic Mg-Ca amorphous carbonates (AMC-ACC) provides direct, element specific structural information about these complicated phases. The 13C, 25Mg, and 43Ca resonances are typically broad and span the chemical shift ranges of all the crystalline polymorphs in the Ca-Mg-CO3-H2O system. In a fashion similar to our previous analysis of 43Ca NMR results for ACC,1 here we integrate new experimental 13C and 25Mg spectra obtained at 20T for samples with Mg/(Ca+Mg) ratios from x=0 to x=1 with quantum chemical calculations of the NMR parameters of the crystalline phases using CASTEP calculations, simulations of the spectra using the SIMPSON software, and classical molecular dynamics calculations. XRD and 13C NMR results are in general agreement with the one-phase/two-phase model of ACC-AMC derived from thermochemical work by others.2 13C-NMR spectra of amorphous materials having intermediate compositions can not be completely fit by mechanical mixing of ACC and AMC end members—requiring a degree of Ca/Mg solid solution. Amorphous samples in two-phase region crystallize to assemblages of dolomite-like (x~0.5) and hydromagnesite-like (x~1) defective structures, but we also observe aragonite co-nucleation in the presence of excess water, indicative of a more complex evolution. While 43Ca NMR of X-ray amorphous materials shows featureless, symmetric, Gaussian line shapes, the large quadrupole moment of 25Mg gives rise to superposition of several quadrupolar line shapes representing different local structural environments. Singularities of static Mg spectra are best explained by local environments similar to nequehonite, hydromagnesite, and landsfordite. The spectra can not exclude minor contributions from anhydrous phases dolomite, huntite, and magnesite. Additional sites having very large quadrupolar coupling and/or site asymmetry are not explained by any known reference phases. CITATIONS (1) Singer, J. W.; Yazaydin, A. O

  7. Carbon isotope ratio (13C/12C) of pine honey and detection of HFCS adulteration.

    PubMed

    Çinar, Serap B; Ekşi, Aziz; Coşkun, İlknur

    2014-08-15

    Carbon isotope ratio ((13)C/(12)C=δ(13)C) of 100 pine honey samples collected from 9 different localities by Mugla region (Turkey) in years 2006, 2007 and 2008 were investigated. The δ(13)Cprotein value of honey samples ranged between -23.7 and -26.6‰, while the δ(13)Choney value varied between -22.7 and -27‰. For 90% of the samples, the difference in the C isotope ratio of protein and honey fraction (δ(13)Cpro-δ(13)Chon) was -1.0‰ and/or higher. Therefore, it can be said that the generally anticipated minimum value of C isotope difference (-1.0‰) for honey is also valid for pine honey. On the other hand, C4 sugar value (%), which was calculated from the δ(13)Cpro-δ(13)Chon difference, was found to be linearly correlated with the amount of adulterant (HFCS) in pine honey. These results indicate that C4 sugar value is a powerful criteria for detecting HFCS adulteration in pine honey. The δ(13)Choney and δ(13)Cprotein-δ(13)Choney values of the samples did not show any significant differences in terms of both year and locality (P>0.05), while the δ(13)Cprotein values showed significant differences due to year (P<0.05) but not due to locality (P>0.05).

  8. Study of E/Z isomerization of (arylamino)methylidenefuran-2(3H)-ones by (1) H, (13) C, (15) N spectroscopy and DFT calculations in different solvents.

    PubMed

    Osipov, Alexander K; Anis'kov, Alexander A; Grinev, Vyacheslav S; Yegorova, Alevtina Yu

    2017-08-01

    The structure and configuration of the series of previously unknown arylaminomethylidenefuran-2(3H)-ones have been determined in solution by (1) H, (13) C, (15) N nuclear magnetic resonance spectroscopy including two-dimensional experiments such as (1) H─(1) H COSY, dqCOSY, (1) H─(13) C HSQC, (1) H─(13) C HMBC. It was found that synthesized substances exist as an equilibrium mixture of E- and Z-enamines in solution. It was established on the basis of density functional theory calculations that the exchange between the two push-pull enamines is a simple rotation around an exocyclic partial double bond that depends on the effect of the solvents. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. What do carbonate δ13C variations tell us about the evolution of the marine environmental conditions vs. life?

    NASA Astrophysics Data System (ADS)

    Ridgwell, A.

    2016-12-01

    Each end of the Proterozoic Eon (2500-542 Ma) sees the occurrence of extended intervals in which unusually large (compared to the Dullville record of the Phanerozoic) fluctuations in the carbon isotopic (δ13C) values recorded in marine carbonates. These variations presumably must reflect fundamental changes occurring in the global carbon cycle (although some point to diagenesis as the elephant in the outcrop), yet the nature of these, and their relationship to e.g. extreme climatic fluctuations and occurrence of quasi global scale ice ages, is unknown. Here I outline a new interpretation that is in theory able to account for much of the observed Proterozoic δ13C variability and potentially linking it to transitions in the oxidation state of the surficial Earth via changes in ocean pH. I illustrate how this all works by considering the evolution of global carbon cycling in the immediate aftermath of Marinoan glaciation, in an Earth system model (`cGENIE'), elucidating the process that together account for the enigmatic cap carbonate δ13C (negative excursion) signature. If even partially correct, such an interpretation of Proterozoic carbonate δ13C variability suggests an even more unstable and variable evolution of redox state than previously thought and sheds a new light on the utility of carbonate δ13C as a proxy.

  10. Enhancing the Accuracy of Carbonate δ18O and δ13C Measurements by SIMS

    NASA Astrophysics Data System (ADS)

    Orland, I. J.; Kozdon, R.; Linzmeier, B.; Wycech, J.; Sliwinski, M.; Kitajima, K.; Kita, N.; Valley, J. W.

    2015-12-01

    The precision and accuracy of carbonate δ18O & δ13C analysis by multicollector SIMS is well established if standards match samples in structure and major/minor element chemistry. However, low-T- and bio-carbonates used to construct paleoclimate archives can include complex internal structures and some samples analyzed at WiscSIMS (and other SIMS labs) have a consistent, sample-dependent offset between average SIMS δ18O measurements and bulk δ18O analyses by phosphoric-acid digestion. The offset is typically <1‰, but recent work has discovered samples where the offset is greater — up to 1.8‰ (average SIMS δ18O values < corresponding conventional measurements). Notably, δ13C offsets have not been observed even in samples with a δ18O offset. We conducted tests to characterize the δ18O offset in different low-T carbonate materials. Multiple potential causes were examined: perhaps the measured offset is real and conventional analyses include material that SIMS excludes (and vice versa); analytical errors and inter-lab (mis)calibration; depth-profiling effects; porosity; and the effects of variable minor element composition. One explanation implicates water and/or organic matter within carbonate that is ionized during SIMS analysis, but sometimes removed for bulk analysis. Two diagnostic tools help monitor such contaminants during SIMS analysis: 1) simultaneous measurement of [16O1H], and 2) secondary ion yield. Offsets of 0.3 to 1.8‰ in δ18O correlate to [16O1H] for 7 studies of Nautilus, foraminifera, pteropods and speleothems. Offsets were not observed in all foraminifera. For Nautilus, foraminifera, otoliths, and speleothems we also tested pre-treatment techniques (e.g. vacuum roasting, hydrogen peroxide), for which there is no agreed procedure in conventional bulk analyses. For SIMS analyses, pre-treatments had varied influence on the δ18O value, [16O1H], the concentration of "organic markers" like 12C14N and 31P, and mineralogy (of aragonite

  11. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  12. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    NASA Astrophysics Data System (ADS)

    Alexandre, A.; Balesdent, J.; Cazevieille, P.; Chevassus-Rosset, C.; Signoret, P.; Mazur, J.-C.; Harutyunyan, A.; Doelsch, E.; Basile-Doelsch, I.; Miche, H.; Santos, G. M.

    2015-12-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in which extent organic C absorbed by grass roots, under the form of either intact amino acids (AAs) or microbial metabolites, can feed the organic C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled AAs to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C-excess and 15N-excess) in the roots, stems and leaves, and phytoliths, as well as the 13C-excess in AAs extracted from roots and stems and leaves, were quantified relatively to a control experiment in which no labelled AAs were added. The net uptake of 13C derived from the labeled AAs supplied to the nutritive solution (AA-13C) by Festuca arundinacea represented 4.5 % of the total AA-13C supply. AA-13C fixed in the plant represented only 0.13 % of total C. However, the experimental conditions may have underestimated the extent of the process under natural and field conditions. Previous studies showed that 15N and 13C can be absorbed by the roots in several organic and inorganic forms. In the present experiment, the fact that phenylalanine and methionine, that were supplied in high amount to the nutritive solution, were more 13C-enriched than other AAs in the roots and stems and leaves strongly suggested that part of AA-13C was absorbed and translocated in its original AA form. The concentration of AA-13C represented only 0.15 % of the

  13. Carbon Transfer from the Host to Tuber melanosporum Mycorrhizas and Ascocarps Followed Using a 13C Pulse-Labeling Technique

    PubMed Central

    Le Tacon, François; Zeller, Bernd; Plain, Caroline; Hossann, Christian; Bréchet, Claude; Robin, Christophe

    2013-01-01

    Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with 13CO2. The transfer of 13C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little 13C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated 13C prior to ascocarp development. Then, the mycorrhizas transferred 13C to the ascocarps to provide constitutive carbon (1.7 mg of 13C per day). The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season) came from the host. PMID:23741356

  14. Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique.

    PubMed

    Le Tacon, François; Zeller, Bernd; Plain, Caroline; Hossann, Christian; Bréchet, Claude; Robin, Christophe

    2013-01-01

    Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with (13)CO2. The transfer of (13)C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little (13)C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated (13)C prior to ascocarp development. Then, the mycorrhizas transferred (13)C to the ascocarps to provide constitutive carbon (1.7 mg of (13)C per day). The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season) came from the host.

  15. Density Functional Studies of the 13C NMR Chemical Shifts in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Zurek, Eva; Autschbach, Jochen

    2007-12-01

    Density functional theory has been used to compute the electronic structure and 13C NMR chemical shifts of finite (9,0) single-walled carbon nanotubes (SWNTs) capped with fullerene hemispheres and with hydrogen atoms. The chemical shifts and HOMO-LUMO gaps were found to be dependent upon the mode of capping. The shifts of semiconducting and metallic tubes were estimated as being around 130 ppm and 141 ppm, respectively. Periodic boundary calculations on infinite zigzag (n,0) SWNTs with 7⩽n⩽17 were performed. These entities can be characterized by a family index, λ = mod(n,3), and the chemical shifts can be fitted well by a function inversely proportional to the diameter of the tube and proportional to a constant which depends on the nanotube family. Direct comparison of the molecular and periodic approaches can be made if benzene is used as the internal reference. Such a comparison indicates that capping may have a strong effect on the computed properties. Calculations on infinite zigzag (7⩽n⩽10) amine functionalized SWNTs have been performed. The functional group may react with a C-C bond which is parallel or diagonal to the tube axis and both sites have been considered. The shifts of the carbons directly attached to the group are sensitive to the bond which has been functionalized and may therefore be used to discriminate between the two products. Functionalization induces a significant line broadening of the NMR signals but it does not dramatically change the average shift of the unfunctionalized SWNT carbons.

  16. 13C nuclear magnetic resonance and gas chromatography-mass spectrometry studies of carbon metabolism in the actinomycin D producer Streptomyces parvulus by use of 13C-labeled precursors.

    PubMed

    Inbar, L; Lapidot, A

    1991-12-01

    Fructose and glutamate metabolism was monitored in cell suspensions of streptomyces parvulus by 13C nuclear magnetic resonance. The experiments were performed for cells grown with various 13C sources in a growth medium containing D-[U-13C]fructose, L-[13C]glutamate, or L-[U-13C]aspartate and with nonlabeled precursors to compare intracellular pools in S. parvulus cells at different periods of the cell life cycle. The transport of fructose into the cells was biphasic in nature; during rapid transport, mannitol, fructose, and glucose 6-phosphate were accumulated intracellularly, whereas during the passive diffusion of fructose, the intracellular carbohydrate pool comprised mainly trehalose (1,1'-alpha-alpha-D-glucose). The regulation of fructokinase activity by the intracellular intermediates may play an important role in fructose catabolism in S. parvulus. Transaldolase activity in S. parvulus was determined from the 13C nuclear magnetic resonance labeling pattern of trehalose carbons obtained from cells grown in medium containing either L-[U-13C]aspartate or L-[U-13C]glutamate. Only carbons 4, 5, and 6 of the disaccharide were labeled. Isotopomer analysis of the trehalose carbons led us to conclude that the flux through the reverse glycolytic pathway, condensation of glyceraldehyde 3-phosphate with dihydroxyacetone phosphate, makes at best a minor contribution to the 13C-labeled glucose units observed in trehalose. The pentose pathway and transaldolase activity can explain the labeling pattern of 4,5,6-13C3 of trehalose. Moreover, the transfer of the 13C label of L-[U-13C]aspartate into the different isotopomers of trehalose C4, C5, and C6 by the transaldolase activity allowed us to calculate the relative fluxes from oxaloacetate via gluconeogenesis and through the tricarboxylic acid cycle. The ratio of the two fluxes is approximately 1. However, the main carbon source for trehalose synthesis in S. parvulus is fructose and not glutamate or aspartate. The 13C

  17. {sup 13}C chemical shift anisotropies for carbonate ions in cement minerals and the use of {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR in studies of Portland cement including limestone additions

    SciTech Connect

    Sevelsted, Tine F.; Herfort, Duncan

    2013-10-15

    {sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.

  18. Apportioning carbon sources of authigenic carbonate of extremely 13C-depleted foraminifera from the western North Pacific sediments: Implication from the coupled 13C and 14C isotopic mass balance approach

    NASA Astrophysics Data System (ADS)

    Uchida, M.; Ohkushi, K.; Ahagon, N.; Kimoto, K.; Inagaki, F.; Shibata, Y.

    2005-12-01

    Recently, Uchida et al. (G-cubed, 2004) and Ohkushi et al. (G-cubed, 2005) interprete /delta 13C variations of planktonic and benthic foraminifera found in Last Glacial sediments in off Shimokita Peninsula and Tokachi as evidence for periodic releases of methane, arising from the dissociation of methane hydrate, and its subsequent oxidation in bottom- and/or surface-water environments. According to recent observations of anomalous bottom-simulating reflections, northwest Pacific marginal sediments around Japan main islands bear large abundances of methane hydrate. In this study, analyzed piston cores (42° 21.42' N, 144° 13.36' E) at a water depth 1066-m was retrieved from the off Tokachi continental slope in the Oyashio current region, where recently is found to bear immense amounts of methane hydrate. The piston core covered past 22 ka with high-resolution. Here we showed that carbon isotope signals indicated that planktonic and benthic foraminifera in several glacial sediment layers in the core were highly depleted in13 C; both the planktonic and benthic foraminiferal /delta 13C values ranged from about -10/permil to -2/permil. Most foraminiferal tests in these horizons were brown as a result of postdepositional alteration. Foraminiferal oxygen isotopes fluctuated abnormally in the glacial sediment layers, showing small (about 0.5/permil) positive shifts relative to normal glacial values. We attributed the positive shifts to authigenic carbonate formation in the foraminiferal tests. In order to decipher the relation between foraminifera carbon isotopic signal and methane release from the seafloor, we have apportioned carbon sources (methane from methane hydrate or not) of foraminiferal carbon isotopic anomalies using dual mass balance isotopic model (14C/ 12C and 13C/ 12C). It has been suggested that sulfate-dependent anaerobic methane oxidation (AOM) dominates carbon oxidation and attendant authigenic carbonate precipitation to foraminifera. To this assumption

  19. Analysis and theoretical modeling of 18O enriched carbon dioxide spectrum by CRDS near 1.35 μm: (II) 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O

    NASA Astrophysics Data System (ADS)

    Karlovets, E. V.; Campargue, A.; Kassi, S.; Tashkun, S. A.; Perevalov, V. I.

    2017-04-01

    This contribution is the second part of the analysis of the room temperature absorption spectrum of 18O enriched carbon dioxide by very high sensitivity Cavity Ring Down spectroscopy between 6977 and 7918 cm-1 (1.43-1.26 μm). Overall, more than 8600 lines belonging to 166 bands of eleven carbon dioxide isotopologues were rovibrationnally assigned. In a first part (Kassi et al. J Quant Spectrosc Radiat Transfer 187 (2017) 414-425, http://dx.doi.org/10.1016/j.jqsrt.2016.09.002), the results relative to mono-substituted isotopologues, 16O12C18O, 16O12C17O, 12C16O2 and 13C16O2, were presented. This second contribution is devoted to the multiply-substituted isotopologues or clumped isotopologues of particular importance in geochemistry: 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O. On the basis of the predictions of effective Hamiltonian models, a total of 3195 transitions belonging to 73 bands were rovibrationnally assigned for these seven species. Among the 73 observed bands, 55 are newly reported. All the identified bands correspond to ΔP=10 and 11 series of transitions, where P= 2V1+V2+3V3 is the polyad number (Vi are vibrational quantum numbers). The accurate spectroscopic parameters of 70 bands have been determined from the standard band-by-band analysis. Global fits of the measured line intensities of the ΔP=10 series of transitions of 17O12C18O and 16O13C18O and of the ΔP=11 series of transitions of 12C18O2, 17O12C18O, 16O13C18O and 13C18O2 were performed to determine the corresponding sets of the effective dipole moment parameters.

  20. 13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland

    PubMed

    Rosing

    1999-01-29

    Turbiditic and pelagic sedimentary rocks from the Isua supracrustal belt in west Greenland [more than 3700 million years ago (Ma)] contain reduced carbon that is likely biogenic. The carbon is present as 2- to 5-micrometer graphite globules and has an isotopic composition of delta13C that is about -19 per mil (Pee Dee belemnite standard). These data and the mode of occurrence indicate that the reduced carbon represents biogenic detritus, which was perhaps derived from planktonic organisms.

  1. The signature of the 13C/12C of dissolved inorganic carbon in the Strait of Gibraltar: a mixing case

    NASA Astrophysics Data System (ADS)

    Huertas, E.; Flecha, S.; Navarro, G.; Ruiz, J.; Stutsman, J.; Quay, P.

    2012-12-01

    The Strait of Gibraltar is a narrow and shallow channel that connects the Mediterranean Sea with the Atlantic Ocean. Previous studies have revealed that the water exchange pattern through the Strait plays an important role in the biogeochemical budgets of the Mediterranean and the North Atlantic. In particular, carbon fluxes in this area significantly contribute to the total carbon inventory of the North Atlantic, as the entrance of surface young Atlantic anthropogenic CO2 (CANT) rich waters into the Mediterranean through the Strait alleviates the accumulation of CANT in the former (Flecha et al., 2012). Recently, a carbon budget in the Strait was released, which shows the transport of the different species of carbon between the two water masses that encounter in this region (Huertas et al., 2009). However, the 13C/12C ratio (expressed as δ13C) of the total dissolved inorganic carbon (DIC) contained in both water types, which is a useful tracer of CO2 derived from fossil fuel and deforestation sources, had not been examined up to date. This work presents the first δ13C measurements in the Strait of Gibraltar using data collected in two oceanographic campaigns conducted in November 2011 and February 2012. The δ13C of the DIC was measured using the procedures described in Quay et al., (2003). Results obtained were also compared with other biogeochemical parameters recorded in the area, such as the apparent oxygen utilization (AOU) and nutrients. The spatial distribution of δ13C indicates that the Atlantic inflow (AI), as expected, presents higher values (maximum of 1.06 ‰) of the tracer in relation to the Mediterranean outflow (MOW) (minimum of 0.5 ‰) due to the enhanced biological activity in surface waters. This pattern leads to a net vertical δ13C loss equivalent to -19 ‰ in the water column. In addition, the relationship between AOU and δ13C reflects that the deep MOW is strongly influenced by the remineralization of organic matter that occurs in the

  2. Historical oceanographic events reflected in13C/12C ratio of total organic carbon in laminated Santa Barbara Basin Sediment

    NASA Astrophysics Data System (ADS)

    Schimmelmann, Arndt; Tegner, Mia J.

    1991-06-01

    An 1844-1987 time series of carbon stable isotope ratios from dated sedimentary total organic carbon (TOC) from the center of the Santa Barbara Basin (SBB) is compared with historical climate and oceanographic records. Four isotopically distinct biogeochemical sources of TOC are important: phytoplankton-derived marine biomass, macroalgal biomass from kelp forests, terrigenous biomass (mainly flushed into the SBB via river discharge), and redeposited fossil organic carbon. The significance of the latter two sources is largely limited to a few unusual flood and oil spill events, whereas the combination of 13C-depleted phytoplankton and 13C-enriched macroalgal biomass appears to be responsible for most of the isotopic variance of the marine coastal biomass as recorded in sedimentary TOC. The isotopic response of marine organic carbon in sediments records strong El Niño-Southern Oscillation (ENSO) and the frequently associated severe storm and wave events in SBB varved sediments. The plausible major isotopic mechanisms are (1) increased physical liberation of 13C-enriched kelp carbon from locally abundant giant kelp (Macrocystis spp.) forests during times of physical and environmental stress, and (2) decreased productivity of 13C-depleted phytoplankton during ENSO events.

  3. Interpreting the 13C / 12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Xu, Jiaping; Lee, Xuhui; Xiao, Wei; Cao, Chang; Liu, Shoudong; Wen, Xuefa; Xu, Jingzheng; Zhang, Zhen; Zhao, Jiayu

    2017-03-01

    Observations of atmospheric CO2 mole fraction and the 13C / 12C ratio (expressed as δ13C) in urban airsheds provide constraints on the roles of anthropogenic and natural sources and sinks in local and regional carbon cycles. In this study, we report observations of these quantities in Nanjing at hourly intervals from March 2013 to August 2015, using a laser-based optical instrument. Nanjing is the second largest city located in the highly industrialized Yangtze River Delta (YRD), eastern China. The mean CO2 mole fraction and δ13C were (439.7 ± 7.5) µmol mol-1 and (-8.48 ± 0.56) ‰ over this observational period. The peak monthly mean δ13C (-7.44 ‰, July 2013) was 0.74 ‰ higher than that observed at Mount Waliguan, a WMO (World Meteorological Organization) baseline site on the Tibetan Plateau and upwind of the YRD region. The highly 13C-enriched signal was partly attributed to the influence of cement production in the region. By applying the Miller-Tans method to nighttime and daytime observations to represent signals from the city of Nanjing and the YRD, respectively, we showed that the 13C / 12C ratio of CO2 sources in the Nanjing municipality was (0.21 ± 0.53) ‰ lower than that in the YRD. Flux partitioning calculations revealed that natural ecosystems in the YRD were a negligibly small source of atmospheric CO2.

  4. Variations in growth, survival and carbon isotope composition (delta(13)C) among Pinus pinaster populations of different geographic origins.

    PubMed

    Correia, Isabel; Almeida, Maria Helena; Aguiar, Alexandre; Alía, Ricardo; David, Teresa Soares; Pereira, João Santos

    2008-10-01

    To evaluate differences in growth and adaptability of maritime pine (Pinus pinaster Ait.), we studied growth, polycyclism, needle tissue carbon isotope composition (delta(13)C) as an estimate of water-use efficiency (WUE) and survival of seven populations at 10 years of age growing in a performance trial at a provenance test site in Escaroupim, Portugal. Six populations were from relatively high rainfall sites in Portugal and southwestern France (Atlantic group), and one population was from a more arid Mediterranean site in Spain. There were significant differences between some populations in total height, diameter at breast height, delta(13)C of bulk needle tissue, polycyclism and survival. A population from central Portugal (Leiria, on the Atlantic coast) was the tallest and had the lowest delta(13)C. Overall, the variation in delta(13)C was better explained by the mean minimum temperatures of the coldest month than by annual precipitation at the place of origin. Analyses of the relationships between delta(13)C and growth or survival revealed a distinct pattern for the Mediterranean population, with low delta(13)C (and WUE) associated with the lowest growth potential and reduced survival. There were significant negative correlations between delta(13)C and height or survival in the Atlantic group. Variation in polycyclism was correlated with annual precipitation at the place of origin. Some Atlantic populations maintained a high growth potential while experiencing moderate water stress. A detailed knowledge of the relationships between growth, survival and delta(13)C in contrasting environments will enhance our ability to select populations for forestry or conservation.

  5. Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    NASA Astrophysics Data System (ADS)

    Alexandre, Anne; Balesdent, Jérôme; Cazevieille, Patrick; Chevassus-Rosset, Claire; Signoret, Patrick; Mazur, Jean-Charles; Harutyunyan, Araks; Doelsch, Emmanuel; Basile-Doelsch, Isabelle; Miche, Hélène; Santos, Guaciara M.

    2016-03-01

    In the rhizosphere, the uptake of low-molecular-weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relative to total uptake is important, organic C uptake is supposed to be low relative to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and to what extent organically derived C absorbed by grass roots can feed the C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled amino acids (AAs) to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C excess and 15N excess) in the roots, stems and leaves as well as phytoliths were measured relative to a control experiment in which no labeled AAs were added. Additionally, the 13C excess was measured at the molecular level, in AAs extracted from roots and stems and leaves. The net uptake of labeled AA-derived 13C reached 4.5 % of the total AA 13C supply. The amount of AA-derived 13C fixed in the plant was minor but not nil (0.28 and 0.10 % of total C in roots and stems/leaves, respectively). Phenylalanine and methionine that were supplied in high amounts to the nutritive solution were more 13C-enriched than other AAs in the plant. This strongly suggested that part of AA-derived 13C was absorbed and translocated into the plant in its original AA form. In phytoliths, AA-derived 13C was detected. Its concentration was on the same order of magnitude as in bulk stems and leaves (0.15 % of the phytolith C). This finding strengthens the body of evidences showing that part of organic compounds occluded in phytoliths can be fed by C entering the plant through the roots. Although this experiment was done in

  6. The influence of diet on the δ 13C of shell carbon in the pulmonate snail Helix aspersa

    NASA Astrophysics Data System (ADS)

    Stott, Lowell D.

    2002-02-01

    The influence of diet and atmospheric CO 2 on the carbon isotope composition of shell aragonite and shell-bound organic carbon in the pulmonate snail Helix aspersa raised in the laboratory was investigated. Three separate groups of snails were raised on romaine lettuce (C3 plant, δ 13C=-25.8‰), corn (C4 plant, δ 13C=-10.5‰), and sour orange ( 12C-enriched C3 plant, δ 13C=-39.1‰). The isotopic composition of body tissues closely tracked the isotopic composition of the snail diet as demonstrated previously. However, the isotopic composition of the acid insoluble organic matrix extracted from the aragonite shells does not track diet in all groups. In snails that were fed corn the isotopic composition of the organic matrix was more negative than the body by as much as 5‰ whereas the matrix was approximately 1‰ heavier than the body tissues in snails fed a diet of C3 plant material. These results indicate that isotopic composition of the organic matrix carbon cannot be used as an isotopic substrate for paleodietary reconstructions without first determining the source of the carbon and any associated fractionations. The isotopic composition of the shell aragonite is offset from the body tissues by 12.3‰ in each of the culture groups. This offset was not influenced by the consumption of carbonate and is not attributable to the diffusion of atmospheric CO 2 into the hemolymph. The carbon isotopic composition of shell aragonite is best explained in terms of equilibrium fractionations associated with exchange between metabolic CO 2 and HCO 3 in the hemolymph and the fractionation associated with carbonate precipitation. These results differ from previous studies, based primarily on samples collected in the field, that have suggested atmospheric carbon dioxide contributes significantly to the shell δ 13C. The culture results indicate that the δ 13C of aragonite is a good recorder of the isotopic composition of the snail body tissue, and therefore a better

  7. A comparison between shell-based δ13C values from an extratropical setting (Gulf of Maine, USA) and atmospheric δ13C values for intervals of the last millennium: insights on regional hydrography and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Wanamaker, A. D.; Kreutz, K. J.; Introne, D.; Beirne, E. C.

    2010-12-01

    To explore past changes in carbon dynamics in the Gulf of Maine, and to further evaluate the utility of stable carbon isotope ratios (δ13C) derived from the aragonitic shells of the marine bivalve Arctica islandica in global change studies, we compared annual shell δ13C values (N = 4; total of 333 years) with published atmospheric δ13C data (derived from ice cores [AD 1006 to AD 1978; N = 58 measurements] and instrumental series (AD 1981 to AD 2008; total of 28 years]) for intervals of the last millennium. Both datasets were modeled using an exponential function to highlight the low frequency trends in the data and to facilitate a relevant comparison. From AD 1000 to AD 1800, the modeled atmospheric δ13C series increased by 0.20 ‰ (change = 0.00025 ‰ per year), while modeled shell δ13C series decreased by 0.24 ‰ (change = -0.00030 ‰ per year). From AD 1800 to present, both modeled δ13C datasets decreased substantially due to the admixture of isotopically negative carbon derived from increased fossil fuel emissions. The magnitude of the change during this interval in the atmospheric pool was 2.0 ‰ (rate = - 0.0095 ‰ per year), whereas the change in the shell-based values was 1.1 ‰ (rate = - 0.0052 ‰ per year), approximately half of the change noted in the atmosphere. Remarkably, the rate of change in shell δ13C values during the last 200 years was 17 times faster than the previous 800 years. Although the long-term offset (range 8.9 - 8.5 ‰) between atmospheric and shell δ13C data was not constant from AD 1000 to AD 1800, the converging nature of the modeled data suggest that regional hydrographic conditions within the Gulf of Maine during the last millennium have also influenced the δ13C signature in the shells. We will explore some possible hydrographic mechanisms that might explain the divergence between atmospheric and shell-based δ13C values. Despite the noted difference in the atmospheric and shell-based δ13C records, it appears

  8. Coralline Algal Skeletal δ13C as a Multicentury Recorder of Carbon Dynamics in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Meng Xiao Hou, Alicia; Halfar, Jochen; Adey, Walter; Wortmann, Ulrich; Williams, Branwen; Chan, Phoebe

    2017-04-01

    The introduction of isotopically light carbon due to the emission of fossil fuel derived CO2 since the beginning of the industrial revolution has decreased δ13C in the atmosphere and oceans (termed the δ13C Suess effect). Approximately 48% of CO2 emissions from fossil fuel combustion and cement manufacturing were taken up by the oceans during the period 1800 to 1994, decreasing the δ13C of the oceanic dissolved inorganic carbon reservoir (DIC). Rates of oceanic carbon uptake vary regionally in response to several factors including ocean circulation, productivity, and water temperature. Despite the enhanced CO2-uptake ability of the North Atlantic Ocean, carbon fluxes of surface ocean waters in high latitude regions are relatively poorly understood compared to tropical oceans. Therefore, century-scale, high-resolution marine climate archives from high latitude regions are needed in order to better understand both preindustrial carbon isotope dynamics as well as carbon isotope changes in response to anthropogenic forcing. Here, we present a 193-year record of δ13C obtained from the annual growth bands of a long-lived calcified coralline alga collected off the coast of central Labrador, near Kingitok Island, Canada (55.3983° N, 59.8467° W) to observe regional changes in carbon isotopes beginning in the preindustrial period. The algal δ13C record demonstrates an overall decreasing trend of -0.006‰/year from 1819 (1.15‰) to 2012 (-0.013‰), with the fastest rate of decrease (-0.032‰/year) occurring from 1960 (1.63‰) to 2012 (-0.013‰). Comparisons of the coralline algal δ13C record to a bivalve δ13C record (r = 0.30, p < 0.00007) and an atmospheric CO2 δ13C record from compiled ice core and direct measurement data (r =0.35, p < 0.00000051) displays a good correspondence of century-scale δ13C trends. The coralline algal record is interpreted as representing a combination of changes in primary productivity, which dominates the signal during the

  9. Application of δ13c Values Recorded in Neoproterozoic Marine Dolomite As a Marker for Global Correlations: Significance of Major δ13c Variations for the Carbon Cycle Based on Studies of Modern Dolomite Precipitating Environments

    NASA Astrophysics Data System (ADS)

    McKenzie, J. A.; Bontognali, T. R. R.; Bahniuk, A.; Vasconcelos, C.

    2014-12-01

    Since the early Paleozoic, the average bulk δ13C value of marine carbonates has remained relatively positive varying between 0 and +4‰ with distinctive positive excursions that are associated with global changes in the carbon cycle. Unlike the Phanerozoic δ13C data for marine limestones, a major δ13C excursion has been recorded in a globally deposited Neoproterozoic marine dolomite formation, known as the cap dolostone. This excursion with δ13C values ranging systematically between -3 and -5‰ represents a global chronstratigraphic marker used to correlate the end of the major Marinoan glaciation at 636 Ma1. Does this excursion signify a primary seawater value and how might it be interpreted as a primary carbon cycle signal, considering the widespread distribution of the cap dolostone? Studies of modern dolomite precipitating environments, such as supratidal sabkhas of Abu Dhabi, U.A.E. and Qatar and coastal hypersaline lagoons of Rio de Janiero State, Brazil, indicate that microbial activity or the biological products, thereof, influence or mediate mineral formation. The precipitating solutions are sourced from normal seawater, which has experienced variable stages of concentration through evaporative processes. Comparison of δ13C values of sabkha dolomite with that formed in the hypersaline lagoons reveals that the former are always rather positive (approx. +2 to +7 ‰), whereas the latter are always negative (approx. -5‰ to -11‰). During very early diagenesis, the original δ13C value of the initial precipitate is not necessarily retained, indicating that synsedimentary processes can alter the carbon signal prior to burial and later diagenesis. However, the potential for very early lithification of microbial dolomite promotes the preservation of original δ13C values, which, thus, can be useful for evaluation of the ancient carbon cycle. 1Halverson, G.P. et al., 2005. Toward a Neoproterozoic composite carbon-isotope record, GSA Bulletin, v. 117, p

  10. Natural abundance 13C and 14C analysis of water-soluble organic carbon in atmospheric aerosols.

    PubMed

    Kirillova, Elena N; Sheesley, Rebecca J; Andersson, August; Gustafsson, Örjan

    2010-10-01

    Water-soluble organic carbon (WSOC) constitutes a large fraction of climate-forcing organic aerosols in the atmosphere, yet the sources of WSOC are poorly constrained. A method was developed to measure the stable carbon isotope (δ(13)C) and radiocarbon (Δ(14)C) composition of WSOC for apportionment between fossil fuel and different biogenic sources. Synthetic WSOC test substances and ambient aerosols were employed to investigate the effect of both modern and fossil carbon contamination and any method-induced isotope fractionation. The method includes extraction of aerosols collected on quartz filters followed by purification and preparation for off-line δ(13)C and Δ(14)C determination. The preparative freeze-drying step for isotope analysis yielded recoveries of only ∼70% for ambient aerosols and WSOC probes. However, the δ(13)C of the WSOC isolates were in agreement with the δ(13)C of the unprocessed starting material, even for the volatile oxalic acid probe (6.59 ± 0.37‰ vs 6.33 ± 0.31‰; 2 sd). A (14)C-fossil phthalic acid WSOC probe returned a fraction modern biomass of <0.008 whereas a (14)C-modern sucrose standard yielded a fraction modern of >0.999, indicating the Δ(14)C-WSOC method to be free of both fossil and contemporary carbon contamination. Application of the δ(13)C/Δ(14)C-WSOC method to source apportion climate-affecting aerosols was illustrated be constraining that WSOC in ambient Stockholm aerosols were 88% of contemporary biogenic C3 plant origin.

  11. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.

    PubMed

    Engtrakul, Chaiwat; Irurzun, Veronica M; Gjersing, Erica L; Holt, Josh M; Larsen, Brian A; Resasco, Daniel E; Blackburn, Jeffrey L

    2012-03-14

    The atomic specificity afforded by nuclear magnetic resonance (NMR) spectroscopy could enable detailed mechanistic information about single-walled carbon nanotube (SWCNT) functionalization as well as the noncovalent molecular interactions that dictate ground-state charge transfer and separation by electronic structure and diameter. However, to date, the polydispersity present in as-synthesized SWCNT populations has obscured the dependence of the SWCNT (13)C chemical shift on intrinsic parameters such as diameter and electronic structure, meaning that no information is gleaned for specific SWCNTs with unique chiral indices. In this article, we utilize a combination of (13)C labeling and density gradient ultracentrifugation (DGU) to produce an array of (13)C-labeled SWCNT populations with varying diameter, electronic structure, and chiral angle. We find that the SWCNT isotropic (13)C chemical shift decreases systematically with increasing diameter for semiconducting SWCNTs, in agreement with recent theoretical predictions that have heretofore gone unaddressed. Furthermore, we find that the (13)C chemical shifts for small diameter metallic and semiconducting SWCNTs differ significantly, and that the full-width of the isotropic peak for metallic SWCNTs is much larger than that of semiconducting nanotubes, irrespective of diameter.

  12. Near-silence of isothiocyanate carbon in (13)C NMR spectra: a case study of allyl isothiocyanate.

    PubMed

    Glaser, Rainer; Hillebrand, Roman; Wycoff, Wei; Camasta, Cory; Gates, Kent S

    2015-05-01

    (1)H and (13)C NMR spectra of allyl isothiocyanate (AITC) were measured, and the exchange dynamics were studied to explain the near-silence of the ITC carbon in (13)C NMR spectra. The dihedral angles α = ∠(C1-C2-C3-N4) and β = ∠(C2-C3-N4-C5) describe the conformational dynamics (conformation change), and the bond angles γ = ∠(C3-N4-C5) and ε = ∠(N4-C5-S6) dominate the molecular dynamics (conformer flexibility). The conformation space of AITC contains three minima, Cs-M1 and enantiomers M2 and M2'; the exchange between conformers is very fast, and conformational effects on (13)C chemical shifts are small (νM1 - νM2 < 3 ppm). Isotropic chemical shifts, ICS(γ), were determined for sp, sp(x), and sp(2) N-hybridization, and the γ dependencies of δ(N4) and δ(C5) are very large (10-33 ppm). Atom-centered density matrix propagation trajectories show that every conformer can access a large region of the potential energy surface AITC(γ,ε,...) with 120° < γ < 180° and 155° < ε < 180°. Because the extreme broadening of the (13)C NMR signal of the ITC carbon is caused by the structural flexibility of every conformer of AITC, the analysis provides a general explanation for the near-silence of the ITC carbon in (13)C NMR spectra of organic isothiocyanates.

  13. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  14. The influence of preservation method and time on the delta13C value of dissolved inorganic carbon in water samples.

    PubMed

    Taipale, Sami J; Sonninen, Eloni

    2009-08-30

    The precise delta(13)C value of dissolved inorganic carbon (DIC) is important for various types of ecological studies. Without a preservation agent, microbial degradation of organic compounds continues in water samples and the delta(13)C value of DIC will become more depleted with time. HgCl(2) or acidification is often used to prevent microbial activity in water samples collected for carbon isotope ratio analyses of DIC. Mercury compounds are toxic and result in waste disposal problems. Other inhibiting agents or preservation methods are therefore needed. Two possible solutions are to use copper sulphate (CuSO(4)) as a preservative agent or to acidify water samples with phosphoric acid (H(3)PO(4)) within 12 mL measurement Exetainers (septum-capped vials). We prepared a set of lake water samples in three types of vials: glass vials with silicone/PTFE septa, high-density polyethylene vials (HD-PE, scintillation vials) and Exetainers (12 mL) with butyl rubber septa. Samples in glass and PE vials were preserved with and without CuSO(4), whereas lake water was injected into the Exetainer and acidified with H(3)PO(4). Isotope ratios were measured in two laboratories over 6 months. The delta(13)C values of DIC systematically increased with storage time for samples preserved in glass and PE vials with and without CuSO(4). A strong correlation between a decrease of CO(2) concentration and an increase in DIC delta(13)C values was found. The delta(13)C values and DIC concentrations were stable for 6 months in acidified samples stored in Exetainers with butyl rubber septa. Therefore, we conclude that the best method for up to 6 months of storage is to inject samples in the field into butyl rubber septum capped Exetainers containing H(3)PO(4), thereby avoiding the use of preservatives. 2009 John Wiley & Sons, Ltd.

  15. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ(13) C.

    PubMed

    Guillaume, Thomas; Damris, Muhammad; Kuzyakov, Yakov

    2015-09-01

    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha(-1) after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ(13) C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ(13) C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The (13) C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ(13) C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ(13) C values with depth. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  16. Tracing the intrusion of fossil carbon into coastal Louisiana macrofauna using natural 14C and 13C abundances

    NASA Astrophysics Data System (ADS)

    Wilson, Rachel M.; Cherrier, Jennifer; Sarkodee-Adoo, Judith; Bosman, Samantha; Mickle, Alejandra; Chanton, Jeffrey P.

    2016-07-01

    The Deepwater Horizon oil spill released a large volume of 13C and radiocarbon depleted organic matter to the northern Gulf of Mexico. Evidence of petroleum-derived carbon entering the offshore planktonic foodweb, as well as widespread oiling of coastal areas documented in previous studies suggests that hydrocarbons could have entered the near shore foodweb. To test this hypothesis, we measured radiocarbon (Δ14C%) and stable carbon isotopes (δ13C) in an assortment of fish tissue, invertebrate tissue and shell samples collected within a year of the spill at seven sites from Louisiana to Florida USA across the northern Gulf of Mexico. We observed a west-east gradient with the most depleted radiocarbon values found in Terrebonne Bay, Louisana and increasingly enriched radiocarbon values in organisms collected at sites to the east. Depleted radiocarbon values as low as -10% in invertebrate soft tissue from Terrebonne suggest assimilation of fossil carbon (2.8±1.2%), consistent with the hypothesis that organic matter from petrochemical reservoirs released during the Deepwater Horizon spill entered the coastal food web to a limited extent. Further there was a significant correlation between radiocarbon and δ13C values in invertebrate tissue consistent with this hypothesis. Both oyster tissue and hard head catfish tissue collected in impacted areas of coastal Louisiana were significantly depleted in 14C and 13C relative to organisms collected in the unaffected Apalachicola Bay, Florida (p<0.014). Alternative explanations for these results include the influence of chronic hydrocarbon pollution along the western gulf coast or that the organisms ingest carbon derived from 14C depleted organic matter mobilized during the erosion of coastal marshes in southern Louisiana.

  17. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies.

    PubMed Central

    Sanders, C R

    1993-01-01

    The direct measurement of 13C chemical shift anisotropies (CSA) and 31P-13C dipolar splitting in random dispersions of unlabeled L alpha-phase phosphatidylcholine (PC) has traditionally been difficult because of extreme spectral boradening due to anisotropy. In this study, mixtures of dimyristoyl phosphatidylcholine (DMPC) with three different detergents known to promote the magnetic orientation of DMPC were employed to eliminate the powder-pattern nature of signals without totally averaging out spectral anisotropy. The detergents utilized were CHAPSO, Triton X-100, and dihexanoylphosphatidylcholine (DHPC). Using such mixtures, many of the individual 13C resonances from DMPC were resolved and a number of 13C-31P dipolar couplings were evident. In addition, differing line widths were observed for the components of some dipolar doublets, suggestive of dipolar/chemical shift anisotropy (CSA) relaxation interference effects. Oriented sample resonance assignments were made by varying the CHAPSO or DHPC to DMPC ratio to systematically scale overall bilayer order towards the isotropic limit. In this manner, peaks could be identified based upon extrapolation to their isotropic positions, for which assignments have previously been made (Lee, C.W.B., and R.G. Griffin. 1989. Biophys. J. 55:355-358; Forbes, J., J. Bowers, X. Shan, L. Moran, E. Oldfield, and M.A. Moscarello. 1988. J. Chem. Soc., Faraday, Trans. 1 84:3821-3849). It was observed that the plots of CSA or dipolar coupling versus overall bilayer order obtained from DHPC and CHAPSO titrations were linear. Estimates of the intrinsic dipolar couplings and chemical shift anisotropies for pure DMPC bilayers were made by extrapolating shifts and couplings from the detergent titrations to zero detergent. Both detergent titrations led to similar "intrinsic" CSAs and dipolar couplings. Results extracted from an oriented Triton-DMPC mixture also led to similar estimates for the detergent-free DMPC shifts and couplings. The

  18. Carbon isotopic composition (δ(13)C and (14)C activity) of plant samples in the vicinity of the Slovene nuclear power plant.

    PubMed

    Sturm, Martina; Vreča, Polona; Krajcar Bronić, Ines

    2012-08-01

    δ(13)C values of various plants (apples, wheat, and maize) collected in the vicinity of the Krško Nuclear Power Plant (Slovenia) during 2008 and 2009 were determined. By measuring dried samples and their carbonized counterparts we showed that no significant isotopic fractionation occurs during the carbonization phase of the sample preparation process in the laboratory. The measured δ(13)C values of the plants were used for δ(13)C correction of their measured (14)C activities.

  19. Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (δ13C) and radiocarbon (Δ14C) isotopes of coastal DIC are influenced by the δ13C and Δ14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, δ13C and Δ14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the δ13C and Δ14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both δ13C and Δ14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in δ13C and Δ14C than seawater DIC, and (3) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal δ13C and Δ14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change.

  20. Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico

    USGS Publications Warehouse

    Moyer, R.P.; Grottoli, A.G.

    2011-01-01

    Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world's oceans. However, few historical records of land-ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (??13C) and radiocarbon (??14C) isotopes of coastal DIC are influenced by the ??13C and ??14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, ??13C and ??14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the ??13C and ??14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both ??13C and ??14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in ??13C and ??14C than seawater DIC, and (3) the correlation of ??13C and ??14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal ??13C and ??14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land-ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land-ocean carbon flux in the context of land-use change and global climate change. ?? 2011 United States Geological Survey.

  1. Temporal δ13C records from bottlenose dolphins (Tursiops truncatus) reflect variation in foraging location and global carbon cycling

    NASA Astrophysics Data System (ADS)

    Rossman, S. L.; Barros, N. B.; Ostrom, P. H.; Gandhi, H.; Wells, R. S.

    2010-12-01

    With four decades of data on a population of bottlenose dolphins (Tursiops truncatus) resident to Sarasota Bay (SB), The Sarasota Dolphin Research Program offers an unparalleled platform for ground-truthing stable isotope data and exploring bottlenose dolphin ecology in a natural setting. We explored carbon isotope value fidelity to habitat utilization by comparing δ13C data from whole teeth and muscle to the individual dolphin's proclivity towards foraging in seagrass beds based on observational data. We then examined variation in habitat use based on temporal isotope records. Whole tooth protein isotope values do not show a significant correlation with the observed percentage of foraging in seagrass habitat. In contrast, δ13C values from muscle showed a significant positive relationship with the observational data. Differences in the degree of tissue turn over may account for this distinction between tooth and muscle. Dolphin teeth consist of annually deposited layers that are inert once formed. Thus, the isotopic composition of protein in annuli reflect foraging at the time of deposition. In addition to incorporating variation associated with differences in foraging over the lifetime of the individual, whole tooth isotope values are confounded because a disproportionate amount of tooth protein derives from the first few years of life. Given the turnover time of muscle tissue, isotope values reflect diet over the past several months. From 1991 to 2008, muscle δ13C values showed a significant decline, -13.5‰ to -15.1‰.This time period encompasses a state wide net fishing ban (1995) however other factors such as a series of red tide harmful algal blooms, a decline in predators, increases in shallow water boat traffic and an increase in string ray abundance may also contribute to the temporal isotope trend. To examine changes in dolphin foraging habitat further back in time we analyzed the tip of crown of the tooth which records the isotopic signal from the

  2. Pathway analysis using (13) C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila.

    PubMed

    Häuslein, Ina; Manske, Christian; Goebel, Werner; Eisenreich, Wolfgang; Hilbi, Hubert

    2016-04-01

    Amino acids represent the prime carbon and energy source for Legionella pneumophila, a facultative intracellular pathogen, which can cause a life-threatening pneumonia termed Legionnaires' disease. Genome, transcriptome and proteome studies indicate that L. pneumophila also utilizes carbon substrates other than amino acids. We show here that glycerol promotes intracellular replication of L. pneumophila in amoeba or macrophages (but not extracellular growth) dependent on glycerol-3-phosphate dehydrogenase, GlpD. An L. pneumophila mutant strain lacking glpD was outcompeted by wild-type bacteria upon co-infection of amoeba, indicating an important role of glycerol during infection. Isotopologue profiling studies using (13) C-labelled substrates were performed in a novel minimal defined medium, MDM, comprising essential amino acids, proline and phenylalanine. In MDM, L. pneumophila utilized (13) C-labelled glycerol or glucose predominantly for gluconeogenesis and the pentose phosphate pathway, while the amino acid serine was used for energy generation via the citrate cycle. Similar results were obtained for L. pneumophila growing intracellularly in amoeba fed with (13) C-labelled glycerol, glucose or serine. Collectively, these results reveal a bipartite metabolism of L. pneumophila, where glycerol and carbohydrates like glucose are mainly fed into anabolic processes, while serine serves as major energy supply.

  3. Quantifying carbon cycling via continuous measurement of atmospheric CO2 concentrations and δ13C in Chicago, IL

    NASA Astrophysics Data System (ADS)

    Moore, J.; Jacobson, A. D.

    2012-12-01

    While cities emit ~70% of the annual anthropogenic CO2 flux, most studies of atmospheric carbon cycling have focused on rural areas. Thus, carbon cycling in urban areas remains an understudied topic. We are using wavelength scanned cavity ring down spectroscopy to continuously measure the concentration and carbon isotope composition of atmospheric CO2 ([CO2] and δ13C, respectively) on the Northwestern University campus, located on the western shore of Lake Michigan, 13 miles north of downtown Chicago. We have collected ~11,500 data points per day, along with complementary local meteorological information, for the time period spanning August 2011 to February 2012. We are using isotope mixing models to calculate quantities of locally-sourced CO2 from anthropogenic versus natural sources, i.e., gasoline and natural gas combustion versus C3 plant and soil respiration. Broad trends in the data fall into three categories consistent with the Northern Hemisphere seasonal cycle: summer (August - September), fall (October - November), and winter (December - February). Within each category, we observe short-term trends occurring on hourly to daily time scales. Overall, we find that [CO2] and δ13C anti-correlate, with δ13C decreasing when [CO2] increases. Local carbon cycling is most evident when wind speeds are less than 4.5 m/s (10 mph). As wind speeds increase, [CO2] and δ13C approach global background values. Preliminary findings for each period include: Summer (Aug. - Sept.): The mean [CO2] and δ13C are 400 ppm and -8.3 ‰, respectively, which are about 12 ppm higher and 0.1 ‰ lower than measured values at Mauna Loa, HI. Early morning hours have statistically higher [CO2] than afternoon hours. The early morning maximum is likely due to a combination of plant respiration and petroleum combustion, while the afternoon minimum is due to photosynthetic CO2 uptake. Both the lowest and highest [CO2] occur when wind originates from the south and west over the most densely

  4. Correction algorithm for online continuous flow δ13C and δ18O carbonate and cellulose stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Evans, M. N.; Selmer, K. J.; Breeden, B. T.; Lopatka, A. S.; Plummer, R. E.

