Science.gov

Sample records for 3he diffusion mri

  1. Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema.

    PubMed

    Woods, Jason C; Choong, Cliff K; Yablonskiy, Dmitriy A; Bentley, John; Wong, Jonathan; Pierce, John A; Cooper, Joel D; Macklem, Peter T; Conradi, Mark S; Hogg, James C

    2006-12-01

    Diffusion MRI of hyperpolarized (3)He shows that the apparent diffusion coefficient (ADC) of (3)He gas is highly restricted in the normal lung and becomes nearly unrestricted in severe emphysema. The nature of this restricted diffusion provides information about lung structure; however, no direct comparison with histology in human lungs has been reported. The purpose of this study is to provide information about (3)He gas diffusivity in explanted human lungs, and describe the relationship between (3)He diffusivity and the surface area to lung volume ratio (SA/V) and mean linear intercept (L(m)) measurements--the gold standard for diagnosis of emphysema. Explanted lungs from patients who were undergoing lung transplantation for advanced COPD, and donor lungs that were not used for transplantation were imaged via (3)He diffusion MRI. Histological measurements were made on the same specimens after they were frozen in the position of study. There is an inverse correlation between diffusivity and SA/V (and a positive correlation between diffusivity and L(m)). An important result is that restricted (3)He diffusivity separated normal from emphysematous lung tissue more clearly than the morphometric analyses. This effect may be due to the smaller histologic sampling size compared to the MRI voxel sizes.

  2. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background.

    PubMed

    Sukstanskii, A L; Yablonskiy, D A

    2008-02-01

    MRI-based study of (3)He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the (3)He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients-longitudinal (D(L)) and transverse (D(T)) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D(L) and D(T) and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D(L) and D(T) on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry-evaluation of the geometrical parameters of acinar airways from hyperpolarized (3)He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of (3)He ADC on the experimentally-controllable diffusion time, Delta. If Delta is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.

  3. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: Theoretical background

    NASA Astrophysics Data System (ADS)

    Sukstanskii, A. L.; Yablonskiy, D. A.

    2008-02-01

    MRI-based study of 3He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the 3He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients—longitudinal (D) and transverse (D) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D and D and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D and D on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry—evaluation of the geometrical parameters of acinar airways from hyperpolarized 3He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of 3He ADC on the experimentally-controllable diffusion time, Δ. If Δ is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.

  4. In Vivo Lung Morphometry with Accelerated Hyperpolarized 3He Diffusion MRI: A Preliminary Study

    PubMed Central

    Chang, Yulin V.; Quirk, James D.; Yablonskiy, Dmitriy A.

    2014-01-01

    Purpose Parallel imaging can be used to reduce imaging time and to increase the spatial coverage in hyperpolarized gas MRI of the lung. In this proof-of-concept study we investigate the effects of parallel imaging on the morphometric measurement of lung microstructure using diffusion MRI with hyperpolarized 3He. Methods Fully sampled and under-sampled multi-b diffusion data were acquired from human subjects using an 8-channel 3He receive coil. A parallel imaging reconstruction technique (GRAPPA) was used to reconstruct under-sampled k-space data. The morphometric results of the GRAPPA-reconstructed data were compared with the results of fully sampled data for three types of subjects: healthy volunteers, mild, and moderate COPD patients. Results Morphometric measurements varied only slightly at mild acceleration factors. The results were largely well preserved compared to fully sampled data for different lung conditions. Conclusion Parallel imaging, given sufficient signal-to-noise ratio, provides a reliable means to accelerate hyperpolarized-gas MRI with no significant difference in the measurement of lung morphometry from the fully sampled images. GRAPPA is a promising technique to significantly reduce imaging time and/or to improve the spatial coverage for the morphometric measurement with hyperpolarized gases. PMID:24799044

  5. Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI

    NASA Astrophysics Data System (ADS)

    Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; Leawoods, Jason C.; Gierada, David S.; Bretthorst, G. Larry; Lefrak, Stephen S.; Cooper, Joel D.; Conradi, Mark S.

    2002-03-01

    The study of lung emphysema dates back to the beginning of the 17th century. Nevertheless, a number of important questions remain unanswered because a quantitative localized characterization of emphysema requires knowledge of lung structure at the alveolar level in the intact living lung. This information is not available from traditional imaging modalities and pulmonary function tests. Herein, we report the first in vivo measurements of lung geometrical parameters at the alveolar level obtained with 3He diffusion MRI in healthy human subjects and patients with severe emphysema. We also provide the first experimental data demonstrating that 3He gas diffusivity in the acinus of human lung is highly anisotropic. A theory of anisotropic diffusion is presented. Our results clearly demonstrate substantial differences between healthy and emphysematous lung at the acinar level and may provide new insights into emphysema progression. The technique offers promise as a clinical tool for early diagnosis of emphysema.

  6. Perspectives of hyperpolarized noble gas MRI beyond 3He

    NASA Astrophysics Data System (ADS)

    Lilburn, David M. L.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-04-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed.

  7. (3)He-MRI in follow-up of lung transplant recipients.

    PubMed

    Gast, Klaus Kurt; Zaporozhan, Julia; Ley, Sebastian; Biedermann, Alexander; Knitz, Frank; Eberle, Balthasar; Schmiedeskamp, Joerg; Heussel, Claus-Peter; Mayer, Eckhard; Schreiber, Wolfgang Günter; Thelen, Manfred; Kauczor, Hans-Ulrich

    2004-01-01

    The aim of this study was to evaluate the possible contribution of (3)He-MRI to detect obliterative bronchiolitis (OB) in the follow-up of lung transplant recipients. Nine single- and double-lung transplanted patients were studied by an initial and a follow-up (3)He-MRI study. Images were evaluated subjectively by estimation of ventilation defect area and quantitatively by individually adapted threshold segmentation and subsequent calculation of ventilated lung volume. Bronchiolitis obliterans syndrome (BOS) was diagnosed using pulmonary function tests. At (3)He-MRI, OB was suspected if ventilated lung volume had decreased by 10% or more at the follow-up MRI study compared with the initial study. General accordance between pulmonary function testing and (3)He-MRI was good, although subjective evaluation of (3)He-MRI underestimated improvement in ventilation as obtained by pulmonary function tests. The (3)He-MRI indicated OB in 6 cases. According to pulmonary function tests, BOS was diagnosed in 5 cases. All diagnoses of BOS were also detected by (3)He-MRI. In 2 of these 5 cases, (3)He-MRI indicated OB earlier than pulmonary function tests. The results support the hypothesis that (3)He-MRI may be sensitive for early detection of OB and emphasize the need for larger prospective follow-up studies.

  8. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    SciTech Connect

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Rick E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and that (2) remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  9. Effects of Diffusion Time on Short-Range Hyperpolarized 3He Diffusivity Measurements in Emphysema

    PubMed Central

    Gierada, David S.; Woods, Jason C.; Bierhals, Andrew J.; Bartel, Seth T.; Ritter, Jon H.; Choong, Cliff K.; Das, Nitin A.; Hong, Cheng; Pilgram, Thomas K.; Chang, Yulin V.; Jacob, Richard E.; Hogg, James C.; Battafarano, Richard J.; Cooper, Joel D.; Meyers, Bryan F.; Patterson, G. Alexander; Yablonskiy, Dmitriy A.; Conradi, Mark S.

    2010-01-01

    Purpose To characterize the effect of diffusion time on short-range hyperpolarized 3He MR diffusion measurements across a wide range of emphysema severity. Materials and Methods 3He diffusion MR imaging was performed on 19 lungs or lobes resected from 18 subjects with varying degrees of emphysema using 3 diffusion times (1.6 msec, 5 msec, and 10 msec) at constant b value. Emphysema severity was quantified as the mean apparent diffusion coefficient (ADC) and as the percentage of pixels with ADC higher than multiple thresholds from 0.30–0.55 cm2/sec (ADC index). Quantitative histology (mean linear intercept) was obtained in 10 of the lung specimens from 10 of the subjects. Results The mean ADCs with diffusion times of 1.6, 5.0, and 10.0 msec were 0.46, 0.40, and 0.37 cm2/sec, respectively (P <0.0001, ANOVA). There was no relationship between the ADC magnitude and the effect of diffusion time on ADC values. Mean linear intercept correlated with ADC (r=0.91–0.94, P<0.001) and ADC index (r=0.78–0.92, P<0.01) at all diffusion times. Conclusion Decreases in ADC with longer diffusion time were unrelated to emphysema severity. The strong correlations between the ADC at all diffusion times tested and quantitative histology demonstrate that the ADC is a robust measure of emphysema. PMID:19787725

  10. Effects of Diffusion Time on Short-Range Hyperpolarized 3He Diffusivity Measurements in Emphysema

    SciTech Connect

    Gierada, David S.; Woods, Jason C.; Bierhals, Andrew J.; Bartel, Seth T.; Ritter, Jon H.; Choong, Cliff K.; Das, Nitin A.; Hong, Cheng; Pilgram, Thomas K.; Chang, Yulin V.; Jacob, Rick E.; Hogg, James C.; Battafarano, Richard J.; Cooper, Joel D.; Meyers, Bryan F.; Patterson, G Alexander; Yablonskiy, Dmitriy A.; Conradi, Mark S.

    2009-09-28

    Purpose: To characterize the effect of diffusion time on short-range hyperpolarized 3He MR diffusion measurements across a wide range of emphysema severity. Materials and Methods: 3He diffusion MR imaging was performed on 19 lungs or lobes resected from 18 subjects with varying degrees of emphysema using 3 diffusion times (1.6 msec, 5 msec, and 10 msec) at constant b value. Emphysema severity was quantified as the mean apparent diffusion coefficient (ADC) and as the percentage of pixels with ADC higher than multiple thresholds from 0.30-0.55 cm2/sec (ADC index). Quantitative histology (mean linear intercept) was obtained in 10 of the lung specimens from 10 of the subjects. Results: The mean ADCs with diffusion times of 1.6, 5.0, and 10.0 msec were 0.46, 0.40, and 0.37 cm2/sec, respectively (P <0.0001, ANOVA). There was no relationship between the ADC magnitude and the effect of diffusion time on ADC values. Mean linear intercept correlated with ADC (r=0.91-0.94, P<0.001) and ADC index (r=0.78-0.92, P<0.01) at all diffusion times.

  11. Longitudinal assessment of treatment effects on pulmonary ventilation using 1H/3He MRI multivariate templates

    NASA Astrophysics Data System (ADS)

    Tustison, Nicholas J.; Contrella, Benjamin; Altes, Talissa A.; Avants, Brian B.; de Lange, Eduard E.; Mugler, John P.

    2013-03-01

    The utitlity of pulmonary functional imaging techniques, such as hyperpolarized 3He MRI, has encouraged their inclusion in research studies for longitudinal assessment of disease progression and the study of treatment effects. We present methodology for performing voxelwise statistical analysis of ventilation maps derived from hyper­ polarized 3He MRI which incorporates multivariate template construction using simultaneous acquisition of IH and 3He images. Additional processing steps include intensity normalization, bias correction, 4-D longitudinal segmentation, and generation of expected ventilation maps prior to voxelwise regression analysis. Analysis is demonstrated on a cohort of eight individuals with diagnosed cystic fibrosis (CF) undergoing treatment imaged five times every two weeks with a prescribed treatment schedule.

  12. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  13. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness.

    PubMed

    Lui, Justin K; Parameswaran, Harikrishnan; Albert, Mitchell S; Lutchen, Kenneth R

    2015-01-01

    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject's forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P < 0.0001), the difference between high and low frequency lung resistance (R = 0.668, P < 0.0001), and low-frequency lung elastance (R = 0.547, P = 0.0003). In asthmatic subjects with PC20 values <25 mg/mL, the coefficient of variation at baseline exhibited a strong negative trend (R = -0.798, P = 0.02) to PC20 dose. Our findings were consistent with the notion of peripheral rather than central involvement of ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy.

  14. Longitudinal and transverse spin diffusion in3He-4He solutions in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Ager, J. H.; Child, A.; König, R.; Owers-Bradley, J. R.; Bowley, R. M.

    1995-06-01

    Using pulsed NMR techniques, we have measured spin diffusion in3He-3He solutions with3He concentrations of 0.05%, 0.1%, 0.46%, 1.0%, 3.8% and 6.4% in a magnetic field of 8.8 Tesla for a temperature range 11 mK⩽ T ⩽ 200 mK. We observe that the temperature dependence of the transverse spin diffusion coefficient D1 deviates from that expected for an unpolarized Fermi liquid in the degenerate region in the 1.0%, 3.8% and 6.4% solutions. Moreover, by measuring both longitudinal and transverse spin diffusion coefficients in the 6.4%-mixture, we have verified experimentally the difference between them, and provided direct evidence for a field-induced anisotropy in spin diffusion. The results from the 0.05% and 0.1% solutions show agreement with the theory of Jeon and Mullin; however, no deviation of D1 from that expected in an unpolarized mixture was observed because the3He is not in the degenerate regime for these very dilute systems for the temperatures we could achieve. The analysis of our measurements in terms of the Leggett-Rice equations also yields values for the spin rotation parameter μM0. Using our results along with previous measurements at various3He concentrations, we deduce a value for the s-wave quasiparticle scattering length of a=-0.88 ± 0.05 Å.

  15. Magnetic field dependent transverse spin diffusion constant in 3He- 4He solutions

    NASA Astrophysics Data System (ADS)

    Owers-Bradley, J. R.; Child, A.; Bowley, R. M.

    1994-02-01

    The transverse spin diffusion constant of 3He- 4He solutions has been measured by pulsed nmr in magnetic fields of 2.18T and 8.8T for 3He concentrations of 0.5%, 1.0% and 3.8%. For the higher concentrations the diffusion constant at 8.8T is smaller than at 2.18T for the lowest temperatures used. The effect is largest for the 3.8% solution (a reduction by 1.7 at 15mK), but is too small to be measurable for the 0.5% solution. These results are compared to measurements of Candela et al. for pure 3He, and to the theory of Jeon and Mullin.

