Science.gov

Sample records for 3h-inositol phosphate accumulation

  1. Effect of atropine and gammahydroxybutyrate on ischemically induced changes in the level of radioactivity in (/sup 3/H)inositol phosphates in gerbil brain in vivo

    SciTech Connect

    Wikiel, H.; Halat, G.; Strosznajder, J.

    1988-05-01

    Brain ischemia in gerbils was induced by ligation of both common carotid arteries for 1 min or 10 min. Sham-operated animals served as controls. Intracerebral injection of (3H)inositol into gerbil brain 16 hr before ischemic insult resulted in equilibration of the label between inositol lipids and water-soluble inositol phosphate. A short ischemic period (1 min) resulted in a statistically significant increase in the radioactivity of inositol triphosphate (IP3) and inositol monophosphate (IP), by about 48% and 79%, respectively, with little change in that of the intermediate inositol biphosphate (IP2), which increased by about 16%. When the ischemic period was prolonged (10 min), an increase in the radioactivity of inositol monophosphate exclusively, by about 84%, was observed. The level of radioactivity in inositol phosphates IP2 and IP3 decreased by about 50%, probably as a consequence of phosphatase activation by the ischemic insult. The agonist of the cholinergic receptor, carbachol, injected intracerebrally (40 micrograms per animal) increased accumulation of radioactivity in all inositol phosphates. The level of radioactivity in IP3, IP2, and IP was elevated by about 40, 23, and 147%, respectively. The muscarinic cholinergic antagonist, atropine, injected intraperitoneally in doses of 100 mg/kg body wt. depressed phosphoinositide metabolism in control animals. The level of radioactivity in water-soluble inositol metabolites in the brain of animals pretreated with atropine was evidently about 32% lower than in untreated animals. Pretreatment with atropine decreased the radioactivity of all inositol phosphates in the brain of animals subjected to 1-min ischemia and the radioactivity of IP in the case of 10-min brain ischemia.

  2. Metabolism of myo-[2-3H]Inositol and scyllo-[R-3H]Inositol in Ripening Wheat Kernels 1

    PubMed Central

    Sasaki, Ken; Loewus, Frank A.

    1980-01-01

    Injection of myo-[2-3H]inositol or scyllo-[R-3H]inositol into the peduncular cavity of wheat stalks about 2 to 4 weeks postanthesis led to rapid translocation into the spike and accumulation of label in developing kernels, especially the bran fraction. With myo-[2-3H]inositol, about 50 to 60% of the label was incorporated into high molecular weight cell wall substance in the region of the injection. That portion translocated to the kernels was utilized primarily for cell wall polysaccharide formation and phytate biosynthesis. A small amount was recovered as free myo-inositol and galactinol. When scyllo-[R-3H]inositol was supplied, most of the label was translocated into the developing kernels where it accumulated as free scyllo-inositol and O-α-d-galactopyranosyl-scyllo-inositol in approximately equal amount. None of the label from scyllo-[R-3H]inositol was utilized for either phytate biosynthesis or cell wall polysaccharide formation. PMID:16661513

  3. Redistribution of tritium during germination of grain harvested from myo-(2-/sup 3/H)inositol- and scyllo-(R-/sup 3/H)inositol-labeled wheat

    SciTech Connect

    Sasaki, K.; Loewus, F.A.

    1982-01-01

    Wheat kernels from myo-(2-/sup 3/H)inositol- or scyllo-(R-/sup 3/H)inositol-labeled plants (Sasaki and Loewus 1980 Plant Physiol 66: 740-745) were used to study redistribution of /sup 3/H into growing regions during germination. Most of the labeled 1-..cap alpha..-galactinol (or the analogous scyllo-inositol galatoside) was hydrolyzed within 1 day. Water-soluble phytate was dephosphorylated within 3 days. A large reserve of bound phytate continued to release myo-inositol over several days. Translocation of free myo-inositol to growing regions provided substrate for the myo-inositol oxidation pathway and incorporation of /sup 3/H into new cell wall polysaccharides. Cell wall polysaccharides in the kernel were degraded during germination. The labeled residues were translocated to growing regions and reutilized for new cell wall formation. Pentosyl residues accounted for most of this label. Free scyllo-inositol followed a path of translocation from kernal to seeding similar to that of myo-inositol. Unlike myo-inositol, it did not furnish substrate for the myo-inositol oxidation pathway but accumulated as free scyllo-inositol in the seeding. The fate of phytate-derived myo-inositol during germination of wheat is discussed in relation to a recent scheme of phytate metabolism proposed by De and Biswas (1979 J Biol Chem 254 :8717-8719) for germinating mung bean seedlings.

  4. Retinoic acid treatment of fibroblasts causes a rapid decrease in ( sup 3 H)inositol uptake

    SciTech Connect

    Sinha, R.; Creek, K.E.; Silverman-Jones, C.; de Luca, L.M. )

    1989-04-01

    NIH 3T3 fibroblasts treated with all-trans-retinoic acid (RA) showed a dramatic decrease in the uptake of ({sup 3}H)inositol compared to solvent-treated controls. The onset of RA-induced inhibition of ({sup 3}H)inositol uptake was rapid with a 10-15% decrease occurring after 2-3 h of RA exposure and 60-70% reduction after 16 h of RA treatment. A progressive dose-dependent decrease in inositol uptake was found as the concentration of RA increased from 10{sup {minus}8} to 10{sup {minus}5} M and the effect was fully reversible within 48 h after RA removal. RA inhibition of inositol uptake was also observed in 3T3-Swiss and Balb/3T3 cells but not in two virally transformed 3T3 cell lines. Phlorizin, amiloride, and monensin inhibited inositol uptake by 66, 74, and 58%, respectively, and this inhibition was additive when the cells were treated with RA as well as these inhibitors. A decreased incorporation of ({sup 3}H)inositol into polyphosphoinositides was also observed in RA-treated cells but not to the same extent as for ({sup 3}H)inositol uptake. In conclusion, RA treatment of 3T3 fibroblasts decreases the uptake of ({sup 3}H)inositol by up to 70% within 8 to 10 h at near physiological concentrations in a reversible and specific manner.

  5. Altered coupling between aortic adrenergic-receptors and inositol phosphate accumulation in aldosterone hypertension

    SciTech Connect

    Jones, A.W.; Bylund, D.B.; Shukla, S.D.; Magliola, L.; Smith, J.M.; Ray-Pranger, C.; Bailey, B.

    1986-03-05

    The authors previous studies of /sup 42/K efflux have shown a 6-10 fold increase in sensitivity to ..cap alpha..-receptor agonists in aortas from rats (AHR) made hypertensive with aldosterone infusion, uninephrectomy plus high salt intake. Analyses of ..cap alpha..-receptor properties, however, showed no significant difference in sub-type, affinity or maximum binding. They initiated this study to determine whether supersensitivity is associated with altered accumulation of inositol phosphates. Aortic strips were equilibrated in /sup 3/H-inositol PSS for 2 hrs, followed by 10 min exposures to inositol (10 mM) PSS then Li (10 mM) PSS. Strips were placed in Li-PSS +/- norepinephrine (NE) for 30 minutes followed by freeze clamping and analyses of inositol phosphates (IP, IP/sub 2/, IP/sub 3/) by standard methods. In controls (C) NE (3 ..mu..M) increased the CPM 2, 14, and 9 fold respectively (p < 0.001). Sufficient CPM were available to analyze the NE concentration effects on IP and IP/sub 2/. NE = 3 ..mu..M yielded similar CPM per cell water in C (n=6) and AHR (n=5). The EC/sub 50/ for AHR was 5-6 fold lower than C for IP (56 +/- 18 versus 300 +/- 130 nM, p < 0.03) and IP/sub 2/ (57 +/- 14 versus 410 +/- 60 nM, p < 0.001). The K/sub a/ for Ne was 480 nM in C and AHR as determined by fractional receptor inactivation with dibenamine. These preliminary findings indicate a close relation in C between ..cap alpha..-receptor occupancy and accumulation of IP and IP/sub 2/, while supersensitivity in AHR is associated with an increased efficacy in coupling between ..cap alpha..-receptors and polyphosphoinositide metabolism.

  6. Beryllium competitively inhibits brain myo-inositol monophosphatase, but unlike lithium does not enhance agonist-induced inositol phosphate accumulation.

    PubMed Central

    Faraci, W S; Zorn, S H; Bakker, A V; Jackson, E; Pratt, K

    1993-01-01

    Despite limiting side-effects, lithium is the drug of choice for the treatment of bipolar depression. Its action may be due, in part, to its ability to dampen phosphatidylinositol turnover by inhibiting myo-inositol monophosphatase. Beryllium has been identified as a potent inhibitor of partially purified myo-inositol monophosphatase isolated from rat brain (Ki = 150 nM), bovine brain (Ki = 35 nM), and from the human neuroblastoma cell line SK-N-SH (Ki = 85 nM). It is over three orders of magnitude more potent than LiCl (Ki = 0.5-1.2 mM). Kinetic analysis reveals that beryllium is a competitive inhibitor of myo-inositol monophosphatase, in contrast with lithium which is an uncompetitive inhibitor. Inhibition of exogenous [3H]inositol phosphate hydrolysis by beryllium (IC50 = 250-300 nM) was observed to the same maximal extent as that seen with lithium in permeabilized SK-N-SH cells, reflecting inhibition of cellular myo-inositol monophosphatase. However, in contrast with that observed with lithium, agonist-induced accumulation of inositol phosphate was not observed with beryllium in permeabilized and non-permeabilized SK-N-SH cells and in rat brain slices. Similar results were obtained in permeabilized SK-N-SH cells when GTP-gamma-S was used as an alternative stimulator of inositol phosphate accumulation. The disparity in the actions of beryllium and lithium suggest that either (1) selective inhibition of myo-inositol monophosphatase does not completely explain the action of lithium on the phosphatidylinositol cycle, or (2) that uncompetitive inhibition of myo-inositol monophosphatase is a necessary requirement to observe functional lithium mimetic activity. PMID:8387266

  7. Uncoupling of attenuated myo-(3H)inositol uptake and dysfunction in Na(+)-K(+)-ATPase pumping activity in hypergalactosemic cultured bovine lens epithelial cells

    SciTech Connect

    Cammarata, P.R.; Tse, D.; Yorio, T. )

    1991-06-01

    Attenuation of both the active transport of myo-inositol and Na(+)-K(+)-ATPase pumping activity has been implicated in the onset of sugar cataract and other diabetic complications in cell culture and animal models of the disease. Cultured bovine lens epithelial cells (BLECs) maintained in galactose-free Eagle's minimal essential medium (MEM) or 40 mM galactose with and without sorbinil for up to 5 days were examined to determine the temporal effects of hypergalactosemia on Na(+)-K(+)-ATPase and myo-inositol uptake. The Na(+)-K(+)-ATPase pumping activity after 5 days of continuous exposure to galactose did not change, as demonstrated by 86Rb uptake. The uptake of myo-(3H)inositol was lowered after 20 h of incubation in galactose and remained below that of the control throughout the 5-day exposure period. The coadministration of sorbinil to the galactose medium normalized the myo-(3H)inositol uptake. No significant difference in the rates of passive efflux of myo-(3H)inositol or 86Rb from preloaded galactose-treated and control cultures was observed. Culture-media reversal studies were also carried out to determine whether the galactose-induced dysfunction in myo-inositol uptake could be corrected. BLECs were incubated in galactose for 5 days, then changed to galactose-free physiological medium with and without sorbinil for a 1-day recovery period. myo-Inositol uptake was reduced to 34% of control after 6 days of continuous exposure to galactose. Within 24 h of media reversal, myo-inositol uptake returned to or exceeded control values in BLECs switched to either MEM or MEM with sorbinil.2+ reversible and occurred independently of changes in Na(+)-K(+)-ATPase pumping activity in cultured lens epithelium, indicating that the two parameters are not strictly associated and that the deficit in myo-inositol uptake occurs rapidly during hypergalactosemia.

  8. Guanine nucleotide regulation of muscarinic receptor-mediated inositol phosphate formation in permeabilized 1321N1 cells

    SciTech Connect

    Orellana, S.A.; Trilivas, I.; Brown, J.H.

    1986-03-05

    Carbachol and guanine nucleotides stimulate formation of the (/sup 3/H)inositol phosphates IP, IP2, and IP3 in saponin-permeabilized monolayers labelled with (/sup 3/H) inositol. Carbachol alone has little effect on formation of the (/sup 3/H) inositol phosphates (IPs), but GTP..gamma..S causes synergistic accumulation of (/sup 3/H)IPs to levels similar to those seen in intact cells. GTP, GppNHp, and GTP..gamma..S all support formation of the (/sup 3/H)IPs, with or without hormone, but GTP..gamma..S is the most effective. In the presence of GTP..gamma..S, the effect of carbachol is dose-dependent. Half-maximal and maximal accumulation of the (/sup 3/H)IPs occur at approx. 5 ..mu..M and approx. 100 ..mu..M carbachol, respectively; values close to those seen in intact cells. GTP..gamma..S alone stimulates formation of the (/sup 3/H)IPs after a brief lag time. The combination of GTP..gamma..S and carbachol both increases the rate of, and decreases the lag in, formation of the (/sup 3/H)IPs. LiCl increases (/sup 3/H)IP and IP2, but not IP3, accumulation; while 2,3-diphosphoglycerate substantially increases that of (/sup 3/H)IP3. GTP..gamma..S and carbachol cause formation of (/sup 3/H)IPs in the absence of Ca/sup + +/, but formation induced by GTP..gamma..S with or without carbachol is Ca/sup + +/-sensitive over a range of physiological concentrations. Although carbachol, Ca/sup + +/, and GTP..gamma..S all have effects on formation of (/sup 3/H)IPs, GTP..gamma..S appears to be a primary and obligatory regulator of phosphoinositide hydrolysis in the permeabilized 1321N1 astrocytoma cell.

  9. Thyroid-stimulating hormone stimulates increases in inositol phosphates as well as cyclic AMP in the FRTL-5 rat thyroid cell line.

    PubMed Central

    Field, J B; Ealey, P A; Marshall, N J; Cockcroft, S

    1987-01-01

    Studies were conducted to determine whether thyroid-stimulating hormone (TSH; thyrotropin), a hormone known to increase cytosol concentrations of cyclic AMP, also stimulates the formation of inositol phosphates in thyroid cells. TSH and noradrenaline both stimulated [3H]inositol phosphate formation in a concentration-dependent manner in the rat thyroid cell line, FRTL-5 cells, which had been prelabelled with [3H]inositol. The threshold concentration of TSH required to stimulate inositol phosphate formation was more than 20 munits/ml, which is approx. 10(3)-fold greater than that required for cyclic AMP accumulation and growth in these cells. We also demonstrate that membranes prepared from FRTL-5 cells possess a guanine nucleotide-activatable polyphosphoinositide phosphodiesterase, which suggests that activation of inositide metabolism in these cells may be coupled to receptors by the G-protein, Gp. Our findings suggest that two second-messenger systems exist to mediate the action of TSH in the thyroid. PMID:2827631

  10. Stimulus-response coupling in monocytes infected with Leishmania. Attenuation of calcium transients is related to defective agonist-induced accumulation of inositol phosphates.

    PubMed

    Olivier, M; Baimbridge, K G; Reiner, N E

    1992-02-15

    Mononuclear phagocytes infected with Leishmania have been shown to have defective responses to extracellular stimuli. To investigate the potential relationship of these findings to alterations in calcium-dependent signaling pathways, the regulation of [Ca2+]i concentrations was examined in human peripheral blood monocytes infected with amastigotes of Leishmania donovani. Measurements of [Ca2+]i in fura-2-loaded monocytes were made at the single cell level by microfluorimetry. In normal monocytes, resting [Ca2+]i was 56 +/- 2 nM (mean +/- SEM). In contrast, in monocytes infected with Leishmania there was an approximately twofold increase in basal [Ca2+]i (122 +/- 5 nM, p less than 0.01 vs control). Treatment of cells with pertussis toxin before infection did not abrogate infection-induced increases in basal [Ca2+]i, suggesting that this effect was not mediated via the activation of a G protein coupled to phospholipase C. However, elevated resting [Ca2+]i did correlate with increased rates of 45Ca2+ uptake by infected monocytes. As expected, in response to treatment with 10(-7) M FMLP, control monocytes showed rapid net increases in [Ca2+]i of 303 +/- 19 nM. In contrast, net transients of [Ca2+]i in infected monocytes in response to FMLP were attenuated to only 137 +/- 9 nM (p less than 0.01 vs control). This result was not related to excess buffering of [Ca2+]i in infected cells as both control and infected monocytes showed equivalent transients of [Ca2+]i in response to the calcium ionophore A23187. Rather, inhibition of agonist-induced calcium release in infected cells appeared related to defective generation of second messenger because compared to control cells labeled with myo-[2-3H]inositol, little accumulation of inositol 1,4,5-trisphosphate was detected in infected monocytes. Attenuation of inositol phosphate accumulation and calcium release in response to chemotactic peptide correlated with decreased FMLP-induced superoxide and hydrogen peroxide production

  11. Relationship between Nitrite Reduction and Active Phosphate Uptake in the Phosphate-Accumulating Denitrifier Pseudomonas sp. Strain JR 12

    PubMed Central

    Barak, Yoram; van Rijn, Jaap

    2000-01-01

    Phosphate uptake by the phosphate-accumulating denitrifier Pseudomonas sp. JR12 was examined with different combinations of electron and carbon donors and electron acceptors. Phosphate uptake in acetate-supplemented cells took place with either oxygen or nitrate but did not take place when nitrite served as the final electron acceptor. Furthermore, nitrite reduction rates by this denitrifier were shown to be significantly reduced in the presence of phosphate. Phosphate uptake assays in the presence of the H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), in the presence of the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or with osmotic shock-treated cells indicated that phosphate transport over the cytoplasmic membrane of this bacterium was mediated by primary and secondary transport systems. By examining the redox transitions of whole cells at 553 nm we found that phosphate addition caused a significant oxidation of a c-type cytochrome. Based on these findings, we propose that this c-type cytochrome serves as an intermediate in the electron transfer to both nitrite reductase and the site responsible for active phosphate transport. In previous studies with this bacterium we found that the oxidation state of this c-type cytochrome was significantly higher in acetate-supplemented, nitrite-respiring cells (incapable of phosphate uptake) than in phosphate-accumulating cells incubated with different combinations of electron donors and acceptors. Based on the latter finding and results obtained in the present study it is suggested that phosphate uptake in this bacterium is subjected to a redox control of the active phosphate transport site. By means of this mechanism an explanation is provided for the observed absence of phosphate uptake in the presence of nitrite and inhibition of nitrite reduction by phosphate in this organism. The implications of these findings regarding denitrifying, phosphate removal wastewater plants is discussed. PMID

  12. Regulation of Phosphate Accumulation in the Unicellular Cyanobacterium Synechococcus

    PubMed Central

    Grillo, John F.; Gibson, Jane

    1979-01-01

    The phosphorus contents of acid-soluble pools, lipid, ribonucleic acid, and acid-insoluble polyphosphate were lowered in Synechococcus in proportion to the reduction in growth rate in phosphate-limited but not in nitrate-limited continuous culture. Phosphorus in these cell fractions was lost proportionately during progressive phosphate starvation of batch cultures. Acid-insoluble polyphosphate was always present in all cultural conditions to about 10% of total cell phosphorus and did not turn over during balanced exponential growth. Extensive polyphosphate formation occurred transiently when phosphate was given to cells which had been phosphate limited. This material was broken down after 8 h even in the presence of excess external orthophosphate, and its phosphorus was transferred into other cell fractions, notably ribonucleic acid. Phosphate uptake kinetics indicated an invariant apparent Km of about 0.5 μM, but Vmax was 40 to 50 times greater in cells from phosphate-limited cultures than in cells from nitrate-limited or balanced batch cultures. Over 90% of the phosphate taken up within the first 30 s at 15°C was recovered as orthophosphate. The uptake process is highly specific, since neither phosphate entry nor growth was affected by a 100-fold excess of arsenate. The activity of polyphosphate synthetase in cell extracts increased at least 20-fold during phosphate starvation or in phosphate-restricted growth, but polyphosphatase activity was little changed by different growth conditions. The findings suggest that derepression of the phosphate transport and polyphosphate-synthesizing systems as well as alkaline phosphatase occurs in phosphate shortage, but that the breakdown of polyphosphate in this organism is regulated by modulation of existing enzyme activity. PMID:227842

  13. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review

    PubMed Central

    Tarayre, Cédric; Nguyen, Huu-Thanh; Brognaux, Alison; Delepierre, Anissa; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Delvigne, Frank

    2016-01-01

    Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells. PMID:27258275

  14. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review.

    PubMed

    Tarayre, Cédric; Nguyen, Huu-Thanh; Brognaux, Alison; Delepierre, Anissa; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Delvigne, Frank

    2016-01-01

    Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells. PMID:27258275

  15. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review.

    PubMed

    Tarayre, Cédric; Nguyen, Huu-Thanh; Brognaux, Alison; Delepierre, Anissa; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Delvigne, Frank

    2016-01-01

    Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells.

  16. Characterization of inositol phosphates in carrot (Daucus carota L. ) cells

    SciTech Connect

    Rincon, M.; Chen, Q.; Boss, W.F. )

    1989-01-01

    We have shown previously that inositol-1,4,5-trisphosphate (IP{sub 3}) stimulates an efflux of {sup 45}Ca{sup 2+} from fusogenic carrot protoplasts. In light of these results, we suggested that IP{sub 3} might serve as a second messenger for the mobilization of intracellular Ca{sup 2+} in higher plant cells. To determine whether or not IP{sub 3} and other inositol phosphates were present in the carrot cells, the cells were labeled with myo-(2-{sup 3}H)inositol for 18 hours and extracted with ice-cold 10% trichloroacetic acid. The inositol metabolites were separated by anion exchange chromatography and by paper electrophoresis. We found that ({sup 3}H)inositol metabolites coeluted with inositol bisphosphate (IP{sub 2}) and IP{sub 3} when separated by anion exchange chromatography. However, we could not detect IP{sub 2} or IP{sub 3} when the inositol metabolites were analyzed by paper electrophoresis even though the polyphosphoinositides, which are the source of IP{sub 2} and IP{sub 3}, were present in these cells. Thus, ({sup 3}H)inositol metabolites other than IP{sub 2} and IP{sub 3} had coeluted on the anion exchange columns. The data indicate that either IP{sub 3} is rapidly metabolized or that it is not present at a detectable level in the carrot cells.

  17. The effect of M & B 22948 on carbachol-induced inositol trisphosphate accumulation and contraction in iris sphincter smooth muscle.

    PubMed

    Akhtar, R A; Abdel-Latif, A A

    1991-04-25

    The effect of a cyclic GMP phosphodiesterase inhibitor, M & B 22948, on carbachol-induced phosphatidylinositol 4,5-bis-phosphate (PIP2) breakdown and phosphatidic acid labeling, 1,4,5-inositol trisphosphate (IP3) accumulation and muscle contraction was studied in bovine iris sphincter smooth muscle. Addition of carbachol (10 microM) to 32P-labeled tissue resulted in increased labeling of phosphatidic acid and hydrolysis of PIP2. In myo[3H]inositol labeled tissue, carbachol caused rapid accumulation of IP3 which reached its maximum at about 2 min. Under identical experimental conditions, carbachol initiated a rapid increase in muscle contraction (phasic component) which was followed by a slightly lower contractile response (tonic component) that lasted for several minutes. Pretreatment of the iris sphincter with M & B 22948 did not alter carbachol-stimulated PIP2 breakdown and phosphatidic acid labeling, IP3 accumulation, or phasic component of the contractile response. However, the tonic component of the contractile response was increasingly attenuated by increasing concentrations of the drug. In conclusion, the data presented demonstrate a close correlation between carbachol-induced IP3 accumulation and muscle contraction, and that M & B 22948 does not inhibit carbachol-induced responses in the iris sphincter.

  18. Strigolactone Regulates Anthocyanin Accumulation, Acid Phosphatases Production and Plant Growth under Low Phosphate Condition in Arabidopsis

    PubMed Central

    Ito, Shinsaku; Nozoye, Tomoko; Sasaki, Eriko; Imai, Misaki; Shiwa, Yuh; Shibata-Hatta, Mari; Ishige, Taichiro; Fukui, Kosuke; Ito, Ken; Nakanishi, Hiromi; Nishizawa, Naoko K.; Yajima, Shunsuke; Asami, Tadao

    2015-01-01

    Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi) in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL) signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants. PMID:25793732

  19. Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture

    SciTech Connect

    Aiking, H.; Stijnman, A.; van Garderen, C.; van Heerikhuizen, H.; van Riet, J.

    1984-02-01

    Klebsiella aerogenes NCTC-418, growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture, exhibits two different cadmium detoxifying mechanisms. In addition to sulfide formation, increased accumulation of P/sub i/ is demonstrated as a novel mechanism. Intracellular cadmium is always quantitatively counterbalanced by a concerted increase in both inorganic sulfide and P/sub i/ contents of the cells. This led to the conclusion that production of sulfide and accumulation of P/sub i/ are detoxification mechanisms present in K. aerogenes but that their relative importance is crucially dependent on the strain and the growth conditions employed.

  20. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri.

    PubMed

    Ota, Shuhei; Yoshihara, Mai; Yamazaki, Tomokazu; Takeshita, Tsuyoshi; Hirata, Aiko; Konomi, Mami; Oshima, Kenshiro; Hattori, Masahira; Bišová, Kateřina; Zachleder, Vilém; Kawano, Shigeyuki

    2016-01-01

    Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism.

  1. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri

    PubMed Central

    Ota, Shuhei; Yoshihara, Mai; Yamazaki, Tomokazu; Takeshita, Tsuyoshi; Hirata, Aiko; Konomi, Mami; Oshima, Kenshiro; Hattori, Masahira; Bišová, Kateřina; Zachleder, Vilém; Kawano, Shigeyuki

    2016-01-01

    Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism. PMID:27180903

  2. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri.

    PubMed

    Ota, Shuhei; Yoshihara, Mai; Yamazaki, Tomokazu; Takeshita, Tsuyoshi; Hirata, Aiko; Konomi, Mami; Oshima, Kenshiro; Hattori, Masahira; Bišová, Kateřina; Zachleder, Vilém; Kawano, Shigeyuki

    2016-01-01

    Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism. PMID:27180903

  3. Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice.

    PubMed

    Wu, Zhongchang; Ren, Hongyan; McGrath, Steve P; Wu, Ping; Zhao, Fang-Jie

    2011-09-01

    Arsenic (As) accumulation in rice (Oryza sativa) may pose a significant health risk to consumers. Plants take up different As species using various pathways. Here, we investigated the contribution of the phosphate (Pi) transport pathway to As accumulation in rice grown hydroponically or under flooded soil conditions. In hydroponic experiments, a rice mutant defective in OsPHF1 (for phosphate transporter traffic facilitator1) lost much of the ability to take up Pi and arsenate and to transport them from roots to shoots, whereas transgenic rice overexpressing either the Pi transporter OsPht1;8 (OsPT8) or the transcription factor OsPHR2 (for phosphate starvation response2) had enhanced abilities of Pi and arsenate uptake and translocation. OsPT8 was found to have a high affinity for both Pi and arsenate, and its overexpression increased the maximum influx by 3- to 5-fold. In arsenate-treated plants, both arsenate and arsenite were detected in the xylem sap, with the proportion of the latter increasing with the exposure time. Under the flooded soil conditions, the phf1 mutant took up less Pi whereas the overexpression lines took up more Pi. But there were no similar effects on As accumulation and distribution. Rice grain contained predominantly dimethylarsinic acid and arsenite, with arsenate being a minor species. These results suggest that the Pi transport pathway contributed little to As uptake and transport to grain in rice plants grown in flooded soil. Transgenic approaches to enhance Pi acquisition from paddy soil through the overexpression of Pi transporters may not increase As accumulation in rice grain. PMID:21715673

  4. Investigating the Contribution of the Phosphate Transport Pathway to Arsenic Accumulation in Rice1[W

    PubMed Central

    Wu, Zhongchang; Ren, Hongyan; McGrath, Steve P.; Wu, Ping; Zhao, Fang-Jie

    2011-01-01

    Arsenic (As) accumulation in rice (Oryza sativa) may pose a significant health risk to consumers. Plants take up different As species using various pathways. Here, we investigated the contribution of the phosphate (Pi) transport pathway to As accumulation in rice grown hydroponically or under flooded soil conditions. In hydroponic experiments, a rice mutant defective in OsPHF1 (for phosphate transporter traffic facilitator1) lost much of the ability to take up Pi and arsenate and to transport them from roots to shoots, whereas transgenic rice overexpressing either the Pi transporter OsPht1;8 (OsPT8) or the transcription factor OsPHR2 (for phosphate starvation response2) had enhanced abilities of Pi and arsenate uptake and translocation. OsPT8 was found to have a high affinity for both Pi and arsenate, and its overexpression increased the maximum influx by 3- to 5-fold. In arsenate-treated plants, both arsenate and arsenite were detected in the xylem sap, with the proportion of the latter increasing with the exposure time. Under the flooded soil conditions, the phf1 mutant took up less Pi whereas the overexpression lines took up more Pi. But there were no similar effects on As accumulation and distribution. Rice grain contained predominantly dimethylarsinic acid and arsenite, with arsenate being a minor species. These results suggest that the Pi transport pathway contributed little to As uptake and transport to grain in rice plants grown in flooded soil. Transgenic approaches to enhance Pi acquisition from paddy soil through the overexpression of Pi transporters may not increase As accumulation in rice grain. PMID:21715673

  5. Desensitization of histamine H1 receptor-mediated inositol phosphate production in HeLa cells.

    PubMed Central

    Bristow, D. R.; Zamani, M. R.

    1993-01-01

    1. Histamine stimulated the accumulation of total [3H]-inositol phosphates (IPn) in control HeLa cells with an EC50 of 3.7 +/- 0.7 microM in the presence of 10 mM LiCl. The maximum response to histamine after 15 min incubation was 43 +/- 5% over basal accumulation and occurred at a concentration of 1 mM histamine. 2. The histamine-induced IPn production in HeLa cells was confirmed as H1 receptor-mediated, since the H1 antagonist mepyramine (10(-6) M) inhibited the histamine response (10(-4) M) by 83 +/- 7%, whereas the H2 antagonist, ranitidine (10(-4) M), and H3 antagonist, thioperamide (10(-6) M), were ineffective. 3. Histamine (10(-4) M) pretreatment of HeLa cells for 30 min desensitized the subsequent histamine-induced IPn accumulation. The desensitized cells accumulated IPn in response to histamine with an EC50 of 1.7 +/- 0.7 microM after 15 min incubation. The maximum histamine-induced IPn accumulation at 10(-4) M was 19 +/- 5% over basal and was significantly lower (P < 0.03) than the maximum response in control cells. 4. The desensitization of histamine-induced IPn accumulation was time-dependent and, at a desensitizing histamine concentration of 10(-4) M, the half-maximal attenuation occurred after approximately 9 min and maximum desensitization was achieved by 15-20 min. The desensitization of the IPn accumulation was a reversible phenomenon and full recovery of the response occurred 150 min after the removal of the desensitizing histamine-containing medium. The half-time for the recovery of the histamine-induced response was estimated at 120 min.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8358540

  6. The cause of hepatic accumulation of fructose 1-phosphate on fructose loading

    PubMed Central

    Woods, H. F.; Eggleston, L. V.; Krebs, H. A.

    1970-01-01

    1. The changes in the metabolite content in freeze-clamped livers of fed rats occurring on perfusion with 10mm-d-fructose have been examined. 2. The most striking effects of fructose were an accumulation of fructose 1-phosphate, as already known, up to 8.7μmol/g of liver within 10min, a loss of total adenine nucleotides (up to 35% after 40min) with a decrease in the ATP content to 23% within 10min, a sevenfold rise in the concentration of IMP to 1.1μmol/g and an eightfold rise of α-glycerophosphate to 1.1μmol/g. 3. There was a transient decrease in Pi from 4.2 to 1.7μmol/g. Within 40min the Pi content recovered to the normal value, probably because of an uptake of Pi from the perfusion medium. 4. The degradation of the adenine nucleotides beyond the stage of AMP can be accounted for by the decrease of ATP and Pi. As ATP inhibits 5-nucleotidase, and as Pi inhibits AMP deaminase any AMP arising in the tissue is liable to undergo dephosphorylation or deamination under the conditions occurring after fructose loading. 5. The content of lactate increased to 4.3μmol/g at 80min; pyruvate also increased and the [lactate]/[pyruvate] ratio remained within physiological limits. 6. The concentration of free fructose within the liver remained much below that in the perfusion medium, indicating that the rate of penetration of fructose into the tissue was lower than the rate of utilization. 7. The fission of fructose 1-phosphate by liver aldolase is inhibited by several phosphorylated intermediates, especially by IMP. This inhibition is competitive with a Ki of 0.1mm. 8. The maximal rates of the enzymes synthesizing and splitting fructose 1-phosphate are about equal. The accumulation of fructose 1-phosphate on fructose loading is due to the inhibition of the fission of fructose 1-phosphate by the IMP arising from the degradation of the adenine nucleotides. PMID:5500310

  7. Role of Cations in Accumulation and Release of Phosphate by Acinetobacter Strain 210A

    PubMed Central

    van Groenestijn, Johan W.; Vlekke, Gerard J. F. M.; Anink, Désirée M. E.; Deinema, Maria H.; Zehnder, Alexander J. B.

    1988-01-01

    Cells of the strictly aerobic Acinetobacter strain 210A, containing aerobically large amounts of polyphosphate (100 mg of phosphorus per g [dry weight] of biomass), released in the absence of oxygen 1.49 mmol of Pi, 0.77 meq of Mg2+, 0.48 meq of K+, 0.02 meq of Ca2+, and 0.14 meq of NH4+ per g (dry weight) of biomass. The drop in pH during this anaerobic phase was caused by the release of 1.8 protons per PO43− molecule. Cells of Acinetobacter strain 132, which do not accumulate polyphosphate aerobically, released only 0.33 mmol of Pi and 0.13 meq of Mg2+ per g (dry weight) of biomass but released K+ in amounts comparable to those released by strain 210A. Stationary-phase cultures of Acinetobacter strain 210A, in which polyphosphate could not be detected by Neisser staining, aerobically took up phosphate simultaneously with Mg2+, the most important counterion in polyphosphate. In the absence of dissolved phosphate in the medium, no Mg2+ was taken up. Cells containing polyphosphate granules were able to grow in a Mg-free medium, whereas cells without these granules were not. Mg2+ was not essential as a counterion because it could be replaced by Ca2+. The presence of small amounts of K+ was essential for polyphosphate formation in cells of strain 210A. During continuous cultivation under K+ limitation, cells of Acinetobacter strain 210A contained only 14 mg of phosphorus per g (dry weight) of biomass, whereas this element was accumulated in amounts of 59 mg/g under substrate limitation and 41 mg/g under Mg2+ limitation. For phosphate uptake in activated sludge, the presence of K+ seemed to be crucial. PMID:16347788

  8. Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO).

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2014-09-01

    The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity. PMID:24831025

  9. Impact of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO).

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2014-09-01

    The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity.

  10. Renal transport of bisphosphonates: accumulation by renal cortical slices enhanced by calcium phosphate ions

    SciTech Connect

    Troehler, U.; Bonjour, J.P.; Fleisch, H.

    1985-07-01

    Bisphosphonates have been recognized as useful therapeutic agents in metabolic bone disease. Earlier studies showed a net renal secretion of 1-hydroxy-ethylidene-1,1-bisphosphonate (HEBP). They suggested a renal cellular uptake of this compound. The authors further studied this concept by investigating the uptake in vitro of /sup 14/C-HEBP by rat renal cortex slices. HEBP was accumulated against a concentration gradient, a process that was dependent on time, temperature, and substrate concentration. Unlike that of /sup 3/H-p-aminohippurate, the uptake was not affected by change in medium Na+ or glucose and acetate concentration, or by anoxia and various metabolic inhibitors. It was, however, markedly increased by raising the medium calcium and inorganic phosphate concentration. Equilibrium dialysis with renal cortex homogenates suggests that HEBP binds to a cytosolic macromolecule through a process that exhibits saturability and calcium dependency. In conclusion, the results suggest that the bisphosphonate HEBP can penetrate kidney cells by a process that does not appear to be energy dependent, but is markedly influenced by the extracellular calcium-phosphate concentration.

  11. The small RNA SgrS controls sugar–phosphate accumulation by regulating multiple PTS genes

    PubMed Central

    Rice, Jennifer B.; Vanderpool, Carin K.

    2011-01-01

    A number of bacterial small RNAs (sRNAs) act as global regulators of stress responses by controlling expression of multiple genes. The sRNA SgrS is expressed in response to glucose–phosphate stress, a condition associated with disruption of glycolytic flux and accumulation of sugar–phosphates. SgrS has been shown to stimulate degradation of the ptsG mRNA, encoding the major glucose transporter. This study demonstrates that SgrS regulates the genes encoding the mannose and secondary glucose transporter, manXYZ. Analysis of manXYZ mRNA stability and translation in the presence and absence of SgrS indicate that manXYZ is regulated by SgrS under stress conditions and when SgrS is ectopically expressed. In vitro footprinting and in vivo mutational analyses showed that SgrS base pairs with manXYZ within the manX coding sequence to prevent manX translation. Regulation of manX did not require the RNase E degradosome complex, suggesting that the primary mechanism of regulation is translational. An Escherichia coli ptsG mutant strain that is manXYZ+ experiences stress when exposed to the glucose analogs α-methyl glucoside or 2-deoxyglucose. A ptsG manXYZ double mutant is resistant to the stress, indicating that PTS transporters encoded by both SgrS targets are involved in taking up substrates that cause stress. PMID:21245045

  12. Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley.

    PubMed

    Pacak, Andrzej; Barciszewska-Pacak, Maria; Swida-Barteczka, Aleksandra; Kruszka, Katarzyna; Sega, Pawel; Milanowska, Kaja; Jakobsen, Iver; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2016-01-01

    Phosphorus (P) in plants is taken from soil as an inorganic phosphate (Pi) and is one of the most important macroelements in growth and development. Plants actively react to Pi starvation by the induced expression of Pi transporters, MIR399, MIR827, and miR399 molecular sponge - IPS1 genes and by the decreased expression of the ubiquitin-conjugating enzyme E2 (PHOSPHATE2 - PHO2) and Pi sensing and transport SPX-MFS genes. The PHO2 protein is involved in the degradation of Pi transporters PHT1;1 (from soil to roots) and PHO1 (from roots to shoots). The decreased expression of PHO2 leads to Pi accumulation in shoots. In contrast, the pho1 mutant shows a decreased level of Pi concentration in shoots. Finally, Pi starvation leads to decreased Pi concentration in all plant tissues. Little is known about plant Pi homeostasis in other abiotic stress conditions. We found that, during the first hour of heat stress, Pi accumulated in barley shoots but not in the roots, and transcriptomic data analysis as well as RT-qPCR led us to propose an explanation for this phenomenon. Pi transport inhibition from soil to roots is balanced by lower Pi efflux from roots to shoots directed by the PHO1 transporter. In shoots, the PHO2 mRNA level is decreased, leading to an increased Pi level. We concluded that Pi homeostasis in barley during heat stress is maintained by dynamic changes in Pi-related genes expression. PMID:27446155

  13. EFFECT OF ACTIVE ACCUMULATION OF CALCIUM AND PHOSPHATE IONS ON THE STRUCTURE OF RAT LIVER MITOCHONDRIA.

    PubMed

    GREENAWALT, J W; ROSSI, C S; LEHNINGER, A L

    1964-10-01

    Rat liver mitochondria allowed to accumulate maximal amounts of Ca(++) and HPO(4) (=) ions from the suspending medium in vitro during respiration have a considerably higher specific gravity than normal mitochondria and may be easily separated from the latter by isopycnic centrifugation in density gradients of sucrose or cesium chloride. When the mitochondria are allowed to accumulate less than maximal amounts of Ca(++) and HPO(4) (=) from the medium, they have intermediate specific gravities which are roughly proportional to their content of calcium phosphate. Maximally "loaded" mitochondria are relatively homogeneous with respect to specific gravity. Correlated biochemical and electron microscopic studies show that Ca(++)-loaded mitochondria contain numerous dense granules, of which some 85 per cent are over 500 A in diameter. These granules are electron-opaque not only following fixation and staining with heavy metal reagents, but also following fixation with formaldehyde, demonstrating that the characteristic granules in Ca(++)-loaded mitochondria have intrinsic electron-opacity. The dense granules are almost always located within the inner compartment of the mitochondria and not in the space between the inner and outer membranes. They are frequently located at or near the cristae and they often show electron-transparent "cores." Such granules appear to be made up of clusters of smaller dense particles, but preliminary x-ray diffraction analysis and electron diffraction studies have revealed no evidence of crystallinity in the deposits. The electron-opaque granules decrease in number when the Ca(++)-loaded mitochondria are incubated with 2,4-dinitrophenol; simultaneously there is discharge of Ca(++) and phosphate from the mitochondria into the medium.

  14. Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley.

    PubMed

    Pacak, Andrzej; Barciszewska-Pacak, Maria; Swida-Barteczka, Aleksandra; Kruszka, Katarzyna; Sega, Pawel; Milanowska, Kaja; Jakobsen, Iver; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2016-01-01

    Phosphorus (P) in plants is taken from soil as an inorganic phosphate (Pi) and is one of the most important macroelements in growth and development. Plants actively react to Pi starvation by the induced expression of Pi transporters, MIR399, MIR827, and miR399 molecular sponge - IPS1 genes and by the decreased expression of the ubiquitin-conjugating enzyme E2 (PHOSPHATE2 - PHO2) and Pi sensing and transport SPX-MFS genes. The PHO2 protein is involved in the degradation of Pi transporters PHT1;1 (from soil to roots) and PHO1 (from roots to shoots). The decreased expression of PHO2 leads to Pi accumulation in shoots. In contrast, the pho1 mutant shows a decreased level of Pi concentration in shoots. Finally, Pi starvation leads to decreased Pi concentration in all plant tissues. Little is known about plant Pi homeostasis in other abiotic stress conditions. We found that, during the first hour of heat stress, Pi accumulated in barley shoots but not in the roots, and transcriptomic data analysis as well as RT-qPCR led us to propose an explanation for this phenomenon. Pi transport inhibition from soil to roots is balanced by lower Pi efflux from roots to shoots directed by the PHO1 transporter. In shoots, the PHO2 mRNA level is decreased, leading to an increased Pi level. We concluded that Pi homeostasis in barley during heat stress is maintained by dynamic changes in Pi-related genes expression.