    2016-09-01

    We describe an algorithm to correct for scale compression, runtime drift, and amplitude effects in carbonate and cellulose oxygen and carbon isotopic analyses made on two online continuous flow isotope ratio mass spectrometry (CF-IRMS) systems using gas chromatographic (GC) separation. We validate the algorithm by correcting measurements of samples of known isotopic composition which are not used to estimate the corrections. For carbonate δ13C (δ18O) data, median precision of validation estimates for two reference materials and two calibrated working standards is 0.05‰ (0.07‰); median bias is 0.04‰ (0.02‰) over a range of 49.2‰ (24.3‰). For α-cellulose δ13C (δ18O) data, median precision of validation estimates for one reference material and five working standards is 0.11‰ (0.27‰); median bias is 0.13‰ (-0.10‰) over a range of 16.1‰ (19.1‰). These results are within the 5th-95th percentile range of subsequent routine runtime validation exercises in which one working standard is used to calibrate the other. Analysis of the relative importance of correction steps suggests that drift and scale-compression corrections are most reliable and valuable. If validation precisions are not already small, routine cross-validated precision estimates are improved by up to 50% (80%). The results suggest that correction for systematic error may enable these particular CF-IRMS systems to produce δ13C and δ18O carbonate and cellulose isotopic analyses with higher validated precision, accuracy, and throughput than is typically reported for these systems. The correction scheme may be used in support of replication-intensive research projects in paleoclimatology and other data-intensive applications within the geosciences.

  5. Experimental validation of environmental controls on the δ13C of Arctica islandica (ocean quahog) shell carbonate

    NASA Astrophysics Data System (ADS)

    Beirne, Erin C.; Wanamaker, Alan D.; Feindel, Scott C.

    2012-05-01

    The marine bivalve species, Arctica islandica, was reared under experimental conditions for 29 weeks in the Gulf of Maine in order to determine the relationship between the carbon isotope composition of shell carbonate (δ13CS) and ambient seawater dissolved inorganic carbon (δ13CDIC), as well as to approximate the metabolic contribution (CM) to shell material. Three experimental environments were compared: two flow-through tanks (one at ambient seawater conditions, one with a supplemental food source) and an in situ cage. Each environment contained 50 juveniles and 30 adults. Both juvenile (2-3 years) and adult (19-64 years) specimens displayed average percent CM of less than or equal to 10% when using three different proxies of respired carbon: digestive gland, adductor muscle and sediment. Hence, the primary control on δ13CS values is ambient DIC. The relationship between δ13CDIC and δ13CS for 114 individuals used in the study was: δ13C13C-1.0‰(±0.3‰) No ontogenetic effect on δ13CS was observed, and growth rates did not generally impact δ13CS values. Based on the results of this study, shell material derived from the long-lived ocean quahog (A. islandica) constitutes a viable proxy for paleo-DIC from the extratropical Atlantic Ocean.

  6. [Carbon isotope (13C/12C) effect of photorespiration in photosynthetic organisms. Evidence for existence, probable mechanism].

    PubMed

    Ivlev, A A

    2002-01-01

    Experimental evidence in favor of the new phenomenon predicted for photosynthesizing organisms, the fractionation of carbon isotopes in photorespiration is presented. A possible mechanism of this process is discussed. The fractionation of carbon in isotopes photorespiration occurs in the oxygenase phase of the functioning of ribulosebisphosphate carboxylase/oxygenase (rubisco), the key enzyme of photosynthesis, which is capable to act as carboxylase and oxygenase. Which function of the enzyme is active depends on CO2/O2 concentration ratio, which periodically changes in a cell. The key reaction in the mechanism of carbon isotope fractionation in photorespiration is glycine decarboxylation, which results in the splitting and removal from the cell of CO2 enriched with 12C and the accumulation of 13C photorespiratory carbon flow. The coupling of photorespiration and CO2 photoassimilation gives rise to two isotopically different carbon flows, which fill up separate carbohydrate pools, which are the sources of carbon in the following syntheses in the dark phase of photosynthesis. This enables one to identify, from the carbon isotope ratio of metabolites, their involvement in the photorespiratory and assimilatory carbon flows, to investigate the pathways of carbon metabolism, and to estimate more thoroughly the biosynthetic role of photorespiration.

  7. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Treesearch

    W.C. Hockaday; C.A. Masiello; J.T. Randerson; R.J. Smernik; J.A. Baldock; O. A. Chadwick; J.W. Harden

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2...

  8. Differential allocation of carbon in mosses and grasses governs ecosystem sequestration: a 13C tracer study in the high Arctic.

    PubMed

    Woodin, S J; van der Wal, R; Sommerkorn, M; Gornall, J L

    2009-12-01

    *This study investigates the influence of vegetation composition on carbon (C) sequestration in a moss-dominated ecosystem in the Arctic. *A (13)C labelling study in an arctic wet meadow was used to trace assimilate into C pools of differing recalcitrance within grasses and mosses and to determine the retention of C by these plant groups. *Moss retained 70% of assimilated (13)C over the month following labelling, which represented half the growing season. By contrast, the vascular plants, comprising mostly grasses, retained only 40%. The mechanism underlying this was that moss allocated 80% of the (13)C to recalcitrant C pools, a much higher proportion than in grasses (56%). *This method enabled elucidation of a plant trait that will influence decomposition and hence persistence of assimilated C in the ecosystem. We predict that moss-dominated vegetation will retain sequestered C more strongly than a grass-dominated community. Given the strong environmental drivers that are causing a shift from moss to grass dominance, this is likely to result in a reduction in future ecosystem C sink strength.

  9. Insights on Organic Carbon Inputs in the Delaware Estuary from Compound-Specific δ13C and Δ14C

    NASA Astrophysics Data System (ADS)

    Sikes, E. L.; Mollenhauer, G.; Schefuss, E.; Freeman, K. H.; Hermes, A. L.

    2016-02-01

    Land-derived vascular plant particulate organic matter (POM) is delivered to estuaries via rivers, yet its fate is difficult to constrain between land and sea. POM is intricately linked to sediment dynamics, making it susceptible to deposition, resuspension, and trapping. We assessed the spatial and seasonal variation in algal and vascular plant-derived POM for a transect down the Delaware Estuary, using n-alkane and fatty acid biomarkers and their compound specific δ13C values as tracers of organic matter provenance. n-Alkane distributions, and their low δ13C values reveal a markedly higher proportion of terrestrial inputs in bottom waters relative to the overlying surface waters throughout the estuary, and suggest significant marsh POM contributions that were previously undocumented. Fatty acid δ13C distributions indicate similar sources. Bacterial fatty acids from sediments in the estuarine turbidity maximum (ETM) with isotope values of -30 ‰ suggest preferential uptake of terrestrial organic matter by sedimentary bacteria. Lines of evidence from both compound classes highlight marsh contributions to the ETM and in the lower estuary. Compound-specific Δ14C data from ETM sediments indicate both burial and degradation of aged terrestrial POM. Modelling of estuarine circulation suggests input of marsh POM is driven by lateral pumping in the estuary. The input of wetland POM, long recognized as a critical resource for animal ecology, may be geochemically and volumetrically important in the processing and delivery of terrestrial organic carbon to the coastal ocean.

  10. [Distribution of carbon isotopes ((13)C/(12)C) in cells and temporal organization of cellular processes].

    PubMed

    Ivlev, A A

    1991-01-01

    Recent studies on fractionation of carbon isotopes in biological systems are reviewed. It follows that direct experimental proofs have been obtained that 1) basic fractionation of carbon isotopes in the cell is related to isotope effect in pyruvate decarboxylation; 2) fractionation of carbon isotopes in the above reaction in vivo proceeds with exhausting substrate pool. The latter provides natural relationship between metabolites isotope distribution and sequence of their synthesis in the cell cycle, or with the temporal organization of cellular metabolism. The non-steady and periodic pattern of pyruvate decarboxylation due to the exhausting substrate pool well agrees with the existing notions on reciprocal oscillations in the cell glycolytic chain. Experimental data are presented corroborating indirectly the existence of oscillations in bacterial cells. Earlier proposed model of the mechanism of carbon isotope fractionation based on the above principles can be used for analysing changes in isotopic characteristics of the organisms and interpreting their relations with metabolic processes.

  11. sup 13 C and sup 18 O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects

    SciTech Connect

    McConnaughey, T. )

    1989-01-01

    Biological carbonates are built largely from CO{sub 2}, which diffuses across the skeletogenic membrane and reacts to form HCO{sub 3}{sup {minus}}. Kinetic discrimination against the heavy isotopes {sup 18}O and {sup 13}C during CO{sub 2} hydration and hydroxylation apparently causes most of the isotopic disequilibrium observed in biological carbonates. These kinetic isotope effects are expressed when the extracytosolic calcifying solution is thin and alkaline, and HCO{sub 3}{sup {minus}} precipitates fairly rapidly as CaCO{sub 3}. In vitro simulation of the calcifying environment produced heavy isotope depletions qualitatively similar to, but somewhat more extreme than, those seen in biological carbonates. Isotopic equilibration during biological calcification occurs through CO{sub 2} exchange across the calcifying membrane and by admixture ambient waters (containing HCO{sub 3}{sup {minus}}) into the calcifying fluids. Both mechanisms tend to produce linear correlations between skeletal {delta}{sup 13}C and {delta}{sup 18}O.

  12. An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids.

    PubMed

    Nikonowicz, E P; Pardi, A

    1993-08-20

    An efficient method is presented for the assignment of the proton, carbon, and nitrogen resonances in the NMR spectra of isotopically labeled nucleic acids. The assignment strategy starts by identifying all protons and carbons belonging to the same sugar ring through application of a set of 2D or 3D heteronuclear HCCH NMR experiments. Next the individual sugar rings are connected to their corresponding bases through intra-residue 1H-1H nuclear Overhauser effects (NOEs) observed in a 3D (1H, 13C, 1H) NOESY-HMQC experiment. Sequential NOE connectivities observed in this experiment are then used to assign each residue in the nucleotide sequence. The imino protons and nitrogens, and the cytidine amino protons and nitrogens, are assigned by 2D (15N, 1H) HMQC and 3D (1H, 15N, 1H) NOESY-HMQC experiments in H2O. This assignment procedure is illustrated on the 99% 13C/15N labeled RNA duplex r(GGCGCUUGCGUC)2. The application of these multi-dimensional heteronuclear magnetic resonance experiments enormously simplifies the resonance assignment of nucleic acids and allows assignment of many more protons, carbons and nitrogens than was possible using standard techniques on unlabeled molecules. Since a larger percentage of the protons can now be assigned by these experiments, much more NMR structural information can be obtained which will significantly extend the size limit for solution structure determinations of RNAs.

  13. Using Atmospheric δ13C of CO2 observations to link the water and carbon cycles with climate

    NASA Astrophysics Data System (ADS)

    Alden, C. B.; Miller, J. B.; White, J. W.; Yadav, V.; Michalak, A. M.; Andrews, A. E.; Huang, L.

    2013-12-01

    The ratio of stable carbon isotopes, 13C:12C in atmospheric CO2 (expressed as δ13C) offers unique insights into atmosphere-land CO2 fluxes and the modulating effects of stomatal conductance on this exchange. Photosynthesis discriminates against 13CO2 during uptake. The magnitude of this fractionation is strongly dependent upon ambient CO2 concentrations and water availability, as well as on the mix of C3 and C4 vegetation types. C3 and C4 plants have very different discrimination because of carboxylation pathways, and C3 stomatal conductance varies with water availability because stomata close to reduce transpiration when plants are water stressed. Further, plant stomata respond to ambient CO2 concentrations in order to optimize leaf internal [CO2] while reducing transpirative water loss. Atmospheric δ13C therefore carries information about local and upwind drought conditions and the consequent likelihood of ground-to-atmosphere water transfer via transpiration, and the balance of latent and sensible heat fluxes, as well as about local and upwind distributions of C3 and C4 vegetation and variability therein. δ13C offers a unique lens through which to identify key thresholds and relationships between climate anomalies/change and the modulating climate impacts of plant biosphere response. By unraveling this relationship at local to continental scales, we stand to gain crucial understanding of the drivers of land CO2 uptake variability as well as knowledge of how to predict future climate impacts on the carbon cycle and vice versa. We use a two-step Bayesian inversion model to optimize 1x1 degree and 3-hourly (interpreted at regional and weekly to monthly scales) fields of δ13C of assimilated biomass over North America for the year 2010, using influence functions generated with FLEXPART, driven by National Centers for Environmental Prediction Global Forecast System meteorology. Prior fluxes and fossil fuel, ocean and fire fluxes are from CarbonTracker 2011, and

  14. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    USGS Publications Warehouse

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  15. Transient nature of rhizosphere carbon elucidated by supercritical freon-22 extraction and 13C NMR analysis

    Treesearch

    Filipe G. Sanchez; Maurice M. Bursey

    2002-01-01

    The region immediately adjacent to established roots of mature trees has been termed the "reoccurring rhizosphere" and it has been hypothesized that organic matter input from fine root turnover, root exudates and sloughing may result in a build up of the soil carbon in this region. The "reoccurring rhizosphere" for first-, second- and third-order...

  16. Estimation of Western Arctic Ocean organic carbon sources using Bayesian analysis of bulk δ13C and δ15N

    NASA Astrophysics Data System (ADS)

    Morris, D. J.; Macko, S. A.; Harvey, H. R.

    2011-12-01

    The organic carbon cycle of the Western Arctic Ocean is one of the most significant remaining obstacles to establishing a pan-Arctic organic carbon cycle. With modifications to sea ice extent, timing and abundances of the seasonal productivity and alteration in fresh water discharge expected from global climate change, a better estimate of the sources of organic carbon to the ocean sediments has become more pressing. However, the presence of three end-members: terrestrial organic carbon supplied by coastal erosion and riverine discharge, pelagic marine production from plankton and significant sea ice algal productivity complicates the traditional use of bulk isotope data to construct linear mixing models. Instead, in this report, we use a Bayesian analysis of the bulk data, allowing for the construction of robust mixing models and enabling the probabilistic estimation of the relative contributions of the three sources. Bulk isotope data from Shelf Basin Interaction cores, together with biomarker and compound specific isotope data from the same cores are used to quantify the various contributions and construct a model of the carbon cycle in the Western Arctic Ocean. Bulk carbon is enriched (δ13C has a mean value of -19.4±1.3%), but the concentration of terrestrial biomarkers is also high. Based upon Bayesian analysis, 50-70% of the organic carbon is of marine origin. Terrestrial carbon made up 15%, with sea ice algal carbon accounting for the remaining 25-35%. We suggest that the discrepancy between the enriched bulk carbon and high terrestrial biomarker concentration is better explained by preferential preservation of the more recalcitrant terrestrial biomarkers than by a very high terrestrial contribution to bulk carbon.

  17. Carbon nitrogen ratio, δ13C, δ15N distribution in eroded and buried soil profiles along a small catena

    NASA Astrophysics Data System (ADS)

    Jakab, Gergely; Hegyi, István; Fullen, Michael; Szalai, Zoltán

    2017-04-01

    In addition to the serious environmental hazard soil erosion forms and reforms the soil surface. The intensity of these degrading and burial processes is highly variable, it fluctuates in time. One can only get a single view of the current status by the spatial analysis of soil depth and properties. Present study aims to estimate the dynamics of the former driving processes in detail those resulted the recent form of the landscape. Soil samples were taken along two intensively cultivated catenas from the surface to the parent material in vertical and from the ridge to the toe in horizontal direction. A non disturbed soil profile under continuous forest was also sampled as the initial, control status. Soil organic carbon (SOC), total nitrogen (TN), carbon nitrogen ratio (C/N), 13C and 15N stable isotope ratios were measured. Soil redistribution was supposed to be started right after the forest clearance 300 years before. Results indicated that the whole amount of solum (1 m) was taken by erosion in some local spots. Most of the soil loss was deposited at the toe, while vertical SOC and δ13C distributions (peaks) in the deposited profiles indicated the original soil surface at various depth. SOC peak in the profile indicated deeper in situ solum compared to the vertical peaks of the C/N and δ13C values. Presumably the layer of the highest SOC values in the sedimentation profiles is also formed by the deposition of initial soil loss from the upper parts of the catena. At this initial phase the selectivity of erosion was supposed to be quite effective for SOC that resulted the highest value. Therefore C/N and δ13C peaks fingerprint the original, in situ soil surface more adequately. The most effective erosion and deposition period was immediately after forest clearance. This emphasized that continuous tillage erosion had subordinate role compared to that of relief. Moreover, SOC erosion and burial in the present case was a sink in terms of mitigation of the

  18. Using Isotope Ratio Infrared Spectrometer to determine δ13C and δ18O of carbonate samples

    NASA Astrophysics Data System (ADS)

    Smajgl, Danijela; Stöbener, Nils; Mandic, Magda

    2017-04-01

    The isotopic composition of calcifying organisms is a key tool for reconstruction past seawater temperature and water chemistry. Therefore stable carbon and oxygen isotopes (δ13C and δ18O) in carbonates have been widely used for reconstruction of paleoenvironments. Precise and accurate determination of isotopic composition of carbon (13C) and oxygen (18O) from carbonate sample with proper referencing and data evaluation algorithm presents a challenge for scientists. Mass spectrometry was the only widely used technique for this kind of analysis, but recent advances make laser based spectroscopy a viable alternative. The Thermo Scientific Delta Ray Isotope Ratio Infrared Spectrometer (IRIS) analyzer with the Universal Reference Interface (URI) Connect is one of those alternatives and with TELEDYNE Cetac ASX-7100 autosampler extends the traditional offerings with a system of high precision and throughput of samples. To establish precision and accuracy of measurements and also to develop optimal sample preparation method for measurements with Delta Ray IRIS and URI Connect, IAEA reference materials were used. Preparation is similar to a Gas Bench II method. Carbonate material is added into the vials, flushed with CO2 free synthetic air and acidified with few droplets of 104% H3PO4. Sample amount used for analysis can be as low as 200 μg. Samples are measured after acidification and equilibration time of one hour at 70°C. The CO2 gas generated by reaction is flushed into the variable volume inside the URI Connect through the Nafion based built-in water trap. For this step, carrier gas (CO2 free air) is used to flush the gas from the vial into the variable volume with a maximum volume of 100 ml. A small amount of the sample is then used for automatic concentration determination present in the variable volume. The Thermo Scientific Qtegra Software automatically adjusts any additional dilution of the sample to achieve the desired concentration (usually 400 ppm) in the

  19. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  20. Soil carbon cycle 13C responses in the decade following bark beetle and girdling disturbance

    NASA Astrophysics Data System (ADS)

    Maurer, G. E.; Chan, A. M.; Trahan, N. A.; Moore, D. J.; Bowling, D. R.

    2014-12-01

    Recent bark beetle outbreaks in western North America have impacted millions of hectares of conifer forests leading to uncertainty about whether these forests will become new sources of atmospheric CO2. In large part, this depends on whether enhanced respiration from the decomposition of newly dead organic matter will outpace the recovery of ecosystem carbon uptake by the ecosystems. To understand how rapidly conifer forest carbon pools turn over following these disturbances, we examined changes in the isotopic composition of soil respiration (δ13Cresp) following beetle and girdling mortality in two subalpine forests in Colorado, U.S.A. At the beetle-impacted forest δ13Cresp declined by ~1‰ between 3 and 8 years post-disturbance, but recovered in years 9-10. In the girdled forest, deep (<10 cm depth) soil respiration from plots at <1 to 2 years post-girdling was depleted by ~1‰ relative to ungirdled plots, but then gradually increased until there was a significant spike in δ13Cresp at 8-9 years post-girdling. Based on our understanding of isotopic composition in carbon pools and fluxes at these forests, we attribute these changes to removal of recently assimilated C in rhizosphere respiration (1-2 years) followed by the decomposition of litterfall (needles and roots) 8-10 years post-disturbance. Relative to ungirdled plots, there was also a transient enrichment in surface δ13Cresp from plots at <1 to 2 years post-girdling (~0.5‰, not statistically significant) and significant declines in microbial carbon in surface soils in 2-4 year post-girdling plots. Again, based on current understanding, we interpret these to signify the rapid turnover of mycorrhizal and rhizosphere microbial biomass in the 2 years following girdling. A potential confounding factor in this study is that seasonal variation in δ13Cresp was similar in magnitude to changes with time since disturbance and was significantly related to variation in soil temperature and water content.

  1. Sulfate, Methane, Alkalinity, Calcium and Carbon Isotope (δ13C) Profiles as an Indicator of Upward Methane Flux

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Bhatnagar, G.; Chapman, W. G.; Dickens, G. R.; Dugan, B.; Hirasaki, G. J.

    2009-12-01

    The upward flux of methane is an important determinant for the amount of hydrate that may potentially be present in the sediments. One approach to measure methane flux is to relate sulfate methane transition (SMT) depth to the methane flux via anaerobic oxidation of methane (AOM) reaction (Borowski et al., 1996; Dickens and Snyder, 2009). However, numerous prominent authors such as Kastner argue that consumption of pore water sulfate in shallow sediments is a result of oxidation of particulate organic carbon (POC) as opposed to methane. Another contradictory argument between these two groups is based on the carbon isotopic composition (δ13C) of dissolved inorganic carbon (DIC) across the SMT. The articles in Fire in the ice by Kastner et al. (2008) and Dickens and Snyder (2009) focus on these two important arguments in the gas hydrate community and warrant more detailed modeling to help resolve the questions raised by these two groups. We examine the two hypotheses by the two groups and reconcile their interpretations using Bhatnagar’s 1-D model (2008). This model computes methane and sulfate mass balances with both advective and diffusive fluxes. In addition to the mass balances, sulfate consumption reactions following the two pathways (i.e. POC driven and anaerobic oxidation of methane) have been included in the current model. Setting the model parameters to represent zero net flux, and thus assuming a closed system, we are able to justify Kastner’s interpretations. Bicarbonate (DIC) or alkalinity, Ca2+ (for calculating carbonate precipitation), and δ13C in DIC profiles are computed in addition to the sulfate and methane profiles along depth to provide an understanding of the contribution due to the deep bicarbonate flux. This deep flux of bicarbonate profile would validate Dickens’ interpretations and justify the dominance of the AOM reaction for consumption of sulfate in shallow sediments. This model serves as a tool to interpret methane flux with the

  2. Silylated Derivatives Retain Carbon and Alter Expected 13C-Tracer Enrichments Using Continuous Flow-Combustion-Isotope Ratio Mass Spectrometry

    PubMed Central

    Shinebarger, Steven R.; Haisch, Michael; Matthews, Dwight E.

    2008-01-01

    Continuous-flow inlets from oxidation reactors are commonly used systems for biological sample introduction into isotope ratio mass spectrometers (IRMS) to measure 13C enrichment above natural abundance. Because the samples must be volatile enough to pass through a gas chromatograph, silylated derivatization reactions are commonly used to modify biological molecules to add the necessary volatility. Addition of a t-butyldimethylsilyl (TBDMS) group is a common derivatization approach. However, we have found that samples do not produce the expected increment in measured 13C abundance as the TBDMS derivatives. We have made measurements of 13C enrichment of leucine and glutamate standards of known 13C enrichment using derivatives without silicon (N-acetyl n-propyl ester), with silicon (TBDMS), and an intermediate case. The measurements of 13C in amino acids derivatized without silicon were as expected. The 13C enrichment measurements using the TBDMS derivative were higher than expected, but could be corrected to produce the expected 13C enrichment measurement by IRMS if one carbon was removed per silicon. We postulate that the silicon in the derivative forms silicon carbide compounds in the heated cupric oxide reactor, rather than forming silicon dioxide. Doing so reduces the amount of CO2 formed from the carbon in the sample. Silylated derivatives retain carbon with the silicon and must be used carefully and with correction factors to measure 13C enrichments by continuous-flow IRMS. PMID:12510745

  3. Respiratory Carbon Metabolism following Illumination in Intact French Bean Leaves Using 13C/12C Isotope Labeling1

    PubMed Central

    Nogués, Salvador; Tcherkez, Guillaume; Cornic, Gabriel; Ghashghaie, Jaleh

    2004-01-01

    The origin of the carbon atoms in the CO2 respired by French bean (Phaseolus vulgaris) leaves in the dark has been studied using 13C/12C isotopes as tracers. The stable isotope labeling was achieved through a technical device that uses an open gas-exchange system coupled online to an elemental analyzer and linked to an isotope ratio mass spectrometer. The isotopic analysis of the CO2 respired in the dark after a light period revealed that the CO2 was labeled, but the labeling level decreased progressively as the dark period increased. The pattern of disappearance depended on the amount of carbon fixed during the labeling and indicated that there were several pools of respiratory metabolites with distinct turnover rates. We demonstrate that the carbon recently assimilated during photosynthesis accounts for less than 50% of the carbon in the CO2 lost by dark respiration and that the proportion is not influenced by leaf starvation in darkness before the labeling. Therefore, most of the carbon released by dark respiration after illumination does not come from new photosynthates. PMID:15377781

  4. Respiratory carbon metabolism following illumination in intact French bean leaves using (13)C/(12)C isotope labeling.

    PubMed

    Nogués, Salvador; Tcherkez, Guillaume; Cornic, Gabriel; Ghashghaie, Jaleh

    2004-10-01

    The origin of the carbon atoms in the CO(2) respired by French bean (Phaseolus vulgaris) leaves in the dark has been studied using (13)C/(12)C isotopes as tracers. The stable isotope labeling was achieved through a technical device that uses an open gas-exchange system coupled online to an elemental analyzer and linked to an isotope ratio mass spectrometer. The isotopic analysis of the CO(2) respired in the dark after a light period revealed that the CO(2) was labeled, but the labeling level decreased progressively as the dark period increased. The pattern of disappearance depended on the amount of carbon fixed during the labeling and indicated that there were several pools of respiratory metabolites with distinct turnover rates. We demonstrate that the carbon recently assimilated during photosynthesis accounts for less than 50% of the carbon in the CO(2) lost by dark respiration and that the proportion is not influenced by leaf starvation in darkness before the labeling. Therefore, most of the carbon released by dark respiration after illumination does not come from new photosynthates.

  5. Identification of /sup 13/C depleted mantle carbon in diamonds from the Roberts Victor Kimberlite, South Africa

    SciTech Connect

    Deines, P.

    1985-01-01

    The Roberts Victor Kimberlite is known for the abundance of eclogite xenoliths, some of which show an unusual depletion in /sup 18/O. The question whether the observed oxygen isotope variations can be related to carbon isotopic composition variations has been investigated. Peridotite-suite diamons (X = -5.4 per thousand vs. PDB, s = +/-0.9 per thousand, n = 65) and sulfide containing diamonds (X = -4.9, s = +/-0.9, n = 20) do not differ in their /sup 13/C content. For these samples, delta/sup 13/C is not related to diamond shape, color, minerals occluded, or the inclusion chemistry. Eclogite suite diamonds (11) can be subdivided into two groups, GI and GII, based on delta/sup 13/C : GI = (X = -15.4, s = +/-0.4, n = 8); GII = (X = -5.9, s = +/-0.4, n = 3). The composition of the gt and cpx inclusions of the two groups is distinct; e.g. cpx of GI is significantly depleted in SiO/sub 2/, MgO, and CaO, and significantly enriched in Al/sub 2/O/sub 3/, FeO and MnO, compared to cpx of GII. Comparison of the chemical composition of the inclusions in E-type diamonds with those of eclogite xenoliths showing /sup 18/O depletion suggests that /sup 13/C and /sup 18/O depletion are not likely to be related. Evaluation of compositional trends of gt and cpx in eclogite xenoliths indicates that GI and GII are not related by a single fractionation event, but represent products from different reservoirs. Equilibration conditions deduced from coexisting gt and cpx demonstrate that GI diamonds come from larger depths than eclogite xenoliths and by inference GII diamonds. The high FeO and MnO content of a gt inclusion in cpx of an eclogite xenolith is used to argue for the existence of two separate events responsible for the formation of GI and GII diamonds.

  6. Reproduction-related variation in carbon allocation to woody tissues in Fagus crenata using a natural 13C approach.

    PubMed

    Han, Qingmin; Kagawa, Akira; Kabeya, Daisuke; Inagaki, Yoshiyuki

    2016-11-01

    The contribution of new photo-assimilates and stored carbon (C) to plant growth remains poorly understood, especially during reproduction. In order to elucidate how mast seeding affects C allocation to both reproductive and vegetative tissues, we measured biomass increase in each tissue, branch starch concentration and stable C isotope composition (δ(13)C) in bulk leaves, current-year shoots, 3-year branches and tree rings in fruiting and non-fruiting trees for 2 years, as well as in fruits. We isolated the effect of reproduction on C allocation to vegetative growth by comparing (13)C enrichment in woody tissues in fruiting and non-fruiting specimens. Compared with 2‰ (13)C enrichment in shoots relative to leaves from non-fruiting trees, fruiting reduced the enrichment to 1‰ and this reduction disappeared in the following year with no fruiting, indicating that new photo-assimilates are preferentially used for woody tissues even with fruiting burden. In contrast, fruits had up to 2.5‰ (13)C enrichment at mid-summer, which dropped thereafter, indicating that fruit production relies on C storage early in the growing season then shifts to current photo-assimilates. At this tipping point, growth of shoots and cupules had almost finished and nuts had a second rapid growth period thereafter. Together with shorter shoots but higher biomass increment per length in fruiting trees than non-fruiting trees, these results indicate that the C limitation due to fruit burden is minimized by fine-tuning of allocation of old C stores and new photo-assimilates, along with the growth pattern in various tissues. Furthermore, fruiting had no significant effect on starch concentration in 3-year-old branches, which became fully depleted during leaf and flower flushing but were quickly replenished. These results indicate that reproduction affects C allocation to branches but not its source or storage. These reproduction-related variations in the fate of C have implications for

  7. Structural characterization of ion-vapor deposited hydrogenated amorphous carbon coatings by solid state {sup 13}C nuclear magnetic resonance

    SciTech Connect

    Xu, Jiao; Kato, Takahisa; Watanabe, Sadayuki; Hayashi, Hideo; Kawaguchi, Masahiro

    2014-01-07

    In the present study, unique structural heterogeneity was observed in ion-vapor deposited a-C:H coatings by performing {sup 13}C MAS and {sup 1}H-{sup 13}C CPMAS experiments on solid state nuclear magnetic resonance devices. Two distinct types of sp{sup 2} C clusters were discovered: one of them denoted as sp{sup 2} C′ in content of 3–12 at. % was non-protonated specifically localized in hydrogen-absent regions, while the other dominant one denoted as sp{sup 2} C″ was hydrogenated or at least proximate to proton spins. On basis of the notably analogous variation of sp{sup 2} C′ content and Raman parameters as function of substrate bias voltage in the whole range of 0.5 kV–3.5 kV, a model of nano-clustering configuration was proposed that the sp{sup 2} C′ clusters were embedded between sp{sup 2} C″ clusters and amorphous sp{sup 3} C matrix as trapped interfaces or boundaries where the sp{sup 2} carbon bonds were highly distorted. Continuous increase of bias voltage would promote the nano-clustering and re-ordering of dominant sp{sup 2} C″ clusters, thus results in a marked decrease of interspace and a change of the content of sp{sup 2} C′ clusters. Further investigation on the {sup 13}C magnetization recovery showed typical stretched-exponential approximation due to the prominent presence of paramagnetic centers, and the stretched power α varied within 0.6–0.9 from distinct types of sp{sup 2} C clusters. Differently, the magnetization recovery of {sup 1}H showed better bi-exponential approximation with long and short T{sub 1}(H) fluctuated within 40–60 ms and 0.1–0.3 ms approximately in content of 80% ± 5% and 20% ± 5%, respectively, varying with various bias voltages. Meanwhile, the interrupted {sup 13}C saturation recovery with an interval of short T{sub 1}(H) showed that most of quick-relaxing protons were localized in sp{sup 2} C″ clusters. Such a short T{sub 1}(H) was only possibly resulted from a relaxation mechanism

  8. Effect of Crop cultivation after Mediterranean maquis on soil carbon stock, δ13C spatial distribution and root turnover

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Santoro, Antonino; La Mantia, Tommaso

    2013-04-01

    The aim of this work was investigate the effect of land use change on soil organic carbon (SOC) stock and distribution in a Mediterranean succession. A succession composed by natural vegetation, cactus pear crop and olive grove, was selected in Sicily. The land use change from mediterranena maquis (C3 plant) to cactus pear (C4 plant) lead to a SOC decrease of 65% after 28 years of cultivation, and a further decrease of 14% after 7 years since the land use from cactus pear to olive grove (C3 plant). Considering this exchange and decrease as well as the periods after the land use changes we calculated the mean residence time (MRT) of soil C of different age. The MRT of C under Mediterranean maquis was about 142 years, but was 10 years under cactus pear. Total SOC and δ13 C were measured along the soil profile (0-75cm) and in the intra-rows in order to evaluate the distribution of new and old carbon derived and the growth of roots. After measuring of weight of cactus pear root, an approach was developed to estimate the turnover of root biomass. Knowledge of root turnover and carbon input are important to evaluate the correlation between carbon input accumulation and SOC stock in order to study the ability of C sink of soils with different use and managements.

  9. High Precision 13C/12C Measurement of Dissolved Carbon Using a Transportable Cavity Ring-Down Spectrophotometer System

    NASA Astrophysics Data System (ADS)

    Saad, N.; Crosson, E.

    2009-05-01

    We report here on the measurement of high precision δ13C from total inorganic carbon (TIC) and dissolved organic carbon (DOC) using a sample preparation system coupled to a small footprint Wavelength- Scanned Cavity Ring-Down Spectrometer (WS-CRDS). This system is capable of applying a 5% H3PO4 solution or a sodium persulfate oxidation process to a water sample in an exetainer vial, thereby liberating gaseous CO2 and permitting stable carbon isotope measurement in TIC and DOC, respectively. The isotopic carbon signature determination can then be used to trace the origin of carbonates or organic carbon compounds. In a first phase, a manual process was employed in which TIC containing samples were acidified and the evolved CO2 was collected inside gas pillows. The gas pillows were then connected to the inlet of the isotopic WS-CRDS instrument for carbon ratio measurement. In a second phase, the CO2 liberation processes were automated in an integrated analyzer enabling software control of a sample preparation system directly connected to the gas inlet of the isotopic WS-CRDS instrument. A measurement precision of the isotopic ratio in the range of 0.2 to 0.4 permil was achieved in minutes of measurement time. Such precision readily distinguishes the isotopic TIC and DOC signatures from a set of three different stream water samples collected from various sites in Northern California. The current TIC/DOC- CRDS setup will enable shipboard measurement and presents a rugged, portable and inexpensive analytical instrumentation alternative to the traditional use of methods based on the more complex and lab-confined isotope ratio mass spectrometry technique.

  10. Effects of roasting conditions on the changes of stable carbon isotope ratios (δ13 C) in sesame oil and usefulness of δ13 c to differentiate blended sesame oil from corn oil.

    PubMed

    Seol, Nam Gyu; Jang, Eun Yeong; Kim, Mi-Ja; Lee, Jaehwan

    2012-12-01

    Differentiating blended sesame oils from authentic sesame oil (SO) is a critical step in protecting consumer rights. Stable carbon isotope ratios (δ(13) C), color, fluorescence intensity, and fatty acid profiles were analyzed in SO prepared from sesame seeds with different roasting conditions and in corn oil blended with SO. Sesame seeds were roasted at 175, 200, 225, or 250 °C for 15 or 30 min at each temperature. SO was mixed with corn oil at varying ratios. Roasting conditions ranging from175 to 250 °C at the 30 min time point did not result in significant changes in δ(13) C (P > 0.05). Values of δ(13) C in corn oil and SO from sesame seeds roasted at 250 °C for 15 min were -17.55 and -32.13 ‰, respectively. Fatty acid ratios, including (O + L)/(P × Ln) and (L × L)/O, where O, L, P, and Ln were oleic, linoleic, palmitic, and linolenic acids, respectively, showed good discriminating abilities among the SO blended with corn oil. Therefore, using different combinations of stable carbon isotope ratios and some fatty acid ratios can allow successful differentiation of authentic SO from SO blended with corn oil. © 2012 Institute of Food Technologists®

  11. /sup 13/C nuclear magnetic resonance studies of the biosynthesis by Microbacterium ammoniaphilum of L-glutamate selectively enriched with carbon-13

    SciTech Connect

    Walker, T.E.; Han, C.H.; Kollman, V.H.; London, R.E.; Matwiyoff, N.A.

    1982-02-10

    /sup 13/C NMR of isotopically enriched metabolites has been used to study the metabolism of Microbacterium ammoniaphilum, a bacterium which excretes large quantities of L-glutamic acid into the medium. Biosynthesis from 90% (1-/sup 13/C) glucose results in relatively high specificity of the label, with (2,4-/sup 13/C/sub 2/) glutamate as the major product. The predominant biosynthetic pathway for synthesis of glutamate from glucose was determined to be the Embden Meyerhof glycolytic pathway followed by P-enolpyruvate carboxylase and the first third of the Krebs cycle. Different metabolic pathways are associated with different correlations in the enrichment of the carbons, reflected in the spectrum as different /sup 13/C-/sup 13/C scalar multiplet intensities. Hence, intensity and /sup 13/C-/sup 13/C multiplet analysis allows quantitation of the pathways involved. Although blockage of the Krebs cycle at the ..cap alpha..-ketoglutarate dehydrogenase step is the basis for the accumulation of glutamate, significant Krebs cycle activity was found in glucose grown cells, and extensive Krebs cycle activity in cells metabolizing (1-/sup 13/C) acetate. In addition to the observation of the expected metabolites, the disaccharide ..cap alpha..,..cap alpha..-trehalose and ..cap alpha..,..beta..-glucosylamine were identified from the /sup 13/C NMR spectra.

  12. Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A δ 13C-N study of eclogite-hosted diamonds from the Jericho kimberlite

    NASA Astrophysics Data System (ADS)

    Smart, Katie A.; Chacko, Thomas; Stachel, Thomas; Muehlenbachs, Karlis; Stern, Richard A.; Heaman, Larry M.

    2011-10-01

    Diamonds from high- and low-MgO groups of eclogite xenoliths from the Jericho kimberlite, Slave Craton, Canada were analyzed for carbon isotope compositions and nitrogen contents. Diamonds extracted from the two groups show remarkably different nitrogen abundances and δ 13C values. While diamonds from high-MgO eclogites have low nitrogen contents (5-82 ppm) and extremely low δ 13C values clustering at ˜-40‰, diamonds from the low-MgO eclogites have high nitrogen contents (>1200 ppm) and δ 13C values from -3.5‰ to -5.3‰. Coupled cathodoluminescence (CL) imaging and SIMS analysis of the Jericho diamonds provides insight into diamond growth processes. Diamonds from the high-MgO eclogites display little CL structure and generally have constant δ 13C values and nitrogen contents. Some of these diamonds have secondary rims with increasing δ 13C values from -40‰ to ˜-34‰, which suggests secondary diamond growth occurred from an oxidized growth medium. The extreme negative δ 13C values of the high-MgO eclogite diamonds cannot be produced by Rayleigh isotopic fractionation of average mantle-derived carbon (-5‰) or carbon derived from typical organic matter (˜-25‰). However, excursions in δ 13C values to -60‰ are known in the organic sedimentary record at ca. 2.7 and 2.0 Ga, such that diamonds from the high-MgO eclogites could have formed from similar organic matter brought into the Slave lithospheric mantle by subduction. SIMS analyses of a diamond from a low-MgO eclogite show an outer core with systematic rimwards increases in δ 13C values coupled with decreases in nitrogen contents, and a rim with pronounced alternating growth zones. The coupled δ 13C-nitrogen data suggest that the diamond precipitated during fractional crystallization from an oxidized fluid/melt from which nitrogen was progressively depleted during growth. Model calculations of the co-variation of δ 13C-N yielded a partition coefficient ( KN) value of 5, indicating that

  13. Use of Position-Specific 13C Isotopomers to Examine Central Carbon Metabolism in the Thermophile 'Thermoflexus hugenholtzii'

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Tamadonfar, K. O.; Dijkstra, P.; Dodsworth, J. A.; Hedlund, B. P.

    2013-12-01

    'Thermoflexus hugenholtzii' is a member of a newly discovered class of Chloroflexi. It is the dominant microorganism in certain hot springs; however, very little is known about its physiology, and it is unable to grow on defined media. In order to examine central carbon metabolism in 'T. hugenholtzii', the genome was annotated for genes encoding enzymes for central carbon metabolism, revealing complete pathways for glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway (PPP). Isotope experiments were conducted to test predicted activities by adding position-specific carbon-13 (13C)-labeled metabolites of glucose, pyruvate, acetate, TCA metabolites, and amino acids and measuring the production of 13CO2 during exponential growth. Use of these metabolites demonstrated broad heterotrophic activity of 'T. hugenholtzii,' despite its inability to grow on defined media. Use of glucose-U demonstrated an active glycolytic pathway and pyruvate-1 demonstrated the functioning of the pyruvate oxidation pathway after glycolysis. Use of the TCA cycle intermediates citrate and succinate demonstrated an active TCA cycle. Production of CO2 from alanine and cysteine demonstrated oxidation of amino acids. However, lack of activity on glucose-1 failed to reveal an active PPP suggesting 'T. hugenholtzii' may rely on exogenous sources of pentoses for nucleic acid biosynthesis.

  14. Linking phosphorus sequestration to carbon humification in wetland soils by 31P and 13C NMR spectroscopy.

    PubMed

    Hamdan, Rasha; El-Rifai, Hasan M; Cheesman, Alexander W; Turner, Benjamin L; Reddy, K Ramesh; Cooper, William T

    2012-05-01

    Phosphorus sequestration in wetland soils is a prerequisite for long-term maintenance of water quality in downstream aquatic systems, but can be compromised if phosphorus is released following changes in nutrient status or hydrological regimen. The association of phosphorus with relatively refractory natural organic matter (e.g., humic substances) might protect soil phosphorus from such changes. Here we used hydrofluoric acid (HF) pretreatment to remove phosphorus associated with metals or anionic sorption sites, allowing us to isolate a pool of phosphorus associated with the soil organic fraction. Solution (31)P and solid state (13)C NMR spectra for wetland soils were acquired before and after hydrofluoric acid pretreatment to assess quantitatively and qualitatively the changes in phosphorus and carbon functional groups. Organic phosphorus was largely unaffected by HF treatment in soils dominated by refractory alkyl and aromatic carbon groups, indicating association of organic phosphorus with stable, humified soil organic matter. Conversely, a considerable decrease in organic phosphorus following HF pretreatment was detected in soils where O-alkyl groups represented the major fraction of the soil carbon. These correlations suggest that HF treatment can be used as a method to distinguish phosphorus fractions that are bound to the inorganic soil components from those fractions that are stabilized by incorporation into soil organic matter. © 2012 American Chemical Society

  15. Dietary glutamine, glutamic acid and nucleotides increase the carbon turnover (δ 13C) on the intestinal mucosa of weaned piglets.

    PubMed

    Amorim, A B; Berto, D A; Saleh, M A D; Miassi, G M; Ducatti, C

    2017-02-10

    This study aimed at evaluating the influence of dietary glutamine, glutamic acid and nucleotides on duodenal and jejunal carbon turnover, and on mucosa morphometry of piglets weaned at an age of 21 days. The diets were: additive-free diet - control (C); 1% of glutamine (G); 1% of glutamic acid (GA); and 1% of nucleotides (N). In intestinal mucosa morphometry trial, 65 animals were used. At day 0 (baseline), five animals were slaughtered to determine the villus height (VH), crypt depth (CD), VH : CD ratio and villi density (VD). The remaining 60 animals were allocated into a randomized block design with 4×3 factorial arrangement (four diets: C - control, G - glutamine, GA - glutamic acid and N - nucleotides; three slaughter ages: 7, 14 and 21 days post-weaning) with five piglets slaughtered per treatment. In carbon turnover trial, 123 animals were used. At day 0 (baseline), three animals were slaughtered to quantify the δ 13C half-life (T50%) and the 99% carbon substitution (T99%) on intestinal mucosa. The remaining 120 animals were blocked by three weight categories (light, medium and heavy) and, randomly assigned to pen with the same four diets from the previous trial with one piglet slaughtered per weight category per treatment at days 1, 2, 4, 5, 7, 9, 13, 20, 27 and 49 after weaning. Morphometric analyses have yielded no consistent results regarding the action of the evaluated additives, and few reproducible age-related effects. The N diets determined lower T50% values (5.18 days) and T99% (17.21 days) than G and C diets (T50%=7.29, 7.58 days and T99%=24.22, 25.17 days, respectively) in the duodenal mucosa. In jejunum, the N, GA and G diets determined the lowest T50% means (4.9, 6.2 and 6.7 days, respectively) and T99% means (15.34, 21.10 and 21.84 days, respectively) in comparison with C diets (T50%=7.44 and T99%=24.72 days). The inclusion of the additives in the diets of piglets accelerated the carbon turnover in piglets during the post-weaning period. The

  16. Tracing source, mixing and uptaking processes of carbon in an epikarst spring-pond system in southeastern Guizhou of China by carbon isotopes (13C-14C)

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Chen, B.; Liu, Z.; Li, H. C.; Yang, R.

    2015-12-01

    δ13C and Δ14C of dissolved inorganic carbon (DIC), particulate organic carbon (POC) and aquatic plants from a karst spring and two spring-fed ponds in Laqiao, Maolan County, Guizhou Province in January, July and October of 2013 were measured to understand the roles of aquatic photosynthesis through DIC uptake in karst surface waters. The mean Δ14C and δ13C values of DIC for the spring pool, midstream and downstream ponds are -60.6±26.3‰ and -13.53±1.97‰, -62.8±62.9‰ and -11.72±2.72‰, and -54.2±56.5‰ and -9.40±2.03‰, respectively. Both Δ14C and δ13C show seasonal variations, with lower Δ14C values but heavier δ13C values in dry season and vice versa in summer rainy season. This observation indicates that (1) the main carbon source of the spring DIC is from limestone bedrock dissolution and soil CO2 with higher contribution in summer due to higher productivity; and (2) 13C and 14C have different behaviors during DIC uptake by aquatic plants and during CO2 exchange between DIC and the atmospheric CO2. Biological uptake of CO2 will not affect the Δ14C of DIC, but lead to δ13CDIC enrichment. CO2 exchange between DIC and the atmospheric CO2 should elevate both the Δ14C and δ13C of DIC. In Laqiao spring-pond system, it seems that the effect of biological uptake on the Δ14C and δ13C of DIC is much stronger than that of CO2 exchange with the atmosphere. The mean Δ14C values of POC from the spring pool, midstream and downstream ponds are -308.1 ±64.3‰, -164.4±84.4‰ and -195.1±108.5‰, respectively, indicating mixture of aquatic algae and detrital particle (clay and dust). More aquatic algae were formed in the stream ponds especially in the summer. SEM results of the POC samples support this conclusion. Furthermore, the Δ14C values of the submerged aquatic plants range from -200.0‰ to -51.3 ‰ and were similar to those of the DIC, indicating that the aquatic plants used DIC for photosynthesis. The Δ14C value of an emergent plant

  17. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  18. Congener-specific concentrations and carbon stable isotope ratios (delta13C) of two technical toxaphene products (Toxaphene and Melipax).

    PubMed

    Vetter, Walter; Gleixner, Gerd; Armbruster, Wolfgang; Ruppe, Steffen; Stern, Gary A; Braekevelt, Eric

    2005-01-01

    In this study we compared the contribution of individual congeners and the ratios of stable carbon isotopes of two technical toxaphene products. The former US-American product Toxaphene was from 1978 and the East-German product Melipax from 1979. Both technical products showed the known complexity in GC/ECD measurements. Contributions of 24 peaks to each of the technical products were determined by gas chromatography in combination high resolution electron capture negative ion mass spectrometry (GC/ECNI-HRMS). The percentages of the compounds studied in the technical mixtures ranged from approximately 0.05% to approximately 2.5% but showed some individual differences. 2,2,5,5,8,9,9,10,10-nonachlorobornane (B9-1025 or P-62) was identified as a major congener in both mixtures. 2-Endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (B8-1413 or P26) and 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (B9-1679 or P-50) were found at similar concentration in both technical products. Identical amounts of Melipax or Toxaphene were combusted to CO2 in an element analyzer and their delta13C values were determined relative to the international standard Vienna PeeDee belemnite (VPDB). The mean delta13C values of both products varied by 2.8% (determined at two different locations) which is roughly one order of magnitude more than the precision obtained in repetitive analyses of the individual products. Thus, both investigated products could be unequivocally distinguished by stable isotope ratio mass spectrometry (IRMS). IRMS analyses may thus be a suitable tool for tracing back toxaphene residues in environmental and food samples to the one or both of the products.

  19. [Impact of land use change and cultivation measures on soil organic carbon (SOC) and its 13C values].

    PubMed

    Meng, Fan-qiao; Kuang, Xing; Du, Zhang-liu; Wu, Wen-liang; Guo, Yan-bin

    2010-08-01

    In Quzhou County, Hebei Province where now intensive farming system is operated, original grassland and farming land under different tillage, crop straw return and fertilization measures were studied using isotope carbon for the analysis of the impact on soil organic carbon (SOC) properties. The research indicated that after change into farmland (34 years), SOC is significantly reduced and for 1 m of soil layer, the scope of reduction is from 13.3%-35% and this decrease happens in 0-40 cm of soil layer. After 8 years of fertilization, SOC can be increased at 0.83 g x kg(-1). No-tillage can significantly increase the SOC especially in 0-10 cm but plough will increase the SOC at 10-15 cm and 15-20 cm. Change of delta13 C of SOC due to land use change mainly happens in 0-20 cm, where input of organic materials from maize stored. In soil layer of 0-5 cm, only maximum 18% of SOC is from crop residues and in 15-20 cm, this percentage is about 5%.

  20. (13)C NMR spectroscopy characterization of particle-size fractionated soil organic carbon in subalpine forest and grassland ecosystems.