  16. Neutron Diffuse Reflectometry of Magnetic Thin Films with a 3He Analyzer

    NASA Astrophysics Data System (ADS)

    Chen, Wangchun; O'Donovan, Kevin; Borchers, Julie

    2005-03-01

    Polarized neutron reflectometry (PNR) is a powerful probe that characterizes the magnetization depth profile and magnetic domains in magnetic thin films. Although the conventionally used supermirrors are well-matched for specular PNR, they have limited angular acceptance and hence are impractical for complete characterization of the magnetic off-specular scattering where polarization analysis for diffusely reflected neutrons is required. Polarized ^3He gas, produced by optical pumping, can be used to polarize or analyze neutron beams because of the strong spin dependence of the neutron absorption cross section for ^3He. Here we report efficient polarization analysis of diffusely reflected neutrons in a reflectometry geometry using a polarized ^3He analyzer in conjunction with a position-sensitive detector (PSD). We obtained spin-resolved two-dimensional Qx-Qz reciprocal space maps for a patterned array of Co antidots in both the saturated and the demagnetized states. The preliminary results for a patterned amorphous bilayer, Gd40Fe60/ Tb55Fe45, measured with a ^3He analyzer and a PSD will also be discussed. Using the spin exchange optical pumping method we have achieved record high ^3He polarizations of 76% on the neutron beam line where we measured an initial analyzing efficiency of 0.97 and a neutron transmission for the desired spin state of 0.45.

  17. An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging

    NASA Astrophysics Data System (ADS)

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-08-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons.

  18. An Open-Access, Very-Low-Field MRI System for Posture-Dependent 3He Human Lung Imaging

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in-vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons. PMID:18550402

  19. Diffusive thermal conductivity of the A1-phase of superfluid 3He at low temperatures

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Ebrahimian, N.

    2005-07-01

    The diffusive thermal conductivity tensor of the A1-phase of superfluid 3He at low temperatures and melting pressure are calculated beyond the s-p approximation, by using the Boltzmann equation approach. The interaction between normal-normal, normal-Bogoliubov and Bogoliubov-Bogoliubov quasiparticles in the collision integrals are considered for important scattering processes such as binary process. At low temperatures, we show that the scattering between Bogoliubov and normal quasiparticles in binary processes plays an important role in the A1-phase, and Bogoliubov-Bogoliubov interaction is ignorable. We show that the two normal and superfluid components take part in elements of the diffusive thermal conductivity tensor differently. We obtain the result that the elements of the diffusive thermal conductivities, Kxx, Kyy and Kzz, are proportional to T-1, and also that the superfluid components of the diffusive thermal conductivity tensor, K_{xx \\uparrow } and K_{zz \\uparrow } , are proportional to T3 and T, respectively.

  20. Multidimensional diffusion MRI

    NASA Astrophysics Data System (ADS)

    Topgaard, Daniel

    2017-02-01

    Principles from multidimensional NMR spectroscopy, and in particular solid-state NMR, have recently been transferred to the field of diffusion MRI, offering non-invasive characterization of heterogeneous anisotropic materials, such as the human brain, at an unprecedented level of detail. Here we revisit the basic physics of solid-state NMR and diffusion MRI to pinpoint the origin of the somewhat unexpected analogy between the two fields, and provide an overview of current diffusion MRI acquisition protocols and data analysis methods to quantify the composition of heterogeneous materials in terms of diffusion tensor distributions with size, shape, and orientation dimensions. While the most advanced methods allow estimation of the complete multidimensional distributions, simpler methods focus on various projections onto lower-dimensional spaces as well as determination of means and variances rather than actual distributions. Even the less advanced methods provide simple and intuitive scalar parameters that are directly related to microstructural features that can be observed in optical microscopy images, e.g. average cell eccentricity, variance of cell density, and orientational order - properties that are inextricably entangled in conventional diffusion MRI. Key to disentangling all these microstructural features is MRI signal acquisition combining isotropic and directional dimensions, just as in the field of multidimensional solid-state NMR from which most of the ideas for the new methods are derived.

  1. A robust protocol for regional evaluation of methacholine challenge in mouse models of allergic asthma using hyperpolarized 3He MRI.

    PubMed

    Thomas, Abraham C; Potts, Erin N; Chen, Ben T; Slipetz, Deborah M; Foster, W Michael; Driehuys, Bastiaan

    2009-06-01

    Hyperpolarized (HP) (3)He magnetic resonance imaging has been recently used to produce high-resolution images of pulmonary ventilation after methacholine (MCh) challenge in mouse models of allergic inflammation. This capability presents an opportunity to gain new insights about these models and to more sensitively evaluate new drug treatments in the pre-clinical setting. In the current study, we present our initial experience using two-dimensional (2D), time-resolved (3)He MRI of MCh challenge-induced airways hyperreactivity (AHR) to compare ovalbumin-sensitized and challenged (N = 8) mice to controls (N = 8). Imaging demonstrated that ovalbumin-sensitized and challenged animals exhibited many large ventilation defects even prior to MCh challenge (four out of eight) compared to no defects in the control animals. Additionally, the ovalbumin-sensitized and challenged animals experienced a greater number of ventilation defects (4.5 +/- 0.4) following MCh infusion than did controls (3.3 +/- 0.6). However, due to variability in MCh delivery that was specific to the small animal MRI environment, the difference in mean defect number was not statistically significant. These findings are reviewed in detail and a comprehensive solution to the variability problem is presented that has greatly enhanced the magnitude and reproducibility of the MCh response. This has permitted us to develop a new imaging protocol consisting of a baseline 3D image, a time-resolved 2D series during MCh challenge, and a post-MCh 3D image that reveals persistent ventilation defects.

  2. Long-range diffusion of hyperpolarized 3He in explanted normal and emphysematous human lungs via magnetization tagging

    PubMed Central

    Woods, Jason C.; Yablonskiy, Dmitriy A.; Choong, Cliff K.; Chino, Kimiaki; Pierce, John A.; Hogg, James C.; Bentley, John; Cooper, Joel D.; Conradi, Mark S.; Macklem, Peter T.

    2007-01-01

    Long-range diffusivity of hyperpolarized 3He gas was measured from the decay rate of sinusoidally modulated longitudinal nuclear magnetization in three normal donor and nine severely emphysematous explanted human lungs. This (long-range) diffusivity, which we call Dsec, is measured over seconds and centimeters and is ~10 times smaller in healthy lungs (0.022 cm2/s) than the more traditionally measured Dmsec, which is measured over milliseconds and submillimeters. The increased restriction of Dsec reflects the complex, tortuous paths required to navigate long distances through the maze of branching peripheral airways. In emphysematous lungs, Dsec is substantially increased, with some regions showing nearly the unrestricted value of the self-diffusion coefficient (0.88 cm2/s for dilute 3He in air, a 40-fold increase). This suggests the presence of large collateral pathways opened by alveolar destruction that bypass the airways proper. This destruction was confirmed by comparison with histology in seven lungs and by removal of trapped gas via holes in the pleural surface in five lungs. PMID:16024528

  3. Diffusion MRI in the heart

    PubMed Central

    Mekkaoui, Choukri; Reese, Timothy G.; Jackowski, Marcel P.; Bhat, Himanshu

    2015-01-01

    Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non‐rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion‐weighted MR acquisition sequences combined with advanced post‐processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual‐gated stimulated echo approach, a velocity‐ (M 1) or an acceleration‐ (M 2) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well‐established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26484848

  4. Gas exchange dependency on diffusion coefficient: direct /sup 222/Rn and /sup 3/He comparisons in a small lake

    SciTech Connect

    Torgersen, T.; Mathieu, G.; Hesslein, R.H.; Broecker, W.S.

    1982-01-20

    A direct field comparison was conducted to determine the dependency of gas exchange coefficient (k/sub x/) on the diffusion coefficient (D/sub x/). The study also sought to confirm the enhanced vertical exchange properties of limnocorrals and similar enclosures. Gas exchange coefficients for /sup 222/Rn and /sup 3/He were determined in a small northern Ontario lake, using a /sup 226/Ra and /sup 3/H spike to gain the necessary precision. The results indicate that the gas exchange coefficient is functionally dependent on the diffusion coefficient raised to the 1.22/sub -35//sup + > 12/ power (k/sub x/ = f(D/sub x//sup 1.22)), clearly supporting the stagnant film model of gas exchange. Limnocorrals were found to have gas exchange rates up to 1.7 times higher than the whole lake in spite of the observation of more calm surface conditions in the corral than in the open lake. 33 references, 6 figures, 8 tables.

  5. Development and application of methods to quantify spatial and temporal hyperpolarized 3He MRI ventilation dynamics: preliminary results in chronic obstructive pulmonary disease

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Wheatley, Andrew; McCormack, David G.; Parraga, Grace

    2010-03-01

    Hyperpolarized helium-3 (3He) magnetic resonance imaging (MRI) has emerged as a non-invasive research method for quantifying lung structural and functional changes, enabling direct visualization in vivo at high spatial and temporal resolution. Here we described the development of methods for quantifying ventilation dynamics in response to salbutamol in Chronic Obstructive Pulmonary Disease (COPD). Whole body 3.0 Tesla Excite 12.0 MRI system was used to obtain multi-slice coronal images acquired immediately after subjects inhaled hyperpolarized 3He gas. Ventilated volume (VV), ventilation defect volume (VDV) and thoracic cavity volume (TCV) were recorded following segmentation of 3He and 1H images respectively, and used to calculate percent ventilated volume (PVV) and ventilation defect percent (VDP). Manual segmentation and Otsu thresholding were significantly correlated for VV (r=.82, p=.001), VDV (r=.87 p=.0002), PVV (r=.85, p=.0005), and VDP (r=.85, p=.0005). The level of agreement between these segmentation methods was also evaluated using Bland-Altman analysis and this showed that manual segmentation was consistently higher for VV (Mean=.22 L, SD=.05) and consistently lower for VDV (Mean=-.13, SD=.05) measurements than Otsu thresholding. To automate the quantification of newly ventilated pixels (NVp) post-bronchodilator, we used translation, rotation, and scaling transformations to register pre-and post-salbutamol images. There was a significant correlation between NVp and VDV (r=-.94 p=.005) and between percent newly ventilated pixels (PNVp) and VDP (r=- .89, p=.02), but not for VV or PVV. Evaluation of 3He MRI ventilation dynamics using Otsu thresholding and landmark-based image registration provides a way to regionally quantify functional changes in COPD subjects after treatment with beta-agonist bronchodilators, a common COPD and asthma therapy.

  6. Helium diffusion coefficient measurements in R7T7 nuclear glass by 3He(d,α) 1H nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Chamssedine, F.; Sauvage, T.; Peuget, S.; Fares, T.; Martin, G.

    2010-05-01

    The immobilization of fission products and minor actinides by vitrification is the reference process for industrial management of high-level radioactive wastes generated by spent fuel reprocessing. Radiation damage and radiogenic helium accumulation must be specifically studied to evaluate the effects of minor actinide alpha decay on the glass long-term behavior under repository conditions. A specific experimental study was conducted for a comprehensive evaluation of the behavior of helium and its diffusion mechanisms in borosilicate nuclear waste glass. Helium production was simulated by external implantation with 3He ions at a concentration (≈1 at.%) 30 times higher than obtained after 10,000 years of storage. Helium diffusion coefficients as a function of temperature were extracted from the depth profiles after annealing. The 3He(d,α) 1H nuclear reaction analysis (NRA) technique was successfully adopted for low-temperature in situ measurements of depth profiles. Its high depth resolution revealed helium mobility at temperatures as low as 253 K and the presence of a trapped helium fraction. The diffusion coefficients of un-trapped helium atoms follow an Arrhenius law between 253 K and 323 K. An activation energy of 0.55 ± 0.03 eV was determined, which is consistent with a process controlled by diffusion in the glass free volume.

  7. Maximum entropy spherical deconvolution for diffusion MRI.

    PubMed

    Alexander, Daniel C

    2005-01-01

    This paper proposes a maximum entropy method for spherical deconvolution. Spherical deconvolution arises in various inverse problems. This paper uses the method to reconstruct the distribution of microstructural fibre orientations from diffusion MRI measurements. Analysis shows that the PASMRI algorithm, one of the most accurate diffusion MRI reconstruction algorithms in the literature, is a special case of the maximum entropy spherical deconvolution. Experiments compare the new method to linear spherical deconvolution, used previously in diffusion MRI, and to the PASMRI algorithm. The new method compares favourably both in simulation and on standard brain-scan data.

  8. Diffusion MRI and its role in neuropsychology

    PubMed Central

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-01-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  9. Diffusion MRI and its Role in Neuropsychology.

    PubMed

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-09-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain's white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition.

  10. Biomimetic phantom for cardiac diffusion MRI

    PubMed Central

    Teh, Irvin; Zhou, Feng‐Lei; Hubbard Cristinacce, Penny L.; Parker, Geoffrey J.M.

    2015-01-01

    Purpose Diffusion magnetic resonance imaging (MRI) is increasingly used to characterize cardiac tissue microstructure, necessitating the use of physiologically relevant phantoms for methods development. Existing phantoms are generally simplistic and mostly simulate diffusion in the brain. Thus, there is a need for phantoms mimicking diffusion in cardiac tissue. Materials and Methods A biomimetic phantom composed of hollow microfibers generated using co‐electrospinning was developed to mimic myocardial diffusion properties and fiber and sheet orientations. Diffusion tensor imaging was carried out at monthly intervals over 4 months at 9.4T. 3D fiber tracking was performed using the phantom and compared with fiber tracking in an ex vivo rat heart. Results The mean apparent diffusion coefficient and fractional anisotropy of the phantom remained stable over the 4‐month period, with mean values of 7.53 ± 0.16 × 10‐4 mm2/s and 0.388 ± 0.007, respectively. Fiber tracking of the 1st and 3rd eigenvectors generated analogous results to the fiber and sheet‐normal direction respectively, found in the left ventricular myocardium. Conclusion A biomimetic phantom simulating diffusion in the heart was designed and built. This could aid development and validation of novel diffusion MRI methods for investigating cardiac microstructure, decrease the number of animals and patients needed for methods development, and improve quality control in longitudinal and multicenter cardiac diffusion MRI studies. J. MAGN. RESON. IMAGING 2016;43:594–600. PMID:26213152

  11. 3He on preplated graphite

    NASA Astrophysics Data System (ADS)

    Gordillo, M. C.; Boronat, J.

    2016-10-01

    By using the diffusion Monte Carlo method, we obtained the full phase diagram of 3He on top of graphite preplated with a solid layer of 4He. All the 4He atoms of the substrate were explicitly considered and allowed to move during the simulation. We found that the ground state is a liquid of density 0.007 ±0.001 Å-2, in good agreement with available experimental data. This is significantly different from the case of 3He on clean graphite, in which both theory and experiment agree on the existence of a gas-liquid transition at low densities. Upon an increase in 3He density, we predict a first-order phase transition between a dense liquid and a registered 7/12 phase, the 4/7 phase being found metastable in our calculations. At larger second-layer densities, a final transition is produced to an incommensurate triangular phase.