  15. Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley

    PubMed Central

    Pacak, Andrzej; Barciszewska-Pacak, Maria; Swida-Barteczka, Aleksandra; Kruszka, Katarzyna; Sega, Pawel; Milanowska, Kaja; Jakobsen, Iver; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2016-01-01

    Phosphorus (P) in plants is taken from soil as an inorganic phosphate (Pi) and is one of the most important macroelements in growth and development. Plants actively react to Pi starvation by the induced expression of Pi transporters, MIR399, MIR827, and miR399 molecular sponge – IPS1 genes and by the decreased expression of the ubiquitin-conjugating enzyme E2 (PHOSPHATE2 – PHO2) and Pi sensing and transport SPX-MFS genes. The PHO2 protein is involved in the degradation of Pi transporters PHT1;1 (from soil to roots) and PHO1 (from roots to shoots). The decreased expression of PHO2 leads to Pi accumulation in shoots. In contrast, the pho1 mutant shows a decreased level of Pi concentration in shoots. Finally, Pi starvation leads to decreased Pi concentration in all plant tissues. Little is known about plant Pi homeostasis in other abiotic stress conditions. We found that, during the first hour of heat stress, Pi accumulated in barley shoots but not in the roots, and transcriptomic data analysis as well as RT-qPCR led us to propose an explanation for this phenomenon. Pi transport inhibition from soil to roots is balanced by lower Pi efflux from roots to shoots directed by the PHO1 transporter. In shoots, the PHO2 mRNA level is decreased, leading to an increased Pi level. We concluded that Pi homeostasis in barley during heat stress is maintained by dynamic changes in Pi-related genes expression. PMID:27446155

  16. A Mutant of the Arabidopsis Phosphate Transporter PHT1;1 Displays Enhanced Arsenic Accumulation

    PubMed Central

    Catarecha, Pablo; Segura, Ma Dolores; Franco-Zorrilla, José Manuel; García-Ponce, Berenice; Lanza, Mónica; Solano, Roberto; Paz-Ares, Javier; Leyva, Antonio

    2007-01-01

    The exceptional toxicity of arsenate [As(V)] is derived from its close chemical similarity to phosphate (Pi), which allows the metalloid to be easily incorporated into plant cells through the high-affinity Pi transport system. In this study, we identified an As(V)-tolerant mutant of Arabidopsis thaliana named pht1;1-3, which harbors a semidominant allele coding for the high-affinity Pi transporter PHT1;1. pht1;1-3 displays a slow rate of As(V) uptake that ultimately enables the mutant to accumulate double the arsenic found in wild-type plants. Overexpression of the mutant protein in wild-type plants provokes phenotypic effects similar to pht1;1-3 with regard to As(V) uptake and accumulation. In addition, gene expression analysis of wild-type and mutant plants revealed that, in Arabidopsis, As(V) represses the activation of genes specifically involved in Pi uptake, while inducing others transcriptionally regulated by As(V), suggesting that converse signaling pathways are involved in plant responses to As(V) and low Pi availability. Furthermore, the repression effect of As(V) on Pi starvation responses may reflect a regulatory mechanism to protect plants from the extreme toxicity of arsenic. PMID:17400898

  17. Contracted State as an Energy Source for Ca Binding and Ca + Inorganic Phosphate Accumulation by Corn Mitochondria 1

    PubMed Central

    Kenefick, D. G.; Hanson, J. B.

    1966-01-01

    An investigation has been made of the possibility of utilizing the potential energy of the contracted state of corn mitochondria to drive Ca + inorganic phosphate accumulation. Contraction was obtained with succinate or NADH oxidation. In the succinate experiments the mitochondria were contracted in buffered KCl layered over sucrose in centrifuge tubes and centrifuged down through distinct wash, reactive and isotope exchange layers. In the NADH experiments, ion accumulation was initiated upon exhaustion of the substrate. The results show that mitochondria in the contracted state will actively bind some 45Ca, but no real accumulation occurs until inorganic phosphate is available. Substrate powered contraction in the presence of inorganic phosphate also provides a potential for accumulation upon subsequent reaction of the mitochondria with Ca. It is deducted that contraction is due to X∼I formation, to which Ca will bind. Subsequent reaction with inorganic phosphate produces CaX∼P, which is the transport moiety. When X∼P is formed first, Ca also reacts to produce CaX∼P. Hence it is immaterial which ion reacts first with the contracted state. Contraction is believed to result from the action of a mechanoenzyme, presumably I∼. The stability of CaX∼I must be low for the mitochondria swell very rapidly upon exhaustion of NADH or blocking of succinate oxidation by cyanide. PMID:16656446

  18. Gonadotropin releasing hormone stimulates the formation of inositol phosphates in rat anterior pituitary tissue.

    PubMed Central

    Schrey, M P

    1985-01-01

    The production of inositol phosphates in response to gonadotropin releasing hormone (GnRH) was studied in rat anterior pituitary tissue preincubated with [3H]inositol. Prelabelled paired hemipituitaries from prepubertal female rats were incubated in the presence or absence of GnRH in medium containing 10 mM-Li+ X Li+, which inhibits myo-inositol-1-phosphatase, greatly amplified the stimulation of inositol phosphate production by GnRH (10(-7) M) to 159, 198 and 313% of paired control values for inositol 1-phosphate, inositol bisphosphate and inositol trisphosphate respectively after 20 min. The percentage distribution of [3H]inositol within the phosphoinositides was 91.3, 6.3 and 2.4 for phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively and was unaffected by GnRH. The stimulation of inositol trisphosphate production by GnRH was evident after 5 min incubation, was dose-dependent with a half-maximal effect around 11 nM, and was not inhibited by removal of extracellular Ca2+. Elevation of cytosolic Ca2+ by membrane depolarization with 50 mM-K+ had no significant effect on inositol phosphate production. These findings are consistent with the hypothesis that GnRH action in the anterior pituitary involves the hydrolysis of phosphatidylinositol 4,5-bisphosphate. The resulting elevation of inositol trisphosphate may in turn lead to intracellular Ca2+ mobilization and subsequent stimulation of gonadotropin secretion. PMID:2986599

  19. Accumulation of Mannosylglycerate and Di-myo-Inositol-Phosphate by Pyrococcus furiosus in Response to Salinity and Temperature

    PubMed Central

    Martins, L. O.; Santos, H.

    1995-01-01

    (sup13)C and (sup1)H nuclear magnetic resonance spectroscopy was used to identify and quantify organic solutes accumulated by the hyperthermophilic archaeon Pyrococcus furiosus in response to temperature and salinity. Di-myo-inositol-phosphate and 2-O-(beta)-mannosylglycerate were the major organic solutes accumulated in these cells. The total intracellular organic solutes increased significantly in response either to an increase in temperature or to an increase in salinity, but (beta)-mannosylglycerate accumulated mainly at high salinities, whereas the concentration of di-myo-inositol-phosphate increased dramatically at supraoptimal growth temperatures. Glutamate was present at concentrations detectable by nuclear magnetic resonance only in cells grown in low-salinity media. The intracellular levels of K(sup+) are clearly dependent on the salinity of the medium, and the concentrations of this cation are high enough to counterbalance the negative charges of (beta)-mannosylglycerate and di-myo-inositol-phosphate in the cell. The results presented here together with those previously reported for Pyrococcus woesei (S. Scholz, J. Sonnenbichler, W. Schafer, and R. Hensel, FEBS Lett. 306:239-242, 1992) strongly support a role for di-myo-inositol-phosphate in thermoprotection. PMID:16535119

  20. Impact of salinity on the aerobic metabolism of phosphate-accumulating organisms.

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2015-04-01

    The use of saline water in urban areas for non-potable purposes to cope with fresh water scarcity, intrusion of saline water, and disposal of industrial saline wastewater into the sewerage lead to elevated salinity levels in wastewaters. Consequently, saline wastewater is generated, which needs to be treated before its discharge into surface water bodies. The objective of this research was to study the effects of salinity on the aerobic metabolism of phosphate-accumulating organisms (PAO), which belong to the microbial populations responsible for enhanced biological phosphorus removal (EBPR) in activated sludge systems. In this study, the short-term impact (hours) of salinity (as NaCl) was assessed on the aerobic metabolism of a PAO culture, enriched in a sequencing batch reactor (SBR). All aerobic PAO metabolic processes were drastically affected by elevated salinity concentrations. The aerobic maintenance energy requirement increased, when the salinity concentration rose up to a threshold concentration of 2 % salinity (on a W/V basis as NaCl), while above this concentration, the maintenance energy requirements seemed to decrease. All initial rates were affected by salinity, with the NH4- and PO4-uptake rates being the most sensitive. A salinity increase from 0 to 0.18 % caused a 25, 46, and 63 % inhibition of the O2, PO4, and NH4-uptake rates. The stoichiometric ratios of the aerobic conversions confirmed that growth was the process with the highest inhibition, followed by poly-P and glycogen formation. The study indicates that shock loads of 0.18 % salt, which corresponds to the use or intrusion of about 5 % seawater may severely affect the EBPR process already in wastewater treatment plants not exposed regularly to high salinity concentrations. PMID:25524698

  1. Impact of salinity on the aerobic metabolism of phosphate-accumulating organisms.

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2015-04-01

    The use of saline water in urban areas for non-potable purposes to cope with fresh water scarcity, intrusion of saline water, and disposal of industrial saline wastewater into the sewerage lead to elevated salinity levels in wastewaters. Consequently, saline wastewater is generated, which needs to be treated before its discharge into surface water bodies. The objective of this research was to study the effects of salinity on the aerobic metabolism of phosphate-accumulating organisms (PAO), which belong to the microbial populations responsible for enhanced biological phosphorus removal (EBPR) in activated sludge systems. In this study, the short-term impact (hours) of salinity (as NaCl) was assessed on the aerobic metabolism of a PAO culture, enriched in a sequencing batch reactor (SBR). All aerobic PAO metabolic processes were drastically affected by elevated salinity concentrations. The aerobic maintenance energy requirement increased, when the salinity concentration rose up to a threshold concentration of 2 % salinity (on a W/V basis as NaCl), while above this concentration, the maintenance energy requirements seemed to decrease. All initial rates were affected by salinity, with the NH4- and PO4-uptake rates being the most sensitive. A salinity increase from 0 to 0.18 % caused a 25, 46, and 63 % inhibition of the O2, PO4, and NH4-uptake rates. The stoichiometric ratios of the aerobic conversions confirmed that growth was the process with the highest inhibition, followed by poly-P and glycogen formation. The study indicates that shock loads of 0.18 % salt, which corresponds to the use or intrusion of about 5 % seawater may severely affect the EBPR process already in wastewater treatment plants not exposed regularly to high salinity concentrations.

  2. The inositol phosphate/diacylglycerol signalling pathway in Trypanosoma cruzi.

    PubMed Central

    Docampo, R; Pignataro, O P

    1991-01-01

    Using [32P]Pi and [3H]inositol as precursors, we have detected the presence of phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, and their derivatives inositol phosphate, inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate respectively, in Trypanosoma cruzi epimastigotes. Using digitonin-permeabilized cells it was possible to detect a stimulation in the formation of inositol 1,4,5-trisphosphate and inositol 1,4-bisphosphate as well as an increased generation of diacylglycerol in the presence of 1 mM-CaCl2. These results are consistent with the operation of a functional inositol phosphate/diacylglycerol pathway in T. cruzi, and constitute the first demonstration of the presence and activation of this pathway in a parasitic protozoan. These results also indicate that this pathway is conserved during evolution from lower to higher eukaryotic organisms. Images Fig. 1. PMID:2025225

  3. Structural features of phosphate accumulations in the Gantour basin - Morocco : Application of GIS

    NASA Astrophysics Data System (ADS)

    Mohamed, Laadraoui; El Hassane, Boumaggard; Essaid, Jourani

    2010-05-01

    The Moroccan Atlantic margin raises a lot of interest because of its potential resources in phosphates. It also holds in its Mesetien part one of the largest phosphatic deposit in the world. The authors present the results of their researches on structural environments of the phosphatic sedimentary sequences in the Gantour deposit in western Morocco. These investigations are mainly based on field data, data recorded from work done by the OCP (Office Chérifien des Phosphates) group, the interpretation of industrial seismic profiles and the application of GIS. Our aim are devoted to the apprehension of the geometry and the cinematic of these basins which are contemporaneous to the Central Atlantic Rifting, as well as the determination of the list of factors liable to the genesis of these phosphatic basins. Other data of field observations (cartography, study of structural features,...) permit to identify the general structure of the prospect. Sedimentation of phosphated deposits is strained by the presence of two wrench faulting systems oriented N20¬40E, N80¬120E and N140¬160E.

  4. Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions.

    PubMed

    Yagci, Nevin; Artan, Nazik; Cokgör, Emine Ubay; Randall, Clifford W; Orhon, Derin

    2003-11-01

    This paper proposes a new metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms (PAOs and GAOs) under anaerobic conditions. The model uses variable overall stoichiometry based on the assumption that PAOs may have the ability of using the glyoxylate pathway to produce the required reducing power for polyhydroxyalkonate (PHA) synthesis. The proposed model was tested and verified by experimental results. A sequencing batch reactor system was operated for enhanced biological phosphorus removal (EBPR) with acetate as the sole carbon source at different influent acetate/phosphate ratios. The resulting experimental data supported the validity of the proposed model, indicating the presence of GAOs for all tested HAc/P ratios, especially under P-limiting conditions. Strong agreement is observed between experimental values and model predictions for all model components, namely, PHB production, PHA composition, glycogen utilization, and P release.

  5. Effects of phosphate and thiosulphate on arsenic accumulation in Brassica juncea plants grown in soil and in hydroponic culture

    NASA Astrophysics Data System (ADS)

    Pezzarossa, Beatrice; Petruzzelli, Gianniantonio; Grifoni, Martina; Rosellini, Irene; Malagoli, Mario; Schiavon, Michela

    2013-04-01

    Arsenic is recognised as a toxic metalloid and a strong pollutant in soils of many countries. Thus, the reclamation of contaminated areas is fundamental in order to protect both human health and agricultural production. This study is focused on the assisted phytoextraction, a technology for reclaiming polluted soils that takes advantage of the capability of some plants to extract inorganic elements from soils with the aid of additive agents. The nutrients phosphorus, as phosphate, and sulphur, as thiosulphate, can compete with the form more oxidised of arsenic, both in soil and plant. This study examined the capability of thiosulphate (Th) and phosphate (Ph) to promote the release of As from soil surfaces in order to improve the phytoavailability and thus the absorption of As by Brassica juncea plants. In the first experiment B. juncea plants were grown on a soil that had been sampled from an industrial area strongly contaminated by As (790 mg As kg-1 soil). The second experiment was carried out in hydroponics where As has been added at a concentration (100 microM) similar to the As available concentration measured in soil. In both trials ammonium thiosulphate (at the concentration of 0.27 M in soil, and 400 microM in hydroponics) and potassium hydrogen phosphate (at the concentration of 0.05 M in soil, and 112 microM in hydroponics) were added. The biomass of B. juncea was determined and the accumulation of P, S and As in root and in the above-ground tissues have been analyzed. Our results showed that thiosulphate and phosphate acted either as nutrients and detoxifying agents, due to the stimulation of plant defensive systems, and influenced either the biomass production and the As accumulation in plant tissues. In the plants grown in soil, As accumulated at higher levels in the above-ground part than in the roots and the addition of Th induced a higher biomass production and a higher total As accumulation (concentration x biomass) in the above-ground tissues

  6. Possible role played by R1 protein in starch accumulation in bean (Phaseolus vulgaris) seedlings under phosphate deficiency.

    PubMed

    Bernal, Lilia; Coello, Patricia; Martínez-Barajas, Eleazar

    2005-09-01

    The effect of phosphate (Pi) deficiency on starch accumulation was studied in bean (Phaseolus vulgaris). After 3 weeks of Pi deprivation total Pi concentration in root and shoot was reduced by 68% and 42%, respectively; however, only shoot growth was affected. In leaves, Pi deprivation induced glucose, fructose and starch accumulation. Pi deficiency did not affect starch synthesis, but it reduced its mobilization during the dark period. At the same time, starch produced by Pi deficient plants have fewer Pi bound and was also less susceptible to beta-amylase hydrolysis. R1 protein is the protein responsible of phosphorylating C3 and C6 glucosyl residues of the polyglucan, increasing the hydration capacity and the interaction with amylolytic enzymes. Pi deprivation did not change the amount of R1 protein detected in total extracts but decreased its association with starch granules.

  7. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation.

    PubMed

    Benning, C; Huang, Z H; Gage, D A

    1995-02-20

    Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells. PMID:7872771

  8. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation.

    PubMed

    Benning, C; Huang, Z H; Gage, D A

    1995-02-20

    Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells.

  9. An engineered lipid remodeling system using a galactolipid synthase promoter during phosphate starvation enhances oil accumulation in plants.

    PubMed

    Shimojima, Mie; Madoka, Yuka; Fujiwara, Ryota; Murakawa, Masato; Yoshitake, Yushi; Ikeda, Keiko; Koizumi, Ryota; Endo, Keiji; Ozaki, Katsuya; Ohta, Hiroyuki

    2015-01-01

    Inorganic phosphate (Pi) depletion is a serious problem for plant growth. Membrane lipid remodeling is a defense mechanism that plants use to survive Pi-depleted conditions. During Pi starvation, phospholipids are degraded to supply Pi for other essential biological processes, whereas galactolipid synthesis in plastids is up-regulated via the transcriptional activation of monogalactosyldiacylglycerol synthase 3 (MGD3). Thus, the produced galactolipids are transferred to extraplastidial membranes to substitute for phospholipids. We found that, Pi starvation induced oil accumulation in the vegetative tissues of various seed plants without activating the transcription of enzymes involved in the later steps of triacylglycerol (TAG) biosynthesis. Moreover, the Arabidopsis starchless phosphoglucomutase mutant, pgm-1, accumulated higher TAG levels than did wild-type plants under Pi-depleted conditions. We generated transgenic plants that expressed a key gene involved in TAG synthesis using the Pi deficiency-responsive MGD3 promoter in wild-type and pgm-1 backgrounds. During Pi starvation, the transgenic plants accumulated higher TAG amounts compared with the non-transgenic plants, suggesting that the Pi deficiency-responsive promoter of galactolipid synthase in plastids may be useful for producing transgenic plants that accumulate more oil under Pi-depleted conditions.

  10. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation.

    PubMed

    Peng, Gang; Wang, Chunyan; Song, Song; Fu, Xiumin; Azam, Muhammad; Grierson, Don; Xu, Changjie

    2013-10-01

    Three 1-deoxy-D-xylulose-5-phosphate synthases (DXS) and three phytoene synthases (PSY) were identified in citrus, from Affymetrix GeneChip Citrus Genome Array, GenBank and public orange genome databases. Tissue-specific expression analysis of these genes was carried out on fruit peel and flesh, flower and leaf of Satsuma mandarin (Citrus unshiu Marc.) in order to determine their roles in carotenoid accumulation in different tissues. Expression of CitDXS1 and CitPSY1 was highest in all test tissues, while that of CitDXS2 and CitPSY2 was lower, and that of CitDXS3 and CitPSY3 undetectable. The transcript profiles of CitDXS1 and CitPSY1 paralleled carotenoid accumulation in flesh of Satsuma mandarin and orange (Citrus sinensis Osbeck) during fruit development, and CitPSY1 expression was also associated with carotenoid accumulation in peel, while the CitDXS1 transcript level was only weakly correlated with carotenoid accumulation in peel. Similar results were obtained following correlation analysis between expression of CitDXS1 and CitPSY1 and carotenoid accumulation in peel and flesh of 16 citrus cultivars. These findings identify CitPSY1 and CitDXS1 as the main gene members controlling carotenoid biosynthesis in citrus fruit. Furthermore, chromoplasts were extracted from flesh tissue of these citrus, and chromoplasts of different shape (spindle or globular), different size, and color depth were observed in different cultivars, indicating chromoplast abundance, number per gram tissue, size and color depth were closely correlated with carotenoid content in most cultivars. The relationship between carotenoid biosynthesis and chromoplast development was discussed.

  11. Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Yang, Tao; Wang, Long; Li, Chiyu; Liu, Ying; Zhu, Sirui; Qi, Yinyao; Liu, Xuanming; Lin, Qinglu; Luan, Sheng; Yu, Feng

    2015-09-11

    Cell expansion is coordinated by several cues, but available energy is the major factor determining growth. Receptor protein kinase FERONIA (FER) is a master regulator of cell expansion, but the details of its control mechanisms are not clear. Here we show that FER interacts with cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1 and GAPC2), that catalyzes a key reaction in glycolysis, which contributes to energy production. When there is an FER deficiency, there are corresponding decreases in the enzyme activity of GAPDH and increased amounts of starch. More importantly, gapc1/2 mutants mimic fer4 mutants. These data indicate that FER regulated starch content is an evolutionarily conserved function in plants that connects the cell expansion and energy metabolism pathways.

  12. Do oral aluminium phosphate binders cause accumulation of aluminium to toxic levels?

    PubMed Central

    2011-01-01

    Background Aluminium (Al) toxicity was frequent in the 1980s in patients ingesting Al containing phosphate binders (Alucaps) whilst having HD using water potentially contaminated with Al. The aim of this study was to determine the risk of Al toxicity in HD patients receiving Alucaps but never exposed to contaminated dialysate water. Methods HD patients only treated with Reverse Osmosis(RO) treated dialysis water with either current or past exposure to Alucaps were given standardised DFO tests. Post-DFO serum Al level > 3.0 μmol/L was defined to indicate toxic loads based on previous bone biopsy studies. Results 39 patients (34 anuric) were studied. Mean dose of Alucap was 3.5 capsules/d over 23.0 months. Pre-DFO Al levels were > 1.0 μmol/L in only 2 patients and none were > 3.0 μmol/L. No patients had a post DFO Al levels > 3.0 μmol/L. There were no correlations between the serum Al concentrations (pre-, post- or the incremental rise after DFO administration) and the total amount of Al ingested. No patients had unexplained EPO resistance or biochemical evidence of adynamic bone. Conclusions Although this is a small study, oral aluminium exposure was considerable. Yet no patients undergoing HD with RO treated water had evidence of Al toxicity despite doses equivalent to 3.5 capsules of Alucap for 2 years. The relationship between the DFO-Al results and the total amount of Al ingested was weak (R2 = 0.07) and not statistically significant. In an era of financial prudence, and in view of the recognised risk of excess calcium loading in dialysis patients, perhaps we should re-evaluate the risk of using Al-based phosphate binders in HD patients who remain uric. PMID:21992770

  13. Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea.

    PubMed

    Grifoni, Martina; Schiavon, Michela; Pezzarossa, Beatrice; Petruzzelli, Gianniantonio; Malagoli, Mario

    2015-02-01

    Arsenic (As) is recognized as a toxic pollutant in soils of many countries. Since phosphorus (P) and sulphur (S) can influence arsenic mobility and bioavailability, as well as the plant tolerance to As, phytoremediation techniques employed to clean-up As-contaminated areas should consider the interaction between As and these two nutrients. In this study, the bioavailability and accumulation of arsenate in the species Brassica juncea were compared between soil system and hydroponics in relation to P and S concentration of the growth substrate. In one case, plants were grown in pots filled with soil containing 878 mg As kg(-1). The addition of P to soil resulted in increased As desorption and significantly higher As accumulation in plants, with no effect on growth. The absence of toxic effects on plants was likely due to high S in soil, which could efficiently mitigate metal toxicity. In the hydroponic experiment, plants were grown with different combinations of As (0 or 100 μM) and P (56 or 112 μM). S at 400 μM was also added to the nutrient solution of control (-As) and As-treated plants, either individually or in combination with P. The addition of P reduced As uptake by plants, while high S resulted in higher As accumulation and lower P content. These results suggest that S can influence the interaction between P and As for the uptake by plants. The combined increase of P and S in the nutrient solution did not lead to higher accumulation of As, but enhanced As translocation from the root to the shoot. This aspect is of relevance for the phytoremediation of As-contaminated sites. PMID:24677062

  14. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24.

    PubMed

    Li, Chune; Yang, Jinshui; Wang, Xin; Wang, Entao; Li, Baozhen; He, Ruoxue; Yuan, Hongli

    2015-04-01

    Phosphate accumulating bacterium Pseudomonas stutzeri YG-24 exhibited efficient heterotrophic nitrification and aerobic denitrification ability. Single factor experiments showed that both heterotrophic nitrification and aerobic denitrification occurred with sodium citrate as carbon source and lower C/N ratio of 8. High average NH4(+)-N, NO2(-)-N and NO3(-)-N removal rates of 8.75, 7.51 and 7.73 mg L(-1)h(-1) were achieved. The application of strain YG-24 in wastewater samples resulted in TN, NH4(+)-N, NO2(-)-N, NO3(-)-N and P removal efficiencies of 85.28%, 88.13%, 86.15%, 70.83% and 51.21%. Sequencing and quantitative amplification by real-time PCR of napA, nirS and ppk showed that nitrogen removal pathway of strain YG-24 was achieved through heterotrophic ammonium nitrification coupled with fast nitrite denitrification (NH4(+)-N to NO2(-)-N and then to gaseous nitrogen) directly. These results demonstrated the strain as a suitable candidate to simultaneously remove both nitrogen and phosphate in wastewater treatment.

  15. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation.

    PubMed

    Kolouchová, Irena; Maťátková, Olga; Sigler, Karel; Masák, Jan; Řezanka, Tomáš

    2016-09-01

    We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, Candida sp.) and traditional biotechnological non-oleaginous ones characterized by high biomass yield (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) as potential producers of biofuel-utilizable and nutritionally valuable lipids. The main objective was to increase lipid accumulation by increasing C/P ratio together with higher C/N ratio, while maintaining high biomass yield. The C/N ratio of 30 was found to lead to higher biomass content and the total lipid content increased significantly with higher C/P ratio. With higher ratios of both C/N and C/P, the content of monounsaturated fatty acids (FAs) in cell lipids increased while polyunsaturated FAs decreased. Oleaginous yeast species had a lower proportion of unsaturated FAs (approx. 80 %) than non-oleaginous strains (approx. 90 %). At a C/N ratio of 30 and C/P ratio 1043, T. cutaneum produced a high amount of ω-6 unsaturated linoleic acid, the precursor of some prostaglandins, leukotrienes, and thromboxanes, while Candida sp. and K. polysporus accumulated a high content of palmitoleic acid.

  16. Effects of epinephrine on ADP-induced changes in platelet inositol phosphates

    SciTech Connect

    Vickers, J.D.; Keraly, C.L.; Kinlough-Rathbone, R.L.; Mustard, J.F.

    1986-03-01

    Epinephrine (EPI) does not aggregate rabbit platelets, but it does increase the labelling of inositol phosphate (IP) at 60s (21%, p < 0.05) in the presence of 20 mM Li/sup +/, in platelets prelabelled with (/sup 3/H) inositol. In contrast, 0.5 ..mu..M ADP which causes aggregation, increases the labelling of inositol bisphosphate (IP/sub 2/) by 30% (p < 0.01) at 10s and by 46% (p < 0.05) at 60s and IP by 26% (p < 0.05) at 60s. The combination of 0.5 ..mu..M ADP and 50 ..mu..M EPI causes more extensive aggregation and increases IP/sub 2/ by 154% (p < 0.01) and IP by 65% (p < 0.01) at 60s. The increase in IP/sub 2/ stimulated by ADP + EPI was greater than the increase caused by ADP (p < 0.05). The authors examined the effects of ..cap alpha..- and ..beta..-adrenergic receptor blockers on EPI + ADP-induced changes in the inositol phosphates. The ..beta..-adrenergic blocker Sotalol (50 ..mu..M), which had no effect by itself, enhanced the accumulation of IP/sub 2/ due to 0.2 ..mu..M ADP + 0.6 ..mu..M EPI by 70% (p < 0.01) at 60s, as well as aggregation. This is consistent with EPI inhibition mediated through stimulation of adenylate cyclase via the ..beta..-adrenergic receptor. The ..cap alpha..-adrenergic blocker phentolamine (50 ..mu..M), reduced aggregation stimulated by 0.5 ..mu..M ADP + 50 ..mu..M EPI, and reduced the accumulation of IP by 53% (p < 0.05) and IP/sub 2/ by 108% (0 < 0.05). These data are compatible with the hypothesis that the effect of EPI on ADP-induced aggregation involves IP/sub 2/ metabolism stimulated via the ..cap alpha..-adrenergic receptor.

  17. Effect of external phosphate addition on solid-phase iron distribution and iron accumulation in Mangrove Kandelia obovata (S. L.).

    PubMed

    Du, Jingna; Liu, Jingchun; Lu, Haoliang; Hansell, Dennis; Zhang, Qiong; Wang, Wenyun; Yan, Chongling

    2015-09-01

    In this study, a pot experiment was conducted to evaluate the effect of phosphate (PO4 (3-)) addition on iron (Fe) cycling in mangrove ecosystem. Kandelia obovata (S. L.), one of the dominant mangrove species in the southeast of China, was cultivated in rhizoboxes under three different levels of P concentrations. Results showed the solid-phase Fe distribution and Fe(II)/Fe(III) values in both the root zone (rhizosphere) and bulk soil (non-rhizosphere) were comparable among all P levels (p > 0.05); P addition significantly decreased the pore water Fe content both in the rhizosphere and non-rhizosphere zone (p < 0.05); higher amount of reactive Fe was found in rhizosphere sediments, while in the non-rhizosphere sediments, higher concentration of crystalline Fe was determined; P significantly increased iron plaque formation and iron accumulation in K. obovata (S. L.) tissues (p < 0.05); P addition increased K. obovata (S. L.) biomass and chlorophyll content. It was suggested that P is implicated in the Fe cycling in mangrove plants; more reactive iron, higher abundance of root Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and together with higher amount of K. obovata (S. L.) root organic acids exudation result in a rapid Fe cycling in rhizosphere, which contribute to comparable solid-phase iron distribution among different P levels.

  18. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential.

    PubMed

    Yao, Ying; Gao, Bin; Chen, Jianjun; Zhang, Ming; Inyang, Mandu; Li, Yuncong; Alva, Ashok; Yang, Liuyan

    2013-06-01

    An innovative method was developed to produce engineered biochar from magnesium (Mg) enriched tomato tissues through slow pyrolysis in a N2 environment. Tomato plants treated with 25mM Mg accumulated much higher level of Mg in tissue, indicating Mg can be substantially enriched in tomato plants, and pyrolysis process further concentrated Mg in the engineered biochar (8.8% Mg). The resulting Mg-biochar composites (MgEC) showed better sorption ability to phosphate (P) in aqueous solutions compared to the other four tomato leaves biochars. Statistical analysis showed a strong and significant correlation between P removal rate and biochar Mg content (R(2)=0.78, and p<0.001), indicating the enriched Mg in the engineered biochar is the main factor controlling its P removal ability. SEM-EDX, XRD and XPS analyses showed that nanoscale Mg(OH)2 and MgO particles were presented on the surface of MgEC, which serve as the main adsorption sites for aqueous P.

  19. Effect of external phosphate addition on solid-phase iron distribution and iron accumulation in Mangrove Kandelia obovata (S. L.).

    PubMed

    Du, Jingna; Liu, Jingchun; Lu, Haoliang; Hansell, Dennis; Zhang, Qiong; Wang, Wenyun; Yan, Chongling

    2015-09-01

    In this study, a pot experiment was conducted to evaluate the effect of phosphate (PO4 (3-)) addition on iron (Fe) cycling in mangrove ecosystem. Kandelia obovata (S. L.), one of the dominant mangrove species in the southeast of China, was cultivated in rhizoboxes under three different levels of P concentrations. Results showed the solid-phase Fe distribution and Fe(II)/Fe(III) values in both the root zone (rhizosphere) and bulk soil (non-rhizosphere) were comparable among all P levels (p > 0.05); P addition significantly decreased the pore water Fe content both in the rhizosphere and non-rhizosphere zone (p < 0.05); higher amount of reactive Fe was found in rhizosphere sediments, while in the non-rhizosphere sediments, higher concentration of crystalline Fe was determined; P significantly increased iron plaque formation and iron accumulation in K. obovata (S. L.) tissues (p < 0.05); P addition increased K. obovata (S. L.) biomass and chlorophyll content. It was suggested that P is implicated in the Fe cycling in mangrove plants; more reactive iron, higher abundance of root Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and together with higher amount of K. obovata (S. L.) root organic acids exudation result in a rapid Fe cycling in rhizosphere, which contribute to comparable solid-phase iron distribution among different P levels. PMID:25943505

  20. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite.

  1. The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans.

    PubMed

    Díaz, Margarita; Esteban, Ana; Fernández-Abalos, José Manuel; Santamaría, Ramón I

    2005-08-01

    The secreted protein pattern of Streptomyces lividans depends on the carbon source present in the culture media. One protein that shows the most dramatic change is the high-affinity phosphate-binding protein PstS, which is strongly accumulated in the supernatant of liquid cultures containing high concentrations (>3 %) of certain sugars, such as fructose, galactose and mannose. The promoter region of this gene and that of its Streptomyces coelicolor homologue were used to drive the expression of a xylanase in S. lividans that was accumulated in the culture supernatant when grown in the presence of fructose. PstS accumulation was dramatically increased in a S. lividans polyphosphate kinase null mutant (Deltappk) and was impaired in a deletion mutant lacking phoP, the transcriptional regulator gene of the two-component phoR-phoP system that controls the Pho regulon. Deletion of the pstS genes in S. lividans and S. coelicolor impaired phosphate transport and accelerated differentiation and sporulation on solid media. Complementation with a single copy in a S. lividans pstS null mutant returned phosphate transport and sporulation to levels similar to those of the wild-type strain. The present work demonstrates that carbon and phosphate metabolism are linked in the regulation of genes and that this can trigger the genetic switch towards morphogenesis.

  2. Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae.

    PubMed

    Auesukaree, Choowong; Tochio, Hidehito; Shirakawa, Masahiro; Kaneko, Yoshinobu; Harashima, Satoshi

    2005-07-01

    In Saccharomyces cerevisiae, the phosphate signal transduction PHO pathway is involved in regulating several phosphate-responsive genes such as PHO5, which encodes repressible acid phosphatase. In this pathway, a cyclin-dependent kinase inhibitor (Pho81p) regulates the kinase activity of the cyclin-cyclin-dependent kinase complex Pho80p-Pho85p, which phosphorylates the transcription factor Pho4p in response to intracellular phosphate levels. However, how cells sense phosphate availability and transduce the phosphate signal to Pho81p remains unknown. To identify additional components of the PHO pathway, we have screened a collection of yeast deletion strains. We found that disruptants of PLC1, ARG82, and KCS1, which are involved in the synthesis of inositol polyphosphate, and ADK1, which encodes adenylate kinase, constitutively express PHO5. Each of these factors functions upstream of Pho81p and negatively regulates the PHO pathway independently of intracellular orthophosphate levels. Overexpression of KCS1, but not of the other genes, suppressed PHO5 expression in the wild-type strain under low phosphate conditions. These results raise the possibility that diphosphoinositol tetrakisphosphate and/or bisdiphosphoinositol triphosphate may be essential for regulation of the PHO pathway. Furthermore, the Deltaplc1, Deltaarg82, and Deltakcs1 deletion strains, but not the Deltaipk1 deletion strain, had significantly reduced intracellular polyphosphate levels, suggesting that enzymes involved in inositol pyrophosphate synthesis are also required for polyphosphate accumulation.

  3. Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the 'yellow pigment' and other apocarotenoids.

    PubMed

    Walter, M H; Fester, T; Strack, D

    2000-03-01

    Plants and certain bacteria use a non-mevalonate alternative route for the biosynthesis of many isoprenoids, including carotenoids. This route has been discovered only recently and has been designated the deoxyxylulose phosphate pathway or methylerythritol phosphate (MEP) pathway. We report here that colonisation of roots from wheat, maize, rice and barley by the arbuscular mycorrhizal fungal symbiont Glomus intraradices involves strong induction of transcript levels of two of the pivotal enzymes of the MEP pathway, 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR). This induction is temporarily and spatially correlated with specific and concomitant accumulation of two classes of apocarotenoids, namely glycosylated C13 cyclohexenone derivatives and mycorradicin (C14) conjugates, the latter being a major component of the long-known 'yellow pigment'. A total of six cyclohexenone derivatives were characterised from mycorrhizal wheat and maize roots. Furthermore, the acyclic structure of mycorradicin described previously only from maize has been identified from mycorrhizal wheat roots after alkaline treatment of an 'apocarotenoid complex' of yellow root constituents. We propose a hypothetical scheme for biogenesis of both types of apocarotenoids from a common oxocarotenoid (xanthophyll) precursor. This is the first report demonstrating (i) that the plastidic MEP pathway is active in plant roots and (ii) that it can be induced by a fungus. PMID:10758508

  4. Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste).

    PubMed

    Castaldi, Paola; Silvetti, Margherita; Garau, Giovanni; Deiana, Salvatore

    2010-10-15

    In the present work we investigated the interactions established between red mud (RM) and phosphate anions (P) at pH 4.0, 7.0 and 10.0. The amount of P sorbed by RM (P-RM) increased as the pH decreased being equal to 4.871 mmol g(-1) at pH 4.0, 0.924 mmol g(-1) at pH 7.0, and 0.266 mmol g(-1) at pH 10.0. Sequential extractions' data of P-RM equilibrated at pH 4.0 and 7.0, suggested that the phosphate sorption at these pH values was mainly regulated by two different mechanisms that gave rise to a chemical adsorption on RM phases, and to the formation of metal phosphate precipitates. By contrast, at pH 10.0 the P-sorption was regulated by a chemisorption mechanism on Fe-Al phases of RM. These findings were supported by FT-IR analysis, which showed a broad band at 1114 and 1105 cm(-1) in P-RM spectra at pH 4.0 and 7.0 respectively, attributable to P-O(H) stretching nu(3)-modes associated to inner-sphere complexes of phosphate on Fe-Al phases, or alternatively to stretching vibrations of PO(4)(3-) tetrahedra, arising from a precipitate of aluminium phosphate. Importantly, the FT-IR spectroscopy showed a phosphate-promoted dissolution of tectosilicates, notably cancrinite and sodalite, in RM exchanged with phosphate at pH 4.0 and 7.0.

  5. Developmental delay in a Streptomyces venezuelae glgE null mutant is associated with the accumulation of α-maltose 1-phosphate.

    PubMed

    Miah, Farzana; Bibb, Maureen J; Barclay, J Elaine; Findlay, Kim C; Bornemann, Stephen

    2016-07-01

    The GlgE pathway is thought to be responsible for the conversion of trehalose into a glycogen-like α-glucan polymer in bacteria. Trehalose is first converted to maltose, which is phosphorylated by maltose kinase Pep2 to give α-maltose 1-phosphate. This is the donor substrate of the maltosyl transferase GlgE that is known to extend α-1,4-linked maltooligosaccharides, which are thought to be branched with α-1,6 linkages. The genome of Streptomyces venezuelae contains all the genes coding for the GlgE pathway enzymes but none of those of related pathways, including glgC and glgA of the glycogen pathway. This provides an opportunity to study the GlgE pathway in isolation. The genes of the GlgE pathway were upregulated at the onset of sporulation, consistent with the known timing of α-glucan deposition. A constructed ΔglgE null mutant strain was viable but showed a delayed developmental phenotype when grown on maltose, giving less cell mass and delayed sporulation. Pre-spore cells and spores of the mutant were frequently double the length of those of the wild-type, implying impaired cross-wall formation, and spores showed reduced tolerance to stress. The mutant accumulated α-maltose 1-phosphate and maltose but no α-glucan. Therefore, the GlgE pathway is necessary and sufficient for polymer biosynthesis. Growth of the ΔglgE mutant on galactose and that of a Δpep2 mutant on maltose were analysed. In both cases, neither accumulation of α-maltose 1-phosphate/α-glucan nor a developmental delay was observed. Thus, high levels of α-maltose 1-phosphate are responsible for the developmental phenotype of the ΔglgE mutant, rather than the lack of α-glucan.

  6. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An innovative synthesis was developed to produce engineered biochar from magnesium (Mg) enriched tomato tissues through slow pyrolysis in a N2 environment. The resulting Mg-biochar composites showed excellent sorption ability to phosphate in aqueous solutions. The engineered biochar contained nanosc...

  7. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  8. Nuclear translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella).

    PubMed

    Wang, Congcong; Han, Chunzhou; Li, Tao; Yang, Dehao; Shen, Xiaojiong; Fan, Yinxin; Xu, Yang; Zheng, Wenli; Fei, Chenzhong; Zhang, Lifang; Xue, Feiqun

    2013-01-01

    In mammalian cells, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) has recently been shown to be implicated in numerous apoptotic paradigms, especially in neuronal apoptosis, and has been demonstrated to play a vital role in some neurodegenerative disorders. However, this phenomenon has not been reported in protists. In the present study, we report for the first time that such a mechanism is involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella). We found that upon treatment of parasites with diclazuril, the expression levels of GAPDH transcript and protein were significantly increased in second-generation merozoites. Then, we examined the subcellular localization of GAPDH by fluorescence microscopy and Western blot analysis. The results show that a considerable amount of GAPDH protein appeared in the nucleus within diclazuril-treated second-generation merozoites; in contrast, the control group had very low levels of GAPDH in the nucleus. The glycolytic activity of GAPDH was kinetically analyzed in different subcellular fractions. A substantial decrease (48.5%) in glycolytic activity of GAPDH in the nucleus was displayed. Moreover, the activities of caspases-3, -9, and -8 were measured in cell extracts using specific caspase substrates. The data show significant increases in caspase-3 and caspase-9 activities in the diclazuril-treated group.

  9. The Sink-Specific Plastidic Phosphate Transporter PHT4;2 Influences Starch Accumulation and Leaf Size in Arabidopsis1[W][OA

    PubMed Central

    Irigoyen, Sonia; Karlsson, Patrik M.; Kuruvilla, Jacob; Spetea, Cornelia; Versaw, Wayne K.

    2011-01-01

    Nonphotosynthetic plastids are important sites for the biosynthesis of starch, fatty acids, and amino acids. The uptake and subsequent use of cytosolic ATP to fuel these and other anabolic processes would lead to the accumulation of inorganic phosphate (Pi) if not balanced by a Pi export activity. However, the identity of the transporter(s) responsible for Pi export is unclear. The plastid-localized Pi transporter PHT4;2 of Arabidopsis (Arabidopsis thaliana) is expressed in multiple sink organs but is nearly restricted to roots during vegetative growth. We identified and used pht4;2 null mutants to confirm that PHT4;2 contributes to Pi transport in isolated root plastids. Starch accumulation was limited in pht4;2 roots, which is consistent with the inhibition of starch synthesis by excess Pi as a result of a defect in Pi export. Reduced starch accumulation in leaves and altered expression patterns for starch synthesis genes and other plastid transporter genes suggest metabolic adaptation to the defect in roots. Moreover, pht4;2 rosettes, but not roots, were significantly larger than those of the wild type, with 40% greater leaf area and twice the biomass when plants were grown with a short (8-h) photoperiod. Increased cell proliferation accounted for the larger leaf size and biomass, as no changes were detected in mature cell size, specific leaf area, or relative photosynthetic electron transport activity. These data suggest novel signaling between roots and leaves that contributes to the regulation of leaf size. PMID:21960139

  10. Changes in inositol phosphates in wild carrot cells upon initiation of cell wall digestion

    SciTech Connect

    Rincon, M.; Boss, W.F.