    PubMed

    Shiau, Yo-Jin; Chen, Jenn-Shing; Chung, Tay-Lung; Tian, Guanglong; Chiu, Chih-Yu

    2017-12-01

    Soil organic carbon (SOC) and carbon (C) functional groups in different particle-size fractions are important indicators of microbial activity and soil decomposition stages under wildfire disturbances. This research investigated a natural Tsuga forest and a nearby fire-induced grassland along a sampling transect in Central Taiwan with the aim to better understand the effect of forest wildfires on the change of SOC in different soil particle scales. Soil samples were separated into six particle sizes and SOC was characterized by solid-state (13)C nuclear magnetic resonance spectroscopy in each fraction. The SOC content was higher in forest than grassland soil in the particle-size fraction samples. The O-alkyl-C content (carbohydrate-derived structures) was higher in the grassland than the forest soils, but the alkyl-C content (recalcitrant substances) was higher in forest than grassland soils, for a higher humification degree (alkyl-C/O-alkyl-C ratio) in forest soils for all the soil particle-size fractions. High humification degree was found in forest soils. The similar aromaticity between forest and grassland soils might be attributed to the fire-induced aromatic-C content in the grassland that offsets the original difference between the forest and grassland. High alkyl-C content and humification degree and low C/N ratios in the fine particle-size fractions implied that undecomposed recalcitrant substances tended to accumulate in the fine fractions of soils.

  1. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species

    PubMed Central

    Salmon, Yann; Buchmann, Nina; Barnard, Romain L.

    2016-01-01

    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes. PMID:27010947

  2. Bovine Serum Albumin-Catalyzed Deprotonation of [1-13C]-Glycolaldehyde: Protein Reactivity Toward Deprotonation of α–Hydroxy α–Carbonyl Carbon

    PubMed Central

    Go, Maybelle K.; Malabanan, M. Merced; Amyes, Tina L.; Richard, John P.

    2010-01-01

    Bovine serum albumin (BSA) in D2O at 25 °C and pD 7.0 was found to catalyze the deuterium exchange reactions of [1-13C]-glycolaldehyde ([1-13C]-GA) to form [1-13C, 2-2H]-GA and [1-13C, 2,2-di-2H]-GA. The formation of [1-13C, 2-2H]-GA and [1-13C, 2,2-di-2H]-GA in a total yield of 51 ± 3% was observed at early reaction times, and at latter times [1-13C, 2-2H]-GA was observed to undergo BSA-catalyzed conversion to [1-13C, 2,2-di-2H]-GA. The overall second-order rate constant for these deuterium exchange reactions is (kE)P = 0.25 M−1 s−1. By comparison, values of (kE)P = 0.04 M−1 s−1 (Go, M. K., Amyes, T. L., and Richard, J. P. (2009), Biochemistry 48, 5769–5778) and 0.06 M−1 s−1 (Go, M. K., Koudelka, A., Amyes, T. L., and Richard, J. P. (2010), Biochemistry 49, 5377–5389) have been determined, respectively, for the wildtype- and K12G mutant TIM-catalyzed deuterium exchange reactions of [1-13C]-GA to form [1-13C, 2,2-di-2H]-GA. These data show that TIM and BSA exhibit a modest catalytic activity towards deprotonation of α-hydroxy α-carbonyl carbon. It is suggested that this activity is intrinsic to many globular proteins, and that it must be enhanced to demonstrate successful de novo design of protein catalysts of reactions through enamine intermediates. PMID:20687575

  3. δ13C values of CO2 respired during incubation of C3-derived soil organic matter: Refining the paleosol carbonate CO2 barometer

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Nadel, M.; Breecker, D. O.

    2011-12-01

    Quantifying atmospheric CO2 concentrations throughout the Earth's history is important for evaluating the role of atmospheric CO2 in regulating the Earth's surface temperature. The paleosol carbonate CO2 barometer that utilizes δ13C values of pedogenic carbonate preserved in ancient soils is one of the most common proxies of paleo-atmospheric CO2 concentration over the Phanerozoic. The accuracy of the paleosol carbonate CO2 barometer is largely dependent on the estimation of soil CO2 contributed by soil respiration [S(z) value] and δ13C value of soil-respired CO2 [δ13Cr]. δ13Cr has the largest effect on the uncertainty of paleosol carbonate CO2 barometer when atmospheric CO2 concentrations were low. Therefore, accurate δ13C values of soil-respired CO2 are essential for determining threshold atmospheric CO2 for the onset and termination of icehouse climates. δ13C values of soil-respired CO2 are usually considered to be equivalent to δ13C values of soil organic matter (SOM), but there could be an isotope fractionation during SOM decomposition so that the δ13C values of SOM and soil-respired CO2 are not the same. In fact, per mil isotope fractionation factors as large as 3.1% during SOM decomposition have been invoked to explain observed profiles of increasing δ13C values of SOM with soil depth. To investigate carbon isotope fractionation during SOM decomposition, we conducted soil incubation experiment with soils having C3-derived SOM from 3 sites at Ordway Field Station in Minnesota and 3 sites in the Palouse region of eastern Washington. After removing living plant materials, soil samples (from depths intervals of 0-1 cm and 29-30 cm for each site) were wetted to field capacity. Wet soil samples (~0.2 to ~0.6 g) were pre-incubated for 1 week in septum-capped 12 ml glass vials and then incubated at 25°C for 4, 8, and 15 days. δ13C values of respired CO2 were measured and compared with δ13C values of SOM to examine the isotope fractionation during

  4. Measurement of compound-specific carbon isotope ratios (δ(13) C values) via direct injection of whole crude oil samples.

    PubMed

    Barrie, Craig D; Taylor, Kyle W R; Zumberge, John

    2016-04-15

    Stable isotope analysis is a powerful tool in understanding the generation, history and correlation of hydrocarbons. Compound-specific δ(13) C measurements of oils allow detailed comparison of individual compound groupings; however, most studies of these sample materials separate and isolate individual fractions based on the chemistries of particular compound groups, potentially losing considerable valuable isotopic data. Even if all fractions are analyzed, this represents a large increase in the data-processing burden, effectively multiplying data evaluation time and effort by the number of fractions produced. Gas chromatography/isotope ratio mass spectrometry (GC/IRMS) of untreated, whole crude oils allows the immediate collection of a larger suite of valuable isotopic data for these studies. Untreated ('neat', undiluted), whole crude oils were directly injected and measured on a GC/IRMS system, using split (40:1) injections and a 50 m HP-PONA column. The GC method, 97 min in duration, was designed to maximize baseline separation of target analyte peaks, while an additional oxygen flow was admitted into the combustion reactor to maximize the lifetime of the combustion chemicals. The method and setup utilized allow the measurement of a much greater range of the n-alkanes (n-C4 to n-C25+ ) than traditional methods, while also retaining important cycloalkane, aromatic and isoprenoid peaks within the same analysis. Carbon isotope (δ(13) C) evaluation of these additional compound classes reveals trends in maturity and origins which are not identifiable when exclusively assessing the traditional n-alkane package (>n-C12 ). The described setup and method open up new possibilities for assessing the origins and histories of crude oil samples. The data generated for the whole oil n-alkanes by this method is equivalent to that reported for isolated n-alkane studies, while also providing valuable additional data on many other important compounds. The end result of this

  5. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  6. Diamond growth from subducted carbon implied by correlated δ18O-δ13C variations in diamonds and garnet inclusions

    NASA Astrophysics Data System (ADS)

    Ickert, R. B.; Stachel, T.; Harris, J. W.

    2011-12-01

    Much of our knowledge of the deep-Earth carbon cycle is derived from studies of diamond. The sources of carbon in the mantle and the mechanisms of transport and precipitation as diamond, however, are not entirely understood. Due to the chemical purity of diamond, scientific effort has focussed on syngenetic mineral inclusions and their relationship to their diamond hosts. For example, it is well known that, on a worldwide scale, diamonds with eclogitic inclusions have a distinct δ13C distribution when compared to more abundant peridotitic diamonds. Eclogitic diamonds have a distribution that extends from mantle-like δ13C values (ca. -5%), to very light carbon (<-20%). Strong 13C depletion has been explained by either invoking subducted organic carbon, or through high temperature isotopic fractionation of mantle carbon. Here we report high-precision SIMS δ18O measurements (2σ±< 0.3%) of eclogitic garnet inclusions in diamonds from the Damtshaa mine (Orapa cluster, Botswana). The δ13C values of the host diamond were determined to have a wide range (-4.4% to -18%; Deines et al. 2009; Lithos v.112 p776). From 15 inclusions, the δ18O variations range from +4.8 to +8.8 %. The relative 18O abundances are negatively correlated with the δ13C of the host diamonds, suggesting a link between high δ18O host rocks and low δ13C diamonds. Although fractionation of δ13C values is possible at high temperature, δ18O values are susceptible only to very small high temperature fractionations. For example, Cartigny et al. (2001, EPSL v.185 p85) suggested that CO2 degassing from a carbonate-bearing melt prior to diamond precipitation may be responsible for a δ13C distribution of eclogitic diamonds worldwide that is skewed to 13C depleted compositions. Our data place new constraints on that model. Depending on the C/O ratio of the melt, CO2 degassing will either have a negligible effect on the δ18O of the residual melt, or (at high C/O) induce a positive correlation between

  7. Understanding carbon isotope behaviour during combustion processes: a pre-requisite to using d13C in the field of air pollution.

    NASA Astrophysics Data System (ADS)

    Negrel, P.; Widory, D.

    2006-12-01

    Recent studies have demonstrated the effectiveness of stable isotopes in the field of air pollution research, especially their success in clearly discriminating the different sources of pollution in urban environments, and in tracing their respective impacts for a given sampling location. Among them, carbon isotopes have been used to track the origin of both gases (i.e. CO2; Widory &Javoy, 2003) and particulate matter (i.e. PM2 .5 and PM10; Widory et al., 2004). But understanding the carbon isotope behaviour that leads to this discrimination during combustion processes is a pre-requisite to using them as tracers of pollution sources in the atmosphere. d13C in fuels has been extensively used as an indicator of the processes leading to the generation of their parent crude-oil. Here, we isotopically characterise fuels and combustibles sold in Paris (France), and characterise the isotopic relations existing with their combustion by-products, i.e. gases (CO2) and particles (bulk carbon). Results show that d13C in fuels is clearly related to their physical state, with natural gas being strongly depleted in 13C while coal yields the highest d13C, and liquid fuels display intermediate values. This relation is also valid for exhaust gases, though d13C values of combustion particles form a homogeneous range within which no clear distinction is observed. Combustion processes are accompanied by carbon-isotope fractionation resulting from the combustion being incomplete. Carbon-isotope fractionation is strictly negative ( 1.3‰) during the formation of combustion gases, but generally positive in particle formation even if values close to zero are observed. This study helps understanding the processes leading to the d13C discrimination observed in pollution sources' exhausts, and definitely validates the use of carbon isotopes as tracers of atmospheric pollution.

  8. Salt Marsh sediment 15N/13C "Push-Pull" assays reveal coupled sulfur, nitrogen, and carbon cycling

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Tucker, J.; Thomas, F.; Sievert, S. M.; Cardon, Z. G.; Giblin, A. E.

    2016-12-01

    Salt marshes are extraordinarily productive ecosystems found in estuaries worldwide, hosting intensive sulfur, nitrogen, and carbon cycling. Although it has been hypothesized that in this environment sulfur oxidation may be important for energy flow, there is little direct data. At the heart of these hypothesized interactions are sulfur oxidizing microbes. Sulfur oxidizers can catalyze sulfide (re-)oxidation with nitrate as the electron acceptor under anaerobic conditions, producing ammonium (via DNRA) or dinitrogen gas (via denitrification). The form of sulfur present in marsh systems influences whether autotrophic or heterotrophic processes transform nitrate either to dinitrogen gas or ammonium through DNRA. To examine the fate of nitrate and interactions with sulfur, we conducted a series of "push-pull" experiments in marsh sediment at the Plum Island Ecosystems Long-Term Ecological Research site in Massachusetts. Porewater was extracted anoxically and amended with isotopically labeled nitrate (15N) and bicarbonate (13C). Porewater was pumped back into the sediment and then withdrawn at intervals of several hours. Dissolved inorganic nitrogen, sulfur, and carbon were measured as well as isotopes of nitrogen gas and ammonium. These push-pull experiments were conducted at several times during the growing season, to coincide with salt marsh grass initial growth (May), maximum growth (July), flowering (August), and senescence (October). Porewater sulfides were very low to non-detectable in May (time of initial plant growth) and increased to a maximum of 3 mM in October (time of plant senescence). Combined rates of denitrification and DNRA also varied seasonally: rates were higher in May (0.16 - 17.5 nmoles N/cm3/hr) and much lower in October (0 - 0.03 nmoles N/cm3/hr). Interestingly, DNRA rates were always higher than denitrification rates, often by an order of magnitude or more.

  9. Fate of organic carbon in paddy soils - results of Alisol and Andosol incubation with 13C marker

    NASA Astrophysics Data System (ADS)

    Winkler, Pauline; Cerli, Chiara; Fiedler, Sabine; Woche, Susanne; Rahayu Utami, Sri; Jahn, Reinhold; Kalbitz, Karsten; Kaiser, Klaus

    2016-04-01

    For a better understanding of organic carbon (OC) decomposition in paddy soils an incubation experiment was performed. Two soil types with contrasting mineralogy (Alisol and Andosol) were exposed to 8 anoxic‒oxic cycles over 1 year. Soils received rice straw marked with 13C (228 ‰) at the beginning of each cycle. A second set of samples without straw addition was used as control. Headspaces of the incubation vessels were regularly analysed for CO2 and CH4. In soil solutions, redox potential, pH, dissolved organic C (DOC), and Fe2+ were measured after each anoxic and each oxic phase. Soils were fractionated by density at the end of the experiment and the different fractions were isotopically analysed. Samples of genuine paddy soils that developed from the test soils were used as reference. During anoxic cycles, soils receiving rice straw released large amounts of CO2 and CH4, indicating strong microbial activity. Consequently, Eh values dropped and pH as well as Fe2+ concentrations increased. Concentrations of DOC were relatively small, indicating either strong consumption and/or strong retention of dissolved organic compounds. During oxic cycles, concentrations of dissolved Fe dropped in both soils while DOC concentrations remained constant in the Alisol and decreased in the Andosol. Density fractionation revealed increased contents of mineral associated OC for the Andosol incubated with straw addition as compared to the parent soil. No changes were found for the Alisol. However, the mineral-associated OC fraction of both soil types contained 13C of the added straw. Hence, fresh organic matter is incorporated while part of the older organic matter has been released or mineralized. The increase in the Andosol might be due to effective binding of fresh OC to minerals and/or stronger retention/preservation of older OC. Both could be explained by the more reactive mineralogy of the Andosol than of the Alisol. XPS analyses of the soils are currently performed and

  10. Assimilation of toluene carbon along a bacteria-protist food chain determined by 13C-enrichment of biomarker fatty acids.

    PubMed

    Mauclaire, Laurie; Pelz, Oliver; Thullner, Martin; Abraham, Wolf-Rainer; Zeyer, Josef

    2003-12-01

    A food chain consisting of toluene, toluene-degrading Pseudomonas sp. PS+ and a bacterivorous flagellated amoebae Vahlkampfia sp. was established in a batch culture. This culture was amended with [U-13C]toluene and served as a model system to elucidate the flux of carbon in the food chain by quantifying bacterial biovolumes and 13C enrichment of phospholipid fatty acid (PLFA) biomarkers of the bacteria and the heterotrophic protists. Major PLFA detected in the batch co-culture included those derived from Pseudomonas sp. PS+ (16:1omega7c and 18:1omega7c) and Vahlkampfia sp. (20:4omega6c and 20:3omega6c). A numerical model including consumption of toluene by the bacteria and predation of the bacteria by the heterotrophic protists was adjusted to the measured toluene carbon, bacterial carbon and delta13C values of bacterial and protist biomass. Using this model, we estimated that 28+/-7% of the consumed toluene carbon was transformed into bacterial biomass, and 12+/-4% of the predated bacterial carbon was incorporated into heterotrophic protist biomass. Our study showed that the 13C enrichment of PLFA biomarkers coupled to biomass determination via biovolume calculations is a suitable method to trace carbon fluxes in protist-inclusive microbial food chains because it does not require the separation of protist cells from bacterial cells and soil particles.

  11. Balancing the (carbon) budget: Using linear inverse models to estimate carbon flows and mass-balance 13C:15N labelling experiments in low oxygen sediments.

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula

    2013-04-01

    Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

  12. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was supported

  13. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was

  14. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  15. Processing of particulate organic carbon associated with secondary-treated pulp and paper mill effluent in intertidal sediments: a 13C pulse-chase experiment.

    PubMed

    Oakes, Joanne M; Ross, Donald J; Eyre, Bradley D

    2013-01-01

    To determine the benthic transformation pathways and fate of carbon associated with secondary-treated pulp and paper mill (PPM) effluent, (13)C-labeled activated sludge biomass (ASB) and phytoplankton (PHY) were added, separately, to estuarine intertidal sediments. Over 28 days, (13)C was traced into sediment organic carbon, fauna, seagrass, bacteria, and microphytobenthos and into fluxes of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) from inundated sediments, and carbon dioxide (CO2(g)) from exposed sediments. There was greater removal of PHY carbon from sediments (~85% over 28 days) compared to ASB (~75%). Although there was similar (13)C loss from PHY and ASB plots via DIC (58% and 56%, respectively) and CO2(g) fluxes (<1%), DOC fluxes were more important for PHY (41%) than ASB (12%). Faster downward transport and loss suggest that fauna prefer PHY, due to its lability and/or toxins associated with ASB; this may account for different carbon pathways. Secondary-treated PPM effluent has lower oxygen demand than primary-treated effluent, but ASB accumulation may contribute to sediment anoxia, and respiration of ASB and PHY-derived DOC may make the water column more heterotrophic. This highlights the need to optimize secondary-treatment processes to control the quality and quantity of organic carbon associated with PPM effluent.

  16. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose.

    PubMed

    Jouhten, Paula; Pitkänen, Esa; Pakula, Tiina; Saloheimo, Markku; Penttilä, Merja; Maaheimo, Hannu

    2009-10-29

    The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic and respirative activities of the TCA cycle

  17. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose

    PubMed Central

    Jouhten, Paula; Pitkänen, Esa; Pakula, Tiina; Saloheimo, Markku; Penttilä, Merja; Maaheimo, Hannu

    2009-01-01

    Background The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. Results The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic and respirative activities

  18. The 13C-excess: a new dual-element stable isotopic approach for detrending the effects of evaporation on lake carbonates

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Oze, C.

    2012-12-01

    Stable isotope-based proxy methods enhance our ability to interpret paleohydrology, paleoelevation, climate change, and biogeochemical cycles. In ancient carbonate lakes, these methods often require that the unmodified isotopic composition of meteoric water, or local carbon reservoirs, or both, are recorded by authigenic minerals. Surprisingly, these critical assumptions have not been tested across wide-ranging environmental contexts. Here, we show that globally distributed Quaternary lake carbonate oxygen isotope compositions are not strongly, nor significantly, correlated with local meteoric-derived water compositions due to the modification of in-flow waters following entry into the lake environment. These modifications are largely caused by surface water evaporation, and can result in dubious reconstructions of ancient hydrological conditions and water source effects such as the strength of prevailing air-mass trajectory, >3km errors in paleoelevation estimates, unrealistic shifts in lake water temperature, and misleading interpretations of local carbon cycle conditions if not accounted for. However, our analysis suggests that positive shifts in surface water δ18O are accompanied by similar magnitude shifts in δ13C-DIC during lake residence. This positive co-variation in δ18O and δ13C may be used to detrend lake carbonate compositions for the effects of surface water evaporation using a parameter we define here as the '13C-excess'. This approach uses the isotopic covariant trend between in-flow waters and lake waters, rather than lacustrine covariation alone, to better constrain ancient meteoric-derived water compositions. To demonstrate the potential strength of the 13C-excess approach over single element methods, we compare the paleoelevation estimates derived from lake carbonate compositions using both approaches. When Tibetan lakes are excluded from the dataset, 13C-excess values are significantly correlated with mean up-slope hypsometric altitude with

  19. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    SciTech Connect

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  20. Carbon isotope compositions (δ(13) C) of leaf, wood and holocellulose differ among genotypes of poplar and between previous land uses in a short-rotation biomass plantation.

    PubMed

    Verlinden, M S; Fichot, R; Broeckx, L S; Vanholme, B; Boerjan, W; Ceulemans, R

    2015-01-01

    The efficiency of water use to produce biomass is a key trait in designing sustainable bioenergy-devoted systems. We characterized variations in the carbon isotope composition (δ(13) C) of leaves, current year wood and holocellulose (as proxies for water use efficiency, WUE) among six poplar genotypes in a short-rotation plantation. Values of δ(13) Cwood and δ(13) Cholocellulose were tightly and positively correlated, but the offset varied significantly among genotypes (0.79-1.01‰). Leaf phenology was strongly correlated with δ(13) C, and genotypes with a longer growing season showed a higher WUE. In contrast, traits related to growth and carbon uptake were poorly linked to δ(13) C. Trees growing on former pasture with higher N-availability displayed higher δ(13) C as compared with trees growing on former cropland. The positive relationships between δ(13) Cleaf and leaf N suggested that spatial variations in WUE over the plantation were mainly driven by an N-related effect on photosynthetic capacities. The very coherent genotype ranking obtained with δ(13) C in the different tree compartments has some practical outreach. Because WUE remains largely uncoupled from growth in poplar plantations, there is potential to identify genotypes with satisfactory growth and higher WUE. © 2014 John Wiley & Sons Ltd.

  1. NMR 13C-isotopic enrichment experiments to study carbon-partitioning into organic solutes in the red alga Grateloupia doryphora.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2004-01-01

    The red alga Grateloupia doryphora Montagne (Howe) (Cryptonemiales, Halymeniaceae) was used as a model to investigate the effects of changes in seawater salinity on the intracellular low-molecular-weight organic compounds. Carbon-partitioning into major organic solutes was followed by 13C nuclear magnetic resonance (NMR) spectroscopy on living algae incubated in NaH13CO3-enriched seawater, and by high resolution 1H and 13C NMR experiments performed on 13C-enriched algal extracts. NMR and high performance liquid chromatography (HPLC) analyses both demonstrated that floridoside level was the most affected by changes in salinity: it rose under the hypersaline treatment and decreased under hyposaline one. Moreover, at low salinity, the high labeling of floridoside (45.3% 13C-enrichment for C1) together with its low concentrations both provided evidence of great increase in the de novo biosynthesis and turnover rate. Our experiments also demonstrated a high incorporation of photosynthetic carbon into amino acids, especially glutamate, under hypoosmotic conditions. On the other hand, isethionic acid and N-methyl-methionine sulfoxide were only partly labeled, which indicates they do not directly derive from carbon photoassimilation. In algae exposed to high salinity, elevated concentrations of floridoside coupled to a low labeling (9.4%) were observed. These results suggest that hyperosmotic conditions stimulated floridoside biosynthesis from endogen storage products rather than from carbon assimilation through photosynthesis.

  2. Carbonic Anhydrase Activity Monitored In Vivo by Hyperpolarized 13C-Magnetic Resonance Spectroscopy Demonstrates Its Importance for pH Regulation in Tumors.

    PubMed

    Gallagher, Ferdia A; Sladen, Helen; Kettunen, Mikko I; Serrao, Eva M; Rodrigues, Tiago B; Wright, Alan; Gill, Andrew B; McGuire, Sarah; Booth, Thomas C; Boren, Joan; McIntyre, Alan; Miller, Jodi L; Lee, Shen-Han; Honess, Davina; Day, Sam E; Hu, De-En; Howat, William J; Harris, Adrian L; Brindle, Kevin M

    2015-10-01

    Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH.

  3. Carbonic anhydrase activity monitored in vivo by hyperpolarized 13C-magnetic resonance spectroscopy demonstrate its importance for pH regulation in tumors

    PubMed Central

    Gallagher, Ferdia A.; Sladen, Helen; Kettunen, Mikko I.; Serrao, Eva M.; Rodrigues, Tiago B.; Wright, Alan; Gill, Andrew B.; McGuire, Sarah; Booth, Thomas C.; Boren, Joan; McIntyre, Alan; Miller, Jodi L.; Lee, Shen-Han; Honess, Davina; Day, Sam E.; Hu, De-en; Howat, William J.; Harris, Adrian L.; Brindle, Kevin M.

    2015-01-01

    Carbonic anhydrase (CA) buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3−). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized 13C label between bicarbonate (H13CO3−) and carbon dioxide (13CO2), following injection of hyperpolarized H13CO3−, using 13C magnetic resonance spectroscopy (13C-MRS) magnetization transfer measurements. 31P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and 13C-MRS measurements of the H13CO3−/13CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the 13C measurements overestimated pH due to incomplete equilibration of the hyperpolarized 13C label between the H13CO3− and 13CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevates tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH, and supports the hypothesis that a major function of CAIX is to lower the extracellular pH. PMID:26249175

  4. Unusual very positive enrichment of 13C in carbonate sediments deposited in modern hypersaline environment, Lagoa Salgada, Brazil: Indicator of salinity controlled metabolic processes

    NASA Astrophysics Data System (ADS)

    McKenzie, J. A.; Bovier, C.; Bahniuk, A.; Andersen, M. B.; Vasconcelos, C.

    2016-12-01

    In the geologic record, prolonged intervals of intense δ13C enrichment (>10‰) in carbonate deposits occurred, in particular during the mid-Palaeoproterozoic (2.3-1.9 Ga) and mid-Neoproterozoic (0.8-0.6 Ga) [1]. These anomalously high δ13C values have been interpreted as a global effect due to enhanced burial of organic matter with depleted δ13C values [2]. An alternate interpretation has been proposed whereby the metabolic activity of specific microbial communities, such as methanogens, may have been the source of the strong carbon isotope fractionation [3]. Although such restricted shallow-water environments where methanogens dominate are not widespread today, a unique hypersaline coastal lagoon system, Lagoa Salgada, Brazil provides ideal conditions to study the modern microbial community and its impact on observed extreme δ13C enrichment (up to 20‰) recorded in both in situ stromatolites and carbonate sediments. Here we present our findings and correlations of geochemical data with changing environmental conditions during the last 2600 cal yr BP. This lagoonal system contains highly evaporated water with highest salinities occurring during the dry season. The positive δ13C anomaly shows high and stable values (>14‰) from about 2100 to 1400 cal yr BP. Similar high δ13C values were recorded for the same time period in stromatolite structures growing around the margin of Lagoa Salgada. We propose that the high salinities inhibit photosynthesis, respiration and nitrogen fixation by osmotic stress and, thus, result in increased methanogenesis. We conclude that the combination of methanogenic metabolisms and extreme evaporative conditions is the key factor promoting the production of very high δ13C values observed throughout the lagoonal system, as recorded in both marginal stromatolites and carbonate sediments deposited in the more distal regions of the lagoon. Such unusual environments may have been more widely distributed during the Proterozoic

  5. The 13C-excess: a new dual element stable isotopic approach for de-trending the effects of evaporation on lake carbonates

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Oze, C.

    2013-12-01

    Stable isotope based proxy methods enhance our ability to interpret paleohydrology, paleoelevation, climate change, and biogeochemical cycles. In ancient carbonate lakes, these methods often require that the unmodified isotopic composition of meteoric water or local carbon reservoirs, or both, are recorded by authigenic minerals. Surprisingly, these critical assumptions have not been tested across wide-ranging environmental contexts. A review of globally distributed Quaternary records reveals that lake carbonate oxygen isotope compositions are not strongly, nor significantly, correlated with local meteoric-derived water compositions due to the modification of in-flow waters following entry into the lake environment. These modifications are largely caused by surface water evaporation, and can result in dubious reconstructions of ancient environmental conditions if not accounted for. However, our analysis suggests that positive shifts in surface water δ18O are accompanied by similar magnitude shifts in δ13C-DIC during lake residence. This positive co-variation in δ18O and δ13C may be used to de-trend lake carbonate compositions for the effects of surface water evaporation using a parameter we define as the ';13C-excess'. This approach uses the isotopic covariant trend between in-flow waters and lake waters, rather than lacustrine covariation alone, to better constrain ancient meteoric-derived water compositions. In Quaternary lake systems, 13C-excess values are significantly correlated with modern mean up-slope hypsometric altitude with an error of ×500m. Application of the 13C-excess approach to Cenozoic lake carbonate records from the western U.S. Cordillera both challenges and reinforces previous paleoelevational interpretations based on δ18O alone, while application of the 13C-excess approach to Middle Miocene laminated lacustrine carbonates from California and New Zealand provides important insights into the paleohydrologies of these two highly debated

  6. Carbon flow and trophic structure of an Antarctic coastal benthic community as determined by δ 13C and δ 15N

    NASA Astrophysics Data System (ADS)

    Gillies, C. L.; Stark, J. S.; Johnstone, G. J.; Smith, S. D. A.

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to determine the different carbon pathways and trophic assemblages amongst coastal benthic fauna of the Windmill Islands, East Antarctica. Macroalgae, pelagic POM, sediment POM and sea ice POM had well-separated δ 13C signatures, which ranged from -36.75‰ for the red alga Phyllophora antarctica, to -10.35‰ for sea ice POM. Consumers were also well separated by δ 13C, ranging from -21.42‰ for the holothurian Staurocucumis sp. up to -7.47‰ for the urchin Sterechinus neumayeri. Analysis of δ 13C and δ 15N revealed distinct groups for suspension feeders, grazer/herbivores and deposit feeders, whilst predators and predator/scavengers showed less grouping. Consumers spanned a δ 15N range of 8.71‰, equivalent to four trophic levels, although δ 15N ratios amongst consumers were continuous, rather than grouped into discrete trophic levels. The study has built a trophic model for the Windmill Islands and summarises three main carbon pathways utilised by the benthos: (1) pelagic POM; (2) macroalgae/epiphytic/benthic diatoms and (3) sediment POM/benthic diatoms. The movement of carbon within the coastal benthic community of the Windmill Islands is considered complex, and stable isotopes of carbon and nitrogen were valuable tools in determining specific feeding guilds and in tracing carbon flow, particularly amongst lower-order consumers.

  7. Influence of form IA RubisCO and environmental dissolved inorganic carbon on the delta13C of the clam-chemoautotroph symbiosis Solemya velum.

    PubMed

    Scott, Kathleen M; Schwedock, Julie; Schrag, Daniel P; Cavanaugh, Colleen M

    2004-12-01

    Many nutritive symbioses between chemoautotrophic bacteria and invertebrates, such as Solemya velum, have delta(13)C values of approximately -30 to -35%, considerably more depleted than phytoplankton. Most of the chemoautotrophic symbionts fix carbon with a form IA ribulose 1,5-bisphosphate carboxylase (RubisCO). We hypothesized that this form of RubisCO discriminates against (13)CO(2) to a greater extent than other forms. Solemya velum symbiont RubisCO was cloned and expressed in Escherichia coli, purified and characterized. Enzyme from this recombinant system fixed carbon most rapidly at pH 7.5 and 20-25 degrees C. Surprisingly, this RubisCO had an epsilon-value (proportional to the degree to which the enzyme discriminates against (13)CO(2)) of 24.4 per thousand, similar to form IB RubisCOs, and higher than form II RubisCOs. Samples of interstitial water from S. velum's habitat were collected to determine whether the dissolved inorganic carbon (DIC) could contribute to the negative delta(13)C values. Solemya velum habitat DIC was present at high concentrations (up to approximately 5 mM) and isotopically depleted, with delta(13)C values as low as approximately -6%. Thus environmental DIC, coupled with a high degree of isotopic fractionation by symbiont RubisCO likely contribute to the isotopically depleted delta(13)C values of S. velum biomass, highlighting the necessity of considering factors at all levels (from environmental to enzymatic) in interpreting stable isotope ratios.

  8. Carbon cycle perturbations recorded by δ13C of bulk organic matter: the Carnian Pluvial Event in the Dolomites, northern Italy

    NASA Astrophysics Data System (ADS)

    Preto, Nereo; Breda, Anna; Dal Corso, Jacopo; Rigo, Manuel; Roghi, Guido; Spötl, Christoph

    2015-04-01

    A period of increased rainfall occurred in the Carnian (Late Triassic), known as Carnian Pluvial Event (CPE), which is evidenced by major lithological changes in continental and marine successions at tropical latitudes. Increased continental weathering and erosion led to the supply of large amounts of siliciclastics into the marginal basins of the Tethys. Seawater anoxia is also observed locally in semi-restricted basins. Simultaneously, microbial factories on high-relief carbonate platforms were replaced by metazoan factories, forming low-relief carbonate ramps and mixed low-gradient shelves. This environmental change has been shown to be closely associated with a negative carbon isotope excursion. A negative δ13C shift is recorded by bulk organic matter in the Milieres section (central Dolomites) and parallels a coeval excursion in carbon-isotope records of higher plant and marine algal biomarker, thus testifying a global change in the isotopic composition of carbon dioxide in the atmosphere and of dissolved inorganic carbon (DIC) in the ocean. This isotopic excursion was identified in organic carbon records throughout the western Tethys, but so far could not be reproduced convincingly using carbon isotope records from carbonate. A long carbon isotope record was produced from bulk organic matter of the early to late Carnian Milieres - Dibona section in the Dolomites, northern Italy. Carbon isotope analyses of carbonate (limestone and dolomite) were also obtained. This new carbon isotope record illustrates the structure of this complex carbon cycle perturbation related to the CPE. But while sharp carbon isotope oscillations are evident in the bulk organic carbon record, there is no evidence of a similar pattern in carbonate record. It can be shown that the carbon isotope record of carbonates is influenced by fractionation and diagenetic processes that completely obliterated the original δ13C signal. We conclude that the Carnian carbonates of the Dolomites do not

  9. Composite δ13C and petrographic 195-355 ka record from Frasassi cave (central Italy) stalagmites: investigating drivers of speleothem calcite carbon isotope signals.

    NASA Astrophysics Data System (ADS)

    Vanghi, V.; Borsato, A.; Frisia, S.; Drysdale, R.; Hellstrom, J. C.; Bajo, P.; Montanari, A.

    2016-12-01

    Carbon isotope ratio of speleothem calcite is known to be a proxy for climate-dependent soil CO2 production. One of the paradigms is that, ideally, C stable isotope incorporation occurred in equilibrium. Yet, the process of degassing in the cave commonly results in δ13C values more positive than theoretically expected for speleothems formed in temperate-humid settings. Fabrics then provide the benchmark to unravel local, regional and global significance of speleothem δ13C. The δ13C time-series from two precisely U-Th dated Frasassi stalagmites covering the interval from 195 ka to 355 ka (Marine Isotope Stages 7 - 10) were interpreted on the basis of the sequence of fabrics. Columnar fabrics indicated deposition under constant kinetic fractionation, whereby δ13C shifts through time reflected a combination of atmospheric CO2 concentration changes and soil efficiency variability, controlled by regional mean annual temperature. Given that the δ13C values are constantly more-positive-than-expected because of the effect of degassing, shifts to more positive δ13C values above a baseline of -7 permil during glacials are here interpreted as driven by low soil efficiency and higher contribution of atmospheric CO2 (Breecker et al. 2012, Borsato et al. 2015). The comparison of high resolution δ13C curves with atmospheric pCO2 and benthic δ18O records further suggests that hemispheric temperature changes driven by insolation modulated the δ13C shifts above or below the baseline. Thus, a -3‰ shift from glacial to interglacial at terminations IV and III is here ascribed to changes in atmospheric pCO2 (Schubert and Jahren 2012). More open fabrics mark warmer conditions and increased soil productivity and are associated with more negative δ13C. In conclusion, only by coupling petrography and geochemical properties the global and local drivers of δ13C anomalies in stalagmites from this deep cave could be distinguished. Borsato et al. (2015), Earth Surface Processes and

  10. [Responses of tissue carbon and delta 13C in epilithic mosses to the variations of anthropogenic CO2 and atmospheric nitrogen deposition in city area].

    PubMed

    Liu, Xue-yan; Xiao, Hua-yun; Liu, Cong-qiang; Li, You-yi; Xiao, Hong-wei

    2009-01-01

    We investigated the carbon (C) and nitrogen (N) concentrations and isotopic signatures (delta 13C and delta15 N) in epilithic mosses collected from urban sites to rural sites along four directions at Guiyang area. Mosses C (34.47%-52.76%) decreased significantly with distance from urban to rural area and strongly correlated with tissue N (0.85%-2.97%), showing atmospheric N deposition has positive effect on C assimilation of epilithic mosses, higher atmospheric N/NHx deposition at urban area has improved the photosynthesis and C fixation of mosses near urban, which also caused greater 13C discrimination for urban mosses. Mosses delta 13C signatures (-30.69% per hundred - -26.96% per hundred) got less negative with distance from urban to rural area, which was also related to the anthropogenic CO2 emissions in the city, and these 12C-enriched CO2 sources would lead to more negative mosses delta 13C through enhancing the atmospheric CO2 concentration in urban area. Moreover, according to the characteristics of mosses C and delta 13C variations with distance, it is estimated that the influences of urban anthropogenic CO2 sources on plants was mainly within 20 km from city center. This study mainly focused on the factors regulating tissue C and delta 13C of mosses in city area and the interaction between C and N in mosses, the responses of mosses C and delta 13C to urban CO2 emission and atmospheric N deposition have been revealed, which could provide new geochemical evidences for the control of city atmospheric pollution and the protection of ecosystems around city.

  11. Deglacial carbon cycle dynamics: A high-precision, high-resolution record of the δ13C of atmospheric CO2 from the Taylor Glacier horizontal ice core

    NASA Astrophysics Data System (ADS)

    Bauska, T. K.; Baggenstos, D.; Brook, E.; Severinghaus, J. P.; Mix, A. C.; Petrenko, V. V.; Schaefer, H.; Lee, J. E.

    2012-12-01

    A complete understanding of the mechanisms behind the 80 ppm increase in atmospheric CO2 during the last deglaciation remains elusive. Changes in the sources and sinks for CO2 are recorded in the stable isotopic composition of carbon in atmospheric CO2 (δ13C of CO2 ), but high-precision measurements from deep Antarctic ice cores have proven difficult to obtain. A horizontal ice core on the Taylor Glacier in Antarctica allows for the recovery of well-dated, large ice samples spanning the last deglaciation. When analyzed with an ice grater air extraction and dual-inlet mass spectrometry method, this ancient air archive has provided a δ13C of CO2 reconstruction of very high precision (<0.02 per mil) and resolution (50-150 year spacing). Glacial CO2 (~24-18 kya) was characterized by stable CO2 concentrations but variable δ13C of CO2 with values averaging around -6.45 per mil (VPDB-CO2). The Mystery Interval (~17.5-14.5 kya) reveals two distinct modes of variability. An approximately 0.30 per mil depletion in 13C relative to glacial values accompanied the initial, rapid rise in CO2 (~1.5-2.0 ppm per century). At 16 kya the CO2 growth rate slowed (~1.0 ppm per century) and atmospheric CO2 became more 13C-enriched. A smaller depletion in 13C (0.15 per mil), followed by a trend towards enriched values coincided with the resumption of CO2 growth during the Younger Dryas. Periods of stable CO2 during the Bolling-Allerod and the early Preboreal were characterized by low variability in δ13C with values stabilizing around -6.60 per mil. These data suggest that during the deglaciation, millennial-scale climate variability played a prominent role in governing atmospheric CO2 and illuminate previously unobserved changes in the carbon cycle coincident with abrupt climate transitions. A deconvolution of the CO2 source history using a simple box model suggests that ocean temperature driven changes in CO2 solubility and changes in ocean stratification played significant roles

  12. The Galactic R Coronae Borealis Stars: The C2 Swan Bands, the Carbon Problem, and the 12C/13C Ratio

    NASA Astrophysics Data System (ADS)

    Hema, B. P.; Pandey, Gajendra; Lambert, David L.

    2012-03-01

    Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C2 Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C2 bands are used to derive the 12C abundance, and the (1, 0) 12C13C band to determine the 12C/13C ratios. The carbon abundance derived from the C2 Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the "carbon problem." In principle, the carbon abundances obtained from C2 Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C2 bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C2 carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the 12C/13C ratios are discussed in light of the double degenerate and the final flash scenarios.

  13. THE GALACTIC R CORONAE BOREALIS STARS: THE C{sub 2} SWAN BANDS, THE CARBON PROBLEM, AND THE {sup 12}C/{sup 13}C RATIO

    SciTech Connect

    Hema, B. P.; Pandey, Gajendra; Lambert, David L. E-mail: pandey@iiap.res.in

    2012-03-10

    Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C{sub 2} Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C{sub 2} bands are used to derive the {sup 12}C abundance, and the (1, 0) {sup 12}C{sup 13}C band to determine the {sup 12}C/{sup 13}C ratios. The carbon abundance derived from the C{sub 2} Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the 'carbon problem'. In principle, the carbon abundances obtained from C{sub 2} Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C{sub 2} bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C{sub 2} carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the {sup 12}C/{sup 13}C ratios are discussed in light of the double degenerate and the final flash scenarios.

  14. Carbon isotope discrimination during litter decomposition can be explained by selective use of substrate with differing δ13C

    NASA Astrophysics Data System (ADS)

    Ngao, J.; Cotrufo, M. F.

    2011-01-01

    Temporal dynamics of C isotopic composition (δ13C) of CO2 and leaf litter was monitored during a litter decomposition experiment using Arbutus unedo L., as a slow decomposing model substrate. This allowed us (1) to quantify isotopic discrimination variation during litter decomposition, and (2) to test whether selective substrate use or kinetic fractionation could explain the observed isotopic discrimination. Total cumulative CO2-C loss (CL) comprised 27% of initial litter C. Temporal evolution of CL was simulated following a three-C-pool model. Isotopic composition of respired CO2 (δRL) was higher with respect to that of the bulk litter. The isotopic discrimination Δ(L/R) varied from -2‰ to 0‰ and it is mostly attributed to the variations of δRL. A three-pool model, with the three pools differing in their δ13C, described well the dynamic of Δ(L/R), in the intermediate stage of the process. This suggests that the observed isotopic discrimination between respired CO2 and bulk litter is in good agreement with the hypothesis of successive consumption of C compounds differing in δ13C during decomposition. However, to explain also 13C-CO2 dynamics at the beginning and end of the incubation the model had to be modified, with discrimination factors ranging from -1‰ to -4.6‰ attributed to the labile and the recalcitrance pool, respectively. We propose that this discrimination is also the result of further selective use of specific substrates within the two pools, likely being both the labile and recalcitrant pool of composite nature. In fact, the 2‰ 13C enrichment of the α-cellulose observed by the end of the experiment, and potentially attributable to kinetic fractionation, could not explain the measured Δ(L/R) dynamics.

  15. Seasonal exports and drivers of dissolved inorganic and organic carbon, carbon dioxide, methane and δ(13)C signatures in a subtropical river network.

    PubMed

    Atkins, Marnie L; Santos, Isaac R; Maher, Damien T

    2017-01-01

    Riverine systems act as important aquatic conduits for carbon transportation between atmospheric, terrestrial and oceanic pools, yet the magnitude of these exports remain poorly constrained. Interconnected creek and river sites (n=28) were sampled on a quarterly basis in three subcatchments of the subtropical Richmond River Catchment (Australia) to investigate spatial and temporal dynamics of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), carbon dioxide (CO2), methane (CH4), and carbon stable isotope ratios (δ(13)C). The study site is an area of high interest due to potential unconventional gas (coal seam gas or coal bed methane) development. DIC exports were driven by groundwater discharge with a small contribution by in situ DOC remineralization. The DIC exports showed seasonal differences ranging from 0.10 to 0.27mmolm(-2)catchmentd(-1) (annual average 0.17mmolm(-2)catchmentd(-1)) and peaked during winter when surface water discharge was highest. DOC exports (sourced from terrestrial organic matter) had an annual average 0.07mmolm(-2)catchmentd(-1) and were 1 to 2 orders of magnitude higher during winter compared to spring and summer. CO2 evasion rates (annual average of 347mmolm(-2)water aread(-1)) were ~2.5 fold higher during winter compared to spring. Methane was always supersaturated (0.19 to 62.13μM), resulting from groundwater discharge and stream-bed methanogenesis. Methane evasion was highly variable across the seasons with an annual average of 3.05mmolm(-2)water aread(-1). During drier conditions, stable isotopes implied enhanced CH4 oxidation. Overall, carbon losses from the catchment were dominated by CO2 evasion (60%) followed by DIC exports (30%), DOC exports (9%) and CH4 evasion (<1%). Our results demonstrated broad catchment scale spatial and temporal variability in carbon dynamics, and that groundwater discharge and rain events controlled carbon exports.

  16. {delta}{sup 13}C Of paleosol organic carbon indicates vegetation and climate changes during the past 15,000 years in the southern Great Plains

    SciTech Connect

    Nordt, L.C.; Boutton, T.W.; Jacob, J.S.

    1995-06-01

    {delta}{sup 13}C of organic carbon (OC) in soils and paleosols integrates the relative contribution of C{sub 3} and C{sub 4} plants to the soil OC pool. Geographic distribution and relative productivity of C{sub 4} species are both correlated strongly with temperature. {delta}{sup 13}C of paleosol OC should reflect long-term vegetation dynamics and past climatic variation. To understand vegetation and climate dynamics in the Great Plains during the late Quaternary, {delta}{sup 13}C of OC (n=51) in a stacked sequence of 8 paleosols and one modern soil in central Texas was measured. Three distinct periods of low C{sub 4} productivity ({delta}{sup 13}C = -25 to -21 {per_thousand}) occurred between 15,000-8,000 YBP. These events coincided precisely with 3 well-documented episodes of glacial meltwater flux into the Gulf of Mexico (220 km from study area) via the Mississippi River, indicating strong coupling between marine and adjacent continental ecosystems. The effects of glacial meltwater in the Gulf ceased around 8,000 YBP; after this time, relative C{sub 4} productivity was strongly influenced by orbital forcing mechanisms. Holocene altithermal periods were characterized by high relative C{sub 4} productivity at {approx}5,000 YBP ({delta}{sup 13}C = -18.5 {per_thousand}) and {approx}2,000 YBP ({delta}{sup 13}C = -16.7 {per_thousand}). This late Quaternary {delta}{sup 13}C record of relative C{sub 4} productivity is highly correlated with previous climatic reconstructions for this region based on other methods, indicating that {delta}{sup 13}C of paleosol OC may be a useful proxy for paleotemperature in the Great Plains. Furthermore, large shifts in relative C{sub 3}-C{sub 4} productivity during the late Quaternary documented here and elsewhere may have implications for modeling carbon and hydrologic cycles at regional and global scales during this time interval.

  17. Study of the diet effect on δ 13C of shell carbonate of the land snail Helix aspersa in experimental conditions

    NASA Astrophysics Data System (ADS)

    Metref, S.; Rousseau, D.-D.; Bentaleb, I.; Labonne, M.; Vianey-Liaud, M.

    2003-06-01

    This study aims to demonstrate the influence of the metabolic CO 2 derived from the diet and of the atmospheric CO 2 on the shell carbonate δ 13C of the pulmonate snail Helix aspersa maxima raised under controlled conditions. Adult snails were analyzed and compared with three hatching and 1-day old young snails stemming from the same breeding. One day after, the 2-day old individuals were raised during 1 month. Three groups of gastropods were fed with fresh lettuce (C 3 plant, δ 13C=-27.49‰), three groups with corn (C 4 plant, δ 13C=-11.7‰), and three groups ate alternately both (C 3+C 4). The difference between the average δ 13C values of the adult snails on the one hand and the hatched and 1-day old snails on the other hand indicates a depletion of 2.47‰. Therefore, the isotopic parents-offspring signal is not preserved. The depleted ingested albumen by the snail embryo in the egg during the building of the shell could explain this depletion. The C 3 diet experiment gave the expected isotopic composition difference between the diet (lettuce) and the shells (average Δ 13C shell-lettuce=13.75‰±0.52). This result shows a clear diet effect on the isotopic composition of the snail shells. For the C 4 experiment, the difference in carbon isotope composition between the corn and the shell (Δ 13C shell-corn) yielded an average value of 4.89‰±0.87. The main result is that Δ 13C is not constant and appears to depend on the type of ingested food. Several hypotheses can arise from this study to explain the different fractionations: (a) differences in the quality of the two diets, (b) differences in turnover rate for C 3 and C 4 feeders. The groups regularly fed with mixed diet yielded δ 13C values showing a preferential use of C 3 food for most values. The C 3-C 4 mixed dietary alternation probably led snails to use mainly the lettuce instead of the corn powder.

  18. Harding Iceland spar: a new delta 18O-delta 13C carbonate standard for hydrothermal minerals.

    USGS Publications Warehouse

    Landis, G.P.

    1983-01-01

    An isotopically homogenous calcite, Iceland spar from the Iceberg claim, near the Harding pegmatite of N New Mexico, has delta 18O +11.78 + or - 0.07per mille (=+22.15per mille for CO2) and delta 13C -4.80 + or - 0.02per mille and has been prepared in quantities suitable for use as a working standard in MS.-R.A.H.

  19. A capillary absorption spectrometer for stable carbon isotope ratio (13C/12C) analysis in very small samples

    NASA Astrophysics Data System (ADS)

    Kelly, J. F.; Sams, R. L.; Blake, T. A.; Newburn, M.; Moran, J.; Alexander, M. L.; Kreuzer, H.

    2012-02-01

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO2 samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 (4.34 μm). This initial CAS system can achieve relative isotopic precision of about 10 ppm 13C, or ˜1‰ (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO2 concentrations ˜400-750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to ˜2 Torr. Overall 13C/12C ratios can be calibrated to ˜2‰ accuracy with diluted CO2 standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1000 scans are co-added in ˜10 s. The CAS is meant to work directly with converted CO2 samples from a laser ablation-catalytic combustion micro-sampler to provide 13C/12C ratios of small biological isolates currently operating with spatial resolutions ˜50 μm.

  20. Carbon Metabolism of Soil microorganisms at Low Temperatures: Position-Specific 13C Labeled Glucose Reveals the Story

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.

    2015-12-01

    Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity

  1. In Situ 13C NMR at Elevated-Pressures and -Temperatures Investigating the Conversion of CO2 to Magnesium and Calcium Carbonate Minerals

    NASA Astrophysics Data System (ADS)

    Surface, J. A.; Conradi, M. S.; Skemer, P. A.; Hayes, S. E.