  12. Gibbs Ringing in Diffusion MRI

    PubMed Central

    Veraart, Jelle; Fieremans, Els; Jelescu, Ileana O.; Knoll, Florian; Novikov, Dmitry S.

    2016-01-01

    Purpose To study and reduce the effect of Gibbs ringing artifact on computed diffusion parameters. Methods We reduce the ringing by extrapolating the k-space of each diffusion weighted image beyond the measured part by selecting an adequate regularization term. We evaluate several regularization terms and tune the regularization parameter to find the best compromise between anatomical accuracy of the reconstructed image and suppression of the Gibbs artifact. Results We demonstrate empirically and analytically that the Gibbs artifact, which is typically observed near sharp edges in magnetic resonance images, has a significant impact on the quantification of diffusion model parameters, even for infinitesimal diffusion weighting. We find the second order total generalized variation to be a good choice for the penalty term to regularize the extrapolation of the k-space, as it provides a parsimonious representation of images, a practically full suppression of Gibbs ringing, and the absence of staircasing artifacts typical for total variation methods. Conclusions Regularized extrapolation of the k-space data significantly reduces truncation artifacts without compromising spatial resolution in comparison to the default option of window filtering. In particular, accuracy of estimating diffusion tensor imaging and diffusion kurtosis imaging parameters improves so much that unconstrained fits become possible. PMID:26257388

  13. MRI: update on technology diffusion and acquisition.

    PubMed

    Hoppszallern, S; Hughes, C; Zimmerman, R A

    1991-04-01

    Over the past three years, magnetic resonance imaging (MRI) has become accepted as a valuable diagnostic tool, and its applications continue to expand. During this time, the number of units installed in the United States doubled. By 1990 about 2,000 MRI units were in place in the United States and nearly 20 percent of the MRI-installed base was mobile, according to a research study conducted by the Hadley Hart Group (Chicago) and Drew Consultants, Inc. (Concord, MA). With the introduction of the prospective payment system, many hospitals were hesitant to spend limited capital on new technology, such as MRI. At the same time, freestanding diagnostic imaging centers were on the rise. Some hospitals and entrepreneurs who foresaw the potential of MRI in health care pioneered its use in the clinical setting. Hospitals began to examine new partnership arrangements and alternative forms of financing, so that they too could offer MRI services. By the end of 1988, the majority of hospitals offering MRI services did not own their own unit and about 40 percent of the hospitals offering MRI services were in a mobile configuration according to the Hadley Hart Group. While the technology has been diffused into 100-bed hospitals via mobile service vendors in some parts of the country, many medium-sized and large hospitals also have entered the MRI services market in this fashion. In the larger hospitals, the patient demand or need for the service often would justify acquisition of MRI, but the expense of the technology, and in many areas restrictive state health planning policies, modified purchase of MRI systems by hospitals. Mobile service vendors offered hospitals a way to startup MRI services in a limited fashion without a major capital expenditure and its associated risk. As hospitals gain experience with mobile MRI and achieve or exceed their early utilization projections, administrators are reevaluating the need to expand services to a full-time fixed site. Early fixed

  14. Diffusion-MRI in neurodegenerative disorders.

    PubMed

    Goveas, Joseph; O'Dwyer, Laurence; Mascalchi, Mario; Cosottini, Mirco; Diciotti, Stefano; De Santis, Silvia; Passamonti, Luca; Tessa, Carlo; Toschi, Nicola; Giannelli, Marco

    2015-09-01

    The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.

  15. Efficient gradient calibration based on diffusion MRI

    PubMed Central

    Teh, Irvin; Maguire, Mahon L.

    2016-01-01

    Purpose To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. Methods The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. Results The errors in apparent diffusion coefficients along orthogonal axes ranged from −9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and −0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from −5.5% to + 4.5% precalibration and were likewise reduced to −0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Conclusion Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170–179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26749277

  16. Anisotropic phantom to calibrate high-q diffusion MRI methods

    NASA Astrophysics Data System (ADS)

    Komlosh, M. E.; Benjamini, D.; Barnett, A. S.; Schram, V.; Horkay, F.; Avram, A. V.; Basser, P. J.

    2017-02-01

    A silicon oil-filled glass capillary array is proposed as an anisotropic diffusion MRI phantom. Together with a computational/theoretical pipeline these provide a gold standard for calibrating and validating high-q diffusion MRI experiments. The phantom was used to test high angular resolution diffusion imaging (HARDI) and double pulsed-field gradient (d-PFG) MRI acquisition schemes. MRI-based predictions of microcapillary diameter using both acquisition schemes were compared with results from optical microscopy. This phantom design can be used for quality control and quality assurance purposes and for testing and validating proposed microstructure imaging experiments and the processing pipelines used to analyze them.

  17. 3D He-3 diffusion MRI as a local in vivo morphometric tool to evaluate emphysematous rat lungs

    SciTech Connect

    Jacob, Rick E.; Minard, Kevin R.; Laicher, Gernot J.; Timchalk, Charles

    2008-08-21

    In this work, we validate 3He magnetic resonance imaging as a non-invasive morphometric tool to assess emphysematous disease state on a local level. Emphysema was induced intratracheally in rats with 25U/100g body weight of porcine pancreatic elastase dissolved in 200 μL saline. Rats were then paired with saline-dosed controls. Nine three-dimensional 3He diffusion-weighted images were acquired at one-, two-, or three-weeks post-dose, after which the lungs were harvested and prepared for histological analysis. Recently introduced indices sensitive to the heterogeneity of the airspace size distribution were calculated. These indices, D1 and D2, were derived from the moments of the mean equivalent airway diameters. Averaged over the entire lung, it is shown that the 3He diffusivity (Dave) and anisotropy (Dan) both correlate with histology (R = 0.85, p < 0.0001 and R = 0.88, p < 0.0001, respectively). By matching small (0.046 cm2) regions in 3He images with corresponding regions in histological slices, Dave and Dan each correlate significantly with both D1 and D2 (R = 0.93, p < 0.0001). It is concluded that 3He MRI is a viable non-invasive morphometric tool for localized in vivo emphysema assessment.

  18. Zircon 4He/3He thermochronometry

    NASA Astrophysics Data System (ADS)

    Tripathy-Lang, Alka; Fox, Matthew; Shuster, David L.

    2015-10-01

    Multiple thermochronometric methods are often required to constrain time-continuous rock exhumation for studying tectonic processes or development of km-scale topography at Earth's surface. Here, we explore 4He/3He thermochronometry of zircon as a method for constraining continuous time-temperature (t-T) paths of individual samples through a temperature range that is complementary to methods such as 40Ar/39Ar thermochronometry of K-feldspar and 4He/3He thermochronometry of apatite. For different cooling rates and diffusion domain size, the temperature sensitivity of zircon 4He/3He thermochronometry ranges from slightly less than 100 °C to slightly greater than 250 °C; a typical sample provides continuous thermal constraints over ∼100 °C within that range. Outside these temperatures, 4He in zircon will either be quantitatively retained or completely lost by volume diffusion. As proof-of-concept, we present stepwise release 4He/3He spectra and associated U and Th concentration maps measured by laser ablation ICP-MS analysis of individual crystal aliquots of Fish Canyon Tuff (FCT) zircon and of a more complex setting in the Sierra Nevada batholith that experienced reheating from a proximal basaltic intrusion, the Little Devil's Postpile (LDP). The FCT zircon 4He/3He release spectra are consistent with a 4He spatial distribution dominated by alpha-ejection from crystal surfaces. The spatial distributions of U and Th measured in the same crystals do not substantially influence 4He/3He release spectra that are predicted for the known thermal history, even when incorporating spatially variable diffusivity due to accumulation of radiation damage. Conversely, the LDP 4He/3He release spectra are strongly influenced by the observed parent nuclide zonation. A three-dimensional (3D) numerical model of 4He production and diffusion, which incorporates crystal geometry, U and Th zonation, and spatially variable He diffusion kinetics, substantially improves the fit between

  19. The 3He Supply Problem

    SciTech Connect

    Kouzes, Richard T.

    2009-05-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Radiation portal monitors deployed for homeland security and non-proliferation use such detectors. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, for targets or cooling in nuclear research, and for basic research in condensed matter physics. The US supply of 3He comes almost entirely from the decay of tritium used in nuclear weapons by the US and Russia. A few other countries contribute a small amount to the world’s 3He supply. Due to the large increase in use of 3He for homeland security, the supply has dwindled, and can no longer meet the demand. This white paper reviews the problems of supply, utilization, and alternatives.

  20. Mathematical Methods for Diffusion MRI Processing

    PubMed Central

    Lenglet, C.; Campbell, J.S.W.; Descoteaux, M.; Haro, G.; Savadjiev, P.; Wassermann, D.; Anwander, A.; Deriche, R.; Pike, G.B.; Sapiro, G.; Siddiqi, K.; Thompson, P.

    2009-01-01

    In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). PMID:19063977

  1. Diffusion MRI at 25: Exploring brain tissue structure and function

    PubMed Central

    Bihan, Denis Le; Johansen-Berg, Heidi

    2013-01-01

    Diffusion MRI (or dMRI) came into existence in the mid-1980s. During the last 25 years, diffusion MRI has been extraordinarily successful (with more than 300,000 entries on Google Scholar for diffusion MRI). Its main clinical domain of application has been neurological disorders, especially for the management of patients with acute stroke. It is also rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fiber structure and provide outstanding maps of brain connectivity. The ability to visualize anatomical connections between different parts of the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for neurosciences. The driving force of dMRI is to monitor microscopic, natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are thus used as a probe that can reveal microscopic details about tissue architecture, either normal or in a diseased state. PMID:22120012

  2. Real Diffusion-Weighted MRI Enabling True Signal Averaging and Increased Diffusion Contrast

    PubMed Central

    Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L

    2015-01-01

    This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale. PMID:26241680

  3. Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast.

    PubMed

    Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L

    2015-11-15

    This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale.

  4. Multiple-fiber reconstruction algorithms for diffusion MRI.

    PubMed

    Alexander, Daniel C

    2005-12-01

    This chapter reviews multiple-fiber reconstruction algorithms for diffusion magnetic resonance imaging (MRI) and provides some initial comparative results for two such algorithms, q-ball imaging and PASMRI, on data from a typical clinical diffusion MRI acquisition. The chapter highlights the problems with standard approaches, such as diffusion-tensor MRI, to motivate a recent set of alternative approaches. The review concentrates on the software implementation of the new techniques. Results of the preliminary comparison show that PASMRI recovers the principal directions of simple test functions more consistently than q-ball imaging and produces qualitatively better results on the test data set. Further simulations suggest that a moderate increase in data quality allows q-ball, which is much faster to run, to recover directions with consistency comparable to that of PASMRI on the test data.

  5. Can Dynamic Contrast-Enhanced MRI (DCE-MRI) and Diffusion-Weighted MRI (DW-MRI) Evaluate Inflammation Disease

    PubMed Central

    Zhu, Jianguo; Zhang, Faming; Luan, Yun; Cao, Peng; Liu, Fei; He, Wenwen; Wang, Dehang

    2016-01-01

    Abstract The aim of the study was to investigate diagnosis efficacy of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in Crohn's disease (CD). To find out the correlations between functional MRI parameters including Ktrans, Kep, Ve, Vp, and apparent diffusion coefficient (ADC) with a serologic biomarker. The relationships between pharmacokinetic parameters and ADC were also studied. Thirty-two patients with CD (22 men, 10 women; mean age: 30.5 years) and 18 healthy volunteers without any inflammatory disease (10 men, 8 women; mean age, 34.11 years) were enrolled into this approved prospective study. Pearson analysis was used to evaluate the correlation between Ktrans, Kep, Ve, Vp, and C-reactive protein (CRP), ADC, and CRP respectively. The diagnostic efficacy of the functional MRI parameters in terms of sensitivity and specificity were analyzed by receiver operating characteristic (ROC) curve analyses. Optimal cut-off values of each functional MRI parameters for differentiation of inflammatory from normal bowel were determined according to the Youden criterion. Mean value of Ktrans in the CD group was significantly higher than that of normal control group. Similar results were observed for Kep and Ve. On the contrary, the ADC value was lower in the CD group than that in the control group. Ktrans and Ve were shown to be correlated with CRP (r = 0.725, P < 0.001; r = 0.533, P = 0.002), meanwhile ADC showed negative correlation with CRP (r = −0.630, P < 0.001). There were negative correlations between the pharmacokinetic parameters and ADC, such as Ktrans to ADC (r = −0.856, P < 0.001), and Ve to ADC (r = −0.451, P = 0.01). The area under the curve (AUC) was 0.994 for Ktrans (P < 0.001), 0.905 for ADC (P < 0.001), 0.806 for Ve (P < 0.001), and 0.764 for Kep (P = 0.002). The cut-off point of the Ktrans was found to be 0.931 min–1. This value provided the best trade-off between

  6. Dipy, a library for the analysis of diffusion MRI data

    PubMed Central

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing. PMID:24600385

  7. Diffusion MRI/NMR magnetization equations with relaxation times

    NASA Astrophysics Data System (ADS)

    de, Dilip; Daniel, Simon

    2012-10-01

    Bloch-Torrey diffusion magnetization equation ignores relaxation effects of magnetization. Relaxation times are important in any diffusion magnetization studies of perfusion in tissues(Brain and heart specially). Bloch-Torrey equation cannot therefore describe diffusion magnetization in a real-life situation where relaxation effects play a key role, characteristics of tissues under examination. This paper describes derivations of two equations for each of the y and z component diffusion NMR/MRI magnetization (separately) in a rotating frame of reference, where rf B1 field is applied along x direction and bias magnetic field(Bo) is along z direction. The two equations are expected to further advance the science & technology of Diffusion MRI(DMRI) and diffusion functional MRI(DFMRI). These two techniques are becoming increasingly important in the study and treatment of neurological disorders, especially for the management of patients with acute stroke. It is rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fibre structure and provide models of brain connectivity.

  8. Hyperpolarized Gas Diffusion MRI for the Study of Atelectasis and Acute Respiratory Distress Syndrome

    PubMed Central

    Cereda, Maurizio; Xin, Yi; Kadlecek, Stephen; Hamedani, Hooman; Rajaei, Jennia; Clapp, Justin; Rizi, Rahim R.