    1987-04-01

    Previous studies have shown that inositol trisphosphate (IP/sub 3/) stimulated /sup 45/Ca/sup +2/ efflux from fusogenic carrot protoplasts and it was suggested that IP/sub 3/ may serve as a second messenger for the mobilization of intracellular Ca/sup +2/ in higher plant cells. To determine whether or not inositol phosphate metabolism changes in response to external stimuli, the cells were labeled with myo-(2-/sup 3/H) inositol for 18 h and exposed to cell wall digestion enzymes, Driselase. The inositol phosphates were extracted with ice cold 10% TCA and separated by anion exchange chromatography. The radioactivity of the fraction that contained IP/sub 3/ increased 2-3.8 fold and that which contained inositol bisphosphate increased 1.9-2.6 fold within 1.5 min of exposure to Driselase. After 6 min, the radioactivity of both fractions increased 6-7.7 fold and an increase in inositol monophosphate was observed. These data indicate that inositol phosphate metabolism is stimulated by Driselase and suggest polyphosphoinositide hydrolysis occurs upon initiation of cell wall digestion.

  11. Early effects of Escherichia coli endotoxin infusion on vasopressin-stimulated breakdown and metabolism of inositol lipids in rat hepatocytes

    SciTech Connect

    Rodriguez de Turco, E.B.; Spitzer, J.A.

    1988-08-30

    The turnover of vasopressin-stimulated 32P-phosphoinositides and 32P-phosphatidic acid and accumulation of (2-3H)-inositol phosphates were examined in hepatocytes from rats infused i.v. with saline and E. coli endotoxin for 3 hrs. Within 60s of VP stimulation the decrease in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate labeling as well as the increased uptake of 32P into phosphatidic acid were similar in both groups. However, at a later time (300s) the 32P-phosphatidylinositol turnover was greatly decreased concomitantly with a higher labeling of phosphatidic acid. The accumulation of (2-3H)-inositol phosphates in ET-cells was significantly decreased both at 30s and 600s after VP addition. The distribution of (2-3H)-inositol labeling accumulated in the different inositol phosphate fractions over the first 30s of VP stimulation showed a tendency to lower accumulation of inositol trisphosphate, and a significantly lower accumulation of inositol bisphosphate simultaneously with a higher labeling of the inositol tetrakisphosphate fraction. These observations reflect an early effect of ET-infusion on VP-stimulated inositol lipid turnover and on the subsequent metabolism of the released inositol phosphates.

  12. The separation of ( sup 32 P)inositol phosphates by ion-pair chromatography: Optimization of the method and biological applications

    SciTech Connect

    Sulpice, J.C.; Gascard, P.; Journet, E.; Rendu, F.; Renard, D.; Poggioli, J.; Giraud, F. )

    1989-05-15

    We have developed an ion-pair reverse-phase HPLC method to measure inositol phosphates in {sup 32}P-labeled cells. The different chromatographic parameters were analyzed to optimize the resolution of the {sup 32}P-labeled metabolites. Analysis of inositol phosphates in biological samples was improved by a single charcoal pretreatment which eliminated interfering nucleotides without removing inositol phosphates. The kinetics of production of inositol phosphates in calcium-activated erythrocytes, vasopressin-stimulated hepatocytes, and thrombin-activated platelets were analyzed. Original data on the activation of phosphoinositide phospholipase C were obtained in intact erythrocytes by direct measurement of inositol (1,4,5)P3. Data from agonist-stimulated hepatocytes and platelets were consistent with those from previous studies. In conclusion, this technique offers many advantages over the methodologies currently employed involving anion-exchange chromatography and ({sup 3}H)inositol labeling: (i) {sup 32}P labeling is less expensive and more efficient than {sup 3}H labeling and can be used with all types of cells without permeabilization treatments and (ii) ion-pair HPLC gives good resolution of inositol phosphates from nucleotides with shorter retention times, and long reequilibration periods are not required.

  13. Isomer-specific accumulation of perfluorooctanesulfonate from (N-ethyl perfluorooctanesulfonamido)ethanol-based phosphate diester in Japanese Medaka (Oryzias latipes).

    PubMed

    Peng, Hui; Zhang, Shiyi; Sun, Jianxian; Zhang, Zhong; Giesy, John P; Hu, Jianying

    2014-01-21

    While (N-ethyl perfluorooctanesulfonamido)ethanol (FOSE) -based phosphate diester (diSPAP) has been proposed as a candidate precursor of perfluorooctanesulfonate (PFOS), its potential biotransformation to PFOS has not been verified. Metabolism of diSPAP was investigated in Japanese medaka ( Oryzias latipes ) after exposure in water for 10 days, followed by 10 days of depuration. Branched isomers of diSPAP (B-diSPAP) were preferentially enriched in medaka exposed to diSPAP, with the proportion of branched isomers (BF) ranging from 0.56 to 0.80, which was significantly greater than that in the water to which the medaka were exposed (0.36) (p < 0.001). This enrichment was due primarily to preferential uptake of B-diSPAP. PFOS together with perfluorooctanesulfonamide (PFOSA), N-ethyl perfluorooctanesulfonamide (NEtFOSA), 2-(perfluorooctanesulfonamido)acetic acid (FOSAA), NEtFOSAA, FOSE, and NEtFOSE were detected in medaka exposed to diSPAP, which indicated the potential for biotransformation of diSPAP to PFOS via multiple intermediates. Due to preferential metabolism of branched isomers, FOSAA and PFOSA exhibited greater BF values (>0.5) than those of NEtFOSA, NEtFOSAA, and NEtFOSE (<0.2). Such preferential metabolism of branched isomers along the primary pathway of metabolism and preferential accumulation of B-diSPAP led to enrichment of branched PFOS (B-PFOS) in medaka. Enrichment of B-PFOS was greater for 3-, 4-, and 5-perfluoromethyl PFOS (P3MPFOS, P4MPFOS, and P5MPFOS), for which values of BF were 0.58 ± 0.07, 0.62 ± 0.06, and 0.61 ± 0.05 (day 6), respectively; these values are 5.8-, 7.8-, and 6.4-fold greater than those of technical PFOS. This work provides evidence on the isomer-specific accumulation of PFOS from diSPAP and will be helpful to track indirect sources of PFOS in the future.

  14. Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: a hypothetical role of YjbB in phosphate export and polyphosphate accumulation.

    PubMed

    Motomura, Kei; Hirota, Ryuichi; Ohnaka, Nobuteru; Okada, Mai; Ikeda, Takeshi; Morohoshi, Tomohiro; Ohtake, Hisao; Kuroda, Akio

    2011-07-01

    Intracellular phosphate (P(i) ) is normally maintained at a fairly constant concentration in Escherichia coli, mainly by P(i) transport systems and by the 'phosphate balance' between P(i) and polyphosphate (polyP). We have reported previously that excess uptake of P(i) in a phoU mutant results in elevated levels of polyP. Here, we found that the elevated levels of polyP in the mutant could be reduced by the overproduction of YjbB, whose N-terminal half contains Na(+) /P(i) cotransporter domains. The rate of P(i) export increased when the YjbB overproducer grew on a medium containing glycerol-3-phosphate. These results strongly suggested that YjbB reduced the elevated levels of polyP in the phoU mutant by exporting intracellular excess P(i) .

  15. Accumulation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis.

    PubMed

    Rivasseau, Corinne; Seemann, Myriam; Boisson, Anne-Marie; Streb, Peter; Gout, Elisabeth; Douce, Roland; Rohmer, Michel; Bligny, Richard

    2009-01-01

    Metabolic profiling using phosphorus nuclear magnetic resonance ((31)P-NMR) revealed that the leaves of different herbs and trees accumulate 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEcDP), an intermediate of the methylerythritol 4-phosphate (MEP) pathway, during bright and hot days. In spinach (Spinacia oleracea L.) leaves, its accumulation closely depended on irradiance and temperature. MEcDP was the only (31)P-NMR-detected MEP pathway intermediate. It remained in chloroplasts and was a sink for phosphate. The accumulation of MEcDP suggested that its conversion rate into 4-hydroxy-3-methylbut-2-enyl diphosphate, catalysed by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE), was limiting under oxidative stress. Indeed, O(2) and ROS produced by photosynthesis damage this O(2)-hypersensitive [4Fe-4S]-protein. Nevertheless, as isoprenoid synthesis was not inhibited, damages were supposed to be continuously repaired. On the contrary, in the presence of cadmium that reinforced MEcDP accumulation, the MEP pathway was blocked. In vitro studies showed that Cd(2+) does not react directly with fully assembled GcpE, but interferes with its reconstitution from recombinant GcpE apoprotein and prosthetic group. Our results suggest that MEcDP accumulation in leaves may originate from both GcpE sensitivity to oxidative environment and limitations of its repair. We propose a model wherein GcpE turnover represents a bottleneck of the MEP pathway in plant leaves simultaneously exposed to high irradiance and hot temperature.

  16. Perinatal exposure to the flame retardant triphenyl phosphate accelerates the onset of type 2 diabetes and causes adipose accumulation in UCD-type 2 diabetes mellitus rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triphenyl phosphate (TPP) is an additive used globally to in furniture, foams, and electronics products either as a flame retardant or plasticizer and is found in household dust. We administered TPP from gestational day 8.5 to weaning and evaluated metabolic phenotypes of 3.5 month old male and fema...

  17. Source of /sup 3/H-labeled inositol bis- and monophosphates in agonist-activated rat parotid acinar cells

    SciTech Connect

    Hughes, A.R.; Putney, J.W. Jr.

    1989-06-05

    The kinetics of (3H)inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of (3H)inositol monophosphates and (3H)inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the (3H)inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of (3H)inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of (3H)inositol phosphates.

  18. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  19. Morin reduces hepatic inflammation-associated lipid accumulation in high fructose-fed rats via inhibiting sphingosine kinase 1/sphingosine 1-phosphate signaling pathway.

    PubMed

    Wang, Xing; Zhang, Dong-Mei; Gu, Ting-Ting; Ding, Xiao-Qin; Fan, Chen-Yu; Zhu, Qin; Shi, Yun-Wei; Hong, Ye; Kong, Ling-Dong

    2013-12-15

    SphK1/S1P signaling pathway is involved in the development of hepatic inflammation and injury. But its role in high fructose-induced NAFLD has not yet been reported. The aim of this study was to elucidate the crucial role of SphK1/S1P signaling pathway in high fructose-induced hepatic inflammation and lipid accumulation in rats. Moreover, the hepatoprotective effects of morin, a flavonoid with anti-inflammatory and anti-hyperlipedimic activities, on these hepatic changes in rats were investigated. High fructose-fed rats were orally treated with morin (30 and 60mg/kg) and pioglitazone (4mg/kg) for 8 weeks, respectively. Fructose feeding induced hyperlipidemia, and activated SphK1/S1P signaling pathway characterized by the elevation of SphK1 activity, S1P production as well as SphK1, S1PR1 and S1PR3 protein levels, which in turn caused NF-κB signaling activation to produce IL-1β, IL-6 and TNF-α and inflammation in the liver of rats. Subsequently, hepatic insulin and leptin signaling impairment and lipid metabolic disorder were observed in this animal model, resulting in liver lipid accumulation. Morin restored high fructose-induced the activation of hepatic SphK1/S1P signaling pathway in rats. Subsequently, the reduced NF-κB signaling activation by morin decreased inflammatory cytokine production, recovered insulin and leptin signaling impairment to reduce lipid accumulation and injury in the rat liver. These effects of morin were confirmed in Buffalo rat liver (BRL3A) cell model stimulated with 5mM fructose. Thus, the inhibition of hepatic SphK1/S1P signaling pathway may be a novel mechanism by which morin exerts hepatoprotection in high fructose-fed rats, possibly involving liver inflammation inhibition and lipid accumulation recovery.

  20. Inositol lipid metabolism in vasopressin stimulated hepatocytes from rats infused with tumor necrosis factor

    SciTech Connect

    Spitzer, J.A.; Rodriguez de Turco, E.B. )

    1989-05-30

    We studied the effect of i.v. infusion of human recombinant tumor necrosis factor alpha (rHuTNF alpha, Cetus, 15 micrograms/100 g bw over 3 h) on vasopressin (VP)-stimulated {sup 32}P-inositol lipid turnover and the release of {sup 3}H-inositol phosphates in isolated rat hepatocytes. The early VP-induced decrease (within 30 s) in {sup 32}P-phosphatidylinositol 4-phosphate and {sup 32}P-phosphatidylinositol 4,5-bisphosphate labeling was significantly reduced (-40%) and at the same time the uptake of {sup 32}P into phosphatidic acid was 50% lower than in saline-infused (matched control) rats. Within 5 min of VP-stimulation, lower {sup 32}P phosphatidylinositol (-40%) and higher {sup 32}P-phosphatidic acid (+30%) labeling were observed in rHuTNF alpha-infused rats. Infusion of rHuTNF alpha also affected the VP-induced release of {sup 3}H-inositol phosphates. The accumulation of {sup 3}H-inositol-labeled water soluble products was decreased by 25% and 17% at 30 s and 10 min, respectively. These data show that rHuTNF alpha mimics early perturbations induced by Escherichia coli endotoxin infusion in VP-stimulated inositol lipid metabolism in rat hepatocytes.

  1. Comparison of muscarine- and vasopressin-stimulated inositol phospholipid metabolism in the superior cervical ganglion of the rat

    SciTech Connect

    Horwitz, J.; Anderson, C.; Perlman, R.L.

    1986-03-05

    Both muscarine and vasopressin have previously been shown to increase the accumulation of /sup 3/H-inositol phosphates (/sup 3/H-IP) in superior cervical ganglia in which the phospholipids were labeled with /sup 3/H-inositol. They have compared the effects of muscarine and vasopressin on phospholipid metabolism in the ganglion. The effects of these agents on /sup 3/H-IP accumulation are additive. The response to muscarine plateaus after approximately 10 min whereas the response to vasopressin increases for at least 30 min. Decentralization and maintenance in organ culture appear to potentiate the effect of muscarine on /sup 3/H-IP accumulation but do not effect the response of the ganglia to vasopressin. Muscarine and vasopressin also increase the incorporation of /sup 3/H-inositol into phospholipids in the ganglion. Autoradiographic techniques were used to localize the inositol-containing phospholipids in the ganglion. Muscarine increases phospholipid labeling primarily in the cell bodies of the principal ganglionic neurons, whereas vasopressin increases phospholipid labeling primarily in the neuropil. These data are consistent with the hypothesis that muscarine and vasopressin stimulate the metabolism of different pools of phospholipids.

  2. Accumulation of DOC in Low Phosphate Low Chlorophyll (LPLC) area: is it related to higher production under high N:P ratio?

    NASA Astrophysics Data System (ADS)

    Mauriac, R.; Moutin, T.; Baklouti, M.

    2010-09-01

    The biogeochemistry of carbon and nutrients (N, P) in the surface layer of the ocean strongly depends on the interaction between C, N and P at the cell level and at the population level where interaction between primary producers (phytoplankton) and remineralizers (heterotrophic bacteria) impact the overall stock and dynamics of organic carbon. To understand these interactions in the surface layer of the Mediterranean Sea, we implemented, using Eco3M, a multi-element, steady state, mechanistic model. This cell-based model intend to represent the growth of phytoplankton and heterotrophic bacteria under various amount of nutrients. As a results, it displays the expected biogeochemical characteristics of the system and give us insight on the expected interaction between phytoplankton and heterotrophic bacteria both in term of competition for inorganic nutrients and in term of commensalism for organic carbon. In this study, we found a good quantitative agreement between model results and literrature data for stocks and fluxes of the western Mediterranean basin. In addition, for phytoplankton we show how the uncoupling between carbon production and growth could impact the overall DOC dynamic and based on these results, we proposed a new explanantion for the observed DOC accumulation in the surface layer of the Mediterranean Sea.

  3. [Phosphate binders].

    PubMed

    Heeb, Rita M

    2016-06-01

    Phosphate binders to treat hyperphosphataemia are part of the medication regime of every dialysis patient. Phosphate binders are taken with every meal (three times a day). Generally, the medication adherence rates of phosphate binders are very low. This is due to inconveniences like their bad taste or their size which makes them hard to swallow. Also nephrologists have differing opinions on phosphate binders as they are aware of the dialysis patients' difficulties to deal with the amount of drugs they are prescribed. Still, phosphate binders are important drugs which have shown potential in reducing mortality by regulating the level of serum phosphate. In order to improve adherence rates, pharmacists have to advise the patients on these drugs' side effects versus the risks associated with omitting their intake. PMID:27439258

  4. Adenosine 5'-(gamma-thio) triphosphate (ATPgammaS) stimulates both P2Y receptors linked to inositol phosphates production and cAMP accumulation in bovine adrenocortical fasciculata cells.

    PubMed

    Nishi, Haruhisa; Hori, Seiji; Niitsu, Akiyoshi; Kawamura, Masahiro

    2004-01-16

    The study was aimed to investigate the existence of at least two kinds of P2Y receptors linked to steroidogenesis in bovine adrenocortical fasciculata cells (BAFCs). Extracellular nucleotides facilitated steroidogenesis in BAFCs. The potency order was UTP > adenosine 5'-(gamma-thio) triphosphate (ATPgammaS) > ATP > 2-methylthio ATP (2MeSATP) > adenosine 5'-(beta-thio) diphosphate (ADPbetaS) > alpha,beta-methylene ATP (alpha,beta-me-ATP), beta,gamma-methylene ATP (beta,gamma -me-ATP). ATPgammaS (10-100 microM) remarkably stimulated both total inositol phosphates (IPs) production and cyclic AMP (cAMP) accumulation. Competitive displacement experiments by using [35S]ATPgammaS as a radioactive ligand in BAFCs showed that the potency under these unlabelled ligands was ATPgammaS > ATP > ADPbetaS > 2MeSATP > UTP > alpha,beta-me-ATP, beta,gamma-me-ATP. These suggest that two different binding sites of [35S]ATPgammaS, namely P2Y receptors, exist in BAFCs, and that these receptors are linked to steroidogenesis via distinct second messenger systems in the cells.

  5. Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P] phosphate.

    PubMed

    Abdel-Latif, A A; Akhtar, R A; Hawthorne, J N

    1977-01-15

    1. Paired iris smooth muscles from rabbits were incubated for 30 min at 37 degrees C in an iso-osmotic salt medium containg glucose, inositol, cytidine and [32P]phosphate. 2. One of the pair was then incubated at 37 degrees C for 10 min in unlabelled medium containing 10mM-2-deoxyglucose and the other was incubated in the presence of acetylcholine plus eserine (0.05mM each). 2-Deoxyglucose, which was included in the incubation medium to minimize the biosynthesis of triphosphoinositide from ATP and diphosphoinositide, decreased the amount of labelled ATP by 71% and inhibited further 32P incorporation from ATP into triphosphoinositide by almost 30%. 3. Acetylcholine (0.05mM) increased significantly the loss of 32P from triphosphoinositide (the 'triphosphoinositide effect') in 32P-labelled iris muscle. This effect was measured both chemically and radiochemically. It was also observed when 32Pi was replaced by myo-[3H]inositol in the incubation medium. 4. The triphosphoinositide effect was blocked by atropine but not by D-tubocurarine. Further, muscarinic but not nicotinic agonists were found to provoke this effect. 5. Acetylcholine decreased by 28% the 32P incorporation into triphosphoinositide, presumably by stimulating its breakdown. This decrement in triphosphoinositide was blocked by atropine, but not by D-tubocurarine. 6. The triphosphoinositide effect was accompanied by a significant increase in 32P labelling, but not tissue concentration, of phosphatidylinositol and phosphatidic acid. The possible relationship between the loss of 32P label from triphosphoinositide in response to acetylcholine and the concomitant increase in that of phosphatidylinositol and phosphatidic acid is discussed. 7. The presence of triphosphoinositide phosphomonoesterase, the enzyme that might be stimulated in the iris smooth muscle by the neurotransmitter, was demonstrated, and, under our methods of homogenization and assay, more than 80% of its activity was localized in the

  6. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  7. Inositol phosphates in the environment.

    PubMed Central

    Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D

    2002-01-01

    The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785

  8. Transfected adenosine A1 receptor-mediated modulation of thrombin-stimulated phospholipase C and phospholipase A2 activity in CHO cells.

    PubMed

    Dickenson, J M; Hill, S J

    1997-02-19

    Thrombin receptor activation in Chinese hamster ovary (CHO) cells stimulates the hydrolysis of inositol phospholipids and the release of arachidonic acid. Our previous studies have shown that activation of the human transfected adenosine A1 receptor in CHO cells (CHO-A1) potentiates the accumulation of inositol phosphates elicited by endogenous P2U purinoceptors and CCKA receptors. In this study we have investigated whether adenosine A1 receptor activation can modulate thrombin-stimulated arachidonic acid release and/or inositol phospholipid hydrolysis in CHO-A1 cells. Thrombin stimulated [3H]arachidonic acid release and total [3H]inositol phosphate accumulation in CHO-A1 cells. Both these responses to thrombin were were insensitive to pertussis toxin. The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), potentiated thrombin-stimulated [3H]arachidonic acid. In marked contrast, PMA inhibited thrombin-stimulated [3H]inositol phosphate accumulation. The selective protein kinase C inhibitor Ro 31-8220 (3-¿1-[3-(2-isothioureido)propyl] indol-3-yl¿-4-(1-methylindol-3-yl)-3-pyrrolin-2,5-dione) had no effect on thrombin-stimulated [3H]arachidonic acid release but reversed the potentiation of thrombin-stimulated [3H]arachidonic acid release elicited by PMA. The selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) augmented the release of [3H]arachidonic acid produced by thrombin. Co-activation of the adenosine A1 receptor also potentiated thrombin-stimulated [3H]inositol phosphate accumulation. The synergistic interactions between the adenosine A1 receptor and thrombin were abolished in pertussis-toxin-treated cells. The potentiation of [3H]arachidonic acid release by CPA was blocked by the protein kinase C inhibitors Ro 31-8220 and GF 109203X (3-[1-[3-(dimethylamino)propyl]-1 H-indol-3-yl]-4-(1 H-indol-3-yl)- 1H-pyrrole-2,5-dione). In conclusion, thrombin receptor activation in CHO-A1 cells stimulates the accumulation of [3H]inositol

  9. Wheat Grain Development Is Characterized by Remarkable Trehalose 6-Phosphate Accumulation Pregrain Filling: Tissue Distribution and Relationship to SNF1-Related Protein Kinase1 Activity1[W][OA

    PubMed Central

    Martínez-Barajas, Eleazar; Delatte, Thierry; Schluepmann, Henriette; de Jong, Gerhardus J.; Somsen, Govert W.; Nunes, Cátia; Primavesi, Lucia F.; Coello, Patricia; Mitchell, Rowan A.C.; Paul, Matthew J.

    2011-01-01

    Trehalose 6-phosphate (T6P) is a sugar signal that regulates metabolism, growth, and development and inhibits the central regulatory SNF1-related protein kinase1 (SnRK1; AKIN10/AKIN11). To better understand the mechanism in wheat (Triticum aestivum) grain, we analyze T6P content and SnRK1 activities. T6P levels changed 178-fold 1 to 45 d after anthesis (DAA), correlating with sucrose content. T6P ranged from 78 nmol g−1 fresh weight (FW) pregrain filling, around 100-fold higher than previously reported in plants, to 0.4 nmol g−1 FW during the desiccation stage. In contrast, maximum SnRK1 activity changed only 3-fold but was inhibited strongly by T6P in vitro. To assess SnRK1 activity in vivo, homologs of SnRK1 marker genes in the wheat transcriptome were identified using Wheat Estimated Transcript Server. SnRK1-induced and -repressed marker genes were expressed differently pregrain filling compared to grain filling consistent with changes in T6P. To investigate this further maternal and filial tissues were compared pre- (7 DAA) and during grain filling (17 DAA). Strikingly, in vitro SnRK1 activity was similar in all tissues in contrast to large changes in tissue distribution of T6P. At 7 DAA T6P was 49 to 119 nmol g−1 FW in filial and maternal tissues sufficient to inhibit SnRK1; at 17 DAA T6P accumulation was almost exclusively endospermal (43 nmol g−1 FW) with 0.6 to 0.8 nmol T6P g−1 FW in embryo and pericarp. The data show a correlation between T6P and sucrose overall that belies a marked effect of tissue type and developmental stage on T6P content, consistent with tissue-specific regulation of SnRK1 by T6P in wheat grain. PMID:21402798

  10. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  11. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  12. Insight into biological phosphate recovery from sewage.

    PubMed

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Zhang, Xinbo; Guo, Jianbo; Ni, Bing-Jie; Chang, Soon Woong; Nguyen, Dinh Duc

    2016-10-01

    The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy. PMID:27434305

  13. Insight into biological phosphate recovery from sewage.

    PubMed

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Zhang, Xinbo; Guo, Jianbo; Ni, Bing-Jie; Chang, Soon Woong; Nguyen, Dinh Duc

    2016-10-01

    The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy.

  14. Selective release of plasma-membrane enzymes from rat hepatocytes by a phosphatidylinositol-specific phospholipase C.

    PubMed

    Shukla, S D; Coleman, R; Finean, J B; Michell, R H

    1980-04-01

    When isolated hepatocytes are incubated with phosphatidylinositol-specific phospholipase C, three cell-surface enzymes show markedly different behaviour. Most of the alkaline phosphatase is released at very low values of phosphatidylinositol hydrolysis, whereas further phosphatidylinositol hydrolysis releases only a maximum of about one-third of the 5'-nucleotidase. Alkaline phosphodiesterase I is not released. If cells containing phosphatidyl[3H]inositol are similarly treated, then the released [3H]inositol is in the form of inositol phosphate: no evidence has been obtained for any covalent association between released [3H]inositol and alkaline phosphatase.

  15. Long-term nitric oxide deficiency causes muscarinic supersensitivity and reduces β3-adrenoceptor-mediated relaxation, causing rat detrusor overactivity

    PubMed Central

    Mónica, F Z T; Bricola, A A O; Báu, F R; Freitas, L L Lopes; Teixeira, S A; Muscará, M N; Abdalla, F M F; Porto, C S; De Nucci, G; Zanesco, A; Antunes, E

    2008-01-01

    Background and purpose: Overactive bladder is a complex and widely prevalent condition, but little is known about its physiopathology. We have carried out morphological, biochemical and functional assays to investigate the effects of long-term nitric oxide (NO) deficiency on muscarinic receptor and β-adrenoceptor modulation leading to overactivity of rat detrusor muscle. Experimental approach: Male Wistar rats received Nω-nitro-L-arginine methyl ester (L-NAME) in drinking water for 7–30 days. Functional responses to muscarinic and β-adrenoceptor agonists were measured in detrusor smooth muscle (DSM) strips in Krebs–Henseleit solution. Measurements of [3H]inositol phosphate, NO synthase (NOS) activity, [3H]quinuclidinyl benzilate ([3H]QNB) binding and bladder morphology were also performed. Key results: Long-term L-NAME treatment significantly increased carbachol-induced DSM contractile responses after 15 and 30 days; relaxing responses to the β3-adrenoceptor agonist BRL 37-344 were significantly reduced at 30 days. Constitutive NOS activity in bladder was reduced by 86% after 7 days and maintained up to 30 days of L-NAME treatment. Carbachol increased sixfold the [3H]inositol phosphate in bladder tissue from rats treated with L-NAME. [3H]QNB was bound with an apparent KD twofold higher in bladder membranes after L-NAME treatment compared with that in control. No morphological alterations in DSM were found. Conclusions and implications: Long-term NO deficiency increased rat DSM contractile responses to a muscarinic agonist, accompanied by significantly enhanced KD values for muscarinic receptors and [3H]inositol phosphate accumulation in bladder. This supersensitivity for muscarinic agonists along with reductions of β3-adrenoceptor-mediated relaxations indicated that overactive DSM resulted from chronic NO deficiency. PMID:18297104

  16. Conversion of Glucose-1-Phosphate to 3-Keto-glucose-1-phosphate by Cells of Agrobacterium tumefaciens

    PubMed Central

    Fukui, Sakuzo

    1969-01-01

    Incubation of resting cells of Agrobacterium tumefaciens with glucose-1-phosphate resulted in the accumulation of a new sugar phosphate in the suspending medium. Approximately 80% of the glucose-1-phosphate consumed was converted to the new compound, which was identified as α-d-ribo-hexopyranosyl-3-ulose-1-phosphate (3-ketoglucose-1-phosphate). Both utilization of glucose-1-phosphate and accumulation of 3-ketoglucose-1-phosphate were inhibited by 2,4-dinitrophenol, polymyxin, and d-glucose, which are inhibitors of the glucoside transport system of this bacterium but are not inhibitors of d-glucoside-3-dehydrogenase, which is the 3-ketoglucose-1-phosphate-forming enzyme. Consequently, it was concluded that glucose-1-phosphate penetrates into intracellular space by means of an active transport system. The glucose-1-phosphate is converted to 3-ketoglucose-1-phosphate by d-glucoside-3-dehydrogenase, and the 3-ketoglucose-1-phosphate formed reaches the extracellular space by passing through the surface layer of the bacterium. PMID:4304223

  17. Attenuation of Phosphate Starvation Responses by Phosphite in Arabidopsis1

    PubMed Central

    Ticconi, Carla A.; Delatorre, Carla A.; Abel, Steffen

    2001-01-01

    When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. Phi significantly inhibited plant growth on phosphate-sufficient (2 mm) and nucleic acid-containing (2 mm phosphorus) media at concentrations higher than 2.5 mm. However, with respect to suppressing typical responses to phosphate limitation, Phi effects were very similar to those of phosphate. Phosphate starvation responses, which we examined and found to be almost identically affected by both anions, included changes in: (a) the root-to-shoot ratio; (b) root hair formation; (c) anthocyanin accumulation; (d) the activities of phosphate starvation-inducible nucleolytic enzymes, including ribonuclease, phosphodiesterase, and acid phosphatase; and (e) steady-state mRNA levels of phosphate starvation-inducible genes. It is important that induction of primary auxin response genes by indole-3-acetic acid in the presence of growth-inhibitory Phi concentrations suggests that Phi selectively inhibits phosphate starvation responses. Thus, the use of Phi may allow further dissection of phosphate signaling by genetic selection for constitutive phosphate starvation response mutants on media containing organophosphates as the only source of phosphorus. PMID:11706178

  18. Regulation of serum phosphate

    PubMed Central

    Lederer, Eleanor

    2014-01-01

    The regulation of serum phosphate, an acknowledged risk factor for chronic kidney disease and cardiovascular mortality, is poorly understood. The discovery of fibroblast growth factor 23 (FGF23) as a key regulator of renal phosphate handling and activation of vitamin D has revolutionized our comprehension of phosphate homeostasis. Through as yet undetermined mechanisms, circulating and dietary phosphate appear to have a direct effect on FGF23 release by bone cells that, in turn, causes renal phosphate excretion and decreases intestinal phosphate absorption through a decrease in vitamin D production. Thus, the two major phosphaturic hormones, PTH and FGF23, have opposing effects on vitamin D production, placing vitamin D at the nexus of phosphate homeostasis. While our understanding of phosphate homeostasis has advanced, the factors determining regulation of serum phosphate level remain enigmatic. Diet, time of day, season, gender, age and genetics have all been identified as significant contributors to serum phosphate level. The effects of these factors on serum phosphate have major implications for what is understood as ‘normal’ and for studies of phosphate homeostasis and metabolism. Moreover, other hormonal mediators such as dopamine, insulin-like growth factor, and angiotensin II also affect renal handling of phosphate. How the major hormone effects on phosphate handling are regulated and how the effect of these other factors are integrated to yield the measurable serum phosphate are only now beginning to be studied. PMID:24973411

  19. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  20. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  1. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  2. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  3. Uranium from phosphate ores

    SciTech Connect

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant.

  4. N2-benzyl-N1-(1-(1-naphthyl)ethyl)-3-phenylpropane-1,2-diamines and conformationally restrained indole analogues: development of calindol as a new calcimimetic acting at the calcium sensing receptor.

    PubMed

    Kessler, Albane; Faure, Hélène; Petrel, Christophe; Ruat, Martial; Dauban, Philippe; Dodd, Robert H

    2004-06-21

    The synthesis and calcimimetic activities of two new families of compounds are described. The most active derivatives of the first family, N(2)-(2-chloro-(or 4-fluoro-)benzyl)-N(1)-(1-(1-naphthyl)ethyl)-3-phenylpropane-1,2-diamine (4b and 4d, respectively, tested at 10 microM) produced 98+/-6% and 95+/-4%, respectively, of the maximal stimulation of [(3)H]inositol phosphates production obtained by 10mM Ca(2+) in CHO cells expressing the rat calcium sensing receptor (CaSR). The second family of calcimimetics was obtained by conformationally restraining the compounds of type 4 to provide the 2-aminomethyl derivatives 5. One of these compounds, (R)-2-[N-(1-(1-naphthyl)ethyl)aminomethyl]indole ((R)-5a, calindol), displayed improved calcimimetic activity compared to 4b and 4d as well as stereoselectivity. In the presence of 2mM Ca(2+), calindol stimulated [(3)H]inositol phosphates accumulation with an EC(50) of 1.0+/-0.1 or 0.31+/-0.05 microM in cells expressing the rat or the human CaSR, respectively. The calcimimetic activities of these novel compounds were shown to be due to a specific interaction with the CaSR. PMID:15149704

  5. Heat accumulator

    SciTech Connect

    Bracht, A.

    1981-09-29

    A heat accumulator comprises a thermally-insulated reservoir full of paraffin wax mixture or other flowable or meltable heat storage mass, heat-exchangers immersed in the mass, a heat-trap connected to one of the heat-exchangers, and a heat user connected to the other heat-exchanger. Pumps circulate fluids through the heat-trap and the heat-using means and the respective heat-exchangers, and a stirrer agitates and circulates the mass, and the pumps and the stirrer and electric motors driving these devices are all immersed in the mass.

  6. Stimulus-response coupling in platelets

    SciTech Connect

    Huang, E.M.

    1986-01-01

    To understand the mechanism of stimulus-response coupling in platelets, the potentiating effect of succinate and lithium on platelet activation was examined. The action of succinate was immediate; preincubation with succinate did not lead to desensitization. Succinate was comparable to ADP in lowering cAMP levels previously elevated by PGl/sub 2/. Since inhibition of cAMP is not a prerequisite for platelet activation, the mechanism of potentiation of succinate remains undefined. Lithium has also been shown to inhibit adenylate cyclase in PGl/sub 2/-pretreated platelets. Lithium, however, can also inhibit inositol phosphate (InsP) phosphatase and lead to an accumulation of InsP. In human platelets, lithium also enhanced the thrombin-induced accumulation of (/sup 3/H)inositol-labelled inositol trisphosphate (InsP/sub 3/), and inositol bisphosphate (InsP/sub 2/). One hour after thrombin addition, all 3 inositol phosphates returned to near basal levels. In the presence of lithium, while labelled InsP/sub 2/ and InsP/sub 3/ returned to their respective basal levels, the InsP level remained elevated, consistent with the known inhibitory effect of lithium on InsP phosphatase. In thrombin-stimulated platelets prelabeled with (/sup 32/P)phosphate, lithium led to a decrease in labelled phosphatidylinositol 4-phosphate (PtdIns4P) as well as an enhanced production of labelled lysophosphatidylinositol, suggesting multiple effects of lithium on platelet phosphoinositide metabolism. These observed effects, however, occurred too slowly to be the mechanism by which lithium potentiated agonist-induced platelet activation. To study the agonist-receptor interaction, the effect of the specific, high affinity thrombin inhibitor, hirudin, on thrombin-induced accumulation of (/sup 3/H)inositol-labelled inositol phosphates was studied.

  7. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite

    PubMed Central

    Jost, Ricarda; Pharmawati, Made; Lapis-Gaza, Hazel R.; Rossig, Claudia; Berkowitz, Oliver; Lambers, Hans; Finnegan, Patrick M.

    2015-01-01

    Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the ‘PHO regulon’ in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate. PMID:25697796

  8. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite.

    PubMed

    Jost, Ricarda; Pharmawati, Made; Lapis-Gaza, Hazel R; Rossig, Claudia; Berkowitz, Oliver; Lambers, Hans; Finnegan, Patrick M

    2015-05-01

    Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the 'PHO regulon' in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate. PMID:25697796

  9. Phosphate sources and their suitability for remediation of contaminated soils.

    PubMed

    Knox, A S; Kaplan, D I; Paller, M H

    2006-03-15

    Phosphate minerals and specifically apatite show promise for environmental cleanup because they can form stable compounds with a wide range of cationic contaminants. However, phosphate minerals naturally accumulate some heavy metals that may cause additional contamination of the environment if used improperly. Nine commercially available phosphate materials were evaluated for remediation of contaminated soil based on solubility, concentration of metal/metalloid impurities, and leachability of impurity metal/metalloids. The phosphate materials consisted of three groups: processed (i.e., fertilizers), mined (rock phosphates from different formations), and biogenic (ground fish bone). Processed and mined rock phosphates contained relatively high total concentrations of As, Co, Cr, and Cu but did not exceed the RCRA toxicity characteristic leaching procedure (TCLP) limits. Biogenic apatite contained much lower metal concentrations than processed and mined rock phosphate and was appreciably more soluble. By combining biogenic and mined phosphate it is possible to obtain a wide range of phosphate release rates, permitting rapid immobilization of contaminants while providing a slow release of phosphate for continued long-term treatment.

  10. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  11. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  12. Phosphorus, phosphorous, and phosphate.

    PubMed

    Iheagwara, O Susan; Ing, Todd S; Kjellstrand, Carl M; Lew, Susie Q

    2013-10-01

    This article distinguishes the terms "phosphorus, phosphorous, and phosphate" which are frequently used interchangeably. We point out the difference between phosphorus and phosphate, with an emphasis on the unit of measure. Expressing a value without the proper name or unit of measure may lead to misunderstanding and erroneous conclusions. We indicate why phosphate must be expressed as milligrams per deciliter or millimoles per liter and not as milliequivalents per liter. Therefore, we elucidate the distinction among the terms "phosphorus, phosphorous, and phosphate" and the importance of saying precisely what one really means.

  13. Prenatal ethanol exposure reduces the effects of excitatory amino acids in the rat hippocampus

    SciTech Connect

    Noble, E.P.; Ritchie, T. )

    1989-01-01

    Chronic alcohol ingestion during pregnancy can lead to the Fetal Alcohol Syndrome (FAS), a disorder marked by learning disabilities. A rat model of FAS was used by introducing pregnant Sprague-Dawley rats to a liquid diet containing 35% ethanol-derived calories (E), while a second group was pair-fed an isocaloric liquid diet without ethanol (P). A third group of pregnant dams received ad libitum lab chow (C). At parturition, pups from the E and P groups were cross fostered by C mothers and all groups received lab chow. During adulthood, male offspring were sacrificed and hippocampal and prefrontal cortical slices were prelabeled with (3H)inositol. Phosphoinositide (PI) hydrolysis was determined by measuring the accumulation of (3H)inositol phosphates in the presence of LiCl in response to activation of various excitatory amino acid (EAA) receptors. In hippocampal slices, ibotenate- and quisqualate-induced PI hydrolysis was reduced in E compared to P and C animals. Moreover, the inhibitory effect of N-methyl-D-aspartate (NMDA) on carbachol-induced PI hydrolysis, evident in P and C animals, was completely abolished in the hippocampus of E animals. In contrast, in the prefrontal cerebral cortex, this inhibitory effect of NMDA prevailed even in the E animals. The evidence suggests that prenatal ethanol exposure alters the activity of EAA receptors in the hippocampal generation of 2nd messengers.

  14. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  15. PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS

    SciTech Connect

    Hay, M.; King, W.

    2011-04-04

    The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na{sub 7}F(PO{sub 4}){sub 2} {center_dot} 19H{sub 2}O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the phosphate from becoming too concentrated and thereby potentially forming a solid mass of sodium phosphate after an effective phosphate removal process.

  16. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris.

  17. Glycochenodeoxycholic acid inhibits calcium phosphate precipitation in vitro by preventing the transformation of amorphous calcium phosphate to calcium hydroxyapatite.

    PubMed Central

    Qiu, S M; Wen, G; Hirakawa, N; Soloway, R D; Hong, N K; Crowther, R S

    1991-01-01

    Calcium hydroxyapatite can be a significant component of black pigment gallstones. Diverse molecules that bind calcium phosphate inhibit hydroxyapatite precipitation. Because glycine-conjugated bile acids, but not their taurine counterparts, bind calcium phosphate, we studied whether glycochenodeoxycholic acid inhibits calcium hydroxyapatite formation. Glycochenodeoxycholic acid (2 mM) totally inhibited transformation of amorphous calcium phosphate microprecipitates to macroscopic crystalline calcium hydroxyapatite. This inhibition was not mediated by decreased Ca2+ activity. Taurocholic acid (2-12 mM) did not affect hydroxyapatite formation, but antagonized glycochenodeoxycholic acid. Both amorphous and crystalline precipitates contained a surface fraction relatively rich in phosphate. The surface phosphate content was diminish by increasing glycochenodeoxycholic acid concentrations, and this relationship was interpreted as competition between bile acid and HPO4(-4) for binding sites on the calcium phosphate surface. A phosphate-rich crystal surface was associated with rapid transition from amorphous to crystalline states. These results indicate that glycochenodeoxycholic acid prevents transformation of amorphous calcium phosphate to crystalline hydroxyapatite by competitively inhibiting the accumulation of phosphate on the crystal embryo surface. PMID:1655828

  18. Photochemical behavior of organic phosphate esters in aqueous solutions irradiated with a mercury lamp

    SciTech Connect

    Ishikawa, Seiichi; Eguchi, Yoshio; Kido, Kozo ); Uchimura, Yutaka; Baba, Kenzo )

    1992-09-01

    Pollution by toxic chemicals that are resistant to biological degradation and have a potential for accumulation in biological organisms is becoming a world-wide problem. Organic phosphate esters (OPEs) are widely used as plasticizers, industrial hydraulic fluids, and lubricant additives. Various OPEs have been detected in environmental samples and in industrial and domestic wastewaters. Ultraviolet (UV) irradiation is known as an effective treatment for persistent chemicals in natural water or wastewater. Therefore, in order to develop a means of removal of OPEs in water, some fundamental experiments with UV irradiation were performed with a mercury lamp, and photochemical behaviors and photodecomposition products were examined for 7 OPEs, namely tributyl phosphate(TBP), tris(chloropropyl) phosphate (TCPP), tris(2-chloroethyl) phosphate (TCEP), trioctyl phosphate (TOP), tris(dichloropropyl) phosphate (CRP), triphenyl phosphate (TPP), and tricresyl phosphate (TCP). 12 refs., 2 figs., 1 tab.

  19. Metal-phosphate binders

    SciTech Connect

    Howe, Beth Ann; Chaps-Cabrera, Jesus Guadalupe

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  20. Phosphate control in dialysis

    PubMed Central

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-01-01

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients. PMID:24133374

  1. Modulation of NMDA effects on agonist-stimulated phosphoinositide turnover by memantine in neonatal rat cerebral cortex.