    2013-12-01

    We have constructed specialized NMR hardware to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies of unmixed heterogeneous mixtures of solids, liquids, gases, and supercritical fluids. Specifically, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine efficacy of carbonate formation in various geological reservoirs. Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals. When CO2 reacts with the calcium or magnesium in a mineral or rock sample, the 13C chemical shift, linewidth, lineshape, and relaxation times change dramatically. This change can be monitored in situ and provide instantaneous and continuous characterization that maps the chemistry that is taking place. For example, on the pathway to MgCO3 formation, there are a number of phases of Mg(OH)x(H2O)y(CO3)z that are apparent via NMR spectroscopy. We will demonstrate that NMR can be used for quantitative characterization of multiple metastable mineral phases in pure forms and in mixtures. Results are confirmed via powder XRD and Raman spectroscopy of aquo- hydro- carbonato- magnesium species and calcium carbonate species. We also have monitored the 13C spectroscopy to analyze the phase of CO2 (liquid, supercritical, or gas) and its conversion into other forms, such as bicarbonate and carbonate species, providing a "window" into the in situ pH of the reacting system. Reference: 'In Situ

  2. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    PubMed

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  3. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    PubMed Central

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  4. Synthesizing the Use of Carbon Isotope (14C and 13C) Approaches to Understand Rates and Pathways for Permafrost C Mobilization and Mineralization

    NASA Astrophysics Data System (ADS)

    Estop-Aragones, C.; Olefeldt, D.; Schuur, E.

    2015-12-01

    To better understand the permafrost carbon (C) feedback it is important to synthesize our current knowledge, and knowledge gaps, of how permafrost thaw can cause in situ mineralization or downstream mobilization of aged soil organic carbon (SOC) and the rate of this release. This potential loss of old SOC may occur via gaseous flux of CO2 and CH4 exchanged between soil and the atmosphere and via waterborne flux as DOC, POC (and their subsequent decomposition and release to the atmosphere). Carbon isotope (14C and 13C) approaches have been used to estimate both rates and pathways for permafrost C mobilization and mineralization. Radiocarbon (14C) has been used to estimate the contribution of aged C to overall respiration or waterborne C export. We aim to contrast results from radiocarbon studies, in order to assess differences between ecosystems (contrasting wet and dry ecosystems), thaw histories (active layer deepening or thermokarst landforms), greenhouse gas considered (CO2 and CH4) and seasons. We propose to also contrast methodologies used for assessing the contribution of aged C to overall C balance, and include studies using 13C data. Biological fractionation of 13C during both uptake and decomposition has been taken advantage of both in order to aid the interpretation of 14C data and on its own to assess sources and mineralization pathways. For example, 13C data has been used to differentiate between CH4 production pathways, and the relative contribution of anaerobic CO2 production to overall respiration. Overall, carbon isotope research is proving highly valuable for our understanding of permafrost C dynamics following thaw, and there is a current need to synthesize the available literature.

  5. Use of 13C Labeled Carbon Tetrachloride to Demonstrate the Transformation to Carbon Dioxide under Anaerobic Conditions in a Continuous Flow Column

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M.

    2012-12-01

    The demonstration of transformation of chlorinated aliphatic compounds (CAHs) in the subsurface is a challenge, especially when the products are carbon dioxide (CO2) and chloride ion. The groundwater contaminant carbon tetrachloride (CT) is of particular interest since a broad range of transformation products can be potentially formed under anaerobic conditions. The ability to demonstrate the transformation of CT to CO2 as a non toxic endproduct, is also of great interest. Results will be presented from a continuous flow column study where 13C labeled CT was used to demonstrate its transformation to CO2. The column was packed with a quartz sand and bioaugmented the Evanite Culture (EV) that is capable of transforming tetrachloroethene (PCE) to ethene. The column was continously fed a synthetic groundwater that was amended with PCE (0.10 mM) and either formate (1.5 mM) or lactate (1.1 mM), which ferments to produce hydrogen (H2) as the ultimate electron donor. Earlier CT transformation studies with the column, in the absence of sulfate reduction, and with formate added as a donor found CT (0.015 mM) was over 98% transformed with about 20% converted to chloroform (CF) (0.003 mM) and with a transient detection of chloromethane (CM). Methane and carbon disulfide, as potential products, were not detected. Neither CT nor CF inhibited the reductive dehalogenation of PCE to ethene. A series of transient studies conducted after these initial CT transformation tests, but in the absence of CT, showed formate remained an effective substrate for maintaining sulfate reduction and PCE transformation. Lactate, which was effectively fermented prior to CT addition, was not effectively fermented, with propionate accumulating as a fermentation product. When lactate was added, PCE was mainly transformed to cis-dichloroethene (cis-DCE) and VC, and sulfate reduction did not occur. In order to restore effective lactate fermentation the column was then bioaugmented with an EV culture that

  6. Predicting Effects of Cations (Mg, Ca, Na, and K) on 13C-18O Clumping in Dissolved Inorganic Carbon Species and Implications for Carbonate Geothermometry

    NASA Astrophysics Data System (ADS)

    Hill, P. S.; Tripati, A.; Schauble, E. A.

    2014-12-01

    13C-18O bond abundance in carbonates is becoming more widely used as a geothermometer; this proxy is affected by various environmental factors. Here we report the influence of cations (Mg2+, Ca2+, Na+, and K+) at high concentrations (~2 mol/liter) on the isotopologue composition of the DIC pool. Clumped isotope fractionation in CO32- groups of dissolved species and carbonate minerals is reported using the notation Δ63 corresponding mainly to the enrichment in per mil of Hx13C18O16O2x-2 (plus Hx12C18O17O 16Ox-2, Hx12C17O17O 17Ox-2, and Hx13C17O17O 16Ox-2) above the amount expected for a random distribution of isotopes among all CO32-, HCO3- and H2CO3 isotopologues. The Δ63 of a solution of dissolved inorganic carbon (DIC) depends upon the relative abundances of each DIC species (CO2(aq) or H2CO3, HCO3-, and CO32-) since each DIC species has a distinct equilibrium clumped isotope signature. These abundances depend primarily upon solution pH and secondarily upon temperature and salinity (fresh water vs. sea water vs. brine). Solvated DIC species with additional ions and the composite DIC solutions were modeled as a series of supermolecular clusters, each with a single DIC molecule, an added cation, and 21 to 32 surrounding H2O molecules. As in our previous work (Hill et al., 2014, GCA 125, 610-652), we developed electronic structure models at different levels of theory to ensure the best possible reliability at reasonable computational efficiency. Overall, the models predict that common aqueous cations will slightly increase the 13C-18O clumping signature of both individual DIC species and the total DIC pool at a given pH, salinity, and temperature. Predicted Δ63values are also dependent upon cation concentration. The perturbing effect of Mg2+ > Ca2+ > K+ > Na+. Dissolved cations increase the clumped crossover pH (pH at which the composite Δ63 of the DIC pool equals the Δ63 of calcite at equilibrium). Our models predict that a DIC solution of low to moderate p

  7. A Capillary Absorption Spectrometer for Stable Carbon Isotope Ratio (13C/12C) Analysis in Very Small Samples

    SciTech Connect

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.; Newburn, Matthew K.; Moran, James J.; Alexander, M. L.; Kreuzer, Helen W.

    2012-02-06

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO{sub 2} samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO{sub 2} near 2307 cm{sup -1} (4.34 {mu}m). This initial CAS system can achieve relative isotopic precision of about 10 ppm {sup 13}C, or {approx}1{per_thousand} (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO{sub 2} concentrations {approx}400 to 750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to {approx}2 Torr. Overall {sup 13}C/{sup 12}C ratios can be calibrated to {approx}2{per_thousand} accuracy with diluted CO{sub 2} standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1,000 scans are co-added in {approx}10 sec. The CAS is meant to work directly with converted CO{sub 2} samples from a Laser Ablation-Catalytic-Combustion (LA CC) micro-sampler to provide {sup 13}C/{sup 12}C ratios of small biological isolates with spatial resolutions {approx}50 {mu}m.

  8. A 100 Myr history of the carbon cycle based on the 400 kyr cycle in marine δ13C benthic records

    NASA Astrophysics Data System (ADS)

    Paillard, Didier; Donnadieu, Yannick

    2014-12-01

    Documenting the past coevolution of Earth temperatures and of the carbon cycle is of paramount importance for our understanding of climate dynamics. Atmospheric CO2 is well constrained over the last million years through direct measurements in air bubbles from Antarctic ice cores. For older times, many different and sometimes conflicting proxies have been suggested. Here we provide a new methodology to constrain the carbon cycle in the past, based on marine benthic δ13C records. Marine δ13C data are recording a persistent 400 kyr cycle, with an amplitude primarily linked to the total amount of carbon in the ocean, or dissolved inorganic carbon (DIC). By extracting this amplitude from published records, we obtain a new strong constraint on the 100 Myr history of Earth's carbon cycle. The obtained Cenozoic evolution of DIC is in surprisingly in a good agreement with existing reconstructions of pCO2, suggesting that pCO2 is mostly driven by DIC changes over this period. In contrast, we find no strong decreasing trend in DIC between the Cretaceous and the Cenozoic, suggesting that Cretaceous atmospheric pCO2 levels were limited, and high temperatures at this time should be explained by other mechanisms. Alternatively, high Cretaceous atmospheric pCO2 could occur as a consequence of changes in oceanic chemistry but not carbon content.

  9. Variations of soil δ13C and δ15N across a precipitation gradient in a savanna ecosystem: Implications of climate change on the carbon cycle

    NASA Astrophysics Data System (ADS)

    Dintwe, K.; Gilhooly, W., III; Wang, L.; O'Donnell, F. C.; Bhattachan, A.; D'Odorico, P.; Okin, G. S.

    2015-12-01

    Savannas are the third largest terrestrial carbon pool after only tropical and borealforests. They are highly productive ecosystems and contribute about 30% of the globalterrestrial net primary productivity and potentially contain 20% of the world's soilorganic carbon. Global circulation models have predicted that many savannas willbecome warmer and drier during the twenty-first century. The impacts of the projectedclimatic trend on the productivity and biogeochemical cycles of savannas are not fullyunderstood. Here, we assessed the abundance of stable carbon13C) and nitrogen (δ15N)isotopes in soil profiles at four sites along a 1000 km transect with a strong south-northprecipitation gradient in southern Africa. The south receives about 180 mm of rainfall peryear and dominated by grass species (C4) whereas the north receives 540 mm·yr-1 anddominated by woody plants (C3). Soil surface δ13C showed that woody vegetation contributedmore than 75% of soil carbon input in the wet sites whereas grasses contributed about65% of soil carbon input in the dry sites. The soil profile δ13C indicated that intermediatesites have shifted from grass dominated to woody-shrub-dominated statesduring recent past. The dry sites had relatively higher δ15N (~10‰) compared to the wetsites (~5‰) indicating significantly greater N2 fixation in the wetter sites or high rates ofNH3 volatilization in the drier sites. Our results suggest that as savannas become warmerand drier due to climate change, woody shrubs are likely to be the dominant form ofvegetation structure, a process that could alter biogeochemical processes and results insavannas becoming net carbon sink or source.

  10. [Effects of intensive agricultural production on farmland soil carbon and nitrogen contents and their delta13C and delta15N isotope abundances].

    PubMed

    Yang, Guang-Rong; Hao, Xiying; Li, Chun-Li; Wang, Zi-Lin; Li, Yong-Mei

    2012-03-01

    Farmland soil carbon and nitrogen contents under intensive agricultural production are the important indices for the assessment of the soil fertility sustainability. This paper measured the soil pH, electrical conductivity (EC), organic carbon (SOC), total nitrogen (TN), and delta13C and delta15N isotope abundances of four types of farmland, i.e., conventional rice-broad bean rotation field, open vegetable field, 3-year plastic covered greenhouse field, and > 10-year plastic covered greenhouse field, aimed to understand the effects of intensive agricultural production degree on soil properties. In the open vegetable field, 3-year plastic covered greenhouse field, and > 10-year plastic covered greenhouse field, the soil (0-20 cm) pH decreased by 1.1, 0.8, and 0.7, and the soil EC was 4.2, 4.9, and 5.2 folds of that in conventional rice-broad bean rotation field, respectively. With the increasing year of plastic covered greenhouse production, the soil SOC and TN contents decreased after an initial increase. Comparing with those under rice-broad bean rotation, the SOC content in 0-20, 20-40, 40-60, 60-80 and 80-100 cm soil layers in >10-year plastic covered greenhouse decreased by 54%, 46%, 60%, 63%, and 59%, and the TN content decreased by 53%, 53%, 71%, 82%, and 85%, respectively. Intensive agricultural production degree had significant effects on the soil SOC and TN contents and delta13C and delta15N abundances. The delta13C abundance was significantly negatively correlated with the soil SOC, suggesting that the soil delta13C abundance could be regarded as an index for the assessment of carbon cycle in farmland soils under effects of human activities.

  11. High Strain Rate-High Strain Response of an Ultrahigh Carbon Steel Containing 1.3% C and 3% SI

    SciTech Connect

    Lesuer, D R; Syn, C K; Sherby, O M; Kum, D W

    2003-02-19

    The mechanical response of a UHCS-1.3C material deformed at approximately 3000 s{sup -1} to large strains (60%) has been studied. The influence of three different heat treatments, which resulted in pearlitic, martensitic and tempered martensitic microstructures, on the stress-strain response has also been examined. Failure, at both the macroscopic and the microscopic levels, and the ability of the material to absorb energy in compression have been evaluated. Failure for all heat treatments occurred due to shear localization. However, in the pearlitic condition, extensive buckling of the carbide plates was observed and the UHCS-1.3C material exhibited significant potential for compressive ductility (>60%) and energy absorption due to the distributed buckling of these plates. In the pearlitic condition, localization occurred due to adiabatic shear bands, in which austenite formed. Subsequent cooling produced a divorced-eutectoid transformation with associated deformation, which resulted in a microstructure consisting of 50 to 100 nm sized grains. The results show the large potential for use of UHCS in applications involving dynamic loading.

  12. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains.

    PubMed

    Zaia Alves, Gustavo H; Hoeinghaus, David J; Manetta, Gislaine I; Benedito, Evanilde

    2017-01-01

    Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems.

  13. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains

    PubMed Central

    Hoeinghaus, David J.; Manetta, Gislaine I.; Benedito, Evanilde

    2017-01-01

    Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems. PMID:28358822

  14. [Carbon stable isotope composition (delta 13C) of lichen thalli in the forests in the vicinity of the Chernobyl atomic power station].

    PubMed

    Biazrov, L G; Gongal'skiĭ, K B; Pel'gunova, L A; Tiunov, A V

    2010-01-01

    The stable isotope abundance of carbon in the lichens Cladina mitis, Cladonia crispata Hypogymnia physodes, Parmelia sulcata has been investigated in a study relating these values with known levels of 106Ru, 134Cs, 137Cs and 144Ce defined activity in their thalli in the pine forests of region within a 30-km radius of the Chernobyl atomic power station and beyond it (37 km). All 63 samples of the lichens were obtained from 7 different sites. Small effects on delta 13C values in the lichens Cladina mitis, Hypogymnia physodes were found to be associated with distance from CNPP, activity level of radionuclides in them thalli whereas at Cladonia crispata is observed weighting of carbon with increase in values of 134Cs and 137Cs activity in thalli. Values of delta 13C the investigated lichen species more depends on habitat conditions rather than from levels of thalli radioactivity. In our study we didn't reveal the isotope specificity of any one species as it was not possible to establish a correlation between values of delta 13C and a particular species.

  15. Spatial and temporal variations in stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopic composition of symbiotic scleractinian corals.

    PubMed

    Nahon, Sarah; Richoux, Nicole B; Kolasinski, Joanna; Desmalades, Martin; Ferrier Pages, Christine; Lecellier, Gael; Planes, Serge; Berteaux Lecellier, Véronique

    2013-01-01

    Tropical scleractinian corals are considered autotrophic as they rely mainly on photosynthesis-derived nutrients transferred from their photosymbionts. Corals are also able to capture and ingest suspended particulate organic matter, so heterotrophy can be an important supplementary trophic pathway to optimize coral fitness. The aim of this in situ study was to elucidate the trophic status of 10 coral species under contrasted environmental conditions in a French Polynesian lagoon. Carbon (δ(13)C) and nitrogen (δ(15)N) isotopic compositions of coral host tissues and photosymbionts were determined at 3 different fringing reefs during wet and dry seasons. Our results highlighted spatial variability in stable isotopic compositions of both coral host tissues and photosymbionts. Samples from the site with higher level of suspended particulate matter were (13)C-depleted and (15)N-enriched relative to corals and photosymbionts from less turbid sites. However, differences in both δ(13)C and δ(15)N between coral host tissues and their photosymbionts (Δ(host-photosymbionts 13)C and Δ(host-photosymbionts 15)N) were small (0.27 ± 0.76‰ and 1.40 ± 0.90‰, respectively) and similar at all sites, thus indicating no general increases in the heterotrophic pathway. Depleted δ(13)C and enriched δ(15)N values of coral host tissues measured at the most turbid site were explained by changes in isotopic composition of the inorganic nutrients taken up by photosymbionts and also by changes in rate of isotopic fractionation with environmental conditions. Our results also highlighted a lack of significant temporal variations in δ(13)C and δ(15)N values of coral host and photosymbiont tissues and in Δ(host-photosymbionts 13)C and Δ(host-photosymbionts 15)N values. This temporal stability indicated that corals remained principally autotrophic even during the wet season when photosymbiont densities were lower and the concentrations of phytoplankton were higher. Increased coral

  16. Stable Oxygen (δ 18O) and Carbon13C) Isotopes in the Skeleton of Bleached and Recovering Corals From Hawaii

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. J.; Grottoli, A. G.

    2004-12-01

    Coral skeletal stable oxygen isotopes (δ 18O) reflect changes in seawater temperature and salinity, while stable carbon isotopes (δ 13C) reflect a combination of both metabolic (photosynthesis and feeding) and kinetic fractionation. Together, the two isotopic signatures may be used as a proxy for past bleaching events. During bleaching, increased seawater temperatures often contribute to a decline in zooxanthellae and/or chlorophyll concentrations, resulting in a decrease in photosynthesis. We experimentally investigated the effect of bleaching and subsequent recovery on the δ 13C and δ 18O values of coral skeleton. Fragments from two coral species (Montipora capitata and Porites compressa) from Kaneohe Bay, Hawaii were bleached in outdoor tanks by raising the seawater temperature to 30° C. Additional fragments from the same parent colonies were maintained at ambient seawater temperatures (27° C) in separate tanks as controls. After one month in the tanks, a subset of the fragments was frozen and all remaining fragments were placed back on the reef to recover. All coral fragments were analyzed for their skeletal δ 13C and δ 18O compositions at five time intervals: before, immediately after, 1.5, 4, and 8 months after bleaching. In addition, rates of photosynthesis, calcification, and heterotrophy were also measured. Immediately after bleaching, δ 18O decreased in bleached M. capitata relative to controls, reflecting their exposure to increased seawater temperatures. During recovery, δ 18O values in the treatment M. capitata were not different from the controls. In P. compressa, δ 18O did not significantly differ in bleached and control corals at any time during the experiment. Immediately after bleaching, δ 13C decreased in the bleached fragments of both species relative to controls reflecting decreased photosynthetic rates. However, during recovery δ 13C in both species was greater in bleached than control fragments despite photosynthesis remaining

  17. Terrestrial carbon cycle responses to drought and climate stress: New insights using atmospheric observations of CO2 and delta13C

    NASA Astrophysics Data System (ADS)

    Alden, Caroline B.

    Atmospheric concentrations of carbon dioxide (CO2) continue to rise well into the second decade of the new millennium, in spite of broad-scale human understanding of the impacts of fossil fuel emissions on the earth's climate. Natural sinks for CO2 that are relevant on human time scales---the world's oceans and land biosphere---appear to have kept pace with emissions. The continuously increasing strength of the land biosphere sink for CO2 is surpassing expectations given our understanding of the CO2 fertilization and warming effects on the balance between photosynthesis and respiration, especially in the face of ongoing forest degradation. The climate and carbon cycle links between the atmosphere and land biosphere are not well understood, especially at regional (100 km to 10,000 km) scales. The climate modulating effects of changing plant stomatal conductance in response to temperature and water availability is a key area of uncertainty. Further, the differential response to climate change of C3 and C4 plant functional types is not well known at regional scales. This work outlines the development of a novel application of atmospheric observations of delta13C of CO2 to investigate the links between climate and water and carbon cycling and the integrated responses of C3 and C4 ecosystems to climate variables. A two-step Bayesian batch inversion for 3-hourly, 1x1º CO2 fluxes (step one), and for 3-hourly 1x1º delta13C of recently assimilated carbon (step two) is created here for the first time, and is used to investigate links between regional climate indicators and changes in delta13C of the biosphere. Results show that predictable responses of regional-scale, integrated plant discrimination to temperature, precipitation and relative humidity anomalies can be recovered from atmospheric signals. Model development, synthetic data simulations to test sensitivity, and results for the year 2010 are presented here. This dissertation also includes two other applications

  18. Study of the diet effect on d13C of shell carbonate of the land snail Helix aspersa in experimental conditions

    NASA Astrophysics Data System (ADS)

    Metref, S.; Rousseau, D. D.; Bentaleb, I.; Labonne, M.; Vianey-Liaud, M.

    2003-04-01

    This study aims to demonstrate the influence of the metabolic CO2 derived from the diet and of the atmospheric CO2 on the shell carbonate d13C of the pulmonate snail Helix aspersa maxima raised under controlled conditions. Adult snails were analyzed and compared with three hatching and one-day young snails stemming from the same breeding. One day after, the two-days old individuals were raised during one month. Three groups of gastropods were fed with fresh lettuce (C3 plant, d13C = -27.49 ppt), three groups with corn (C4 plant, d13C = -11.7 ppt), and three groups ate both (C3 + C4). The difference between the mean d13C values of the adult snails on one hand and the hatched and one-day snails on the other hand indicates a depletion of 2.47 ‰. Therefore, the isotopic parents offspring signal is not preserved. The depleted ingested albumen by the snail embryo in the egg during the built of the shell could explain this depletion. The C3 diet experiment gave the expected isotopic composition difference between the diet (lettuce) and the shells (mean D13Cshell-Lettuce = 13.75 ppt +- 0.52). This result shows a clear diet effect on the isotopic composition of the snail shells. For the C4 experiment, the difference in carbon isotope composition between the corn and the shell (D13Cshell-corn) yielded a mean value of 4.89 ppt +- 0.87. The main result is that D13C is not constant and appears to depend on the type of ingested food. Several hypothesis can raise from this study to explain the different fractionations : a) The differences in quality of the two diets seem to have placed the animals in different growth states, b) Differences in turnover rate for C3 and C4 feeders. The groups regularly fed with mixed diet yielded d13C values, showing a preferential use of C3 food for the most values. The C3-C4 mixed dietary alternation probably led snails to use mainly the lettuce instead of the corn powder.

  19. 13C Metabolic Flux Analysis Identifies an Unusual Route for Pyruvate Dissimilation in Mycobacteria which Requires Isocitrate Lyase and Carbon Dioxide Fixation

    PubMed Central

    Beste, Dany J. V.; Bonde, Bhushan; Hawkins, Nathaniel; Ward, Jane L.; Beale, Michael H.; Noack, Stephan; Nöh, Katharina; Kruger, Nicholas J.; Ratcliffe, R. George; McFadden, Johnjoe

    2011-01-01

    Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA. PMID:21814509

  20. Sources and Cycling of Dissolved Organic Carbon in the Gulf of Mexico: Insights from Stable (δ13C) and Radiocarbon (Δ14C) Signatures

    NASA Astrophysics Data System (ADS)

    Walker, B. D.; Druffel, E. R. M.; Griffin, S.; Kolasinski, J.; Roberts, B. J.; Xu, X.; Muller-Karger, F. E.; Rosenheim, B. E.

    2016-02-01

    Understanding the production and remineralization of marine dissolved organic carbon (DOC; 662 GtC) is of primary importance to the global carbon cycle. Together, DOC concentrations, stable (δ13C) and radiocarbon (Δ14C) isotopic measurements provide a powerful toolset for evaluating DOC sources and cycling in aquatic environments. However, to date the Δ14C and δ13C composition of total DOC in both the Mississippi River and the Gulf of Mexico (GOM) basin remains largely unconstrained. This has precluded our basic understanding of DOC biogeochemistry, its persistence and contribution to the base of the marine food web in an economically important U.S. ocean region. The Deepwater Horizon (DWH) spill event in 2010 further exemplified the need for understanding the baseline biogeochemistry of DOM across the terrestrial-marine interface in the Northern GOM. In particular, the relative persistence (e.g. biodegradation) and contribution of DWH oil to the DOC reservoir remains largely unknown. Here we present the first DOC Δ14C and δ13C depth profiles taken from five stations in the Northern GOM: 1) the Mississippi River mouth, 2) the shelf bound, aged river plume, 3) the shelf/slope near the Macondo Well site, 4) offshore in the Loop Current and 5) a nearshore mesoscale eddy. We will discuss these DOC Δ14C and δ13C data with three goals in mind. First, we will attempt to disentangle the complex interplay between riverine, coastal, open and deep ocean DOC cycling. Second we will compare these offshore data to a recently measured DOC Δ14C profile from waters feeding the GOM from the Caribbean in order to evaluate DOC cycling and residence time in the deep GOM basin. Finally, we will discuss results suggesting 10-16% of DWH oil has been incorporated into the marine DOC reservoir.

  1. Identification of biomass utilizing bacteria in a carbon-depleted glacier forefield soil by the use of 13C DNA stable isotope probing.

    PubMed

    Zumsteg, Anita; Schmutz, Stefan; Frey, Beat

    2013-06-01

    As Alpine glaciers are retreating rapidly, bare soils with low organic C and N contents are becoming exposed. Carbon availability is a key factor regulating microbial diversity and ecosystem functioning in these soils. The aim of this study was to investigate how bacterial activity, community structure and composition are influenced by organic carbon availability. Bare soils were supplied with (13)C-labelled fungal (Penicillium sp.) and green algal (Chlorella sp.) biomass and the CO2 evolution and its δ(13)C signature were monitored up to 60 days. These organisms have previously been isolated near the glacier terminus. DNA stable isotope probing followed by T-RFLP profiling and sequencing of 16S rRNA genes was employed to identify consumers able to assimilate carbon from these biomass amendments. Higher respiration and higher bacterial activity indicated a more efficient utilization of algal cells than fungal cells. Flavobacterium sp. predominantly incorporated fungal-derived C, whereas the algal-derived C was mainly incorporated by Acidobacteria and Proteobacteria. This study emphasizes the important role of both fungal and algal biomass in increasing the carbon pool in recently deglaciated bare soils, as only 20% of the added C was respired as CO2, and the rest, we presume, remained in the soil.

  2. The 'Nuts and Bolts' of 13C NMR Spectroscopy at Elevated-Pressures and -Temperatures for Monitoring In Situ CO2 Conversion to Metal Carbonates

    NASA Astrophysics Data System (ADS)

    Moore, J. K.; Surface, J. A.; Skemer, P. A.; Conradi, M. S.; Hayes, S. E.

    2013-12-01

    We will present details of newly-constructed specialized NMR designed to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies on unmixed slurries of minerals in the presence of CO2 or other gases. This static probe is capable of achieving 300 bar, 300C conditions, and it is designed to spectroscopically examine 13C signals in mixtures of solids, liquids, gases, and supercritical fluids. Ultimately, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. We will give details of the hardware setup, and we will show a variety of static in situ NMR, as well as ex situ 'magic-angle spinning' NMR to show the analyses that are possible of minerals in pure form and in mixtures. In addition, specific NMR pulse sequences, techniques, and modeling will be described in detail. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine conditions that affect the efficacy of carbonate formation in various targeted geological reservoirs (i.e., peroditite, or others). Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals, including metastable intermediates (such as hydromagnesite, or dypingite in the case of magnesium carbonate species, or vaterite in the case of calcium carbonate species). Such species are distinguishable from a combination of the 13C isotropic chemical shift, the static 13C lineshape, and changes in spin-lattice (T1) relaxation times. We will demonstrate that NMR can be used for quantitative

  3. Quantum mechanical and spectroscopic (FT-IR, FT-Raman,1H,13C NMR, UV-Vis) studies, NBO, NLO, HOMO, LUMO and Fukui function analysis of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione by DFT studies

    NASA Astrophysics Data System (ADS)

    Pandey, Manju; Muthu, S.; Nanje Gowda, N. M.

    2017-02-01

    Theoretical analysis of the molecular structure, spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV-Vis) studies, and thermodynamic characteristics of 5-Methoxy-1H-benzo[d]imidazole-2(3H)-thione (5MBIT) molecule were done by DFT/B3LYP using 6-311++G(d, p) basis set. Theoretical parameters were compared with experimental data. The dipole moment (μ), polarizability (Δα) and first order hyperpolarizability (β) of the molecule were calculated. Thermodynamic properties, HOMO and LUMO energies were determined. Global reactivity parameters and Fukui function of the 5MBIT molecule were predicted.

  4. Impact of deficit irrigation on water use efficiency and carbon isotope composition (delta13C) of field-grown grapevines under Mediterranean climate.

    PubMed

    de Souza, Claudia R; Maroco, João P; dos Santos, Tiago P; Rodrigues, M Lucília; Lopes, Carlos M; Pereira, João S; Chaves, M Manuela

    2005-08-01

    The objective of this study was to evaluate the effect of deficit irrigation on intrinsic water use efficiency (A/g(s)) and carbon isotope composition (delta13C) of two grapevine cultivars (Moscatel and Castelão), growing in a commercial vineyard in SW Portugal. The study was done in two consecutive years (2001 and 2002). The treatments were full irrigation (FI), corresponding to 100% of crop evapotranspiration (ETc), rain-fed (no irrigation, NI), and two types of deficit irrigation (50% ETc): (i) by supplying the water either to one side of the root system or to the other, which is partial rootzone drying (PRD), or (ii) dividing the same amount of water by the two sides of the root system, the normal deficit irrigation (DI). The water supplied to the PRD treatment alternated sides approximately every 15 d. The values of predawn leaf water potential (Psi(pd)) and the cumulative integral of Psi(pd) (S(Psi)) during the season were lower in 2001 than in the 2002 growing season. Whereas differences in Psi(pd) and S(Psi) between PRD and DI were not significantly different in 2001, in 2002 (a dryer year) both cultivars showed lower values of S(Psi) in the PRD treatment as compared with the DI treatment. This suggests that partial rootzone drying may have a positive effect on water use under dryer conditions, either as a result of better stomatal control and/or reduced vigour. The effects of the water treatments on delta13C were more pronounced in whole grape berries and pulp than in leaves. The delta13C of pulp showed the best correlation with intrinsic water use efficiency (A/g(s)) as well as with S(Psi). In spite of the better water status observed in PRD compared with DI in the two cultivars in 2002, no statistical differences between the two treatments were observed in A/g(s) and delta13C. On the other hand, they showed a higher delta13C compared with FI. In conclusion, it is apparent that the response to deficit irrigation varies with the environmental conditions

  5. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    NASA Astrophysics Data System (ADS)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kaestner, Matthias

    2015-04-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore, ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amount of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a soil bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 50 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  6. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    NASA Astrophysics Data System (ADS)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kästner, Matthias

    2014-05-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amounts of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 25 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  7. An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide - an in vivo labeling system for proteomics and metabolomics research

    PubMed Central

    2011-01-01

    Background Labeling whole Arabidopsis (Arabidopsis thaliana) plants to high enrichment with 13C for proteomics and metabolomics applications would facilitate experimental approaches not possible by conventional methods. Such a system would use the plant's native capacity for carbon fixation to ubiquitously incorporate 13C from 13CO2 gas. Because of the high cost of 13CO2 it is critical that the design conserve the labeled gas. Results A fully enclosed automated plant growth enclosure has been designed and assembled where the system simultaneously monitors humidity, temperature, pressure and 13CO2 concentration with continuous adjustment of humidity, pressure and 13CO2 levels controlled by a computer running LabView software. The enclosure is mounted on a movable cart for mobility among growth environments. Arabidopsis was grown in the enclosure for up to 8 weeks and obtained on average >95 atom% enrichment for small metabolites, such as amino acids and >91 atom% for large metabolites, including proteins and peptides. Conclusion The capability of this labeling system for isotope dilution experiments was demonstrated by evaluation of amino acid turnover using GC-MS as well as protein turnover using LC-MS/MS. Because this 'open source' Arabidopsis 13C-labeling growth environment was built using readily available materials and software, it can be adapted easily to accommodate many different experimental designs. PMID:21310072

  8. Nonstatistical 13C Distribution during Carbon Transfer from Glucose to Ethanol during Fermentation Is Determined by the Catabolic Pathway Exploited*

    PubMed Central

    Bayle, Kevin; Akoka, Serge; Remaud, Gérald S.; Robins, Richard J.

    2015-01-01

    During the anaerobic fermentation of glucose to ethanol, the three micro-organisms Saccharomyces cerevisiae, Zymomonas mobilis, and Leuconostoc mesenteroides exploit, respectively, the Embden-Meyerhof-Parnas, the Entner-Doudoroff, and the reductive pentose phosphate pathways. Thus, the atoms incorporated into ethanol do not have the same affiliation to the atomic positions in glucose. The isotopic fractionation occurring in each pathway at both the methylene and methyl positions of ethanol has been investigated by isotopic quantitative 13C NMR spectrometry with the aim of observing whether an isotope redistribution characteristic of the enzymes active in each pathway can be measured. First, it is found that each pathway has a unique isotope redistribution signature. Second, for the methylene group, a significant apparent kinetic isotope effect is only found in the reductive pentose phosphate pathway. Third, the apparent kinetic isotope effects related to the methyl group are more pronounced than for the methylene group. These findings can (i) be related to known kinetic isotope effects of some of the enzymes concerned and (ii) give indicators as to which steps in the pathways are likely to be influencing the final isotopic composition in the ethanol. PMID:25538251

  9. Nonstatistical 13C distribution during carbon transfer from glucose to ethanol during fermentation is determined by the catabolic pathway exploited.

    PubMed

    Bayle, Kevin; Akoka, Serge; Remaud, Gérald S; Robins, Richard J

    2015-02-13

    During the anaerobic fermentation of glucose to ethanol, the three micro-organisms Saccharomyces cerevisiae, Zymomonas mobilis, and Leuconostoc mesenteroides exploit, respectively, the Embden-Meyerhof-Parnas, the Entner-Doudoroff, and the reductive pentose phosphate pathways. Thus, the atoms incorporated into ethanol do not have the same affiliation to the atomic positions in glucose. The isotopic fractionation occurring in each pathway at both the methylene and methyl positions of ethanol has been investigated by isotopic quantitative (13)C NMR spectrometry with the aim of observing whether an isotope redistribution characteristic of the enzymes active in each pathway can be measured. First, it is found that each pathway has a unique isotope redistribution signature. Second, for the methylene group, a significant apparent kinetic isotope effect is only found in the reductive pentose phosphate pathway. Third, the apparent kinetic isotope effects related to the methyl group are more pronounced than for the methylene group. These findings can (i) be related to known kinetic isotope effects of some of the enzymes concerned and (ii) give indicators as to which steps in the pathways are likely to be influencing the final isotopic composition in the ethanol. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Effects of organic matter on carbonate stable isotope ratios (δ13C, δ18O values)--implications for analyses of bulk sediments.

    PubMed

    Oehlerich, Markus; Baumer, Marlene; Lücke, Andreas; Mayr, Christoph

    2013-03-30

    Stable isotope ratio (δ(13)C, δ(18)O values) analyses of carbonates can be biased by CO(2) release from organic impurities. This is most critical for carbonate isotope analyses from bulk sediments containing comparably high amounts of organic matter (OM). Several methods have been developed to remove OM prior to analyses, but none of them can be universally applied. Moreover, pretreatment methods cause isotopic bias in themselves and should probably best be avoided. Thus, it is essential to have indicators for reliable isotope values of untreated carbonate-OM mixtures. Artificial mixtures of organic compounds with a standard carbonate were analyzed to investigate the bias on carbonate isotope ratios caused by OM in the sample. The total-inorganic-carbon to total-organic-carbon ratio (TIC/TOC) was used as a measure for the " organic impurity" of the sample. The target was to evaluate TIC/TOC as a measure for sample quality and to define TIC/TOC thresholds for reliable isotope measurements of mixtures between calcium carbonate and organic compounds. The effect of organic impurities on carbonate stable isotope values depended on the specific OM compound and the respective TIC/TOC ratio. Different CO(2) release rates were determined for the pure OM compounds. A sample TIC/TOC ratio ≥0.3 was found to be a threshold for reliable measurements of the isotope composition of calcium carbonate. Bulk carbonate analyses from carbonate-OM mixtures are reliable only if the TIC/TOC values do not fall below certain thresholds. This has implications for carbonate isotope studies from bulk sediments for which the TIC/TOC ratios should be considered as an easy-to-determine measure for sample-quality assessment. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Organic and black carbon 13C and 14C through the Santa Monica Basin sediment oxic-anoxic transition

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Druffel, E. R. M.

    2003-02-01

    Black carbon (BC) is a significant percentage of sedimentary organic carbon (SOC) at abyssal ocean sites, but its presence in shelf sediments is not well studied. Approximately 1600AD, Santa Monica Basin bottom waters shifted from oxic to very low oxygen (dysoxic) deposition conditions. Under oxic deposition conditions BC was 11 +/- 4% of SOC, whereas after the overlying water became dysoxic (and sediments became anoxic), BC was 5.2 +/- 1.2% of SOC. This shift may reflect the preferential remineralization of non-black SOC under oxic conditions. There is an offset between BC and SOC 14C ages which changes with oxidation conditions, suggesting that BC storage is related to oxygen exposure and confirming a previously published report of the vulnerability of BC to sedimentary oxidation [Middelburg, 1999]. Terrestrial carbon is 17 +/- 5% of total SOC in this core's anoxic region, and 31 +/- 11% of this terrestrial carbon is BC.

  12. Seasonal and inter-annual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    SciTech Connect

    Torn, M.S.; Biraud, S.; Still, C.J.; Riley, W.J.; Berry, J.A.

    2010-09-22

    The {delta}{sup 13}C signature of terrestrial carbon fluxes ({delta}{sub bio}) provides an important constraint for inverse models of CO{sub 2} sources and sinks, insight into vegetation physiology, C{sub 3} and C{sub 4} vegetation productivity, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO{sub 2} concentration and {delta}{sup 13}C-CO{sub 2} at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed {delta}{sub bio} weekly. This region has a fine-scale mix of crops (primarily C{sub 3} winter wheat) and C{sub 4} pasture grasses. {delta}{sub bio} had a large and consistent seasonal cycle of 6-8{per_thousand}. Ensemble monthly mean {delta}{sub bio} ranged from -25.8 {+-} 0.4{per_thousand} ({+-}SE) in March to -20.1 {+-} 0.4{per_thousand} in July. Thus, C{sub 3} vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil {delta}{sub 13}C values were about -15{per_thousand}, indicating that historically the region was dominated by C{sub 4} vegetation and had more positive {delta}{sub bio} values. Based on a land-surface model, isofluxes ({delta}{sub bio} x NEE) in this region have large seasonal amplitude because {delta}{sub bio} and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in {delta}{sub bio} and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved {sup 13}CO{sub 2} and CO{sub 2} fluxes.

  13. Determination of methanogenic pathways through carbon isotope (δ13C) analysis for the two-stage anaerobic digestion of high-solids substrates.

    PubMed

    Gehring, Tito; Klang, Johanna; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Klocke, Michael; Wichern, Marc; Lübken, Manfred

    2015-04-07

    This study used carbon isotope (δ(13)C)-based calculations to quantify the specific methanogenic pathways in a two-stage experimental biogas plant composed of three thermophilic leach bed reactors (51-56 °C) followed by a mesophilic (36.5 °C) anaerobic filter. Despite the continuous dominance of the acetoclastic Methanosaeta in the anaerobic filter, the methane (CH4) fraction derived from carbon dioxide reduction (CO2), fmc, varied significantly over the investigation period of 200 days. At organic loading rates (OLRs) below 6.0 gCOD L(-1) d(-1), the average fmc value was 33%, whereas at higher OLRs, with a maximum level of 17.0 gCOD L(-1) d(-1), the fmc values reached 47%. The experiments allowed for a clear differentiation of the isotope fractionation related to the formation and consumption of acetate in both stages of the plant. Our data indicate constant carbon isotope fractionation for acetate formation at different OLRs within the thermophilic leach bed reactors as well as a negligible contribution of homoacetogenesis. These results present the first quantification of methanogenic pathway (fmc values) dynamics for a continually operated mesophilic bioreactor and highlight the enormous potential of δ(13)C analysis for a more comprehensive understanding of the anaerobic degradation processes in CH4-producing biogas plants.

  14. Influence of diet on growth, condition and reproductive capacity in Newfoundland and Labrador cod ( Gadus morhua): Insights from stable carbon isotopes ( δ13C)

    NASA Astrophysics Data System (ADS)

    Sherwood, Graham D.; Rideout, Rick M.; Fudge, Susan B.; Rose, George A.

    2007-11-01

    Cod populations in Newfoundland and Labrador waters have shown differing growth, condition and recruitment since near-universal declines in these properties during the cold period of the late 1980s and early 1990s. To assess the influence of variable prey communities on these parameters, we compared cod energetics and diet in populations off Labrador and the northeast and south coasts of Newfoundland. Many properties were highest in the southern group(s) and lowest in the northern group(s), including growth, somatic condition, liver index and age-at-maturity. Most differences could be explained by variations in diet, as measured by stomach contents and stable carbon isotopes ( δ13C). The diet of Labrador cod consisted almost entirely of northern shrimp ( Pandalus borealis), and these cod displayed the most benthic δ13C signatures. Northeast cod had a more varied diet that included capelin and other fish, but still had mostly benthic δ13C signatures, suggesting the importance of benthic prey like shrimp in this population. South coast cod exhibited the most varied diet, including capelin ( Mallotus villosus), zooplankton, crabs and other fish, and had the most pelagic δ13C signatures. Among and within populations, the benefits of a more pelagic diet in medium-sized (30-69 cm) cod included higher somatic condition, higher liver index (lipid stores) and greater spawning potential (decreased incidence of atresia). It is hypothesized that major rebuilding of Newfoundland and Labrador cod stocks will require a return to a system that supports mostly pelagic feeding (i.e. capelin) in cod.

  15. Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously.

    PubMed

    Blank, Lars M; Desphande, Rahul R; Schmid, Andreas; Hayen, Heiko

    2012-06-01

    Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly (13)C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously--i.e., (13)C and (15)N--in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with (13)C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon-nitrogen co-metabolism by administering both (13)C-labeled glucose and (15)N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes.

  16. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-05-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, air-sea gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre) and remineralized (δ13Crem) contributions as well as the effects of biology (Δδ13Cbio) and air-sea gas exchange (δ13C*). The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC

  17. Losses of soil organic carbon by converting tropical forest to plantations: Assessment of erosion and decomposition by new δ13C approach

    NASA Astrophysics Data System (ADS)

    Guillaume, Thomas; Muhammad, Damris; Kuzyakov, Yakov

    2015-04-01

    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber and extensive rubber plantations in Jambi province on Sumatra Island. We developed and applied a new δ13C based approach to assess and separate two processes: 1) erosion and 2) decomposition. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). The C content in the subsoil was similar in the forest and the plantations. We therefore assumed that a shift to higher δ13C values in the subsoil of the plantations corresponds to the losses of the upper soil layer by erosion. Erosion was estimated by comparing the δ13C profiles in the undisturbed soils under forest with the disturbed soils under plantations. The estimated erosion was the strongest in oil palm (35±8 cm) and rubber (33±10 cm) plantations. The 13C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. SOC availability, measured by microbial respiration rate and Fourier Transformed Infrared Spectroscopy, was lower under oil palm plantations. Despite similar trends in C losses and erosion in intensive plantations, our results indicate that microorganisms in oil palm plantations mineralized mainly the old C stabilized prior to conversion, whereas microorganisms under rubber plantations mineralized the fresh C from the litter, leaving the old C pool mainly untouched. Based on the lack of C input from litter, we expect further losses of SOC under oil palm plantations, which therefore are a less sustainable land

  18. Imazalil-cyclomaltoheptaose (beta-cyclodextrin) inclusion complex: preparation by supercritical carbon dioxide and 13C CPMAS and 1H NMR characterization.

    PubMed

    Lai, Simona; Locci, Emanuela; Piras, Alessandra; Porcedda, Silvia; Lai, Adolfo; Marongiu, Bruno

    2003-10-10

    An inclusion complex between imazalil (IMZ), a selected fungicide, and cyclomaltoheptaose (beta-cyclodextrin, betaCD) was obtained using supercritical fluid carbon dioxide. The best preparation conditions were determined, and the inclusion complex was investigated by means of 1H NMR spectroscopy in aqueous solution and 13C CPMAS NMR spectroscopy in the solid state. Information on the geometry of the betaCD/IMZ complex was obtained from ROESY spectroscopy, while the dynamics of the inclusion complex in the kilohertz range was obtained from the proton spin-lattice relaxation times in the rotating frame, T(1rho) (1H).

  19. Sulfate-driven anaerobic oxidation of methane as the origin of extremely 13C-depleted calcite in the Doushantuo cap carbonates in South China

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Bao, H.; Jiang, G.; Kaufman, A. J.; Xiao, S.; Zhou, C.; Wang, J.

    2015-12-01

    The cap carbonate in Doushantuo Formation (ca. 635 Ma) has been extensively studied for Earth systems change following the Marinoan 'snowball Earth' glaciation. An important feature of this cap carbonate is the local occurrence of extremely negative δ13Ccarb values (down to -50‰) from dark-colored calcite cements. These calcites have been interpreted as carbonate cements precipitated from cold methane seeps or as hydrothermally induced diagenetic carbonates. To test these contrasting interpretations, we mechanically separated the calcite cements from host dolostones and analyzed stable isotope compositions of pyrite, carbonate-associated sulfate (CAS), and organic carbon in both components of the Doushantuo cap carbonate in the Yangtze Gorges area, South China. The data show that δ34Spyrtie of extremely 13C-depleted calcite (22.8-73.9‰) are up to 34‰ higher than those of the dolomite (14.7-39.9‰). Similarly, δ34SCAS of calcite (37.1-80.1‰) are up to 40‰ higher than those of the dolomite (24.5-41.5‰). The δ18OCAS of calcite (12.9-22.2‰; VSMOW) are also systematically higher than those of dolomite (13.3-16.8‰; VSMOW). In contrast, δ13Corg of calcite cements (-27.2 ‰ to -46.1‰) are lower than those of the dolostones (-26.5‰ to -31.7‰). In addition, there is a strong positive correlation between δ34SCAS and δ18OCAS and a negative correlation between δ13Corg and δ34Spyrtie of the calcite (Figure 1). The data demonstrated convincingly that the 13C-depleted calcites were formed in a environment facilitated by sulfate-driven anaeorobic oxidation of methane (AOM). The co-occurrence of unusually low δ13Corg and high δ34S values requires presence of active flow of both methane and sulfate, a condition not far away from conducive seawater sulfate supply. Figure 1: Cross plots of δ34SCAS vs. δ18OCAS and δ13Corg vs δ34Spyrtie in host dolomite and in the extremely 13C-depleted calcite cements.

  20. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  1. Coupling a high-temperature catalytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural-abundance delta13C-dissolved organic carbon in marine and freshwater samples.

    PubMed

    Panetta, Robert J; Ibrahim, Mina; Gélinas, Yves

    2008-07-01

    The stable isotope composition of dissolved organic carbon (delta(13)C-DOC) provides powerful information toward understanding carbon sources and cycling, but analytical limitations have precluded its routine measurement in natural samples. Recent interfacing of wet oxidation-based dissolved organic carbon analyzers and isotope ratio mass spectrometers has simplified the measurement of delta(13)C-DOC in freshwaters, but the analysis of salty estuarine/marine samples still proves difficult. Here we describe the coupling of the more widespread high-temperature catalytic oxidation-based total organic carbon analyzer to an isotope ratio mass spectrometer (HTC-IRMS) through cryogenic trapping of analyte gases exiting the HTC analyzer for routine analysis of delta(13)C-DOC in aquatic and marine samples. Targeted elimination of major sources of background CO2 originating from the HTC analyzer allows for the routine measurement of samples over the natural range of DOC concentrations (from 40 microM to over 2000 microM), and salinities (<0.1-36 g/kg). Because consensus reference natural samples for delta(13)C-DOC do not exist, method validation was carried out with water-soluble stable isotope standards as well as previously measured natural samples (IAEA sucrose, Suwannee River Fulvic Acids, Deep Sargasso Sea consensus reference material, and St. Lawrence River water) and result in excellent delta(13)C-DOC accuracy (+/-0.2 per thousand) and precision (+/-0.3 per thousand).