    2014-01-01

    Considerable uncertainty remains about the best ventilator strategies for the mitigation of atelectasis and associated airspace stretch in patients with acute respiratory distress syndrome (ARDS). In addition to several immediate physiological effects, atelectasis increases the risk of ventilator-associated lung injury (VALI), which has been shown to significantly worsen ARDS outcomes. A number of lung imaging techniques have made substantial headway in clarifying the mechanisms of atelectasis. This paper reviews the contributions of CT, PET, and conventional MRI to understanding this phenomenon. In doing so, it also reveals several important shortcomings inherent to each of these approaches. Once these shortcomings have been made apparent, we describe how hyperpolarized gas magnetic resonance imaging (HP MRI)—a technique that is uniquely able to assess responses to mechanical ventilation and lung injury in peripheral airspaces—is poised to fill several of these knowledge gaps. The HP-MRI-derived apparent diffusion coefficient (ADC) quantifies the restriction of 3He diffusion by peripheral airspaces, thereby obtaining pulmonary structural information at an extremely small scale. Lastly, this paper reports the results of a series of experiments that measured ADC in mechanically ventilated rats in order to investigate (i) the effect of atelectasis on ventilated airspaces; (ii) the relationship between positive end-expiratory pressure (PEEP), hysteresis, and the dimensions of peripheral airspaces; and (iii) the ability of PEEP and surfactant to reduce airspace dimensions after lung injury. An increase in ADC was found to be a marker of atelectasis-induced overdistension. With recruitment, higher airway pressures were shown to reduce stretch rather than worsen it. Moving forward, HP MRI has significant potential to shed further light on the atelectatic processes that occur during mechanical ventilation. PMID:24920074

  9. Diffusion-weighted MRI in neuro-oncology.

    PubMed

    Baehring, Joachim M; Fulbright, Robert K

    2012-11-01

    Diffusion-weighted MRI (DW-MRI) provides image contrast dependent on the molecular movement of water. It has been most widely used in the diagnosis of cytotoxic edema secondary to acute cerebral ischemia, but has also proven useful in assessing tumor cellularity and grade, abscess formation, cysts and various forms of white matter disorders. Furthermore, DW-MRI is used to generate maps of subcortical white matter tracts and their relationship to structural brain lesions that may serve for preoperative planning and intraoperative guidance. We provide a comprehensive review of current practical applications of DW-MRI in the diagnosis and treatment of primary brain tumors, metastases and nonmetastatic neurologic complications of cancer. A detailed description of diffusion tensor imaging is beyond the scope of this review. We performed a comprehensive search of the PubMed database of the USA National Library of Medicine with use of various combinations of the following search terms: diffusion-weighted imaging, apparent diffusion coefficient, diffusion tensor imaging, diffusion tensor, brain, tumor, glioblastoma, lymphoma, primary CNS lymphoma, stroke, cancer, abscess, leukoencephalopathy, methotrexate, fluorouracil, capecitabine. We identified original articles and well-documented case reports of DW-MRI applications in patients with primary brain neoplasms, metastases and nonmetastatic neurologic complications that we judged to be of high impact on the field. We largely selected publications from the past 10 years, but did not exclude commonly referenced and highly regarded older publications. We also searched the reference lists of articles identified by this search strategy and selected those we judged relevant. Review articles are cited to provide readers with more details and more references than can be covered here.

  10. Estimation of Bounded and Unbounded Trajectories in Diffusion MRI

    PubMed Central

    Ning, Lipeng; Westin, Carl-Fredrik; Rathi, Yogesh

    2016-01-01

    Disentangling the tissue microstructural information from the diffusion magnetic resonance imaging (dMRI) measurements is quite important for extracting brain tissue specific measures. The autocorrelation function of diffusing spins is key for understanding the relation between dMRI signals and the acquisition gradient sequences. In this paper, we demonstrate that the autocorrelation of diffusion in restricted or bounded spaces can be well approximated by exponential functions. To this end, we propose to use the multivariate Ornstein-Uhlenbeck (OU) process to model the matrix-valued exponential autocorrelation function of three-dimensional diffusion processes with bounded trajectories. We present detailed analysis on the relation between the model parameters and the time-dependent apparent axon radius and provide a general model for dMRI signals from the frequency domain perspective. For our experimental setup, we model the diffusion signal as a mixture of two compartments that correspond to diffusing spins with bounded and unbounded trajectories, and analyze the corpus-callosum in an ex-vivo data set of a monkey brain. PMID:27064745

  11. Formation ages and thermal histories of fracture-filling hematite and Mn-oxide in Precambrian basement from (U-Th)/He dating and 4He/3He diffusion experiments

    NASA Astrophysics Data System (ADS)

    Reiners, P. W.; Shuster, D. L.; Evenson, N.

    2015-12-01

    Secondary Fe- and Mn-oxides in bedrock form from fluid flow associated with events that may not be preserved in stratigraphic records. (U-Th)/He chronometry is well suited for dating these phases but potential diffusive loss of 4He can complicate interpretations. Here we show that measuring He diffusion kinetics of dated samples can resolve whether ages record formation or cooling. Proterozoic (1.6 Ga) volcanics in Aravaipa Canyon, southern Arizona, contain 1.4-1.6-Ga quartz-vein-hosted hematite, as well as 1.0-1.1-Ga hematite precipitated on fractures and overlain by 20-30-Ma Mn-oxide. Hematite 4He/3He age spectra and multi-domain (MD) diffusion models are consistent with a small proportion (4-10%) of domains between 1-500 nm, larger proportions (5-15%) of 1-10 μm domains, and a majority (60-75%) of domains of 80-150 μm. Although the smallest domains would have extremely low He retentivity, models predict bulk "closure temperatures" of 180-200 °C. The 1.4-1.6-Ga quartz-vein hematite likely formed soon after eruption of its host rock, and has not been hotter than ~250 °C for Ma durations. The 1.0-1.1 Ga age of the fracture-fill hematite likely also records the timing of precipitation, but from fluids associated with nearby diabase of the same age. In contrast, the 4He/3He MD model of the 20-30-Ma Mn-oxide requires ~80% of 1-100 nm domains and 20% between 1-10 μm. Although the Mn-oxide likely formed at the same time as the hematite it coats, its age records transient heating from overlying 28-Ma volcanics. In all cases, approximate crystal sizes observed in SEM images are consistent with the predictions of MD modeling, and support the assumed kinetics of He diffusion (~147-157 kJ/mol and ~2.2×10-4 cm2/s for hematite, and ~134 kJ/mol and ~4×10-3 cm2/s for Mn-oxide).These results suggest that specular hematite can have bulk He closure temperatures at least as high as 200 °C and in some cases record precipitation; this is supported by our results on specularite

  12. Non-local means variants for denoising of diffusion-weighted and diffusion tensor MRI.

    PubMed

    Wiest-Daesslé, Nicolas; Prima, Sylvain; Coupé, Pierrick; Morrissey, Sean Patrick; Barillot, Christian

    2007-01-01

    Diffusion tensor imaging (DT-MRI) is very sensitive to corrupting noise due to the non linear relationship between the diffusion-weighted image intensities (DW-MRI) and the resulting diffusion tensor. Denoising is a crucial step to increase the quality of the estimated tensor field. This enhanced quality allows for a better quantification and a better image interpretation. The methods proposed in this paper are based on the Non-Local (NL) means algorithm. This approach uses the natural redundancy of information in images to remove the noise. We introduce three variations of the NL-means algorithms adapted to DW-MRI and to DT-MRI. Experiments were carried out on a set of 12 diffusion-weighted images (DW-MRI) of the same subject. The results show that the intensity based NL-means approaches give better results in the context of DT-MRI than other classical denoising methods, such as Gaussian Smoothing, Anisotropic Diffusion and Total Variation.

  13. Experiments on polarization-dependent transport in 3He systems

    NASA Astrophysics Data System (ADS)

    Candela, D.; McAllaster, D. R.; Wei, L.-J.; Kalechofsy, N.

    1994-03-01

    Spin and momentum transport experiments are described for very dilute 3He- 4He mixtures and pure 3He brute-force polarized by a static field. Spin diffusion and rotation were observed in very dilute mixtures using a spin-wave resonance technique, and the viscosity increase due to polarization was observed using a vibrating wire. The mixture results are all well fit by the recent kinetic-equation calculations of Mullin and Jeon. Spin echoes were used to study transverse spin diffusion in pure 3He, providing the first clear evidence for polarization-induced relaxation-time anisotropy in a degenerate Fermi liquid.

  14. Apparent exchange rate mapping with diffusion MRI.

    PubMed

    Lasič, Samo; Nilsson, Markus; Lätt, Jimmy; Ståhlberg, Freddy; Topgaard, Daniel

    2011-08-01

    Water exchange through the cell membranes is an important feature of cells and tissues. The rate of exchange is determined by factors such as membrane lipid composition and organization, as well as the type and activity of aquaporins. A method for noninvasively estimating the rate of water exchange would be useful for characterizing pathological conditions, e.g., tumors, multiple sclerosis, and ischemic stroke, expected to be associated with a change of the membrane barrier properties. This study describes the filter exchange imaging method for determining the rate of water exchange between sites having different apparent diffusion coefficients. The method is based on the filter-exchange pulsed gradient spin-echo NMR spectroscopy experiment, which is here modified to be compatible with the constraints of clinical MR scanners. The data is analyzed using a model-free approach yielding maps of the apparent exchange rate, here being introduced in analogy with the concept of the apparent diffusion coefficient. Proof-of-principle experiments are performed on microimaging and whole-body clinical scanners using yeast suspension phantoms. The limitations and appropriate experimental conditions are examined. The results demonstrate that filter exchange imaging is a fast and reliable method for characterizing exchange, and that it has the potential to become a powerful diagnostic tool.

  15. Diffusion-weighted 19F-MRI of lung periphery: Influence of pressure and air-SF6 composition on apparent diffusion coefficients.

    PubMed

    Ruiz-Cabello, Jesús; Pérez-Sánchez, José Manuel; Pérez de Alejo, Rigoberto; Rodríguez, Ignacio; González-Mangado, Nicolás; Peces-Barba, Germán; Cortijo, Manuel

    2005-08-25

    Lung functional magnetic resonance imaging (MRI) has become a reality using different inert hyperpolarized gases, such as 3He and 129Xe, which have provided an extraordinary boost in lung imaging and has also attracted interest to other chemically inert gaseous contrast agents. In this context, we have recently demonstrated the first diffusion-weighted images using thermally polarized inhaled sulfur hexafluoride (SF6) in small animals. The aim of this study was to evaluate whether or not the diffusion coefficient of this fluorinated gas is sensitive to pulmonary structure, gas concentration and air pressure in the airways. Diffusion coefficients of SF6 (both pure and in air mixtures) measured in vitro at different pressures and 20 degrees C showed an excellent agreement with theoretical values. Measurements of diffusion coefficients were also performed in vivo and post-mortem on healthy rats, achieving satisfactory signal-to-noise ratios (SNRs), and SF6 gas was found to be in an almost completely restricted diffusion regime in the lung, i.e., the transport by molecular diffusion is delayed by collisions with barriers such as the alveolar septa. This observed low diffusivity means that this gas will be less sensitive to structural changes in the lungs than other magnetic resonance sensitive gas such as 3He, particularly at human scale. However, it is still possible that SF6 plays a role since it opens a new structural window. Thus, the interest of researchers in delimiting the important limiting technical factors that makes this process very challenging is obvious. Among them, T2 relaxation is very fast, so gradient systems with very fast switching rate and probably large radiofrequency (RF) power and high field systems will be needed for hexafluoride to be used in human studies.

  16. Measurement tensors in diffusion MRI: generalizing the concept of diffusion encoding.

    PubMed

    Westin, Carl-Fredrik; Szczepankiewicz, Filip; Pasternak, Ofer; Ozarslan, Evren; Topgaard, Daniel; Knutsson, Hans; Nilsson, Markus

    2014-01-01

    In traditional diffusion MRI, short pulsed field gradients (PFG) are used for the diffusion encoding. The standard Stejskal-Tanner sequence uses one single pair of such gradients, known as single-PFG (sPFG). In this work we describe how trajectories in q-space can be used for diffusion encoding. We discuss how such encoding enables the extension of the well-known scalar b-value to a tensor-valued entity we call the diffusion measurement tensor. The new measurements contain information about higher order diffusion propagator covariances not present in sPFG. As an example analysis, we use this new information to estimate a Gaussian distribution over diffusion tensors in each voxel, described by its mean (a diffusion tensor) and its covariance (a 4th order tensor).

  17. Evaluating the accuracy of diffusion MRI models in white matter.

    PubMed

    Rokem, Ariel; Yeatman, Jason D; Pestilli, Franco; Kay, Kendrick N; Mezer, Aviv; van der Walt, Stefan; Wandell, Brian A

    2015-01-01

    Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of commonly used models have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MRI models. The diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian distribution. Sparse fascicle models (SFM) summarize the signal as a sum of signals originating from a collection of fascicles oriented in different directions. We use cross-validation to assess model-accuracy at different gradient amplitudes (b-values) throughout the white matter. Specifically, we fit each model to all the white matter voxels in one data set and then use the model to predict a second, independent data set. This is the first evaluation of model-accuracy of these models. In most of the white matter the DTM predicts the data more accurately than test-retest reliability; SFM model-accuracy is higher than test-retest reliability and also higher than the DTM model-accuracy, particularly for measurements with (a) a b-value above 1000 in locations containing fiber crossings, and (b) in the regions of the brain surrounding the optic radiations. The SFM also has better parameter-validity: it more accurately estimates the fiber orientation distribution function (fODF) in each voxel, which is useful for fiber tracking.