    PubMed Central

    Mistry, R; Wilke, R; Challiss, R A

    1995-01-01

    1. The ability of memantine (1-amino-3,5-dimethyladamantane) to antagonize the modulatory effects of N-methyl-D-aspartate (NMDA) on phosphoinositide turnover stimulated by muscarinic cholinoceptor- and metabotropic glutamate receptor-agonists has been examined in neonatal rat cerebral cortex slices. 2. Memantine antagonized the inhibitory effect of NMDA (100 microM) on both total [3H]-inositol phosphate ([3H]-InsPx) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) mass accumulations stimulated by carbachol (1 mM) with EC50 values of 21 and 16 microM respectively. 3. Memantine concentration-dependently antagonized (IC50 24 microM) the ability of NMDA (10 microM) to potentiate [3H]-InsPx accumulation in response to a sub-maximal concentration of the metabotropic glutamate receptor agonist, 1S,3R-ACPD (10 microM). 4. The small (approx. 3 fold), concentration-dependent increase in [3H]-InsPx accumulation stimulated by NMDA was completely antagonized by the prototypic NDMA receptor-channel blocker, MK-801 (1 microM) at all concentrations of NDMA studied (1-1000 microM). In contrast, antagonism by memantine (100 microM) was observed only at low concentrations of NMDA (1-10 microM), whilst [3H]-InsPx accumulation stimulated by high concentrations of NMDA (300-1000 microM) was markedly enhanced by memantine. 5. Assessment of the incorporation of [3H]-inositol into inositol phospholipids revealed that memantine (100 microM) caused an approximate 2 fold increase in the labelling of phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7773540

  2. Phosphate Mines, Jordan

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium).

    The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  3. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    PubMed

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  4. Fundamentals of phosphate transfer.

    PubMed

    Kirby, Anthony J; Nome, Faruk

    2015-07-21

    Historically, the chemistry of phosphate transfer-a class of reactions fundamental to the chemistry of Life-has been discussed almost exclusively in terms of the nucleophile and the leaving group. Reactivity always depends significantly on both factors; but recent results for reactions of phosphate triesters have shown that it can also depend strongly on the nature of the nonleaving or "spectator" groups. The extreme stabilities of fully ionised mono- and dialkyl phosphate esters can be seen as extensions of the same effect, with one or two triester OR groups replaced by O(-). Our chosen lead reaction is hydrolysis-phosphate transfer to water: because water is the medium in which biological chemistry takes place; because the half-life of a system in water is an accepted basic index of stability; and because the typical mechanisms of hydrolysis, with solvent H2O providing specific molecules to act as nucleophiles and as general acids or bases, are models for reactions involving better nucleophiles and stronger general species catalysts. Not least those available in enzyme active sites. Alkyl monoester dianions compete with alkyl diester monoanions for the slowest estimated rates of spontaneous hydrolysis. High stability at physiological pH is a vital factor in the biological roles of organic phosphates, but a significant limitation for experimental investigations. Almost all kinetic measurements of phosphate transfer reactions involving mono- and diesters have been followed by UV-visible spectroscopy using activated systems, conveniently compounds with good leaving groups. (A "good leaving group" OR* is electron-withdrawing, and can be displaced to generate an anion R*O(-) in water near pH 7.) Reactivities at normal temperatures of P-O-alkyl derivatives-better models for typical biological substrates-have typically had to be estimated: by extended extrapolation from linear free energy relationships, or from rate measurements at high temperatures. Calculation is free

  5. Ribose-5-phosphate isomerase and ribulose-5-phosphate kinase show apparent specificity for a specific ribulose 5-phosphate species.

    PubMed

    Anderson, L E

    1987-02-01

    Ribose-5-phosphate isomerase and ribulose-5-phosphate kinase appear to show specificity for a particular ribulose 5-phosphate species. The effect of this specificity will be channeling of ribulose 5-phosphate from the isomerase to the kinase during photosynthesis.

  6. Domestic phosphate deposits

    USGS Publications Warehouse

    McKelvey, V.E.; Cathcart, J.B.; Altschuler, Z.S.; Swanson, R.W.; Lutz, Katherine

    1953-01-01

    Most of the worlds phosphate deposits can be grouped into six types: 1) igneous apatite deposits; 2) marine phosphorites; 3) residual phosphorites; 4) river pebble deposits; 5) phosphatized rock; and 6) guano. The igneous apatites and marine phosphorites form deposits measurable in millions or billions of tons; the residual deposits are measurable in thousands or millions; and the other types generally only in thousands of tons. Igneous apatite deposits have been mined on a small scale in New York, New Jersey, and Virginia. Marine phosphorites have been mined in Montana, Idaho, Utah, Wyoming, Arkansas, Tennessee, North Carolina, South Carolina, Georgia, and Florida. Residual phosphorites have been mined in Tennessee, Pennsylvania, and Florida. River pebble has been produced in South Carolina and Florida; phosphatized rock in Tennessee and Florida; and guano in New Mexico and Texas. Present production is limited almost entirely to Florida, Tennessee, Montana, Idaho, and Wyoming. Incomplete but recently partly revised estimates indicate the presence of about 5 billion tons of phosphate deposits in the United States that is minable under present economic conditions. Deposits too lean in quality or thickness to compete with those in the western and southeastern fields probably contain tens of billions of tons.

  7. Phosphates in some missouri refractory clays

    USGS Publications Warehouse

    Hall, R.B.; Foord, E.E.; Keller, D.J.; Keller, W.D.

    1997-01-01

    This paper describes in detail phosphate minerals occurring in refractory clays of Missouri and their effect on the refractory degree of the clays. The minerals identified include carbonate-fluorapatite (francolite), crandallite, goyazite, wavellite, variscite and strengite. It is emphasized that these phosphates occur only in local isolated concentrations, and not generally in Missouri refractory clays. The Missouri fireclay region comprises 2 districts, northern and southern, separated by the Missouri River In this region, clay constitutes a major part of the Lower Pennsylvanian Cheltenham Formation. The original Cheltenham mud was an argillic residue derived from leaching and dissolution of pre-Pennsylvanian carbonates. The mud accumulated on a karstic erosion surface truncating the pre-Cheltenham rocks. Fireclays of the northern district consist mainly of poorly ordered kaolinite, with variable but minor amounts of illite, chlorite and fine-grained detrital quartz. Clays of the southern district were subjected to extreme leaching that produced well-ordered kaolinite flint clays. Local desilication formed pockets of diaspora, or more commonly, kaolinite, with oolite-like nubs or burls of diaspore ("burley" clay). The phosphate-bearing materials have been studied by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectral analysis (SEM-EDS) and chemical analysis. Calcian goyazite was identified in a sample of diaspore, and francolite in a sample of flint clay. A veinlet of wavellite occurs in flint clay at one locality, and a veinlet of variscite-strengite at another locality. The Missouri flint-clay-hosted francolite could not have formed in the same manner as marine francolite The evidence suggests that the Cheltenham francolite precipitated from ion complexes in pore water nearly simultaneously with crystallization of kaolinite flint clay from an alumina-silica gel. Calcian goyazite is an early diagenetic addition to its diaspore host

  8. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  9. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  10. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  11. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No....

  12. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  13. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  14. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  15. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity

    PubMed Central

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone–kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  16. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity.

    PubMed

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone-kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  17. Inositol metabolism in WRK-1 cells. Relationship of hormone-sensitive to -insensitive pools of phosphoinositides

    SciTech Connect

    Monaco, M.E.

    1987-09-25

    Previous studies have indicated the existence of two separate pools of phosphoinositides in WRK-1 cells; one is labile and hormone-sensitive with respect to turnover, while the other is stable. Hormonal stimulation results in a rapid increase in /sup 32/Pi incorporation into the sensitive pool, while in the absence of hormone, incorporation of /sup 32/Pi into this pool is slow. Results are quite different when (/sup 3/H)inositol is the precursor utilized. Incorporation of (/sup 3/H)inositol into hormone-sensitive phosphoinositides is not stimulated in the presence of hormone, suggesting entry of this exogenous precursor into the cycle by a route other than the resynthetic phase of the cycle. Furthermore, failure of hormone to induce loss of (/sup 3/H)phosphoinositide in pulse-chase experiments in the absence of lithium suggests reutilization of the (/sup 3/H)inositol moiety generated by phosphodiesteratic cleavage of hormone-sensitive phosphoinositide. Time course studies indicate that the relative rates of incorporation of (/sup 3/H)inositol into sensitive and insensitive phosphoinositide remain constant from 2 to 24 h. Several factors are capable of increasing (/sup 3/H)inositol incorporation into hormone-insensitive phosphoinositide including vasopressin, calcium ionophores, and manganese. On the other hand, vasopressin treatment appears to decrease incorporation of (/sup 3/H)inositol into the hormone-sensitive pool, probably by shifting the equilibrium between phosphoinositides and inositol phosphates, since the decrease in radioactivity observed in the phosphoinositides is equaled by the increase observed in that in the inositol phosphates.

  18. DEVELOPMENT OF A METHOD FOR QUANTITATING SPHINGOID BASE 1-PHOSPHATES IN BLOOD SPOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red blood cells (RBC) accumulate, store and release sphingoid base 1-phosphates,important ligands for the extracellular receptors S1P1-5. The ability of RBC to accumulate these bioactive lipids is because, with the exception of sphingosine kinase, the enzymes responsible for metabolizing sphingosine...

  19. Review of casein phosphopeptides-amorphous calcium phosphate.

    PubMed

    Reema, Sharma Dhar; Lahiri, Prateek Kumar; Roy, Shantanu Sen

    2014-01-01

    Casein phosphopeptides-amorphous calcium phosphate (CPP-ACP) is a bioactive agent with a base of milk products, which has been formulated from two parts: casein phosphopeptides (CPP) and amorphous calcium phosphate (ACP). CPP was produced from milk protein casein and has a remarkable ability to stabilize calcium phosphate in solution and to substantially increase the level of calcium phosphate in dental plaque. CPP-ACP buffers the free calcium and phosphate ion activities, thereby helping to maintain a state of supersaturation with respect to tooth enamel, reducing demineralisation and promoting remineralisation. The free calcium and phosphate ions move out of the CPP, enter the enamel rods and reform onto apatite crystals. Laboratory, animal and human studies have shown that CPP-ACP inhibits cariogenic activity. CPP-ACP is useful in the treatment of white spot lesions, hypomineralised enamel, mild fluorosis, tooth sensitivity and erosion, and prevents plaque accumulation around brackets and other orthodontic appliances. CPP-ACP also facilitates a normal post-eruptive maturation process and is ideal for protecting primary teeth at a time when oral care is difficult. CPP-ACP has commercial potential as an additive to foods, soft drinks and chewing gum, as well as additive to toothpastes and mouthwashes to control dental caries. PMID:25028684

  20. Solubilization of insoluble phosphates by thermophilic fungi.

    PubMed

    Singh, C P; Mishra, M M; Yadav, K S

    1980-01-01

    The solubilization of tricalcium phosphate and rock phosphate and assimilation of solubilized P by thermophilic fungi isolated from compost were studied. The solubilization of tricalcium phosphate was greater than that of rock phosphate on inoculation with fungi in liquid medium, but growth of most of the fungi was greater in rock phosphate. Torula thermophila solubilized tricalcium phosphate maximally. There was solubilization of rock phosphate in semi-solid lignocellulose medium by Aspergillus fumigatus.

  1. Can salivary phosphate levels be an early biomarker to monitor the evolvement of obesity?

    PubMed

    Hartman, Mor-Li; Groppo, Francisco; Ohnishi, Mutsuko; Goodson, J Max; Hasturk, Hatice; Tavares, Mary; Yaskell, Tina; Floros, Constantino; Behbehani, Kazem; Razzaque, Mohammed S

    2013-01-01

    Phosphate is an essential nutrient required for important biological reactions that maintain the normal homoeostatic control of the cell. The adverse effects of phosphate metabolism in obesity have not been studied in detail, chiefly because such an association is thought to be uncommon. However, in some animal models of obesity, serum phosphate levels were noted to be higher than the nonobese controls. For example, leptin-deficient (ob/ob) mice become severely obese and have high serum phosphate levels. In this study, we analyzed the phosphate content in saliva collected from children (n = 77; 10.5 ± 1.8) to evaluate association with body mass index; there is a significant increase of salivary phosphate content in obese compared to normal-weight children (ANOVA p < 0.001). The correlation coefficient (r) between BMI and phosphate was 0.33 (p = 0.0032). Our results suggest that the human salivary phosphate level may be an early biomarker of the genesis of obesity in children. The diagnostic importance lies in the fact that the salivary phosphate level could provide a noninvasive predictive marker in the development of obesity. Further studies will be required to understand the underlying mechanism of increased salivary phosphate accumulation in obese and overweight children. Nevertheless, its occurrence without systemic changes could be of diagnostic value, particularly in monitoring evolvement of obesity.

  2. Atypical Polyphosphate Accumulation by the Denitrifying Bacterium Paracoccus denitrificans

    PubMed Central

    Barak, Yoram; van Rijn, Jaap

    2000-01-01

    Polyphosphate accumulation by Paracoccus denitrificans was examined under aerobic, anoxic, and anaerobic conditions. Polyphosphate synthesis by this denitrifier took place with either oxygen or nitrate as the electron acceptor and in the presence of an external carbon source. Cells were capable of poly-β-hydroxybutyrate (PHB) synthesis, but no polyphosphate was produced when PHB-rich cells were incubated under anoxic conditions in the absence of an external carbon source. By comparison of these findings to those with polyphosphate-accumulating organisms thought to be responsible for phosphate removal in activated sludge systems, it is concluded that P. denitrificans is capable of combined phosphate and nitrate removal without the need for alternating anaerobic/aerobic or anaerobic/anoxic switches. Studies on additional denitrifying isolates from a denitrifying fluidized bed reactor suggested that polyphosphate accumulation is widespread among denitrifiers. PMID:10698794

  3. The effects of temperature and salinity on phosphate levels in two euryhaline crustacean species

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.; Richard, P.; Ceccaldi, H. J.

    Total phoshate, inorganic phosphate and organic (phospholipid) phosphate concentrations were determined in the blood of Carcinus maenas and in whole-animal homogenates of Penaeus japonicus acclimatized to various salinities and a high or a low temperature. In the blood of Carcinus, total and inorganic P concentrations range between 1.0 and 4.5 mmol · l -1; the amount of phospholipids is negligeable. The higher values were found at more extreme salinities. Low temperature is associated with low phosphate concentrations, particularly at intermediate salinities. Total P concentrations in Penaeus homogenates range between 10 and 60 mmol · 1 -1; phospholipid concentrations range between zero and 50 mmol · 1 -1. The higher values are again found at the extreme salinities. Inorganic P concentrations are almost constant — ca 10 mmol · 1 -1. No apparent effect of temperature on phosphate concentrations was observed. The results show clearly that osmotic stress influences severely the phosphate metabolism of the two species studied. Both species are able to accumulate phosphate at all experimental temperature/salinity combinations used, even when deprived of food. At extreme salinities, large quantities of phosphate are accumulated and converted to organic P compounds, most likely as phospholipids associated with the cell membranes. These effects of osmotic conditions in phosphate metabolism may offer an explanation for the effect of Ca ++ on membrane permeability as the regulation of both ions may be strongly interrelated, often under hormonal control.

  4. Overexpression of Thellungiella halophila H+-pyrophosphatase Gene Improves Low Phosphate Tolerance in Maize

    PubMed Central

    Pei, Laming; Wang, Jiemin; Li, Kunpeng; Li, Yongjun; Li, Bei; Gao, Feng; Yang, Aifang

    2012-01-01

    Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress. PMID:22952696

  5. Transcriptional regulation of plant phosphate transporters

    PubMed Central

    Muchhal, Umesh S.; Raghothama, K. G.

    1999-01-01

    Phosphorus is acquired by plant roots primarily via the high-affinity inorganic phosphate (Pi) transporters. The transcripts for Pi transporters are highly inducible upon Pi starvation, which also results in enhanced Pi uptake when Pi is resupplied. Using antibodies specific to one of the tomato Pi transporters (encoded by LePT1), we show that an increase in the LePT1 transcript under Pi starvation leads to a concurrent increase in the transporter protein, suggesting a transcriptional regulation for Pi acquisition. LePT1 protein accumulates rapidly in tomato roots in response to Pi starvation. The level of transporter protein accumulation depends on the Pi concentration in the medium, and it is reversible upon resupply of Pi. LePT1 protein accumulates all along the roots under Pi starvation and is localized primarily in the plasma membranes. These results clearly demonstrate that plants increase their capacity for Pi uptake during Pi starvation by synthesis of additional transporter molecules. PMID:10318976

  6. Light weight phosphate cements

    DOEpatents

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  7. Templated, layered manganese phosphate

    DOEpatents

    Thoma, Steven G.; Bonhomme, Francois R.

    2004-08-17

    A new crystalline maganese phosphate composition having an empirical formula: O). The compound was determined to crystallize in the trigonal space group P-3c1 with a=8.8706(4) .ANG., c=26.1580(2) .ANG., and V (volume)=1783 .ANG..sup.3. The structure consists of sheets of corner sharing Mn(II)O.sub.4 and PO.sub.4 tetrahedra with layers of (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N and water molecules in-between. The pronated (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N molecules provide charge balancing for the inorganic sheets. A network of hydrogen bonds between water molecules and the inorganic sheets holds the structure together.

  8. Fructose metabolism in the human erythrocyte. Phosphorylation to fructose 3-phosphate.

    PubMed Central

    Petersen, A; Kappler, F; Szwergold, B S; Brown, T R

    1992-01-01

    In human erythrocytes, the first step in the metabolism of fructose is generally thought to be phosphorylation to fructose 6-phosphate catalysed by hexokinase. In variance with this assumption, we show here that fructose in these cells is metabolized primarily to fructose 3-phosphate by a specific 3-phosphokinase. This process has an overall estimated Km of 30 mM with respect to extracellular fructose and an apparent Vmax. of 0.6 mumol/h per ml. At a fixed concentration of fructose in the medium, the accumulation of fructose 3-phosphate was linearly dependent on the duration of incubation up to 5 h and was not affected by glucose. Once accumulated, fructose 3-phosphate appears to be degraded and/or relatively slowly metabolized, decreasing by only approximately 30% after a 12 h incubation in a fructose-free medium. PMID:1599419

  9. Phosphate nutrition: improving low-phosphate tolerance in crops.

    PubMed

    López-Arredondo, Damar Lizbeth; Leyva-González, Marco Antonio; González-Morales, Sandra Isabel; López-Bucio, José; Herrera-Estrella, Luis

    2014-01-01

    Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.

  10. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  11. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  12. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  13. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  14. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  15. Quality control in production of suspensions from solid ammonium phosphates (monoammonium phosphate and diammonium phosphate). [Monoammonium phosphate; diammonium phosphate

    SciTech Connect

    Achorn, F.P.; Balay, H.L.

    1982-01-01

    Suspensions of good quality can be produced from MAP and DAP. Suspension quality depends on the amount of impurities in the ammonium phosphate solids used. Tests have shown that adding ammonium fluoride helps lower viscosity of suspensions containing a considerable amount of impurities. Also, adding polyphosphates (such as 10-34-0, 9-32-0, and 11-37-0) as a source of part of the P/sub 2/O/sub 5/ (6 to 15% polyphosphate in the product) helps to produce a suspension that has excellent storage characteristics. When the polyphosphate content of the product (11-33-0 suspension) is between 10 and 15% it usually will not solidify during cold weather storage. Freight and production costs of granular ammonium phosphates are relatively low compared to other sources of P/sub 2/O/sub 5/ for the fluid fertilizer market; therefore, using MAP and DAP to produce suspensions is expected to continue to grow in popularity. 2 refs., 7 figs., 1 tab.

  16. Elemental analysis of Egyptian phosphate fertilizer components.

    PubMed

    El-Bahi, S M; El-Dine, N Walley; El-Shershaby, A; Sroor, A

    2004-03-01

    The accumulation of certain elements in vitally important media such as water, soil, and food is undesirable from the medical point of view. It is clear that the fertilizers vary widely in their heavy metals and uranium content. A shielded high purity germanium HPGe detector has been used to measure the natural concentration of 238U, 232Th, and 40K activities in the phosphate fertilizer and its components collected from Abu-Zaabal fertilizers and chemical industries in Egypt. The concentration ranges were 134.97-681.11 Bq kg(-1), 125.23-239.26 Bq kg(-1), and 446.11-882.45 Bq kg(-1) for 238U, 232Th, and 40K, respectively. The absorbed dose rate and external hazard index were found to be from 177.14 to 445.90 nGy h(-1) and 1.03 to 2.71 nGy y(-1), respectively. The concentrations of 22 elements (Be, Na, Mg, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Mo, Cd, Ba) in the samples under investigation were determined by inductively coupled plasma optical-emission spectrometry (ICP-OES). The results for the input raw materials (rock phosphate, limestone and sulfur) and the output product as final fertilizer are presented and discussed. PMID:14982231

  17. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review.

    PubMed

    Jiao, Wentao; Chen, Weiping; Chang, Andrew C; Page, Albert L

    2012-09-01

    Application of phosphate fertilizer can be a significant contributor of potentially hazardous trace elements such as arsenic, cadmium, and lead in croplands. These trace elements have the potential to accumulate in soils and be transferred through the food chain. We articulated the environmental risks of trace elements associated with long-term phosphate fertilizer applications by combining data from the literature and results from model simulations. Results illustrate that under normal cropping practice, the impact of phosphate fertilizers applications on trace element accumulation in receiving soils has been limited and localized. Their plant uptake varied greatly depending on the fertilizer application rates, soil and plant characteristics. This has led to a great deal of uncertainty in characterizing soil distribution coefficients, Kd, and plant uptake factors, PUF, two of the most used parameters in assessing the risks of accumulations. Therefore, the risks may be more appropriately assessed based on the probabilistic distributions of Kd and PUF.

  18. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils.

    PubMed

    Park, Jin Hee; Bolan, Nanthi S; Chung, Jae Woo; Naidu, Ravi; Megharaj, Mallavarapu

    2011-08-01

    Lead is a highly toxic element and forms stable compounds with phosphate, which is commonly used to immobilize Pb in soils. However, few studies have monitored the long-term stability of immobilized Pb, which is a critical factor in determining the effectiveness of the in situ stabilization technique. Both soluble and insoluble phosphate compounds were tested for Pb immobilization, and its subsequent mobility and bioavailability in a contaminated soil from a shooting range. Adding tricalcium phosphate, hydroxyapatite, rock phosphate and potassium dihydrogen phosphate reduced the concentration of ammonium-nitrate-extractable Pb in the contaminated soil by 78.6%, 48.3%, 40.5% and 80.1%, respectively. Insoluble phosphate amendments significantly reduced leached Pb concentration from the column while soluble potassium dihydrogen phosphate compound increased P and Pb concentrations in the leachate. Rock phosphate reduced Pb accumulation in earthworms by 21.9% compared to earthworms in the control treatment. The long-term stability of immobilized Pb was evaluated after 2 years' incubation of the contaminated soil with rock phosphate or soluble phosphate compounds. Bioavailable Pb concentration as measured by simple bioavailability extraction test (SBET) showed the long-term stability of immobilized Pb by P amendments. Therefore, Pb immobilization using phosphate compounds is an effective remediation technique for Pb-contaminated soils.

  19. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.

    PubMed

    Bahar, Md Mezbaul; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    In this study, the toxicity, biotransformation and bioaccumulation of arsenite and arsenate in a soil microalga, Chlorella sp., were investigated using different phosphate levels. The results indicated that arsenate was highly toxic than arsenite to the alga, and the phosphate limitation in growth media greatly enhanced arsenate toxicity. The uptake of arsenate in algal cells was more than that of arsenite, and the predominant species in the growth media was arsenate after 8 days of exposure to arsenite or arsenate, indicating arsenite oxidation by this microalga. Arsenate reduction was also observed when the alga was incubated in a phosphate-limiting growth medium. Similar to the process of biotransformation, the alga accumulated more arsenic when it was exposed to arsenate and preferably more in a phosphate-limiting condition. Although phosphate significantly influences the biotransformation and bioaccumulation of arsenic, the oxidizing ability and higher accumulation capacity of this alga have great potential for its application in arsenic bioremediation. PMID:26438364

  20. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.

    PubMed

    Bahar, Md Mezbaul; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    In this study, the toxicity, biotransformation and bioaccumulation of arsenite and arsenate in a soil microalga, Chlorella sp., were investigated using different phosphate levels. The results indicated that arsenate was highly toxic than arsenite to the alga, and the phosphate limitation in growth media greatly enhanced arsenate toxicity. The uptake of arsenate in algal cells was more than that of arsenite, and the predominant species in the growth media was arsenate after 8 days of exposure to arsenite or arsenate, indicating arsenite oxidation by this microalga. Arsenate reduction was also observed when the alga was incubated in a phosphate-limiting growth medium. Similar to the process of biotransformation, the alga accumulated more arsenic when it was exposed to arsenate and preferably more in a phosphate-limiting condition. Although phosphate significantly influences the biotransformation and bioaccumulation of arsenic, the oxidizing ability and higher accumulation capacity of this alga have great potential for its application in arsenic bioremediation.

  1. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats

    SciTech Connect

    Balduini, W.; Murphy, S.D.; Costa, L.G. )

    1990-05-01

    Hydrolysis of phosphoinositides elicited by stimulation of cholinergic muscarinic receptors has been studied in brain from neonatal (7-day-old) rats in order to determine: (1) whether the neonatal rat could provide a good model system to study this signal-transduction pathway; and (2) whether potential differences with adult nerve tissue would explain the differential, age-related effects of cholinergic agonists. Accumulation of (3H) inositol phosphates in (3H)inositol prelabeled slices from neonatal and adult rats was measured as an index of phosphoinositide metabolism. Full (acetylcholine, methacholine, carbachol) and partial (oxotremorine, bethanechol) agonists had qualitatively similar, albeit quantitatively different, effects in neonatal and adult rats. Atropine and pirenzepine effectively blocked the carbachol-induced response with inhibition constants of 1.2 and 20.7 nM, respectively. In all brain areas, response to all agonists was higher in neonatal than adult rats, and in hippocampus and cerebral cortex the response was higher than in cerebellum or brainstem. The relative intrinsic activity of partial agonists was higher in the latter two areas (0.6-0.7) than in the former two (0.3-0.4). Carbachol-stimulated phosphoinositide metabolism in brain areas correlated well with the binding of (3H)QNB (r2 = 0.627) and, particularly, with (3H)pirenzepine (r2 = 0.911). In cerebral cortex the effect of carbachol was additive to that of norepinephrine and glutamate. The presence of calcium (250-500 microM) was necessary for maximal response to carbachol to be elicited; the EC50 value for Ca2+ was 65.4 microM. Addition of EDTA completely abolished the response. Removal of sodium ions from the incubation medium reduced the response to carbachol by 50%.

  2. Ethanol effects on rat brain phosphoinositide metabolism

    SciTech Connect

    Huang, H.M.

    1987-01-01

    An increase in acidic phospholipids in brain plasma and synaptic plasma membranes upon chronic ethanol administration was observed. Chronic ethanol administration resulted in an increase in {sup 32}P{sub i} incorporation into the acidic phospholipids in synaptosomes. Postdecapitative ischemic treatment resulted rapid degradation of poly-PI in rat brain. However, there was a rapid appearance of IP{sub 2} in ethanol group which indicated a more rapid turnover of IP{sub 3} in the ethanol-treated rats. Carbachol stimulated accumulation of labeled inositol phosphates in brain slices and synaptosomes. Carbachol-stimulated release of IP and IP{sub 2} was calcium dependent and was inhibited by EGTA and atropine. Adenosine triphosphates and 1 mM further enhanced carbachol-induced formation of IP and IP{sub 2}, but showed an increase and a decrease in IP{sub 3} at 1 mM and 0.01 mM, respectively. Guanosine triphosphate at 0.1 mM did not change in labeled IP, but there was a significant increase in labeled IP{sub 2} and decrease in IP{sub 3}. Mn and CMP greatly enhanced incorporation of ({sup 3}H)-inositol into PI, but not into poly-PI labeling in brain synaptosomes. Incubation of brain synaptosomes resulted in a Ca{sup 2+}, time-dependent release of labeled IP. However, the pool of PI labeled through this pathway is not susceptible to carbachol stimulation. When saponin permeabilized synaptosomal preparations were incubated with ({sup 3}H)-inositol-PI or ({sup 14}C)-arachidonoyl-PI, ATP enhanced the formation of labeled IP and DG.

  3. Uraniferous Phosphates: Resource, Security Risk, or Contaminant

    SciTech Connect

    LeMone, D.V.; Goodell, Ph.C.; Gibbs, S.G.; Winston, J.W.

    2008-07-01

    The escalation of the price of uranium (U) yellow cake (summer high = $130/0.454 kg (lb) has called into question the continuing availability of sufficient stockpiles and ores to process. As was developed during the years following World War II, the establishment and maintenance of a strategic inventory is a reasonable consideration for today. Therefore, it becomes critical to look at potential secondary resources beyond the classical ore suites now being utilized. The most economically viable future secondary source seems to be the byproducts of the beneficiation of phosphoric acids derived from phosphate ores. Phosphorous (P) is an essential nutrient for plants; its deficiency can result in highly restrictive limitations in crop productivity. Acidic soils in tropical and subtropical regions of the world are often P deficient with high P-sorption (fixation) capacities. To correct this deficiency, efficient water-soluble P fertilizers are required. The use of raw phosphate rocks not only adds phosphate but also its contained contaminants, including uranium to the treated land. Another immediate difficulty is phosphogypsum, the standard byproduct of simple extraction. It, for practical purposes, has been selectively classified as TENORM by regulators. The imposition of these standards presents major current and future disposal and re-utilization problems. Therefore, establishing an economically viable system that allows for uranium byproduct extraction from phosphoric acids is desirable. Such a system would be dependent on yellow cake base price stability, reserve estimates, political conditions, nation-state commitment, and dependence on nuclear energy. The accumulation of yellow cake from the additional extraction process provides a valuable commodity and allows the end acid to be a more environmentally acceptable product. The phosphogypsum already accumulated, as well as that which is in process, will not make a viable component for a radiation disposal devise

  4. Toxicological review of inorganic phosphates.

    PubMed

    Weiner, M L; Salminen, W F; Larson, P R; Barter, R A; Kranetz, J L; Simon, G S

    2001-08-01

    Inorganic phosphate salts are widely used as food ingredients and in a variety of commercial applications. The United States Food and Drug Administration (FDA) considers inorganic phosphates "Generally Recognized As Safe" (GRAS) (FDA, 1973a, 1979) [FDA: Food and Drug Administration 1973a. GRAS (Generally Recognized as Safe) food ingredients-phosphates. NTIS PB-221-224, FDA, Food and Drug Administration, 1979. Phosphates; Proposed Affirmation of and Deletion From GRAS Status as Direct and Human Food Ingredients. Federal Register 44 (244). 74845-74857, 18 December (1979)] and the European Union (EU) allows inorganic phosphates to be added directly to food (EU Directive 95/2/EC as amended by 98/72/EC). In this review, data on the acute, subchronic and chronic toxicity, genotoxicity, teratogenicity and reproductive toxicity from the published literature and from unpublished studies by the manufacturers are reviewed. Based on the toxicity data and similar chemistry, the inorganic phosphates can be separated into four major classes, consisting of monovalent salts, divalent salts, ammonium salts and aluminum salts. The proposed classification scheme supports the use of toxicity data from one compound to assess the toxicity of another compound in the same class. However, in the case of eye and skin irritation, the proposed classification scheme cannot be used because a wide range of responses exists within each class. Therefore, the eye and skin hazards associated with an individual inorganic phosphate should be assessed on a chemical-by-chemical basis. A large amount of toxicity data exists for all four classes of inorganic phosphates. The large and comprehensive database allows an accurate assessment of the toxicity of each class of inorganic phosphate. Overall, all four classes of inorganic phosphates exhibit low oral, inhalation and dermal toxicities. Based on these data, humans are unlikely to experience adverse effects when the daily phosphorus consumption remains

  5. Novel highly biodegradable biphasic tricalcium phosphates composed of alpha-tricalcium phosphate and beta-tricalcium phosphate.

    PubMed

    Li, Yanbao; Weng, Wenjian; Tam, Kim Chiu

    2007-03-01

    Novel biodegradable biphasic tricalcium phosphates (BTCP) composed of alpha-tricalcium phosphate (alpha-TCP) and beta-tricalcium phosphate (beta-TCP) were successfully synthesized by heating amorphous calcium phosphate precursors with different structures at 800 degrees C for 3 h. The ratio of alpha-TCP and beta-TCP in the calcium phosphate particle can be controlled by aging time and pH value during synthesis of the amorphous precursor.

  6. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Neurodegeneration with Brain Iron Accumulation Information Page Synonym(s): Hallervorden-Spatz Disease, ... done? Clinical Trials Organizations What is Neurodegeneration with Brain Iron Accumulation? Neurodegeneration with brain iron accumulation (NBIA) ...

  7. Plastids and Carotenoid Accumulation.

    PubMed

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    2016-01-01

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants. PMID:27485226

  8. Plastids and Carotenoid Accumulation.

    PubMed

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    2016-01-01

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.

  9. Phosphate transport and sensing in Saccharomyces cerevisiae.

    PubMed Central

    Wykoff, D D; O'Shea, E K

    2001-01-01

    Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate; however, little is known about how phosphate concentrations are sensed. The similarity of Pho84p, a high-affinity phosphate transporter in Saccharomyces cerevisiae, to the glucose sensors Snf3p and Rgt2p has led to the hypothesis that Pho84p is an inorganic phosphate sensor. Furthermore, pho84Delta strains have defects in phosphate signaling; they constitutively express PHO5, a phosphate starvation-inducible gene. We began these studies to determine the role of phosphate transporters in signaling phosphate starvation. Previous experiments demonstrated a defect in phosphate uptake in phosphate-starved pho84Delta cells; however, the pho84Delta strain expresses PHO5 constitutively when grown in phosphate-replete media. We determined that pho84Delta cells have a significant defect in phosphate uptake even when grown in high phosphate media. Overexpression of unrelated phosphate transporters or a glycerophosphoinositol transporter in the pho84Delta strain suppresses the PHO5 constitutive phenotype. These data suggest that PHO84 is not required for sensing phosphate. We further characterized putative phosphate transporters, identifying two new phosphate transporters, PHO90 and PHO91. A synthetic lethal phenotype was observed when five phosphate transporters were inactivated, and the contribution of each transporter to uptake in high phosphate conditions was determined. Finally, a PHO84-dependent compensation response was identified; the abundance of Pho84p at the plasma membrane increases in cells that are defective in other phosphate transporters. PMID:11779791

  10. Relationship between stimulated phosphatidic acid production and inositol lipid hydrolysis in intestinal longitudinal smooth muscle from guinea pig.

    PubMed

    Mallows, R S; Bolton, T B

    1987-06-15

    Accumulation of [32P]phosphatidic acid (PA) and total [3H]inositol phosphates (IPs) was measured in the longitudinal smooth-muscle layer from guinea-pig small intestine. Stimulation with carbachol, histamine and substance P produced increases in accumulation of both [3H]IPs and [32P]PA over the same concentration range. The increase in [32P]PA accumulation in response to carbachol (1 microM-0.1 mM) was inhibited in the presence of atropine (0.5 microM). Buffering the external free [Ca2+] to 10 nM did not prevent the carbachol-stimulated increase in [32P]PA accumulation. Carbachol and Ca2+ appear to act synergistically to increase accumulation of [32P]PA. In contrast, although incubation with noradrenaline also increased accumulation of [3H]IPs, no increase in accumulation of [32P]PA could be detected. These results suggest that an increase in formation of IPs is not necessarily accompanied by an increase in PA formation, and imply the existence of receptor-modulated pathways regulating PA concentrations other than by phospholipase-C-catalysed inositol phospholipid hydrolysis.

  11. Phosphocitrate inhibits mitochondrial and cytosolic accumulation of calcium in kidney cells in vivo.

    PubMed

    Tew, W P; Malis, C D; Howard, J E; Lehninger, A L

    1981-09-01

    Synthetic 3-phosphocitrate, an extremely potent inhibitor of calcium phosphate crystallization as determined in a nonbiological physical-chemical assay, has many similarities to a mitochondrial factor that inhibits crystallization of nondiffracting amorphous calcium phosphate. In order to determine whether phosphocitrate can prevent uptake and crystallization of calcium phosphate in mitochondria in vivo, it was administered intraperitoneally to animals given large daily doses of calcium gluconate or parathyroid hormone, a regimen that causes massive accumulation and crystallization of calcium phosphate in the mitochondria and cytosol of renal tubule cells in vivo. Administration of phosphocitrate greatly reduced the net uptake of Ca2+ by the kidneys and prevented the appearance of apatite-like crystalline structures within the mitochondrial matrix and cytosol of renal tubule cells. Phosphocitrate, which is a poor chelator of Ca2+, did not reduce the hypercalcemia induced by either agent. These in vivo observations therefore indicate that phosphocitrate acts primarily at the cellular level to prevent the extensive accumulation of calcium phosphate in kidney cells by inhibiting the mitochondrial accumulation or crystallization of calcium phosphate.

  12. Chimpanzee accumulative stone throwing.

    PubMed

    Kühl, Hjalmar S; Kalan, Ammie K; Arandjelovic, Mimi; Aubert, Floris; D'Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites.

  13. Chimpanzee accumulative stone throwing

    PubMed Central

    Kühl, Hjalmar S.; Kalan, Ammie K.; Arandjelovic, Mimi; Aubert, Floris; D’Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E.; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J.; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M.; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  14. Chimpanzee accumulative stone throwing.

    PubMed

    Kühl, Hjalmar S; Kalan, Ammie K; Arandjelovic, Mimi; Aubert, Floris; D'Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  15. Uranium and trace elements in phosphate fertilizers--Saudi Arabia.

    PubMed

    Khater, Ashraf E M

    2012-01-01

    Manufactured phosphate fertilizers and their agricultural applications are considerable sources of environmental pollution. In this study, composite samples of phosphate fertilizer (PF) of different physical forms (granular, G, and water soluble powder, L) were collected. The activity concentration of 238U in Bq kg(-1) was measured using gamma ray spectrometers, and the concentrations of arsenic, cadmium, copper, lead and selenium in mg kg(-1) were measured using inductively coupled plasma optical emission spectrometers (ICP-OES). The main aims of this study were to evaluate PF quality according to its physical form, determine manufacturers (local, L, or imported, I), and estimate the hazardous impacts of long-term phosphate fertilization. There was significant variation in the concentration of uranium and other elements in PF samples. In order to have globally normalized data, it is highly recommended to express the concentration of trace elements as per phosphorus mass instead of fertilizer mass. The annual addition of these elements to soil due to phosphate fertilization was calculated. The possible accumulation of added uranium and other trace elements due to fertilization in the subsurface soil layer and/or shallow underground water should be studied in the soil environment of Saudi Arabia. PMID:22134079

  16. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. PMID:24556272

  17. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers.

  18. Dissolution of phosphate matrices based on the thorium phosphate diphosphate

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Thomas, A. C.; Brandel, V.; Genet, M.

    2000-07-01

    Several authors have reported the use of phosphate matrices like apatites, monazites or NZP for the immobilization of actinides coming from an advanced reprocessing or for the final disposal of the excess plutonium from dismantled nuclear weapons. The thorium phosphate diphosphate Th4(PO4)4P2O7 (namely TPD) was also proposed for this purpose. Indeed, its structure allows the replacement of large amounts of tetravalent actinides like uranium, neptunium or plutonium leading to the obtention of solid solutions. The maximum weight loading was estimated to be equal to about 48% for uranium, 33% for neptunium and 26% for plutonium.

  19. Phosphate-a poison for humans?

    PubMed

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. PMID:27282935

  20. Process for producing granular diammonium phosphate

    SciTech Connect

    Fairchild, W.D.

    1988-05-17

    A process for the production of solid granular diammonium phosphate is described comprising: reacting anhydrous ammonia with phosphoric acid in a reactor to form a partially reacted slurry of monoammonium phosphate and diammonium phosphate; pumping the slurry to a granulator-reactor and further reacting the slurry with anhydrous ammonia to form a solid granular diammonium phosphate mixture having a particle range size consisting of undersize, oversize and product; drying the solid granular diammonium phosphate mixture in a dryer; dividing the dried solid granular diammonium phosphate mixture being discharged from the dryer into a first portion and a second portion; diverting and feeding the first portion of the dried granular diammonium phosphate mixture back to the granulator-reactor; feeding the second portion of dried granular diammonium phosphate mixture to a classifying means consisting of a set of screens including an oversize screen and a product screen set to a narrow size separation to separate the mixture of the solid granular diammonium phosphate into undersize, oversize and product solid granular diammonium phosphate; milling the oversize granular diammonium phosphate; recycling to the granular-reactor the milled oversized granular diammonium phosphate and the undersized granular particles obtained during the classifying of the solid granular diammonium phosphate mixture; and collecting the desired product granular particle thereby enhancing the production of a narrow range of granular diammonium phosphate particle size distribution within a broad range of particle size distribution.

  1. A novel method for the in situ calibration of flow effects on a phosphate passive sampler.

    PubMed

    Sara O'Brien, Dominique; Chiswell, Barry; Mueller, Jochen F

    2009-01-01

    Monitoring of nutrients including phosphate in the aquatic environment remains a challenge. In the last decade passive sampling techniques have been developed that facilitates the time integrated monitoring of phosphate (P) through the use of an iron hydroxide (ferrihydrite) to sequester dissolved phosphate from solution. These methods rely on established techniques to negate the effects of flow (and associated turbulence) and control the rate at which chemicals accumulate within passive samplers. In this study we present a phosphate sampler within which a suspension of ferrihydrite is contained behind a commercially available membrane. Accumulation of dissolved phosphates into the P-sampler is governed by the rate at which ions are diffusing through the membrane and the water boundary layer (WBL). As the WBL changes subject to flow we have adopted an in situ calibration technique based on the dissolution of gypsum to predict the change in the rate of uptake dependent on flow. Here we demonstrate that the loss of gypsum from the passive flow monitor (PFM) can be used to predict the sampling rate (the volume of water extracted per day) for phosphate as a function of water velocity. The outcome of this study presents a new in-field tool for more accurate prediction of the effect of flow/turbulence on the uptake kinetics into passive samplers that is controlled by the diffusion of the chemical of interest through the stagnant water boundary layer. PMID:19137160

  2. Detergent phosphate bans and eutrophication

    SciTech Connect

    Lee, G.F.; Jones, R.A.

    1986-04-01

    The Vollenweider-OECD eutrophication model has been expanded to approximately 400 lakes. It is possible to make a quantitative prediction of the effects of a detergent phosphate ban and thereby to ascertain the potential benefits of such a ban. In order to assess the effect of a detergent phosphate ban on water quality it is necessary to know the percentage of phosphorus in the domestic waste water that enters the water body, either directly or indirectly, and the percentage of the total phosphorus load that is derived from domestic wastewater. Although detergent phosphate bans generally will not result in an overall improvement to water quality, there may be some situations in which eutrophication-related water quality would be improved by a ban. 8 references, 1 figure, 1 table.

  3. Ligand binding and internalization by the rat hepatic asialoglycoprotein receptor does not generate polyphosphoinositide derived second messengers

    SciTech Connect

    Medh, J.D.; Haynes, P.A.; Weigel, P.H.; LaBelle, E.F. )

    1989-01-01

    We have studied the effects of asialoorosomucoid (ASOR) on the hydrolysis of ({sup 32}P)-inositol phospholipids in isolated rat hepatocytes. When internalization of ASOR is maximal at 310 molecules/cell/sec, there is neither a decrease in the amount of ({sup 32}P)-phosphatidylinositol-4,5-bisphosphate (PIP{sub 2}) not an increase in ({sup 32}P)-phosphatidic acid (PA) up to 30 min after stimulation. On the other hand, 10-{sup 6}M vasopressin, which was used as a positive control, caused a 35-40% decrease in the level of ({sup 32}P)-PIP{sub 2} and a 70-80% increase in ({sup 32}P)-PA within 30 sec. Addition of orosomucoid or ASOR, even at concentrations 1000-times the K{sub d}, did not change the levels of any of the six phospholipids tested. Similarly, addition of ASOR did not increase the levels of soluble ({sup 3}H)-inositol phosphates, whereas vasopressin caused a 6-fold increase in ({sup 3}H)-inositol-1,4-diphosphate (IP{sub 2}) and a 4-fold increase in ({sup 3}H)-inositol-1,4,5-triphosphate (IP{sub 3}) in isolated rat hepatocytes prelabeled with ({sup 3}H)-inositol.