  2. Determination of the δ15N and δ13C of total nitrogen and carbon in solids; RSIL lab code 1832

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplan, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1832 is to determine the δ(15N/14N), abbreviated as δ15N, and the δ(13C/12C), abbreviated as δ13C, of total nitrogen and carbon in a solid sample. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen and carbon in a solid sample into N2 and CO2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines the relative difference in stable nitrogen isotope-amount ratio (15N/14N) of the product N2 gas and the relative difference in stable carbon isotope-amount ratio (13C/12C) of the product CO2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in tin capsules and loaded into a Costech Zero Blank Autosampler on the EA. Under computer control, samples then are dropped into a heated reaction tube that contains an oxidant, where combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction furnace to remove excess oxygen and to convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the IRMS through a Finnigan MAT (now Thermo Scientific) ConFlo II interface. The Finnigan MAT ConFlo II interface is used for introducing not only sample into the IRMS but also N2 and CO2 reference gases and helium for sample dilution. The flash combustion is quantitative; no isotopic fractionation is involved. The IRMS is a Thermo Scientific Delta V CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle; it is capable of measuring mass/charge (m/z) 28, 29, 30 or with a magnet current change 44, 45, 46, simultaneously. The ion beams from these m/z values are as follows: m/z 28 = N2 = 14N/14N; m/z 29 = N2 = 14N/15N primarily; m/z 30 = NO = 14N/16O

  3. Sedimentary rocks as sources of ancient organic carbon to the ocean: An investigation through Δ14C and δ13C signatures of organic compound classes

    NASA Astrophysics Data System (ADS)

    Komada, Tomoko; Druffel, Ellen R. M.; Hwang, Jeomshik

    2005-06-01

    Chemical and isotopic variability of particulate organic carbon (POC) was examined in samples from the Santa Clara River watershed and adjacent shelf to investigate the processing of fossil POC derived from bedrock. The Santa Clara is a small coastal river that drains mountainous terrain in southern California, United States. Organic carbon in shale, river suspended sediment, and coastal marine sediment was separated into three operationally defined organic compound classes: total extractable lipids, acid hydrolyzable material, and the nonhydrolyzable residue. In all samples, the nonhydrolyzable fraction was dominant (˜50% of POC), while lipids and acid hydrolyzable moieties were relatively minor (≤22 and ≤13%, respectively). The Δ14C and δ13C signatures of the isolated fractions varied dramatically, not only across different sample types, but also for a given sample. At the shale exposure, low Δ14C values (<-760‰) indicated dominance of ancient C in all three organic compound classes. In downstream samples, the extractable lipids displayed the lowest Δ14C values (<-500‰), while the acid hydrolyzable fraction was predominantly modern (Δ14C > -30‰). The nonhydrolyzable fraction displayed intermediate Δ14C values (<-190‰) that increased steadily downstream with decreasing δ13C values (-22.2 to -25.0‰), possibly from mixing of shale and surface soil POC. Our results indicate that most of the fossil POC discharged by the Santa Clara is composed of non-acid hydrolyzable material, but its elusive molecular structure and marine-like δ13C signature may render its detection in the ocean difficult. In contrast, fossil lipids may be more amenable to detection if their resistant components (e.g., asphaltic material) are unique to crustal sources.

  4. Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion

    NASA Astrophysics Data System (ADS)

    Farkaš, Juraj; Frýda, Jiří; Holmden, Chris

    2016-10-01

    This study investigates calcium isotope variations (δ 44 / 40 Ca) in late Silurian marine carbonates deposited in the Prague Basin (Czech Republic), which records one of the largest positive carbon isotope excursion (CIE) of the entire Phanerozoic, the mid-Ludfordian CIE, which is associated with major climatic changes (abrupt cooling) and global sea-level fluctuations. Our results show that during the onset of the CIE, when δ13 C increases rapidly from ∼0‰ to ∼8.5‰, δ 44 / 40Ca remains constant at about 0.3 ± 0.1 ‰ (relative to NIST 915a), while 87Sr/86Sr in well-preserved carbonates are consistent with a typical Ludfordian seawater composition (ranging from ∼0.70865 to ∼0.70875). Such decoupling between δ13 C and δ 44 / 40Ca trends during the onset of the CIE is consistent with the expected order-of-magnitude difference in the residence times of Ca (∼106yr) and C (∼105yr) in the open ocean, suggesting that the mid-Ludfordian CIE was caused by processes where the biogeochemical pathways of C and Ca in seawater were mechanistically decoupled. These processes may include: (i) near shore methanogenesis and photosynthesis, (ii) changes in oceanic circulation and stratification, and/or (iii) increased production and burial of organic C in the global ocean. The latter, however, is unlikely due to the lack of geological evidence for enhanced organic C burial, and also because of unrealistic parameterization of the ocean C cycle needed to generate the observed CIE over the relatively short time interval. In contrast, higher up in the section where δ13 C shifts back to pre-excursion baseline values, there is a correlated shift to higher δ 44 / 40Ca values. Such coupling of the records of Ca and C isotope changes in this part of the study section is inconsistent with the abovementioned differences in oceanic Ca and C residence times, indicating that the record of δ 44 / 40Ca changes does not faithfully reflect the evolution of the oceanic Ca

  5. Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two 13C-CO2 labelling techniques

    NASA Astrophysics Data System (ADS)

    Studer, Mirjam S.; Siegwolf, Rolf T. W.; Schmidt, Michael W. I.; Abiven, Samuel

    2014-05-01

    13C-CO2 labelling is a powerful tool to study the carbon (C) dynamics in plant-soil systems, whereby various approaches have been applied, differing in the duration of label exposure, the applied label strength and the sampling intervals. We made a direct comparison of the two main 13C-CO2 labelling techniques - pulse and continuous labelling - and evaluated if different approaches yield the same results regarding the C transfer time, C partitioning and the C residence time in different plant-soil compartments. We conducted a pulse labelling (exposure to 99 atom% 13C-CO2 for three hours, traced for eight days) and a continuous labelling (exposure to 10 atom% 13C-CO2, traced for 14 days) on identical plant-soil systems (Populus deltoides x nigra, Cambisol soil) and under controlled environmental conditions. The plant-soil systems were destructively harvested at five sampling dates, and the soil CO2 efflux was sampled throughout the experiments. The 13C distribution into leaves, petioles, stems, cuttings, roots, soil, microbial biomass and soil respiration was analysed and wee applied exponential (pulse labelling) and logistic (continuous labelling) functions to model the C dynamics. Our results confirm that pulse labelling is best suited to assess the minimum C transfer time, while continuous labelling can be applied to assess the C transfer through a compartment, including short-term storage pools. Both experiments yielded the same C partitioning patterns at the specific sampling days, however, the time of sampling was crucial. For example the results of belowground C partitioning were consistent only after eight days of labelling. The C mean residence times estimated by the rate constant of the exponential and logistic function were largely different for the two techniques, mostly due to the strong model assumptions (e.g. steady state). Pulse and continuous labelling techniques are both well suited to assess C cycling. With pulse labelling, the dynamics of fresh

  6. Cycling of high-molecular-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic ({sup 13}C and {sup 14}C) signatures

    SciTech Connect

    Guo, L.; Santschi, P.H.; Cifuentes, L.A.

    1996-09-01

    Carbon isotopes ({sup 13}C and {sup 14}C) and elemental composition (C and N) in two fractions of colloidal organic matter (COM) were measured to study the origin and cycling of dissolved organic matter (DOM) in the Middle Atlantic Bight (MAB). COM{sub 1} (1 kDa-0.2 {mu}m) was 59% of the bulk DOM in surface Chesapeake Bay waters and decreased to 30-35% in water of the MAB. COM{sub 10} (10 kDa-0.2 {mu}m), which was the high-molecular-weight (HMW) component of COM{sub 1}, comprised 3-12% of the bulk DOM, with highest concentrations in Chesapeake Bay waters and the lowest in deep waters in the MAB. {Delta}{sup 14}C values of COM{sub 1} decreased from nearshore (-21 to +12%) to offshore and from surface (-166 to -85{per_thousand}) to bottom waters (-400 to -304{per_thousand}). Although {Delta}{sup 14}C values of surface-water HMW COM{sub 10} were generally high (-2 to -7{per_thousand}), values for bottom-water COM{sub 10} were much lower (-129 to -709{per_thousand}). The high {Delta}{sup 14}C values in the surface water suggest a particulate origin of pelagic COM, consistent with the contemporary {Delta}{sup 14}C values of particulate organic matter (POM). The very low {Delta}{sup 14}C values of bottom-water COM{sub 10} imply that in addition to the pelagic origin, sedimentary organic C may serve as an important source for the benthic colloids in the bottom nepheloid layer. The general flow direction of organic carbon is from POM to HMW and to LMW DOM. Three colloidal end-members were identified in the MAB as well as in the Gulf of Mexico: estuarine colloids with high {Delta}{sup 14}C values, high C:N ratios, and lower {delta}{sup 13}C values; offshore surface water colloids with intermediate {Delta}{sup 14}C values, lower C:N ratios, and higher {delta}{sup 13}C values; and offshore deep-water colloids with low {Delta}{sup 14}C values, intermediate C:N ratios, and variable {delta}{sup 13}C values. 40 refs., 10 figs., 3 tabs.

  7. The curved 14C vs. δ13C relationship in dissolved inorganic carbon: A useful tool for groundwater age- and geochemical interpretations

    USGS Publications Warehouse

    Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep

    2014-01-01

    Determination of the 14C content of dissolved inorganic carbon (DIC) is useful for dating of groundwater. However, in addition to radioactive decay, the 14C content in DIC (14CDIC) can be affected by many geochemical and physical processes and numerous models have been proposed to refine radiocarbon ages of DIC in groundwater systems. Changes in the δ13C content of DIC (δ13CDIC) often can be used to deduce the processes that affect the carbon isotopic composition of DIC and the 14C value during the chemical evolution of groundwater. This paper shows that a curved relationship of 14CDIC vs. δ13CDIC will be observed for groundwater systems if (1) the change in δ13C value in DIC is caused by a first-order or pseudo-first-order process, e.g. isotopic exchange between DIC and solid carbonate, (2) the reaction/process progresses with the ageing of the groundwater, i.e. with decay of 14C in DIC, and (3) the magnitude of the rate of change in δ13C of DIC is comparable with that of 14C decay. In this paper, we use a lumped parameter method to derive a model based on the curved relationship between 14CDICand δ13CDIC. The derived model, if used for isotopic exchange between DIC and solid carbonate, is identical to that derived by Gonfiantini and Zuppi (2003). The curved relationship of 14CDIC vs. δ13CDIC can be applied to interpret the age of the DIC in groundwater. Results of age calculations using the method discussed in this paper are compared with those obtained by using other methods that calculate the age of DIC based on adjusted initial radiocarbon values for individual samples. This paper shows that in addition to groundwater age interpretation, the lumped parameter method presented here also provides a useful tool for geochemical interpretations, e.g. estimation of apparent rates of geochemical reactions and revealing the complexity of the geochemical environment.

  8. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-09-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by

  9. Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt

    USGS Publications Warehouse

    Striegl, R.G.; Kortelainen, Pirkko; Chanton, J.P.; Wickland, K.P.; Bugna, G.C.; Rantakari, M.

    2001-01-01

    Carbon dioxide (CO2) accumulates under lake ice in winter and degasses to the atmosphere after ice melt. This large springtime CO2 pulse is not typically considered in surface-atmosphere flux estimates, because most field studies have not sampled through ice during late winter. Measured CO2 partial pressure (pCO2) of lake surface water ranged from 8.6 to 4,290 Pa (85-4,230 ??atm) in 234 north temperate and boreal lakes prior to ice melt during 1998 and 1999. Only four lakes had surface pCO2 less than or equal to atmospheric pCO2, whereas 75% had pCO2 >5 times atmospheric. The ??13CDIC (DIC = ??CO2) of 142 of the lakes ranged from -26.28??? to +0.95.???. Lakes with the greatest pCO2 also had the lightest ??13CDIC, which indicates respiration as their primary CO2 source. Finnish lakes that received large amounts of dissolved organic carbon from surrounding peatlands had the greatest pCO2. Lakes set in noncarbonate till and bedrock in Minnesota and Wisconsin had the smallest pCO2 and the heaviest ??13CDIC, which indicates atmospheric and/or mineral sources of C for those lakes. Potential emissions for the period after ice melt were 2.36 ?? 1.44 mol CO2 m-2 for lakes with average pCO2 values and were as large as 13.7 ?? 8.4 mol CO2 m-2 for lakes with high pCO2 values.

  10. Intertube effects on one-dimensional correlated state of metallic single-wall carbon nanotubes probed by 13C NMR

    NASA Astrophysics Data System (ADS)

    Serita, Noboru; Nakai, Yusuke; Matsuda, Kazuyuki; Yanagi, Kazuhiro; Miyata, Yasumitsu; Saito, Takeshi; Maniwa, Yutaka

    2017-01-01

    The electronic states in isolated single-wall carbon nanotubes (SWCNTs) have been considered as an ideal realization of a Tomonaga-Luttinger liquid (TLL). However, it remains unclear whether one-dimensional correlated states are realized under local environmental effects such as the formation of a bundle structure. Intertube effects originating from other adjacent SWCNTs within a bundle may drastically alter the one-dimensional correlated state. In order to test the validity of the TLL model in bundled SWCNTs, low-energy spin excitation is investigated by nuclear magnetic resonance (NMR). The NMR relaxation rate in bundled mixtures of metallic and semiconducting SWCNTs shows a power-law temperature dependence with a theoretically predicted exponent. This demonstrates that a TLL state with the same strength as that for effective Coulomb interactions is realized in a bundled sample, as in isolated SWCNTs. In bundled metallic SWCNTs, we found a power-law temperature dependence of the relaxation rate, but the magnitude of the relaxation rate is one order of magnitude smaller than that predicted by theory. Furthermore, we found an almost doubled magnitude of the Luttinger parameter. These results indicate suppressed spin excitations with reduced Coulomb interactions in bundled metallic SWCNTs, which are attributable to intertube interactions originating from adjacent metallic SWCNTs within a bundle. Our findings give direct evidence that bundling reduces the effective Coulomb interactions via intertube interactions within bundled metallic SWCNTs.

  11. Carbon, Nitrogen and Sulphur concentration and δ13C, δ15N values in Hypogymnia physodes within the montane area - preliminary data

    NASA Astrophysics Data System (ADS)

    Ciężka, Monika; Kossowska, Maria; Paneth, Piotr; Górka, Maciej

    2016-12-01

    The contribution of C, N and S, as well as the isotopic composition of C and N of atmospheric pollutants, are assumed to be reflected in the organic compounds inbuilt into the lichen thallus. The chemical and isotopic analyses were carried out on lichen Hypogymnia physodes samples gathered from Picea abies and Larix decidua, collected in 13 sampling points located in Karkonoski National Park and its closest vicinity in 2011. The results for %C, %N and %S varied from 43.44 to 46.79%, from 0.86 to 1.85% and from 0.07 to 0.27 %, respectively. The δ13C values ranged from -26.6 to -24.6‰, whereas δ15N values varied from -13.0 to -6.8‰. The ranges in isotope composition suggest different sources of C and N for Karpacz compared to the remaining sampling sites. For Karpacz, the δ13C values suggest (in case the fractionation product-substrate does not exist and Δ=0) that the dominant sources are coal combustion processes, whereas for remaining sampling points, the δ13C values are ambiguous and are masked by many mixed natural and anthropogenic processes. With the same assumption that Δ=0, the δ15N values suggest that transport is not a dominant source of nitrogen within Karpacz city. Moreover, in this study we tested the possible fractionation (Δ) for carbon and nitrogen, assuming that within the investigated area, the source of carbon is probably CO2 and/or DIC (HCO3-) dissolved in precipitation, while the source of nitrogen is NOx and/or NO3- ion. The calculated fractionation factors were: (i) for gaseous carbon compounds ΔCO2-Corg value from -13.4 to -11.4‰, whereas for the ions form ΔHCO3--Corg value from -16.6 to -14.6‰, (ii) for nitrogen gaseous compounds ΔNOx-Norg value between apx. -17 and -5‰, whereas for the ions form ΔNO3--Norg value between -9.9 and -3.7‰.

  12. Sequence stratigraphy and stable isotopes ( δ13C, δ180) of the Late Cretaceous carbonate ramp of the western margin of the Iberian Chain (Soria, Spain)

    NASA Astrophysics Data System (ADS)

    Valladares, I.; Recio, C.; Lendínez, A.

    1996-08-01

    Within the Upper Cretaceous sediments of the western margin of the northern Iberian Chain, several formations of Turonian to Campanian age form a carbonate platform succession (165-270 m thick) developed during a second-order cycle of relative sea-level rise and fall. This succession consists of two depositional sequences, deposited during third-order cycles, formed by sediments deposited in a broad, epeiric, ramp-type platform open to the north. The lower depositional sequence (Moral de Homuez Formation) began during the Cenomanian-Turonian transgression and represents the transgressive systems tract and highstand systems tract; it was terminated by a late Turonian regression resulting in a type 2 sequence boundary. Two types of parasequences (deepening-upward and shallowing-upward, respectively), 1 to 3 m thick, deposited within fourth- and higher-order cycles, have been identified, with features corresponding to lagoonal deposits. The upper depositional sequence (comprising the Hortezuelos, Caballar, Hontoria del Pinar, Burgo de Osma and Santo Domingo de Silos Formations) began during the early Coniacian transgression and was terminated by a Campanian regression. This upper depositional sequence also represents the transgressive systems tract and highstand systems tract. Eight types of shallowing-upward parasequence, 1 to 4 m thick (locally up to 10 m), deposited in subtidal high-energy (shoals and channels) and low-energy settings (lagoon, locally with rudist patch-reefs) and in tidal-flat environments have been identified. Carbon-isotope data, showing sharp and correlatable positive anomalies in different sections, strongly suggest that Oceanic Anoxic Events are recorded in these shallow platform deposits. The Cenomanian-Turonian Oceanic Anoxic Event results in a positive δ13C excursion of up to 4‰ that coincides with the presence of small-size, low-diversity benthic foraminifers, agglutinated and planktonic foraminifers and calcispheres, despite the

  13. Using Isotope Ratio Infrared Spectrometer to determine δ13C of CaCO3 carbonate and DIC samples and δ18O of water

    NASA Astrophysics Data System (ADS)

    Mandic, M.; Stöbener, N.; Mandic, L.; Smajgl, D.; Jost, H. J. H.

    2016-12-01

    Precise and accurate determination of isotopic composition of carbon (13C) and oxygen (18O) from carbonate or DIC sample with proper referencing and data evaluation algorithm presents a challenge for scientists. Mass spectrometry was the only widely used technique for this kind of analysis, but recent advances make laser based isotope ratio infrared spectroscopy (IRIS) a viable alternative. To analyze discrete samples, the Universal Reference Interface (URI) Connect was developed. CO2 free syntethic air is used to flush out the contents of a sample container into a variable volume. If necessary, the sample is further diluted before entering the analysis chamber. Reference gas measurements are automatically performed at the same concentration as sample measurements to compensate for instrument drifts and non linearity. The URI Connect can handle about 100 samples per day from an autosampler, or samples can be injected one at a time through a septum on the front of the instrument. Gas samples collected in flasks, bags, syringes, or vials can be analyzed. The system only needs the equivalent of about 80µg - or 40µL - of pure CO2 gas to complete an analysis. Due to it's small weight and robustness, sample analysis can be performed in the field, e.g. aboard a research vessel. To demonstrate the performance, a test experiment with 1% CO2 in 12 ml vials was performed. We achieved an internal precision of better than 0.07‰ and 0.1‰ for δ13C and δ18O, respectively. Analyses with sample amounts as low as 200 μg of carbonate can also be performed reliably with IRIS. We present measurements of three international reference materials, and one of them treated as an unknown. Five samples each of approximately 1mg each were acidified using a few droplets of 43% H3PO4 and left for equilibration overnight at 25°C. The standard deviation was less than 0.1‰ δ13C and the accuracy <0.01‰ As another example of head space analysis in 12 ml vials, we determined δ18O of

  14. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    PubMed

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    PubMed

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  16. delta 15N and non-carbonate delta 13C values for two petroleum source rock reference materials and a marine sediment reference material

    USGS Publications Warehouse

    Dennen, Kristin O.; Johnson, Craig A.; Otter, Marshall L.; Silva, Steven R.; Wandless, Gregory A.

    2006-01-01

    Samples of United States Geological Survey (USGS) Certified Reference Materials USGS Devonian Ohio Shale (SDO-1), and USGS Eocene Green River Shale (SGR-1), and National Research Council Canada (NRCC) Certified Marine Sediment Reference Material (PACS-2), were sent for analysis to four separate analytical laboratories as blind controls for organic rich sedimentary rock samples being analyzed from the Red Dog mine area in Alaska. The samples were analyzed for stable isotopes of carbon (delta13Cncc) and nitrogen (delta15N), percent non-carbonate carbon (Wt % Cncc) and percent nitrogen (Wt % N). SDO-1, collected from the Huron Member of the Ohio Shale, near Morehead, Kentucky, and SGR-1, collected from the Mahogany zone of the Green River Formation are petroleum source rocks used as reference materials for chemical analyses of sedimentary rocks. PACS-2 is modern marine sediment collected from the Esquimalt, British Columbia harbor. The results presented in this study are, with the exceptions noted below, the first published for these reference materials. There are published information values for the elemental concentrations of 'organic' carbon (Wt % Corg measured range is 8.98 - 10.4) and nitrogen (Wt % Ntot 0.347 with SD 0.043) only for SDO-1. The suggested values presented here should be considered 'information values' as defined by the NRCC Institute for National Measurement Reference Materials and should be useful for the analysis of 13C, 15N, C and N in organic material in sedimentary rocks.

  17. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  18. Magnetostratigraphy of late Devonian carbonates of Western Australia: Integrating reversal history with biostratigraphic and 13C records

    NASA Astrophysics Data System (ADS)

    Tohver, E.; Playton, T.; Hillbun, K.; Yan, M.; Pisarevsky, S.; Hansma, J.; Roelofs, B.; Trinajstic, K.; Kirschvink, J. L.; Haines, P.

    2016-12-01

    The Global Polarity Timescale presents a useful basis for chronostratigraphic correlations, but pre-Jurassic records depend on records from sedimentary basins preserved on the continents. At present, the record for the late Devonian is poorly established. Here we present an integrated magnetostratigraphic, biostratigraphic and C-isotope study of the Canning Basin of Western Australia, located on the northern margin of eastern Gondwana. The study region is part of the classic "Devonian Great Barrier Reef", and preserves an outstanding marine record of a prominent mass extinction event (i.e., the Frasnian-Fammenian event, the fifth of the "Big Five" mass extinctions). We present magnetostratigraphic profiles from six different sections (2200 m total) from four separate localities that record different paleowater depths, i.e., lowermost slope to reef/platform deposits of the basin. Correlations between localities are based on conodont assemblages that can be correlated to global records. Paleomagnetic sampling was carried out at the meter-scale for magnetostratigraphic analysis, with duplicate specimens used for carbon isotope stratigraphy. Most samples record a magnetic overprint parallel to the modern geomagnetic direction, but this remanence was removed by laboratory heating to ca. 180°C. Approximately forty percent of samples retain a high temperature characteristic remanent magnetization (ChRM), typically carried by magnetite or hematite. Before using these ChRMs to assign a magnetic polarity, we filtered paleomagnetic directions to eliminate directions >45 degrees from the Fisherian mean direction, avoiding spurious directions and low latitude virtual geomagnetic poles (VGPs) from transitional field directions. The resulting magnetostratigraphic profiles were used to correlate different sections on the basis of matching reversal records, yielding a composite record of the Middle to Late Devonian geomagnetic reversal record. We recognized seventeen major

  19. Calibration of an analyzing magnet using the 12C(d, p0)13C nuclear reaction with a thick carbon target

    NASA Astrophysics Data System (ADS)

    Andrade, E.; Canto, C. E.; Rocha, M. F.

    2017-09-01

    The absolute energy of an ion beam produced by an accelerator is usually determined by an electrostatic or magnetic analyzer, which in turn must be calibrated. Various methods for accelerator energy calibration are extensively reported in the literature, like nuclear reaction resonances, neutron threshold, and time of flight, among others. This work reports on a simple method to calibrate the magnet associated to a vertical 5.5 MV Van de Graaff accelerator. The method is based on bombarding with deuteron beams a thick carbon target and measuring with a surface barrier detector the particle energy spectra produced. The analyzer magnetic field is measured for each spectrum and the beam energy is deduced by the best fit of the simulation of the spectrum with the SIMNRA code that includes 12C(d,p0)13C nuclear cross sections.

  20. Paleogeographic variations of pedogenic carbonate delta13C values from Koobi Fora, Kenya: implications for floral compositions of Plio-Pleistocene hominin environments.

    PubMed

    Quinn, Rhonda L; Lepre, Christopher J; Wright, James D; Feibel, Craig S

    2007-11-01

    Plio-Pleistocene East African grassland expansion and faunal macroevolution, including that of our own lineage, are attributed to global climate change. To further understand environmental factors of early hominin evolution, we reconstruct the paleogeographic distribution of vegetation (C(3)-C(4) pathways) by stable carbon isotope (delta(13)C) analysis of pedogenic carbonates from the Plio-Pleistocene Koobi Fora region, northeast Lake Turkana Basin, Kenya. We analyzed 202 nodules (530 measurements) from ten paleontological/archaeological collecting areas spanning environments over a 50-km(2) area. We compared results across subregions in evolving fluviolacustrine depositional environments in the Koobi Fora Formation from 2.0-1.5 Ma, a stratigraphic interval that temporally brackets grassland ascendancy in East Africa. Significant differences in delta(13)C values between subregions are explained by paleogeographic controls on floral composition and distribution. Our results indicate grassland expansion between 2.0 and 1.75 Ma, coincident with major shifts in basin-wide sedimentation and hydrology. Hypotheses may be correct in linking Plio-Pleistocene hominin evolution to environmental changes from global climate; however, based on our results, we interpret complexity from proximate forces that mitigated basin evolution. An approximately 2.5 Ma tectonic event in southern Ethiopia and northern Kenya exerted strong effects on paleography in the Turkana Basin from 2.0-1.5 Ma, contributing to the shift from a closed, lacustrine basin to one dominated by open, fluvial conditions. We propose basin transformation decreased residence time for Omo River water and expanded subaerial floodplain landscapes, ultimately leading to reduced proportions of wooded floras and the establishment of habitats suitable for grassland communities.

  1. Intraseasonal carbon sequestration and allocation in larch trees growing on permafrost in Siberia after (13)C labeling (two seasons of 2013-2014 observation).

    PubMed

    Masyagina, Oxana; Prokushkin, Anatoly; Kirdyanov, Alexander; Artyukhov, Aleksey; Udalova, Tatiana; Senchenkov, Sergey; Rublev, Aleksey

    2016-12-01

    This research is an attempt to study seasonal translocation patterns of photoassimilated carbon within trees of one of the high latitudes widespread deciduous conifer species Larix gmelinii (Rupr. Rupr). For this purpose, we applied whole-tree labeling by (13)CO2, which is a powerful and effective tool for tracing newly developed assimilates translocation to tissues and organs of a tree. Experimental plot has been established in a mature 105-year-old larch stand located within the continuous permafrost area near Tura settlement (Central Siberia, 64°17'13″N, 100°11'55″E, 148 m a.s.l.). Measurements of seasonal photosynthetic activity and foliage parameters (i.e., leaf length, area, biomass, etc.), and sampling were arranged from early growing season (June 8, 2013; May 14, 2014) until yellowing and senescence of needles (September 17, 2013; September 14, 2014). Labeling by (13)C of the tree branch (June 2013, for 3 branch replicates in 3 different trees) and the whole tree was conducted at early (June 2014), middle (July 2014), and late (August 2013) phase of growing season (for different trees in 3 replicates each time) by three pulses [(CO2)max = 3000-4000 ppmv, (13)CO2 (30 % v/v)]. We found at least two different patterns of carbon translocation associated with larch CO2 assimilation depending on needle phenology. In early period of growing season (June), (13)C appearing in newly developed needles is a result of remobilized storage material use for growth purposes. Then approximately at the end of June, growth processes is switching to storage processes lasting to the end of growing season.

  2. Carbon isotope (δ13C) excursions suggest times of major methane release during the last 14 kyr in Fram Strait, the deep-water gateway to the Arctic

    NASA Astrophysics Data System (ADS)

    Consolaro, C.; Rasmussen, T. L.; Panieri, G.; Mienert, J.; Bünz, S.; Sztybor, K.

    2015-04-01

    We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as -4.37‰ in CIE I, correlating with the Bølling-Allerød interstadials, and as low as -3.41‰ in CIE II, correlating with the early Holocene. In the Bølling-Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as -2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.

  3. Carbon Flux Analysis by 13C Nuclear Magnetic Resonance To Determine the Effect of CO2 on Anaerobic Succinate Production by Corynebacterium glutamicum

    PubMed Central

    Radoš, Dušica; Turner, David L.; Fonseca, Luís L.; Carvalho, Ana Lúcia; Blombach, Bastian; Eikmanns, Bernhard J.; Neves, Ana Rute

    2014-01-01

    Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase in acetate, both at the expense of l-lactate production; moreover, dihydroxyacetone formation was abolished. The redistribution of carbon fluxes in response to CO2 was estimated by using 13C-labeled glucose and 13C nuclear magnetic resonance (NMR) analysis of the labeling patterns in end products. The flux analysis showed that 97% of succinate was produced via the reductive part of the tricarboxylic acid cycle, with the low activity of the oxidative branch being sufficient to provide the reducing equivalents needed for the redox balance. The flux via the pentose phosphate pathway was low (∼5%) regardless of the presence or absence of CO2. Moreover, there was significant channeling of carbon to storage compounds (glycogen and trehalose) and concomitant catabolism of these reserves. The intracellular and extracellular pools of lactate and succinate were measured by in vivo NMR, and the stoichiometry (H+:organic acid) of the respective exporters was calculated. This study shows that it is feasible to take advantage of natural cellular regulation mechanisms to obtain high yields of succinate with C. glutamicum without genetic manipulation. PMID:24610842

  4. Carbon flux analysis by 13C nuclear magnetic resonance to determine the effect of CO2 on anaerobic succinate production by Corynebacterium glutamicum.

    PubMed

    Radoš, Dušica; Turner, David L; Fonseca, Luís L; Carvalho, Ana Lúcia; Blombach, Bastian; Eikmanns, Bernhard J; Neves, Ana Rute; Santos, Helena

    2014-05-01

    Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase in acetate, both at the expense of l-lactate production; moreover, dihydroxyacetone formation was abolished. The redistribution of carbon fluxes in response to CO2 was estimated by using (13)C-labeled glucose and (13)C nuclear magnetic resonance (NMR) analysis of the labeling patterns in end products. The flux analysis showed that 97% of succinate was produced via the reductive part of the tricarboxylic acid cycle, with the low activity of the oxidative branch being sufficient to provide the reducing equivalents needed for the redox balance. The flux via the pentose phosphate pathway was low (~5%) regardless of the presence or absence of CO2. Moreover, there was significant channeling of carbon to storage compounds (glycogen and trehalose) and concomitant catabolism of these reserves. The intracellular and extracellular pools of lactate and succinate were measured by in vivo NMR, and the stoichiometry (H(+):organic acid) of the respective exporters was calculated. This study shows that it is feasible to take advantage of natural cellular regulation mechanisms to obtain high yields of succinate with C. glutamicum without genetic manipulation.

  5. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    USGS Publications Warehouse

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  6. An improved 13C-tracer method for the study of lignin structure and reactions : differential 13C-NMR

    Treesearch

    Noritsugu Terashima; Dmitry Evtuguin; Carlos Pascoal Neto; Jim Parkas; Magnus Paulsson; Ulla Westermark; Sally Ralph; John Ralph

    2003-01-01

    The technique of selective 13C-enrichment of specific carbons in lignin combined with 13C-NMR differential spectrometry between spectra of 13C-enriched and unenriched lignins (Ä13C-NMR) provides definitive information on the structure of the lignin macromolecule. Improvements were made on, (1) specific 13C-enrichment of almost all carbons involved in inter-unit bonds...

  7. Impacts of high β-galactosidase expression on central metabolism of recombinant Pichia pastoris GS115 using glucose as sole carbon source via (13)C metabolic flux analysis.

    PubMed

    Nie, Yongsheng; Huang, Mingzhi; Lu, Junjie; Qian, Jiangchao; Lin, Weilu; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2014-10-10

    The yeast Pichia pastoris GS115 is a widely used microbial cell factory for the production of heterologous protein. In order to reveal the impacts of high heterologous protein expression on the central metabolism of Pichia pastoris GS115 using glucose as sole carbon source, we engineered a high β-galactosidase expression strain P. pastoris G1HL and a low expression control strain P. pastoris GHL through controlling the initiation strength of constitutive promoter pGAP. The carbon flux distributions in these two strains were quantified via (13)C metabolic flux analysis. Compared to the control strain, G1HL showed a lower growth rate, a higher flux through glycolysis pathway, a higher flux through pentose phosphate pathway, and a lower flux through by-products secretion pathway. The metabolic flux redistribution in G1HL was thought to compensate the increased redox cofactors and energy demands caused by the high protein expression. Although the fluxes through Krebs cycle in two engineered strains were almost the same, they were significantly lower than those in wild strain. The enhanced expression of β-galactosidase by glutamate supplementation demonstrated the potential of P. pastoris GS115 to catabolize more carbon through the Krebs cycle for even higher protein expression. In conclusion, our work indicates that P. pastoris GS115 can readjusts the central metabolism for higher heterologous protein expression and provides strategies for strain development or process optimization for enhancing production of heterologous protein.

  8. The spatial variability of organic carbon concentrations, C/N ratios and δ13C in surface sediments of two high Arctic fjords (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Koziorowska, Katarzyna; Kuliński, Karol; Pempkowiak, Janusz

    2015-04-01

    The Arctic Ocean, and especially its shelf, is considered to be an important region for the global carbon cycle. This is due to the high, but concentrated in a short time, primary production, specific thermohaline circulation and physicochemical conditions of sea water. It was estimated that the Arctic shelf seas are responsible for 7-11% of total carbon dioxide uptake by the oceans. Additionally, the Arctic Ocean is considered to be one of the youngest marine ecosystems in the world. This results in less trophic links in the food web and higher efficiency of organic matter burial in sediments than it is observed in the marine ecosystems of lower latitudes. The main aim of this study was to estimate the spatial variability of organic carbon (OC) concentrations, C/N ratios and δ13C in surface sediments from two high Arctic fiords: Hornsund and Adventfjorden. Hornsund is a southernmost fiord on the western coast of Spitsbergen. It is a medium size fiord with a complex coastline including numerous bays and fourteen tidewater glaciers entering directly the fjord. Adventfjorden belongs to the largest fjord system of the west Spitsbergen - Isfjorden. The innermost part of Adventfjorden is composed of a tidal flat formed at the mouth of two braided rivers (the Adventelva and the Longyearelva) feeded by meltwater from glaciers. Both fjords are under influence of different water masses. The whole Isfjorden is affected by warm and saline Atlantic water from the West Spitsbergen Current (WSC). In Hornsund the influence of WSC is less pronounced at the expense of strong pressure from cold and less saline waters of coastal Sørkapp Current coming from the northeastern Barents Sea. Surface sediments were sampled at four locations in each fiord along the fjords' axes starting from the tidal flat in Adventfjorden and the vicinity of Hornbree glacier in Hornsund. The OC concentrations in Hornsund were much lower (from 1.6% to 1.8%) than those in Adventfjorden (from 2.4% to 5

  9. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  10. Climatic Control on Plant and Soil δ13C along an Altitudinal Transect of Lushan Mountain in Subtropical China: Characteristics and Interpretation of Soil Carbon Dynamics

    PubMed Central

    Du, Baoming; Liu, Chunjiang; Kang, Hongzhang; Zhu, Penghua; Yin, Shan; Shen, Guangrong; Hou, Jingli; Ilvesniemi, Hannu

    2014-01-01

    Decreasing temperature and increasing precipitation along altitude gradients are typical mountain climate in subtropical China. In such a climate regime, identifying the patterns of the C stable isotope composition (δ13C) in plants and soils and their relations to the context of climate change is essential. In this study, the patterns of δ13C variation were investigated for tree leaves, litters, and soils in the natural secondary forests at four altitudes (219, 405, 780, and 1268 m a.s.l.) in Lushan Mountain, central subtropical China. For the dominant trees, both leaf and leaf-litter δ13C decreased as altitude increased from low to high altitude, whereas surface soil δ13C increased. The lower leaf δ13C at high altitudes was associated with the high moisture-related discrimination, while the high soil δ13C is attributed to the low temperature-induced decay. At each altitude, soil δ13C became enriched with soil depth. Soil δ13C increased with soil C concentrations and altitude, but decreased with soil depth. A negative relationship was also found between O-alkyl C and δ13C in litter and soil, whereas a positive relationship was observed between aromatic C and δ13C. Lower temperature and higher moisture at high altitudes are the predominant control factors of δ13C variation in plants and soils. These results help understand C dynamics in the context of global warming. PMID:24466099

  11. Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Samanta, Saumik; Dalai, Tarun K.; Pattanaik, Jitendra K.; Rai, Santosh K.; Mazumdar, Aninda

    2015-09-01

    In this study, we present comprehensive data on dissolved Ca, dissolved inorganic carbon (DIC) and its carbon isotope composition (δ13CDIC) of (i) the Ganga (Hooghly) River estuary water sampled during six seasons of contrasting water discharge over 2 years (2012 and 2013), (ii) shallow groundwater from areas adjacent to the estuary and (iii) industrial effluent water and urban wastewater draining into the estuary. Mass balance calculations indicate that processes other than the conservative mixing of seawater and river water are needed to explain the measured DIC and δ13CDIC. Results of mixing calculations in conjunction with the estimated undersaturated levels of dissolved O2 suggest that biological respiration and organic carbon degradation dominate over biological production in the estuary. An important outcome of this study is that a significant amount of DIC and dissolved Ca is produced within the estuary at salinity ⩾10, particularly during the monsoon period. Based on consideration of mass balance and a strong positive correlation observed between the "excess" DIC and "excess" Ca, we contend that the dominant source of DIC generated within the estuary is carbonate dissolution that is inferred to be operating in conjunction with degradation of organic carbon. Calculations show that groundwater cannot account for the observed "excess" Ca in the high salinity zone. Estimated DIC contributions from anthropogenic activity are minor, and they constitute ca. 2-3% of the river water DIC concentrations. The estimated annual DIC flux from the estuary to the Bay of Bengal is ca. (3-4) × 1012 g, of which ca. 40-50% is generated within the estuary. The monsoon periods account for the majority (ca. 70%) of the annual DIC generation in the estuary. The annual DIC flux from the Hooghly estuary accounts for ca. 1% of the global river DIC flux to the oceans. This is disproportionately higher than the water contribution from the Hooghly River to the oceans, which

  12. Using dual carbon isotopes, 13C and 14C, to resolve the origin, mixing and alteration of major carbon pools in shallow-water CO2 vents (Kueishantao hydrothermal field, offshore Taiwan)

    NASA Astrophysics Data System (ADS)

    Wang, Shing-Lin; Lin, Yu-Shih; Burr, George; Wang, Chau-Chang

    2017-04-01

    Submarine hydrothermal vents at convergent boundaries tend to emit CO2-rich fluids due to the subduction of marine sediment. In the shallow-water hydrothermal field, the carbon dioxide gas bubbles can reach to the surface seawater and may alter the surface seawater chemistry and the planktonic microbial community. We use duel carbon isotopes, 13C and 14C, to evaluate the effect of additional CO2 input on the major carbon pools in ambient seawater of hydrothermal vents. Radiocarbon (14C) is undetectable in hydrothermal CO2 (Δ14C ˜-1000‰), so this "radiocarbon-dead" CO2 can be used as an end-member to constrain the carbon sources in the hydrothermal field. Here we report δ13C and Δ14C values of CO2(g), dissolved inorganic carbon (DIC) and particulate organic carbon (POC) within and above two vents, yellow vent (YV) and white vent (WV), in the Kueishantao shallow-water hydrothermal field, northeastern offshore Taiwan. The results show that the δ13C value of vent CO2 gas is around -6‰ within the range of mantle source. DIC was 13C-depleted (around -9‰) than CO2 gas and POC were more 13C-depleted in YV (-25.7‰) and in WV (-22.4‰). The Δ14C values of vent CO2 are slightly higher than -1000 ‰ with -949.2±16.0 ‰ in YV (Temp. = 116°C) and -890.7±7.6‰ in WV (Temp. = 58°C). It suggests the radiocarbon composition is more than 90% radiocarbon-dead carbon mixed with less than 10% modern carbon. Our result clearly indicates the main component in vent CO2 gas is the mantle-derived carbon and it is supported by helium isotopic compositions (YV, 7.5±0.1 Ra; WV, 7.1±0.2 Ra). We expect the Δ14C values of DIC and POC above the two vents will also reflect the mantle-derive signal and it will also reveal how much the carbon is emitted from hydrothermal vents and exchanged within these major carbon pools in the ambient seawater.

  13. Impact of carbon metabolism on 13C signatures of cyanobacteria and green non-sulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA).

    PubMed

    van der Meer, Marcel T J; Schouten, Stefan; Damsté, Jaap S Sinninghe; Ward, David M

    2007-02-01

    Alkaline siliceous hot spring microbial mats in Yellowstone National Park are composed of two dominant phototropic groups, cyanobacteria and green non-sulfur-like bacteria (GNSLB). While cyanobacteria are thought to cross-feed low-molecular-weight organic compounds to support photoheterotrophic metabolism in GNSLB, it is unclear how this could lead to the heavier stable carbon isotopic signatures in GNSLB lipids compared with cyanobacterial lipids found in previous studies. The two groups of phototrophs were separated using percoll density gradient centrifugation and subsequent lipid and stable carbon isotopic analysis revealed that we obtained fractions with a approximately 60-fold enrichment in cyanobacterial and an approximately twofold enrichment in GNSLB biomass, respectively, compared with the mat itself. This technique was used to study the diel cycling and 13C content of the glucose pools in and the uptake of 13C-bicarbonate by the cyanobacteria and GNSLB, as well as the transfer of incorporated 13C from cyanobacteria to GNSLB. The results show that cyanobacteria have the highest bicarbonate uptake rates and accumulate glucose during the afternoon in full light conditions. In contrast, GNSLB have relatively higher bicarbonate uptake rates compared with cyanobacteria in the morning at low light levels. During the night GNSLB take up carbon that is likely derived through fermentation of cyanobacterial glucose enriched in 13C. The assimilation of 13C-enriched cyanobacterial carbon may thus lead to enriched 13C-contents of GNSLB cell components.

  14. Application of a methane carbon isotope analyzer for the investigation of δ13C of methane emission measured by the automatic chamber method in an Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Mastepanov, Mikhail; Christensen, Torben

    2014-05-01

    Methane emissions have been monitored by an automatic chamber method in Zackenberg valley, NE Greenland, since 2006 as a part of Greenland Ecosystem Monitoring (GEM) program. During most of the seasons the measurements were carried out from the time of snow melt (June-July) until freezing of the active layer (October-November). Several years of data, obtained by the same method, instrumentation and at exactly the same site, provided a unique opportunity for the analysis of interannual methane flux patterns and factors affecting their temporal variability. The start of the growing season emissions was found to be closely related to a date of snow melt at the site. Despite a large between year variability of this date (sometimes more than a month), methane emission started within a few days after, and was increasing for the next about 30 days. After this peak of emission, it slowly decreased and stayed more or less constant or slightly decreasing during the rest of the growing season (Mastepanov et al., Biogeosciences, 2013). During the soil freezing, a second peak of methane emission was found (Mastepanov et al., Nature, 2008); its amplitude varied a lot between the years, from almost undetectable to comparable with total growing season emissions. Analysis of the multiyear emission patterns (Mastepanov et al., Biogeosciences, 2013) led to hypotheses of different sources for the spring, summer and autumn methane emissions, and multiyear cycles of accumulation and release of these components to the atmosphere. For the further investigation of this it was decided to complement the monitoring system with a methane carbon isotope analyzer (Los Gatos Research, USA). The instrument was installed during 2013 field season and was successfully operating until the end of the measurement campaign (27 October). Detecting both 12C-CH4 and 13C-CH4 concentrations in real time (0.5 Hz) during automatic chamber closure (15 min), the instrument was providing data for determination of

  15. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

  16. Carbon-rich presolar grains from massive stars. Subsolar 12 C/ 13 C and 14 N/ 15 N ratios and the mystery of 15 N

    DOE PAGES

    Pignatari, M.; Zinner, E.; Hoppe, P.; ...

    2015-07-30

    We compared carbon-rich grains with isotopic anomalies to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. Furthermore, we present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. All of the explosion energies and H concentrations aremore » considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.« less

  17. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  18. The Precise Radio Observation of the 13C Isotopic Fractionation for Carbon Chain Molecule HC3N in the Low-Mass Star Forming Region L1527

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2016-06-01

    We observed the three 13C isotopic species of HC3N with the high signal-to-noise ratios in L1527 using Green Bank 100 m telescope and Nobeyama 45 m telescope to explore the production scheme of HC3N, where L1527 is the low-mass star forming region in the phase of a warm carbon chain chemistry region. The spectral lines of the J = 5--4, 9--8, 10--9, and 12--11 transitions in the 44-109 GHz region were used to measure isotopic ratios. The abundance of HCCCN was determined from the line intensities of the two weak hyperfine components of the J = 5-4 transition. The isotopic ratios were precisely determined to be 1.00 : 1.01 : 1.35 : 86.4 for [H13CCCN] : [HC13CCN] : [HCC13CN] : [HCCCN]. It was found that the abundance of H13CCCN is equal to that of HC13CCN, and it was implied that HC3N is mainly formed by the reaction schemes via C2H2 and C2H2+ in L1527. This would suggest a universality of dicarbide chemistry producing HC3N irrespective of evolutional phases from a starless dark cloud to a warm carbon chain chemistry region. Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2008, ApJ, 672, 371 Takano, S., Masuda, A., Hirahara, Y., et al. 1998, A&A, 329, 1156

  19. Controls on the δ 13C of dissolved inorganic carbon in marine pore waters: An integrated case study of isotope exchange during syndepositional recrystallization of biogenic carbonate sediments (South Florida Platform, USA)

    NASA Astrophysics Data System (ADS)

    Walter, Lynn M.; Ku, Timothy C. W.; Muehlenbachs, Karlis; Patterson, William P.; Bonnell, Linda

    2007-06-01

    The carbon isotope systematics of marine carbonates, organic matter and dissolved inorganic carbon (DIC) play a critical role in quantifying carbonate dissolution fluxes from modern deep-ocean sediments to paleoocean-atmospheric modeling. However, there is a growing body of evidence that C mass and isotope balances in marine pore waters appear incompatible, suggesting that some processes other than mass transport, carbonate dissolution, and organic matter decomposition have significantly increased the value of δ 13C (DIC). We present a comprehensive data set of pore water and sediment geochemistries in biogenic carbonates from well-characterized depositional environments of the South Florida platform. Pore water elemental and δ 13C (DIC) values are integrated with δ 13C values of carbon sources (seawater, organic and inorganic carbon), sediment mixing rates ( 210Pb profiles), microbial sulfate reduction rates (SRR) (radiotracer 35SO 42-), and incubation experiments spiked with low δ 13C (DIC) to estimate the rate and extent of C isotope exchange. Together, these data indicate that biogenic carbonates undergo extensive syndepositional recrystallization at rates comparable to net dissolution rates, permitting significant exchange between isotopically depleted organic C and isotopically enriched inorganic C pools. Significant amounts of net carbonate dissolution are common in the pore waters of these low-Fe sediments, as manifested by Ca 2+/Cl - ratios increased by up to 25% relative to overlying seawater. Despite rapid microbial SRR, degrees of pore water SO 42- reduction usually are maintained below 5% by H 2S oxidation, the main acid source for dissolution. These processes increase pore water DIC concentrations by more than 6 mM, over a 5-fold increase relative to overlying seawater values. Pore water δ 13C (DIC) values are usually greater than -5‰, and sometimes as high as +2‰, despite decomposition of organic matter with low δ 13C values (-9‰ to -15

  20. Alkylation of 2,4-(1H,3H)-quinazolinediones with dialkyl carbonates under microwave irradiations.

    PubMed

    Rivero, Ignacio Alfredo; Guerrero, Leticia; Espinoza, Karla Alejandra; Meza, Martha Cecilia; Rodríguez, Jesús Ramón

    2009-05-20

    Alkylation is a very important chemical reaction which modifies the biological properties of drugs. Quinazolinedione derivatives are of considerable interest due to their wide array of pharmacological properties.We now report application of a practical alkylation procedure to several quinazolinediones, including pelanserine (5f), which shows antihypertensive properties, 1-methyl-3-(2'-phenylethyl)-1H,3H-quinazoline-2,4-dione (1ab) and 1-methyl-3-[2'-(4'-methoxyphenyl)ethyl]-lH,3H-quinazoline-2,4-dione (1ae), which had been isolated from natural sources. The alkylation was optimized using dimethyl and diethyl carbonates under microwave irradiations.

  1. Organic matter turnover in reservoirs of the Harz Mountains (Germany): evidence from 13C/12C changes in dissolved inorganic carbon

    NASA Astrophysics Data System (ADS)

    Barth, Johannes A. C.; Nenning, Franziska; van Geldern, Robert; Mader, Michael; Friese, Kurt

    2014-05-01

    photosynthetic uptake of DIC could also be observed in surface waters. In addition, near-bottom waters in the reservoirs showed first signs of methane formation that were indicated by enrichment in 13C of the DIC.

  2. Complementary Constraints from Carbon (13C) and Nitrogen (15N) Isotopes on the Efficiency of the Glacial Ocean's Soft-Tissue Biological Pump

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Somes, C. J.

    2016-12-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which mimicks iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) than the pre-industrial control. Dissolved oxygen in the thermocline increase, which reduces water column denitrification and nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3. This simulation already fits observed carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the fit. Modest increases in μmax result in higher subpolar δ15NNO3 due to enhanced local nutrient utilization, and better agreement with reconstructions. Large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models with modest increases in μmax reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg. These results are consistent with the idea that the soft-tissue pump was more efficient during the LGM. Both circulation and biological nutrient utilization contribute. However, these conclusions are preliminary given our idealized experiments, which do not consider changes in benthic denitrification and spatially inhomogenous changes in aeolian iron fluxes. The analysis illustrates interactions

  3. A study of the abundance and {sup 13}C/{sup 12}C ratio of atmospheric carbon dioxide and oceanic carbon in relation to the global carbon cycle. Final technical report, February 15, 1990--July 31, 1995

    SciTech Connect

    Keeling, C.D.

    1995-12-31

    Knowledge can be gained about the fluxes and storage of carbon in natural systems and their relation to climate by detecting temporal and spatial patterns in atmospheric CO{sub 2}. When patterns in its {sup 13}C/{sup 12}C isotopic ratio are included in the analysis, there is also a basis for distinguishing organic and inorganic processes. The authors systematically measured the concentration and {sup 13}C/{sup 12}C ratio of atmospheric CO{sub 2} to produce time series data essential to reveal these temporal and spatial patterns. To pursue the significance of these patterns further, the result also involved measurements of inorganic carbon in sea water and of CO{sub 2} in air near growing land plants. The study was coordinated with a study of the same title concurrently funded by the National Science Foundation (NSF). The study called for continued atmospheric measurements at an array of ten stations from the Arctic Basin to the South Pole. Air was collected in flasks brought back to the laboratory for analysis, except at Mauna Loa. Observatory, Hawaii, where continuous measurements were also carried out.

  4. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    PubMed

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples.