  18. Diffeomorphic Image Registration of Diffusion MRI Using Spherical Harmonics

    PubMed Central

    Geng, Xiujuan; Ross, Thomas J.; Gu, Hong; Shin, Wanyong; Zhan, Wang; Chao, Yi-Ping; Lin, Ching-Po; Schuff, Norbert; Yang, Yihong

    2013-01-01

    Non-rigid registration of diffusion MRI is crucial for group analyses and building white matter and fiber tract atlases. Most current diffusion MRI registration techniques are limited to the alignment of diffusion tensor imaging (DTI) data. We propose a novel diffeomorphic registration method for high angular resolution diffusion images by mapping their orientation distribution functions (ODFs). ODFs can be reconstructed using q-ball imaging (QBI) techniques and represented by spherical harmonics (SHs) to resolve intra-voxel fiber crossings. The registration is based on optimizing a diffeomorphic demons cost function. Unlike scalar images, deforming ODF maps requires ODF reorientation to maintain its consistency with the local fiber orientations. Our method simultaneously reorients the ODFs by computing a Wigner rotation matrix at each voxel, and applies it to the SH coefficients during registration. Rotation of the coefficients avoids the estimation of principal directions, which has no analytical solution and is time consuming. The proposed method was validated on both simulated and real data sets with various metrics, which include the distance between the estimated and simulated transformation fields, the standard deviation of the general fractional anisotropy and the directional consistency of the deformed and reference images. The registration performance using SHs with different maximum orders were compared using these metrics. Results show that the diffeomorphic registration improved the affine alignment, and registration using SHs with higher order SHs further improved the registration accuracy by reducing the shape difference and improving the directional consistency of the registered and reference ODF maps. PMID:21134814

  19. Reconstruction of scattered data in fetal diffusion MRI.

    PubMed

    Oubel, Estanislao; Koob, Mériam; Studholme, Colin; Dietemann, Jean-Louis; Rousseau, François

    2012-01-01

    In this paper we present a method for reconstructing diffusion-weighted MRI data on regular grids from scattered data. The proposed method has the advantage that no specific diffusion model needs to be assumed. Previous work assume the tensor model, but this is not suitable under certain conditions like intravoxel orientational heterogeneity (IVOH). Data reconstruction is particularly important when studying the fetal brain in utero, since registration methods applied for movement and distortion correction produce scattered data in spatial and diffusion domains. We propose the use of a groupwise registration method, and a dual spatio-angular interpolation by using radial basis functions (RBF). Leave-one-out experiments performed on adult data showed a high accuracy of the method. The application to fetal data showed an improvement in the quality of the sequences according to objective criteria based on fractional anisotropy (FA) maps, and differences in the tractography results.

  20. Denoising of diffusion MRI using random matrix theory.

    PubMed

    Veraart, Jelle; Novikov, Dmitry S; Christiaens, Daan; Ades-Aron, Benjamin; Sijbers, Jan; Fieremans, Els

    2016-11-15

    We introduce and evaluate a post-processing technique for fast denoising of diffusion-weighted MR images. By exploiting the intrinsic redundancy in diffusion MRI using universal properties of the eigenspectrum of random covariance matrices, we remove noise-only principal components, thereby enabling signal-to-noise ratio enhancements. This yields parameter maps of improved quality for visual, quantitative, and statistical interpretation. By studying statistics of residuals, we demonstrate that the technique suppresses local signal fluctuations that solely originate from thermal noise rather than from other sources such as anatomical detail. Furthermore, we achieve improved precision in the estimation of diffusion parameters and fiber orientations in the human brain without compromising the accuracy and spatial resolution.

  1. Diffusion-Tensor MRI Based Skeletal Muscle Fiber Tracking.

    PubMed

    Damon, Bruce M; Buck, Amanda K W; Ding, Zhaohua

    2011-11-01

    A skeletal muscle's function is strongly influenced by the internal organization and geometric properties of its fibers, a property known as muscle architecture. Diffusion-tensor magnetic resonance imaging-based fiber tracking provides a powerful tool for non-invasive muscle architecture studies, has three-dimensional sensitivity, and uses a fixed frame of reference. Significant advances have been made in muscle fiber tracking technology, including defining seed points for fiber tracking, quantitatively characterizing muscle architecture, implementing denoising procedures, and testing validity and repeatability. Some examples exist of how these data can be integrated with those from other advanced MRI and computational methods to provide novel insights into muscle function. Perspectives are offered regarding future directions in muscle diffusion-tensor imaging, including needs to develop an improved understanding for the microstructural basis for reduced and anisotropic diffusion, establish the best practices for data acquisition and analysis, and integrate fiber tracking with other physiological data.

  2. Reconstruction of Scattered Data in Fetal Diffusion MRI

    PubMed Central

    Oubel, Estanislao; Koob, Mériam; Studholme, Colin; Dietemann, Jean-Louis; Rousseau, François

    2012-01-01

    In this paper we present a method for reconstructing diffusion-weighted MRI data on regular grids from scattered data. The proposed method has the advantage that no specific diffusion model needs to be assumed. Previous work assume the tensor model, but this is not suitable under certain conditions like intravoxel orientational heterogeneity (IVOH). Data reconstruction is particularly important when studying the fetal brain in utero, since registration methods applied for movement and distortion correction produce scattered data in spatial and diffusion domains. We propose the use of a groupwise registration method, and a dual spatio-angular interpolation by using radial basis functions (RBF). Leave-one-out experiments performed on adult data showed a high accuracy of the method. The application to fetal data showed an improvement in the quality of the sequences according to objective criteria based on fractional anisotropy (FA) maps, and differences in the tractography results. PMID:21636311

  3. D-BRAIN: Anatomically Accurate Simulated Diffusion MRI Brain Data.

    PubMed

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT algorithms have been developed. However, it is not clear how accurately these methods reproduce the WM bundle characteristics in real-world conditions, such as in the presence of noise, partial volume effect, and a limited spatial and angular resolution. The difficulty lies in the lack of a realistic brain phantom on the one hand, and a sufficiently accurate way of modeling the acquisition-related degradation on the other. This paper proposes a software phantom that approximates a human brain to a high degree of realism and that can incorporate complex brain-like structural features. We refer to it as a Diffusion BRAIN (D-BRAIN) phantom. Also, we propose an accurate model of a (DW) MRI acquisition protocol to allow for validation of methods in realistic conditions with data imperfections. The phantom model simulates anatomical and diffusion properties for multiple brain tissue components, and can serve as a ground-truth to evaluate FT algorithms, among others. The simulation of the acquisition process allows one to include noise, partial volume effects, and limited spatial and angular resolution in the images. In this way, the effect of image artifacts on, for instance, fiber tractography can be investigated with great detail. The proposed framework enables reliable and quantitative evaluation of DW-MR image processing and FT algorithms at the level of large-scale WM structures. The effect of noise levels and other data characteristics on cortico-cortical connectivity and tractography-based grey matter parcellation can be investigated as well.

  4. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  5. Diffusion MRI of the spinal cord: from structural studies to pathology.

    PubMed

    Cohen, Yoram; Anaby, Debbie; Morozov, Darya

    2017-03-01

    Diffusion MRI is extensively used to study brain microarchitecture and pathologies, and water diffusion appears highly anisotropic in the white matter (WM) of the spinal cord (SC). Despite these facts, the use of diffusion MRI to study the SC, which has increased in recent years, is much less common than that in the brain. In the present review, after a brief outline of early studies of diffusion MRI (DWI) and diffusion tensor MRI (DTI) of the SC, we provide a short survey on DTI and on diffusion MRI methods beyond the tensor that have been used to study SC microstructure and pathologies. After introducing the porous view of WM and describing the q-space approach and q-space diffusion MRI (QSI), we describe other methodologies that can be applied to study the SC. Selected applications of the use of DTI, QSI, and other more advanced diffusion MRI methods to study SC microstructure and pathologies are presented, with some emphasis on the use of less conventional diffusion methodologies. Because of length constraints, we concentrate on structural studies and on a few selected pathologies. Examples of the use of diffusion MRI to study dysmyelination, demyelination as in experimental autoimmune encephalomyelitis and multiple sclerosis, amyotrophic lateral sclerosis, and traumatic SC injury are presented. We conclude with a brief summary and a discussion of challenges and future directions for diffusion MRI of the SC. Copyright © 2016 John Wiley & Sons, Ltd.

  6. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    PubMed

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  7. Rotationally invariant clustering of diffusion MRI data using spherical harmonics

    NASA Astrophysics Data System (ADS)

    Liptrot, Matthew; Lauze, François

    2016-03-01

    We present a simple approach to the voxelwise classification of brain tissue acquired with diffusion weighted MRI (DWI). The approach leverages the power of spherical harmonics to summarise the diffusion information, sampled at many points over a sphere, using only a handful of coefficients. We use simple features that are invariant to the rotation of the highly orientational diffusion data. This provides a way to directly classify voxels whose diffusion characteristics are similar yet whose primary diffusion orientations differ. Subsequent application of machine-learning to the spherical harmonic coefficients therefore may permit classification of DWI voxels according to their inferred underlying fibre properties, whilst ignoring the specifics of orientation. After smoothing apparent diffusion coefficients volumes, we apply a spherical harmonic transform, which models the multi-directional diffusion data as a collection of spherical basis functions. We use the derived coefficients as voxelwise feature vectors for classification. Using a simple Gaussian mixture model, we examined the classification performance for a range of sub-classes (3-20). The results were compared against existing alternatives for tissue classification e.g. fractional anisotropy (FA) or the standard model used by Camino.1 The approach was implemented on both two publicly-available datasets: an ex-vivo pig brain and in-vivo human brain from the Human Connectome Project (HCP). We have demonstrated how a robust classification of DWI data can be performed without the need for a model reconstruction step. This avoids the potential confounds and uncertainty that such models may impose, and has the benefit of being computable directly from the DWI volumes. As such, the method could prove useful in subsequent pre-processing stages, such as model fitting, where it could inform about individual voxel complexities and improve model parameter choice.

  8. Reconstruction of Scattered Data in Fetal Diffusion MRI

    PubMed Central

    Oubel, Estanislao; Koob, Meriam; Studholme, Colin; Dietemann, Jean-Louis; Rousseau, François

    2012-01-01

    In this paper we present a method for reconstructing D-MRI data on regular grids from sparse data without assuming specific diffusion models. This is particularly important when studying the fetal brain in utero, since registration methods applied for movement and distortion correction produce scattered data in spatial and angular (gradient) domains. We propose the use of a groupwise registration method, and a dual spatio-angular interpolation by using radial basis functions (RBF). Experiments performed on adult data showed a high accuracy of the method when estimating diffusion images in unavailable directions. The application to fetal data showed an improvement in the quality of the sequences according to criteria based on fractional anisotropy (FA) maps, and differences in the tractography results. PMID:20879277

  9. [Brain development of infant and MRI by diffusion tensor imaging].

    PubMed

    Dubois, J; Dehaene-Lambertz, G; Mangin, J-F; Le Bihan, D; Hüppi, P S; Hertz-Pannier, L

    2012-01-01

    Studying how the brain develops and becomes functional is important to understand how the man has been able to develop specific cognitive abilities, and to comprehend the complexity of some developmental pathologies. Thanks to magnetic resonance imaging (MRI), it is now possible to image the baby's immature brain and to consider subtle correlations between the brain anatomical development and the early acquisition of cognitive functions. Dedicated methodologies for image acquisition and post-treatment must then be used because the size of cerebral structures and the image contrast are very different in comparison with the adult brain, and because the examination length is a major constraint. Two recent studies have evaluated the developing brain under an original perspective. The first one has focused on cortical folding in preterm newborns, from 6 to 8 months of gestational age, assessed with T2-weighted conventional MRI. The second study has mapped the organization and maturation of white matter fiber bundles in 1- to 4-month-old healthy infants with diffusion tensor imaging (DTI). Both studies have enabled to highlight spatio-temporal differences in the brain regions' maturation, as well as early anatomical asymmetries between cerebral hemispheres. These studies emphasize the potential of MRI to evaluate brain development compared with the infant's psychomotor acquisitions after birth.

  10. Stability and Spectra of Small 3He-4He Clusters

    NASA Astrophysics Data System (ADS)

    Navarro, J.; Fantoni, S.; Guardiola, R.; Zuker, A.

    Diffusion Monte Carlo calculations have been systematically performed to analyze the stability of small mixed 3He-4He clusters, as well as their excitation spectra. The picture that emerges is that of systems with strong shell effects whose binding and excitation energies are essentially determined by the monopole properties of an effective Hamiltonian.

  11. Minimal mass size of a stable {sup 3}He cluster

    SciTech Connect

    Guardiola, R.; Navarro, J.

    2005-03-01

    The minimal number of {sup 3}He atoms required to form a bound cluster has been estimated by means of a diffusion Monte Carlo procedure within the fixed-node approximation. Several importance sampling wave functions have been employed in order to consider different shell-model configurations. The resulting upper bound for the minimal number is 32 atoms.

  12. Regularized spherical polar fourier diffusion MRI with optimal dictionary learning.

    PubMed

    Cheng, Jian; Jiang, Tianzi; Deriche, Rachid; Shen, Dinggang; Yap, Pew-Thian

    2013-01-01

    Compressed Sensing (CS) takes advantage of signal sparsity or compressibility and allows superb signal reconstruction from relatively few measurements. Based on CS theory, a suitable dictionary for sparse representation of the signal is required. In diffusion MRI (dMRI), CS methods proposed for reconstruction of diffusion-weighted signal and the Ensemble Average Propagator (EAP) utilize two kinds of Dictionary Learning (DL) methods: 1) Discrete Representation DL (DR-DL), and 2) Continuous Representation DL (CR-DL). DR-DL is susceptible to numerical inaccuracy owing to interpolation and regridding errors in a discretized q-space. In this paper, we propose a novel CR-DL approach, called Dictionary Learning - Spherical Polar Fourier Imaging (DL-SPFI) for effective compressed-sensing reconstruction of the q-space diffusion-weighted signal and the EAP. In DL-SPFI, a dictionary that sparsifies the signal is learned from the space of continuous Gaussian diffusion signals. The learned dictionary is then adaptively applied to different voxels using a weighted LASSO framework for robust signal reconstruction. Compared with the start-of-the-art CR-DL and DR-DL methods proposed by Merlet et al. and Bilgic et al., respectively, our work offers the following advantages. First, the learned dictionary is proved to be optimal for Gaussian diffusion signals. Second, to our knowledge, this is the first work to learn a voxel-adaptive dictionary. The importance of the adaptive dictionary in EAP reconstruction will be demonstrated theoretically and empirically. Third, optimization in DL-SPFI is only performed in a small subspace resided by the SPF coefficients, as opposed to the q-space approach utilized by Merlet et al. We experimentally evaluated DL-SPFI with respect to L1-norm regularized SPFI (L1-SPFI), which uses the original SPF basis, and the DR-DL method proposed by Bilgic et al. The experiment results on synthetic and real data indicate that the learned dictionary produces

  13. Complete fourier direct magnetic resonance imaging (CFD-MRI) for diffusion MRI

    PubMed Central

    Özcan, Alpay

    2013-01-01

    The foundation for an accurate and unifying Fourier-based theory of diffusion weighted magnetic resonance imaging (DW–MRI) is constructed by carefully re-examining the first principles of DW–MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW–MRI signal by including all of its elements (e.g., imaging gradients) using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time) and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW–MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex vivo baboon brain. PMID:23596401

  14. DNP for polarizing liquid {sup 3}He

    SciTech Connect

    Uemtasu, H.; Iwata, T.; Kato, S.; Michigami, T.; Ohizumi, S.; Shishido, T.; Tanaka, A.; Toyama, K.; Tajima, Y.; Yoshida, H. Y.; Kuriyama, N.