  4. Accumulator with preclosing preventer

    SciTech Connect

    Murthy, R.R.; Rice, B.J.

    1981-11-24

    A guided-float accumulator suitable for use with a hydraulic system for an oil well blowout preventer is provided with a wing shut-off valve. Radially inwardly directed outlet parts are aimed at the bottom of the valve wing to generate unbalanced reaction forces which oppose the bernoulli effect forces caused by rapid movement of fluid through the chamber of the shut-off valve, thus preventing premature closing of the valve.

  5. [Phosphate metabolism and iron deficiency].

    PubMed

    Yokoyama, Keitaro

    2016-02-01

    Autosomal dominant hypophosphatemic rickets(ADHR)is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage. Fibroblast growth factor 23(FGF23)is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. Low iron status plays a role in the pathophysiology of ADHR. Iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. It was reported that FGF23 elevation in patients with CKD, who are often iron deficient. In patients with nondialysis-dependent CKD, treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and FGF23.

  6. Effects of Silicate, Phosphate, and Calcium on the Stability of Aldopentoses

    NASA Astrophysics Data System (ADS)

    Nitta, Sakiko; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2016-06-01

    Ribose is an important constituent of RNA: ribose connects RNA bases and forms a strand of sugar phosphates. Accumulation of ribose on prebiotic Earth was difficult because of its low stability. Improvement in the yield of ribose by the introduction of borate or silicate in a formose-like reaction has been proposed. The effects of borates have been further analyzed and confirmed in subsequent studies. Nonetheless, the effects of silicates and phosphates remain unclear. In the present study, we incubated aldopentoses in a highly alkaline aqueous solution at a moderate temperature to determine the effects of silicate or phosphate on the degradation rates of ribose and its isomeric aldopentoses. The formation of a complex of silicate (or phosphate) with ribose was also analyzed in experiments with 29Si and 31P nuclear magnetic resonance (NMR). We found that silicate or phosphate complexes of ribose were not detectable under our experimental conditions. The stability of ribose and lyxose improved after addition of 40-fold molar excess (relative to a pentose) of sodium silicate or sodium phosphate to the alkaline solution. The stability was not improved further when an 80-fold molar excess of sodium silicate or sodium phosphate was added. Calcium was removed from these solutions by precipitation of calcium salts. The drop in Ca2+ concentration might have improved the stability of ribose and lyxose, which are susceptible to aldol addition. The improvement of ribose stability by the removal of Ca2+ and by addition of silicate or phosphate was far smaller than the improvement by borate. Furthermore, all aldopentoses showed similar stability in silicate- and phosphate-containing solutions. These results clearly show that selective stabilization of ribose by borate cannot be replaced by the effects of silicate or phosphate; this finding points to the importance of borate in prebiotic RNA formation.

  7. Effects of Silicate, Phosphate, and Calcium on the Stability of Aldopentoses.

    PubMed

    Nitta, Sakiko; Furukawa, Yoshihiro; Kakegawa, Takeshi

    2016-06-01

    Ribose is an important constituent of RNA: ribose connects RNA bases and forms a strand of sugar phosphates. Accumulation of ribose on prebiotic Earth was difficult because of its low stability. Improvement in the yield of ribose by the introduction of borate or silicate in a formose-like reaction has been proposed. The effects of borates have been further analyzed and confirmed in subsequent studies. Nonetheless, the effects of silicates and phosphates remain unclear. In the present study, we incubated aldopentoses in a highly alkaline aqueous solution at a moderate temperature to determine the effects of silicate or phosphate on the degradation rates of ribose and its isomeric aldopentoses. The formation of a complex of silicate (or phosphate) with ribose was also analyzed in experiments with (29)Si and (31)P nuclear magnetic resonance (NMR). We found that silicate or phosphate complexes of ribose were not detectable under our experimental conditions. The stability of ribose and lyxose improved after addition of 40-fold molar excess (relative to a pentose) of sodium silicate or sodium phosphate to the alkaline solution. The stability was not improved further when an 80-fold molar excess of sodium silicate or sodium phosphate was added. Calcium was removed from these solutions by precipitation of calcium salts. The drop in Ca(2+) concentration might have improved the stability of ribose and lyxose, which are susceptible to aldol addition. The improvement of ribose stability by the removal of Ca(2+) and by addition of silicate or phosphate was far smaller than the improvement by borate. Furthermore, all aldopentoses showed similar stability in silicate- and phosphate-containing solutions. These results clearly show that selective stabilization of ribose by borate cannot be replaced by the effects of silicate or phosphate; this finding points to the importance of borate in prebiotic RNA formation. PMID:26559965

  8. Death and taxis: what non-mammalian models tell us about sphingosine-1-phosphate.

    PubMed

    Oskouian, Babak; Saba, Julie D

    2004-10-01

    Sphingosine-1-phosphate (S1P) is a signaling molecule that regulates critical events including mammalian cell proliferation, survival, migration and cell-cell interactions. Most of these signals are triggered by engagement of sphingosine-1-phosphate receptors of the Edg family. However, accumulating evidence derived from investigation of non-mammalian models that lack Edg receptors suggests that sphingosine-1-phosphate-like molecules can act through alternative mechanisms and thereby contribute to morphogenesis, development, reproduction and survival. This review provides an overview of sphingosine-1-phosphate metabolism, the isolation of genes in this pathway employing yeast genetics, the evidence for its influence on non-mammalian development, and the pertinence of these findings to human disease.

  9. Photorelease of phosphates: Mild methods for protecting phosphate derivatives

    PubMed Central

    Senadheera, Sanjeewa N; Yousef, Abraham L

    2014-01-01

    Summary We have developed a new photoremovable protecting group for caging phosphates in the near UV. Diethyl 2-(4-hydroxy-1-naphthyl)-2-oxoethyl phosphate (14a) quantitatively releases diethyl phosphate upon irradiation in aq MeOH or aq MeCN at 350 nm, with quantum efficiencies ranging from 0.021 to 0.067 depending on the solvent composition. The deprotection reactions originate from the triplet excited state, are robust under ambient conditions and can be carried on to 100% conversion. Similar results were found with diethyl 2-(4-methoxy-1-naphthyl)-2-oxoethyl phosphate (14b), although it was significantly less efficient compared with 14a. A key step in the deprotection reaction in aq MeOH is considered to be a Favorskii rearrangement of the naphthyl ketone motif of 14a,b to naphthylacetate esters 25 and 26. Disruption of the ketone-naphthyl ring conjugation significantly shifts the photoproduct absorption away from the effective incident wavelength for decaging of 14, driving the reaction to completion. The Favorskii rearrangement does not occur in aqueous acetonitrile although diethyl phosphate is released. Other substitution patterns on the naphthyl or quinolin-5-yl core, such as the 2,6-naphthyl 10 or 8-benzyloxyquinolin-5-yl 24 platforms, also do not rearrange by aryl migration upon photolysis and, therefore, do not proceed to completion. The 2,6-naphthyl ketone platform instead remains intact whereas the quinolin-5-yl ketone fragments to a much more complex, highly absorbing reaction mixture that competes for the incident light. PMID:25246963

  10. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma.

    PubMed

    Ahmad, F; Dixit, D; Sharma, V; Kumar, A; Joshi, S D; Sarkar, C; Sen, E

    2016-05-05

    Given the involvement of telomerase activation and dysregulated metabolism in glioma progression, the connection between these two critical players was investigated. Pharmacological inhibition of human Telomerase reverse transcriptase (hTERT) by Costunolide induced glioma cell apoptosis in a reactive oxygen species (ROS)-dependent manner. Costunolide induced an ROS-dependent increase in p53 abrogated telomerase activity. Costunolide decreased Nrf2 level; and ectopic Nrf2 expression decreased Costunolide-induced ROS generation. While TERT knock-down abrogated Nrf2 levels, overexpression of Nrf2 increased TERT expression. Inhibition of hTERT either by Costunolide, or by siRNA or dominant-negative hTERT (DN-hTERT) abrogated (i) expression of Glucose-6-phosphate dehydrogenase (G6PD) and Transketolase (TKT) - two major nodes in the pentose phosphate (PPP) pathway; and (ii) phosphorylation of glycogen synthase (GS). hTERT knock-down decreased TKT activity and increased glycogen accumulation. Interestingly, siRNA-mediated knock-down of TKT elevated glycogen accumulation. Coherent with the in vitro findings, Costunolide reduced tumor burden in heterotypic xenograft glioma mouse model. Costunolide-treated tumors exhibited diminished TKT activity, heightened glycogen accumulation, and increased senescence. Importantly, glioblastoma multiforme (GBM) patient tumors bearing TERT promoter mutations (C228T and C250T) known to be associated with increased telomerase activity; exhibited elevated Nrf2 and TKT expression and decreased glycogen accumulation. Taken together, our findings highlight the previously unknown (i) role of telomerase in the regulation of PPP and glycogen accumulation and (ii) the involvement of Nrf2-TERT loop in maintaining oxidative defense responses in glioma cells.

  11. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma

    PubMed Central

    Ahmad, F; Dixit, D; Sharma, V; Kumar, A; Joshi, S D; Sarkar, C; Sen, E

    2016-01-01

    Given the involvement of telomerase activation and dysregulated metabolism in glioma progression, the connection between these two critical players was investigated. Pharmacological inhibition of human Telomerase reverse transcriptase (hTERT) by Costunolide induced glioma cell apoptosis in a reactive oxygen species (ROS)-dependent manner. Costunolide induced an ROS-dependent increase in p53 abrogated telomerase activity. Costunolide decreased Nrf2 level; and ectopic Nrf2 expression decreased Costunolide-induced ROS generation. While TERT knock-down abrogated Nrf2 levels, overexpression of Nrf2 increased TERT expression. Inhibition of hTERT either by Costunolide, or by siRNA or dominant-negative hTERT (DN-hTERT) abrogated (i) expression of Glucose-6-phosphate dehydrogenase (G6PD) and Transketolase (TKT) – two major nodes in the pentose phosphate (PPP) pathway; and (ii) phosphorylation of glycogen synthase (GS). hTERT knock-down decreased TKT activity and increased glycogen accumulation. Interestingly, siRNA-mediated knock-down of TKT elevated glycogen accumulation. Coherent with the in vitro findings, Costunolide reduced tumor burden in heterotypic xenograft glioma mouse model. Costunolide-treated tumors exhibited diminished TKT activity, heightened glycogen accumulation, and increased senescence. Importantly, glioblastoma multiforme (GBM) patient tumors bearing TERT promoter mutations (C228T and C250T) known to be associated with increased telomerase activity; exhibited elevated Nrf2 and TKT expression and decreased glycogen accumulation. Taken together, our findings highlight the previously unknown (i) role of telomerase in the regulation of PPP and glycogen accumulation and (ii) the involvement of Nrf2-TERT loop in maintaining oxidative defense responses in glioma cells. PMID:27148686

  12. Phosphate uptake by a kidney cell line (LLC-PK1).

    PubMed

    Rabito, C A

    1983-07-01

    The uptake of inorganic phosphate was studied in an epithelial cell line of renal origin. Phosphate was accumulated through a mechanism with several features of a carrier-mediated process. The influx was accounted for by a saturable Na+-dependent and a nonsaturable Na+-independent process. Kinetic analysis at pH 6.6 and 7.4 suggests that the dibasic form of phosphate is the form transported by the saturable Na+-dependent system. The presence of Na+ in the incubation medium increased Vmax without affecting Km. Arsenate competitively inhibited the Na+-dependent phosphate transport with a Ki of 1.2 mM at 140 mM Na+ and pH 7.4. Other known inhibitors of phosphate reabsorption in the proximal tubule also inhibited phosphate transport by this cell line. Uptake studies from either side of the monolayers indicated that this transport system is preferentially located in the apical membrane of the cultured renal cells. These results show a close similarity between the Na+-dependent phosphate transport system in LLC-PK1 cells and the system present in the apical membrane of the proximal tubular cells.

  13. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    PubMed

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA. PMID:27004948

  14. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    PubMed

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA.

  15. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  16. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  17. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  19. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  20. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  1. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  2. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  3. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  4. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  5. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  6. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  7. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  8. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  9. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  10. 21 CFR 582.5217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  11. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  12. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  13. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder ...

  14. Phosphate bonding to goethite and pyrolusite surfaces

    USGS Publications Warehouse

    Weiner, Eugene R.; Goldberg, M.C.; Boymel, P.M.

    1984-01-01

    Fourier transform infrared (FTIR) spectra were obtained from pure and phosphated goethite (??-FeOOH), and pyrolusite (MnO2). The nature of the phosphate-surface bond was determined to be binuclear for goethite and bidentate for pyrolusite.

  15. An arsenic-accumulating, hypertolerant brassica, Isatis capadocica.

    PubMed

    Karimi, Naser; Ghaderian, Seyed Majid; Raab, Andrea; Feldmann, Joerg; Meharg, Andrew A

    2009-01-01

    Isatis capadocica, a brassica collected from Iranian arsenic-contaminated mine spoils and control populations, was examined to determine arsenate tolerance, metabolism and accumulation. I. cappadocica exhibited arsenate hypertolerance in both mine and nonmine populations, actively growing at concentrations of > 1 mm arsenate in hydroponic solution. I. cappadocica had an ability to accumulate high concentrations of arsenic in its shoots, in excess of 100 mg kg(-1) DW, with a shoot : root transfer ratio of > 1. The ability to accumulate arsenic was exhibited in both hydroponics and contaminated soils. Tolerance in this species was not achieved through suppression of high-affinity phosphate/arsenate root transport, in contrast to other monocotyledons and dicotyledons. A high percentage (> 50%) of arsenic in the tissues was phytochelatin complexed; however, it is argued that this is a constitutive, rather than an adaptive, mechanism of tolerance.

  16. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white to... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric phosphate. 184.1301 Section 184.1301...

  17. Sintering of calcium phosphate bioceramics.

    PubMed

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful. PMID:23212081

  18. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  19. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  20. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-,...

  1. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  2. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  3. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate...

  4. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  5. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  6. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  7. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  8. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  9. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  10. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  11. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  12. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  13. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is...

  14. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  15. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  16. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  17. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  19. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  20. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  1. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  2. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  3. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  4. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  5. Urea phosphate as granular or fluid fertilizers

    SciTech Connect

    Blouin, G.M.

    1984-01-01

    Studies are being conducted of the production and agronomic characteristics of the phosphoric acid-urea adduct, urea phosphate, and of the various granular and fluid fertilizers that can be produced from it. Flowsheets are given for the production of urea phosphate. Characteristics of unpurified and purified urea phosphate are also given. (DLC)

  6. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  7. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  8. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is...

  9. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  10. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  11. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  12. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  13. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  14. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate...

  15. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  16. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  17. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  19. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  20. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  1. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  2. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  3. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  4. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  5. 40 CFR 721.5995 - Polyalkyl phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyalkyl phosphate. 721.5995 Section... Substances § 721.5995 Polyalkyl phosphate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyalkyl phosphate (PMN P-95-1772)...

  6. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  7. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  8. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  11. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  12. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  13. Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system.

    PubMed

    Mirtchi, A A; Lemaitre, J; Terao, N

    1989-09-01

    The possibility of making cements based on beta-tricalcium phosphate (beta-TCP), a promising bone graft material, was investigated. Upon admixture with water, beta-TCP/monocalcium phosphate monohydrate (MCPM) mixtures were found to set and harden like conventional hydraulic cements. Beta-TCP powders with larger particle size, obtained by sintering at higher temperatures, increased the ultimate strength of the cement. Results show that setting occurs after dissolution of MCPM, as a result of the precipitation of dicalcium phosphate dihydrate (DCPD) in the paste. The ultimate tensile strength of the hardened cement is proportional to the amount of DCPD formed. Upon ageing above 40 degrees C, DCPD transforms progressively into anhydrous dicalcium phosphate (DCP), thereby decreasing the strength. Ageing of the pastes in 100% r.h. results in a decay of the mechanical properties. This can be ascribed to an intergranular dissolution of the beta-TCP aggregates as a result of the pH lowering brought about by the MCPM to DCPD conversion.

  14. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase.

    PubMed

    Carretero-Paulet, Lorenzo; Cairó, Albert; Botella-Pavía, Patricia; Besumbes, Oscar; Campos, Narciso; Boronat, Albert; Rodríguez-Concepción, Manuel

    2006-11-01

    The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.

  15. Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria.

    PubMed

    Macaskie, L E; Bonthrone, K M; Rouch, D A

    1994-08-15

    A Citrobacter sp. was reported previously to accumulate heavy metals as cell-bound heavy metal phosphates. Metal uptake is mediated by the activity of a periplasmic acid-type phosphatase that liberates inorganic phosphate to provide the precipitant ligand for heavy metals presented to the cells. Amino acid sequencing of peptide fragments of the purified enzyme revealed significant homology to the phoN product (acid phosphatase) of some other enterobacteria. These organisms, together with Klebsiella pneumoniae, previously reported to produce acid phosphatase, were tested for their ability to remove uranium and lanthanum from challenge solutions supplemented with phosphatase substrate. The coupling of phosphate liberation to metal bioaccumulation was limited to the metal accumulating Citrobacter sp.; therefore the participation of species-specific additional factors in metal bioaccumulation was suggested.

  16. Geology and phosphate resources of the Hawley Creek area, Lemhi County, Idaho

    USGS Publications Warehouse

    Oberlindacher, Peter; Hovland, Robert David

    1979-01-01

    Phosphate resources occur within the Retort Phosphatic Shale Member of the Permian Phosphoria Formation in the Hawley Creek area, near Leadore, in east-central Idaho. About 12 square miles (31 km2 ) of the Retort Member and enclosing rocks were mapped at a scale of 1:12,000 to evaluate the leasable Federal mineral resources. The Retort has an average thickness of 73 feet (22.3 m) and 12.9 linear miles (20.8 linear km) of outcrop within the area mapped. Rock samples taken from a bulldozer trench were analyzed for phosphate content and for minor trace elements. Analyses show a cumulative thickness of 8.7 feet ( 2.7 m) of medium-grade phosphate rock ( 24 to 31 percent P2O5) and 33.4 feet (10.2 m) of low-grade phosphate rock (16 to 24 percent P2O5). Minor elements in the Retort include uranium, vanadium, fluorine, cadmium, chromium, nickel, molybdenum, silver, and rare earths. These minor elements are potential byproducts of any future phosphate production in the Hawley Creek area. In addition, analyses of six phosphate rock samples taken from a prospect trench show a cumulative thickness of 14.9 ft (4.5 m) at 17.6 percent P2O5. Indicated phosphate resources are calculated for phosphate beds under less than 600 feet (183.0 m) of overburden. Approximately 36.5 feet (11.1 m), representing 50 percent of the total Retort Member, were measured in trench CP-71. There are 80.42 million short tons (72.96 million metric tons) of medium-grade phosphate rock, and 308.76 million short tons ( 280.10 million metric tons) of low-grade phosphate rock in the Retort Member within the map area. Because the thickness and grade of the phosphate beds for each block are based on the recovered section from CP-71, the calculated phosphate resource estimates represent a minimum. Other mineral resources in the area are thorium (35 ppm) in a Precambrian (?) granite body located immediately west of the Hawley Creek area; oil and gas accumulations may occur beneath the Medicine Lodge thrust system

  17. Solids Accumulation Scouting Studies

    SciTech Connect

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  18. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system.

    PubMed

    Lee, D S; Jeon, C O; Park, J M

    2001-11-01

    Simultaneous biological phosphorus and nitrogen removal with enhanced anoxic phosphate uptake was investigated in an anaerobic-aerobic-anoxic-aerobic sequencing batch reactor ((AO)2 SBR). Significant amounts of phosphorus-accumulation organisms (PAOs) capable of denitrification could be accumulated in a single sludge system coexisting with nitrifiers. The ratio of the anoxic phosphate uptake to the aerobic phosphate uptake capacity was increased from 11% to 64% by introducing an anoxic phase in an anaerobic aerobic SBR. The (AO)2 SBR system showed stable phosphorus and nitrogen removal performance. Average removal efficiencies of TOC, total nitrogen, and phosphorus were 92%, 88%, and 100%, respectively. It was found that nitrite (up to 10 mg NO2(-)-N/l) was not detrimental to the anoxic phosphate uptake and could serve as an electron acceptor like nitrate. In fact, the phosphate uptake rate was even faster in the presence of nitrite as an electron acceptor compared to the presence of nitrate. It was found that on-line sensor values of pH, ORP, and DO were somehow related with the dynamic behaviours of nutrient concentrations (NH4+, NO3-, and PO4(3-)) in the SBR. These on-line sensor values were used as real-time control parameters to adjust the duration of each operational phase in the (AO)2 SBR. The real-time controlled SBR exhibited better performance in the removal of phosphorus and nitrogen than the SBR with fixed-time operation. PMID:12230180

  19. Nucleoside phosphorylation by phosphate minerals.

    PubMed

    Costanzo, Giovanna; Saladino, Raffaele; Crestini, Claudia; Ciciriello, Fabiana; Di Mauro, Ernesto

    2007-06-01

    In the presence of formamide, crystal phosphate minerals may act as phosphate donors to nucleosides, yielding both 5'- and, to a lesser extent, 3'-phosphorylated forms. With the mineral Libethenite the formation of 5'-AMP can be as high as 6% of the adenosine input and last for at least 10(3) h. At high concentrations, soluble non-mineral phosphate donors (KH(2)PO(4) or 5'-CMP) afford 2'- and 2':3'-cyclic AMP in addition to 5'-and 3'-AMP. The phosphate minerals analyzed were Herderite Ca[BePO(4)F], Hureaulite Mn(2+)(5)(PO(3)(OH)(2)(PO(4))(2)(H(2)O)(4), Libethenite Cu(2+)(2)(PO(4))(OH), Pyromorphite Pb(5)(PO(4))(3)Cl, Turquoise Cu(2+)Al(6)(PO(4))(4)(OH)(8)(H(2)O)(4), Fluorapatite Ca(5)(PO(4))(3)F, Hydroxylapatite Ca(5)(PO(4))(3)OH, Vivianite Fe(2+)(3)(PO(4))(2)(H(2)O)(8), Cornetite Cu(2+)(3)(PO(4))(OH)(3), Pseudomalachite Cu(2+)(5)(PO(4))(2)(OH)(4), Reichenbachite Cu(2+)(5)(PO(4))(2)(OH)(4), and Ludjibaite Cu(2+)(5)(PO(4))(2)(OH)(4)). Based on their behavior in the formamide-driven nucleoside phosphorylation reaction, these minerals can be characterized as: 1) inactive, 2) low level phosphorylating agents, or 3) active phosphorylating agents. Instances were detected (Libethenite and Hydroxylapatite) in which phosphorylation occurs on the mineral surface, followed by release of the phosphorylated compounds. Libethenite and Cornetite markedly protect the beta-glycosidic bond. Thus, activated nucleic monomers can form in a liquid non-aqueous environment in conditions compatible with the thermodynamics of polymerization, providing a solution to the standard-state Gibbs free energy change (DeltaG degrees ') problem, the major obstacle for polymerizations in the liquid phase in plausible prebiotic scenarios.

  20. Identification of plant vacuolar transporters mediating phosphate storage

    PubMed Central

    Liu, Tzu-Yin; Huang, Teng-Kuei; Yang, Shu-Yi; Hong, Yu-Ting; Huang, Sheng-Min; Wang, Fu-Nien; Chiang, Su-Fen; Tsai, Shang-Yueh; Lu, Wen-Chien; Chiou, Tzyy-Jen

    2016-01-01

    Plant vacuoles serve as the primary intracellular compartments for inorganic phosphate (Pi) storage. Passage of Pi across vacuolar membranes plays a critical role in buffering the cytoplasmic Pi level against fluctuations of external Pi and metabolic activities. Here we demonstrate that the SPX-MFS proteins, designated as PHOSPHATE TRANSPORTER 5 family (PHT5), also named Vacuolar Phosphate Transporter (VPT), function as vacuolar Pi transporters. Based on 31P-magnetic resonance spectroscopy analysis, Arabidopsis pht5;1 loss-of-function mutants accumulate less Pi and exhibit a lower vacuolar-to-cytoplasmic Pi ratio than controls. Conversely, overexpression of PHT5 leads to massive Pi sequestration into vacuoles and altered regulation of Pi starvation-responsive genes. Furthermore, we show that heterologous expression of the rice homologue OsSPX-MFS1 mediates Pi influx to yeast vacuoles. Our findings show that a group of Pi transporters in vacuolar membranes regulate cytoplasmic Pi homeostasis and are required for fitness and plant growth. PMID:27029856

  1. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2014-01-01

    Increased fasting serum phosphate within the normal physiological range has been linked to increased cardiovascular risk in prospective epidemiology; increased production of fibroblast growth factor 23, and direct vascular effects of phosphate, may mediate this risk. Although dietary phosphate intake does not clearly influence fasting serum phosphate in individuals with normal renal function, increased phosphate intake can provoke a rise in fibroblast growth factor 23, and in diurnal phosphate levels, and hence may adversely influence vascular health. Dietary phosphate absorption can be moderated by emphasizing plant-based dietary choices (which provide phosphate in less bioavailable forms); avoidance of processed foods containing inorganic phosphate food additives; and by ingestion of phosphate-binder drugs, magnesium supplements, or niacin, which precipitate phosphate or suppress its gastrointestinal absorption. The propensity of dietary phosphate to promote vascular calcification may be opposed by optimal intakes of magnesium, vitamin K, and vitamin D; the latter should also counter the tendency of phosphate to elevate parathyroid hormone.

  2. Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa.

    PubMed

    Zhao, Jianjun; Jamar, Diaan C L; Lou, Ping; Wang, Yanhua; Wu, Jian; Wang, Xiaowu; Bonnema, Guusje; Koornneef, Maarten; Vreugdenhil, Dick

    2008-07-01

    Phytate, being the major storage form of phosphorus in plants, is considered to be an anti-nutritional substance for human, because of its ability to complex essential micronutrients. In the present study, we describe the genetic analysis of phytate and phosphate concentrations in Brassica rapa using five segregating populations, involving eight parental accessions representing different cultivar groups. A total of 25 quantitative trait loci (QTL) affecting phytate and phosphate concentrations in seeds and leaves were detected, most of them located in linkage groups R01, R03, R06 and R07. Two QTL affecting seed phytate (SPHY), two QTL affecting seed phosphate (SPHO), one QTL affecting leaf phosphate and one major QTL affecting leaf phytate (LPHY) were detected in at least two populations. Co-localization of QTL suggested single or linked loci to be involved in the accumulation of phytate or phosphate in seeds or leaves. Some co-localizing QTL for SPHY and SPHO had parental alleles with effects in the same direction suggesting that they control the total phosphorus concentration. For other QTL, the allelic effect was opposite for phosphate and phytate, suggesting that these QTL are specific for the phytate pathway.

  3. New compatible solutes related to Di-myo-inositol-phosphate in members of the order Thermotogales.

    PubMed Central

    Martins, L O; Carreto, L S; Da Costa, M S; Santos, H

    1996-01-01

    The accumulation of intracellular organic solutes was examined in six species of the order Thermotogales by nuclear magnetic resonance spectroscopy. The newly discovered compounds di-2-O-beta-mannosyl-di-myo-inositol-1,1'(3,3')-phosphate and di-myo-inositol-1,3'-phosphate were identified in Thermotoga maritima and Thermotoga neapolitana. In the latter species, at the optimum temperature and salinity the organic solute pool was composed of di-myo-inositol-1,1'(3,3')-phosphate, beta-glutamate, and alpha-glutamate in addition to di-myo-inositol-1,3'-phosphate and di-2-O-beta-mannosyl-di-myo-inositol-1,1'(3,3')-phosphate. The concentrations of the last two solutes increased dramatically at supraoptimal growth temperatures, whereas beta-glutamate increased mainly in response to a salinity stress. Nevertheless, di-myo-inositol-1,1'(3,3')-phosphate was the major compatible solute at salinities above the optimum for growth. The amino acids alpha-glutamate and proline were identified under optimum growth conditions in Thermosipho africanus, and beta-mannosylglycerate, trehalose, and glycine betaine were detected in Petrotoga miotherma. Organic solutes were not detected, under optimum growth conditions, in Thermotoga thermarum and Fervidobacterium islandicum, which have a low salt requirement or none. PMID:8824608

  4. Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus.

    PubMed

    Lamosa, P; Burke, A; Peist, R; Huber, R; Liu, M Y; Silva, G; Rodrigues-Pousada, C; LeGall, J; Maycock, C; Santos, H

    2000-05-01

    Diglycerol phosphate accumulates under salt stress in the archaeon Archaeoglobus fulgidus (L. O. Martins, R. Huber, H. Huber, K. O. Stetter, M. S. da Costa, and H. Santos, Appl. Environ. Microbiol. 63:896-902, 1997). This solute was purified after extraction from the cell biomass. In addition, the optically active and the optically inactive (racemic) forms of the compound were synthesized, and the ability of the solute to act as a protecting agent against heating was tested on several proteins derived from mesophilic or hyperthermophilic sources. Diglycerol phosphate exerted a considerable stabilizing effect against heat inactivation of rabbit muscle lactate dehydrogenase, baker's yeast alcohol dehydrogenase, and Thermococcus litoralis glutamate dehydrogenase. Highly homologous and structurally well-characterized rubredoxins from Desulfovibrio gigas, Desulfovibrio desulfuricans (ATCC 27774), and Clostridium pasteurianum were also examined for their thermal stabilities in the presence or absence of diglycerol phosphate, glycerol, and inorganic phosphate. These proteins showed different intrinsic thermostabilities, with half-lives in the range of 30 to 100 min. Diglycerol phosphate exerted a strong protecting effect, with approximately a fourfold increase in the half-lives for the loss of the visible spectra of D. gigas and C. pasteurianum rubredoxins. In contrast, the stability of D. desulfuricans rubredoxin was not affected. These different behaviors are discussed in the light of the known structural features of rubredoxins. The data show that diglycerol phosphate is a potentially useful protein stabilizer in biotechnological applications. PMID:10788369

  5. Sugar Accumulation in Sugarcane

    PubMed Central

    Gayler, K. R.; Glasziou, K. T.

    1972-01-01

    The rate-limiting reaction for glucose uptake in storage tissue of sugarcane, Saccharum officinarum L., appears to be the movement of glucose across the boundary between the free space and the metabolic compartments. The mechanism for uptake of glucose across this boundary has been studied using 3-O-methyl glucose, an analogue of glucose which is not metabolized by sugar-cane tissue. This analogue is taken up by sugarcane storage tissue at a similar rate to glucose. Its rate of uptake follows Michaelis-Menten kinetics, Km = 1.9 mm, and it is competitively inhibited by glucose, Ki = 2 to 3 mm. Glucose uptake is similarly inhibited by 3-O-methyl glucose. Uptake of 3-O-methyl glucose is energy-dependent and does not appear to be the result of counterflow of glucose. It is concluded that glucose and 3-O-methyl glucose uptake across the boundary between the free space and the metabolic compartment in this tissue is mediated by an energy-dependent carrier system capable of accumulating the sugars against a concentration gradient. PMID:16658002

  6. TTX accumulation in pufferfish.

    PubMed

    Noguchi, Tamao; Arakawa, Osamu; Takatani, Tomohiro

    2006-03-01

    Tetrodotoxin (TTX) has been detected in a variety of animals. The finding of TTX in the trumpet shell Charonia sauliae strongly suggested that its origin was its food, a TTX-bearing starfish Astropecten polyacanthus. Since then, the food chain has been consistently implicated as the principal means of TTX intoxication. To identify the primary producer of TTX, intestinal bacteria isolated from several TTX-bearers were investigated for their TTX production. The results demonstrated that some of them could produce TTX. Thus the primary TTX producers in the sea are concluded to be marine bacteria. Subsequently, detritus feeders and zooplankton can be intoxicated with TTX through the food chain, or in conjunction with parasitism or symbiosis. The process followed by small carnivores, omnivores or scavengers, and by organisms higher up the food chain would result in the accumulation of higher concentrations of TTX. Finally, pufferfish at the top of the food chain are intoxicated with TTX. This hypothesis is supported by the fact that net cage and land cultures produce non-toxic pufferfish that can be made toxic by feeding with a TTX-containing diet.

  7. Phosphate: are we squandering a scarce commodity?

    PubMed

    Ferro, Charles J; Ritz, Eberhard; Townend, Jonathan N

    2015-02-01

    Phosphorus is an essential element for life but is a rare element in the universe. On Earth, it occurs mostly in the form of phosphates that are widespread but predominantly at very low concentration. This relative rarity has resulted in a survival advantage, in evolutionary terms, to organisms that conserve phosphate. When phosphate is made available in excess it becomes a cause for disease, perhaps best recognized as a potential cardiovascular and renal risk factor. As a reaction to the emerging public health issue caused by phosphate additives to food items, there have been calls for a public education programme and regulation to bring about a reduction of phosphate additives to food. During the Paleoproterzoic era, an increase in the bioavailability of phosphate is thought to have contributed significantly to the oxygenation of our atmosphere and a dramatic increase in the evolution of new species. Currently, phosphate is used poorly and often wasted with phosphate fertilizers washing this scarce commodity into water bodies causing eutrophication and algal blooms. Ironically, this is leading to the extinction of hundreds of species. The unchecked exploitation of phosphate rock, which is an increasingly rare natural resource, and our dependence on it for agriculture may lead to a strange situation in which phosphate might become a commodity to be fought over whilst at the same time, health and environmental experts are likely to recommend reductions in its use.

  8. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis

    PubMed Central

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-01-01

    Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO42−, NO3−, Cl−, and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis. PMID:26554016

  9. The effects of acute exposure to ethanol on neurotensin and guanine nucleotide-stimulation of phospholipase C activity in intact NIE-115 neuroblastoma cells

    SciTech Connect

    Smith, T.L. )

    1990-01-01

    Both ethanol and neurotensin produce sedation and hypothermia. When administered in combination the behavioral effects of these two substances are potentiated. In order to better understand the biochemical nature of this interaction, the direct effects of ethanol on neurotensin receptors and an associated signal transduction process were determined in NIE-115 neuroblastoma cells. Ethanol in physiologically relevant concentrations significantly reduced neurotensin stimulated ({sup 3}H)inositol phosphate production while having no effect on the specific binding of ({sup 3}H)neurotensin. In addition, ethanol up to 200 mM had no effect on GTPYS mediated ({sup 3}H)inositol phosphate production. The results indicate that acute exposure ethanol partially disrupts the normal coupling of activated neurotensin receptors to the guanine nucleotide binding protein associated with phospholipase C.

  10. Phosphate-limited culture of Azotobacter vinelandii.

    PubMed Central

    Tsai, J C; Aladegbami, S L; Vela, G R

    1979-01-01

    Batch cultures of Azotobacter vinelandii grown in phosphate-deficient media were compared with control cultures grown in phosphate-sufficient media. Phosphate limitation was assessed by total cell yield and by growth kinetics. Although cell protein, nucleic acids, and early growth rate were unaffected by phosphate deficiency, cell wall structure, oxygen uptake, and cell viability were significantly affected. Also, phosphate-limited cells contained much larger amounts of poly-beta-hydroxybutyric acid but lower adenylate nucleotide energy charge than did control cells. The ratio of adenosine 5'-triphosphate to adenosine 5'-diphosphate was much lower in phosphate-deficient cells. The data indicate a substrate saving choice of three metabolic pathways available to this organism under different growth conditions. Images PMID:457614

  11. Application of Calcium Phosphate Materials in Dentistry

    PubMed Central

    Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.

    2013-01-01

    Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541

  12. Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation1

    PubMed Central

    Wang, Junru; Zhao, Fang-Jie; Meharg, Andrew A.; Raab, Andrea; Feldmann, Joerg; McGrath, Steve P.

    2002-01-01

    The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg−1 dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III). PMID:12428020

  13. Mineral induced formation of sugar phosphates

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.

    1995-01-01

    Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.

  14. Preparation of porous lanthanum phosphate with templates

    SciTech Connect

    Onoda, Hiroaki; Ishima, Yuya; Takenaka, Atsushi; Tanaka, Isao

    2009-08-05

    Malonic acid, propionic acid, glycine, n-butylamine, and urea were added to the preparation of lanthanum phosphate from lanthanum nitrate and phosphoric acid solutions. All additives were taken into lanthanum phosphate particles. The additives that have a basic site were easy to contain in precipitates. The addition of templates improved the specific surface area of lanthanum phosphate. The amount of pore, with radius smaller than 4 nm, increased with the addition of templates. The remained additives had influence on the acidic properties of lanthanum phosphate.

  15. Next generation calcium phosphate-based biomaterials

    PubMed Central

    LC, Chow

    2009-01-01

    It has been close to a century since calcium phosphate materials were first used as bone graft substitutes. Numerous studies conducted in the last two decades have produced a wealth of information on the chemistry, in vitro properties, and biological characteristics of granular calcium phosphates and calcium phosphate cement biomaterials. An in depth analysis of several key areas of calcium phosphate cement properties is presented with the aim of developing strategies that could lead to break-through improvements in the functional efficacies of these materials. PMID:19280963

  16. Sucrose accumulation in mature sweet melon fruits. [Cucumis melo

    SciTech Connect

    Schaffer, A.A.; Aloni, B.

    1987-04-01

    Mesocarp tissue from sucrose-accumulating sweet melon (Cucumis melo cv. Galia) showed sucrose synthase activity (ca 1 nkat/gfw) while soluble acid invertase and sucrose phosphate synthase activities were not observed. Sucrose uptake into mesocarp discs was linear with sucrose concentration (1-500 mM) and unaffected by PCMBS and CCCP. Sucrose compartmentation into the vacuole also increased linearly with sucrose concentration as indicated by compartmental efflux kinetics. Mesocarp discs incubated in /sup 14/C-fructose + UDP-glu synthesized /sup 14/C-sucrose and efflux kinetics indicated that the /sup 14/C-sucrose was compartmentalized. These data support the hypothesis that two mechanisms are involved in sucrose accumulation in sweet melon: (1) compartmentation of intact sucrose and (2) synthesis of sucrose via sucrose synthase and subsequent compartmentation in the vacuole.

  17. Phosphate removal in oxygen minimum zones off Africa

    NASA Astrophysics Data System (ADS)

    Sokoll, Sarah; Ferdelman, Timothy G.; Holtappels, Moritz; Goldhammer, Tobias; Kuypers, Marcel M. M.

    2013-04-01

    The flux of limiting nutrients (N, P, Si and Fe) to the surface ocean controls phytoplankton growth and species composition. Shelf and margin sediments release considerable amounts of nutrients into the bottom water from which they are eventually transported to surface waters. However not well understood is how the flux of phosphate (P) across the benthic boundary layer (BBL) is controlled by geochemical and biologically mediated processes such as redox reaction, chelation, particle formation, sorption and desorption to organic and inorganic particles. P transformation between the dissolved and the particulate phase significantly influences the P distribution in the water column and, for example, might lead to the significant P accumulation observed for anoxic bottom waters of the oxygen minimum zone (OMZ) off Namibia. To investigate P accumulation on particles in the water column under oxic and anoxic conditions we conducted isotope labeling experiments during two cruises in 2011 to the OMZs of Mauritania and Namibia. We applied radioactive tracer (33PO43) incubations, sequential P extraction and nanoSIMS analyses to measure particulate P formation rates and to discriminate between biotic and abiotic accumulation. Under oxic conditions, formation rates of particulate P ranged between 3.1 and 29.7 nmol P L-1 d-1 and increased in the BBL towards the seafloor. Sequential P extraction revealed that 34-67% of phosphate was taken up into biomass. Calculated cellular uptake rates of ~0.24 to 29 x 10-18 mol cell-1 d-1 were significantly above those calculated from oxygen consumption and Redfield ratio suggesting intracellular P storage. In contrast, in near anoxic bottom waters (

  18. The SLC37 Family of Sugar-Phosphate/Phosphate Exchangers

    PubMed Central

    Chou, Janice Y.; Mansfield, Brian C.

    2014-01-01

    The SLC37 family members are endoplasmic reticulum (ER)-associated sugar-phosphate/phosphate (Pi) exchangers. Three of the four members, SLC37A1, SLC37A2, and SLC37A4, function as Pi-linked glucose-6-phosphate (G6P) antiporters catalyzing G6P:Pi and Pi:Pi exchanges. The activity of SLC37A3 is unknown. SLC37A4, better known as the G6P transporter (G6PT), has been extensively characterized, functionally and structurally, and is the best characterized family member. G6PT contains 10 transmembrane helices with both N and C termini facing the cytoplasm. The primary in vivo function of the G6PT protein is to translocate G6P from the cytoplasm into the ER lumen where it couples with either the liver/kidney/intestine-restricted glucose-6-phosphatase-α (G6Pase-α or G6PC) or the ubiquitously expressed G6Pase-β (or G6PC3) to hydrolyze G6P to glucose and Pi. The G6PT/G6Pase-α complex maintains interprandial glucose homeostasis, and the G6PT/G6Pase-β complex maintains neutro-phil energy homeostasis and functionality. G6PT is highly selective for G6P and is competitively inhibited by cholorogenic acid and its derivatives. Neither SLC37A1 nor SLC37A2 can couple functionally with G6Pase-α or G6Pase-β, and the antiporter activities of SLC37A1 or SLC37A2 are not inhibited by cholorogenic acid. Deficiencies in G6PT cause glycogen storage disease type Ib (GSD-Ib), a metabolic and immune disorder. To date, 91 separate SLC37A4 mutations, including 39 missense mutations, have been identified in GSD-Ib patients. Characterization of missense mutations has yielded valuable information on functionally important residues in the G6PT protein. The biological roles of the other SLC37 proteins remain to be determined and deficiencies have not yet been correlated to diseases. PMID:24745989

  19. Noise Reduction by Signal Accumulation

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2006-01-01

    The aim of this paper is to show how the noise reduction by signal accumulation can be accomplished with a data acquisition system. This topic can be used for student projects. In many cases, the noise reduction is an unavoidable part of experimentation. Several techniques are known for this purpose, and among them the signal accumulation is the…

  20. Con: Phosphate binders in chronic kidney disease.

    PubMed

    Kestenbaum, Bryan

    2016-02-01

    Phosphate binders are prescribed to chronic kidney disease (CKD) patients based on associations of serum phosphate concentrations with mortality and calcification, experimental evidence for direct calcifying effects of phosphate on vascular smooth muscle tissue and the central importance of phosphate retention in CKD-mineral and bone disorder (CKD-MBD). Current knowledge regarding phosphate metabolism in CKD provides important insight into disease mechanisms and supports future clinical trials of phosphate binders in CKD patients to determine the impact of these medications on clinically relevant outcomes. The risks and benefits of phosphate binders cannot be inferred from association studies of serum phosphate concentrations, which are inconsistent and subject to confounding, animal-experimental data, which are based on conditions that differ from human disease, or physiological arguments, which are limited to known regulatory factors. Many interventions that targeted biochemical pathways suggested by association studies and suspected biological importance have yielded null or harmful results. Clinical trials of phosphate binders are of high clinical and scientific importance to nephrology. Demonstration of reduced rates of clinical disease in such trials could lead to important health benefits for CKD patients, whereas negative results would refocus efforts to understand and treat CKD-MBD. Clinical trials that employ highly practical or 'pragmatic' designs represent an optimal approach for determining the safety and effectiveness of phosphate binders in real-world settings. Absent clinical trial data, observational studies of phosphate binders in large CKD populations could provide important information regarding the benefits, risks and/or unintended side effects of these medications. PMID:26681747

  1. The measurement of xylulose 5-phosphate, ribulose 5-phosphate, and combined sedoheptulose 7-phosphate and ribose 5-phosphate in liver tissue.