  5. The nature of soil organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy.

    PubMed

    Ahmad, R; Kookana, R S; Alston, A M; Skjemstad, J O

    2001-03-01

    The structural composition of soil organic matter (SOM) was determined in twenty-seven soils with different vegetation from several ecological zones of Australia and Pakistan using solid-state CPMAS 13C NMR. The SOM was characterized using carbon types derived from the NMR spectra. Relationships were determined between Koc (sorption per unit organic C) of carbaryl(1-naphthylmethylcarbamate) and phosalone (S-6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O,O-diethyl phosphorodithioate) and the nature of organic matter in the soils. Substantial variations were revealed in the structural composition of organic matter in the soils studied. The variations in Koc values of the pesticides observed for the soils could be explained only when variations in the aromatic components of SOM were taken into consideration. The highly significant positive correlations of aromaticity of SOM and Koc values of carbaryl and phosalone revealed that the aromatic component of SOM is a good predictor of a soil's ability to bind such nonionic pesticides.

  6. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes.

    PubMed

    Zurek, Eva; Pickard, Chris J; Walczak, Brian; Autschbach, Jochen

    2006-11-02

    NMR chemical shifts were calculated for semiconducting (n,0) single-walled carbon nanotubes (SWNTs) with n ranging from 7 to 17. Infinite isolated SWNTs were calculated using a gauge-including projector-augmented plane-wave (GIPAW) approach with periodic boundary conditions and density functional theory (DFT). In order to minimize intertube interactions in the GIPAW computations, an intertube distance of 8 A was chosen. For the infinite tubes, we found a chemical shift range of over 20 ppm for the systems considered here. The SWNT family with lambda = mod(n, 3) = 0 has much smaller chemical shifts compared to the other two families with lambda = 1 and lambda = 2. For all three families, the chemical shifts decrease roughly inversely proportional to the tube's diameter. The results were compared to calculations of finite capped SWNT fragments using a gauge-including atomic orbital (GIAO) basis. Direct comparison of the two types of calculations could be made if benzene was used as the internal (computational) reference. The NMR chemical shifts of finite SWNTs were found to converge very slowly, if at all, to the infinite limit, indicating that capping has a strong effect (at least for the (9,0) tubes) on the calculated properties. Our results suggest that (13)C NMR has the potential for becoming a useful tool in characterizing SWNT samples.

  7. In situ assessment of the velocity of carbon transfer by tracing 13 C in trunk CO2 efflux after pulse labelling: variations among tree species and seasons.

    PubMed

    Dannoura, Masako; Maillard, Pascale; Fresneau, Chantal; Plain, Caroline; Berveiller, Daniel; Gerant, Dominique; Chipeaux, Christophe; Bosc, Alexandre; Ngao, Jérôme; Damesin, Claire; Loustau, Denis; Epron, Daniel

    2011-04-01

    Phloem is the main pathway for transferring photosynthates belowground. In situ(13) C pulse labelling of trees 8-10 m tall was conducted in the field on 10 beech (Fagus sylvatica) trees, six sessile oak (Quercus petraea) trees and 10 maritime pine (Pinus pinaster) trees throughout the growing season. Respired (13) CO2 from trunks was tracked at different heights using tunable diode laser absorption spectrometry to determine time lags and the velocity of carbon transfer (V). The isotope composition of phloem extracts was measured on several occasions after labelling and used to estimate the rate constant of phloem sap outflux (kP ). Pulse labelling together with high-frequency measurement of the isotope composition of trunk CO2 efflux is a promising tool for studying phloem transport in the field. Seasonal variability in V was predicted in pine and oak by bivariate linear regressions with air temperature and soil water content. V differed among the three species consistently with known differences in phloem anatomy between broadleaf and coniferous trees. V increased with tree diameter in oak and beech, reflecting a nonlinear increase in volumetric flow with increasing bark cross-sectional area, which suggests changes in allocation pattern with tree diameter in broadleaf species. Discrepancies between V and kP indicate vertical changes in functional phloem properties.

  8. Linkages Between Upwelling and Shell Characteristics of Mytilus californianus: Morphology and Stable Isotope (δ13C, δ18O) Signatures of a Carbonate Archive from the California Current

    NASA Astrophysics Data System (ADS)

    Hosfelt, J. D.; Hill, T. M.; Russell, A. D.; Bean, J. R.; Sanford, E.; Gaylord, B.

    2014-12-01

    Many calcareous organisms are known to record the ambient environmental conditions in which they grow, and their calcium carbonate skeletons are often valuable archives of climate records. Mytilus californianus, a widely distributed species of intertidal mussel, experiences a spatial mosaic of oceanographic conditions as it grows within the California Current System. Periodic episodes of upwelling bring high-CO2 waters to the surface, during which California coastal waters are similar to projected conditions and act as a natural analogue to future ocean acidification. To examine the link between upwelling and shell characteristics of M. californianus, we analyzed the morphology and stable isotope (δ13C, δ18O) signatures of mussel specimens collected live from seven study sites within the California Current System. Morphometric analyses utilized a combination of elliptic Fourier analysis and shell thickness measurements to determine the influence of low pH waters on the growth morphology and ecological fitness of M. californianus. These geochemical and morphological analyses were compared with concurrent high-resolution environmental (T, S, pH, TA, DIC) records from these seven study sites from 2010-2013. With appropriate calibration, new archives from modern M. californianus shells could provide a valuable tool to enable environmental reconstructions within the California Current System. These archives could in turn be used to predict the future consequences of continuing ocean acidification, as well as reconstruct past (archeological) conditions.

  9. Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C NMR Spectroscop

    SciTech Connect

    Kwak, Ja Hun; Hu, Jian Z.; Hoyt, David W.; Sears, Jesse A.; Wang, Chong M.; Rosso, Kevin M.; Felmy, Andrew R.

    2010-03-11

    Ex situ solid state NMR was used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration (GCS) using a model silicate mineral forsterite (Mg2SiO4)+supercriticalCO2 with and without H2O. Run conditions were 80 C and 96 atm. 29Si NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce dissolved Mg2+, and mono- and oligomeric hydroxylated silica species. Surface hydrolysis products contain only Q0 (Si(OH)4) and Q1(Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to less than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. 29Si NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. 13C MAS NMR identified a possible reaction intermediate as (MgCO3)4-Mg(OH)2-5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed.

  10. Interactions between Carbon and Nitrogen Metabolism in Fibrobacter succinogenes S85: a 1H and 13C Nuclear Magnetic Resonance and Enzymatic Study

    PubMed Central

    Matheron, Christelle; Delort, Anne-Marie; Gaudet, Genevieve; Liptaj, Tibor; Forano, Evelyne

    1999-01-01

    The effect of the presence of ammonia on [1-13C]glucose metabolism in the rumen fibrolytic bacterium Fibrobacter succinogenes S85 was studied by 13C and 1H nuclear magnetic resonance (NMR). Ammonia halved the level of glycogen storage and increased the rate of glucose conversion into acetate and succinate 2.2-fold and 1.4-fold, respectively, reducing the succinate-to-acetate ratio. The 13C enrichment of succinate and acetate was precisely quantified by 13C-filtered spin-echo difference 1H-NMR spectroscopy. The presence of ammonia did not modify the 13C enrichment of succinate C-2 (without ammonia, 20.8%, and with ammonia, 21.6%), indicating that the isotopic dilution of metabolites due to utilization of endogenous glycogen was not affected. In contrast, the presence of ammonia markedly decreased the 13C enrichment of acetate C-2 (from 40 to 31%), reflecting enhanced reversal of the succinate synthesis pathway. The reversal of glycolysis was unaffected by the presence of ammonia as shown by 13C-NMR analysis. Study of cell extracts showed that the main pathways of ammonia assimilation in F. succinogenes were glutamate dehydrogenase and alanine dehydrogenase. Glutamine synthetase activity was not detected. Glutamate dehydrogenase was active with both NAD and NADP as cofactors and was not repressed under ammonia limitation in the culture. Glutamate-pyruvate and glutamate-oxaloacetate transaminase activities were evidenced by spectrophotometry and 1H NMR. When cells were incubated in vivo with [1-13C]glucose, only 13C-labeled aspartate, glutamate, alanine, and valine were detected. Their labelings were consistent with the proposed amino acid synthesis pathway and with the reversal of the succinate synthesis pathway. PMID:10223984

  11. Interactions between carbon and nitrogen metabolism in Fibrobacter succinogenes S85: a 1H and 13C nuclear magnetic resonance and enzymatic study.

    PubMed

    Matheron, C; Delort, A M; Gaudet, G; Liptaj, T; Forano, E

    1999-05-01

    The effect of the presence of ammonia on [1-13C]glucose metabolism in the rumen fibrolytic bacterium Fibrobacter succinogenes S85 was studied by 13C and 1H nuclear magnetic resonance (NMR). Ammonia halved the level of glycogen storage and increased the rate of glucose conversion into acetate and succinate 2.2-fold and 1.4-fold, respectively, reducing the succinate-to-acetate ratio. The 13C enrichment of succinate and acetate was precisely quantified by 13C-filtered spin-echo difference 1H-NMR spectroscopy. The presence of ammonia did not modify the 13C enrichment of succinate C-2 (without ammonia, 20.8%, and with ammonia, 21.6%), indicating that the isotopic dilution of metabolites due to utilization of endogenous glycogen was not affected. In contrast, the presence of ammonia markedly decreased the 13C enrichment of acetate C-2 (from 40 to 31%), reflecting enhanced reversal of the succinate synthesis pathway. The reversal of glycolysis was unaffected by the presence of ammonia as shown by 13C-NMR analysis. Study of cell extracts showed that the main pathways of ammonia assimilation in F. succinogenes were glutamate dehydrogenase and alanine dehydrogenase. Glutamine synthetase activity was not detected. Glutamate dehydrogenase was active with both NAD and NADP as cofactors and was not repressed under ammonia limitation in the culture. Glutamate-pyruvate and glutamate-oxaloacetate transaminase activities were evidenced by spectrophotometry and 1H NMR. When cells were incubated in vivo with [1-13C]glucose, only 13C-labeled aspartate, glutamate, alanine, and valine were detected. Their labelings were consistent with the proposed amino acid synthesis pathway and with the reversal of the succinate synthesis pathway.

  12. Low-δ13C carbonates in the Miocene basalt of the northern margin of the North China Craton: Implications for deep carbon recycling

    NASA Astrophysics Data System (ADS)

    Zhang, Huiting; Liu, Yongsheng; Hu, Zhaochu; Zong, Keqing; Chen, Haihong; Chen, Chunfei

    2017-08-01

    Three types of carbonates have been found in the Miocene basalt in the Dongbahao area (Inner Mongolia), including wide veins and veinlets of carbonate in basalt and carbonates in peridotite xenoliths. Except for the dolomitic zonation in the basalt, all of the carbonates are calcite. Despite their different appearances, they share almost identical geochemical characteristics of low LILE (low large ion lithophile element), HFSE (high field strength element), and REE (rare earth elements) contents (ΣREE = 0.51-137 ppm); negative Ce anomalies; and low Ce/Pb ratios (0.51-74.5). Moreover, they show high δ18OSMOW values (20.95-22.61‰) and 87Sr/86Sr ratios (0.7087 ± 0.0003 (1σ, n = 17)). These characteristics indicate a sedimentary precursor for these carbonates. However, the occurrence and petrographic characteristics imply an igneous origin for the carbonates rather than a hypergene process. Further, the trace element compositions of the silicate melt and carbonate melt in the calcite-dolomite-silicate zonations fall on the same variation lines in the plots of Y-Ho, La-Yb, Li-Pb and Ba-Cu. It is suggested that these melts could have evolved from one magma system or could have been equilibrated. Given the partition coefficients of REEs and alkali elements (Cs, Rb, and K) between the carbonate melt and silicate melt, it can be inferred that these melts could have been formed from a primary H2O-Si-bearing Mg-Ca-carbonate melt by an immiscibility process at 1-3 GPa. Considering the southward subduction of the Paleo-Asian ocean along the northern margin of the North China Craton (NCC), these carbonate melts could have been derived from the melting of subducted sedimentary carbonate rocks. Interestingly, these carbonates have quite depleted carbon isotopic compositions (δ13CPDB = -8.23‰ to -11.76‰) but moderate δ18OSMOW values, implying coupled H2O-CO2 degassing during subduction and/or recycling to the Earth's surface. Low-δ13CPBD carbonates appearing at the

  13. Global ocean climatology of the 13C Suess effect and preindustrial δ13C

    NASA Astrophysics Data System (ADS)

    Eide, Marie; Olsen, Are; Ninnemann, Ulysses; Eldevik, Tor; Johannessen, Truls

    2017-04-01

    We present the first observationally based estimate of the full global ocean 13C Suess effect since preindustrial times. This was constructed by using Olsen and Ninnemann's [2010] back-calculation method to calculate the 13C Suess effect with data from 29 cruises spanning the world ocean. We find a strong 13C Suess effect in the upper 1000 m of all basins, with strongest decrease in the Subtropical Gyres of the Northern Hemisphere, where δ13C has decreased by more than 0.8‰ since the industrial revolution. At greater depths, a significant 13C Suess effect can only be detected in the northern parts of the North Atlantic Ocean. The magnitude of the 13C Suess effect is correlated with the concentration of anthropogenic carbon, but their relationship varying strongly between water masses, reflecting the degree to which source waters are equilibrated with the atmospheric 13C Suess effect before sinking. From the 13C Suess effect estimates, we have estimated the preindustrial δ13C (δ13CPI) along the 29 sections. Further, we developed regional multilinear regression equations, which were applied on the World Ocean Atlas data to construct the δ13CPI climatology, which reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values, and we find that in some regions in the high northern latitudes, the gradient in modern ocean δ13C is completely reversed compared to the preindustrial. Maximum δ13CPI, of up to 1.8‰, are found in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and Apparent Oxygen Utilization (AOU) than between δ13C and phosphate that

  14. A new mechanism of phosphoric acid digestion reaction and theoretical re-calibration on the carbonate 13C-18O clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Tang, M.; Liu, Y.

    2016-12-01

    The carbonate 13C-18O clumped isotope thermometry has been widely used for surface temperature systems. However, the existing D47-T relationships calibrated by different groups are incompatible, generating substantial confusions in the community. Here we propose a new molecular-level mechanism of the kinetic isotope effect (KIE) produced in the phosphoric acid digestion reaction of carbonates. We will show why the previous mechanism won't work and why this new one is reasonable, especially based on experimental evidences. This new mechanism, which suggests that there are three parallel pathways undergoing for the phosphoric acid digestion process, can explain well the discrepancies of the D47-T relationships obtained by different groups at slightly different experimental conditions (Fig.1). Based on the new mechanism and sophisticated quantum chemistry calculations, we show that the clumped isotope enrichments (i.e., Δ*47) can be significantly different from those provided by Guo et al. (2009) if considering the change of individual contributions of the three parallel pathways. Consequently, if we use these new Δ*47 values to plot the D47-T figure under the absolute reference frame (ARF), all the calibration lines conducted at 90°C (e.g., Dennis et al. (2011)) will be relocated. They can be much closer to those calibration lines conducted at 25°C than before in the low temperature range (Fig.1). In another word, there may not be much difference between these two groups of calibration lines. However, we obtain a slope very close to those conducted at 90°C but with distinct difference to that of Ghosh et al. (2006). Finally, we provide molecular-level explanations on the changes of calibration lines if the experiments are conducted under slightly different conditions. We show why the temperature of phosphoric acid digestion, the reaction time and the amount of sample can affect the position of calibration line but not the slope of it. This new mechanism not only

  15. Ab Initio Calculations of Possible γ-Gauche Effects in the 13C-NMR for Methine and Carbonyl Carbons in Precise Polyethylene Acrylic Acid Copolymers

    SciTech Connect

    Alam, Todd

    2013-07-29

    The impacts of local polymer chain conformations on the methine and carbonyl 13C-NMR chemical shifts for polyethylene acrylic acid p(E-AA) copolymers were predicted using ab initio methods. Using small molecular cluster models, the magnitude and sign of the γ-gauche torsional angle effect, along with the impact of local tetrahedral structure distortions near the carbonyl group, on the 13C-NMR chemical shifts were determined. These 13C-NMR chemical shift variations were compared to the experimental trends observed for precise p(E-AA) copolymers as a function acid group spacing and degree of zinc-neutralization in the corresponding p(E-AA) ionomers. These ab initio calculations address the future ability of 13C-NMR chemical shift variations to provide information about the local chain conformations in p(E-AA) copolymer materials.

  16. Poultry offal meal in chicken: traceability using the technique of carbon (13C/12C)- and nitrogen (15N/14N)-stable isotopes.

    PubMed

    Cruz, V C; Araújo, P C; Sartori, J R; Pezzato, A C; Denadai, J C; Polycarpo, G V; Zanetti, L H; Ducatti, C

    2012-02-01

    Studies on the detection of animal by-products in poultry meat are rare and practically nonexistent in chicken meat. With the development of the technique of stable isotopes for traceability purposes and the certification of broiler diet patterns, it has been necessary to know the behavior of the isotopic signature of different tissues in birds, in case of a potential replacement of a diet containing animal ingredients with a strictly vegetable one and vice versa. Thus, this study, carried out at the São Paulo State University, Botucatu Campus, Brazil, aimed to evaluate meat from the breast, thigh, drumstick, and wings to trace the presence of poultry offal meal (OM) in broiler feed using the analysis of stable isotopes of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) by mass spectrometry. In total, 720 one-d-old chicks were distributed into 6 groups: vegetable diet (VD) from 1 to 42 d; 8% poultry offal meal (OM) diet from 1 to 42 d; VD from 1 to 21 d and 8% OM diet from 22 to 42 d; VD from 1 to 35 d and 8% OM diet from 36 to 42 d; 8% OM diet from 1 to 21 d and VD from 22 to 42 d; and 8% OM diet from 1 to 35 d and VD from 36 to 42 d. Through the analysis of C and N, it is possible to trace the use of OM in broiler feeding when this ingredient is part of the feeding throughout the breeding phase or when it substitutes a strictly VD even up to 35 d. When an OM diet is substituted by a VD, the animal ingredient has to be part of the feeding for 21 d or longer to be detected by this method.

  17. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.

  18. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state 13C NMR and solution 31P NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    LIU, S. S.; Zhu, Y.; Meng, W.; Wu, F.

    2016-12-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state 13C NMR and solution 31P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.

  19. Microbial carbon cycling in oligotrophic regional aquifers near the Tono Uranium Mine, Japan as inferred from δ 13C and Δ 14C values of in situ phospholipid fatty acids and carbon sources

    NASA Astrophysics Data System (ADS)

    Mills, Christopher T.; Amano, Yuki; Slater, Gregory F.; Dias, Robert F.; Iwatsuki, Teruki; Mandernack, Kevin W.

    2010-07-01

    Microorganisms are ubiquitous in deep subsurface environments, but their role in the global carbon cycle is not well-understood. The natural abundance δ 13C and Δ 14C values of microbial membrane phospholipid fatty acids (PLFAs) were measured and used to assess the carbon sources of bacteria in sedimentary and granitic groundwaters sampled from three boreholes in the vicinity of the Tono Uranium Mine, Gifu, Japan. Sample storage experiments were performed and drill waters analyzed to characterize potential sources of microbial contamination. The most abundant PLFA structures in all waters sampled were 16:0, 16:1ω7 c, cy17:0, and 18:1ω7 c. A PLFA biomarker for type II methanotrophs, 18:1ω8 c, comprised 3% and 18% of total PLFAs in anoxic sedimentary and granitic waters, respectively, sampled from the KNA-6 borehole. The presence of this biomarker was unexpected given that type II methanotrophs are considered obligate aerobes. However, a bacterium that grows aerobically with CH 4 as the sole energy source and which also produces 56% of its total PLFAs as 18:1ω8 c was isolated from both waters, providing additional evidence for the presence of type II methanotrophs. The Δ 14C values determined for type II methanotroph PLFAs in the sedimentary (-861‰) and granite (-867‰) waters were very similar to the Δ 14C values of dissolved inorganic carbon (DIC) in each water (˜-850‰). This suggests that type II methanotrophs ultimately derive all their carbon from inorganic sources, whether directly from DIC and/or from CH 4 produced by the reduction of DIC. In contrast, δ 13C values of type II PLFAs in the sedimentary (-93‰) and granite (-60‰) waters indicate that these organisms use different carbon assimilation schemes in each environment despite very similar δ13C values (˜-95‰) for each water. The δ 13C PLFA values (-28‰ to -45‰) of non-methanotrophic bacteria in the KNA-6 LTL water do not clearly distinguish between heterotrophic and autotrophic

  20. In vivo proton observed carbon edited (POCE) (13) C magnetic resonance spectroscopy of the rat brain using a volumetric transmitter and receive-only surface coil on the proton channel.

    PubMed

    Kumaragamage, Chathura; Madularu, Dan; Mathieu, Axel P; De Feyter, Henk; Rajah, M Natasha; Near, Jamie

    2017-05-12

    In vivo carbon-13 ((13) C) MR spectroscopy (MRS) is capable of measuring energy metabolism and neuroenergetics, noninvasively in the brain. Indirect ((1) H-[(13) C]) MRS provides sensitivity benefits compared with direct (13) C methods, and normally includes a (1) H surface coil for both localization and signal reception. The aim was to develop a coil platform with homogenous B1+ and use short conventional pulses for short echo time proton observed carbon edited (POCE) MRS. A (1) H-[(13) C] MRS coil platform was designed with a volumetric resonator for (1) H transmit, and surface coils for (1) H reception and (13) C transmission. The Rx-only (1) H surface coil nullifies the requirement for a T/R switch before the (1) H preamplifier; the highpass filter and preamplifier can be placed proximal to the coil, thus minimizing sensitivity losses inherent with POCE-MRS systems described in the literature. The coil platform was evaluated with a PRESS-POCE sequence (TE = 12.6 ms) on a rat model. The coil provided excellent localization, uniform spin nutation, and sensitivity. (13) C labeling of Glu-H4 and Glx-H3 peaks, and the Glx-H2 peaks were observed approximately 13 and 21 min following the infusion of 1-(13) C glucose, respectively. A convenient and sensitive platform to study energy metabolism and neurotransmitter cycling is presented. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Organic Compounds in the C3H6O3 Family: Microwave Spectrum of cis-cis Dimethyl Carbonate

    NASA Astrophysics Data System (ADS)

    McGuire, B. A.; Widicus Weaver, S. L.; Lovas, F. J.; Plusquellic, D. F.; Blake, G. A.

    2011-05-01

    A number of recent spectroscopic and observational efforts have focused on simple sugars and sugar alcohols because of their importance in prebiotic astro- chemistry. The simplest sugar-related species, glycolaldehyde, has been detected in Sgr B2(N), as have its C2H4O2 structural isomers acetic acid and methyl formate. Additional studies of the C3-sugars with empirical formula C3H6O3, glyceraldehyde and dihydroxyacetone, resulted in no clear interstellar detection. Structural isomerism is extensive in interstellar clouds, and there is a high level of correlation between the relative energies of isomers and their relative abundances, with the lowest energy isomers detected in greatest abundance. The detected members of the C2H4O2 family, however, defy this trend, having relative abundances of (acetic acid):(glycolaldehyde):(methyl formate) of about 2:1:52, despite acetic acid being the lowest energy isomer. These puzzling abundance ratios and the lack of detection of the C3H6O3 sugars gives rise to the question: "Which is the most likely isomer in the C3H6O3 family to be detectable in inter- stellar clouds?" In an attempt to answer this question, we carried out geometry optimization calculations to determine the relative binding energies of the 13 members of the C3H6O3 family. Of the four lowest- energy isomers, only lactic acid [CH3CH(OH)COOH] and dimethyl carbonate [(CH3)2CO3] are commercially available, and lactic acid has been previously investigated spectroscopically. We have therefore conducted a laboratory study of dimethyl carbonate, measuring its rotational spectrum from 8.4 - 25.3 GHz using a Fourier-Transform microwave spectrometer, and from 227 - 350 GHz using a direct absorption spectrometer. We report on the theoretical calculations performed on the C3H6O3 family of isomers, the experimental studies of cis-cis dimethyl carbonate, and the implica- tions of these results for interstellar chemistry. The details of this work are also reported in Lovas et

  2. /sup 13/C NMR studies of methylene and methine carbons of substrate bound to a 280,000-dalton protein, porphobilinogen synthase

    SciTech Connect

    Jaffe, E.K.; Markham, G.D.

    1988-06-14

    /sup 13/C NMR has been used to observe the equilibrium complex of (5,5-/sup 2/H,5-/sup 13/C)-5-aminolevulinate ((5,5-/sup 2/H,5-/sup 13/C)ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. (5,5-/sup 2/H,5-/sup 13/C)ALA (chemical shift 46.9 ppm in D/sub 2/O) was prepared from (5-/sup 13/C)ALA through enolization in deuteriated neutral potassium phosphate buffer. In the PBG synthase reaction (5,5-/sup 2/H,5-/sup 13/C)ALA forms (2,11,11-/sup 2/H,2,11-/sup 13/C)PBG (chemical shifts 116.2 ppm for C/sub 2/ and 34.2 ppm for C/sub 11/ in D/sub 2/O). For the complex formed between (5,5-/sup 2/H,5-/sup 13/C)ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation but can form a Schiff base adduct, the chemical shift of 44.2 ppm (line width 92 Hz) identifies and imine structure as the predominant tautomeric form of the Schiff base. By comparison to model compounds, the stereochemistry of the imine has been deduced; however, the protonation state of the imine nitrogen remains unresolved. Reconstitution of the MMTS-modified enzyme-Schiff base complex with Zn(II) and 2-mercaptoethanol results in the holoenzyme-bound equilibrium complex; this complex contains predominantly enzyme-bound PBG, and spectra reveal two peaks from bound PBG and two from free PBG. For bound PBG, C/sub 2/ is -2.8 ppm from the free signal and C/sub 11/ is +2.6 ppm from the free signal; the line widths of the bound signals are 55 and 75 Hz, respectively. To aid in interpretation of these shifts, the /sup 13/C NMR chemical shifts of PBG were investigated as functions of pH and a variety of organic solvents. The observed shifts of bound PBG are not consistent with simple protonation/deprotonation of PBG nor with changes that can be duplicated by solvation by simple organic solvents.

  3. 13C/Palynological evidence of differential residence times of organic carbon prior to its sedimentation in East African Rift Lakes and peat bogs

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, Claude; Aucour, Anne-Marie; Bonnefille, Raymonde; Riollet, Guy; Vincens, Annie; Williamson, David

    Most terrestrial plants producing large amounts of organic matter in the East African Rift follow the Calvin (C3) photosynthetic pathway. Their end products have δ13C values of ca. -27 ± 2‰ (vs. PDB). On the contrary, most Cyperaceae (notably Cyperus papyrus and C. latifolius) are characterized by higher 13C contents ° 13C = -10.5 ± 1‰ ) in relation to their Hatch and Slack (C4) photosynthetic cycle. In consequence, δ13C values in total organic matter (TOM) from peat bog or lake cores essentially responded to the proportion of detritus from C4-Cyperaceae. Immediate evidence of the development or disappearance of Cyperaceae around lake margins or in peat bogs can be found in pollen assemblages. Lag times between pollen signals and correlative ° 13C shifts in TOM from cores are therefore indicative of the residence time of organic matter prior to its sedimentation. Delayed sedimentation of TOM will result in 14C anomalies which depend on several parameters, most of them being site specific as shown by examples from a peat bog in Burundi and from southern Lake Tanganyika. An independent assessment of the chronology by high resolution paleomagnetic correlations indicates a ca. 1.5 ka apparent 14C age of TOM in Lake Tanganyika at the Pleistocene-Holocene transition.

  4. Glacial- interglacial temperature change based on 13C18O carbonate bond with in fish bone otoliths from Red Sea sediments

    NASA Astrophysics Data System (ADS)

    Ghosh, P.; Eiler, J.; Feeney, R.

    2006-12-01

    Determining the past record of temperature and salinity of ocean surface waters is essential for understanding past changes in climate, such as those which occur across glacial-interglacial transitions. As a useful proxy, the clumped isotope of CO2 in carbonate (13C18O16O or ?47) from inorganic precipitation experiment has been shown to reflect surface temperature with high degree of confidence (Ghosh et al., 2006). The last glacial cycle was characterized by climate fluctuations, but the extent of any associated changes in global sea level (or, equivalently, ice volume) remains elusive. High stands of sea level can be reconstructed from dated fossil and isotopic analyses of foraminifera and terapods, and these data are complemented by a compilation of global sea-level estimates based on deep-sea oxygen isotope ratios. Salinity derived from the records of oxygen isotopes ratios, however, contains uncertainties due to lack of information about the sea surface temperature change. Here we used combination of clumped isotopes technique and oxygen isotope measurement from fish otoliths (Myctophiformes; lanternfishes) extracted from two piston cores (Ku et al., 1969) (CH-154 and CH-153) to understand the temperature evolution and salinity variation of Red Sea water (300-800m) during the last 70 k.y. We analyzed well preserved unaltered otoliths from 7 different stratigraphic horizons from sediment core CH-154. Our preliminary observation suggests ~20 degree Celsius differences in sea water temperatures between glacial and interglacial time. We showed that the region has experienced fluctuation in climatic and tectonic processes during glacial interglacial time and the otoliths developed within the fishes captured the information about temperature change and salinity variation. Our results indicate a drop in temperature and restricted exchange of water with the open ocean during glaciations. The Red Sea environment was also highly saline even during the interglacial event

  5. Comparative absorption of [13C]glucose and [13C]lactose by premature infants.

    PubMed

    Murray, R D; Boutton, T W; Klein, P D; Gilbert, M; Paule, C L; MacLean, W C

    1990-01-01

    Oxidation of orally administered [13C]glucose and [13C]lactose and fecal recovery of malabsorbed substrates were determined in two groups of premature infants. Eighteen studies were performed with six infants at Johns Hopkins Hospital (JHH); 24 studies were performed with nine infants at Columbus Children's Hospital (CCH). The two groups differed in that JHH infants had shorter gestations but were older when studied. Fecal 13C loss after [13C]glucose administration did not differ between the two groups. Compared with glucose, the metabolism of lactose appeared to involve more malabsorption and colonic fermentation in JHH infants than in CCH infants and resulted in higher fecal losses of substrate carbon. Maturation appeared to involve increased proximal intestinal absorption and greater retention of absorbed carbohydrate. Simultaneous absorption of substrate from the small and large intestine may limit the usefulness of breath tests for 13C in the premature infant.

  6. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  7. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate.

    PubMed

    Katz, J; Wals, P; Lee, W N

    1993-12-05

    Fasted rats were intragastrically infused with either [2,3-13C]lactate or [1,2,3-13C]lactate. The infusate also contained 14C-labeled lactate and [3-3H]glucose. Glucose, alanine, glutamate, and glutamine were isolated from liver and blood. There was near complete equilibration of lactate and alanine, and the relative specific activities and relative enrichments were the same in blood and liver. Glucose was cleaved enzymatically to lactate. The compounds were examined by gas chromatography-mass spectroscopy. From the mass isotopomer spectra of the lactate, glutamate, and glutamine and their cleavage fragments the positional isotopomer composition of these compounds was obtained. The enrichment and isotopomer pattern in the lactate from cleaved glucose represents that in phosphoenolpyruvate (PEP). When [1,2,3-13C]lactate was infused the mass isotopomer spectrum of glutamates consisted only of compounds containing either one, two, or three 13C carbons per molecule (m1, m2, and m3). There was little 13C in C-4 and C-5 of glutamate. The rate of pyruvate decarboxylation is low, and 3-4% of the acetyl-CoA flux in the Krebs cycle is contributed by lactate carbon. The major isotopomers in lactate, alanine, and PEP were m3 and m2 with 13C in C-2 and C-3. The predominant isotopomer in PEP from [2,3-13C]lactate was m2 with 13C in C-2 and C-3. There was much more of m1 isotopomer with 13C in C-3 and C-2 than the m1 isotopomer with 13C in C-1. There was very little m3, the isotopomer with 13C in all three carbons. Most of the 13C in C-3 and C-4 of glucose and C-1 of glutamate was introduced via 13CO2 fixation. From the isotopomer distribution and the rate of glucose turnover we deduced, applying the analysis described in the "Appendix," the absolute rates of gluconeogenic pathways, recycling of PEP and the Cori cycle, and flux in the Krebs cycle. The flux from oxaloacetate (OAA)-->PEP was seven times that of OAA-->citrate, and about half of PEP was recycled to pyruvate via

  8. 13C-CPMAS and 1H-NMR study of the inclusion complexes of beta-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide.

    PubMed

    Locci, Emanuela; Lai, Simona; Piras, Alessandra; Marongiu, Bruno; Lai, Adolfo

    2004-09-01

    Beta-cyclodextrin (beta-CD) inclusion complexes with carvacrol (1), thymol (2), and eugenol (3) (components of essential oils of vegetable origin) were prepared by the supercritical CO2 technique, and their structural characterization was achieved by means of 1H-NMR in aqueous solution and 13C-CPMAS NMR in the solid state. Evidence of the formation of the inclusion complexes for all the examined systems was obtained by 1H-NMR in solution, while 2D-ROESY-NMR experiments were used to investigate the geometry of inclusion. In addition, the dynamics of these inclusion complexes in the kHz timescale was investigated by analysis of the 1H and 13C spin-lattice relaxation times in the rotating frame.

  9. Intra-seasonal dynamics in metabolic processes of 13C/12C and 18O/16O in components of Scots pine twigs from southern Siberia interpreted with a conceptual framework based on the Carbon Metabolism Oscillatory Model

    PubMed Central

    2012-01-01

    Background Carbon isotope data from conifer trees play an important role in research on the boreal forest carbon reservoir in the global carbon cycle. Carbon isotopes are routinely used to study interactions between the environment and tree growth. Moreover, carbon isotopes became an essential tool for the evaluation of carbon assimilation and transport from needles into reserve pools, as well as the allocation of stored assimilates within a tree. The successful application and interpretation of carbon isotopes rely on the coherence of isotopic fractionation modeling. This study employs a new Carbon Metabolism Oscillatory Model (CMOM) to interpret the experimental data sets on metabolic seasonal dynamics of 13C/12 C and 18O/16O ratios measured in twig components of Scots pine growing in southern Siberia (Russia). Results The dynamics of carbon isotopic variables were studied in components of Pinus sylvestris L. in light and in dark chambers during the vegetation period from 14 June to 28 July 2006. At the beginning of this period water-soluble organic matter, mostly labile sugars (including sucrose as the main component) and newly formed bulk needle material, displayed relatively “light” δ13C values (depletion in 13 C). Then, 13 C content increased again with noticeable “depletion” events in the middle of the growth period. A gradual 13 C accumulation took place in the second half of the vegetation period. Similar effects were observed both in the light and in the dark with some temporal shifts. Environmental factors did not influence the δ13C values. A gradual 12C-depletion effect was noticed in needles of the previous year. The δ13C values of sucrose and proteins from needle biomass altered independently from each other in the light chamber. A distinct negative correlation between δ13C and δ18O values was revealed for all studied variables. Conclusions The abrupt 13C depletion recorded by all tested trees for the period from June to July

  10. Backbone dynamics of a model membrane protein: assignment of the carbonyl carbon /sup 13/C NMR resonances in detergent-solubilized M13 coat protein

    SciTech Connect

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    1987-06-16

    The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. /sup 13/C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by /sup 13/C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both /sup 13/C and /sup 15/N. The carbonyl region of the natural-abundance /sup 13/C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pK/sub a/ of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K. Comparable spectra and digestion patterns were obtained when the protein was solubilized in sodium deoxycholate, suggesting that the coat protein binds both amphiphiles in a similar fashion.

  11. Combined δ11B, δ13C, and δ18O analyses of coccolithophore calcite constrains the response of coccolith vesicle carbonate chemistry to CO2-induced ocean acidification

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Wei; Tripati, Robert; Aciego, Sarah; Gilmore, Rosaleen; Ries, Justin

    2016-04-01

    Coccolithophorid algae play a central role in the biological carbon pump, oceanic carbon sequestration, and in marine food webs. It is therefore important to understand the potential impacts of CO2-induced ocean acidification on these organisms. Differences in the regulation of carbonate chemistry, pH, and carbon sources of the intracellular compartments where coccolith formation occurs may underlie the diverse calcification and growth responses to acidified seawater observed in prior experiments. Here we measured stable isotopes of boron (δ11B), carbon13C) and oxygen (δ18O) within coccolith calcite, and δ13C of algal tissue to constrain carbonate system parameters in two strains of Pleurochrysis carterae (P. carterae). The two strains were cultured under variable pCO2, with water temperature, salinity, dissolved inorganic carbon (DIC), and alkalinity monitored. Notably, PIC, POC, and PIC/POC ratio did not vary across treatments, indicating that P. carterae is able to calcify and photosynthesize at relatively constant rates irrespective of pCO2 treatment. The δ11B data indicate that mean pH at the site of coccolith formation did not vary significantly in response to elevated CO2. These results suggest that P. carterae regulates calcifying vesicle pH, even amidst changes in external seawater pH. Furthermore, δ13C and δ18O data suggest that P. carterae may utilize carbon from a single internal DIC pool for both calcification and photosynthesis, and that a greater proportion of dissolved CO2 relative to HCO3- enters the internal DIC pool under acidified conditions. These results suggest that P. carterae is able to calcifyand photosynthesize at relatively constant rates across pCO2 treatments by maintaining pH homeostasis at their site of calcification and utilizing a greater proportion of aqueous CO2.

  12. Automated simultaneous measurement of the δ(13) C and δ(2) H values of methane and the δ(13) C and δ(18) O values of carbon dioxide in flask air samples using a new multi cryo-trap/gas chromatography/isotope ratio mass spectrometry system.

    PubMed

    Brand, Willi A; Rothe, Michael; Sperlich, Peter; Strube, Martin; Wendeberg, Magnus

    2016-07-15

    The isotopic composition of greenhouse gases helps to constrain global budgets and to study sink and source processes. We present a new system for high-precision stable isotope measurements of carbon, hydrogen and oxygen in atmospheric methane and carbon dioxide. The design is intended for analyzing flask air samples from existing sampling programs without the need for extra sample air for methane analysis. CO2 and CH4 isotopes are measured simultaneously using two isotope ratio mass spectrometers, one for the analysis of δ(13) C and δ(18) O values and the second one for δ(2) H values. The inlet carousel delivers air from 16 sample positions (glass flasks 1-5 L and high-pressure cylinders). Three 10-port valves take aliquots from the sample stream. CH4 from 100-mL air aliquots is preconcentrated in 0.8-mL sample loops using a new cryo-trap system. A precisely calibrated working reference air is used in parallel with the sample according to the Principle of Identical Treatment. It takes about 36 hours for a fully calibrated analysis of a complete carousel including extractions of four working reference and one quality control reference air. Long-term precision values, as obtained from the quality control reference gas since 2012, account for 0.04 ‰ (δ(13) C values of CO2 ), 0.07 ‰ (δ(18) O values of CO2 ), 0.11 ‰ (δ(13) C values of CH4 ) and 1.0 ‰ (δ(2) H values of CH4 ). Within a single day, the system exhibits a typical methane δ(13) C standard deviation (1σ) of 0.06 ‰ for 10 repeated measurements. The system has been in routine operation at the MPI-BGC since 2012. Consistency of the data and compatibility with results from other laboratories at a high precision level are of utmost importance. A high sample throughput and reliability of operation are important achievements of the presented system to cope with the large number of air samples to be analyzed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. 3H-1,2-benzoxathiepine 2,2-dioxides: a new class of isoform-selective carbonic anhydrase inhibitors.

    PubMed

    Pustenko, Aleksandrs; Stepanovs, Dmitrijs; Žalubovskis, Raivis; Vullo, Daniela; Kazaks, Andris; Leitans, Janis; Tars, Kaspars; Supuran, Claudiu T

    2017-12-01

    A new chemotype with carbonic anhydrase (CA, EC 4.2.1.1) inhibitory action has been discovered, the homo-sulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) which have been designed considering the (sulfo)coumarins as lead molecules. An original synthetic strategy of a panel of such derivatives led to compounds with a unique inhibitory profile and very high selectivity for the inhibition of the tumour associated (CA IX/XII) over the cytosolic (CA I/II) isoforms. Although the CA inhibition mechanism with these new compounds is unknown for the moment, we hypothesize that it may be similar to that of the sulfocoumarins, i.e. hydrolysis to the corresponding sulfonic acids which thereafter anchor to the zinc-coordinated water molecule within the enzyme active site.

  14. Stable Carbon and Nitrogen isoscapes of the California Coast: integrated δ15N and δ13C of suspended particulate organic matter inferred from tissues of the California Mussel (mytilus californianus)

    NASA Astrophysics Data System (ADS)

    Vokhshoori, N. L.; McCarthy, M. D.

    2011-12-01

    Spatial maps of isotopic variability in a single species, or isoscapes, can characterize the natural variability in carbon (C) and nitrogen (N) isotope ratios across ecosystems on broad spatial scales, trace the signature of a source across a given area, as well as constrain animal migration patterns (Graham et al. 2002). In this study, isoscapes of stable carbon (13C) and nitrogen (15N) isotopes were constructed using intertidal mussels for northeast Pacific coastal waters of California. In this region biogeochemical cycling is primarily controlled by upwelling intensity and large-scale transport of the California Current System (CCS). We hypothesize that sampling specific tissues of filter-feeding organisms can provide an integrated measure of variation in 15N and 13C of the suspended particulate organic matter (POM) pool vs. latitude within the CCS, as well indicate main sources of both organic C and N to littoral food webs. California mussels (mytilus californianus) were collected from 28 sites between Coos Bay, OR and La Jolla, CA in the winter of 2009-2010 and summer of 2011, and adductor tissue was analyzed for δ13C and δ15N. Mussel size classes were chosen to provide ~ 1 yr integrated signal. Spatial trends in δ15N from the winter sampling show a strong linear trend in increasing δ15N values with latitude north to south (δ15N values range from 7 % to 12%) consistent with slowly attenuating northward transport of 15N-depleted nitrate via California Undercurrent (Altabet et al. 1999). The δ13C values have no strong north to south correlation, but exhibit strong location-specific variability. The δ13C values range between -13 % and -18%. We propose the site-specific signature of δ13C indicates relative source of primary productin to POM at a given region (i.e. kelp, phytoplankton, zooplankton). Overall, these results suggest that isoscapes for filter-feeding organisms may offer a more accurate integrated picture of 15N and 13C values of POM than is

  15. Carbon13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas

    PubMed Central

    Segers, Jordi L.; Broders, Hugh G.

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats. PMID:25923696

  16. Isotopic discrimination of stable isotopes of nitrogen (δ15N) and carbon13C) in a host-specific holocephalan tapeworm.

    PubMed

    Navarro, J; Albo-Puigserver, M; Coll, M; Saez, R; Forero, M G; Kutcha, R

    2014-09-01

    During the past decade, parasites have been considered important components of their ecosystems since they can modify food-web structures and functioning. One constraint to the inclusion of parasites in food-web models is the scarcity of available information on their feeding habits and host-parasite relationships. The stable isotope approach is suggested as a useful methodology to determine the trophic position and feeding habits of parasites. However, the isotopic approach is limited by the lack of information on the isotopic discrimination (ID) values of parasites, which is pivotal to avoiding the biased interpretation of isotopic results. In the present study we aimed to provide the first ID values of δ(15)N and δ(13)C between the gyrocotylidean tapeworm Gyrocotyle urna and its definitive host, the holocephalan Chimaera monstrosa. We also test the effect of host body size (body length and body mass) and sex of the host on the ID values. Finally, we illustrate how the trophic relationships of the fish host C. monstrosa and the tapeworm G. urna could vary relative to ID values. Similar to other studies with parasites, the ID values of the parasite-host system were negative for both isotopic values of N (Δδ(15)N = - 3.33 ± 0.63‰) and C (Δδ(13)C = - 1.32 ± 0.65‰), independent of the sex and size of the host. By comparing the specific ID obtained here with ID from other studies, we illustrate the importance of using specific ID in parasite-host systems to avoid potential errors in the interpretation of the results when surrogate values from similar systems or organisms are used.

  17. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  18. Hypolimnetic dominance of epilimnetic dissolved inorganic carbon (DIC) δ13C and its relationship to isotopic covariance in the sedimentary record from a meromictic urban lake (Lake McCarrons, Minnesota, USA)

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Shapley, M.

    2011-12-01

    Water column stratification is an influential process in the lacustrine carbon cycle. In meromictic lakes with persistently anoxic bottom waters, the hypolimnetic processing and allocation of C may be more important than epilimnetic productivity in determining δ13C values of dissolved inorganic carbon (DIC), and by extension the δ13C values of organic and carbonate sedimentary components. In addition, hypolimnetic processes may be central to reconciling seemingly contradictory records from authigenic carbonates and autochthonous organic matter. Resolution of the biogeochemical and physical processes involved in determining mean δ13CDIC values and the direction and relative magnitude of δ13CDIC anomalies is critical to understanding the widely used sedimentary records of anoxic, meromictic lakes. It is likely that methanogenesis, advection via thermocline erosion, and ebullition of methane gas are key processes in the evolution of epilimnetic δ13CDIC values over time. Lake McCarrons (Minneapolis-St. Paul metropolitan area, population 3.4x106) provides an intriguing field setting for examining the effects of hypolimnetic processes on the lacustrine carbon cycle as represented in both the modern system and paleorecord. An isotope mass-balance model illuminates the observed systematic relationship between carbon and oxygen isotopic values of authigenic calcite (the poorly understood "isotopic covariance" of Talbot and others), and changes in the phasing of oscillations in the two records following the establishment of persistent hypolimnetic anoxia and stratification in the early 20th century. The model parameterizes simplified lake mixing, carbon allocation, and isotope fractionation processes, allowing examination of the sensitivity of sediment isotope trends in meromictic systems to changes in these limnologic characteristics, as well as tentative generalizations to other meromictic lake systems.

  19. Calculation of total meal d13C from individual food d13C.

    USDA-ARS?s Scientific Manuscript database

    Variations in the isotopic signature of carbon in biological samples can be used to distinguish dietary patterns and monitor shifts in metabolism. But for these variations to have meaning, the isotopic signature of the diet must be known. We sought to determine if knowledge of the 13C isotopic abund...

  20. Stable isotope ratio (13C/12C) mass spectrometry to evaluate carbon sources and sinks: changes and trends during the decomposition of vegetal debris from eucalyptus clone plantations (NW Spain)

    NASA Astrophysics Data System (ADS)

    Fernandez, I.; Cabaneiro, A.

    2014-02-01

    Vegetal debris is known to participate in key soil processes such as the formation of soil organic matter (OM), also being a potential source of greenhouse gases to the atmosphere. However, its contribution to the isotopic composition of both the soil OM and the atmospheric carbon dioxide is not clear yet. Hence, the main objective of the present research is to understand the isotopic 13C changes and trends that take place during the successive biodegradative stages of decomposing soil organic inputs. By incubating bulk plant tissues for several months under laboratory controlled conditions, the kinetics of the CO2 releases and shifts in the 13C natural abundance of the solid residues were investigated using litter samples coming from forest plantations with a different clone (Anselmo: 1st clonal generation attained by morphological selection and Odiel: 2nd clonal generation genetically obtained) of Eucalyptus globulus Labill. developed over granitic or schistic bedrocks and located in northwestern Spain. Significant isotopic variations with time were observed, probably due to the isotopically heterogeneous composition of these complex substrates in conjunction with the initial selective consumption of more easily degradable 13C-differentiated compounds during the first stages of the biodegradation, while less available or recalcitrant litter components were decomposed at later stages of biodegradation, generating products that have their own specific isotopic signatures. These results, which significantly differ depending on the type of clone, suggest that caution must be exercised when interpreting carbon isotope studies (at natural abundance levels) since perturbations associated with the quality or chemical composition of the organic debris from different terrestrial ecosystems can have an important effect on the carbon stable isotope dynamics.

  1. C3 or C4 macrophytes: a specific carbon source for the development of semi-aquatic and terrestrial arthropods in central Amazonian river-floodplains according to delta13C values.

    PubMed

    Adis, J; Victoria, R L

    2001-01-01

    C4 plant species were proposed to generally represent inferior food sources compared to C3 plants thus are avoided by herbivores, particularly insects. This was tested in semi-aquatic and terrestrial arthropods from Amazonian river-floodplains by carbon isotope discrimination (delta13C). Two semi-aquatic grasshopper species (Stenacris f. fissicauda, Tucavaca gracilis-Acrididae) obtain their carbon during development from specific C4 macrophytes and two semi-aquatic species (Cornops aquaticum-Acrididae, Paulinia acuminata-Pauliniidae) from specific C3 macrophytes. The terrestrial millipede Mestosoma hylaeicum (Paradoxosomatidae) obtains about 45% of its carbon from roots of one C4 macrophyte during the development of immatures whereas adults use other food sources, including C3 trees. Results suggest, that (1) both C4 and C3 plants represent distinct hosts for terrestrial arthropods in Amazonia; (2) immatures may use plant species with a different photosynthetic pathway than adults.

  2. Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by (13)C-NMR and IR spectroscopy.

    PubMed

    Dutta, Anirban; Mandal, Abhishek; Manna, Suman; Singh, S B; Berns, Anne E; Singh, Neera

    2015-10-01

    Soil organic matter (SOM) content is the major soil component affecting pesticide sorption. However, recent studies have highlighted the fact that it is not the total carbon content of the organic matter, but its chemical structure which have a profound effect on the pesticide's sorption. In the present study, sorption of atrazine and metsulfuron-methyl herbicides was studied in four SOM fractions viz. commercial humic acid, commercial lignin, as well as humic acid and humin extracted from a compost. Sorption data was fitted to the Freundlich adsorption equation. In general, the Freundlich slope (1/n) values for both the herbicides were <1. Except for atrazine sorption on commercial humic acid, metsulfuron-methyl was more sorbed. Desorption results suggested that atrazine was more desorbed than metsulfuron-methyl. Lignin, which showed least sorption of both the herbicides, showed minimum desorption. Sorption of atrazine was best positively correlated with the alkyl carbon (adjusted R (2) = 0.748) and carbonyl carbon (adjusted R (2) = 0.498) but, their effect was statistically nonsignificant (P = 0.05). Metsulfuron-methyl sorption showed best positive correlation with carbonyl carbon (adjusted R (2) = 0.960; P = 0.05) content. Sorption of both the herbicides showed negative correlation with O/N-alkyl carbon. Correlation of herbicide's sorption with alkyl and carbonyl carbon content of SOM fractions suggested their contribution towards herbicide sorption. But, sorption of metsulfuron-methyl, relatively more polar than atrazine, was mainly governed by the polar groups in SOM. IR spectra showed that H-bonds and charge-transfer bonds between SOM fraction and herbicides probably operated as mechanisms of adsorption.