    2008-02-06

    Using DNP with zeolite powders and TEMPO, we have developed a method to enhance polarization of liquid {sup 3}He. At magnetic field of 2.5 T and a temperature of around 1.5 K, we have obatined polarization enhancement of liquid {sup 3}He, 2.34 and -1.59 for positive and negative enhancements, respectively.

  15. Vortices in rotating superfluid 3He.

    PubMed

    Lounasmaa, O V; Thuneberg, E

    1999-07-06

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe.

  16. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  17. Assessing the sensitivity of diffusion MRI to detect neuronal activity directly

    PubMed Central

    Bai, Ruiliang; Stewart, Craig V.; Plenz, Dietmar; Basser, Peter J.

    2016-01-01

    Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity. PMID:26941239

  18. Assessing the sensitivity of diffusion MRI to detect neuronal activity directly.

    PubMed

    Bai, Ruiliang; Stewart, Craig V; Plenz, Dietmar; Basser, Peter J

    2016-03-22

    Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity.

  19. Image quality transfer and applications in diffusion MRI.

    PubMed

    Alexander, Daniel C; Zikic, Darko; Ghosh, Aurobrata; Tanno, Ryutaro; Wottschel, Viktor; Zhang, Jiaying; Kaden, Enrico; Dyrby, Tim B; Sotiropoulos, Stamatios N; Zhang, Hui; Criminisi, Antonio

    2017-03-03

    This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard "single-shell" data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems.

  20. Coherent Photoproduction of pi^+ from 3/^He

    SciTech Connect

    Rakhsha Nasseripour, Barry Berman

    2011-03-01

    We have measured the differential cross section for the $\\gamma$$^3$He$\\rightarrow \\pi^+ t$ reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid $^3$He target. The differential cross sections for the $\\gamma$$^3$He$\\rightarrow \\pi^+ t$ reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.

  1. Influence of BOLD Contributions to Diffusion fMRI Activation of the Visual Cortex

    PubMed Central

    Williams, Rebecca J.; Reutens, David C.; Hocking, Julia

    2016-01-01

    Reliance on the hemodynamic response as a surrogate marker of neural activity imposes an intrinsic limit on the spatial specificity of functional MRI. An alternative approach based on diffusion-weighted functional MRI (DfMRI) has been reported as a contrast less reliant on hemodynamic effects, however current evidence suggests that both hemodynamic and unique neural sources contribute to the diffusion signal. Here we compare activation patterns obtained with the standard blood oxygenation level-dependent (BOLD) contrast to DfMRI in order to gain a deeper understanding of how the BOLD proportion contributes to the observable diffusion signal. Both individual and group-level activation patterns obtained with DfMRI and BOLD to a visual field stimulation paradigm were analyzed. At the individual level, the DfMRI contrast showed a strong, positive relationship between the volumes of cortex activated in response to quadrant- and hemi-field visual stimulation. This was not observed in the corresponding BOLD experiment. Overall, the DfMRI response indicated less between-subject variability, with random effects analyses demonstrating higher statistical values at the peak voxel for DfMRI. Furthermore, the spatial extent of the activation was more restricted to the primary visual region for DfMRI than BOLD. However, the diffusion signal was sensitive to the hemodynamic response in a manner dependent on experimental manipulation. It was also limited by its low signal-to-noise ratio (SNR), demonstrating lower sensitivity than BOLD. Together these findings both support DfMRI as a contrast that bears a closer spatial relationship to the underlying neural activity than BOLD, and raise important caveats regarding its utilization. Models explaining the DfMRI signal change need to consider the dynamic vascular contributions that may vary with neural activity. PMID:27445654

  2. Superfluid 3He in ``nematically ordered'' aerogel

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vladimir

    2014-03-01

    Liquid 3He immersed in aerogel allows investigation of the influence of impurities on unconventional superfluidity. In most of such experiments silica aerogels are used. These aerogels consist of thin strands which form a ``wisp.'' Although it is established that superfluid phases of 3He in silica aerogels (A-like and B-like) have the same order parameters as A and B phases of bulk 3He, many new phenomena were observed. In particular, it was found that global anisotropy of aerogel (e.g. caused by squeezing or stretching) can orient the order parameter. Depending on prehistory and on the type of the anisotropy the A-like phase may be homogeneous or in a state with random orbital part of the order parameter. Theory predicts that a large stretching anisotropy may even influence the order parameter structure: polar phase (or A phase with polar distortion), which are not realized in bulk 3He, may become more favorable than pure A phase. Large stretching anisotropy is hardly achievable in silica aerogel. Therefore in experiments described in the talk we used a new type of aerogel, consisting of Al2O3 . H2O strands which are parallel to each other, i.e. this aerogel may be considered as infinitely stretched. We found that the superfluid phase diagram of 3He in such ``nematically ordered'' aerogel is different from the case of 3He in silica aerogel and that both observed A and B phases have large polar distortion. This distortion is larger at low pressures and grows on warming. There are indications that a pure polar phase appears near the superfluid transition temperature. Recent results will be also presented.

  3. The multiuniverse transition in superfluid 3He

    NASA Astrophysics Data System (ADS)

    Bunkov, Yury

    2013-10-01

    The symmetry-breaking phase transitions of the universe and of superfluid 3He may lead to the formation of different states with different order parameters. In both cases the energy potential below the transition temperature has a complicated multidimensional profile with many local minima and saddle points, which correspond to different states. Consequently, not only topological defects, but also islands of different metastable states can be created. Using 3He we can analyse the properties and experimental consequences of such transitions and, in particular, the first-order phase transition between the two low symmetry states.

  4. The multiuniverse transition in superfluid 3He.

    PubMed

    Bunkov, Yury

    2013-10-09

    The symmetry-breaking phase transitions of the universe and of superfluid (3)He may lead to the formation of different states with different order parameters. In both cases the energy potential below the transition temperature has a complicated multidimensional profile with many local minima and saddle points, which correspond to different states. Consequently, not only topological defects, but also islands of different metastable states can be created. Using (3)He we can analyse the properties and experimental consequences of such transitions and, in particular, the first-order phase transition between the two low symmetry states.

  5. The influence of restricted geometry of diamagnetic nanoporous media on 3He relaxation

    NASA Astrophysics Data System (ADS)

    Alakshin, E. M.; Gazizulin, R. R.; Zakharov, M. Yu.; Klochkov, A. V.; Morozov, E. V.; Salikhov, T. M.; Safin, T. R.; Safiullin, K. R.; Tagirov, M. S.; Shabanova, O. B.

    2015-01-01

    This is an experimental study of the spin kinetics of 3He in contact with diamagnetic samples of inverse opals SiO2, and LaF3 nanopowder. It is demonstrated that the nuclear magnetic relaxation of the absorbed 3He occurs due to the modulation of dipole-dipole interaction by the quantum motion in the two-dimensional film. It is found that the relaxation of liquid 3He occurs through a spin diffusion to the absorption layer, and that the restricted geometry of diamagnetic nanoporous media has an influence on the 3He relaxation.

  6. Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls

    PubMed Central

    O’Donnell, Lauren J.; Pasternak, Ofer

    2014-01-01

    One key pitfall in diffusion magnetic resonance imaging (dMRI) clinical neuroimaging research is the challenge of understanding and interpreting the results of a complex analysis pipeline. The sophisticated algorithms employed by the analysis software, combined with the relatively non-specific nature of many diffusion measurements, lead to challenges in interpretation of the results. This paper is aimed at an intended audience of clinical researchers who are learning about dMRI or trying to interpret dMRI results, and who may be wondering “Does dMRI tell us anything about the white matter?” We present a critical review of dMRI methods and measures used in clinical neuroimaging research, focusing on the most commonly used analysis methods and the most commonly reported measures. We describe important pitfalls in every section, and provide extensive references for the reader interested in more detail. PMID:25278106

  7. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI

    PubMed Central

    Kancherla, Swarupa; Kohler, William J.; van der Merwe, Yolandi

    2016-01-01

    Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI). Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI) was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively. PMID:27768755

  8. Neutron Polarizers Based on Polarized 3He

    SciTech Connect

    William M. Snow

    2005-05-01

    The goal of this work, which is a collaborative effort between Indiana University, NIST, and Hamilton College, is to extend the technique of polarized neutron scattering into new domains by the development and application of polarized 3He-based neutron spin filters. After the IPNS experiment which measured Zeeman sp[litting in surface scattered neutrons using a polarized 3He cell as a polarization analyzer transporterd by car from Bloomington to Chicago, the Indiana work focused on technical developments to improve the 3He polarization of the Indiana compression system. The compression system was rebuilt with a new valve system which allows gas trapped in the dead volume of the compressors at the end of the piston stroke to be exhausted and conducted back to the optical pumping cell where it can be repolarized. We also incorporated a new intermediate storage volume made at NIST from 1720 glass which will reduce polarization losses between the compressors. Furthermore, we improved the stability of the 1083 nm laser by cooling the LMA rod. We achieved 60% 3he polarization in the optical pumping cell and 87% preservation of the polarization during compression. In parallel we built a magnetically-shielded transport solenoid for use on neutron scattering instruments such as POSY which achieves a fractional field uniformity of better than 10-3 per cm. The field was mapped using an automated 3D field mapping system for in-situ measurement of magnetic field gradients Diluted magnetic semiconductors offer many exciting opportunities for investigation of spintronic effects in solids and are certain to be one of the most active areas of condensed matter physics over then next several years. These materials can act as efficient spin injectors for devices that make use of spin-dependent transport phenomena. We just (late July 2002) finished a neutron reflectivity experiment at NIST on a GaMnAs trilayer film. This material is a ferromagnetic semiconductor which is of interest

  9. Spinal tanycytic ependymoma with diffusion restriction on MRI.

    PubMed

    Tosun, O; Turkoglu, O F; Ozmen, E K; Onursever, A; Arslan, H

    2012-03-01

    Tanycytic ependymoma is a rare spindle-cell variant of ependymoma derived from tanycytes. Primitive neuroectodermal tumors usually have diffusion restriction, whereas ependymomas do not. Here, we present a case of tanycytic ependymoma with diffusion restriction. As far we are aware, this is the first case of tanycytic ependymoma in the English literature with diffusion restriction.

  10. Pomeranchuk cell for hyperpolarized 3He based on the brute force method

    NASA Astrophysics Data System (ADS)

    Makino, Seiji; Tanaka, Masayoshi; Ueda, Kunihiro; Fujiwara, Mamoru; Fujimura, Hisako; Yosoi, Masaru; Ohta, Takeshi; Frossati, Giorgio; de Waard, Arlette; Rouille, Gerard

    2014-09-01

    MRI (Magnetic Resonance Imaging) has been used for the medical diagnosis as a radiation-free imaging equipment. Since the proton has been mainly used for medical MRI, usefulness has been rather restrictive. As an example for expanding the range of applicability, MRI with hyperpolarized 3He gas has been used for the lung disease. Here, ``hyperpolarized'' means ``polarized higher than the thermal equilibrium polarization.'' For producing a large amount of hyperpolarized 3He gas at a time, we have been developing a hyperpolarization technique based on the brute force method which uses an ultralow temperature of a few mK and a strong magnetic field around 17 T in combination with the principle of the Pomeranchuk cooling. The Pomeranchuk cell made with non-metallic materials of small heat capacity is attached to the 3He/4He dilution refrigerator using a sintered silver allowing large heat conduction. After the sensors to monitor the temperature and pressure of 3He are calibrated and the Pomeranchuk cell is constructed, the system is tested. Then, the solidification of 3He and the measurement of NMR (Nuclear Magnetic Resonance) signals of 3He under the magnetic field of 17 T are carried out. The current status is reported in this talk.

  11. Probing white-matter microstructure with higher-order diffusion tensors and susceptibility tensor MRI

    PubMed Central

    Liu, Chunlei; Murphy, Nicole E.; Li, Wei

    2012-01-01

    Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains. PMID:23507987

  12. 3He: cosmological and atomic physics experiments.

    PubMed

    Bunkov, Yuriy M

    2008-08-28

    Because the superfluid 3He order parameter exhibits many similarities with that of our Universe, the superfluid condensate may be considered as a quantum vacuum that carries various types of quasiparticles and topological defects. The condensate thus provides a test system for the experimental investigation of many general physics problems in cosmology, atomic or nuclear physics that are otherwise difficult or even impossible to investigate experimentally.

  13. Noninvasive Localization of Prostate Cancer via Diffusion Sensitive MRI

    DTIC Science & Technology

    2008-03-01

    sequence, Haker et al and Roebuck et al using a line-scan diffusion sequence, and Vigneron et al using a fast spin-echo diffusion sequence (33,35-37...Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany CM. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted...36. Haker SJ, Szot Barnes A, Maier SE, Tempany CM, Mulkern RV. Diffusion Tensor Imaging for Prostate Cancer Detection: Preliminary Results from a

  14. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  15. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI.

    PubMed

    Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R A; Van Horn, John D; Drews, Michelle K; Somerville, Leah H; Sheridan, Margaret A; Santillana, Rosario M; Snyder, Jenna; Hedden, Trey; Shaw, Emily E; Hollinshead, Marisa O; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Buckner, Randy L; Wedeen, Van J; Wald, Lawrence L; Toga, Arthur W; Rosen, Bruce R

    2016-01-01

    The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography.