    PubMed

    Casazza, J P; Veech, R L

    1986-12-01

    A modification of the method of Kauffman et al. (F. C. Kauffman, J. G. Brown, J. V. Passonneau, and O. H. Lowry (1969) J. Biol. Chem. 244, 3647-3653) for the spectrophotometric determination of xylulose 5-phosphate, ribulose 5-phosphate, and combined ribose 5-phosphate and sedoheptulose 7-phosphate in tissue extract is presented. Using commercially available enzymes all three assays come to a clear endpoint with the assays described. Values for these metabolites in liver in three dietary states are reported; 48 h starved, ad libitum feeding of standard NIH rat ration, and meal feeding of a fat-free diet. Xylulose 5-phosphate values were 3.8 +/- 0.3, 8.6 +/- 0.3, and 66.3 +/- 8.3 nmol/g. Ribulose 5-phosphate values were 3.4 +/- 0.3, 5.8 +/- 0.2, and 37.1 +/- 5.3 nmol/g. Combined ribose 5-phosphate and sedoheptulose 7-phosphate were 29.3 +/- 0.3, 38.2 +/- 1.2, and 108.2 +/- 14.5 nmol/g. The ratio of measured tissue content of [xylulose 5-phosphate]/[ribulose 5-phosphate] was found to be 1.12 +/- 0.07 in starved animals, 1.48 +/- 0.04 in ad libitum fed animals and 1.78 +/- 0.03 in low-fat meal fed animals. These data are in good agreement with the range of equilibrium constants reported for this reaction, suggesting that the ribulose 5-phosphate 3-epimerase reaction (EC 5.1.3.1) is a near equilibrium reaction despite a more than 10-fold change in the tissue content of these metabolites.

  2. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    PubMed

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite.

  3. Serotonergic agonists stimulate inositol lipid metabolism in rabbit platelets

    SciTech Connect

    Schaechter, M.; Godfrey, P.P.; Minchin, M.C.W.; McClue, S.J.; Young, M.M.

    1985-10-28

    The metabolism of inositol phospholipids in response to serotonergic agonists was investigated in rabbit platelets. In platelets prelabelled with (/sup 3/H)-inositol, in a medium containing 10 mM LiCl which blocks the enzyme inositol-1-phosphatase, 5-hydroxytryptamine (5-HT) caused a dose-dependent accumulation of inositol phosphates (IP). This suggests a phospholipase-C-mediated breakdown of phosphoinositides. Ketanserin, a selective 5-HT/sub 2/ antagonist, was a potent inhibitor of the 5-HT response, with a Ki of 28 nM, indicating that 5-HT is activating receptors of the 5-HT/sub 2/ type in the platelet. Lysergic acid diethylamide (LSD) and quipazine also caused dose-related increases in inositol phosphate levels, though these were considerably less than those produced by 5-HT. These results show that relatively small changes in phosphoinositide metabolism induced by serotonergic agonists can be investigated in the rabbit platelet, and this cell may therefore be a useful model for the study of some 5-HT receptors. 30 references, 4 figures.

  4. Phosphatidylinositol 4,5-bisphosphate phospholipase C and phosphomonoesterase in Dunaliella salina membranes

    SciTech Connect

    Einspahr, K.J.; Peeler, T.C.; Thompson, G.A. Jr. )

    1989-07-01

    In comparison with other cell organelles, the Dunaliella salina plasma membrane was found to be highly enriched in phospholipase C activity toward exogenous ({sup 3}H)phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}). Based on release of ({sup 3}H)inositol phosphates, the plasma membrane exhibited a PIP{sub 2}-phospholipase C activity nearly tenfold higher than the nonplasmalemmal, nonchloroplast bottom phase (BP) membrane fraction and 47 times higher than the chloroplast membrane fraction. The majority of phospholipase activity was clearly of a phospholipase C nature since over 80% of ({sup 3}H)inositol phosphates released were recovered as ({sup 3}H)inositol trisphosphate (IP{sub 3}). These results suggest a plausible mechanism for the rapid breakdown of PIP{sub 2} and phosphatidylinositol 4-phosphate (PIP) following hypoosmotic shock. The authors have also examined some of the in vitro characteristics of the plasma membrane phospholipase C activity and have found it to be calcium sensitive, reaching maximal activity at 10 micromolar free (Ca{sup 2+}). They also report here that 100 micromolar GTP{gamma}S stimulates phospholipase C activity over a range of free (Ca{sup 2+}). Together, these results provide evidence that the plasma membrane PIP{sub 2}-phospholipase C of D. salina may be subject to Ca{sup 2+} and G-protein regulation.

  5. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism

    SciTech Connect

    Bonthrone, K.M.; Basnakova, G.; Lin, F.; Macaskie, L.E.

    1996-05-01

    A Citrobacter sp. accumulates uranyl ion (UO{sub 2}{sup 2+}) as crystalline HUO{sub 2}PO{sub 4}{center_dot}4H{sub 2}O (HUP), using enzymatically generated inorganic phosphate. Ni was not removed by this mechanism, but cells already loaded with HUP removed Ni{sup 2+} by intercalative ion-exchange, forming Ni(UO{sub 2}PO{sub 4}){sub 2}{center_dot}7H{sub 2}O, as concluded by x-ray diffraction (XRD) and proton induced x-ray emission (PIXE) analyses. The loaded biomass became saturated with Ni rapidly, with a molar ratio of Ni:U in the cellbound deposit of approx. 1:6; Ni penetration was probably surface-localized. Cochallenge of the cells with Ni{sup 2+} and UO{sub 2}{sup 2+}, and glycerol 2-phosphate (phosphate donor for phosphate release and metal bioprecipitation) gave sustained removal of both metals in a flow through bioreactor, with more extensively accumulated Ni. We propose `Microbially Enhanced Chemisorption of Heavy Metals` (MECHM) to describe this hybrid mechanism of metal bioaccumulation via intercalation into preformed, biogenic crystals, and note also that MECHM can promote the removal of the transuranic radionuclide neptunium, which is difficult to achieve by conventional methods. 42 refs., 1 fig., 1 tab.

  6. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism.

    PubMed

    Bonthrone, K M; Basnakova, G; Lin, F; Macaskie, L E

    1996-05-01

    A Citrobacter sp. accumulates uranyl ion (UO2(2+)) as crystalline HUO2PO4.4H2O (HUP), using enzymatically generated inorganic phosphate. Ni was not removed by this mechanism, but cells already loaded with HUP removed Ni2+ by intercalative ion-exchange, forming Ni(UO2PO4)2.7H2O, as concluded by x-ray diffraction (XRD) and proton induced x-ray emission (PIXE) analyses. The loaded biomass became saturated with Ni rapidly, with a molar ratio of Ni:U in the cellbound deposit of approx. 1:6; Ni penetration was probably surface-localized. Cochallenge of the cells with Ni2+ and UO2(2+), and glycerol 2-phosphate (phosphate donor for phosphate release and metal bioprecipitation) gave sustained removal of both metals in a flow through bioreactor, with more extensively accumulated Ni. We propose 'Microbially Enhanced Chemisorption of Heavy Metals' (MECHM) to describe this hybrid mechanism of metal bioaccumulation via intercalation into preformed, biogenic crystals, and note also that MECHM can promote the removal of the transuranic radionuclide neptunium, which is difficult to achieve by conventional methods.

  7. Mineral resource of the month: phosphate rock

    USGS Publications Warehouse

    Jasinski, Stephen M.

    2007-01-01

    Phosphate rock minerals provide the only significant global resources of phosphorus, which is an essential element for plant and animal nutrition. Phosphate rock is used primarily as a principal component of nitrogen-phosphorus-potassium fertilizers, but also to produce elemental phosphorus and animal feed.

  8. How inositol pyrophosphates control cellular phosphate homeostasis?

    PubMed

    Saiardi, Adolfo

    2012-05-01

    Phosphorus in his phosphate PO(4)(3-) configuration is an essential constituent of all life forms. Phosphate diesters are at the core of nucleic acid structure, while phosphate monoester transmits information under the control of protein kinases and phosphatases. Due to these fundamental roles in biology it is not a surprise that phosphate cellular homeostasis is under tight control. Inositol pyrophosphates are organic molecules with the highest proportion of phosphate groups, and they are capable of regulating many biological processes, possibly by controlling energetic metabolism and adenosine triphosphate (ATP) production. Furthermore, inositol pyrophosphates influence inorganic polyphosphates (polyP) synthesis. The polymer polyP is solely constituted by phosphate groups and beside other known functions, it also plays a role in buffering cellular free phosphate [Pi] levels, an event that is ultimately necessary to generate ATP and inositol pyrophosphate. Although it is not yet clear how inositol pyrophosphates regulate cellular metabolism, understanding how inositol pyrophosphates influence phosphates homeostasis will help to clarify this important link. In this review I will describe the recent literature on this topic, with in the hope of inspiring further research in this fascinating area of biology.

  9. Metallic function of lithium phosphate glass electrodes

    SciTech Connect

    Kochetova, T.I.; Bobrov, V.S.

    1995-05-20

    Specificity of metallic functions of lithium phosphate glasses toward univalent cations over a wide concentration range and their correlation with cation size have been studied. In the present work, the authors extended the spectrum of phosphate glass compositions: a study has been made how additions of gallium, titanium, and vanadium oxides influence electrode properties.

  10. Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate[S

    PubMed Central

    Benesch, Matthew G. K.; Zhao, Yuan Y.; Curtis, Jonathan M.; McMullen, Todd P. W.; Brindley, David N.

    2015-01-01

    Autotaxin (ATX) is a secreted enzyme, which produces extracellular lysophosphatidate (LPA) from lysophosphatidylcholine (LPC). LPA activates six G protein-coupled receptors and this is essential for vasculogenesis during embryonic development. ATX is also involved in wound healing and inflammation, and in tumor growth, metastasis, and chemo-resistance. It is, therefore, important to understand how ATX is regulated. It was proposed that ATX activity is inhibited by its product LPA, or a related lipid called sphingosine 1-phosphate (S1P). We now show that this apparent inhibition is ineffective at the high concentrations of LPC that occur in vivo. Instead, feedback regulation by LPA and S1P is mediated by inhibition of ATX expression resulting from phosphatidylinositol-3-kinase activation. Inhibiting ATX activity in mice with ONO-8430506 severely decreased plasma LPA concentrations and increased ATX mRNA in adipose tissue, which is a major site of ATX production. Consequently, the amount of inhibitor-bound ATX protein in the plasma increased. We, therefore, demonstrate the concept that accumulation of LPA in the circulation decreases ATX production. However, this feedback regulation can be overcome by the inflammatory cytokines, TNF-α or interleukin 1β. This enables high LPA and ATX levels to coexist in inflammatory conditions. The results are discussed in terms of ATX regulation in wound healing and cancer. PMID:25896349

  11. Phosphate rock resources of the United States

    USGS Publications Warehouse

    Cathcart, James Bachelder; Sheldon, Richard Porter; Gulbrandsen, Robert A.

    1984-01-01

    In 1980, the United States produced about 54 million tons of phosphate rock, or about 40 percent of the world's production, of which a substantial amount was exported, both as phosphate rock and as chemical fertilizer. During the last decade, predictions have been made that easily ruinable, low-cost reserves of phosphate rock would be exhausted, and that by the end of this century, instead of being a major exporter of phosphate rock, the United States might become a net importer. Most analysts today, however, think that exports will indeed decline in the next one or two decades, but that resources of phosphate are sufficient to supply domestic needs for a long time into the future. What will happen in the future depends on the actual availability of low-cost phosphate rock reserves in the United States and in the world. A realistic understanding of future phosphate rock reserves is dependent on an accurate assessment, now, of national phosphate rock resources. Many different estimates of resources exist; none of them alike. The detailed analysis of past resource estimates presented in this report indicates that the estimates differ more in what is being estimated than in how much is thought to exist. The phosphate rock resource classification used herein is based on the two fundamental aspects of a mineral resource(l) the degree of certainty of existence and (2) the feasibility of economic recovery. The comparison of past estimates (including all available company data), combined with the writers' personal knowledge, indicates that 17 billion metric tons of identified, recoverable phosphate rock exist in the United States, of which about 7 billion metric tons are thought to be economic or marginally economic. The remaining 10 billion metric tons, mostly in the Northwestern phosphate district of Idaho, are considered to be subeconomic, ruinable when some increase in the price of phosphate occurs. More than 16 billion metric tons probably exist in the southeastern

  12. Reducing arsenic accumulation in rice grain through iron oxide amendment.

    PubMed

    Farrow, Eric M; Wang, Jianmin; Burken, Joel G; Shi, Honglan; Yan, Wengui; Yang, John; Hua, Bin; Deng, Baolin

    2015-08-01

    Effects of soil-arsenic (As), phosphorus and iron oxide on As accumulation in rice grain were investigated. Cultivars that have significantly different sensitivity to As, straighthead-resistant Zhe 733 and straighthead-susceptible Cocodrie, were used to represent different cultivar varieties. The grain accumulation of other elements of concern, selenium (Se), molybdenum (Mo), and cadmium (Cd) was also monitored. Results demonstrated that high soil-As not only resulted in high grain-As, but could also result in high grain-Se, and Zhe 733 had significantly less grain-As than Cocodrie did. However, soil-As did not impact grain-Mo and Cd. Among all elements monitored, iron oxide amendment significantly reduced grain-As for both cultivars, while the phosphate application only reduced grain-Se for Zhe 733. Results also indicated that cultivar type significantly impacted grain accumulation of all monitored trace elements. Therefore, applying iron oxide to As-contaminated land, in addition to choosing appropriate rice cultivar, can effectively reduce the grain accumulation of As. PMID:25910688

  13. Deciphering the Genome of Polyphosphate Accumulating Actinobacterium Microlunatus phosphovorus

    PubMed Central

    Kawakoshi, Akatsuki; Nakazawa, Hidekazu; Fukada, Junji; Sasagawa, Machi; Katano, Yoko; Nakamura, Sanae; Hosoyama, Akira; Sasaki, Hiroki; Ichikawa, Natsuko; Hanada, Satoshi; Kamagata, Yoichi; Nakamura, Kazunori; Yamazaki, Shuji; Fujita, Nobuyuki

    2012-01-01

    Polyphosphate accumulating organisms (PAOs) belong mostly to Proteobacteria and Actinobacteria and are quite divergent. Under aerobic conditions, they accumulate intracellular polyphosphate (polyP), while they typically synthesize polyhydroxyalkanoates (PHAs) under anaerobic conditions. Many ecological, physiological, and genomic analyses have been performed with proteobacterial PAOs, but few with actinobacterial PAOs. In this study, the whole genome sequence of an actinobacterial PAO, Microlunatus phosphovorus NM-1T (NBRC 101784T), was determined. The number of genes for polyP metabolism was greater in M. phosphovorus than in other actinobacteria; it possesses genes for four polyP kinases (ppks), two polyP-dependent glucokinases (ppgks), and three phosphate transporters (pits). In contrast, it harbours only a single ppx gene for exopolyphosphatase, although two copies of ppx are generally present in other actinobacteria. Furthermore, M. phosphovorus lacks the phaABC genes for PHA synthesis and the actP gene encoding an acetate/H+ symporter, both of which play crucial roles in anaerobic PHA accumulation in proteobacterial PAOs. Thus, while the general features of M. phosphovorus regarding aerobic polyP accumulation are similar to those of proteobacterial PAOs, its anaerobic polyP use and PHA synthesis appear to be different. PMID:22923697

  14. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    PubMed

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429 mM NH3-N/L of ammonia, the addition of 25 mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143 mM NH3-N/L of ammonium chloride in UASB, the addition of 5 mM disodium phosphate suppressed ammonia inhibition at 214 mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation.

  15. Effects of Phosphate on Arsenate Uptake and Translocation in Nonmetallicolous and Metallicolous Populations of Pteris Vittata L. Under Solution Culture.

    PubMed

    Wu, Fuyong; Wu, Shengchun; Deng, Dan; Wong, Ming Hung

    2015-01-01

    An arsenic hyperaccumulator, Pteris vittata L., is common in nature and could occur either on As-contaminated soils or on uncontaminated soils. However, it is not clear whether phosphate transporter play similar roles in As uptake and translocation in nonmetallicolous and metallicolous populations of P. vittata. Five populations were used to investigate effects of phosphate on arsenate uptake and translocation in the plants growing in 1.2 L 20% modified Hoagland's nutrient solution containing either 100 μM phosphate or no phosphate and 10 μM arsenate for 1, 2, 6, 12, 24 h, respectively. The results showed that the nonmetallicolous populations accumulated apparently more As in their fronds and roots than the metallicolous populations at both P supply levels. Phosphate significantly (P < 0.01) decreased frond and root concentrations of As during short time solution culture. In addition, the effects of phosphate on As translocation in P. vittata varied among different time-points during time-course hydroponics (1-24 h). The present results indicated that the inhibitory effect of phosphate on arsenate uptake was larger in the three nonmetallicolous populations than those in the two metallicolous populations of P. vittata.

  16. Effects of Phosphate on Arsenate Uptake and Translocation in Nonmetallicolous and Metallicolous Populations of Pteris Vittata L. Under Solution Culture.

    PubMed

    Wu, Fuyong; Wu, Shengchun; Deng, Dan; Wong, Ming Hung

    2015-01-01

    An arsenic hyperaccumulator, Pteris vittata L., is common in nature and could occur either on As-contaminated soils or on uncontaminated soils. However, it is not clear whether phosphate transporter play similar roles in As uptake and translocation in nonmetallicolous and metallicolous populations of P. vittata. Five populations were used to investigate effects of phosphate on arsenate uptake and translocation in the plants growing in 1.2 L 20% modified Hoagland's nutrient solution containing either 100 μM phosphate or no phosphate and 10 μM arsenate for 1, 2, 6, 12, 24 h, respectively. The results showed that the nonmetallicolous populations accumulated apparently more As in their fronds and roots than the metallicolous populations at both P supply levels. Phosphate significantly (P < 0.01) decreased frond and root concentrations of As during short time solution culture. In addition, the effects of phosphate on As translocation in P. vittata varied among different time-points during time-course hydroponics (1-24 h). The present results indicated that the inhibitory effect of phosphate on arsenate uptake was larger in the three nonmetallicolous populations than those in the two metallicolous populations of P. vittata. PMID:26083716

  17. Effects of Nickel on Calcium Phosphate Formation

    NASA Astrophysics Data System (ADS)

    Guerra-López, J.; González, R.; Gómez, A.; Pomés, R.; Punte, G.; Della Védova, C. O.

    2000-05-01

    We have investigated the effect of nickel on calcium phosphate formation from aqueous solutions. The calcium phosphates prepared under different reaction conditions (pH, temperature, and nickel concentration) were characterized by X-ray diffraction, FTIR spectroscopy, and chemical analysis. The apatite compounds were also studied thermogravimetrically. From the combined results of the techniques employed we have determined that nickel favors the formation of brushite and amorphous calcium phosphate. We have found, as well, that the presence of nickel in the solution inhibits calcium hydroxyapatite (CaHAP) and octacalcium phosphate formation. However in the synthesis performed at basic pH and 95°C the apatitic phase (HAP) could be obtained. The present results suggest that the presence of nickel may modify the precipitation of oral calcium phosphate.

  18. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis

    SciTech Connect

    Thiel, T.

    1988-03-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells.Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of P/sub i/. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a noncompetitive inhibitor of phosphate transport; however, the apparent K/sub i/ values were high, particularly for phosphate-replete cells. Preincubation of phosphate-starved cells with arsenate caused subsequent inhibition of phosphate transport, suggesting that intracellular arsenate inhibited phosphate transport. This effect was not seen in phosphate-replete cells.

  19. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    PubMed Central

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735

  20. Phosphate Biomineralization of Cambrian Microorganisms

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Rozanov, Alexei Yu.; Hoover, Richard B.; Westall, Frances

    1998-01-01

    As part of a long term study of biological markers (biomarkers), we are documenting a variety of features which reflect the previous presence of living organisms. As we study meteorites and samples returned from Mars, our main clue to recognizing possible microbial material may be the presence of biomarkers rather than the organisms themselves. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms. The study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers. This paper describes the results of investigations of microfossils in Cambrian phosphate-rich rocks (phosphorites) that were found in Khubsugul, Northern Mongolia.

  1. Gypsum accumulation on carbonate stone

    USGS Publications Warehouse

    McGee, E.S.; Mossotti, V.G.

    1992-01-01

    The accumulation of gypsum on carbonate stone has been investigated through exposure of fresh samples of limestone and marble at monitored sites, through examination of alteration crusts from old buildings and through laboratory experiments. Several factors contribute to gypsum accumulation on carbonate stone. Marble or limestone that is sheltered from direct washing by rain in an urban environment with elevated pollution levels is likely to accumulate a gypsum crust. Crust development may be enhanced if the stone is porous or has an irregular surface area. Gypsum crusts are a surficial alteration feature; gypsum crystals form at the pore opening-air interface, where evaporation is greatest.

  2. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.

    PubMed

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-09-01

    Triacylglycerol (TAG), a major source of biodiesel production, accumulates in nitrogen-starved Chlamydomonas reinhardtii. However, the metabolic pathway of starch-to-TAG conversion remains elusive because an enzyme that affects the starch degradation is unknown. Here, we isolated a new class of mutant bgal1, which expressed an overaccumulation of starch granules and defective photosynthetic growth. The bgal1 was a null mutant of a previously uncharacterized β-galactosidase-like gene (Cre02.g119700), which decreased total β-galactosidase activity 40% of the wild type. Upon nitrogen starvation, the bgal1 mutant showed decreased TAG accumulation mainly due to the reduced flux of de novo TAG biosynthesis evidenced by increased unsaturation of fatty acid composition in TAG and reduced TAG accumulation by additional supplementation of acetate to the culture media. Metabolomic analysis of the bgal1 mutant showed significantly reduced levels of metabolites following the hydrolysis of starch and substrates for TAG accumulation, whereas metabolites in TCA cycle were unaffected. Upon nitrogen starvation, while levels of glucose 6-phosphate, fructose 6-phosphate and acetyl-CoA remained lower, most of the other metabolites in glycolysis were increased but those in the TCA cycle were decreased, supporting TAG accumulation. We suggest that BGAL1 may be involved in the degradation of starch, which affects TAG accumulation in nitrogen-starved C. reinhardtii. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27060488

  3. Mesophyll-localized phytochromes gate stress- and light-inducible anthocyanin accumulation in Arabidopsis thaliana

    PubMed Central

    Oh, Sookyung; Warnasooriya, Sankalpi N; Montgomery, Beronda L

    2014-01-01

    Abiotic stress and light induce anthocyanin accumulation in Arabidopsis. Here, we demonstrate that mesophyll-localized phytochromes regulate nitrogen-, phosphate- and cold-induced anthocyanin accumulation in shoots of Arabidopsis. Whereas ecotype-dependent differences result in distinct total levels of anthocyanin accumulation in response to light, cold, or nutrient-deficient treatments, phytochromes generally gate light- and/or stress-induced anthocyanin accumulation in shoots, as plants depleted of mesophyll-localized phytochromes lack or have highly attenuated induction of anthocyanins. Observed interactions between light and stress were found to be wavelength dependent, with red and far-red light stimulating higher total levels of anthocyanin accumulation under cold temperatures, especially in response to nitrogen limitation, whereas blue light did not. The roots of plants depleted of mesophyll-localized phytochromes still respond to nutrient deficiency as determined by elongation of primary roots and root hair elongation when plants are grown under nitrogen- or phosphate-limited conditions. Plants which are constitutively deficient in photoreceptors in both shoots and roots, i.e., phy or cry mutants, exhibit defects in light- and stress-induced anthocyanin accumulation and defects in root development. Taken together, these results suggest that the response to nutrient limitation in roots and shoots is under distinct control by spatial-specific pools of phytochromes in Arabidopsis. PMID:24535251

  4. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.

    PubMed

    Hung, Chun-Hsien; Kanehara, Kazue; Nakamura, Yuki

    2016-09-01

    Triacylglycerol (TAG), a major source of biodiesel production, accumulates in nitrogen-starved Chlamydomonas reinhardtii. However, the metabolic pathway of starch-to-TAG conversion remains elusive because an enzyme that affects the starch degradation is unknown. Here, we isolated a new class of mutant bgal1, which expressed an overaccumulation of starch granules and defective photosynthetic growth. The bgal1 was a null mutant of a previously uncharacterized β-galactosidase-like gene (Cre02.g119700), which decreased total β-galactosidase activity 40% of the wild type. Upon nitrogen starvation, the bgal1 mutant showed decreased TAG accumulation mainly due to the reduced flux of de novo TAG biosynthesis evidenced by increased unsaturation of fatty acid composition in TAG and reduced TAG accumulation by additional supplementation of acetate to the culture media. Metabolomic analysis of the bgal1 mutant showed significantly reduced levels of metabolites following the hydrolysis of starch and substrates for TAG accumulation, whereas metabolites in TCA cycle were unaffected. Upon nitrogen starvation, while levels of glucose 6-phosphate, fructose 6-phosphate and acetyl-CoA remained lower, most of the other metabolites in glycolysis were increased but those in the TCA cycle were decreased, supporting TAG accumulation. We suggest that BGAL1 may be involved in the degradation of starch, which affects TAG accumulation in nitrogen-starved C. reinhardtii. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  5. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite.

    PubMed

    Fulmer, M T; Brown, P W

    1998-04-01

    Dicalcium phosphate dihydrate (DCPD) was hydrolysed in water and in 1 M Na2HPO4 solution at temperatures from 25-60 degrees C. Hydrolysis was incomplete in water. At 25 degrees C, DCPD partially hydrolysed to hydroxyapatite (HAp). Formation of HAp is indicative of incongruent DCPD dissolution. At the higher temperatures, hydrolysis to HAp was more extensive and was accompanied by the formation of anhydrous dicalcium phosphate (DCP). Both of these processes are endothermic. When hydrolysis was carried out in 1 M Na2HPO4 solution, heat absorption was greater at any given temperature than for hydrolysis in water. Complete hydrolysis to HAp occurred in this solution. The hydrolysis of DCPD to HAp in sodium phosphate solution was also endothermic. The complete conversion of DCPD to HAp in sodium phosphate solution would not be expected if the only effect of this solution was to cause DCPD dissolution to become congruent. Because of the buffering capacity of a dibasic sodium phosphate solution, DCPD hydrolysed completely to HAp. Complete conversion to HAp was accompanied by the conversion of dibasic sodium phosphate to monobasic sodium phosphate. The formation of DCP was not observed indicating that the sodium phosphate solution precluded the DCPD-to-DCP dehydration reaction. In addition to affecting the extent of hydrolysis, reaction in the sodium phosphate solution also caused a morphological change in the HAp which formed. HAp formed by hydrolysis in water was needle-like to globular while that formed in the sodium phosphate solution exhibited a florette-like morphology.

  6. Influence of phosphate on bacterial adhesion onto iron oxyhydroxide in drinking water.

    PubMed

    Appenzeller, Brice M R; Duval, Yann B; Thomas, Fabien; Block, Jean-Claude

    2002-02-15

    The transport and storage of drinking water in water distribution systems can modify its initial composition and properties. The accumulation of bacteria on corroded pipes is prejudicial and may lower the microbiological quality of the water. Previous results have shown that when pipes are highly corroded, the addition of phosphate, used as an anticorrosion treatment, decreases the bacterial concentration in the water. We studied the possibility of using phosphate to reverse the surface charge of iron oxyhydroxide (FeOOH) to limit bacterial adhesion. Iron oxyhydroxide (IOH) particles and Escherichia coli SH 702 were used as models of corrosion products and bacterial contamination, respectively. Electrophoresis was used to characterize the initial surface charges of both types of particles and the modifications that occurred after the addition of phosphate anions. Flow cytometry and adhesion assays were used to build adsorption isotherms of bacteria on IOH versus (phosphated-) IOH. X-ray photoelectron spectroscopy permitted to determine the chemical composition of the E. coli envelope and to discuss on functional groups responsible for bacterial surface properties. In the present conditions, adding phosphate to water allowed a decrease of 75% of the bacteria adhering to IOH.

  7. Inhibition of Phosphate Uptake in Corn Roots by Aluminum-Fluoride Complexes1

    PubMed Central

    Façanha, Arnoldo Rocha; Okorokova-Façanha, Anna L.

    2002-01-01

    F forms stable complexes with Al at conditions found in the soil. Fluoroaluminate complexes (AlFx) have been widely described as effective analogs of inorganic phosphate (Pi) in Pi-binding sites of several proteins. In this work, we explored the possibility that the phytotoxicity of AlFx reflects their activity as Pi analogs. For this purpose, 32P-labeled phosphate uptake by excised roots and plasma membrane H+-ATPase activity were investigated in an Al-tolerant variety of maize (Zea mays L. var. dwarf hybrid), either treated or not with AlFx. In vitro, AlFx competitively inhibited the rate of root phosphate uptake as well as the H+-ATPase activity. Conversely, pretreatment of seedlings with AlFx in vivo promoted no effect on the H+-ATPase activity, whereas a biphasic effect on Pi uptake by roots was observed. Although the initial rate of phosphate uptake by roots was inhibited by AlFx pretreatment, this situation changed over the following minutes as the rate of uptake increased and a pronounced stimulation in subsequent 32Pi uptake was observed. This kinetic behavior suggests a reversible and competitive inhibition of the phosphate transporter by fluoroaluminates. The stimulation of root 32Pi uptake induced by AlFx pretreatment was tentatively interpreted as a phosphate starvation response. This report places AlF3 and AlF4− among Al-phytotoxic species and suggests a mechanism of action where the accumulation of Pi-mimicking fluoroaluminates in the soil may affect the phosphate absorption by plants. The biochemical, physiological, and environmental significance of these findings is discussed. PMID:12177489

  8. Phytate (Inositol Hexakisphosphate) in Soil and Phosphate Acquisition from Inositol Phosphates by Higher Plants. A Review

    PubMed Central

    Gerke, Jörg

    2015-01-01

    Phosphate (P) fixation to the soil solid phase is considered to be important for P availability and is often attributed to the strong binding of orthophosphate anion species. However, the fixation and subsequent immobilization of inositolhexa and pentaphosphate isomers (phytate) in soil is often much stronger than that of the orthosphate anion species. The result is that phytate is a main organic P form in soil and the dominating form of identifiable organic P. The reasons for the accumulation are not fully clear. Two hypothesis can be found in the literature in the last 20 years, the low activity of phytase (phosphatases) in soil, which makes phytate P unavailable to the plant roots, and, on the other hand, the strong binding of phytate to the soil solid phase with its consequent stabilization and accumulation in soil. The hypothesis that low phytase activity is responsible for phytate accumulation led to the development of genetically modified plant genotypes with a higher expression of phytase activity at the root surface and research on the effect of a higher phytate activity on P acquisition. Obviously, this hypothesis has a basic assumption, that the phytate mobility in soil is not the limiting step for P acquisition of higher plants from soil phytate. This assumption is, however, not justified considering the results on the sorption, immobilization and fixation of phytate to the soil solid phase reported in the last two decades. Phytate is strongly bound, and the P sorption maximum and probably the sorption strength of phytate P to the soil solid phase is much higher, compared to that of orthophosphate P. Mobilization of phytate seems to be a promising step to make it available to the plant roots. The excretion of organic acid anions, citrate and to a lesser extend oxalate, seems to be an important way to make phytate P available to the plants. Phytase activity at the root surface seems not be the limiting step in P acquisition from phytate. Phytate is not

  9. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  10. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the

  11. The contribution of exopolysaccharides induced struvites accumulation to ammonium adsorption in aerobic granular sludge.

    PubMed

    Lin, Y M; Bassin, J P; van Loosdrecht, M C M

    2012-03-15

    Aerobic granular sludge from a lab-scale reactor with simultaneous nitrification/denitrification and enhanced biological phosphorus removal processes exhibited significant amount of ammonium adsorption (1.5 mg NH4+-N/g TSS at an ammonium concentration of 30 mg N/L). Potassium release accompanied ammonium adsorption, indicating an ion exchange process. The existence of potassium magnesium phosphate (K-struvite) as one of potassium sources in the granular sludge was studied by X-ray diffraction analysis (XRD). Artificially prepared K-struvite was indeed shown to adsorb ammonium. Alginate-like exopolysaccharides were isolated and their inducement for struvite formation was investigated as well. Potassium magnesium phosphate proved to be a major factor for ammonium adsorption on the granular sludge. Struvites (potassium/ammonium magnesium phosphate) accumulate in aerobic granular sludge due to inducing of precipitation by alginate-like exopolysaccharides.

  12. Characterization and in vivo regulation of V sub 1 -type vasopressin receptors in the rat brain

    SciTech Connect

    Shewey, L.M.

    1988-01-01

    Specific, high affinity binding sites for ({sup 3}H)-arginine{sup 8}-vasopressin (AVP) have been characterized in Long-Evans rat septal membranes. Binding displacement studies with peptide analogs of AVP indicate that this binding site is similar to the V{sub 1} (pressor)-type receptor for AVP. When added to rat brain septal slices that had been pre-labeled with ({sup 3}H)-myoinositol, AVP stimulated the accumulation of ({sup 3}H)-inositol-1-phosphate (IP{sub 1}) in the presence of lithium in a dose-dependent manner. This stimulation was completely inhibited by the specific V{sub 1} antagonists, d(CH{sub 2}){sub 5}Tyr(Me)AVP, indicating that AVP stimulates hydrolysis of inositol phospholipids in rat brain septum through an interaction with V{sub 1}-type AVP receptors. Binding studies of AVP receptors in the septum of heterozygous (HE) and homozygous, Brattleboro (BB) rats revealed an increased number of receptors with a lower affinity for AVP in the HO-BB rat when compared to the HE-BB rat. AVP-stimulated accumulation of ({sup 3}H)-IP{sub 1} was significantly greater in the septum of the HO-BB rat than in the HE-BB rat. AVP receptor binding capacity correlated with release of ({sup 3}H)-IP{sub 1} for all three groups studied.

  13. Acclimation of metabolism to light in A rabidopsis thaliana: the glucose 6‐phosphate/phosphate translocator GPT2 directs metabolic acclimation

    PubMed Central

    DYSON, BETH C.; ALLWOOD, J. WILLIAM; FEIL, REGINA; XU, YUN; MILLER, MATTHEW; BOWSHER, CAROLINE G.; GOODACRE, ROYSTON; LUNN, JOHN E.

    2015-01-01

    Abstract Mature leaves of plants transferred from low to high light typically increase their photosynthetic capacity. In A rabidopsis thaliana, this dynamic acclimation requires expression of GPT2, a glucose 6‐phosphate/phosphate translocator. Here, we examine the impact of GPT2 on leaf metabolism and photosynthesis. Plants of wild type and of a GPT2 knockout (gpt2.2) grown under low light achieved the same photosynthetic rate despite having different metabolic and transcriptomic strategies. Immediately upon transfer to high light, gpt2.2 plants showed a higher rate of photosynthesis than wild‐type plants (35%); however, over subsequent days, wild‐type plants acclimated photosynthetic capacity, increasing the photosynthesis rate by 100% after 7 d. Wild‐type plants accumulated more starch than gpt2.2 plants throughout acclimation. We suggest that GPT2 activity results in the net import of glucose 6‐phosphate from cytosol to chloroplast, increasing starch synthesis. There was clear acclimation of metabolism, with short‐term changes typically being reversed as plants acclimated. Distinct responses to light were observed in wild‐type and gpt2.2 leaves. Significantly higher levels of sugar phosphates were observed in gpt2.2. We suggest that GPT2 alters the distribution of metabolites between compartments and that this plays an essential role in allowing the cell to interpret environmental signals. PMID:25474495

  14. Salicylanilide diethyl phosphates as cholinesterases inhibitors.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila

    2015-02-01

    Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellman's spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors. PMID:25462625

  15. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  16. Ribose-5-phosphate biosynthesis in Methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway.

    PubMed

    Grochowski, Laura L; Xu, Huimin; White, Robert H

    2005-11-01

    Recent work has raised a question as to the involvement of erythrose-4-phosphate, a product of the pentose phosphate pathway, in the metabolism of the methanogenic archaea (R. H. White, Biochemistry 43:7618-7627, 2004). To address the possible absence of erythrose-4-phosphate in Methanocaldococcus jannaschii, we have assayed cell extracts of this methanogen for the presence of this and other intermediates in the pentose phosphate pathway and have determined and compared the labeling patterns of sugar phosphates derived metabolically from [6,6-2H2]- and [U-13C]-labeled glucose-6-phosphate incubated with cell extracts. The results of this work have established the absence of pentose phosphate pathway intermediates erythrose-4-phosphate, xylose-5-phosphate, and sedoheptulose-7-phosphate in these cells and the presence of D-arabino-3-hexulose-6-phosphate, an intermediate in the ribulose monophosphate pathway. The labeling of the D-ara-bino-3-hexulose-6-phosphate, as well as the other sugar-Ps, indicates that this hexose-6-phosphate was the precursor to ribulose-5-phosphate that in turn was converted into ribose-5-phosphate by ribose-5-phosphate isomerase. Additional work has demonstrated that ribulose-5-phosphate is derived by the loss of formaldehyde from D-arabino-3-hexulose-6-phosphate, catalyzed by the protein product of the MJ1447 gene.

  17. Aquatic Toxicity Assessment of Phosphate Compounds

    PubMed Central

    Kim, Eunju; Yoo, Sunkyoung; Ro, Hee-Young; Han, Hye-Jin; Baek, Yong-Wook; Eom, Ig-Chun; Kim, Pilje; Choi, Kyunghee

    2013-01-01

    Objectives Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. Methods An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. Results The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration (LC50) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration (EC50) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr EC50 was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. Conclusions Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, L(E)C50 was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth. PMID:23440935

  18. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    PubMed

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  19. Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain.

    PubMed

    Petrel, Christophe; Kessler, Albane; Dauban, Philippe; Dodd, Robert H; Rognan, Didier; Ruat, Martial

    2004-04-30

    A three-dimensional model of the human extracellular Ca(2+)-sensing receptor (CaSR) has been used to identify specific residues implicated in the recognition of two negative allosteric CaSR modulators of different chemical structure, NPS 2143 and Calhex 231. To demonstrate the involvement of these residues, we have analyzed dose-inhibition response curves for the effect of these calcilytics on Ca(2+)-induced [(3)H]inositol phosphate accumulation for the selected CaSR mutants transiently expressed in HEK293 cells. These mutants were further used for investigating the binding pocket of two chemically unrelated positive allosteric CaSR modulators, NPS R-568 and (R)-2-[1-(1-naphthyl)ethylaminomethyl]-1H-indole (Calindol), a novel potent calcimimetic that stimulates (EC(50) = 0.31 microM) increases in [(3)H]inositol phosphate levels elicited by activating the wild-type CaSR by 2 mM Ca(2+). Our data validate the involvement of Trp-818(6.48), Phe-821(6.51), Glu-837(7.39), and Ile-841(7.43) located in transmembranes (TM) 6 and TM7, in the binding pocket for both calcimimetics and calcilytics, despite important differences observed between each family of compounds. The TMs involved in the recognition of both calcilytics include residues located in TM3 (Arg-680(3.28), Phe-684(3.32), and Phe-688(3.36)). However, our study indicates subtle differences between the binding of these two compounds. Importantly, the observation that some mutations that have no effect on calcimimetics recognition but which affect the binding of calcilytics in TM3 and TM5, suggests that the binding pocket of positive and negative allosteric modulators is partially overlapping but not identical. Our CaSR model should facilitate the development of novel drugs of this important therapeutic target and the identification of the molecular determinants involved in the binding of allosteric modulators of class 3 G-protein-coupled receptors. PMID:14976203

  20. Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca(2+)-sensing receptor.

    PubMed

    Petrel, Christophe; Kessler, Albane; Maslah, Fouzia; Dauban, Philippe; Dodd, Robert H; Rognan, Didier; Ruat, Martial

    2003-12-01

    A model of the Ca2+-sensing receptor (CaSR) seven transmembrane domains was constructed based on the crystal structure of bovine rhodopsin. This model was used for docking (1S,2S,1'R)-N1-(4-chlorobenzoyl)-N2-[1-(1-naphthyl)ethyl]-1,2-diaminocyclohexane (Calhex 231), a novel potent negative allosteric modulator that blocks (IC50 = 0.39 microm) increases in [3H]inositol phosphates elicited by activating the human wild-type CaSR transiently expressed in HEK293 cells. In this model, Glu-8377.39 plays a pivotal role in anchoring the two nitrogen atoms of Calhex 231 and locating the aromatic moieties in two adjacent hydrophobic pockets delineated by transmembrane domains 3, 5, and 6 and transmembrane domains 1, 2, 3, and 7, respectively. To demonstrate its validity, we have mutated selected residues and analyzed the biochemical and pharmacological properties of the mutant receptors transfected in HEK293 cells. Two receptor mutations, F684A3.32 and E837A7.39, caused a loss of the ability of Calhex 231 to inhibit Ca2+-induced accumulation of [3H]inositol phosphates. Three other mutations, F688A3.36, W818A6.48, and I841A7.43, produced a marked increase in the IC50 of Calhex 231 for the Ca2+ response, whereas L776A5.42 and F821A6.51 led to a decrease in the IC50. Our data validate the proposed model for the allosteric interaction of Calhex 231 with the seven transmembrane domains of the CaSR. Interestingly, the residues at the same positions have been shown to delimit the antagonist-binding cavity of many diverse G-protein-coupled receptors. This study furthermore suggests that the crystal structure of bovine rhodopsin exhibits sufficient mimicry to the ground state of a very divergent class 3 receptor to predict the interaction of antagonists with the heptahelical bundle of diverse G-protein-coupled receptors. PMID:14506236

  1. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  2. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  3. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  4. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.