  3. EFFECTS OF CLIMATE CHANGE ON LABILE AND STRUCTURAL CARBON IN DOUGLAS-FIR NEEDLES AS ESTIMATED BY DELTA 13C AND C AREA MEASUREMENTS

    EPA Science Inventory

    Isotopic measurements may provide new insights into levels in leaves of labile and structural carbon (C) under climate change. In a 4-year climate change experiment using Pseudotsuga menziesii (Douglas-fir) seedlings and a 2x2 factorial design in enclosed chambers (n=3), atmosph...

  4. FINAL REPORT: A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the GCC

    SciTech Connect

    Keeling, R. F.; Piper, S. C.

    2008-12-23

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic composition. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. The program also included the development of methods for measuring radiocarbon content in the collected CO2 samples and carrying out radiocarbon measurements in collaboration with Tom Guilderson of Lawrence Berkeley National Laboratory (LLNL). The radiocarbon measurements can provide complementary information on carbon exchange rates with the land and oceans and emissions from fossil-fuel burning. Using models of varying complexity, the concentration and isotopic measurements were used to establish estimates of the spatial and temporal variations in the net CO2 exchange with the atmosphere, the storage of carbon in the land and oceans, and variable isotopic discrimination of land plants.

  5. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: insights from solid-state 13C NMR and solution 31P NMR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions...

  6. EFFECTS OF CLIMATE CHANGE ON LABILE AND STRUCTURAL CARBON IN DOUGLAS-FIR NEEDLES AS ESTIMATED BY DELTA 13C AND C AREA MEASUREMENTS

    EPA Science Inventory

    Isotopic measurements may provide new insights into levels in leaves of labile and structural carbon (C) under climate change. In a 4-year climate change experiment using Pseudotsuga menziesii (Douglas-fir) seedlings and a 2x2 factorial design in enclosed chambers (n=3), atmosph...

  7. Carbon stable isotope (δ13C) and elemental (TOC, TN, C/N) geochemistry in salt marsh surface sediments (Western Brittany, France): Adequate proxies for relative sea-level reconstruction?

    NASA Astrophysics Data System (ADS)

    Goslin, Jerome; Sans-jofre, Pierre; Van Vliet Lanoë, Brigitte; Delacourt, Christophe

    2017-04-01

    Reconstructing a dense network of precise and reliable records of Holocene relative sea-level (RSL) changes is still a major challenge for the paleo climate scientific community. In some regions, the use of traditional foraminifera-based transfer function is prevented by micro-fauna scarcity (e.g. Stéphan et al., 2014, Goslin et al., 2015), thus fostering the need for alternative proxies to be developed and used. Rather recently, isotopic and elemental geochemistry tools have been shown to form promising alternative proxies for RSL reconstruction (e.g. Wilson et al., 2005, Engelhart et al., 2013, Khan et al., 2015). Questions remain nonetheless open regarding the possibility for such markers to allow (i) distinguishing between freshwater and brackish to marine domains (this condition being needed if RSL index-points are to be derived from sedimentary markers) and (ii) to adequately identify the source of the organic matter preserved in the sediment. Concerns about the preservation of carbon and nitrogen compounds during diagenesis have also arose questioning the reliability of such markers for paleo-environmental reconstruction purposes (Wilson et al., 2005; Lamb et al., 2006). We analyzed stable carbon isotope ratios (δ13C), Total Organic Carbon (TOC), and Total Nitrogen (TN) values within 94 surface sediments sampled across two C-3 plants dominated saltmarshes (Brittany, France). The distributions of δ13C, TOC, TN and C/N values is observed to follow clear and strong elevation-dependent trends. Some slight local variability appears between the studied sites that can be easily explained by the different morphological configuration and functioning of these latter. An indicator is found that allows sediments from below and above the high-tide level to be discriminated. This finding forms an interesting advance in the field as it permits to ensure that samples formed under saline conditions and thus suggests that these can be used as stand-alone proxies for RSL

  8. Stable carbon ((12/13)C) and nitrogen ((14/15)N) isotopes as a tool for identifying the sources of cyanide in wastes and contaminated soils--a method development.

    PubMed

    Weihmann, Jenny; Mansfeldt, Tim; Schulte, Ulrike

    2007-01-23

    The occurrence of iron-cyanide complexes in the environment is of concern, since they are potentially hazardous. In order to determine the source of iron-cyanide complexes in contaminated soils and wastes, we developed a method based on the stable isotope ratios (13)C/(12)C and (15)N/(14)N of the complexed cyanide-ion (CN(-)). The method was tested on three pure chemicals and two industrials wastes: blast-furnace sludge (BFS) and gas-purifier waste (GPW). The iron-cyanide complexes were converted into the solid cupric ferrocyanide, Cu(2)[Fe(CN)(6)].7H(2)O, followed by combustion and determination of the isotope-ratios by continuous flow isotope ratio mass spectrometry. Cupric ferrocyanide was obtained from the materials by (i) an alkaline extraction with 1M NaOH and (ii) a distillate digestion. The [Fe(CN)(6)](4-) of the alkaline extraction was precipitated after adding Cu(2+). The CN(-) of the distillate digestion was at first complexed with Fe(2+) under inert conditions and then precipitated after adding Cu(2+). The delta(13)C-values obtained by the two methods differed slightly up to 1-3 per thousand for standards and BFS. The difference was larger for alkaline-extracted GPW (4-7 per thousand), since non-cyanide C was co-extracted and co-precipitated. Therefore the distillate digestion technique is recommended when determining the C isotope ratios in samples rich in organic carbon. Since the delta(13)C-values of BFS are in the range of -30 to -24 per thousand and of -17 to -5 per thousand for GPW, carbon seems to be a suitable tracer for identifying the source of cyanide in both wastes. However, the delta(15)N-values overlapped for BFS and GPW, making nitrogen unsuitable as a tracer.

  9. Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.

    2015-08-01

    Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions, and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results emphasize that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a

  10. Assessing the potential of amino acid δ13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Bach, L. T.; Salvatteci, R.; Wang, Y. V.; Andersen, N.; Ventura, M.; McCarthy, M. D.

    2015-01-01

    Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles, and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing biosynthetic origin of amino acid carbon skeletons, based on natural occurring stable carbon isotope patterns in individual amino acids (δ13CAA). We focus on two important aspects for δ13CAA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal δ13CAA patterns across different oceanographic growth conditions; and second, the ability of δ13CAA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how δ13CAA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, δ13CAA isotopic patterns remain largely invariant. These results underscore that δ13CAA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how δ13CAA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e. isoleucine, lysine, leucine and tyrosine), bacterial derived amino acids ranged from 10-15% in the sediment layers from the last 5000 years to 35% during the last glacial period. The larger bacterial fractions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to

  11. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  12. Two-phase diagenesis of Quaternary carbonates, Arabian Gulf: Insights from {delta}{sup 13}C and {delta}{sup 18}O data

    SciTech Connect

    Chafetz, H.S.; Rush, P.F.

    1995-04-03

    Diagenesis of the top 25 m of Quaternary sediment and rock samples from the shallow subsurface under the nearshore part of the Arabian Gulf is the primary subject of this study. During the last forty years, since this area was recognized as a site of extensive carbonate deposition, the origin, distribution, and dolomitization of modern sediments in the Arabian Gulf region have been intensively studied. However, few geoscientists have studied the Quaternary deposits below the top few meters of accumulation. As a complement to previous work, this study is primarily concerned with the diagenesis of aragonitic and high-magnesium calcitic sediments to sediments composing a low-magnesium calcitic facies. The samples studied, intercalated carbonate and siliciclastic sediments and rocks, were collected from a series of borings offshore of Al Jubayl, Saudi Arabia. The lowermost part of the section is predominantly Pleistocene dolomite. The middle part is composed of intercalated low-magnesium calcite and siliciclastics and is herein interpreted as Pleistocene.

  13. {sup 13}C and {sup 17}O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    SciTech Connect

    Clark, D.L.; Newton, T.W.; Palmer, P.D.; Zwick, B.D.

    1995-01-01

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U0{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} and (UO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = {minus}log(a{sub H}{sup +}) versus p[H] = {minus}log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA.

  14. Reconstructing Mid-Pleistocene paleovegetation and paleoclimate in the Golan Heights using the δ(13)C values of modern vegetation and soil organic carbon of paleosols.

    PubMed

    Hartman, Gideon

    2011-04-01

    The Golan Heights borders the Upper Jordan Valley on its eastern side and likely served as a prime foraging area for hominin groups that inhabited the Upper Jordan Valley during the Mid-Pleistocene. This study tests the hypothesis that Mid-Pleistocene climate in the Golan region was similar to that of the present day. Carbon isotope composition of present day plant communities and soil organic carbon from the Golan were compared to those of paleosols from Nahal Orvim to reconstruct Mid-Pleistocene paleoclimatic conditions. After correcting the paleosol values for recent changes in atmospheric carbon isotope values and potential biodegradation, the isotopic results show a strong similarity to those of present day local plants and soils. These results indicate that during the Mid-Pleistocene, the Golan was dominated by C(3) vegetation, shared similar climatic conditions with the present day, and displayed long-term environmental stability. The span of time of paleosol formation is unknown and might cover multiple climatic episodes; thus, although short climatic fluctuations may have occurred, their impact was not substantial enough to be detected in the Nahal Orvim paleosols. This study concludes that the Golan slopes provided hominins and large grazers with a reliable and highly nutritious foraging area that complemented the Jordan Valley riparian ecosystem.

  15. Palynological indications for elevated microbial primary productivity during the Early Toarcian Anoxic Event: Implications for organic-carbon accumulation and the interpretation of δ13C-trends

    NASA Astrophysics Data System (ADS)

    Houben, A. J. P.; Goldberg, T.; Janssen, N. M. M.; Nelskamp, S.; Verreussel, R.

    2015-12-01

    The Early Toarcian Oceanic Anoxic Event (T-OAE, ~182 Ma ago) represents an episode of organic-rich deposition that was accompanied by a substantial (up to 7‰) negative carbon-isotope excursion (CIE), suggesting a perturbation in the carbon cycle likely driven by the addition of "light" carbon to the ocean-atmosphere system. Paired δ13Corg-ratios and hydrogen-indices provide evidence for major changes in organic-matter sourcing which quantitatively affect CIE-magnitude. Underpinning the relationship between this carbon-cycle perturbation, ocean anoxia and primary productivity feedbacks thus remains a major challenge. We here present palynological- and organic-matter analysis data from outcrop sections in Yorkshire (UK) and three drill-cores from the Netherlands. In addition, elemental ratios and iron speciation data aid to constrain bottom-water oxygenation and euxinia. Stratigraphic calibrations were achieved with high-resolution δ13Corg-data. The iron-speciation and trace-element data indicate that persistent euxinic bottom-water conditions incept at the base of- and remarkably persist after the T-OAE. By employing extremely careful palynological preparation and UV-fluorescence microscopy, we assessed changes in phytoplankton communities and organic-matter types. At the base of the T-OAE a major increase in abundance of prasinophycean vegetative cysts indicates chemocline shoaling into the photic zone. During the T-OAE, all localities are characterized by organic-matter associations dominated by dense Structureless Organic Matter (SOM) that contain abundant characteristic sphaerical palynomorphs.These results confirm changes in organic-carbon sourcing, which exaggerate the magnitude of the CIE. The palynological and organic-matter data indicate that primary productivity did not collapse and that TOC-accumulations were not merely an effect of inhibited remineralization duirng anoxia. In contrast, we present a scenario in which cyanobacterial anoxygenic

  16. Middle Holocene Bison diet and mobility in the eastern Great Plains (USA) based on δ13C, δ18O, and 87Sr/ 86Sr analyses of tooth enamel carbonate

    NASA Astrophysics Data System (ADS)

    Widga, Chris; Walker, J. Douglas; Stockli, Lisa D.

    2010-05-01

    During the Holocene, bison ( Bison bison) were key components of the Great Plains landscape. This study utilizes serial stable isotope analyses (tooth enamel carbonate) of 29 individuals from five middle Holocene (˜ 7-8.5 ka) archaeological sites to address seasonal variability in movement patterns and grazing behavior of bison populations in the eastern Great Plains. Stable carbon isotopes ( δ13C) indicate a bison diet that is similar to the C3/C4 composition of modern tallgrass prairies, while 87Sr/ 86Sr values generally indicate very little seasonal movement (< 50 km) and relatively limited inter-annual movement (< 500 km) over the course of 4-5 yr. Analyses of variability in serial stable oxygen isotope samples ( δ18O) further substantiate a model of localized bison herds that adhered to upland areas of the eastern Plains and prairie-forest border.

  17. CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics.

    PubMed

    Zhang, Zhengdong; Shen, Tie; Rui, Bin; Zhou, Wenwei; Zhou, Xiangfei; Shang, Chuanyu; Xin, Chenwei; Liu, Xiaoguang; Li, Gang; Jiang, Jiansi; Li, Chao; Li, Ruiyuan; Han, Mengshu; You, Shanping; Yu, Guojun; Yi, Yin; Wen, Han; Liu, Zhijie; Xie, Xiaoyao

    2015-01-01

    The Central Carbon Metabolic Flux Database (CeCaFDB, available at http://www.cecafdb.org) is a manually curated, multipurpose and open-access database for the documentation, visualization and comparative analysis of the quantitative flux results of central carbon metabolism among microbes and animal cells. It encompasses records for more than 500 flux distributions among 36 organisms and includes information regarding the genotype, culture medium, growth conditions and other specific information gathered from hundreds of journal articles. In addition to its comprehensive literature-derived data, the CeCaFDB supports a common text search function among the data and interactive visualization of the curated flux distributions with compartmentation information based on the Cytoscape Web API, which facilitates data interpretation. The CeCaFDB offers four modules to calculate a similarity score or to perform an alignment between the flux distributions. One of the modules was built using an inter programming algorithm for flux distribution alignment that was specifically designed for this study. Based on these modules, the CeCaFDB also supports an extensive flux distribution comparison function among the curated data. The CeCaFDB is strenuously designed to address the broad demands of biochemists, metabolic engineers, systems biologists and members of the -omics community.

  18. 13C metabolic flux analysis.

    PubMed

    Wiechert, W

    2001-07-01

    Metabolic flux analysis using 13C-labeled substrates has become an important tool in metabolic engineering. It allows the detailed quantification of all intracellular fluxes in the central metabolism of a microorganism. The method has strongly evolved in recent years by the introduction of new experimental procedures, measurement techniques, and mathematical data evaluation methods. Many of these improvements require advanced skills in the application of nuclear magnetic resonance and mass spectrometry techniques on the one hand and computational and statistical experience on the other hand. This minireview summarizes these recent developments and sketches the major practical problems. An outlook to possible future developments concludes the text.

  19. Patterns and Sources of Sediment and Particulate Organic Carbon in Lake Melville, Labrador, Canada: Inferences from 210Pb, 137Cs, and δ13C

    NASA Astrophysics Data System (ADS)

    Kamula, C. M.

    2016-12-01

    Modern sedimentological processes, sources and distribution of sediment and organic carbon (OC) were investigated in recently deposited sediment from Lake Melville, Labrador, Canada to better understand the impacts of anthropogenic and climatic changes to the system over the last 100-150 years. Fifteen sediment cores collected across Lake Melville in 2013 and 2014 were analysed for 210Pb and 137Cs while stable isotope δ13Corg and percentage OC were measured down select cores and surface sediment. Mass accumulation rates (MARs) were established by fitting 210Pbex profiles to a two-layer advection diffusion model and validated with 137Cs. MARs varied between 0.04 and 0.41 g cm-2 yr-1 and decreased with distance from the Churchill River, the greatest source of sediment to the system. MARs were greatest in western Lake Melville immediately east of Goose Bay, reflecting the combined contributions of fine material carried eastward in the Churchill River plume and coarser particles from the Kenamu River. The sources of sediment were investigated by comparing inventories of 137Cs and excess 210Pb (210Pbex) to expected atmospheric inputs, which suggested sediment in Lake Melville is largely sourced from the watershed. In the eastern end of Lake Melville, an elevated 210Pbex inventory was associated with particle scavenging of dissolved 210Pb from inflowing marine water and is likely linked to increased primary production in the area. Surface sediment δ13Corg values (mean = -26.2 ± 1.75‰ SD) support a mixture of both terrestrial and marine organic carbon to the system. Using a transient tracer mixing model, the depth in each core corresponding to 90% sediment deposited pre and post hydroelectric development at Churchill Falls (1970) was established and applied to profiles of δ13Corg. This approach revealed an increase of terrestrial OC to Lake Melville post 1970 which we interpret to reflect change in climate and/or hydrology of the Churchill River.

  20. In search of the mechanisms behind soil carbon metabolism of a Douglas fir forest in complex terrain using naturally abundant 13C

    NASA Astrophysics Data System (ADS)

    Kayler, Z. E.; Sulzman, E. W.; Barnard, H. R.; Kennedy, A.; Phillips, C.; Mix, A.; Bond, B. J.

    2008-12-01

    Soil is well known for being highly variable, spatially and temporally, in moisture, texture, nutrients, carbon content and organisms. The magnitude of variation in soil characteristics represented in a study is, in part, determined by the choice in site location. Choosing sites that are topographically flat reduces variability due to environmental gradients, variability that is amplified in sites of complex terrain. We measured soil respiration, an integrative measure of ecosystem biological and physical processes, and its isotopic signature (δ13CR-s) to accomplish two goals: 1. Explore how gradients in temperature and moisture within a steeply sloped watershed affect the flux and isotopic signature of soil CO2 2. Deconvolve the isotopic signature of soil respiration into autotrophic and heterotrophic sources using a multi-source mixing model constrained by samples of soil organic matter and water soluble extracts of leaf foliage. Our site is located in a steep catchment within the central Cascades of Oregon (HJ Andrews LTER) where we made respiration measurements in plots established along side a sensor transect that continuously measures soil moisture and temperature; air relative humidity and temperature; and tree transpiration. There was a distinct difference in soil metabolism between the south and north aspects in the watershed. Temperature-corrected basal respiration of the south facing slope was 1 μmol m-2s-1 greater than the north facing slope. There was also a difference in isotopic signature between the two slopes that could be as great as 2 per mil depending on the period within the growing season. The strength of the correlation between environmental variables and soil carbon flux was non-uniform across the catchment. There was, however, a strong positive correlation between soil flux with recent transpiration rates (0 to 3 days prior) as well as with transpiration rates that occurred up to 9 days previously. This pattern was especially prevalent

  1. Stable Carbon Isotope Composition (δ13C), Water Use Efficiency, and Biomass Productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 Hybrid

    PubMed Central

    Martin, Bjorn; Thorstenson, Yvonne R.

    1988-01-01

    Three tomatoes, Lycopersicon esculentum Mill. cv UC82B, a droughttolerant wild related species, Lycopersicon pennellii (Cor.) D'Arcy, and their F1 hybrid, were grown in containers maintained at three levels of soil moisture. Season-long water use was obtained by summing over the season daily weight losses of each container corrected for soil evaporation. Plant biomass was determined by harvesting and weighing entire dried plants. Season-long water use efficiency (gram dry weight/kilogram H2O) was calculated by dividing the dry biomass by the season-long water use. The season-long water use efficiency was greatest in the wild parent, poorest in the domestic parent, and intermediate (but closer to the wild parent) in the F1 hybrid. Instantaneous water-use efficiency (micromole CO2/millimole H2O) determined by gas exchange measurements on individual leaves was poorly correlated with season-long water use efficiency. However, the relative abundance of stable carbon isotopes of leaf tissue samples was strongly correlated with the season-long water use efficiency. Also, the isotopic composition and the season-long water use efficiency of each genotype alone were strongly negatively correlated with plant dry weight when the dry weight varied as a function of soil moisture. PMID:16666269

  2. Assessing the Resilience of a Blue Carbon Store: Characterizing the Lateral Flux of DIC from an East Coast U.S. Saltmarsh using Δ14C and δ13C

    NASA Astrophysics Data System (ADS)

    Felgate, S. L.; Gonneea, M. E.; Kroeger, K. D.; Chu, S. N.; Wang, A. Z.

    2016-12-01

    Intertidal saltmarshes are highly productive coastal habitats and important blue carbon stores. They commonly exhibit high salinity, low oxygen environmental regimes which lend themselves towards reduced rates of microbial respiration, and the assimilation of atmospheric CO2 into plant biomass tends to outpace the rate at which that biomass is broken down. As a result, a relatively high proportion of CO2 entering the system can be expected to become incorporated into marsh sediment before it can be metabolised, potentially entering storage for thousands of years and providing a sizeable natural carbon sink. However, the rate at which these habitats are now being degraded is substantial and growing: the combined impacts of stressors such as increasing temperature and sea level rise are predicted to reduce global saltmarsh coverage by 30-40% by the end of the century, and many saltmarsh carbon stores can be expected to shift from net sinks to sources within the same time frame. Based on high resolution measurements and modelling in a northeastern U.S. saltmarsh, a recent study reported a marsh DIC export of 414g C m2 yr-1. This is more than twice that put forward in previous estimates, and is larger than the total uptake by plant biomass. This translates into one of the largest carbon fluxes to the coastal ocean found along the U.S. East Coast. Additionally it is possible that the marsh carbon budget is not in balance, with export exceeding carbon fixation rates. Here we characterise this carbon flux using Δ14C and δ13C data to age and source the exported dissolved carbon pools. Carbon isotope mixing models between surface (modern) and porewater (old) carbon sources are constrained by creek samples and porewaters from multiple depths and locations within the marsh. We determine the age of exported carbon to see if carbon stored over the lifetime of the marsh (c. 2000 years) continues to be respired, thereby evaluating the long term resilience of the carbon sink.

  3. Short-term effects of tillage practices on soil organic carbon turnover assessed by δ13C abundance in particle-size fractions of black soils from northeast China.

    PubMed

    Liang, Aizhen; Chen, Shenglong; Zhang, Xiaoping; Chen, Xuewen

    2014-01-01

    The combination of isotope trace technique and SOC fractionation allows a better understanding of SOC dynamics. A five-year tillage experiment consisting of no-tillage (NT) and mouldboard plough (MP) was used to study the changes in particle-size SOC fractions and corresponding δ (13)C natural abundance to assess SOC turnover in the 0-20 cm layer of black soils under tillage practices. Compared to the initial level, total SOC tended to be stratified but showed a slight increase in the entire plough layer under short-term NT. MP had no significant impacts on SOC at any depth. Because of significant increases in coarse particulate organic carbon (POC) and decreases in fine POC, total POC did not remarkably decrease under NT and MP. A distinct increase in silt plus clay OC occurred in NT plots, but not in MP plots. However, the δ (13)C abundances of both coarse and fine POC increased, while those of silt plus clay OC remained almost the same under NT. The C derived from C3 plants was mainly associated with fine particles and much less with coarse particles. These results suggested that short-term NT and MP preferentially enhanced the turnover of POC, which was considerably faster than that of silt plus clay OC.

  4. Short-Term Effects of Tillage Practices on Soil Organic Carbon Turnover Assessed by δ13C Abundance in Particle-Size Fractions of Black Soils from Northeast China

    PubMed Central

    Zhang, Xiaoping; Chen, Xuewen

    2014-01-01

    The combination of isotope trace technique and SOC fractionation allows a better understanding of SOC dynamics. A five-year tillage experiment consisting of no-tillage (NT) and mouldboard plough (MP) was used to study the changes in particle-size SOC fractions and corresponding δ13C natural abundance to assess SOC turnover in the 0–20 cm layer of black soils under tillage practices. Compared to the initial level, total SOC tended to be stratified but showed a slight increase in the entire plough layer under short-term NT. MP had no significant impacts on SOC at any depth. Because of significant increases in coarse particulate organic carbon (POC) and decreases in fine POC, total POC did not remarkably decrease under NT and MP. A distinct increase in silt plus clay OC occurred in NT plots, but not in MP plots. However, the δ13C abundances of both coarse and fine POC increased, while those of silt plus clay OC remained almost the same under NT. The C derived from C3 plants was mainly associated with fine particles and much less with coarse particles. These results suggested that short-term NT and MP preferentially enhanced the turnover of POC, which was considerably faster than that of silt plus clay OC. PMID:25162052

  5. Influence of different proton pump inhibitors on activity of cytochrome P450 assessed by [(13)C]-aminopyrine breath test.

    PubMed

    Kodaira, Chise; Uchida, Shinya; Yamade, Mihoko; Nishino, Masafumi; Ikuma, Mutsuhiro; Namiki, Noriyuki; Sugimoto, Mitsushige; Watanabe, Hiroshi; Hishida, Akira; Furuta, Takahisa

    2012-03-01

    Aminopyrine is metabolized by cytochrome P450 (CYP) in the liver. The investigators evaluated influences of different PPIs on CYP activity as assessed by the [(13)C]-aminopyrine breath test ([(13)C]-ABT). Subjects were 15 healthy volunteers with different CYP2C19 status (5 rapid metabolizers [RMs], 5 intermediate metabolizers [IMs], and 5 poor metabolizers [PMs]). Breath samples were collected before and every 15 to 30 minutes for 3 hours after oral ingestion of [(13)C]-aminopyrine 100 mg on day 8 of each of the following regimens: control; omeprazole 20 mg and 80 mg, lansoprazole 30 mg, and rabeprazole 20 mg. Changes in carbon isotope ratios in carbon dioxide ((13)CO(2)/(12)CO(2)) in breath samples were measured by infrared spectrometry and expressed as delta-over-baseline (DOB) ratios (‰). Mean areas under the curve of DOB from 0 to 3 h (AUC(0-3h) of DOB) were significantly decreased by omeprazole 20 mg and lansoprazole 30 mg but not by rabeprazole 20 mg. Conversely, higher PPI dose (ie, omeprazole 80 mg) seemed to further decrease AUC(0-3h) of DOB in RMs but increased it in PMs. Omeprazole and lansoprazole at the standard doses inhibit CYP activity but rabeprazole does not, whereas high-dose omeprazole seems to induce CYPs.

  6. Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings.

    PubMed

    Wei, Liang; Marshall, John D; Link, Timothy E; Kavanagh, Kathleen L; DU, Enhao; Pangle, Robert E; Gag, Peter J; Ubierna, Nerea

    2014-01-01

    A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate δ(13)C in tree rings. The δ(13)C estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two ~80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and δ(13)C. Sensitivity analysis showed that the model's predictions of δ(13)C were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated δ(13)C of tree rings was no different from measurements (P > 0.05). The δ(13)C submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This δ(13)C test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration.

  7. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  8. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates.

    PubMed

    Azurmendi, Hugo F; Freedberg, Darón I

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for (1)D(CC) determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a (13)C-(13)C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield (1)J(CC) and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for J(HH) determinations, but adapted and extended to applications where, like in sugars, large one-bond (13)C-(13)C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and

  9. Laboratory detection of the D3h isomer of carbon trioxide (CO3): Potential intermediate in the CO2 + O reaction in atmospheres

    NASA Astrophysics Data System (ADS)

    Jamieson, C.; Mebel, A.; Kaiser, R.

    Radiation induced degradation of oxygen-bearing molecules like ozone or carbon dioxide can liberate oxygen atoms that are electronically excited 1 D state and or superthermal high kinetic energy and may subsequently react with carbon dioxide in the atmospheres of Venus Mars or the Earth In this reaction the carbon trioxide CO 3 intermediate was found to form and has been subsequently included in many reaction models to explain the heavy isotope enrichment of stratospheric carbon dioxide on Earth and the regeneration of carbon dioxide on Mars both in the upper atmosphere and catalyzed in solid CO 2 surfaces Studies of the O 1 D CO 2 reaction show a nearly statistical rate of isotope exchange suggesting that the CO 3 intermediate may possess a high degree of symmetry From theoretical calculations and matrix isolation studies we know that the lowest energy CO 3 isomer has C 2v symmetry however the D 3h isomer lies only 0 1 kcal mol -1 higher in energy than the C 2v structure with an isomerization barrier of 4 4 kcal mol -1 thus interconversion of these two structures should readily occur To date the C 2v structure has been the only isomer that has been experimentally detected and therefore inclusion of the symmetric D 3h isomer in the isotope exchange models is only theoretical Here we present the first experimental detection of the D 3h isomer of carbon trioxide which was identified by two fundamental vibrational frequencies nu 1 and nu 5 using infrared

  10. Distinct fungal and bacterial δ13C signatures can drive the increase in soil δ13C with depth

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Laganièrea, Jérôme; Edwards, Kate A.; Billings, Sharon A.; Morrill, Penny L.; Van Biesen, Geert; Ziegler, Susan E.

    2015-04-01

    Soil microbial biomass is a key precursor of soil organic carbon (SOC), and the enrichment in 13C during SOC diagenesis has been purported to be driven by increasing proportions of microbially derived SOC. Yet, little is known about how the δ13C of soil microbial biomass - and by extension the δ13C of microbial inputs to SOC - vary in space, time, or with the composition of the microbial community. Phospholipid fatty acids (PLFA) can be analyzed to measure the variation of the natural abundance δ13C values of both individual groups of microorganisms and the microbial community as a whole. Here, we show how variations of δ13CPLFA within the soil profile provides insight into C fluxes in undisturbed soils and demonstrate that distinct δ13C of fungal and bacterial biomass and their relative abundance can drive the increase of bulk δ13CSOC with depth. We studied the variation in natural abundance δ13C signatures of PLFA in podzolic soil profiles from mesic boreal forests in Atlantic Canada. Samples from the organic horizons (L,F,H) and the mineral (B; top 10 cm) horizons were analyzed for δ13C values of PLFA specific to fungi, G+ bacteria, or G- bacteria as proxies for the δ13C of the biomass of these groups, and for δ13C values of PLFA produced by a wide range of microorganisms (e.g. 16:0) as a proxy for the δ13C value of microbial biomass as a whole. Results were compared to fungi:bacteria ratios (F:B) and bulk δ13CSOC values. The δ13C values of group-specific PLFA were driven by differences among source organisms, with fungal PLFA consistently depleted (2.1 to 6.4‰) relative to and G+ and G- bacterial PLFA in the same sample. All group-specific PLFA, however, exhibited nearly constant δ13C values throughout the soil profile, apparently unaffected by the over 2.8‰ increase in δ13CSOC with depth from the L to B horizons. This indicates that bulk SOC poorly represents the substrates actually consumed by soil microorganisms in situ. Instead, our

  11. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    PubMed

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  12. Using solid (13)C NMR coupled with solution (31)P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Wang, Hao; He, Zhongqi; Guo, Wenjing; Song, Fanhao; Giesy, John P

    2017-01-01

    Forms and labilities of plant-derived organic matters (OMs) including carbon (C) and phosphorus (P) were fundamental for understanding their release, degradation and environmental behaviour in lake ecosystems. Thus, solid (13)C and solution (31)P nuclear magnetic resonance (NMR) spectroscopy were used to characterize biomass of six aquatic plants in Tai Lake, China. The results showed that carbohydrates (61.2% of the total C) were predominant C functional group in the solid (13)C NMR spectra of plant biomass, which may indicate high lability and bioavailability of aquatic plants-derived organic matter in lakes. There was 72.6-103.7% of the total P in aquatic plant biomass extracted by NaOH-EDTA extracts. Solution (31)P NMR analysis of these NaOH-EDTA extracts further identified several molecular species of P including orthophosphate (50.1%), orthophosphate monoesters (46.8%), DNA (1.6%) and pyrophosphate (1.4%). Orthophosphate monoesters included β-glycerophosphate (17.7%), hydrolysis products of RNA (11.7%), α-glycerophosphate (9.2%) and other unknown monoesters (2.1%). Additionally, phytate, the major form of organic P in many lake sediments, was detected in floating plant water poppy. These inorganic P (e.g. orthophosphate and pyrophosphate) and organic P (e.g. diester and its degradation products) identified in plant biomass were all labile and bioavailable P, which would play an important role in recycling of P in lakes. These results increased knowledge of chemical composition and bioavailability of OMs derived from aquatic plants in lakes.

  13. CARBON-RICH PRESOLAR GRAINS FROM MASSIVE STARS: SUBSOLAR {sup 12}C/{sup 13}C AND {sup 14}N/{sup 15}N RATIOS AND THE MYSTERY OF {sup 15}N

    SciTech Connect

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing {sup 12}C/{sup 13}C and {sup 14}N/{sup 15}N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of {sup 13}C and {sup 15}N. The short-lived radionuclides {sup 22}Na and {sup 26}Al are increased by orders of magnitude. The production of radiogenic {sup 22}Ne from the decay of {sup 22}Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with {sup 14}N/{sup 15}N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of {sup 14}N and {sup 15}N in the Galaxy, helping to produce the {sup 14}N/{sup 15}N ratio in the solar system.

  14. Synthesis of exemestane labelled with (13)C.

    PubMed

    Fontana, Erminia; Pignatti, Alberto; Giribone, Danilo; Di Salle, Enrico

    2008-08-01

    The synthesis of exemestane Aromasin, an irreversible steroidal aromatase inhibitor, specifically labelled with (13)C is reported. The preparation of [(13)C(3)]exemestane was achieved according to an eight-step procedure starting from the commercially available testosterone.

  15. Stepped Acid Extractions of CO2 from Ancient Carbonates in Martian Nakhlites (MIL 03346, 090030, 090032, 090036) Show Distinct δ18O and δ13C Isotopic Values Compared to Secondary Terrestrial Carbonates Formed on Ordinary Chondrites (OC) Collected from Antarctica

    NASA Astrophysics Data System (ADS)

    Evans, M. E.; Niles, P. B.

    2016-12-01

    This study finds that 1) Martian Nakhlite meteorites contain insitu carbonates with distinctive δ13C from terrestrial carbonates formed on Antarctic Ordinary Chondrites (OCs), and 2) Martian carbonate formation δ18O values for atmospheric CO2 and meteoric water can be predicted with a mixing model created from Antarctic OC carbonate data. Nakhlite and OC meteorites collected in Antarctica contain both calcites and non-calcite carbonates. Rock samples were crushed, dissolved in pure phosphoric acid, and allowed to react at the following conditions: 1 hr@30°C (Rx0, fine calcite), 18 hr@30°C (Rx1, course calcite), and 3 hr@150°C (Rx2, siderite and/or magnesite). The collected CO2 was purified with a Thermo Trace GC and analyzed on a Thermo MAT 253 IRMS in dual inlet mode. Ten OC meteorite samples collected from three different Antarctic regions (RBT, ALH, MIL) were analyzed. These samples had no pre-terrestrial aqueous alterations, yet evaporite minerals were visible on the fusion crust. It is deduced these OC carbonates were completely terrestrial. These calcites have δ13C=+6‰ and are consistent with equilibrium formation to Earth atmospheric CO2 δ13C=-7‰ at 0°C to 10°C. Siderite or magnesite fractionation may create slightly heavier δ13C as seen in the Rx2 results. The range of δ18O from +3‰ to +30‰ is heavier than expected if carbonate forms in equilibrium with only meteoric water. A δ18O mixing model is created with Earth atmospheric CO2 and meteoric water as end members. This model predicts the OC calcites form with 60%-90% contribution from atmospheric CO2 at 0°C, and the non-calcites form with 40-60% contribution from atmospheric CO2. Four martian Nakhlites collected from the Antarctic Miller Range were analyzed. These samples contain low carbonate concentrations (avg. 0.007% by weight) with distinctly heavier δ13C = +7‰ to +59‰. In general, these carbonates are lighter than expected if formed in equilibrium with the modern martian

  16. Metabolism of uniformly labeled (13)C-eicosapentaenoic acid and (13)C-arachidonic acid in young and old men.

    PubMed

    Léveillé, Pauline; Chouinard-Watkins, Raphaël; Windust, Anthony; Lawrence, Peter; Cunnane, Stephen C; Brenna, J Thomas; Plourde, Mélanie

    2017-08-01

    Background: Plasma eicosapentaenoic acid (EPA) and arachidonic acid (AA) concentrations increase with age.Objective: The aim of this study was to evaluate EPA and AA metabolism in young and old men by using uniformly labeled carbon-13 ((13)C) fatty acids.Design: Six young (∼25 y old) and 6 old (∼75 y old) healthy men were recruited. Each participant consumed a single oral dose of 35 mg (13)C-EPA and its metabolism was followed in the course of 14 d in the plasma and 28 d in the breath. After the washout period of ≥28 d, the same participants consumed a single oral dose of 50 mg (13)C-AA and its metabolism was followed for 28 d in plasma and breath.Results: There was a time × age interaction for (13)C-EPA (Ptime × age = 0.008), and the shape of the postprandial curves was different between young and old men. The (13)C-EPA plasma half-life was ∼2 d for both young and old men (P = 0.485). The percentage dose recovered of (13)C-EPA per hour as (13)CO2 and the cumulative β-oxidation of (13)C-EPA did not differ between young and old men. At 7 d, however, old men had a >2.2-fold higher plasma (13)C-DHA concentration synthesized from (13)C-EPA compared with young men (Page = 0.03). (13)C-AA metabolism was not different between young and old men. The (13)C-AA plasma half-life was ∼4.4 d in both young and old participants (P = 0.589).Conclusions: The metabolism of (13)C-AA was not modified by age, whereas (13)C-EPA metabolism was slightly but significantly different in old compared with young men. The higher plasma (13)C-DHA seen in old men may be a result of slower plasma DHA clearance with age. This trial was registered at clinicaltrials.gov as NCT02957188. © 2017 American Society for Nutrition.

  17. Synthesis of Site-Specifically (13)C Labeled Linoleic Acids.

    PubMed

    Offenbacher, Adam R; Zhu, Hui; Klinman, Judith P

    2016-10-12

    Soybean lipoxygenase-1 (SLO-1) catalyzes the C-H abstraction from the reactive carbon (C-11) in linoleic acid as the first and rate-determining step in the formation of alkylhydroperoxides. While previous labeling strategies have focused on deuterium labeling to ascertain the primary and secondary kinetic isotope effects for this reaction, there is an emerging interest and need for selectively enriched (13)C isotopologues. In this report, we present synthetic strategies for site-specific (13)C labeled linoleic acid substrates. We take advantage of a Corey-Fuchs formyl to terminal (13)C-labeled alkyne conversion, using (13)CBr4 as the labeling source, to reduce the number of steps from a previous fatty acid (13)C synthetic labeling approach. The labeled linoleic acid substrates are useful as nuclear tunneling markers and for extracting active site geometries of the enzyme-substrate complex in lipoxygenase.

  18. (13)C metabolic flux analysis of recombinant expression hosts.

    PubMed

    Young, Jamey D

    2014-12-01

    Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.

  19. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China

    USDA-ARS?s Scientific Manuscript database

    Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...

  20. Volumetric Properties of the Mixture 2-Methoxyethanol C3H8O2 + C5H10O3 Diethyl carbonate (VMSD1212, LB4691_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 2-Methoxyethanol C3H8O2 + C5H10O3 Diethyl carbonate (VMSD1212, LB4691_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  1. Volumetric Properties of the Mixture 2-Methoxyethanol C3H8O2 + C5H10O3 Diethyl carbonate (VMSD1111, LB4682_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 2-Methoxyethanol C3H8O2 + C5H10O3 Diethyl carbonate (VMSD1111, LB4682_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  2. Heat of Mixing and Solution of 2-Methoxyethanol C3H8O2 + C5H10O3 Diethyl carbonate (HMSD1111, LB4208_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'heat of Mixing and Solution of 2-Methoxyethanol C3H8O2 + C5H10O3 Diethyl carbonate (HMSD1111, LB4208_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  3. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey.

    PubMed

    Cotte, J F; Casabianca, H; Lhéritier, J; Perrucchietti, C; Sanglar, C; Waton, H; Grenier-Loustalot, M F

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The delta(13)C parameter was not significant for characterizing an origin, while the (D/H)(I) ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C(4) syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per thousand (permil). A filtration step was added to the experimental procedure and provided results that were compliant with the natural origin of our honey samples. In addition, spiking with a C(4) syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying.

  4. {sup 13}C, {sup 1}H, {sup 6}Li magic-angle spinning nuclear magnetic resonance, electron paramagnetic resonance, and Fourier transform infrared study of intercalation electrodes based in ultrasoft carbons obtained below 3100 K

    SciTech Connect

    Alcantara, R.; Madrigal, F.J.F.; Lavela, P.; Tirado, J.L.; Mateos, J.M.J.; Stoyanova, R.; Zhecheva, E.

    1999-01-01

    The past decade has seen an important development of materials for high-performance energy storage systems. Particularly, the field of electrode materials for advanced lithium batteries has attracted the interest of numerous researchers. Petroleum coke samples of different origins and heat treated at different temperatures below 3100 K have been studied by spectroscopic and electrochemical procedures. According to {sup 13}C and {sup 1}H magic-angle spinning (MAS) nuclear magnetic resonance (NMR), infrared (IR), and electron paramagnetic resonance (EPR) data, aromatic compounds and surface OH groups are present in green coke samples. The preparation of CMB (combustible) sample from 1673 K leads to a low-temperature graphitization process, as shown by the occurrence of multiphase products containing both turbostatic and graphitized solid. This process is accompanied by the loss of aromatic compounds and surface hydroxyls. The optimization of the lithium intercalation electrodes based in the green coke materials was carried out by thermal treatment at 1023 K under dynamic vacuum conditions. Such pretreatment of the electrode material leads to marked enhancement of reversible capacities without the higher temperatures usually required for other soft carbon materials. Finally, the results of {sup 6}Li MAS NMR and EPR have been correlated with the experimental determination of lithium diffusion coefficients and surface properties. On the basis of these results, spin resonance spectroscopies are found to be a powerful tool to discern between the different petroleum coke samples to select the active electrode material with best performance.

  5. Glucogenesis in an insect, Manduca sexta L., estimated from the 13C isotopomer distribution in trehalose synthesized from [1,3-13C2]glycerol.

    PubMed

    Thompson, S N

    1997-07-19

    Glucogenesis from [3-13C]alanine and [1,3-13C2]glycerol was demonstrated in the insect Manduca sexta by examining the 13C enrichment of trehalose, a non-reducing disaccharide of glucose synthesized in the insect fat body and released into the blood or hemolymph. In insects maintained on a low carbohydrate diet, trehalose synthesized from [3-13C]alanine was selectively enriched at C1 and C6, and C2 and C5. The 13C-labelling pattern indicated the carboxylation of [3-13C]pyruvate, formed by transamination of the [3-13C]alanine followed by randomization of the label at the fumarate step of the tricarboxylic acid cycle and glucose synthesis via the gluconeogenic pathway. 13C enrichment of trehalose was absent in similarly maintained insect larvae administered 3-mercaptopicolinic acid, an inhibitor of hepatic phosphoenolpyruvate carboxykinase. Insects on the low carbohydrate diet also synthesized trehalose from [1,3-13C2]glycerol. 13C multiplets were observed in trehalose C3 and C4 demonstrating the synthesis of three 13C enriched glucose isotopomers from the 13C-labelled glycerol. The relative contributions of 13C-labelled glycerol and unlabelled 3 carbon substrates to the synthesis of the 13C enriched trehalose isotopomers were determined from the multiplet structure at C3, and calculation of minimal rates of glucogenesis were based on the 13C enrichment of C4. The C4/C3 13C enrichment ratio in trehalose synthesized from [1,3-13C2]glycerol was close to unity, and total glucogenesis was calculated after estimation of the expected contribution of unlabelled trehalose synthesis from 3 carbon substrates by comparison of the ratio of unlabelled and labelled contributions to the 13C enriched trehalose isotopomers with the 13C enrichment of [1,3-13C2]glycerol-3-phosphate. The estimated total rates of glucogenesis varied from 0.33 to 2.80 micromol glucose/g fresh weight/h. The blood sugar level of M. sexta was also highly variable. Although the potential importance of

  6. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

    NASA Technical Reports Server (NTRS)

    Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.

    1995-01-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  7. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

    NASA Technical Reports Server (NTRS)

    Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.

    1995-01-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  8. Measurement of (13) C turnover into glutamate and glutamine pools in brain tumor patients.

    PubMed

    Pichumani, Kumar; Mashimo, Tomoyuki; Vemireddy, Vamsidhara; Ijare, Omkar B; Mickey, Bruce E; Malloy, Craig R; Marin-Valencia, Isaac; Baskin, David S; Bachoo, Robert M; Maher, Elizabeth A

    2017-09-30

    Malignant brain tumors are known to utilize acetate as an alternate carbon source in the citric acid cycle for their bioenergetics. (13) C NMR based isotopomer analysis has been used to measure turnover of (13) C-acetate carbons into glutamate and glutamine pools in tumors. Plasma from the patients infused with [1,2-(13) C]acetate further revealed the presence of (13) C isotopomers of glutamine, glucose and lactate in the circulation that were generated due to metabolism of [1,2-(13) C]acetate by peripheral organs. In the tumor cells, [4-(13) C] and [3,4-(13) C] glutamate and glutamine isotopomers were generated from blood-borne (13) C labeled glucose and lactate which were formed due to [1,2-(13) C[acetate metabolism of peripheral tissues. [4,5-(13) C] and [3,4,5-(13) C] glutamate and glutamine isotopomers were produced from [1,2-(13) C]acetyl-CoA that were derived from direct oxidation of [1,2-(13) C]acetate in the tumor This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  10. Synthesis and applications of {sup 13}C glycerol

    SciTech Connect

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  11. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE PAGES

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    2016-10-20

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  12. Materials Data on Mg3H13C9NO13 (SG:14) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-07-14

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. ESR Investigations on 13C enriched Sc3@C82

    NASA Astrophysics Data System (ADS)

    Rahmer, J.; Mehring, M.; Dorn, H. C.

    2002-10-01

    13C enrichment of Sc3@C82 for the first time allows the resolution of 13C hyperfine satellite lines in the electron spin resonance (ESR) spectra of this material. A simple model is proposed to simulate the spectra. The ESR data is well reproduced under the assumption that two or three carbon atoms have a significantly stronger hyperfine coupling than all other atoms. Relating this result to the geometry of the C3υ cage leads to the conclusion that the electron density is concentrated on the upper hemisphere of the C82 cage.

  14. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide.

    PubMed

    Cai, Weiwei; Piner, Richard D; Stadermann, Frank J; Park, Sungjin; Shaibat, Medhat A; Ishii, Yoshitaka; Yang, Dongxing; Velamakanni, Aruna; An, Sung Jin; Stoller, Meryl; An, Jinho; Chen, Dongmin; Ruoff, Rodney S

    2008-09-26

    The detailed chemical structure of graphite oxide (GO), a layered material prepared from graphite almost 150 years ago and a precursor to chemically modified graphenes, has not been previously resolved because of the pseudo-random chemical functionalization of each layer, as well as variations in exact composition. Carbon-13 (13C) solid-state nuclear magnetic resonance (SSNMR) spectra of GO for natural abundance 13C have poor signal-to-noise ratios. Approximately 100% 13C-labeled graphite was made and converted to 13C-labeled GO, and 13C SSNMR was used to reveal details of the chemical bonding network, including the chemical groups and their connections. Carbon-13-labeled graphite can be used to prepare chemically modified graphenes for 13C SSNMR analysis with enhanced sensitivity and for fundamental studies of 13C-labeled graphite and graphene.

  15. Gram-scale synthesis and efficient purification of 13C-labeled levoglucosan from 13C glucose.

    PubMed

    Alexander, Lisa; Hoyt, Caroline; Michalczyk, Ryszard; Wu, Ruilian; Thorn, Dave L; Silks, L A Pete

    2013-01-01

    (13)C-Labeled levoglucosan has been synthesized and purified in good yield, and on the gram scale in one step from commercially available (13)C glucose. This one-step protocol uses 2-chloro-1,3-dimethylimidazolinium chloride that serves to selectively activate the anomeric carbon toward substitution reactions. The labeled glucose is then smoothly converted to the anhydroglucose. Purification is efficiently achieved on large scale by chromatography on silica gel. Published 2012. This article is a US Government work and is in the public domain in the USA.

  16. Compound-specific stable carbon isotope ratios (delta13C values) of the halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1).

    PubMed

    Vetter, Walter; Gleixner, Gerd

    2006-01-01

    Compound-specific isotope analysis using gas chromatography interfaced to isotope ratio mass spectrometry (GC/IRMS) was applied for the determination of delta13C values of the marine halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1). The delta13C value of a lab-made Q1 standard (-34.20 +/- 0.27 per thousand) was depleted in 13C by more than 11 per thousand relative to the residues of Q1 in dolphin blubber from Australia and skua liver from Antarctica. This clarified that the synthesized Q1 was not the source for Q1 in the biota samples. However, two Australian marine mammals showed a large variation in the delta13C value, which, in our experience, was implausible. Since the GC/IRMS system was connected to a conventional ion trap mass spectrometer by a post-column splitter, we were able to closely inspect the peak purity of Q1 in the respective samples. While the mass spectra of Q1 did not indicate any impurity, a fronting peak of PCB 101 was identified in one sample. This interference falsified the delta13C value of the respective sample. Once this sample was excluded, we found that the delta13C values of the remaining samples, i.e. liver of Antarctic brown skua (-21.47 +/- 1.47 per thousand) and blubber of Australian melon-headed whale (-22.80 +/- 0.33 per thousand), were in the same order. The standard deviation for Q1 was larger in the skua samples than in the standard and the whale blubber sample. This was due to lower amounts of skua sample available. It remained unclear if the Q1 residues originate from the same producer and location.

  17. Structure of uniaxially aligned 13C labeled silk fibroin fibers with solid state 13C-NMR

    NASA Astrophysics Data System (ADS)

    Demura, Makoto; Yamazaki, Yasunobu; Asakura, Tetsuo; Ogawa, Katsuaki

    1998-01-01

    Carbon-13 isotopic labeling of B. mori silk fibroin was achieved biosynthetically with [1- 13C] glycine in order to determine the carbonyl bond orientation angle of glycine sites with the silk fibroin. Angular dependence of 13C solid state NMR spectra of uniaxially oriented silk fibroin fiber block sample due to the carbonyl 13C chemical shift anisotropy was simulated according to the chemical shift transformation with Euler angles, αF and βF, from principal axis system (PAS) to fiber axis system (FAS). The another Euler angles, αDCO and βDCO, for transformation from PAS to the molecular symmetry axis were determined from the [1- 13C] glycine sequence model compounds for the silk fibroin. By the combination of these Euler angles, the carbonyl bond orientation angle with respect to FAS of the [1- 13C] glycine sites of the silk fibroin was determined to be 90 ± 5°. This value is in agreement with the X-ray diffraction and our previous solid state NMR data of B. mori silk fibroin fiber (a typical β-pleated sheet) within experimental error.