  16. Diffusion Weighted MRI by Spatiotemporal Encoding: Analytical Description and In Vivo Validations

    PubMed Central

    Solomon, Eddy; Shemesh, Noam; Frydman, Lucio

    2016-01-01

    Diffusion-Weighted (DW) MRI is a powerful modality for studying microstructure in normal and pathological tissues. DW MRI, however, is of limited use in regions suffering from large magnetic field or chemical shift heterogeneities. Spatio-temporal encoding (SPEN) is a single-scan imaging technique that can deliver its information with a remarkable insensitivity to field inhomogeneities; this study explores the use of diffusion-weighted SPEN (dSPEN) MRI as an alternative for acquiring this kind of information. Owing to SPEN’s combined use of gradients and radiofrequency-swept pulses, spatially-dependent diffusion weightings arise in these sequences that are not present in conventional k-space DW MRI. In order to account for these phenomena an analytical formalism is presented that extends Stejskal & Tanner’s and Karlicek & Lowe’s work, to derive the b-values arising upon taking into account the effects of adiabatic pulses, of imaging as well as diffusion gradients, and of cross-terms between them. Excellent agreement is found between the new features predicted by these analytical and numerical derivations, and SPEN diffusion experiments in phantoms and in anisotropic ex vivo systems. Examinations of apparent diffusion coefficients in human breast volunteers also verify the advantages of the new methods in vivo, which exhibit substantial robustness vis-à-vis comparable DW echo planar imaging. PMID:23562003

  17. The Efficiency of Diffusion Weighted MRI and MR Spectroscopy On Breast MR Imaging

    PubMed Central

    Altay, Canan; Balcı, Pınar

    2014-01-01

    The main purpose of breast magnetic resonance imaging (MRI) in radiologically routine is to establish an imaging protocol that will create high quality images with a short period of time. Fort this purpose, an imaging protocol should include a conventional breast MRI and contrast enhanced sequences. Proton MR spectroscopy (MRS) and diffusion weighted imaging (DWI) are important MR techniques for evaluation to complicated breast lesions. In this article, we will evaluate that technical properties of the MRS and DWI as additional MR imaging.

  18. Coupling between Solid 3He on Aerogel and Superfluid 3He in the Low Temperature Limit

    SciTech Connect

    Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Pickett, G. R.; Tsepelin, V.; Whitehead, R. C. V.; Skyba, P.

    2006-09-07

    We have cooled liquid 3He contained in a 98% open aerogel sample surrounded by bulk superfluid 3He-B at zero pressure to below 120 {mu}K. The aerogel sample is placed in a quasiparticle blackbody radiator cooled by a Lancaster-style nuclear cooling stage to {approx}200 {mu}K. We monitor the temperature of the 3He inside the blackbody radiator using a vibrating wire resonator. We find that reducing the magnetic field on the aerogel sample causes substantial cooling of all the superfluid inside the blackbody radiator. We believe this is due to the demagnetization of the solid 3He layers on the aerogel strands. This system has potential for achieving extremely low temperatures in the confined fluid.

  19. Development of spatial-temporal ventilation heterogeneity and probability analysis tools for hyperpolarized 3He magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Choy, S.; Ahmed, H.; Wheatley, A.; McCormack, D. G.; Parraga, G.

    2010-03-01

    We developed image analysis tools to evaluate spatial and temporal 3He magnetic resonance imaging (MRI) ventilation in asthma and cystic fibrosis. We also developed temporal ventilation probability maps to provide a way to describe and quantify ventilation heterogeneity over time, as a way to test respiratory exacerbations or treatment predictions and to provide a discrete probability measurement of 3He ventilation defect persistence.

  20. Neutron scattering from solid 3He

    NASA Astrophysics Data System (ADS)

    Schanen, R.; Sherline, T. E.; Toader, A. M.; Boyko, V.; Mat'as, S.; Meschke, M.; Schöttl, S.; Adams, E. D.; Cowan, B.; Godfrin, H.; Goff, J. P.; Roger, M.; Saunders, J.; Siemensmeyer, K.; Takano, Y.

    2003-05-01

    Multiple spin exchange leads, according to present understanding, to a variety of magnetically ordered states in solid 3He, depending on pressure and applied magnetic field. We report the status of experiments to directly determine these structures by neutron scattering. The large neutron absorption cross section, and associated sample heating, impose severe experimental demands on the design of the sample cell. We report on our proposed solution, including details of the sintered heat exchanger necessary to cool the sample, as well as the PrNi 5 nuclear demagnetization stage. The use of NMR in parallel experiments to characterise growth of the solid sample within the sinter is also discussed.

  1. Intense polarized /sup 3/He ion source

    SciTech Connect

    Slobodrian, R.J.; Bertrand, R.; Grioux, J.; Labrie, R.; Lapainte, R.; Meunier, J.F.; Pigeon, G.; Pouliot, L.; Rioux, C.; Roy, R.

    1985-10-01

    This source is based on the atomic polarization of the 2/sup 3/S/sub 1/ metastable state of the neutral atom. A version suitable for operation on the high voltage terminal of a CN Van de Graaff has been constructed, bench tested and installed in the terminal of a 7.5 MV machine. The polarization of the atomic beam is higher than 90%. It is now fully operational and a current of /sup 3/He/sup +/ of 300 nA has been measured after acceleration.

  2. MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast

    PubMed Central

    Giannelli, Marco; Sghedoni, Roberto; Iacconi, Chiara; Iori, Mauro; Traino, Antonio Claudio; Guerrisi, Maria; Mascalchi, Mario; Toschi, Nicola; Diciotti, Stefano

    2014-01-01

    Breast imaging represents a relatively recent and promising field of application of quantitative diffusion-MRI techniques. In view of the importance of guaranteeing and assessing its reliability in clinical as well as research settings, the aim of this study was to specifically characterize how the main MR scanner system-related factors affect quantitative measurements in diffusion-MRI of the breast. In particular, phantom acquisitions were performed on three 1.5 T MR scanner systems by different manufacturers, all equipped with a dedicated multi-channel breast coil as well as acquisition sequences for diffusion-MRI of the breast. We assessed the accuracy, inter-scan and inter-scanner reproducibility of the mean apparent diffusion coefficient measured along the main orthogonal directions () as well as of diffusion-tensor imaging (DTI)-derived mean diffusivity (MD) measurements. Additionally, we estimated spatial non-uniformity of (NU) and MD (NUMD) maps. We showed that the signal-to-noise ratio as well as overall calibration of high strength diffusion gradients system in typical acquisition sequences for diffusion-MRI of the breast varied across MR scanner systems, introducing systematic bias in the measurements of diffusion indices. While and MD values were not appreciably different from each other, they substantially varied across MR scanner systems. The mean of the accuracies of measured and MD was in the range [−2.3%,11.9%], and the mean of the coefficients of variation for and MD measurements across MR scanner systems was 6.8%. The coefficient of variation for repeated measurements of both and MD was < 1%, while NU and NUMD values were <4%. Our results highlight that MR scanner system-related factors can substantially affect quantitative diffusion-MRI of the breast. Therefore, a specific quality control program for assessing and monitoring the performance of MR scanner systems for diffusion-MRI of the breast is

  3. Acceleration of 3HE and heavy ions at interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Mason, G. M.; Dwyer, J. R.; Mazur, J. E.; Smith, C. W.; Koug, R. M.

    2001-08-01

    We have surveyed the 0.5-2.0 MeV nucleon-1 ion composition of 56 interplanetary shocks (IP) observed with the Ultra-Low-Energy Isotope Spectrometer (ULEIS) on board the Advanced Composition Explorer (ACE) from 1997 October 1 through 2000 November 30. Our results show the first ever measurement (25 cases) of 3 He ions being accelerated at IP shocks. The 3 He/4 He ratio at the 25 shocks exhibited a wide range of values between 0.00140.24; the ratios were enhanced between factors of ~3-600 over the solar wind value. During the survey period, the occurrence probability of 3 He-rich shocks increased with rising solar activity as measured in terms of the daily occurrence rates of sunspots and X-ray flares. The 3 He enhancements at IP shocks cannot be attributed to rigidity dependent acceleration of solar wind ions and are better explained if the shocks accelerate ions from multiple sources, one being remnant impulsive solar flare material enriched in 3 He ions. Our results also indicate that the contribution of impulsive flares to the seed population for IP shocks varies from event to event, and that the interplanetary medium is being replenished with impulsive material more frequently during periods of increased solar activity. 1. Introduction Enhancements in the intensities of energetic ions associated with transient interplanetary (IP) shocks have been observed routinely at 1 AU since the 1960's (e.g., Reames 1999). It is presently believed that the majority of such IP shocks are driven by fast coronal mass ejections or CMEs as they propagate through interplanetary space (e.g., Gosling 1993), and that the associated ion intensity enhancements are due to diffusive shock acceleration of solar wind ions (Lee 1983; Jones and Ellison 1991; Reames 1999). However, the putative solar wind origin of the IP-shock accelerated ions is based on composition measurements associated with a very limited number of individual IP shocks (Klecker et al. 1981; Hovestadt et al. 1982; Tan et

  4. Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke.

    PubMed

    Dijkhuizen, Rick M; van der Marel, Kajo; Otte, Willem M; Hoff, Erik I; van der Zijden, Jet P; van der Toorn, Annette; van Meer, Maurits P A

    2012-03-01

    The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models.

  5. Nuclear magnetic relaxation of3He gas. I. Pure3He

    NASA Astrophysics Data System (ADS)

    Lusher, C. P.; Secca, M. F.; Richards, M. G.

    1988-07-01

    Longitudinal relaxation times T 1 have been measured in3He gas, using pulsed NMR, for number densities between 3 × 1023 and 6 × 1025 spins m-3 and temperatures between 0.6 and 15 K. Relaxation takes place on or near the walls of the Pyrex sample cells and measurements of T 1 give information about the surface phases. A cryogenic wall coating of solid molecular hydrogen was found to delay the formation of a3He monolayer on cooling, and T 1 measurements were consistent with a binding energy of ˜13 K for a3He atom to a hydrogen surface. At temperatures below ˜2 K a completed3He monolayer forms on the H2 coating. No variation of the areal density of monolayer completion with bulk number density at fixed temperature could be observed and the completed3He monolayer is thought to be a dense fluid. Baking the Pyrex sample cells under vacuum and using an rf discharge in3He gas to clean the walls before sealing in the sample gas were found to increase the observed T1's by up to three orders of magnitude. Once a3He monolayer has formed on the H2 surface in these cleaned, sealed cells, the dipolar interaction between adsorbed spins is thought to be the dominant source of longitudinal relaxation. The data are consistent with a dipolar relaxation model with a correlation time of ˜2 × 10-9 sec. This time is long compared to the value of 10-11 or 10-12 sec in the 3D fluid. This suggests that if the surface phase is a 2D fluid and the dipolar mechanism is indeed the dominant one, then the atoms in the 2D fluid are less mobile than in three dimensions. This is consistent with recent susceptibility measurements.

  6. Coregistration of dynamic contrast enhanced MRI and broadband diffuse optical spectroscopy for characterizing breast cancer.

    PubMed

    Hsiang, David; Shah, Natasha; Yu, Hon; Su, Min-Ying; Cerussi, Albert; Butler, John; Baick, Choong; Mehta, Rita; Nalcioglu, Orhan; Tromberg, Bruce

    2005-10-01

    A hand-held scanning probe based on broadband Diffuse Optical Spectroscopy (DOS) was used in combination with dynamic contrast enhanced MRI (DCE-MRI) to quantitatively characterize locally-advanced breast cancers in six patients. Measurements were performed sequentially using external fiducial markers for co-registration. Tumor patterns were categorized according to MRI morphological data, and 3D DCE-MRI slices were converted into a volumetric matrix with isotropic voxels to generate views that coincided with the DOS scanning plane. Tumor volume and depth at each DOS measurement site were determined, and a tissue optical index (TOI) that reflects both angiogenic and stromal characteristics was derived from broadband DOS data. In all six cases, optical scans showed significant TOI contrast corresponding to MRI morphological information. Sharp TOI peaks were recovered for well-circumscribed masses. A reduction in TOI was found inside a tumor with a necrotic center. A broadened peak was observed for a diffuse tumor pattern, and an inflammatory septal case provided two TOI peaks that correlated qualitatively with MRI enhancement. These results provide qualitative confirmation of the common signal origin and complementary information content that can be achieved by combining optical and MR imaging for breast cancer detection and clinical management.

  7. Design of Multishell Sampling Schemes with Uniform Coverage in Diffusion MRI

    PubMed Central

    Caruyer, Emmanuel; Lenglet, Christophe; Sapiro, Guillermo; Deriche, Rachid

    2017-01-01

    Purpose In diffusion MRI, a technique known as diffusion spectrum imaging reconstructs the propagator with a discrete Fourier transform, from a Cartesian sampling of the diffusion signal. Alternatively, it is possible to directly reconstruct the orientation distribution function in q-ball imaging, providing so-called high angular resolution diffusion imaging. In between these two techniques, acquisitions on several spheres in q-space offer an interesting trade-off between the angular resolution and the radial information gathered in diffusion MRI. A careful design is central in the success of multishell acquisition and reconstruction techniques. Methods The design of acquisition in multishell is still an open and active field of research, however. In this work, we provide a general method to design multishell acquisition with uniform angular coverage. This method is based on a generalization of electrostatic repulsion to multishell. Results We evaluate the impact of our method using simulations, on the angular resolution in one and two bundles of fiber configurations. Compared to more commonly used radial sampling, we show that our method improves the angular resolution, as well as fiber crossing discrimination. Discussion We propose a novel method to design sampling schemes with optimal angular coverage and show the positive impact on angular resolution in diffusion MRI. PMID:23625329

  8. Noninvasive Localization of Prostate Cancer via Diffusion Sensitive MRI

    DTIC Science & Technology

    2007-03-01

    16: 196-200, 2002. 13. Chan, I., Wells, W., 3rd, Mulkern, R. V., Haker , S., Zhang, J., Zou, K. H., Maier, S. E., and Tempany, C. M. Detection of...for Magnetic Resonance in Medicine, 13: 269, 2005. 31. Haker , S. J., Szot Barnes, A., Maier, S. E., Tempany, C. M., and Mulkern, R. V. Diffusion...Resonance in Medicine, 13: 2126, 2005. 32. Roebuck, J. R., Haker , S. J., Tempany, C. M., Rybicki, F. J., Maier, S. E., and Mulkern, R. V. Diffusion

  9. Methanol-induced toxic optic neuropathy with diffusion weighted MRI findings.

    PubMed

    Tanrivermis Sayit, Asli; Aslan, Kerim; Elmali, Muzaffer; Gungor, Inci

    2016-12-01

    We report a 52-year-old man with methanol intoxication who showed optic nerve damage as assessed by magnetic resonance imaging (MRI). He was admitted to the hospital with blurred vision after the consumption of alcohol (600-700 ml of cologne). He was treated with intravenous ethanol, NaHCO3 and hemodialysis. On admission, a brain and orbital MRI was performed. Bilateral mild contrast enhancement was detected on the contrast-enhanced images in the retrobulbar segment of the optic nerves (RBONs). Also, diffusion-weighted images showed restricted diffusion in the RBONs. Diagnosis was considered as methanol-induced optic neuropathy based on the MRI findings of the optic nerves.