    PubMed

    Williams, J F; Blackmore, P F

    1983-01-01

    1. Ribose 5-phosphate was non-oxidatively synthesized from glucose 6-phosphate and triose phosphate by an enzyme extract prepared from rat liver (RLEP). Analysis of the intermediates by GLC, ion-exchange chromatography and specific enzymatic analysis, revealed the presence of the following intermediates of the L-type pentose pathway: altro-heptulose 1,7-bisphosphate, arabinose 5-phosphate and D-glycero D-ido octulose 8-phosphate. 2. With either [1-14C] or [2-14C]glucose 6-phosphate as diagnostic substrates, the distribution of 14C in ribose 5-phosphate was determined. At early time intervals (0.5-8 hr), [1-14C]glucose 6-phosphate introduced 14C into C-1, C-3 and C-5 of ribose 5-phosphate, at 17 hr 14C was confined to C-1. With [2-14C]glucose 6-phosphate as substrate, 14C was confined to C-2, C-3 and C-5 of ribose 5-phosphate during early times (0.5-8 hr), while at 17 hr 14C was located in C-2. 3. The transketolase exchange reaction, [14C]ribose 5-phosphate + altro-heptulose 7-phosphate in equilibrium ribose 5-phosphate + [14C]altro-heptulose 7-phosphate, was demonstrated for the first time using purified transketolase, its activity was measured and it is proposed to play a major role in the relocation of 14C into C-3 and C-5 or ribose 5-phosphate during the prediction labelling experiments. 4. The coupled transketolase-transaldolase reactions, 2 fructose 6-phosphate in equilibrium altro-heptulose 7-phosphate + xylulose 5-phosphate and 2 altro-heptulose 7-phosphate in equilibrium fructose 6-phosphate + D-glycero D-altro octulose 8-phosphate were demonstrated with purified enzymes, but are concluded to play a minor role in the non-oxidative synthesis of pentose 5-phosphate and octulose phosphate by (RLEP). 5. The formation of gem diol and dimers of erythrose 4-phosphate is proposed to account in part for the failure to detect monomeric erythrose 4-phosphate in the carbon balance studies. 6. The equilibrium value for the pentose pathway acting by the reverse mode in

  5. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    PubMed

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  6. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    PubMed

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  7. TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi

    PubMed Central

    Jimenez, Veronica; Docampo, Roberto

    2015-01-01

    Summary We have identified a phosphate transporter (TcPho91) localized to the bladder of the contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease. TcPho91 has 12 transmembrane domains, an N-terminal regulatory SPX domain and an anion permease domain. Functional expression in Xenopus laevis oocytes followed by two-electrode voltage clamp showed that TcPho91 is a low affinity transporter with a Km for Pi in the millimolar range, and sodium-dependency. Epimastigotes overexpressing TcPho91-GFP have significantly higher levels of pyrophosphate (PPi) and short chain polyphosphate (polyP), suggesting accumulation of Pi in these cells. Moreover, when overexpressing parasites were maintained in a medium with low Pi, they grew at higher rates than control parasites. Only one allele of TcPho91 in the CL strain encodes for the complete open reading frame, while the other one is truncated encoding for only the N-terminal domain. Taking advantage of this characteristic, knockdown experiments were performed resulting in cells with reduced growth rate as well as a reduction in PPi and short-chain polyP levels. Our results indicate that TcPho91 is a phosphate sodium symporter involved in Pi homeostasis in T. cruzi. PMID:26031800

  8. Accumulation of d-Glucose from Pentoses by Metabolically Engineered Escherichia coli

    PubMed Central

    Xia, Tian; Han, Qi; Costanzo, William V.; Zhu, Yixuan; Urbauer, Jeffrey L.

    2015-01-01

    Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway. PMID:25746993

  9. GDP beta S enhances the activation of phospholipase C caused by thrombin in human platelets: evidence for involvement of an inhibitory GTP-binding protein

    SciTech Connect

    Oberdisse, E.; Lapetina, E.G.

    1987-05-14

    Guanosine 5'-O-thiotriphosphate (GTP gamma S) and thrombin stimulate the activity of phospholipase C in platelets that have been permeabilized with saponin and whose inositol phospholipids have been prelabeled with (/sup 3/H)inositol. Ca/sup 2 +/ has opposite effects on the formation of (/sup 3/H)inositol phosphates induced by thrombin or GTP gamma S. While the action of GTP gamma S on the formation of (/sup 3/H)inositol phosphates is inhibited by Ca/sup 2 +/, action of thrombin is stimulated by Ca/sup 2 +/. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits the function of GTP-binding proteins, also inhibits the effect of GTP gamma S on phospholipase C stimulation but, surprisingly, increases the effect of thrombin. Ca/sup 2 +/ increases the inhibitory effect of GDP beta S on GTP gamma S activation of phospholipase C, but Ca/sup 2 +/ further enhances the stimulatory effect of GDP beta S on the thrombin activation of phospholipase C. This indicates that two mechanisms are responsible for the activation of phospholipase C in platelets. A GTP-binding protein is responsible for regulation of phospholipase C induced by GTP gamma S, while the effect of thrombin on the stimulation of phospholipase C is independent of GTP-binding proteins. However, the effect of thrombin may be modulated by the action of an inhibitory GTP-binding protein.

  10. ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake.

    PubMed

    Lee, David A; Chen, Alice; Schroeder, Julian I

    2003-09-01

    Arsenic is one of the most toxic pollutants at contaminated sites, yet little is known about the mechanisms by which certain plants survive exposure to high arsenic levels. To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of a mutant arsenic resisant 1 (ars1) with increased tolerance to arsenate. ars1 germinates and develops under conditions that completely inhibit growth of wild-type plants and shows a semi-dominant arsenic resistance phenotype. ars1 accumulates levels of arsenic similar to that accumulated by wild-type plants, suggesting that ars1 plants have an increased ability to detoxify arsenate. However, ars1 plants produce phytochelatin levels similar to levels produced by the wild type, and the enhanced resistance of ars1 is not abolished by the gamma-glutamylcysteine synthetase inhibitor l-buthionine sulfoxime (BSO). Furthermore, ars1 plants do not show resistance to arsenite or other toxic metals such as cadmium and chromium. However, ars1 plants do show a higher rate of phosphate uptake than that shown by wild-type plants, and wild-type plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and consequently on the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 could be due to a new mechanism mediated by increased phosphate uptake in ars1. Models discussing how increased phosphate uptake could contribute to arsenate tolerance are discussed.

  11. The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources

    NASA Astrophysics Data System (ADS)

    McLaughlin, Karen; Cade-Menun, Barbara J.; Paytan, Adina

    2006-11-01

    Elkhorn Slough, a small seasonal estuary in central California, has been subjected to increased nutrient loading from agricultural and other non-point sources. However, because nutrients do not behave conservatively, tracing nutrient sources and cycling in ecosystems like Elkhorn Slough has been difficult to assess. This is particularly true of phosphorus (P), which has only one stable isotope and cannot be used as an isotopic tracer. However, isotopic fractionation of oxygen in phosphate at surface water temperatures only occurs as a result of enzyme-mediated, biochemical reactions. Thus, if phosphate demand is low relative to input and is not heavily cycled within the ecosystem, the δ18O of phosphate will reflect the isotopic composition of phosphate sources to the system. We utilized the δ18O of dissolved inorganic phosphate (DIP) within the main channel of the slough and nearby Moss Landing Harbor and the δ18O of reactive phosphate from sediment and soil samples collected within the watershed to understand phosphate sources and cycling within Elkhorn Slough. Trends in the δ18O of DIP were seasonally consistent with high values near the mouth reflecting oceanic phosphate (19.1‰-20.3‰), dropping to a minimum value near Hummingbird Island in the central slough (point source, 14.1‰-14.4‰), and increasing again near the head of the slough, reflecting fertilizer input (18.9‰-19.3‰). Reactive phosphate δ18O values extracted from sediments and soils in the watershed range from 10.6‰ in a drainage ditch to 22.3‰ in creek sediments near agriculture fields. The wide range in phosphate δ18O values reflects the variations in land use and application of different fertilizers in this agriculturally dominated landscape. These data suggest that phosphate δ18O can be an effective tool for identifying P sources and understanding phosphate dynamics in estuarine ecosystems.

  12. Phosphate Oxygen Isotopes as a Tracer for Sources and Cycling of Phosphate in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    McLaughlin, K.; Paytan, A.; Kendall, C.; Silva, S.

    2004-12-01

    Phosphorous is an essential macro-nutrient for primary productivity, but tracing sources and cycling of P in marine systems has been difficult to assess because P has only one stable isotope and can not be used as an isotopic tracer. Recently a new technique (McLaughlin et al., 2004) has been developed to track sources and cycling of phosphate in aquatic systems. This approach takes advantage of the strong P-O bond in phosphate, which is resistant to inorganic hydrolysis. The exchange of oxygen isotopes therein only occurs due to intracellular biological cycling. Because the d18O of phosphate will largely be determined by the isotopic composition of the water in which it is being recycled and because the isotopic composition of rivers and oceans is significantly different, the d18O of phosphate may be used as a tracer for different sources of phosphate to an estuarine system which is not phosphate limited. Consequently, the d18O of phosphate may be useful for quantifying the mixing of different sources of phosphate in estuarine systems. We applied this method to enhance our understanding of P sources and cycling in the San Francisco Bay. To this end we conducted four sampling transects from Coyote Creek in the South Bay to the Sacramento and San Joaquin Rivers in the North between October 2002 and August 2004. Phosphate d18O ranged from 10.1 to 20.1 per mil, with highest values at the Golden Gate and lowest at the San Joaquin River. Most of the Bay samples showed strong positive correlations with salinity, water d18O, and the inverse of phosphate concentration, suggesting a simple two-component mixing of oceanic and riverine sources. These data suggest that phosphate d18O can be an effective tool for identifying P point sources and understanding phosphate dynamics in the ecosystem.

  13. Optimization of Porous Pellets for Phosphate Recovery

    EPA Science Inventory

    The poster presents the preliminary adsorption experiment showing that phosphate concentration is decreasing over time as well as presenting the kinetics models that best fit the data collected over 25 days.

  14. Airborne radioactivity surveys for phosphate in Florida

    USGS Publications Warehouse

    Moxham, Robert M.

    1954-01-01

    Airborne radioactivity surveys totaling 5, 600 traverse miles were made in 10 areas in Florida, which were thought to be geologically favorable for deposits of uraniferous phosphate. Abnormal radioactivity was recorded in 8 of the 10 areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; the river-pebble samples contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphatic rock containing as much as 0. 016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported.

  15. Airborne radioactivity surveys for phosphate in Florida

    USGS Publications Warehouse

    Moxham, Robert M.

    1953-01-01

    Airborne radioactivity surveys totalling 5,600 traverse miles were made in ten areas in Florida, which were thought to be geologically favorable for the occurrence of uraniferous phosphate deposits. Abnormal radioactivity was recorded in eight of the ten areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; samples of the river pebble contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphate rock containing as much as 0.016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported to occur.

  16. Phosphate treatment of hypercalcaemia due to carcinoma.

    PubMed

    Thalassinos, N; Joplin, G F

    1968-10-01

    Thirteen patients with hypercalcaemia due to carcinoma received inorganic phosphate, orally or intravenously, as palliative treatment for their high serum calcium levels. The serum calcium promptly fell in all patients fully treated, and there was a striking clinical improvement in most patients. The blood urea was usually unchanged or became nearer to normal, while the serum phosphate altered variably. Only two of the eight patients who were studied at necropsy had microscopical nephrocalcinosis; corneal calcification was evident in both before phosphate treatment was started.This oral inorganic phosphate (1 gramme thrice daily) is a safe and effective means of treating hypercalcaemia due to carcinoma. An intravenous infusion of 1 gramme over eight hours may sometimes be required initially for patients who are vomiting.

  17. Phosphate Treatment of Hypercalcaemia Due to Carcinoma

    PubMed Central

    Thalassinos, N.; Joplin, G. F.

    1968-01-01

    Thirteen patients with hypercalcaemia due to carcinoma received inorganic phosphate, orally or intravenously, as palliative treatment for their high serum calcium levels. The serum calcium promptly fell in all patients fully treated, and there was a striking clinical improvement in most patients. The blood urea was usually unchanged or became nearer to normal, while the serum phosphate altered variably. Only two of the eight patients who were studied at necropsy had microscopical nephrocalcinosis; corneal calcification was evident in both before phosphate treatment was started. This oral inorganic phosphate (1 gramme thrice daily) is a safe and effective means of treating hypercalcaemia due to carcinoma. An intravenous infusion of 1 gramme over eight hours may sometimes be required initially for patients who are vomiting. PMID:4175670

  18. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  19. A lucrative technique to reduce Ni toxicity in Raphanus sativus plant by phosphate amendment: Special reference to plant metabolism.

    PubMed

    Singh, Anita; Prasad, Sheo Mohan

    2015-09-01

    Nickel (Ni) contamination is one of the serious environmental problems. It creates hazard in soil environment and also in crop quality. In the present study, response of Raphanus sativus (radish) to Ni (50mgkg(-1) soil) under different concentrations (100, 200, 500 and 1000 DAPmgkg(-1) soil) of phosphate as soil amendment was investigated after 40 days of growth. Ni-treated plants without amendment showed reduction in their growth as a result of appreciable decrease in the photosynthetic activity. Under this treatment, Ni accumulation significantly enhanced lipid peroxidation and level of oxidants showing oxidative stress and it was also associated with decrease in the activities of antioxidative enzymes except super oxide dismutase (SOD). Application of phosphate in Ni contaminated soil resulted into significant improvement in plant growth. Under phosphate amendment, the status of oxidative biomarkers: SOR, TBARS and H2O2 were under control by the higher activity of antioxidants: APX, CAT, POD, GST and DHAR compared to Ni contaminated soil without amendment. Principal component analysis (PCA) was performed to show the significant changes in biochemical traits under control and phosphate amendment. The values of PS II transient kinetics: Phi-E0, Psi-0 and PIABS increased and values of energy fluxes: ABC/RC, Tro/RC, Eto/RC and Dio/RC decreased in plants grown in Ni contaminated soil under phosphate amendment as compared to without amendment. Among all doses of phosphate amendment soil amended at 500mg DAPkg(-)(1) soil the yield of plant was the highest and Ni accumulation was the lowest. As compared to plants grown in Ni treated soil without amendment the yield of plant at 500mg DAPkg(-1) soil showed about 70% increment and the reduction in Ni accumulation was 63% in shoot and 64% in root. Because of these beneficial effects this technique can be easily applied at metal contaminated agricultural fields to reduce food chain contamination and to improve food quality.

  20. Maximum likelihood decoding analysis of Accumulate-Repeat-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    Repeat-Accumulate (RA) codes are the simplest turbo-like codes that achieve good performance. However, they cannot compete with Turbo codes or low-density parity check codes (LDPC) as far as performance is concerned. The Accumulate Repeat Accumulate (ARA) codes, as a subclass of LDPC codes, are obtained by adding a pre-coder in front of RA codes with puncturing where an accumulator is chosen as a precoder. These codes not only are very simple, but also achieve excellent performance with iterative decoding. In this paper, the performance of these codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. The weight distribution of some simple ARA codes is obtained, and through existing tightest bounds we have shown the ML SNR threshold of ARA codes approaches very closely to the performance of random codes. We have shown that the use of precoder improves the SNR threshold but interleaving gain remains unchanged with respect to RA code with puncturing.

  1. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth.

    PubMed

    Xiao, Chunqiao; Chi, Ruan; He, Huan; Qiu, Guanzhou; Wang, Dianzuo; Zhang, Wenxue

    2009-11-01

    Three phosphate-solubilizing fungi, identified as Penicillium expansum, Mucor ramosissimus, and Candida krissii, were isolated from phosphate mines (Hubei, People's Republic of China) and characterized. All the isolates demonstrated diverse levels of phosphate-solubilizing capability in National Botanical Research Institute's phosphate growth medium containing rock phosphate as sole phosphate source. Acidification of culture medium seemed to be the main mechanism for rock phosphate solubilization. Indeed, citric acid, oxalic acid, and gluconic acid were shown to be present in the culture medium inoculated with these isolates. Moreover, the isolates produced acid and alkaline phosphatases in culture medium, which may also be helpful for RP solubilization. A strong negative correlation between content of soluble phosphorus and pH (r = - 0.89; p < 0.01) in culture medium was observed in this study. All the isolates promoted growth, soil available phosphorus, phosphorus, and nitrogen uptake of wheat seedling in field soil containing rock phosphate under pot culture conditions, thus demonstrating the capability of these isolates to convert insoluble form of phosphorus into plant available form from rock phosphate, and therefore hold great potential for development as biofertilizers to enhance soil fertility and promote plant growth.

  2. Capturing phosphates with iron enhanced sand filtration.

    PubMed

    Erickson, Andrew J; Gulliver, John S; Weiss, Peter T

    2012-06-01

    Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation.

  3. Disorders of Phosphate Homeostasis and Tissue Mineralisation

    PubMed Central

    Bergwitz, Clemens; Jüppner, Harald

    2013-01-01

    Phosphate is absorbed from the diet in the gut, stored as hydroxyapatite in the skeleton, and excreted with the urine. The balance between these compartments determines the circulating phosphate concentration. Fibroblast growth factor 23 (FGF23) has recently been discovered and is part of a previously unrecognised hormonal bone-kidney axis. Phosphate-regulating gene with homologies to endopeptidases on the X chromosome, and dentin matrix protein 1 regulate the expression of FGF23 in osteocytes, which then is O-glycosylated by UDP-N-acetyl-alpha-d-galactosamine: poly-peptide N-acetylgalactosaminyl-transferase 3 and secreted into the circulation. FGF23 binds with high affinity to fibroblast growth factor receptor 1c in the presence of its co-receptor Klotho. It inhibits, either directly or indirectly, reabsorption of phosphate and the synthesis of 1,25-dihydroxy-vita-min-D by the renal proximal tubule and the secretion of parathyroid hormone by the parathyroid glands. Acquired or inborn errors affecting this newly discovered hormonal system can lead to abnormal phosphate homeostasis and/or tissue mineralisation. This chapter will provide an update on the current knowledge of the pathophysiology, the clinical presentation, diagnostic evaluation and therapy of the disorders of phosphate homeostasis and tissue mineralisation. PMID:19494665

  4. The evolution of the marine phosphate reservoir.

    PubMed

    Planavsky, Noah J; Rouxel, Olivier J; Bekker, Andrey; Lalonde, Stefan V; Konhauser, Kurt O; Reinhard, Christopher T; Lyons, Timothy W

    2010-10-28

    Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life. PMID:20981096

  5. The evolution of the marine phosphate reservoir.

    PubMed

    Planavsky, Noah J; Rouxel, Olivier J; Bekker, Andrey; Lalonde, Stefan V; Konhauser, Kurt O; Reinhard, Christopher T; Lyons, Timothy W

    2010-10-28

    Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.

  6. Phosphate binders for the treatment of chronic kidney disease: role of iron oxyhydroxide

    PubMed Central

    Cernaro, Valeria; Santoro, Domenico; Lacquaniti, Antonio; Costantino, Giuseppe; Visconti, Luca; Buemi, Antoine; Buemi, Michele

    2016-01-01

    Chronic kidney disease-mineral bone disorder is frequent in patients with renal failure. It is characterized by abnormalities in mineral and bone metabolism with resulting hyperphosphatemia, low serum vitamin D, secondary hyperparathyroidism, altered bone morphology and strength, higher risk of bone fractures, and development of vascular or other soft tissue calcifications. Besides the recommendation to reduce phosphorus dietary intake, many drugs are currently available for the treatment of calcium/phosphate imbalance. Among them, phosphate binders represent a milestone. Calcium-based binders (calcium carbonate, calcium acetate) are effective in lowering serum phosphate, but their use has been associated with an increased risk of hypercalcemia and calcifications. Calcium-free binders (sevelamer hydrochloride, sevelamer carbonate, and lanthanum carbonate) are equally or slightly less effective than calcium-containing compounds. They would not induce an increase in calcium levels but may have relevant side effects, including gastrointestinal symptoms for sevelamer and risk of tissue accumulation for lanthanum. Accordingly, new phosphate binders are under investigation and some of them have already been approved. A promising option is sucroferric oxyhydroxide (Velphoro®, PA21), an iron-based phosphate binder consisting of a mixture of polynuclear iron(III)-oxyhydroxide, sucrose, and starches. The present review is focused on pharmacology, mode of action, and pharmacokinetics of sucroferric oxyhydroxide, with a discussion on comparative efficacy, safety, and tolerability studies of this drug in chronic kidney disease and patient perspectives such as quality of life, satisfaction, and acceptability. Sucroferric oxyhydroxide has proven to be as effective as sevelamer in reducing phosphatemia with a similar safety profile and lower pill burden. Experimental and clinical studies have documented a minimal percentage of iron absorption without inducing toxicity. In

  7. Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.

    PubMed

    Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P

    2015-07-01

    This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses

  8. Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.

    PubMed

    Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P

    2015-07-01

    This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses

  9. Pensions and Household Wealth Accumulation

    ERIC Educational Resources Information Center

    Engelhardt, Gary V.; Kumar, Anil

    2011-01-01

    Economists have long suggested that higher private pension benefits "crowd out" other sources of household wealth accumulation. We exploit detailed information on pensions and lifetime earnings for older workers in the 1992 wave of the Health and Retirement Study and employ an instrumental-variable (IV) identification strategy to estimate…

  10. Impact of phosphate on glyphosate uptake and toxicity in willow.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Moingt, Matthieu; Smedbol, Elise; Paquet, Serge; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-03-01

    Phosphate (PO4(3-)) has been shown to increase glyphosate uptake by willow, a plant species known for its phytoremediation potential. However, it remains unclear if this stimulation of glyphosate uptake can result in an elevated glyphosate toxicity to plants (which could prevent the use of willows in glyphosate-remediation programs). Consequently, we studied the effects of PO4(3-) on glyphosate uptake and toxicity in a fast growing willow cultivar (Salix miyabeana SX64). Plants were grown in hydroponic solution with a combination of glyphosate (0, 0.001, 0.065 and 1 mg l(-1)) and PO4(3-) (0, 200 and 400 mg l(-1)). We demonstrated that PO4(3-) fertilization greatly increased glyphosate uptake by roots and its translocation to leaves, which resulted in increased shikimate concentration in leaves. In addition to its deleterious effects in photosynthesis, glyphosate induced oxidative stress through hydrogen peroxide accumulation. Although it has increased glyphosate accumulation, PO4(3-) fertilization attenuated the herbicide's deleterious effects by increasing the activity of antioxidant systems and alleviating glyphosate-induced oxidative stress. Our results indicate that in addition to the glyphosate uptake, PO4(3-) is involved in glyphosate toxicity in willow by preventing glyphosate induced oxidative stress. PMID:26561751

  11. Impact of phosphate on glyphosate uptake and toxicity in willow.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Moingt, Matthieu; Smedbol, Elise; Paquet, Serge; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-03-01

    Phosphate (PO4(3-)) has been shown to increase glyphosate uptake by willow, a plant species known for its phytoremediation potential. However, it remains unclear if this stimulation of glyphosate uptake can result in an elevated glyphosate toxicity to plants (which could prevent the use of willows in glyphosate-remediation programs). Consequently, we studied the effects of PO4(3-) on glyphosate uptake and toxicity in a fast growing willow cultivar (Salix miyabeana SX64). Plants were grown in hydroponic solution with a combination of glyphosate (0, 0.001, 0.065 and 1 mg l(-1)) and PO4(3-) (0, 200 and 400 mg l(-1)). We demonstrated that PO4(3-) fertilization greatly increased glyphosate uptake by roots and its translocation to leaves, which resulted in increased shikimate concentration in leaves. In addition to its deleterious effects in photosynthesis, glyphosate induced oxidative stress through hydrogen peroxide accumulation. Although it has increased glyphosate accumulation, PO4(3-) fertilization attenuated the herbicide's deleterious effects by increasing the activity of antioxidant systems and alleviating glyphosate-induced oxidative stress. Our results indicate that in addition to the glyphosate uptake, PO4(3-) is involved in glyphosate toxicity in willow by preventing glyphosate induced oxidative stress.

  12. Evaluation of Simultaneous Nutrient and COD Removal with Polyhydroxybutyrate (PHB) Accumulation Using Mixed Microbial Consortia under Anoxic Condition and Their Bioinformatics Analysis

    PubMed Central

    Jena, Jyotsnarani; Kumar, Ravindra; Dixit, Anshuman; Pandey, Sony; Das, Trupti

    2015-01-01

    Simultaneous nitrate-N, phosphate and COD removal was evaluated from synthetic waste water using mixed microbial consortia in an anoxic environment under various initial carbon load (ICL) in a batch scale reactor system. Within 6 hours of incubation, enriched DNPAOs (Denitrifying Polyphosphate Accumulating Microorganisms) were able to remove maximum COD (87%) at 2g/L of ICL whereas maximum nitrate-N (97%) and phosphate (87%) removal along with PHB accumulation (49 mg/L) was achieved at 8 g/L of ICL. Exhaustion of nitrate-N, beyond 6 hours of incubation, had a detrimental effect on COD and phosphate removal rate. Fresh supply of nitrate-N to the reaction medium, beyond 6 hours, helped revive the removal rates of both COD and phosphate. Therefore, it was apparent that in spite of a high carbon load, maximum COD and nutrient removal can be maintained, with adequate nitrate-N availability. Denitrifying condition in the medium was evident from an increasing pH trend. PHB accumulation by the mixed culture was directly proportional to ICL; however the time taken for accumulation at higher ICL was more. Unlike conventional EBPR, PHB depletion did not support phosphate accumulation in this case. The unique aspect of all the batch studies were PHB accumulation was observed along with phosphate uptake and nitrate reduction under anoxic conditions. Bioinformatics analysis followed by pyrosequencing of the mixed culture DNA from the seed sludge revealed the dominance of denitrifying population, such as Corynebacterium, Rhodocyclus and Paraccocus (Alphaproteobacteria and Betaproteobacteria). Rarefaction curve indicated complete bacterial population and corresponding number of OTUs through sequence analysis. Chao1 and Shannon index (H’) was used to study the diversity of sampling. “UCI95” and “LCI95” indicated 95% confidence level of upper and lower values of Chao1 for each distance. Values of Chao1 index supported the results of rarefaction curve. PMID:25689047

  13. Phosphate separation and recovery from wastewater by novel electrodialysis.

    PubMed

    Zhang, Yang; Desmidt, Evelyn; Van Looveren, Arnaud; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-06-01

    Stimulated by the depletion of phosphate resources, phosphate recovery systems have been studied in recent years. The use of struvite reactors has proven to be an effective phosphate recovery process. However, the struvite reactor effluent still consists of an excessive amount of phosphate that cannot be recovered nor can be directly discharged. In this study, selectrodialysis (SED) was used to improve the efficiency of phosphate recovery from a struvite reactor: SED was implemented in such a way that phosphate from the effluent of an USAB (upflow anaerobic sludge blanket) reactor was transferred to the recycled effluent of a struvite reactor. Prior to the experiments, synthetic water with chloride and phosphate was used to characterize the efficiency of SED for phosphate separation. Results indicate that SED was successful in concentrating phosphate from the feed stream. The initial current efficiency reached 72%, with a satisfying (9 mmol L(-1)) phosphate concentration. In the experiments with the anaerobic effluent as the phosphate source for enrichment of the effluent of the struvite reactor, the phosphate flux was 16 mmol m(-2) h(-1). A cost evaluation shows that 1 kWh electricity can produce 60 g of phosphate by using a full scale stack, with a desalination rate of 95% on the feed wastewater. Finally, a struvite precipitation experiment shows that 93% of phosphate can be recovered. Thus, an integrated SED-struvite reactor process can be used to improve phosphate recovery from wastewater.

  14. Modeling of phosphate ion transfer to the surface of osteoblasts under normal gravity and simulated microgravity conditions.

    PubMed

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S; Risbud, Makarand; Hu, Howard H; Shapiro, Irving M

    2004-11-01

    We have modeled the transport and accumulation of phosphate ions at the remodeling site of a trabecular bone consisting of osteoclasts and osteoblasts situated adjacent to each other in straining flows. Two such flows are considered; one corresponds to shear levels representative of trabecular bone conditions at normal gravity, the other corresponds to shear level that is representative of microgravity conditions. The latter is evaluated indirectly using a simulated microgravity environment prevailing in a rotating wall vessel bioreactor (RWV) designed by NASA. By solving the hydrodynamic equations governing the particle motion in a RWV using a direct numerical simulation (DNS) technique, the shear stress values on the surface of the microcarriers are found. In our present species transfer model, osteoclasts release phosphate ions (Pi) among other ions at bone resorption sites. Some of the ions so released are absorbed by the osteoblast, some accumulate at the osteoblast surface, and the remainder are advected away. The consumption of Pi by osteoblasts is assumed to follow Michaelis-Menten (MM) kinetics aided by a NaPi cotransporter system. MM kinetics views the NaPi cotransporter as a system for transporting extracellular Pi into the osteoblast. Our results show, for the conditions investigated here, the net accumulation of phosphate ions at the osteoblast surface under simulated microgravity conditions is higher by as much as a factor of three. Such increased accumulation may lead to enhanced apoptosis and may help explain the increased bone loss observed under microgravity conditions. PMID:15644348

  15. Methylerythritol phosphate pathway to isoprenoids: kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum.

    PubMed

    Singh, Vivek Kumar; Ghosh, Indira

    2013-09-01

    The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system. This study demonstrates that both types of enzyme targets, one acting via flux reduction and the other by metabolite accumulation, exist in P. falciparum MEP pathway. These groups of targets can be exploited for independent anti-malarial drugs.

  16. Phosphatized algal-bacterial assemblages in Late Cretaceous phosphorites of the Voronezh Anteclise

    NASA Astrophysics Data System (ADS)

    Maleonkina, Svetlana Y.

    2003-01-01

    Late Cretaceous phosphogenesis of the Voronezh Anteclise has occurred during Cenomanian and Early Campanian. SEM studies show the presence of phosphatized algal-bacterial assemblages both in Cenomanian and Campanian phosphorites. In some Cenomanian nodular phosphorite samples revealed empty tubes 1 - 5 microns in diameter, which are most likely trichomes of cyanobacterial filaments. Other samples contained accumulations of spheres 0,5-3 microns, similar to coccoidal bacteria. Complicated tubular forms with variable diameter 2 - 5 microns occur on surface of some quartz grains in nodules. They are probably pseudomorphs after algae. We found similar formations in the Campanian phosphate grains. Frequently, grain represents a cyanobacterial mat, which is sometimes concentrically coated by phosphatic films. The films of some grains retain the primary structure, their concentric layers are formed by pseudomorphs after different bacterial types and obviously they represent oncolite. In other cases, the primary structure is unobservable because of recrystallization process erases them. Occasionally, the central part retains the coccoidal structure and the recrystallization affects only films. Besides the core of such oncolite can be represented not only by phosphatic grain, but also by grains of other minerals, such as quartz, glauconite and heavy minerals, which serve as a substrate for cyanobacterial colonies. Bacteria also could settle on cavity surfaces and interiors frames of sponge fragments, teeth and bones.

  17. Iron-based phosphate binders: do they offer advantages over currently available phosphate binders?

    PubMed Central

    Negri, Armando Luis; Ureña Torres, Pablo Antonio

    2015-01-01

    Increased cardiovascular morbidity and mortality has been associated with the hyperphosphatemia seen in patients with end-stage chronic kidney disease (CKD). Oral phosphate binders are prescribed in these patients to prevent intestinal absorption of dietary phosphate and reduce serum phosphate. In prospective observational cohorts they have shown to decrease all-cause and cardiovascular mortality risk. Different problems have been associated with currently available phosphate binders as positive calcium balance and impaired outcomes with calcium-based phosphate binders or increased costs with non-calcium-based phosphate binders. Iron-based phosphate binders represent a new class of phosphate binders. Several iron-based phosphate binders have undergone testing in clinical trials. Ferric citrate (JTT-751) and sucroferric oxyhydroxide (PA21) are the two iron-based binders that have passed to the clinical field after being found safe and effective in decreasing serum phosphate. Iron from ferric citrate is partially absorbed compared to sucroferric oxyhydroxide. Ferric citrate usage could result in an important reduction in erythropoiesis-stimulating agent (ESA) and IV iron usage, resulting in significant cost savings. Sucroferric oxyhydroxide was effective in lowering serum phosphorus in dialysis patients with similar efficacy to sevelamer carbonate, but with lower pill burden, and better adherence. Ferric citrate may be more suited for the treatment of chronic hyperphosphatemia in CKD patients requiring iron supplements but its use may have been hampered by potential aluminum overload, as citrate facilitates its absorption; sucroferric oxyhydroxide may be more suited for hyperphosphatemic CKD patients not requiring iron supplementation, with low pill burden. PMID:25815172

  18. Kinetics of phosphate limited algal growth.

    PubMed

    Nyholm, N

    1977-04-01

    The kinetics of phosphate limited growth of two green algae Chlorella pyrenoidosa and Selenastrum capricornutum have been studied in chemostats. Several kinetic models which express the specific growth rate as a function of the intracellular phosphorus content have been examined, and one of the models was found to be significantly better than the other models. The principles of this model were described in a recent paper by Nyholm. The kinetics of phosphate uptake have been investigated by adding pulses of phosphate to the chemostats, The uptake by phosphorus deficient cells could be described by Michaelis-Menten kinetics for phosphate concentrations below approximately 500 microng P/liter. Further, with the assumption of a discontinuous adjustment of the uptake rate at the onset of phosphorus deficiency, a complete kinetic model for growth and phosphate removal is proposed. The mean cell size and the contents of chlorophyll a and RNA per unit dry weight have been measured for C. pyrenoidosa as a function of the dilution rate. PMID:856323

  19. Solvothermal synthesis of strontium phosphate chloride nanowire

    NASA Astrophysics Data System (ADS)

    Lam, W. M.; Wong, C. T.; Li, Z. Y.; Luk, K. D. K.; Chan, W. K.; Yang, C.; Chiu, K. Y.; Xu, B.; Lu, W. W.

    2007-08-01

    Strontium phosphate chloride nanowire was synthesized via a solvothermal treatment of strontium tri-polyphosphate and Collin salt in 1,4-dioxane at 150 °C. The effects of 1,4-dioxane concentration on particle morphology, crystallinity and phase purity were investigated in this study. The specimen morphology was analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When the concentration of 1,4-dioxane was below 10%, micron-sized whisker was the dominant form. At 20-25% concentration of 1,4-dioxane, strontium phosphate chloride single-crystalline nanowire was 31±12 nm in diameter and 1.43±0.6 μm in length with an aspect ratio of 52.28±29.41. X-ray diffraction (XRD) pattern of this nanowire matched with that of strontium phosphate chloride (JCPDS #083-0973). When 1,4-dioxane concentration exceeded 25%, nanorod aggregate was the dominant form instead of nanowire. At 20-25% 1,4-dioxane concentration suitable strontium concentration combine with high chemical potential environment favors the formation of nanowires. By adding 1,4-dioxane impure phase such as β-strontium hydrogen phosphate, nanorod formation was suppressed. This method provides an efficient way to synthesize high aspect ratio strontium phosphate chloride nanowire. It has potential bioactive nanocomposite, high mechanical performance bioactive bone cement filler and fluorescent material applications.

  20. Membrane depolarization and carbamoylcholine stimulate phosphatidylinositol turnover in intact nerve terminals

    SciTech Connect

    Audigier, S.M.P.; Wang, J.K.T.; Greengard, P.

    1988-04-01

    Synaptosomes, purified from rat cerebral cortex, were prelabeled with (/sup 3/H)inositol to study phosphatidylinositol turnover in nerve terminals. Labeled synaptosomes were either depolarized with 40 mM K/sup +/ or exposed to carbamoylcholine (carbachol). K/sup +/ depolarization increased the level of inositol phosphates in a time-dependent manner. The inositol bisphosphate level also increased rapidly, but its elevated level was sustained during continued depolarization. The elevated level of inositol bisphosphate was reversed upon repolarization of the synaptosomes. The level of inositol monophosphate increased slowly to 120-130% of control. These effects of K/sup +/ depolarization depended on the presence of Ca/sup 2 +/ in the incubation medium. Carbachol stimulated the turnover of phosphatidylinositol in a dose- and time-dependent manner. The level of inositol bisphosphate increased to 210% of control, and this maximal response was seen from 15 to 60 min. Accumulation of inositol monophosphate was larger than that of inositol bisphosphate, but its time course was slower. Atropine and pirenzepine inhibited the carbachol effect with high affinities. These data show that both Ca/sup 2 +/ influx and M/sub 1/ muscarinic receptor activation stimulate phospholipase C activity in synaptosomes, suggesting that phosphatidylinositol turnover may be involved in regulating neurotransmitter release from nerve terminals.

  1. Effect of aging on alpha-1 adrenergic stimulation of phosphoinositide hydrolysis in various regions of rat brain

    SciTech Connect

    Burnett, D.M.; Bowyer, J.F.; Masserano, J.M.; Zahniser, N.R. )

    1990-12-01

    The effects of aging were examined on the ability of alpha-1 adrenergic receptor agonists to stimulate phosphoinositide hydrolysis in three brain regions. Tissue minces of thalamus, cerebral cortex and hippocampus from 3-, 18- and 28-month-old male Fischer 344 rats were prelabeled with ({sup 3}H)myoinositol. Exposure of these prelabeled minces to phenylephrine and (-)-norepinephrine revealed that accumulation of ({sup 3}H)inositol phosphates was selectively reduced by 20 to 30% in the thalamus and cerebral cortex of the oldest age group. Analysis of concentration-response and competition binding curves indicated that this decrease was due to diminished agonist efficacy rather than diminished receptor affinity. The reduction in responsiveness to phenylephrine and (-)-norepinephrine in the cerebral cortex and the lack of any changes in the hippocampus parallel previously reported changes in the density of alpha-1 adrenergic receptors with aging. These data indicate that the ability of alpha-1 adrenergic receptor agonists to stimulate phosphoinositide hydrolysis is reduced in some, but not all, brain regions of aged Fischer 344 rats.

  2. Vasopressin receptors from cultured mesangial cells resemble V/sub 1a/ type

    SciTech Connect

    Jard, S.; Lombard, C.; Marie, J.; Devilliers, G.

    1987-07-01

    Mesangial cells respond to vasopressin by contraction and increased prostaglandin production. The purpose of the present study is to characterize vasopressin receptors from these cells. Glomeruli were isolated from rat kidneys and plated for explant growth of mesangial cells. Membranes were prepared from cells grown for 6 wk and tested for their ability to bind (/sup 3/H)vasopressin (lysine vasopressin). These membranes contained a single class of specific vasopressin binding sites. Vasopressin induced a dose-dependent accumulation of labeled inositol phosphates in myo(/sup 3/H)inositol-prelabeled mesangial cells incubated in the presence of 10 mM of Li. Conversely, vasopressin failed to alter the adenylate cyclase activity of mesangial cell membranes. Competition experiments with a series of vasopressin structural analogues that have different degrees affinity for V/sub 2/- (renal), V/sub 1a/- (vascular and hepatic), and V/sub 1b/- (adenohypohyseal) receptors, indicated that vasopressin receptors from rat glomerular mesangial cells resemble the V/sub 1a/-receptor subtype.

  3. Chromoplast biogenesis and carotenoid accumulation.

    PubMed

    Li, Li; Yuan, Hui

    2013-11-15

    Chromoplasts are special organelles that possess superior ability to synthesize and store massive amounts of carotenoids. They are responsible for the distinctive colors found in fruits, flowers, and roots. Chromoplasts exhibit various morphologies and are derived from either pre-existing chloroplasts or other non-photosynthetic plastids such as proplastids, leucoplasts or amyloplasts. While little is known about the molecular mechanisms underlying chromoplast biogenesis, research progress along with proteomics study of chromoplast proteomes signifies various processes and factors important for chromoplast differentiation and development. Chromoplasts act as a metabolic sink that enables great biosynthesis and high storage capacity of carotenoids. The formation of chromoplasts enhances carotenoid metabolic sink strength and controls carotenoid accumulation in plants. The objective of this review is to provide an integrated view on our understanding of chromoplast biogenesis and carotenoid accumulation in plants.

  4. Mechanisms of intrahepatic triglyceride accumulation

    PubMed Central

    Ress, Claudia; Kaser, Susanne

    2016-01-01

    Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD. PMID:26819531

  5. Arabidopsis 3-deoxy-D-manno-oct-2-ulosonate-8-phosphate synthase: cDNA cloning and expression analyses.

    PubMed

    Matsuura, Keiichi; Miyagawa, Isao; Kobayashi, Masaru; Ohta, Daisaku; Matoh, Toru

    2003-07-01

    The molecular characterization of two isoforms of 3-deoxy-d-manno-oct-2-ulosonate (KDO) -8-phosphate synthase (AtkdsA1 and AtkdsA2) from Arabidopsis is reported here. First, by isolating a full-length cDNA for AtkdsA1, it was confirmed that the deduced primary structures of AtkdsA1 and AtkdsA2 proteins were 93% identical. Functional expression and purification studies demonstrated the efficient catalytic activity of the AtkdsA1 enzyme to produce KDO-8-phosphate from phosphoenolpyruvate and d-arabinose-5-phosphate. RT-PCR and RNA-gel blot analysis revealed different expression profiles for both genes; the AtkdsA1 gene was predominantly expressed in the shoots, while the AtkdsA2 transcript accumulated to a higher level in the roots, implicating differential roles of these isoforms in planta.

  6. Structural basis for phosphatidylinositol-phosphate biosynthesis

    NASA Astrophysics Data System (ADS)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  7. Structural basis for phosphatidylinositol-phosphate biosynthesis

    PubMed Central

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-01-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis. PMID:26510127

  8. Tomato responds to green peach aphid infestation with the activation of trehalose metabolism and starch accumulation.

    PubMed

    Singh, Vijay; Shah, Jyoti

    2012-06-01

    The disaccharide trehalose and trehalose-6-phosphate that are present in trace amounts are suggested to have a signaling function in plants. Recently, it was demonstrated that trehalose metabolism contributes to Arabidopsis thaliana defense against the green peach aphid (GPA; Myzus persicae Sülzer), an important insect pest of a large variety of plants. TPS11 (TREHALOSE PHOSPHATE SYNTHASE11)-dependent trehalose metabolism was shown to curtail GPA infestation by promoting starch accumulation and expression of the PAD4 (PHYTOALEXIN-DEFICIENT4) gene, which has important roles in regulating antibiosis and antixenosis against GPA. Here we show that trehalose metabolism is similarly activated in leaves of GPA-infested tomato (Solanum lycopersicum) plants and likely contributes to tomato defense against GPA. GPA-infested leaves of tomato accumulated trehalose, which was accompanied by the transient upregulation of SlTPS11, a homolog of the Arabidopsis TPS11. GPA-infestation was also accompanied by starch accumulation and the upregulation of SlPAD4, the tomato homolog of Arabidopsis PAD4. Furthermore, trehalose application induced SlPAD4 expression and starch accumulation, and curtailed GPA infestation, suggesting that like in Arabidopsis trehalose contributes to tomato defense against GPA.

  9. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. PMID:26233656

  10. Accumulation of polyphosphate in Lactobacillus spp. and its involvement in stress resistance.

    PubMed

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel; Monedero, Vicente

    2014-03-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms.

  11. Accumulation of Polyphosphate in Lactobacillus spp. and Its Involvement in Stress Resistance

    PubMed Central

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel

    2014-01-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  12. Accumulation of polyphosphate in Lactobacillus spp. and its involvement in stress resistance.