  18. 13C NMR of tunnelling methyl groups

    NASA Astrophysics Data System (ADS)

    Detken, A.

    The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency upsilon t. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for upsilon is derived from the 13C NMR spectrum. In aspirinTM (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25K.

  19. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases.

    PubMed

    Fiala, Radovan; Sklenár, Vladimír

    2007-10-01

    The paper presents a set of two-dimensional experiments that utilize direct (13)C detection to provide proton-carbon, carbon-carbon and carbon-nitrogen correlations in the bases of nucleic acids. The set includes a (13)C-detected proton-carbon correlation experiment for the measurement of (13)C-(13)C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the (13)C-(13)C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a (13)C-detected (13)C-(15)N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon-carbon couplings and/or carbon decoupling in the direct dimension, while the S(3)E procedure is preferred in the indirect dimension of the carbon-nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of (13)C and (15)N chemical shifts and carbon-carbon and carbon-nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media.

  20. Hydrogen dynamics in soil organic matter as determined by 13C and 2H labeling experiments

    NASA Astrophysics Data System (ADS)

    Paul, Alexia; Hatté, Christine; Pastor, Lucie; Thiry, Yves; Siclet, Françoise; Balesdent, Jérôme

    2016-12-01

    Understanding hydrogen dynamics in soil organic matter is important to predict the fate of 3H in terrestrial environments. One way to determine hydrogen fate and to point out processes is to examine the isotopic signature of the element in soil. However, the non-exchangeable hydrogen isotopic signal in soil is complex and depends on the fate of organic compounds and microbial biosyntheses that incorporate water-derived hydrogen. To decipher this complex system and to understand the close link between hydrogen and carbon cycles, we followed labeled hydrogen and labeled carbon throughout near-natural soil incubations. We performed incubation experiments with three labeling conditions: 1 - 13C2H double-labeled molecules in the presence of 1H2O; 2 - 13C-labeled molecules in the presence of 2H2O; 3 - no molecule addition in the presence of 2H2O. The preservation of substrate-derived hydrogen after 1 year of incubation (ca. 5 % in most cases) was lower than the preservation of substrate-derived carbon (30 % in average). We highlighted that 70 % of the C-H bonds are broken during the degradation of the molecule, which permits the exchange with water hydrogen. Added molecules are used more for trophic resources. The isotopic composition of the non-exchangeable hydrogen was mainly driven by the incorporation of water hydrogen during microbial biosynthesis. It is linearly correlated with the amount of carbon that is degraded in the soil. The quantitative incorporation of water hydrogen in bulk material and lipids demonstrates that non-exchangeable hydrogen exists in both organic and mineral-bound forms. The proportion of the latter depends on soil type and minerals. This experiment quantified the processes affecting the isotopic composition of non-exchangeable hydrogen, and the results can be used to predict the fate of tritium in the ecosystem or the water deuterium signature in organic matter.

  1. Electric dipole moment of 13C

    NASA Astrophysics Data System (ADS)

    Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro

    2017-06-01

    We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.

  2. Biosynthetic controls on the 13C contents of organic components in the photoautotrophic bacterium Chloroflexus aurantiacus.

    PubMed

    van Der Meer, M T; Schouten, S; van Dongen, B E; Rijpstra, W I; Fuchs, G; Damste, J S; de Leeuw, J W; Ward, D M

    2001-04-06

    To assess the effects related to known and proposed biosynthetic pathways on the (13)C content of lipids and storage products of the photoautotrophic bacterium Chloroflexus aurantiacus, the isotopic compositions of bulk cell material, alkyl and isoprenoid lipids, and storage products such as glycogen and polyhydroxyalkanoic acids have been investigated. The bulk cell material was 13 per thousand depleted in (13)C relative to the dissolved inorganic carbon. Evidently, inorganic carbon fixation by the main carboxylating enzymes used by C. aurantiacus, which are assumed to use bicarbonate rather than CO(2), results in a relatively small carbon isotopic fractionation compared with CO(2) fixation by the Calvin cycle. Even carbon numbered fatty acids, odd carbon numbered fatty acids, and isoprenoid lipids were 14, 15, and 17-18 per thousand depleted in (13)C relative to the carbon source, respectively. Based on the (13)C contents of alkyl and isoprenoid lipids, a 40 per thousand difference in (13)C content between the carboxyl and methyl carbon from acetyl-coenzyme A has been calculated. Both sugars and polyhydroxyalkanoic acid were enriched in (13)C relative to the alkyl and isoprenoid lipids. To the best of our knowledge this is the first report in which the stable carbon isotopic composition of a large range of biosynthetic products in a photoautotrophic organism has been investigated and interpreted based on previously proposed inorganic carbon fixation and biosynthetic pathways. Our results indicate that compound-specific stable carbon isotope analysis may provide a rapid screening tool for carbon fixation pathways.

  3. Biosynthetic controls on the 13C contents of organic components in the photoautotrophic bacterium Chloroflexus aurantiacus.

    PubMed

    van der Meer, M T; Schouten, S; van Dongen, B E; Rijpstra, W I; Fuchs, G; Damsté, J S; de Leeuw, J W; Ward, D M

    2001-06-15

    To assess the effects related to known and proposed biosynthetic pathways on the (13)C content of lipids and storage products of the photoautotrophic bacterium Chloroflexus aurantiacus, the isotopic compositions of bulk cell material, alkyl and isoprenoid lipids, and storage products such as glycogen and polyhydroxyalkanoic acids have been investigated. The bulk cell material was 13 per thousand depleted in (13)C relative to the dissolved inorganic carbon. Evidently, inorganic carbon fixation by the main carboxylating enzymes used by C. aurantiacus, which are assumed to use bicarbonate rather than CO(2), results in a relatively small carbon isotopic fractionation compared with CO(2) fixation by the Calvin cycle. Even carbon numbered fatty acids, odd carbon numbered fatty acids, and isoprenoid lipids were 14, 15, and 17-18 per thousand depleted in (13)C relative to the carbon source, respectively. Based on the (13)C contents of alkyl and isoprenoid lipids, a 40 per thousand difference in (13)C content between the carboxyl and methyl carbon from acetyl-coenzyme A has been calculated. Both sugars and polyhydroxyalkanoic acid were enriched in (13)C relative to the alkyl and isoprenoid lipids. To the best of our knowledge this is the first report in which the stable carbon isotopic composition of a large range of biosynthetic products in a photoautotrophic organism has been investigated and interpreted based on previously proposed inorganic carbon fixation and biosynthetic pathways. Our results indicate that compound-specific stable carbon isotope analysis may provide a rapid screening tool for carbon fixation pathways.

  4. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  5. Modeling of the 2007 JET ^13C migration experiments

    NASA Astrophysics Data System (ADS)

    Strachan, J. D.; Likonen, J.; Hakola, A.; Coad, J. P.; Widdowson, A.; Koivuranta, S.; Hole, D. E.; Rubel, M.

    2010-11-01

    Using the last run day of the 2007 JET experimental campaign, ^13CH4 was introduced repeatedly from the vessel top into a single plasma type (H-mode, Ip= 1.6 MA, Bt= 1.6 T). Similar experiments were performed in 2001 (vessel top into L-Mode) and 2004 (outer divertor into H-Mode). Divertor and wall tiles were removed and been analysed using secondary ion mass spectrometry (SIMS) and Rutherford backscattering (RBS) to determine the ^13C migration. ^13C was observed to migrate both to the inner (largest deposit), outer divertor (less) , and the floor tiles (least). This paper reports the EDGE2D/NIMBUS based modelling of the carbon migration. The emphasis is on the comparison of the 2007 results with the 2001 results where both injections were from the machine top but ELMs were present in 2007 but not present in 2001. The ELMs seemed to cause more ^13C re-erosion near the inner strike point. Also of interest is the difference in the Private Flux Region deposits where the changes in divertor geometry between 2004 and 2007 caused differences in the deposits. In 2007, the tilting of the load bearing tile caused regions of the PFR to be shadowed from the inner strike point which were not shadowed in 2004, indicating ^13C neutrals originated from the OSP.

  6. Use of delta(13)C and delta(15)N, and carbon to nitrogen ratios to evaluate the impact of sewage-derived particulate organic matter on the benthic communities of the Southern California Bight.

    PubMed

    Ramírez-Alvarez, Nancy; Macías-Zamora, José Vinicio; Burke, Roger A; Rodríguez-Villanueva, Lúz Verónica

    2007-11-01

    We measured stable isotope ratios (delta(13)C and delta(15)N) of particulate organic matter (POM) sources and benthic organic matter compartments as well as sediment C to N ratios from the coastal area of the southern end of the Southern California Bight (SCB). We used the isotopic values to evaluate the relative importance of the major POM sources to the sediment and two benthic macroinvertebrates. Application of a simple model to sediment delta(13)C values suggested that sewage-derived POM (SDPOM) supplies an average of 48% of the organic C to study area sediments. Application of a similar model to Spiophanes duplex delta(13)C values suggested that SDPOM from wastewater treatment plants discharging into the SCB could supply up to 57% of the C assimilated by this important benthic macroinvertebrate in areas as far away as 26 km from SDPOM inputs. The stable isotope data for Amphiodia urtica were more difficult to interpret because of the complex feeding habits of this organism.

  7. 13C Tracer Insights into Biogenic Calcite Dissolution Kinetics

    NASA Astrophysics Data System (ADS)

    Subhas, A.; Adkins, J. F.; Berelson, W.; Rollins, N.; Erez, J.

    2016-12-01

    We present here dissolution kinetics of inorganic and various biogenic calcites in seawater. Our rate determinations are conducted using a novel isotope tracer approach, in which 13C-labeled carbonates are placed in a closed system of natural seawater of a pre-determined saturation state. The increase of seawater δ13C over time is a direct measure of mass transfer from solid to solution. Another advantage of our system is that the isotopic boundary conditions of the solid (pure 13C) and solution (99% 12C) are distinct. This isotopic gradient allows us to parse apart the net dissolution rate into gross dissolution and precipitation fluxes. Dissolution from the solid and precipitation from solution can be qualitatively assessed using a simple box model of gross fluxes at the mineral surface. Surprisingly, fitting our data using this model necessitates a thick ( 5 nm or 10 calcite monolayers) solid layer that interacts with seawater. To test this prediction, we measured vertical profiles of reacted and unreacted calcite surfaces using a Secondary Ion Mass Spectrometer (SIMS). Carbon isotope ratios through the surfaces of large, 13C-labeled calcites reacted in undersaturated and supersaturated water were compared to an unreacted control, and showed a precipitation signal of 12C from the surrounding seawater on the calcite surface, even in undersaturated conditions. The penetration of this 12C precipitation signal confirms the depth of the reactive calcite layer, and allows us to model semi-quantitatively the gross dissolution and precipitation fluxes for inorganic and biogenic calcites for which net dissolution rates have been measured using our isotopic tracer method. We show that for all biogenic carbonates measured — mixed benthic and planktonic foraminifera and the coccolith E. huxleyi — the net dissolution rate is a nonlinear function of saturation state (1-Omega). However, each class of carbonate exhibits a distinct curve of δ13C versus time at a single

  8. Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia

    NASA Astrophysics Data System (ADS)

    Letourneur, Y.; Lison de Loma, T.; Richard, P.; Harmelin-Vivien, M. L.; Cresson, P.; Banaru, D.; Fontaine, M.-F.; Gref, T.; Planes, S.

    2013-12-01

    Stable isotope ratios (δ15N and δ13C) and diet of three fish species, Stegastes nigricans, Chaetodon citrinellus and Epinephelus merra, were analyzed on the fringing coral reefs of two bays that are differentially exposed to river runoff on Moorea Island, French Polynesia. S. nigricans and C. citrinellus relied mostly on turf algae and presented similar trophic levels and δ15N values, whereas E. merra fed on large invertebrates (crabs and shrimps) and had higher trophic levels and δ15N values. Discrepancies existed between stomach content and stable isotope analyses for the relative importance of food items. Bayesian mixing models indicated that sedimented organic matter was also an important additional food for S. nigricans and C. citrinellus, and fishes for E. merra. The main sources of organic matter involved in the food webs ending with these species were algal turfs and surface sediments, while water particulate organic matter was barely used. Significant spatial differences in C and N isotopic ratios for sources and fishes were found within and between bays. Lower 13C and higher 15N values were observed for various compartments of the studied trophic network at the end of each bay than at the entrance. Differences were observed between bays, with organic sources and consumers being, on average, slightly more 13C-depleted and 15N-enriched in Cook's Bay than in Opunohu Bay, linked with a higher mean annual flow of the river at Cook's Bay. Our results suggest that rivers bring continental material into these two bays, which is partly incorporated into the food webs of fringing coral reefs at least close to river mouths. Thus, continental inputs can influence the transfer of organic matter within coral reef food webs depending on the diet of organisms.

  9. The forensic analysis of office paper using carbon isotope ratio mass spectrometry. Part 3: Characterizing the source materials and the effect of production and usage on the δ13C values of paper.

    PubMed

    Jones, Kylie; Benson, Sarah; Roux, Claude

    2013-12-10

    When undertaking any study of the isotope abundance values of a bulk material, consideration should be given to the source materials and how they are combined to reach the final product being measured. While it is demonstrative to measure and record the values of clean papers, such as the results published as part one of this series, the majority of forensic casework samples would have undergone some form of writing or printing process prior to examination. Understanding the effects of these processes on the δ(13)C values of paper is essential for interpretation and comparison with clean samples, for example in cases where printed documents need to be compared to paper from an unprinted suspect ream. This study was undertaken so that the source materials, the effects of the production process and the effects of printing and forensic testing could be observed with respect to 80 gsm white office papers. Samples were taken sequentially from the paper production facility at the Australian Paper Mill (Maryvale, VIC). These samples ranged from raw wood chips through the pulping, whitening and refinement steps to the final formed and packed paper. Cellulose was extracted from each sample to observe both fractionation and mixing steps and their effect on the δ(13)C values. Overall, the mixing steps were observed to have a larger effect on the isotopic values of the bulk materials than any potential fractionation. Printing of papers using toner and inkjet printing processes and forensic testing were observed to have little effect on δ(13)C. These experiments highlighted considerations for sampling and confirmed the need for a holistic understanding of sample history to inform the interpretation of results.

  10. Imaging pH with hyperpolarized 13C.

    PubMed

    Gallagher, Ferdia A; Kettunen, Mikko I; Brindle, Kevin M

    2011-10-01

    pH is a fundamental physiological parameter that is tightly controlled by endogenous buffers. The acid-base balance is altered in many disease states, such as inflammation, ischemia and cancer. Despite the importance of pH, there are currently no routine methods for imaging the spatial distribution of pH in humans. The enormous gain in sensitivity afforded by dynamic nuclear polarization (DNP) has provided a novel way in which to image tissue pH using MR, which has the potential to be translated into the clinic. This review explores the advantages and disadvantages of current pH imaging techniques and how they compare with DNP-based approaches for the measurement and imaging of pH with hyperpolarized (13)C. Intravenous injection of hyperpolarized (13)C-labeled bicarbonate results in the rapid production of hyperpolarized (13)CO(2) in the reaction catalyzed by carbonic anhydrase. As this reaction is close to equilibrium in the body and is pH dependent, the ratio of the (13)C signal intensities from H(13)CO(3)(-) and (13)CO(2), measured using MRS, can be used to calculate pH in vivo. The application of this technique to a murine tumor model demonstrated that it measured predominantly extracellular pH and could be mapped in the animal using spectroscopic imaging techniques. A second approach has been to use the production of hyperpolarized (13)CO(2) from hyperpolarized [1-(13)C]pyruvate to measure predominantly intracellular pH. In tissues with a high aerobic capacity, such as the heart, the hyperpolarized [1-(13)C]pyruvate undergoes rapid oxidative decarboxylation, catalyzed by intramitochondrial pyruvate dehydrogenase. Provided that there is sufficient carbonic anhydrase present to catalyze the rapid equilibration of the hyperpolarized (13)C label between CO(2) and bicarbonate, the ratio of their resonance intensities may again be used to estimate pH, which, in this case, is predominantly intracellular. As both pyruvate and bicarbonate are endogenous molecules they

  11. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  12. Tree-ring cellulose exhibits several distinct intramolecular 13C signals

    NASA Astrophysics Data System (ADS)

    Wieloch, Thomas; Ehlers, Ina; Frank, David; Gessler, Arthur; Grabner, Michael; Yu, Jun; Schleucher, Jürgen

    2017-04-01

    Stable carbon isotopes are a key tool in biogeosciences. Present applications including compound-specific isotope analysis measure 13C/12C ratios (δ13C) of bulk material or of whole molecules. However, it is well known that primary metabolites also show large intramolecular 13C variation - also called isotopomer variation. This variation reflects 13C fractionation by enzyme reactions and therefore encodes metabolic information. Furthermore, δ13C must be considered an average of the intramolecular 13C distribution. Here we will present (1) methodology to analyse intramolecular 13C distributions of tree-ring cellulose by quantitative 13C NMR (Chaintreau et al., 2013, Anal Chim Acta, 788, 108-113); (2) intramolecular 13C distributions of an annually-resolved tree ring chronology (Pinus nigra, 1961-1995); (3) isotope parameters and terminology for analysis of intramolecular isotope time series; (4) a method for correcting for heterotrophic C redistribution. We will show that the intramolecular 13C distribution of tree-ring cellulose shows large variation, with differences between isotopomers exceeding 10‰Ṫhus, individual 13C isotopomers of cellulose constitute distinct 13C inputs into major global C pools such as wood and soil organic matter. When glucose units with the observed intramolecular 13C pattern are broken down along alternative catabolic pathways, it must be expected that respired CO2 with strongly differing δ13C will be released; indicating that intramolecular 13C variation affects isotope signals of atmosphere-biosphere C exchange fluxes. taking this variation into account will improve modelling of the global C cycle. Furthermore, cluster analysis shows that tree-ring glucose exhibits several independent intramolecular 13C signals, which constitute distinct ecophysiological information channels. Thus, whole-molecule 13C analysis likely misses a large part of the isotope information stored in tree rings. As we have shown for deuterium (Ehlers et al

  13. Four-dimensional sup 13 C/ sup 13 C-edited nuclear Overhauser Enhancement Spectroscopy of a protein in solution: Application to interleukin 1. beta

    SciTech Connect

    Clore, G.M.; Kay, L.E.; Bax, A.; Gronenborn, A.M. )

    1991-01-01

    A four-dimensional {sup 13}C/{sup 13}C-edited NOESY experiment is described which dramatically improves the resolution of protein NMR spectra and enables the straightforward assignment of nuclear Overhauser effects involving aliphatic and/or aromatic protons in larger proteins. The experiment is demonstrated for uniformly (>95{percent}) {sup 13}C-labeled interleukin 1{beta}, a protein of 153 residues and 17.4 kDa, which plays a key role in the immune response. NOEs between aliphatic and/or aromatic protons are first spread out into a third dimension by the {sup 13}C chemical shift of the carbon atom attached to the originating proton and subsequently into a fourth dimension by the {sup 13}C chemical shift of the carbon atom attached to the destination proton. Thus, each NOE cross peak is labeled by four chemical shifts. By this means, ambiguities in the assignment of NOEs that arise from chemical shift overlap and degeneracy are completely removed. Further, NOEs between protons with the same chemical shifts can readily be detected providing their attached carbon atoms have different {sup 13}C chemical shifts. The design of the pulse sequence requires special care to minimize the level of artifacts arising from undesired coherence transfer pathways, and in particular those associated with diagonal peaks which correspond to magnetization that has not been transferred from one proton to another. The 4D {sup 13}C/{sup 13}C-edited NOESY experiment is characterized by high sensitivity as the through-bond transfer steps involve the large {sup 1}J{sub CH} (130 Hz) couplings, and it is possible to obtain high-quality spectra on 1-2 mM samples of {sup 13}C-labeled protein in as little as 3 days. This experiment should open up the application of protein structure determination by NMR to a large number of medium-sized proteins (150-300 residues) of biological interest.

  14. [Determination of 13C enrichment in soil amino acid enantiomers by gas chromatogram/mass spectrometry].

    PubMed

    He, Hong-Bo; Zhang, Wei; Ding, Xue-Li; Bai, Zhen; Liu, Ning; Zhang, Xu-Dong

    2008-06-01

    The transformation and renewal of amino acid enantiomers is of significance in indicating the turnover mechanism of soil organic matter. In this paper, a method of gas chromatogram/mass spectrometry combined with U-13 C-glucose incubation was developed to determine the 13C enrichment in soil amino acid enantiomers, which could effectively differentiate the original and the newly synthesized amino acids in soil matrix. The added U-13 C-glucose was utilized rapidly to structure the amino acid carbon skeleton, and the change of relative abundance of isotope ions could be determined by mass spectrometry. The direct incorporation of U-13 C glucose was estimated by the intensity increase of m/z (F + n) to F (F was parent fragment, and n was the carbon number in the fragment), while the total isotope incorporation from the added 13C could be calculated according to the abundance ratio increment summation from m/z (Fa + 1) through (Fa + T) (Fa was the fragment containing all original skeleton carbons, and T was the carbon number in the amino acid molecule). The 13C enrichment in the target compound was expressed as atom percentage excess (APE), and that of D-amino acid needed to be corrected by the coefficient of hydrolysis-induced racemization. The 13C enrichment reflected the carbon turnover velocity of individual amino acid enantiomers, and was powerful to investigate the dynamics of soil amino acids.

  15. (13)C MRS of human brain at 7 Tesla using [2-(13)C]glucose infusion and low power broadband stochastic proton decoupling.

    PubMed

    Li, Shizhe; An, Li; Yu, Shao; Ferraris Araneta, Maria; Johnson, Christopher S; Wang, Shumin; Shen, Jun

    2016-03-01

    Carbon-13 ((13)C) MR spectroscopy (MRS) of the human brain at 7 Tesla (T) may pose patient safety issues due to high radiofrequency (RF) power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo (13)C MRS of human brain at 7 T using broadband low RF power proton decoupling. Carboxylic/amide (13)C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. (13)C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. At 7 T, the peak amplitude of carboxylic/amide (13)C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T (13)C MRS technique used decoupling power and average transmit power of less than 35 watts (W) and 3.6 W, respectively. In vivo (13)C MRS studies of human brain can be performed at 7 T, well below the RF safety threshold, by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. © 2015 Wiley Periodicals, Inc.

  16. Characterization of uniformly and atom-specifically 13C-labeled heparin and heparan sulfate polysaccharide precursors using 13C NMR spectroscopy and ESI mass spectrometry

    PubMed Central

    Nguyen, Thao K. N.; Tran, Vy M.; Victor, Xylophone V.; Skalicky, Jack J.; Kuberan, Balagurunathan

    2010-01-01

    The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin/heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin/heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome–proteome interactions. PMID:20832774

  17. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    PubMed

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs.

  18. A global ocean climatology of preindustrial and modern ocean δ13C

    NASA Astrophysics Data System (ADS)

    Eide, Marie; Olsen, Are; Ninnemann, Ulysses S.; Johannessen, Truls

    2017-03-01

    We present a global ocean climatology of dissolved inorganic carbon δ13C (‰) corrected for the 13C-Suess effect, preindustrial δ13C. This was constructed by first using Olsen and Ninnemann's (2010) back-calculation method on data from 25 World Ocean Circulation Experiment cruises to reconstruct the preindustrial δ13C on sections spanning all major oceans. Next, we developed five multilinear regression equations, one for each major ocean basin, which were applied on the World Ocean Atlas data to construct the climatology. This reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values. The maxima, of up to 1.8‰, occurs in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and apparent oxygen utilization (AOU) than between δ13C and phosphate. This arises because, in contrast to phosphate, AOU and δ13C are both partly reset when waters are ventilated in the Southern Ocean and underscore that δ13C is a highly robust proxy for past changes in ocean oxygen content and ocean ventilation. Our global preindustrial δ13C climatology is openly accessible and can be used, for example, for improved model evaluation and interpretation of sediment δ13C records.

  19. Fish Movement and Dietary History Derived from Otolith (delta)13C

    SciTech Connect

    Weber, P K; Finlay, J C; Power, M E; Phillis, C C; Ramon, C E; Eaton, G F; Ingram, B L

    2005-09-08

    Habitat use and food web linkages are critical data for fish conservation and habitat restoration efforts, particularly for threatened salmonids species. Otolith microchemistry has been shown to be a powerful tool for reconstructing fish movement, but over small distances (kilometers), geology-derived differences in otolith chemistry are rare. Here, we demonstrate that otolith {sup 13}C/{sup 12}C ratio (i.e. {delta}{sup 13}C) of anadromous steelhead trout can be used to distinguish residence in small streams from residence in larger streams and rivers. While previous research has shown that water dissolved inorganic carbon {delta}{sup 13}C is the primary source of carbon in otoliths, the downstream change in food {delta}{sup 13}C in this watershed appears to be the primary control on otolith {delta}{sup 13}C. As a result, this method can also be applied to the problem of reconstructing feeding history at a location.

  20. Uptake of algal carbon and the likely synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and 13C tracer experiments

    NASA Astrophysics Data System (ADS)

    Larkin, K. E.; Gooday, A. J.; Woulds, C.; Jeffreys, R. M.; Schwartz, M.; Cowie, G.; Whitcraft, C.; Levin, L.; Dick, J. R.; Pond, D. W.

    2014-07-01

    Foraminifera are an important component of benthic communities in oxygen-depleted settings, where they potentially play a significant role in the processing of organic matter. We tracked the uptake of a 13C-labelled algal food source into individual fatty acids in the benthic foraminiferal species Uvigerina ex. gr. semiornata from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was 13C-labelled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m water depth and for 2.5 days in duration. Shipboard laboratory incubations of cores collected at 140 m incorporated an oxystat system to maintain ambient dissolved oxygen concentrations and were terminated after 5 days. Uptake of diatoms was rapid, with a high incorporation of diatom fatty acids into foraminifera after ~ 2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in situ and laboratory-based experiments. These results indicate that

  1. Uptake of algal carbon and the synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and 13C tracer experiments

    NASA Astrophysics Data System (ADS)

    Larkin, K. E.; Gooday, A. J.; Woulds, C.; Jeffreys, R.; Schwartz, M.; Cowie, G.; Whitcraft, C.; Levin, L.; Dick, J. R.; Pond, D. W.

    2014-01-01

    Foraminifera are an important component of benthic communities in oxygen depleted settings, where they potentially play a~significant role in the processing of organic matter. We tracked the uptake of a 13C-labeled algal food source into individual fatty acids in the benthic foraminiferal species, Uvigerina ex. gr. semiornata, from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan Margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was 13C-labeled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m and for 2.5 days duration, whilst a laboratory incubation used an oxystat system to maintain ambient dissolved oxygen concentrations. These shipboard experiments were terminated after 5 days. Uptake of diatoms was rapid, with high incorporation of diatom fatty acids into foraminifera after ~2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in~situ and laboratory-based experiments. These results indicate that U. ex. gr. semiornata rapidly ingested the diatom food source and that this foraminifera will play an important role in the short-term cycling of organic matter within this OMZ environment. The experiments also suggested that U. ex. gr. semiornata consumed non-labeled bacterial food items, particularly bacteria, and synthesised the polyunsaturated fatty acid 20:4(n-6) de novo. 20:4(n-6) is often abundant in benthic fauna yet its origins and function have remained unclear. This study demonstrates that U. ex. gr. semiornata is capable of de novo synthesis of this "essential fatty acid" and is potentially a major source of this dietary nutrient in benthic food

  2. Site-specific 13C content by quantitative isotopic 13C nuclear magnetic resonance spectrometry: a pilot inter-laboratory study.

    PubMed

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S

    2013-07-25

    Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic (13)C NMR was then assessed on vanillin from three different origins associated with specific δ (13)Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ (13)Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Age-related variations in delta(13)C of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest.

    PubMed

    Fessenden, Julianna E; Ehleringer, James R

    2002-02-01

    We tested the hypothesis that forest age influences the carbon isotope ratio (delta13C) of carbon reservoirs and CO2 at local and regional levels. Carbon isotope ratios of ecosystem respiration (delta13C(R)), soil respiration (delta13C(R-soil)), bulk needle tissue (delta13C(P)) and soil organic carbon (delta(13)C(SOC)) were measured in > 450-, 40- and 20-year-old temperate, mixed coniferous forests in southern Washington, USA. Values of delta13C(R), delta13C(R-soil), delta13C(P) and delta13C(SOC) showed consistent enrichment with increasing stand age. Between the youngest and oldest forests there was an approximately 1 per thousand enrichment in delta13C(P) (at similar canopy levels), delta13C(SOC) (throughout the soil column), delta13C(R-soil) (during the wet season) and delta13C(R) (during the dry season). Mean values of delta13C(R) were -25.9, -26.5 and -27.0 per thousand for the 450-, 40- and 20-year-old forests, respectively. Both delta13C(R-soil) and the difference between delta13C(R) and delta13C(R-soil) were more 13C enriched in older forests than in young forest: delta13C(R) - delta13C(R-soil) = 2.3, 1.1 and 0.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta(13)C(P) were proportionally more depleted relative to delta13C(R): delta13C(R) - delta13C(P) = 0.5, 2.2 and 2.5 per thousand for the 450-, 40- and 20-year-old forests, respectively. Values of delta13C(P) were most 13C-enriched at the top of the canopy and in the oldest forest regardless of season (overall values were -26.9, -28.7 and -29.4 per thousand for the 450-, 40- and 20-year-old forests, respectively). Values of delta13C(SOC) from shallow soil depths were similar to delta13C(P) values of upper- and mid-canopy needles. All delta13C data are consistent with the hypothesis that a decrease in stomatal conductance associated with decreased hydraulic conductance leads to increased CO2 diffusional limitations in older coniferous trees. The strong associations

  4. The 13C nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  5. Benzoxazolin-2(3H)-one (BOA) induced changes in leaf water relations, photosynthesis and carbon isotope discrimination in Lactuca sativa.

    PubMed

    Hussain, M Iftikhar; González, L; Chiapusio, G; Reigosa, M J

    2011-08-01

    The effects are reported here of Benzoxazolin-2(3H)-one (BOA), an allelopathic compound, on plant water relations, growth, components of chlorophyll fluorescence, and carbon isotope discrimination in lettuce (Lactuca sativa L.). Lettuce seedlings were grown in 1:1 Hoagland solution in perlite culture medium in environmentally controlled glasshouse. After 30 days, BOA was applied at concentration of 0.1, 0.5, 1.0 and 1.5 mM and distilled water (control). BOA, in the range (0.1-1.5 mM), decreased the shoot length, root length, leaf and root fresh weight. Within this concentration range, BOA significantly reduced relative water content while leaf osmotic potential remained unaltered. Stress response of lettuce was evaluated on the basis of six days of treatment with 1.5 mM BOA by analyzing several chlorophyll fluorescence parameters determined under dark-adapted and steady state conditions. There was no change in initial fluorescence (F₀) in response to BOA treatment while maximum chlorophyll fluorescence (F(m)) was significantly reduced. BOA treatment significantly reduced variable fluorescence (F(v)) on first, second, third, fourth, fifth and sixth day. Quantum efficiency of open PSII reaction centers (F(v)/F(m)) in the dark-adapted state was significantly reduced in response to BOA treatment. Quantum yield of photosystem II (ΦPSII) electron transport was significantly reduced because of decrease in the efficiency of excitation energy trapping of PSII reaction centers. Maximum fluorescence in light-adapted leaves (F'(m)) was significantly decreased but there was no change in initial fluorescence in light-adapted state (F'₀) in response to 1.5 mM BOA treatment. BOA application significantly reduced photochemical fluorescence quenching (qP) indicating that the balance between excitation rate and electron transfer rate has changed leading to a more reduced state of PSII reaction centers. Non photochemical quenching (NPQ) was also significantly reduced by BOA

  6. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets.

    PubMed

    Dehghani M, Masoumeh; Lanz, Bernard; Duarte, João M N; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of (13)C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized (13)C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of (13)C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from (13)C-(13)C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters.The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of (13)C isotopomers available from fine structure multiplets in (13)C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of (13)C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. © The Author(s) 2016.

  7. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets

    PubMed Central

    Dehghani M., Masoumeh; Duarte, João M. N.; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. PMID:26969691

  8. In Vivo13C Spectroscopy in the Rat Brain using Hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate

    PubMed Central

    Marjańska, Małgorzata; Iltis, Isabelle; Shestov, Alexander A.; Deelchand, Dinesh K.; Nelson, Christopher; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-01-01

    The low sensitivity of 13C spectroscopy can be enhanced using dynamic nuclear polarization. Detection of hyperpolarized [1-13C]pyruvate and its metabolic products has been reported in kidney, liver, and muscle. In this work, the feasibility of measuring 13C signals of hyperpolarized 13C metabolic products in the rat brain in vivo following the injection of hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate is investigated. Injection of [2-13C]pyruvate led to the detection of [2-13C]lactate, but no other downstream metabolites such as TCA cycle intermediates were detected. Injection of [1-13C]pyruvate enabled the detection of both [1-13C]lactate and [13C]bicarbonate. A metabolic model was used to fit the hyperpolarized 13C time courses obtained during infusion of [1-13C]pyruvate and to determine the values of VPDH and VLDH. PMID:20685141

  9. Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick

    1989-01-01

    Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.

  10. EPR Spectra of Some Cu2+-Doped Metal Carbonates and Disorder Phase Transition in K3H(CO3)2

    NASA Astrophysics Data System (ADS)

    Demir, Dilek; Köksal, Fevzi; Kazak, Canan; Köseoğlu, Rahmi

    2009-02-01

    Cu2+-doped K3H(CO3)2, Rb2CO3, and Rb2KH(CO3)2 single crystals were investigated by electron paramagnetic resonance (EPR) spectroscopy. The EPR spectrum of K3H(CO3)2 indicates two different sites for Cu2+ at room and at low temperatures. But the signals for the two sites overlap at 318 K which is attributed to a disorder phase transition. Each of the other compounds exhibits one site. The Cu2+ ion seems to substitute the K+ and Rb+ ions and the charge compensations are fulfilled by the proton vacancies in K3H(CO3)2, and another K+ and Rb+ in the other compounds. The spin Hamiltonian parameters g and A for each compound are determined and discussed.

  11. 13C MRS of Human Brain at 7 Tesla Using [2-13C]Glucose Infusion and Low Power Broadband Stochastic Proton Decoupling

    PubMed Central

    Li, Shizhe; An, Li; Yu, Shao; Araneta, Maria Ferraris; Johnson, Christopher S.; Wang, Shumin; Shen, Jun

    2015-01-01

    Purpose 13C magnetic resonance spectroscopy (MRS) of human brain at 7 Tesla (T) may pose patient safety issues due to high RF power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo 13C MRS of human brain at 7 T using broadband low RF power proton decoupling. Methods Carboxylic/amide 13C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. 13C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. Results At 7 T, the peak amplitude of carboxylic/amide 13C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T 13C MRS technique used decoupling power and average transmit power of less than 35 W and 3.6 W, respectively. Conclusion In vivo 13C MRS studies of human brain can be performed at 7 T well below the RF safety threshold by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. PMID:25917936

  12. Pd(II)-Catalyzed Alkylation of Tertiary Carbon via Directing-Group-Mediated C(sp(3))-H Activation: Synthesis of Chiral 1,1,2-Trialkyl Substituted Cyclopropanes.

    PubMed

    Hoshiya, Naoyuki; Takenaka, Kei; Shuto, Satoshi; Uenishi, Jun'ichi

    2016-01-04

    A Pd(OAc)2-catalyzed alkylation reaction of the tertiary carbon of chiral cyclopropane substrates with alkyl iodides and bromides via C(sp(3))-H activation has been developed. This is an elusive example of a C-H activation-mediated alkylation of tertiary carbon to effectively construct a quaternary carbon center. The alkylation proceeded with various alkyl halides, including those of functional groups, to provide a variety of chiral cis- and trans-1,1,2,-trialkyl substituted cyclopropanes of medicinal chemical importance.

  13. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  14. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol.

    PubMed

    Silvestre, Virginie; Mboula, Vanessa Maroga; Jouitteau, Catherine; Akoka, Serge; Robins, Richard J; Remaud, Gérald S

    2009-10-15

    Isotope profiling is a well-established technique to obtain information about the chemical history of a given compound. However, the current methodology using IRMS can only determine the global (13)C content, leading to the loss of much valuable data. The development of quantitative isotopic (13)C NMR spectrometry at natural abundance enables the measurement of the (13)C content of each carbon within a molecule, thus giving simultaneous access to a number of isotopic parameters. When it is applied to active pharmaceutical ingredients, each manufactured batch can be characterized better than by IRMS. Here, quantitative isotopic (13)C NMR is shown to be a very promising and effective tool for assessing the counterfeiting of medicines, as exemplified by an analysis of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) samples collected from pharmacies in different countries. It is proposed as an essential complement to (2)H NMR and IRMS.

  15. Infrared and Raman spectroscopic characterization of the carbonate mineral weloganite - Sr3Na2Zr(CO3)6·3H2O and in comparison with selected carbonates

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda Maria; Filho, Mauro Cândido

    2013-05-01

    The mineral weloganite Na2Sr3Zr(CO3)6·3H2O has been studied by using vibrational spectroscopy and a comparison is made with the spectra of weloganite with other carbonate minerals. Weloganite is member of the mckelveyite group that includes donnayite-(Y) and mckelveyite-(Y). The Raman spectrum of weloganite is characterized by an intense band at 1082 cm-1 with shoulder bands at 1061 and 1073 cm-1, attributed to the CO32- symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of CO32- symmetric stretching vibration varies with mineral composition. The Raman bands at 1350, 1371, 1385, 1417, 1526, 1546, and 1563 cm-1 are assigned to the ν3 (CO3)2- antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for weloganite is significant in that it shows distortion of the carbonate anion in the mineral structure. The Raman band observed at 870 cm-1 is assigned to the (CO3)2- ν2 bending mode. Raman bands observed for weloganite at 679, 682, 696, 728, 736, 749, and 762 cm-1 are assigned to the (CO3)2- ν4 bending modes. A comparison of the vibrational spectra is made with that of the rare earth carbonates decrespignyite, bastnasite, hydroxybastnasite, parisite, and northupite.

  16. A 13C-NMR study of exopolysaccharide synthesis in Rhizobium meliloti Su47 strain

    NASA Astrophysics Data System (ADS)

    Tavernier, P.; Portais, J.-C.; Besson, I.; Courtois, J.; Courtois, B.; Barbotin, J.-N.

    1998-02-01

    Metabolic pathways implied in the synthesis of succinoglycan produced by the Su47 strain of R. meliloti were evaluated by 13C-NMR spectroscopy after incubation with [1{-}13C] or [2{-}13C] glucose. The biosynthesis of this polymer by R. meliloti from glucose occurred by a direct polymerisation of the introduced glucose and by the pentose phosphate pathway. Les voies métaboliques impliquées dans la synthèse du succinoglycane produit par la souche Su47 de R. meliloti ont été évaluées par la spectroscopie de RMN du carbone 13 après incubation des cellules avec du [1{-}13C] ou [2{-}13C] glucose. La biosynthèse de ce polymère à partir du glucose se produit par polymérisation directe du glucose et par la voie des pentoses phosphate.

  17. Formation of carboxylic acids from alcohols and olefins in zeolite H-ZSM-5 under mild conditions via trapping of alkyl carbenium ions with carbon monoxide: An in situ {sup 13}C solid state NMR study

    SciTech Connect

    Stepanov, A.G.; Luzgin, M.V.; Romannikov, V.N.; Sidelnikov, V.N.; Zamaraev K.I.

    1996-12-01

    Using in situ {sup 13}C solid state MAS NMR (for some reagents in combination with ex situ GC-MS), it is shown that butyl alcohols and olefins (ethene, isobutene, octene-1) undergo carbonylation to form carboxylic acids (the Koch reaction) with high conversion on zeolite H-ZSM-5 at 296-373 K. The reactions proceed without application of pressurized conditions, just upon coadsorption of CO and alcohols or CO, H{sub 2}O, and olefins on zeolite. The observed Koch reaction under mild conditions provides strong evidence for the formation of alkyl carbenium ions from alcohols and olefins on the zeolites as crucial reaction intermediates. Of the family of carbenium ions, CO reacts selectively with tertiary cations to produce tertiary carboxylic acids, unless the carbonylated molecule is too large for more bulky tertiary moieties to be accommodated and carbonylated in the narrow pores of H-ZSM05. Thus, t-BuOH, i-BuOH, and isobutene produce trimethylacetic acid with high selectivity and conversion, while ethene transforms selectively into 2-methyl-2-ethyl butyric acid. Reaction of octene-1 molecules with CO and H{sub 2}O results in acids of the C{sub 8}H{sub 17}COOH and C{sub 16}H{sub 33}COOH families with predominantly linear hydrocarbon chains. The data obtained may open up new possibilities in using solid acids in organic synthesis as carbonylation catalysts under mild conditions i.e., low temperature and normal atmospheric pressure. 55 refs., 8 figs.

  18. An overview of methods using (13)C for improved compound identification in metabolomics and natural products.

    PubMed

    Clendinen, Chaevien S; Stupp, Gregory S; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize (13)C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) (13)C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two (13)C-based approaches. For samples at natural abundance, we have developed a workflow to obtain (13)C-(13)C and (13)C-(1)H statistical correlations using 1D (13)C and (1)H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct (13)C-(13)C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which (13)C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.

  19. Preliminary studies of a canine 13C-aminopyrine demethylation blood test.

    PubMed Central

    Moeller, E M; Steiner, J M; Williams, D A; Klein, P D

    2001-01-01

    The objectives of this study were to determine whether a 13C-aminopyrine demethylation blood test is technically feasible in clinically healthy dogs, whether oral administration of 13C-aminopyrine causes a detectable increase in percent dose/min (PCD) of 13C administered as 13C-aminopyrine and recovered in gas extracted from blood, and whether gas extraction efficiency has an impact on PCD. A dose of 2 mg/kg body weight of 13C-aminopyrine dissolved in deionized water was administered orally to 6 clinically healthy dogs. Blood samples were taken from each dog 0, 30, 60, and 120 min after administration of the 13C-aminopyrine. Carbon dioxide was extracted from blood samples by addition of acid and analyzed by fractional mass spectrometry. None of the 6 dogs showed any side effects after 13C-aminopyrine administration. All 6 dogs showed a measurable increase of the PCD in gas samples extracted from blood samples at 30 min, 60 min, and 120 min after 13C-aminopyrine administration. Coefficients of variation between the triplicate samples were statistically significantly higher for the %CO2, a measure of extraction efficiency, than for PCD values (P < 0.0001). The 13C-aminopyrine demethylation blood test described here is technically feasible. Oral administration of 13C-aminopyrine did not lead to gross side effects in the 6 dogs. Clinically healthy dogs show a measurable increase of PCD in gas extracted from blood samples after oral administration of 13C-aminopyrine. Efficiency of CO2 extraction from blood samples does not have an impact on PCD determined from these blood samples. This test may prove useful to evaluate hepatic function in dogs. PMID:11227194

  20. (13)C-Breath testing in animals: theory, applications, and future directions.

    PubMed

    McCue, Marshall D; Welch, Kenneth C

    2016-04-01

    The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology--especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition.

  1. Increased Resolution of Aromatic Cross Peaks Using Alternate 13C Labeling and TROSY

    PubMed Central

    Milbradt, Alexander G.; Arthanari, Haribabu; Takeuchi, Koh; Boeszoermenyi, Andras; Hagn, Franz; Wagner, Gerhard

    2016-01-01

    For typical globular proteins, contacts involving aromatic side chains would constitute the largest number of distance constraints that could be used to define the structure of proteins and protein complexes based on NOE contacts. However, the 1H NMR signals of aromatic side chains are often heavily overlapped, which hampers extensive use of aromatic NOE cross peaks. Some of this overlap can be overcome by recording 13C-dispersed NOESY spectra. However, the resolution in the carbon dimension is rather low due to the narrow dispersion of the carbon signals, large one-bond carbon-carbon (C-C) couplings, and line broadening due to chemical shift anisotropy (CSA). Although it has been noted that the CSA of aromatic carbons could be used in TROSY experiments for enhancing resolution, this has not been used much in practice because of complications arising from large aromatic one-bond C-C couplings, and 3D or 4D carbon dispersed NOESY are typically recorded at low resolution hampering straightforward peak assignments. Here we show that the aromatic TROSY effect can optimally be used when employing alternate 13C labeling using 2-13C glycerol, 2-13C pyruvate, or 3-13C pyruvate as carbon source. With the elimination of the strong one-bond C-C coupling, the TROSY effect can easily be exploited. We show that 1H-13C TROSY spectra of alternately 13C labeled samples can be recorded at high resolution, and we employ 3D NOESY aromatic-TROSY spectra to obtain valuable intramolecular and intermolecular cross peaks on a protein complex. PMID:25957757

  2. Sensitivity-enhanced 13C MR spectroscopy of the human brain at 3 Tesla.

    PubMed

    Klomp, D W J; Renema, W K J; van der Graaf, M; de Galan, B E; Kentgens, A P M; Heerschap, A

    2006-02-01

    A new coil design for sensitivity-enhanced 13C MR spectroscopy (MRS) of the human brain is presented. The design includes a quadrature transmit/receive head coil optimized for 13C MR sensitivity. Loss-less blocking circuits inside the coil conductors allow this coil to be used inside a homogeneous circularly polarized 1H B1 field for 1H decoupled 13C MRS. A quadrature 1H birdcage coil optimized for minimal local RF heating makes broadband 1H decoupling in the entire human brain possible at 3 Tesla while remaining well within international safety guidelines for RF absorption. Apart from a substantial increase in sensitivity compared to conventional small linear coils, the quadrature 13C coil combined with the quadrature 1H birdcage coil allows efficient cross polarization (CP) in the brain, resulting in an additional 3.5-fold sensitivity improvement compared to direct 13C measurements without nuclear Overhauser enhancement (NOE) or polarization transfer. Combined with the gain in power efficiency, this setup allows broadband 1H to 13C CP over large areas of the brain. Clear 13C resonances from glutamate (Glu), glutamine (Gln), aspartate (Asp), lactate (Lac), and gamma-aminobutyrate (GABA) carbon spins in the human brain demonstrate the quality of 13C MR spectra obtained in vivo with this coil setup. Copyright 2006 Wiley-Liss, Inc.

  3. The fate of river organic carbon in coastal areas: A study in the Rhône River delta using multiple isotopic (δ13C, Δ14C) and organic tracers

    NASA Astrophysics Data System (ADS)

    Cathalot, C.; Rabouille, C.; Tisnérat-Laborde, N.; Toussaint, F.; Kerhervé, P.; Buscail, R.; Loftis, K.; Sun, M.-Y.; Tronczynski, J.; Azoury, S.; Lansard, B.; Treignier, C.; Pastor, L.; Tesi, T.

    2013-10-01

    A significant fraction of the global carbon flux to the ocean occurs in River-dominated Ocean Margins (RiOMar) although large uncertainties remain in the cycle of organic matter (OM) in these systems. In particular, the OM sources and residence time have not been well clarified. Surface (0-1 cm) and sub-surface (3-4 cm) sediments and water column particles (bottom and intermediate depth) from the Rhône River delta system were collected in June 2005 and in April 2007 for a multi-proxy study. Lignin phenols, black carbon (BC), proto-kerogen/BC mixture, polycyclic aromatic hydrocarbons (PAHs), carbon stable isotope (δ13COC), and radiocarbon measurements (Δ14COC) were carried out to characterize the source of sedimentary organic material and to address degradation and transport processes. The bulk OM in the prodelta sediment appears to have a predominantly modern terrigenous origin with a significant contribution of modern vascular C3 plant detritus (Δ14COC = 27.9‰, δ13COC = -27.4‰). In contrast, the adjacent continental shelf, below the river plume, seems to be dominated by aged OM (Δ14COC = -400‰, δ13COC = -24.2‰), and shows no evidence of dilution and/or replacement by freshly produced marine carbon. Our data suggest an important contribution of black carbon (50% of OC) in the continental shelf sediments. Selective degradation processes occur along the main dispersal sediment system, promoting the loss of a modern terrestrial OM but also proto-kerogen-like OM. In addition, we hypothesize that during the transport across the shelf, a long term resuspension/deposition loop induces efficient long term degradation processes able to rework such refractory-like material until the OC is protected by the mineral matrix of particles.

  4. A global estimate of the full oceanic 13C Suess effect since the preindustrial

    NASA Astrophysics Data System (ADS)

    Eide, Marie; Olsen, Are; Ninnemann, Ulysses S.; Eldevik, Tor

    2017-03-01

    We present the first estimate of the full global ocean 13C Suess effect since preindustrial times, based on observations. This has been derived by first using the method of Olsen and Ninnemann (2010) to calculate 13C Suess effect estimates on sections spanning the world ocean, which were next mapped on a global 1° × 1° grid. We find a strong 13C Suess effect in the upper 1000 m of all basins, with strongest decrease in the subtropical gyres of the Northern Hemisphere, where δ13C of dissolved inorganic carbon has decreased by more than 0.8‰ since the industrial revolution. At greater depths, a significant 13C Suess effect can only be detected in the northern parts of the North Atlantic Ocean. The relationship between the 13C Suess effect and the concentration of anthropogenic carbon varies strongly between water masses, reflecting the degree to which source waters are equilibrated with the atmospheric 13C Suess effect before sinking. Finally, we estimate a global ocean inventory of anthropogenic CO2 of 92 ± 46 Gt C. This provides an estimate that is almost independent of and consistent, within the uncertainties, with previous estimates.

  5. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  6. Towards hyperpolarized 13C-succinate imaging of brain cancer

    PubMed Central

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2009-01-01

    We describe a novel 13C enriched precursor molecule, sodium 1-13C acetylenedicarboxylate, which after hydrogenation by PASADE-NA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1-13C-glutamate, 5-13C-glutamate, 1-13C-glutamine and 5-13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood–brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images. PMID:17303454

  7. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intr