    PubMed

    Alcántara, Cristina; Blasco, Amalia; Zúñiga, Manuel; Monedero, Vicente

    2014-03-01

    Polyphosphate (poly-P) is a polymer of phosphate residues synthesized and in some cases accumulated by microorganisms, where it plays crucial physiological roles such as the participation in the response to nutritional stringencies and environmental stresses. Poly-P metabolism has received little attention in Lactobacillus, a genus of lactic acid bacteria of relevance for food production and health of humans and animals. We show that among 34 strains of Lactobacillus, 18 of them accumulated intracellular poly-P granules, as revealed by specific staining and electron microscopy. Poly-P accumulation was generally dependent on the presence of elevated phosphate concentrations in the culture medium, and it correlated with the presence of polyphosphate kinase (ppk) genes in the genomes. The ppk gene from Lactobacillus displayed a genetic arrangement in which it was flanked by two genes encoding exopolyphosphatases of the Ppx-GppA family. The ppk functionality was corroborated by its disruption (LCABL_27820 gene) in Lactobacillus casei BL23 strain. The constructed ppk mutant showed a lack of intracellular poly-P granules and a drastic reduction in poly-P synthesis. Resistance to several stresses was tested in the ppk-disrupted strain, showing that it presented a diminished growth under high-salt or low-pH conditions and an increased sensitivity to oxidative stress. These results show that poly-P accumulation is a characteristic of some strains of lactobacilli and may thus play important roles in the physiology of these microorganisms. PMID:24375133

  13. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems.

  14. The role of microbes in the formation of modern and ancient phosphatic mineral deposits

    PubMed Central

    Crosby, Chris H.; Bailey, Jake V.

    2012-01-01

    The formation of marine phosphatic mineral deposits remains incompletely understood, despite decades of research. The involvement of bacteria in this process has long been suspected, and both modern and ancient associations between bacteria and phosphorites have been recorded. Only recently has a specific bacterial metabolic process associated with the formation of phosphorites been discovered. Recent studies demonstrate that polyphosphate utilization by sulfide-oxidizing bacteria results in the rapid precipitation of apatite – providing at least a partial mechanism to explain the close spatial correlation between accumulations of sulfide-oxidizing bacteria and modern phosphorites. Possible fossilized bacteria are known from ancient phosphatic mineral deposits. Potentially, the fossilized cells represent the remains of bacteria that induced the formation of those phosphorites. However, robust criteria for the recognition of these bacteria have yet to be identified. PMID:22783245

  15. Inhibition of microbial arsenate reduction by phosphate.

    PubMed

    Slaughter, Deanne C; Macur, Richard E; Inskeep, William P

    2012-03-20

    The ratio of arsenite (As(III)) to arsenate (As(V)) in soils and natural waters is often controlled by the activity of As-transforming microorganisms. Phosphate is a chemical analog to As(V) and, consequently, may competitively inhibit microbial uptake and enzymatic binding of As(V), thus preventing its reduction to the more toxic, mobile, and bioavailable form - As(III). Five As-transforming bacteria isolated either from As-treated soil columns or from As-impacted soils were used to evaluate the effects of phosphate on As(V) reduction and As(III) oxidation. Cultures were initially spiked with various P:As ratios, incubated for approximately 48 h, and analyzed periodically for As(V) and As(III) concentration. Arsenate reduction was inhibited at high P:As ratios and completely suppressed at elevated levels of phosphate (500 and 1,000 μM; P inhibition constant (K(i))∼20-100 μM). While high P:As ratios effectively shut down microbial As(V) reduction, the expression of the arsenate reductase gene (arsC) was not inhibited under these conditions in the As(V)-reducing isolate, Agrobacterium tumefaciens str. 5B. Further, high phosphate ameliorated As(V)-induced cell growth inhibition caused by high (1mM) As pressure. These results indicate that phosphate may inhibit As(V) reduction by impeding As(V) uptake by the cell via phosphate transport systems or by competitively binding to the active site of ArsC. PMID:21741807

  16. Monte Carlo simulations of phosphate polyhedron connectivity in glasses

    SciTech Connect

    ALAM,TODD M.

    2000-01-01

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  17. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    SciTech Connect

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  18. G protein in stimulation of PI hydrolysis by CCK (cholecystokinin) in isolated rat pancreatic acinar cells

    SciTech Connect

    Matozaki, Takashi; Sakamoto, Choitsu; Nagao, Munehiko; Nishizaki, Hogara; Baba, Shigeaki )

    1988-11-01

    To clarify the possible role of a guanine nucleotide-binding protein (G protein) in the signal transducing system activated by cholecystokinin (CCK), actions of CCK on rat pancreatic acini were compared with those of fluoride, a well-known activator of stimulatory (G{sub s}) or inhibitory (G{sub i}) G protein. When acini were incubated with increasing concentrations of either CCK-octapeptide (CCK8) or NaF, a maximal stimulation of amylase release from acini occurred at 100 pM CCK8 or 10 mM NaF, respectively; this secretory rate decreased as CCK8 or NaF concentration was increased. NaF caused an increase in cytoplasmic Ca{sup 2+} concentration from the internal Ca{sup 2+} store and stimulated accumulation of inositol phosphates in acini, as observed with CCK. Guanylimidodiphosphate activated the generation of inositol phosphates in the ({sup 3}H)inositol-labeled pancreatic acinar cell membrane preparation, with half-maximal and maximal stimulation at 1 and 10 {mu}M, respectively. Furthermore, the effects of submaximal CCK concentrations on inositol phosphate accumulation in membranes were markedly potentiated in the presence of 100 {mu}M GTP, which alone was ineffective. Combined findings of the present study strongly suggest that pancreatic CCK receptors are probably coupled to the activation of polyphosphoinositide (PI) breakdown by a G protein, which appears to be fluoride sensitive but is other than G{sub s}- or G{sub i}-like protein.

  19. Pumpable/injectable phosphate-bonded ceramics

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young

    2001-01-01

    A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.

  20. Calcium and phosphate impact cardiovascular risk.

    PubMed

    Heine, Gunnar H; Nangaku, Masaomi; Fliser, Danilo

    2013-04-01

    Non-traditional risk factors substantially contribute to cardiovascular (CV) disease. A deranged calcium-phosphate metabolism-first identified as a major non-traditional CV risk factor in patients with chronic kidney disease-may be implicated in development and progression of CV disease even among individuals with intact renal function. This review thus summarizes epidemiological and experimental data on the role of calcium, phosphate, and its major regulating hormones-parathyroid hormone, calcitriol, and fibroblast growth factor 23-in CV medicine. PMID:23109644

  1. [Phosphate nephropathy: how to avoid it?].

    PubMed

    Bourquin, Vincent; Ponte, Belén; Zellweger, Michael; Levy, Marc; Hadengue, Antoine; Moll, Solange

    2011-11-16

    Colonoscopy is a commonly used procedure for colon cancer screening. The ideal bowel preparation for a good visualization of the colonic mucosa would be effective and well tolerated. Sodium phosphate (NaP) and polyethylen glycol (PEG) are the two most frequently used solutions in this indication. However, although NaP has been described as more effective and better tolerated, it can cause severe acute electrolytes disturbances and, in rare cases, lead to irreversible renal failure, called phosphate nephropathy. NaP should therefore be prescribed with caution and be formally banned for patients with risk factors. PMID:22400350

  2. Phosphate starvation regulon of Salmonella typhimurium.

    PubMed

    Foster, J W; Spector, M P

    1986-05-01

    Several phosphate-starvation-inducible (psi) genetic loci in Salmonella typhimurium were identified by fusing the lacZ gene to psi promoters by using the Mu d1 and Mu d1-8 bacteriophages. Although several different starvation conditions were examined, the psi loci responded solely to phosphate deprivation. A regulatory locus, psiR, was identified as controlling the psiC locus. The psiR locus did not affect the expression of the Escherichia coli phoA locus or any of the other psi loci described.

  3. Potentially Prebiotic Syntheses of Condensed Phosphates

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

  4. Dual mechanism of ion permeation through VDAC revealed with inorganic phosphate ions and phosphate metabolites.

    PubMed

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a "charged brush" which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms.

  5. Phosphate Limitation Induces Drastic Physiological Changes, Virulence-Related Gene Expression, and Secondary Metabolite Production in Pseudovibrio sp. Strain FO-BEG1

    PubMed Central

    González, José M.; Bondarev, Vladimir

    2015-01-01

    Phosphorus is a vital nutrient for living organisms and is obtained by bacteria primarily via phosphate uptake. However, phosphate is often scarcely accessible in nature, and there is evidence that in many areas of the ocean, its concentration limits bacterial growth. Surprisingly, the phosphate starvation response has been extensively investigated in different model organisms (e.g., Escherichia coli), but there is a dearth of studies on heterotrophic marine bacteria. In this work, we describe the response of Pseudovibrio sp. strain FO-BEG1, a metabolically versatile alphaproteobacterium and potential symbiont of marine sponges, to phosphate limitation. We compared the physiology, protein expression, and secondary metabolite production under phosphate-limited conditions to those under phosphate surplus conditions. We observed that phosphate limitation had a pleiotropic effect on the physiology of the strain, triggering cell elongation, the accumulation of polyhydroxyalkanoate, the degradation of polyphosphate, and the exchange of membrane lipids in favor of phosphorus-free lipids such as sulfoquinovosyl diacylglycerols. Many proteins involved in the uptake and degradation of phospho-organic compounds were upregulated, together with subunits of the ABC transport system for phosphate. Under conditions of phosphate limitation, FO-BEG1 secreted compounds into the medium that conferred an intense yellow coloration to the cultures. Among these compounds, we identified the potent antibiotic tropodithietic acid. Finally, toxin-like proteins and other proteins likely involved in the interaction with the eukaryotic host were also upregulated. Altogether, our data suggest that phosphate limitation leads to a pronounced reorganization of FO-BEG1 physiology, involving phosphorus, carbon, and sulfur metabolism; cell morphology; secondary metabolite production; and the expression of virulence-related genes. PMID:25769826

  6. Isolation of streptomycin-nonproducing mutants deficient in biosynthesis of the streptidine moiety or linkage between streptidine 6-phosphate and dihydrostreptose.

    PubMed

    Ohnuki, T; Imanaka, T; Aiba, S

    1985-03-01

    Eight streptidine idiotrophic mutants (SD20, SD81, SD141, SD189, SD245, SD261, SD263, and SD274) which required streptidine to produce streptomycin were derived from Streptomyces griseus ATCC 10137 by UV mutagenesis. By both the characterization of intermediates accumulated by the idiotrophs and the assay of enzymes involved in streptidine biosynthesis, the biochemical lesions of the mutants were deduced as follows: SD20 and SD263, transamination; SD81, SD261, and SD274, phosphorylation; SD141, transamidination; SD189, dehydrogenation; SD245, linkage between streptidine 6-phosphate and dihydrostreptose. An accumulation of streptidine 6-phosphate was found in SD245 to impair its aminotransferase activity. This finding suggests that aminotransferase activity might have been negatively controlled by the end product, streptidine 6-phosphate, of the streptidine biosynthetic pathway.

  7. Beta glucosidase from Bacillus polymyxa is activated by glucose-6-phosphate.

    PubMed

    Weiss, Paulo H E; Álvares, Alice C M; Gomes, Anderson A; Miletti, Luiz C; Skoronski, Everton; da Silva, Gustavo F; de Freitas, Sonia M; Magalhães, Maria L B

    2015-08-15

    Optimization of cellulose enzymatic hydrolysis is crucial for cost effective bioethanol production from lignocellulosic biomass. Enzymes involved in cellulose hydrolysis are often inhibited by their end-products, cellobiose and glucose. Efforts have been made to produce more efficient enzyme variants that are highly tolerant to product accumulation; however, further improvements are still necessary. Based on an alternative approach we initially investigated whether recently formed glucose could be phosphorylated into glucose-6-phosphate to circumvent glucose accumulation and avoid inhibition of beta-glucosidase from Bacillus polymyxa (BGLA). The kinetic properties and structural analysis of BGLA in the presence of glucose-6-phosphate (G6P) were investigated. Kinetic studies demonstrated that enzyme was not inhibited by G6P. In contrast, the presence of G6P activated the enzyme, prevented beta glucosidase feedback inhibition by glucose accumulation and improved protein stability. G6P binding was investigated by fluorescence quenching experiments and the respective association constant indicated high affinity binding of G6P to BGLA. Data reported here are of great impact for future design strategies for second-generation bioethanol production.

  8. Synthesis of arabinitol 1-phosphate and its use for characterization of arabinitol-phosphate dehydrogenase.

    PubMed

    Soroka, Nikolai V; Kulminskaya, Anna A; Eneyskaya, Elena V; Shabalin, Konstantin A; Uffimtcev, Andrei V; Povelainen, Mira; Miasnikov, Andrei N; Neustroev, Kirill N

    2005-03-21

    D-arabinitol 1-phosphate (Ara-ol1-P), a substrate for D-arabinitol-phosphate dehydrogenase (APDH), was chemically synthesized from D-arabinonic acid in five steps (O-acetylation, chlorination, reduction, phosphorylation, and de-O-acetylation). Ara-ol1-P was used as a substrate for the characterization of APDH from Bacillus halodurans. APDH converts Ara-ol1-P to xylulose 5-phosphate in the oxidative reaction; both NAD(+) and NADP(+) were accepted as co-factors. Kinetic parameters for the oxidative and reductive reactions are consistent with a ternary complex mechanism.

  9. Phosphate regulates uranium(VI) toxicity to Lemna gibba L. G3.

    PubMed

    Mkandawire, Martin; Vogel, Kerstin; Taubert, Barbara; Dudel, E Gert

    2007-02-01

    The influence of phosphate on the toxicity of uranium to Lemna gibba G3 was tested in semicontinuous culture with synthetic mine water developed as an analogue of surface water of two abandoned uranium mining and ore processing sites in Saxony, Germany. Six concentrations of uranium were investigated under five different supply regimes of PO(4) (3-) at constant pH (7.0 +/- 0.5) and alkalinity (7.0 +/- 1.6 mg L(-1) total CO(3) (2-)). The results showed significant inhibition of specific growth rates in cultures exposed to the highest uranium concentrations (3500 and 7000 microg U L(-1)) at lowest PO(4) (3-) supply of 0.01 mg L(-1). An increase of phosphate concentration from 0.01 to 8.0 mg L(-1) resulted in an increase of EC(50) from 0.9 +/- 0.2 to 7.4 +/- 1.9 mg L(-1) (significant with Student's t test, P > 0.05). The accumulation of uranium in L. gibba increased exponentially with the increase in uranium concentration in cultures with 0.01 and 0.14 mg PO(4) (3-) L(-1). Accumulation also increased significantly when PO(4) (3-) supply was increased from 0.14 to 1.36 mg PO(4) (3-) L(-1) for all uranium concentrations. However, as the supply of PO(4) (3-) gradually increased from 1.36 to 8.0 mg PO(4) (3-) L(-1), uranium bioaccumulation increased slightly but insignificantly before leveling off. Uranium speciation modeling with PhreeqC geochemical code predicted increases in the proportions of uranyl phosphate species when PO(4) (3-) concentrations increase in the media. Most of these uranyl phosphate species have a high probability of precipitation [saturation indices (SI) > 0.93]. Therefore, the alleviation of uranium toxicity to L. gibba with phosphates is due to interactions among components of the media, mainly uranyl and phosphate which results in precipitation. Consequently, bioavailable fractions of uranium to L. gibba are reduced. This might explain lack of consistent EC(50) values for uranium to most aquatic organisms.

  10. Phosphate regulates uranium(VI) toxicity to Lemna gibba L. G3.

    PubMed

    Mkandawire, Martin; Vogel, Kerstin; Taubert, Barbara; Dudel, E Gert

    2007-02-01

    The influence of phosphate on the toxicity of uranium to Lemna gibba G3 was tested in semicontinuous culture with synthetic mine water developed as an analogue of surface water of two abandoned uranium mining and ore processing sites in Saxony, Germany. Six concentrations of uranium were investigated under five different supply regimes of PO(4) (3-) at constant pH (7.0 +/- 0.5) and alkalinity (7.0 +/- 1.6 mg L(-1) total CO(3) (2-)). The results showed significant inhibition of specific growth rates in cultures exposed to the highest uranium concentrations (3500 and 7000 microg U L(-1)) at lowest PO(4) (3-) supply of 0.01 mg L(-1). An increase of phosphate concentration from 0.01 to 8.0 mg L(-1) resulted in an increase of EC(50) from 0.9 +/- 0.2 to 7.4 +/- 1.9 mg L(-1) (significant with Student's t test, P > 0.05). The accumulation of uranium in L. gibba increased exponentially with the increase in uranium concentration in cultures with 0.01 and 0.14 mg PO(4) (3-) L(-1). Accumulation also increased significantly when PO(4) (3-) supply was increased from 0.14 to 1.36 mg PO(4) (3-) L(-1) for all uranium concentrations. However, as the supply of PO(4) (3-) gradually increased from 1.36 to 8.0 mg PO(4) (3-) L(-1), uranium bioaccumulation increased slightly but insignificantly before leveling off. Uranium speciation modeling with PhreeqC geochemical code predicted increases in the proportions of uranyl phosphate species when PO(4) (3-) concentrations increase in the media. Most of these uranyl phosphate species have a high probability of precipitation [saturation indices (SI) > 0.93]. Therefore, the alleviation of uranium toxicity to L. gibba with phosphates is due to interactions among components of the media, mainly uranyl and phosphate which results in precipitation. Consequently, bioavailable fractions of uranium to L. gibba are reduced. This might explain lack of consistent EC(50) values for uranium to most aquatic organisms. PMID:17295276

  11. Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus

    PubMed Central

    Lubin, Emma A.; Henry, Jonathan T.; Fiebig, Aretha; Crosson, Sean

    2015-01-01

    ABSTRACT An ability to sense and respond to changes in extracellular phosphate is critical for the survival of most bacteria. For Caulobacter crescentus, which typically lives in phosphate-limited environments, this process is especially crucial. Like many bacteria, Caulobacter responds to phosphate limitation through a conserved two-component signaling pathway called PhoR-PhoB, but the direct regulon of PhoB in this organism is unknown. Here we used chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) to map the global binding patterns of the phosphate-responsive transcriptional regulator PhoB under phosphate-limited and -replete conditions. Combined with genome-wide expression profiling, our work demonstrates that PhoB is induced to regulate nearly 50 genes under phosphate-starved conditions. The PhoB regulon is comprised primarily of genes known or predicted to help Caulobacter scavenge for and import inorganic phosphate, including 15 different membrane transporters. We also investigated the regulatory role of PhoU, a widely conserved protein proposed to coordinate phosphate import with expression of the PhoB regulon by directly modulating the histidine kinase PhoR. However, our studies show that it likely does not play such a role in Caulobacter, as PhoU depletion has no significant effect on PhoB-dependent gene expression. Instead, cells lacking PhoU exhibit striking accumulation of large polyphosphate granules, suggesting that PhoU participates in controlling intracellular phosphate metabolism. IMPORTANCE The transcription factor PhoB is widely conserved throughout the bacterial kingdom, where it helps organisms respond to phosphate limitation by driving the expression of a battery of genes. Most of what is known about PhoB and its target genes is derived from studies of Escherichia coli. Our work documents the PhoB regulon in Caulobacter crescentus, and comparison to the regulon in E. coli reveals significant differences, highlighting the evolutionary

  12. Impact of Perturbed Pyruvate Metabolism on Adipocyte Triglyceride Accumulation

    PubMed Central

    Si, Yaguang; Shi, Hai; Lee, Kyongbum

    2009-01-01

    This study aimed to test the hypothesis that adipocyte TG accumulation could be altered by specifically perturbing pyruvate metabolism. We treated cultured 3T3-L1 adipocytes with chemical inhibitors of lactate dehydrogenase (LDH) and pyruvate carboxylase (PC), and characterized their global effects on intermediary metabolism using metabolic flux and isotopomer analysis. Inhibiting the enzymes over several days did not alter the adipocyte differentiation program as assessed by the expression levels of peroxisome proliferator-activated receptor-γ and glycerol-3-phosphate dehydrogenase. The main metabolic effects were to up-regulate intracellular lipolysis and decrease TG accumulation. Inhibiting PC also up-regulated glycolysis. Flux estimates indicated that the reduction in TG was due to decreased de novo fatty acid synthesis. Exogenous addition of free fatty acids dose-dependently increased the cellular TG level in the inhibitor-treated adipocytes, but not in untreated control cells. The results of this study support our hypothesis regarding the critical role of pyruvate reactions in TG synthesis. PMID:19683593

  13. Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation.

    PubMed

    Mohan, Thotegowdanapalya C; Castrillo, Gabriel; Navarro, Cristina; Zarco-Fernández, Sonia; Ramireddy, Eswarayya; Mateo, Cristian; Zamarreño, Angel M; Paz-Ares, Javier; Muñoz, Riansares; García-Mina, Jose M; Hernández, Luis E; Schmülling, Thomas; Leyva, Antonio

    2016-06-01

    The presence of arsenic in soil and water is a constant threat to plant growth in many regions of the world. Phytohormones act in the integration of growth control and stress response, but their role in plant responses to arsenic remains to be elucidated. Here, we show that arsenate [As(V)], the most prevalent arsenic chemical species in nature, causes severe depletion of endogenous cytokinins (CKs) in the model plant Arabidopsis (Arabidopsis thaliana). We found that CK signaling mutants and transgenic plants with reduced endogenous CK levels showed an As(V)-tolerant phenotype. Our data indicate that in CK-depleted plants exposed to As(V), transcript levels of As(V)/phosphate-transporters were similar or even higher than in wild-type plants. In contrast, CK depletion provoked the coordinated activation of As(V) tolerance mechanisms, leading to the accumulation of thiol compounds such as phytochelatins and glutathione, which are essential for arsenic sequestration. Transgenic CK-deficient Arabidopsis and tobacco lines show a marked increase in arsenic accumulation. Our findings indicate that CK is an important regulatory factor in plant adaptation to arsenic stress.

  14. Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation.

    PubMed

    Mohan, Thotegowdanapalya C; Castrillo, Gabriel; Navarro, Cristina; Zarco-Fernández, Sonia; Ramireddy, Eswarayya; Mateo, Cristian; Zamarreño, Angel M; Paz-Ares, Javier; Muñoz, Riansares; García-Mina, Jose M; Hernández, Luis E; Schmülling, Thomas; Leyva, Antonio

    2016-06-01

    The presence of arsenic in soil and water is a constant threat to plant growth in many regions of the world. Phytohormones act in the integration of growth control and stress response, but their role in plant responses to arsenic remains to be elucidated. Here, we show that arsenate [As(V)], the most prevalent arsenic chemical species in nature, causes severe depletion of endogenous cytokinins (CKs) in the model plant Arabidopsis (Arabidopsis thaliana). We found that CK signaling mutants and transgenic plants with reduced endogenous CK levels showed an As(V)-tolerant phenotype. Our data indicate that in CK-depleted plants exposed to As(V), transcript levels of As(V)/phosphate-transporters were similar or even higher than in wild-type plants. In contrast, CK depletion provoked the coordinated activation of As(V) tolerance mechanisms, leading to the accumulation of thiol compounds such as phytochelatins and glutathione, which are essential for arsenic sequestration. Transgenic CK-deficient Arabidopsis and tobacco lines show a marked increase in arsenic accumulation. Our findings indicate that CK is an important regulatory factor in plant adaptation to arsenic stress. PMID:27208271

  15. Interaction of cadmium with phosphate on goethite

    SciTech Connect

    Venema, P.; Hiemstra, T.; Riemsdijk, W.H. van

    1997-08-01

    Interactions between different ions are of importance in understanding chemical processes in natural systems. In this study simultaneous adsorption of phosphate and cadmium on goethite is studied in detail. The charge distribution (CD)-multisite complexation (MUSIC) model has been successful in describing extended data sets of cadmium adsorption and phosphate adsorption on goethite. In this study, the parameters of this model for these two data sets were combined to describe a new data set of simultaneous adsorption of cadmium and phosphate on goethite. Attention is focused on the surface speciation of cadmium. With the extra information that can be obtained from the interaction experiments, the cadmium adsorption model is refined. For a perfect description of the data, the singly coordinated surface groups at the 110 face of goethite were assumed to form both monodentate and bidentate surface species with cadmium. The CD-MUSIC model is able to describe data sets of both simultaneous and single adsorption of cadmium and phosphate with the same parameters. The model calculations confirmed the idea that only singly coordinated surface groups are reactive for specific ion binding.

  16. Insights from Genetic Disorders of Phosphate Homeostasis

    PubMed Central

    Christov, Marta; Jüppner, Harald

    2013-01-01

    The molecular identification and characterization of genetic defects leading to a number of rare inherited or acquired disorders affecting phosphate homeostasis has added tremendous detail to our understanding of the regulation of phosphate balance. The identification of the key phosphate-regulating hormone, fibroblast growth factor 23 (FGF23), as well as other molecules that control its production, such as the glycosyltransferase GALNT3, the endopeptidase PHEX and the matrix protein DMP1, and molecules that function as downstream effectors of FGF23, such as the longevity factor Klotho and the phosphate transporters NPT2a and NPT2c, has permitted us to understand the elegant and complex interplay that exists between the kidneys, bone, parathyroid, and gut. Such insights from genetic disorders have allowed not only the design of potent targeted therapies for some of these rare genetic disorders, such as using anti-FGF23 antibodies for treatment of X-linked hypophosphatemic rickets, but also have led to clinically relevant observations related to the dysregulation of mineral ion homeostasis in chronic kidney disease. Thus, we are able to leverage our knowledge of rare human disorders affecting only few individuals, to understand and potentially treat disease processes that affect millions of patients. PMID:23465501

  17. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Phosphated flour. 137.175 Section 137.175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours...

  18. IN-SITU MINING OF PHOSPHATE ORES

    SciTech Connect

    H. El-Shall; R. Stana; A. El-Midany; S. Malekzadah

    2004-12-17

    Presently the mining of Florida phosphate requires the movement of over a 100-ton of materials (overburden, sand, clay) for every ton of phosphate concentrate recovered. Not only is this energy intensive, but it also causes significant stress on the environment. In 2003, the Department of Energy solicited ideas for innovative mining ideas that could significantly improve the efficiency of mining. An award was made to the University of Florida Engineering Research Center to evaluate the in situ mining of phosphates using an aqueous CO{sub 2} solution. Tests were carried out in a 15.2 cm (6-inch) diameter column, 1.83 meter (6 feet) long at pressures up to 117.2 kg/cm{sup 2} (40 psi). Results to date demonstrate that initially the MgO is leached from the ore and then the phosphate. While the tests are continuing, so far they have not demonstrated P{sub 2}O{sub 5} concentrations that are economically attractive.

  19. An Experiment to Quantitate Organically Bound Phosphate.

    ERIC Educational Resources Information Center

    Palmer, Richard E.

    1985-01-01

    Describes quick and easy experiments that yield quantitative information on a variety of levels, emphasize the concept of experimental controls, and integrate the experimental with the theoretical using the organic phosphates as the experimental system. Background information, list of materials needed, and procedures used are included. (JN)

  20. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed...

  1. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing...

  2. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing...

  3. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing...

  4. Mixed-metal templated phosphate phases

    SciTech Connect

    Nenoff, T.M.; Jackson, N.B.; Thoma, S.G.; Kohler, S.D.; Harrison, W.T.A.

    1997-08-01

    In an effort to direct the structure formation and subsequently the catalytic properties of novel materials, both organic molecules and transition metals have been systematically incorporated into zinc phosphate materials, and various transition metals in zirconium phosphate materials. The resultant phases in the Zn/P experiments are determined not by the organic template, but by the type and stoichiometric amount of metal incorporated and by the organic template`s anion. Furthermore, only one of the phases, a Ni/Zn/P, shows any acidic catalytic behavior. Similarly, the transition metals incorporated in stoichiometric amounts into the catalytically active novel zirconium phosphate are highly structure directing. Their presence inhibits the formation of the phosphate phase, instead promoting the formation of tetragonal ZrO{sub 2}. The catalytic activity of the products are greatly diminished from the baseline material. The synthesis and characterization methods for each phase will be presented. Characterization techniques employed include single-crystal and powder X-ray diffraction, magnetic susceptibility, thermal analysis, DCP and FTIR.

  5. TUCS/phosphate mineralization of actinides

    SciTech Connect

    Nash, K.L.

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  6. Phosphate adsorption on granular palygorskite: batch and column studies.

    PubMed

    Fangqun, Gan; Jianmin, Zhou; Huoyan, Wang; Changwen, Du; Wenzhao, Zhang; Xiaoqin, Chen

    2011-02-01

    A method to prepare granular palygorskite (GPA) was put forward in this research, and its potential use to remove phosphate species from aqueous solution was assessed. Batch experiments were performed to study the adsorption equilibrium and influence of contact time and pH on the adsorption and desorption of phosphate onto GPA in water. The maximum phosphate adsorption capacity of GPA was 13.1 mg/g. Kinetic data revealed that more than 90% of phosphate was adsorbed onto GPA within 2 hours. Phosphate adsorption capacity was 0.10 mg/g in column experiments, and co-existing anions could decrease phosphate removal. The saturated column was regenerated by 0.2 mol/L sodium hydroxide, and the GPA could be reused in phosphate removal. The data obtained from both batch and column studies indicated that GPA could be used effectively to remove phosphate from water.

  7. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of...

  8. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of...

  9. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of...

  10. Genetics Home Reference: pyridoxal 5'-phosphate-dependent epilepsy

    MedlinePlus

    ... Clayton PT, Baumgartner MR, Steinmann B, Bast T, Wolf NI, Zschocke J. Pyridoxal 5'-phosphate may be ... Clayton PT, Baumgartner MR, Steinmann B, Bast T, Wolf NI, Zschocke J. Pyridoxal 5'-phosphate may be ...

  11. Sedoheptulose accumulation under CO2 enrichment in leaves of Kalanchoë pinnata: a novel mechanism to enhance C and P homeostasis?

    PubMed Central

    Van den Ende, Wim

    2013-01-01

    In contrast to the well-documented roles of its mono- and bisphosphate esters, the occurrence of free sedoheptulose in plant tissues remains a matter of conjecture. The present work sought to determine the origin of sedoheptulose formation in planta, as well as its physiological importance. Elevated CO2 and sucrose induction experiments were used to study sedoheptulose metabolism in the Crassulacean acid metabolism (CAM) plants Kalanchoë pinnata and Sedum spectabile. Experimental evidence suggested that sedoheptulose is produced from the oxidative pentose phosphate pathway intermediate sedoheptulose-7-phosphate, by a sedoheptulose-7-phosphate phosphatase. Carbon flux through this pathway was stimulated by increased triose-phosphate levels (elevated CO2, compromised sink availability, and sucrose incubation of source leaves) and attenuated by ADP and inorganic phosphate (Pi). The accumulation of free sedoheptulose is proposed to act as a mechanism contributing to both C and P homeostasis by serving as an alternative carbon store under elevated CO2 or a compromised sink capacity to avoid sucrose accumulation, depletion of inorganic phosphate, and suppression of photosynthesis. It remains to be established whether this acclimation-avoiding mechanism is confined to CAM plants, which might be especially vulnerable to Pi imbalances, or whether some C3 and C4 plants also dispose of the genetic capacity to induce and accelerate sedoheptulose synthesis upon CO2 elevation. PMID:23378377

  12. Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling

    PubMed Central

    Toro, M.; Azcon, R.; Barea, J.

    1997-01-01

    The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizing rhizobacterial isolates: Enterobacter sp. and Bacillus subtilis. These rhizobacteria behaved as "mycorrhiza helper bacteria" promoting establishment of both the indigenous and the introduced AM endophytes despite a gradual decrease in bacterial population size, which dropped from 10(sup7) at planting to 10(sup3) CFU g(sup-1) of dry rhizosphere soil at harvest. Dual inoculation with G. intraradices and B. subtilis significantly increased biomass and N and P accumulation in plant tissues. Regardless of the rhizobacterium strain and of the addition of RP, AM plants displayed lower specific activity ((sup32)P/(sup31)P) than their comparable controls, suggesting that the plants used P sources not available in their absence. The inoculated rhizobacteria may have released phosphate ions ((sup31)P), either from the added RP or from the less-available indigenous P sources, which were effectively taken up by the external AM mycelium. Soluble Ca deficiency in the test soil may have benefited P solubilization. At least 75% of the P in dually inoculated plants derived from the added RP. It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants. PMID:16535730

  13. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    NASA Astrophysics Data System (ADS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T. R.; Govindaraj, R.; Govindan Kutty, K. V.; Vasudeva Rao, P. R.

    2014-09-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe3+/Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300-700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass.

  14. Neurodegeneration with brain iron accumulation (NBIA)

    MedlinePlus

    ... gov/ency/article/001225.htm Neurodegeneration with brain iron accumulation (NBIA) To use the sharing features on this page, please enable JavaScript. Neurodegeneration with brain iron accumulation (formerly known as Hallervorden-Spatz disease) is ...

  15. Vacuoles: main compartments of potassium, magnesium, and phosphate ions in Saccharomyces carlsbergenis cells.

    PubMed Central

    Okorokov, L A; Lichko, L P; Kulaev, I S

    1980-01-01

    The uneven distribution of Mg2+, K+, and phosphate in Saccharomyces carlsbergensis was demonstrated by the differential extraction of ions. Their concentrations were 5, 60, and 1 mM in the cytoplasm and 73, 470, and 110 mM in vacuoles, respectively. The intracellular gradients of these ions were 1:15, 1:8, and 1:110, respectively, across the tonoplast. The determination of free Mg2+ (1.35 mM in the cytosol and 20 mM in vacuoles) showed that the ion accumulation in vacuoles could not be explained by the higher degree of ion complexing in these organelles. PMID:7430066

  16. Comparison of carotenoid accumulation and biosynthetic gene expression between Valencia and Rohde Red Valencia sweet oranges.

    PubMed

    Wei, Xu; Chen, Chunxian; Yu, Qibin; Gady, Antoine; Yu, Yuan; Liang, Guolu; Gmitter, Frederick G

    2014-10-01

    Carotenoid accumulation and biosynthetic gene expression levels during fruit maturation were compared between ordinary Valencia (VAL) and its more deeply colored mutant Rohde Red Valencia orange (RRV). The two cultivars exhibited different carotenoid profiles and regulatory mechanisms in flavedo and juice sacs, respectively. In flavedo, there was uncoordinated carotenoid accumulation and gene expression in RRV during green stages, which might be related to the expression of certain gene(s) in the MEP (methylerythritol phosphate) pathway. The carotenoid biosynthesis pathway shifting from α,β-xanthophylls to β,β-xanthophylls synthesis occurred in RRV earlier than VAL during orange stages. In juice sacs, the low carotenoid content in both cultivars coincided with low expression of LCYE-Contig03 and LCYE-Contig24 during green stages, suggesting LCYE might be a limiting step for carotenoid accumulation. VAL mainly accumulated violaxanthin, but RRV accumulated β-cryptoxanthin and violaxanthin during orange stages, which corresponded to differences in juice color. Several upstream genes (PDS-Contig17, LCYB-Contig19, and ZDS members) and a downstream gene (ZEP) were expressed at higher levels in RRV than VAL, which might be responsible for greater accumulation of β-cryptoxanthin and violaxanthin in RRV, respectively.

  17. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  18. 21 CFR 522.1883 - Prednisolone sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Prednisolone sodium phosphate. 522.1883 Section... § 522.1883 Prednisolone sodium phosphate. (a) Specifications. Each milliliter of solution contains 20 milligrams (mg) prednisolone sodium phosphate (equivalent to 14.88 mg of prednisolone). (b) Sponsor. See...

  19. 21 CFR 522.1883 - Prednisolone sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Prednisolone sodium phosphate. 522.1883 Section... § 522.1883 Prednisolone sodium phosphate. (a) Specifications. Each milliliter of solution contains 20 milligrams (mg) prednisolone sodium phosphate (equivalent to 14.88 mg of prednisolone). (b) Sponsor. See...

  20. 40 CFR 721.3080 - Substituted phosphate ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted phosphate ester (generic... Substances § 721.3080 Substituted phosphate ester (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted phosphate...

  1. 40 CFR 721.10302 - Zinc ammonium phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zinc ammonium phosphate (generic). 721... Substances § 721.10302 Zinc ammonium phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as zinc ammonium phosphate (PMN...

  2. 40 CFR 721.10302 - Zinc ammonium phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zinc ammonium phosphate (generic). 721... Substances § 721.10302 Zinc ammonium phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as zinc ammonium phosphate (PMN...

  3. 40 CFR 721.10302 - Zinc ammonium phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zinc ammonium phosphate (generic). 721... Substances § 721.10302 Zinc ammonium phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as zinc ammonium phosphate (PMN...

  4. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical..., citrate phosphate potassium complexes (PMN P-09-382; CAS No. 120579-31-9) is subject to reporting...

  5. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical..., citrate phosphate potassium complexes (PMN P-09-382; CAS No. 120579-31-9) is subject to reporting...

  6. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical..., citrate phosphate potassium complexes (PMN P-09-382; CAS No. 120579-31-9) is subject to reporting...

  7. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  8. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  9. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  10. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  11. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  12. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  13. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium aluminum phosphate. 182.1781 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions of use. This substance is...

  14. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  15. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  16. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  17. Determination of Phosphates by the Gravimetric Quimociac Technique

    ERIC Educational Resources Information Center

    Shaver, Lee Alan

    2008-01-01

    The determination of phosphates by the classic quimociac gravimetric technique was used successfully as a laboratory experiment in our undergraduate analytical chemistry course. Phosphate-containing compounds are dissolved in acid and converted to soluble orthophosphate ion (PO[subscript 4][superscript 3-]). The soluble phosphate is easily…

  18. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase...

  19. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase...

  20. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase...

  1. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase...

  2. 21 CFR 862.1720 - Triose phosphate isomerase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... isomerase test system is a device intended to measure the activity of the enzyme triose phosphate isomerase in erythrocytes (red blood cells). Triose phosphate isomerase is an enzyme important in glycolysis... this device are used in the diagnosis and treatment of congenital triose phosphate isomerase...

  3. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  4. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  5. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  6. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  7. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Monobasic calcium phosphate. 182.6215 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use. This substance is generally recognized as safe when...

  8. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  9. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  10. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  11. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  12. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  13. 40 CFR 721.10332 - Lithium metal phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium metal phosphate (generic). 721... Substances § 721.10332 Lithium metal phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithium metal phosphate (PMN...

  14. 40 CFR 721.10332 - Lithium metal phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium metal phosphate (generic). 721... Substances § 721.10332 Lithium metal phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithium metal phosphate (PMN...

  15. 40 CFR 721.10332 - Lithium metal phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium metal phosphate (generic). 721... Substances § 721.10332 Lithium metal phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithium metal phosphate (PMN...

  16. 40 CFR 721.10046 - Polyaromatic amine phosphate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyaromatic amine phosphate (generic... Specific Chemical Substances § 721.10046 Polyaromatic amine phosphate (generic). (a) Chemical substance and... amine phosphate (PMN P-02-747) is subject to reporting under this section for the significant new...

  17. 21 CFR 522.1883 - Prednisolone sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Prednisolone sodium phosphate. 522.1883 Section... § 522.1883 Prednisolone sodium phosphate. (a) Specifications. Each milliliter of solution contains 20 milligrams (mg) prednisolone sodium phosphate (equivalent to 14.88 mg of prednisolone). (b) Sponsor. See...

  18. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  19. 40 CFR 721.10046 - Polyaromatic amine phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyaromatic amine phosphate (generic... Specific Chemical Substances § 721.10046 Polyaromatic amine phosphate (generic). (a) Chemical substance and... amine phosphate (PMN P-02-747) is subject to reporting under this section for the significant new...

  20. 40 CFR 721.643 - Ethoxylated alcohol, phosphated, amine salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethoxylated alcohol, phosphated, amine... Specific Chemical Substances § 721.643 Ethoxylated alcohol, phosphated, amine salt. (a) Chemical substance... alcohol, phosphated, amine salt (PMN P-96-1478) is subject to reporting under this section for...

  1. 40 CFR 721.643 - Ethoxylated alcohol, phosphated, amine salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethoxylated alcohol, phosphated, amine... Specific Chemical Substances § 721.643 Ethoxylated alcohol, phosphated, amine salt. (a) Chemical substance... alcohol, phosphated, amine salt (PMN P-96-1478) is subject to reporting under this section for...

  2. 40 CFR 721.643 - Ethoxylated alcohol, phosphated, amine salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethoxylated alcohol, phosphated, amine... Specific Chemical Substances § 721.643 Ethoxylated alcohol, phosphated, amine salt. (a) Chemical substance... alcohol, phosphated, amine salt (PMN P-96-1478) is subject to reporting under this section for...

  3. 40 CFR 721.643 - Ethoxylated alcohol, phosphated, amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethoxylated alcohol, phosphated, amine... Specific Chemical Substances § 721.643 Ethoxylated alcohol, phosphated, amine salt. (a) Chemical substance... alcohol, phosphated, amine salt (PMN P-96-1478) is subject to reporting under this section for...

  4. 40 CFR 721.643 - Ethoxylated alcohol, phosphated, amine salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethoxylated alcohol, phosphated, amine... Specific Chemical Substances § 721.643 Ethoxylated alcohol, phosphated, amine salt. (a) Chemical substance... alcohol, phosphated, amine salt (PMN P-96-1478) is subject to reporting under this section for...

  5. Phosphate Ions - Does Exposure Lead to Degradation of Cementitious Materials?

    SciTech Connect

    Naus, Dan J; Mattus, Catherine H; Dole, Leslie Robert

    2008-01-01

    An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results indicate that no harmful interactions occur between phosphate ions and cememtitious materials unless phosphates are present in form of phosphoric acid.

  6. Dominant oceanic bacteria secure phosphate using a large extracellular buffer.

    PubMed

    Zubkov, Mikhail V; Martin, Adrian P; Hartmann, Manuela; Grob, Carolina; Scanlan, David J

    2015-07-22

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting (33)P-phosphate-pulsed (32)P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5-40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate.

  7. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  8. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  9. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  10. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  11. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6085 Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance is generally recognized as safe when used...

  12. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  13. 1. NORTH IDAHO PHOSPHATE COMPANY PLANTS. VIEW IS TO THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTH IDAHO PHOSPHATE COMPANY PLANTS. VIEW IS TO THE NORTHEAST, WITH THE SHIPPING AND STORAGE WAREHOUSE, AMMONIUM PHOSPHATE FERTILIZER PLANT, AND PHOSPHORIC ACID PLANT APPEARING IN SUCCESSION DOWN GOVERNMENT GULCH. - North Idaho Phosphate Company, Silver King Community, Kellogg, Shoshone County, ID

  14. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  15. 40 CFR 721.3080 - Substituted phosphate ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted phosphate ester (generic... Substances § 721.3080 Substituted phosphate ester (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted phosphate...

  16. 40 CFR 721.3080 - Substituted phosphate ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted phosphate ester (generic... Substances § 721.3080 Substituted phosphate ester (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted phosphate...

  17. 40 CFR 721.3080 - Substituted phosphate ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted phosphate ester (generic... Substances § 721.3080 Substituted phosphate ester (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted phosphate...

  18. 40 CFR 721.3080 - Substituted phosphate ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted phosphate ester (generic... Substances § 721.3080 Substituted phosphate ester (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted phosphate...

  19. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  20. Dominant oceanic bacteria secure phosphate using a large extracellular buffer

    PubMed Central

    Zubkov, Mikhail V.; Martin, Adrian P.; Hartmann, Manuela; Grob, Carolina; Scanlan, David J.

    2015-01-01

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate. PMID:26198420