  10. On the averaging of cardiac diffusion tensor MRI data: the effect of distance function selection

    NASA Astrophysics Data System (ADS)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-11-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) metrics were judged by quantitative—rather than qualitative—criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the ‘swelling effect’ occurrence following Euclidean averaging was found to be too unimportant to be worth consideration.

  11. {sup 3}He melting pressure thermometry

    SciTech Connect

    Ni, W.; Xia, J.S.; Adams, E.D.

    1995-10-01

    High-precision measurements of the {sup 3}He melting pressure versus temperature have been made from 500 {mu}K to 25 mK using a {sup 60}Co nuclear orientation primary thermometer and a Pt NMR susceptibility secondary thermometer. Temperatures for the fixed points on the melting curve are: the superfluid A transition T{sub A}=2.505 mK, the A-B transition T{sub AB}=1.948 mK, and the solid ordering temperature T{sub N}=0.934 mK. These fixed points and a functional form for P(T) constitute a convenient temperature scale, based on a primary thermometer, usable to well below 1 mK.

  12. Comparison of 3D Orientation Distribution Functions Measured with Confocal Microscopy and Diffusion MRI

    PubMed Central

    Schilling, Kurt; Janve, Vaibhav; Gao, Yurui; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W

    2016-01-01

    The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI’s ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD. PMID:26804781

  13. Multi-site harmonization of diffusion MRI data in a registration framework.

    PubMed

    Mirzaalian, Hengameh; Ning, Lipeng; Savadjiev, Peter; Pasternak, Ofer; Bouix, Sylvain; Michailovich, Oleg; Karmacharya, Sarina; Grant, Gerald; Marx, Christine E; Morey, Rajendra A; Flashman, Laura A; George, Mark S; McAllister, Thomas W; Andaluz, Norberto; Shutter, Lori; Coimbra, Raul; Zafonte, Ross D; Coleman, Mike J; Kubicki, Marek; Westin, Carl-Fredrik; Stein, Murray B; Shenton, Martha E; Rathi, Yogesh

    2017-02-07

    Diffusion MRI (dMRI) data acquired on different scanners varies significantly in its content throughout the brain even if the acquisition parameters are nearly identical. Thus, proper harmonization of such data sets is necessary to increase the sample size and thereby the statistical power of neuroimaging studies. In this paper, we present a novel approach to harmonize dMRI data (the raw signal, instead of dMRI derived measures such as fractional anisotropy) using rotation invariant spherical harmonic (RISH) features embedded within a multi-modal image registration framework. All dMRI data sets from all sites are registered to a common template and voxel-wise differences in RISH features between sites at a group level are used to harmonize the signal in a subject-specific manner. We validate our method on diffusion data acquired from seven different sites (two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across these sites before and after data harmonization. Validation was also done on a group oftest subjects, which were not used to "learn" the harmonization parameters. We also show results using TBSS before and after harmonization for independent validation of the proposed methodology. Using synthetic data, we show that any abnormality in diffusion measures due to disease is preserved during the harmonization process. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences in the signal can be removed using the proposed method in a model independent manner.

  14. Limitations and Prospects for Diffusion-Weighted MRI of the Prostate

    PubMed Central

    Bourne, Roger; Panagiotaki, Eleftheria

    2016-01-01

    Diffusion-weighted imaging (DWI) is the most effective component of the modern multi-parametric magnetic resonance imaging (mpMRI) scan for prostate pathology. DWI provides the strongest prediction of cancer volume, and the apparent diffusion coefficient (ADC) correlates moderately with Gleason grade. Notwithstanding the demonstrated cancer assessment value of DWI, the standard measurement and signal analysis methods are based on a model of water diffusion dynamics that is well known to be invalid in human tissue. This review describes the biophysical limitations of the DWI component of the current standard mpMRI protocol and the potential for significantly improved cancer assessment performance based on more sophisticated measurement and signal modeling techniques. PMID:27240408

  15. Numerical simulation of diffusion MRI signals using an adaptive time-stepping method

    NASA Astrophysics Data System (ADS)

    Li, Jing-Rebecca; Calhoun, Donna; Poupon, Cyril; Le Bihan, Denis

    2014-01-01

    The effect on the MRI signal of water diffusion in biological tissues in the presence of applied magnetic field gradient pulses can be modelled by a multiple compartment Bloch-Torrey partial differential equation. We present a method for the numerical solution of this equation by coupling a standard Cartesian spatial discretization with an adaptive time discretization. The time discretization is done using the explicit Runge-Kutta-Chebyshev method, which is more efficient than the forward Euler time discretization for diffusive-type problems. We use this approach to simulate the diffusion MRI signal from the extra-cylindrical compartment in a tissue model of the brain gray matter consisting of cylindrical and spherical cells and illustrate the effect of cell membrane permeability.

  16. Brain/language relationships identified with diffusion and perfusion MRI: Clinical applications in neurology and neurosurgery.

    PubMed

    Hillis, Argye E

    2005-12-01

    Diffusion and perfusion MRI have contributed to stroke management by identifying patients with tissue "at risk" for further damage in acute stroke. However, the potential usefulness of these imaging modalities, along with diffusion tensor imaging, can be expanded by using these imaging techniques with concurrent assessment of language and other cognitive skills to identify the specific cognitive deficits that are associated with diffusion and perfusion abnormalities in particular brain regions. This paper illustrates how this combined behavioral and imaging methodology can yield information that is useful for predicting specific positive effects of intervention to restore blood flow in hypoperfused regions of brain identified with perfusion MRI, and for predicting negative effects of resection of particular brain regions or fiber bundles. Such data allow decisions about neurological and neurosurgical interventions to be based on specific risks and benefits in terms of functional consequences.

  17. Statistical evaluation of manual segmentation of a diffuse low-grade glioma MRI dataset.

    PubMed

    Ben Abdallah, Meriem; Blonski, Marie; Wantz-Mezieres, Sophie; Gaudeau, Yann; Taillandier, Luc; Moureaux, Jean-Marie

    2016-08-01

    Software-based manual segmentation is critical to the supervision of diffuse low-grade glioma patients and to the optimal treatment's choice. However, manual segmentation being time-consuming, it is difficult to include it in the clinical routine. An alternative to circumvent the time cost of manual segmentation could be to share the task among different practitioners, providing it can be reproduced. The goal of our work is to assess diffuse low-grade gliomas' manual segmentation's reproducibility on MRI scans, with regard to practitioners, their experience and field of expertise. A panel of 13 experts manually segmented 12 diffuse low-grade glioma clinical MRI datasets using the OSIRIX software. A statistical analysis gave promising results, as the practitioner factor, the medical specialty and the years of experience seem to have no significant impact on the average values of the tumor volume variable.

  18. Numerical study of a macroscopic finite pulse model of the diffusion MRI signal.

    PubMed

    Li, Jing-Rebecca; Nguyen, Hang Tuan; Nguyen, Dang Van; Haddar, Houssem; Coatléven, Julien; Le Bihan, Denis

    2014-11-01

    Diffusion magnetic resonance imaging (dMRI) is an imaging modality that probes the diffusion characteristics of a sample via the application of magnetic field gradient pulses. The dMRI signal from a heterogeneous sample includes the contribution of the water proton magnetization from all spatial positions in a voxel. If the voxel can be spatially divided into different Gaussian diffusion compartments with inter-compartment exchange governed by linear kinetics, then the dMRI signal can be approximated using the macroscopic Karger model, which is a system of coupled ordinary differential equations (ODEs), under the assumption that the duration of the diffusion-encoding gradient pulses is short compared to the diffusion time (the narrow pulse assumption). Recently, a new macroscopic model of the dMRI signal, without the narrow pulse restriction, was derived from the Bloch-Torrey partial differential equation (PDE) using periodic homogenization techniques. When restricted to narrow pulses, this new homogenized model has the same form as the Karger model. We conduct a numerical study of the new homogenized model for voxels that are made up of periodic copies of a representative volume that contains spherical and cylindrical cells of various sizes and orientations and show that the signal predicted by the new model approaches the reference signal obtained by solving the full Bloch-Torrey PDE in O(ε(2)), where ε is the ratio between the size of the representative volume and a measure of the diffusion length. When the narrow gradient pulse assumption is not satisfied, the new homogenized model offers a much better approximation of the full PDE signal than the Karger model. Finally, preliminary results of applying the new model to a voxel that is not made up of periodic copies of a representative volume are shown and discussed.

  19. Diffusion tensor MRI contributes to differentiate Richardson's syndrome from PSP-parkinsonism.

    PubMed

    Agosta, Federica; Pievani, Michela; Svetel, Marina; Ječmenica Lukić, Milica; Copetti, Massimiliano; Tomić, Aleksandra; Scarale, Antonio; Longoni, Giulia; Comi, Giancarlo; Kostić, Vladimir S; Filippi, Massimo

    2012-12-01

    This study investigated the regional distribution of white matter (WM) damage in Richardson's syndrome (PSP-RS) and progressive supranuclear palsy-Parkinsonism (PSP-P) using diffusion tensor (DT) magnetic resonance imaging (MRI). The DT MRI classificatory ability in diagnosing progressive supranuclear palsy (PSP) syndromes, when used in combination with infratentorial volumetry, was also quantified. In 37 PSP (21 PSP-RS, 16 PSP-P) and 42 controls, the program Tract-Based Spatial Statistics (TBSS; www.fmrib.ox.ac.uk/fsl/tbss) was applied. DT MRI metrics were derived from supratentorial, thalamic, and infratentorial tracts. The magnetic resonance parkinsonism index (MRPI) was calculated. All PSP harbored diffusivity abnormalities in the corpus callosum, frontoparietal, and frontotemporo-occipital tracts. Infratentorial WM and thalamic radiations were severely affected in PSP-RS and relatively spared in PSP-P. When MRPI and DT MRI measures were combined, the discriminatory power increased for each comparison. Distinct patterns of WM alterations occur in PSP-RS and PSP-P. Adding DT MRI measures to MRPI improves the diagnostic accuracy in differentiating each PSP syndrome from healthy individuals and each other.

  20. PCLR: Phase-Constrained Low-Rank Model for Compressive Diffusion-Weighted MRI

    PubMed Central

    Zhang, Kai; Zhou, Weifeng; Hu, Xiaoping

    2015-01-01

    Purpose This work develops a compressive sensing approach for diffusion-weighted (DW) MRI. Methods A phase-constrained low-rank (PCLR) approach was developed using the image coherence across the DW directions for efficient compressive DW MRI, while accounting for drastic phase changes across the DW directions, possibly as a result of eddy current, and rigid and non-rigid motions. In PCLR, a low-resolution phase estimation was used for removing phase inconsistency between DW directions. In our implementation, GRAPPA was incorporated for better phase estimation while allowing higher undersampling factor. An efficient and easy-to-implement image reconstruction algorithm, consisting mainly of partial Fourier update and singular value decomposition, was developed for solving PCLR. Results The error measures based on diffusion-tensor-derived metrics and tractography indicated that PCLR, with its joint reconstruction of all DW images using the image coherence, outperformed the frame-independent reconstruction through zero-padding FFT. Furthermore, using GRAPPA for phase estimation, PCLR readily achieved a 4-fold undersampling. Conclusion The PCLR is developed and demonstrated for compressive DW MRI. A 4-fold reduction in k-space sampling could be readily achieved without substantial degradation of reconstructed images and diffusion tensor measures, making it possible to significantly reduce the data acquisition in DW MRI and/or improve spatial and angular resolutions. PMID:24327553

  1. Towards tract-specific fractional anisotropy (TSFA) at crossing-fiber regions with clinical diffusion MRI

    PubMed Central

    Mishra, Virendra; Guo, Xiaohu; Delgado, Mauricio R.; Huang, Hao

    2014-01-01

    Purpose White matter fractional anisotropy (FA), a measure implying microstructure, is significantly underestimated with single diffusion tensor model at crossing-fiber regions (CFR). We propose a tract-specific FA (TSFA), corrected for the effects of crossing-fiber geometry and free water at CFR, and adapted for tract analysis with diffusion MRI (dMRI) in clinical research. Methods At CFR voxels, the proposed technique estimates free water fraction (fiso) as a linear function of mean apparent diffusion coefficient (mADC), fits the dual tensors and estimates TSFA. Digital phantoms were designed for testing the accuracy of fiso and fitted dual-anisotropies at CFR. The technique was applied to clinical dMRI of normal subjects and hereditary spastic paraplegia (HSP) patients to test the effectiveness of TSFA. Results Phantom simulation showed unbiased estimates of dual-tensor anisotropies at CFR and high accuracy of fiso as a linear function of mADC. TSFA at CFR was highly consistent to the single tensor FA at non-CFR within the same tract with normal human dMRI. Additional HSP imaging biomarkers with significant correlation to clinical motor function scores could be identified with TSFA. Conclusion Results suggest the potential of the proposed technique in estimating unbiased TSFA at CFR and conducting tract analysis in clinical research. PMID:25447208

  2. Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach.

    PubMed

    Reisert, Marco; Kellner, Elias; Dhital, Bibek; Hennig, Jürgen; Kiselev, Valerij G

    2017-02-15

    Diffusion-sensitized magnetic resonance imaging probes the cellular structure of the human brain, but the primary microstructural information gets lost in averaging over higher-level, mesoscopic tissue organization such as different orientations of neuronal fibers. While such averaging is inevitable due to the limited imaging resolution, we propose a method for disentangling the microscopic cell properties from the effects of mesoscopic structure. We further avoid the classical fitting paradigm and use supervised machine learning in terms of a Bayesian estimator to estimate the microstructural properties. The method finds detectable parameters of a given microstructural model and calculates them within seconds, which makes it suitable for a broad range of neuroscientific applications.

  3. Degassing of 3H/3He, CFCs and SF6 by denitrification: measurements and two-phase transport simulations.

    PubMed

    Visser, Ate; Schaap, Joris D; Broers, Hans Peter; Bierkens, Marc F P

    2009-01-26

    The production of N2 gas by denitrification may lead to the appearance of a gas phase below the water table prohibiting the conservative transport of tracer gases required for groundwater dating. We used a two-phase flow and transport model (STOMP) to study the reliability of 3H/3He, CFCs and SF6 as groundwater age tracers under agricultural land where denitrification causes degassing. We were able to reproduce the amount of degassing (R2=69%), as well as the 3H (R2=79%) and 3He (R2=76%) concentrations observed in a 3H/3He data set using simple 2D models. We found that the TDG correction of the 3H/3He age overestimated the control 3He/3He age by 2.1 years, due to the accumulation of 3He in the gas phase. The total uncertainty of degassed 3H/3He ages of 6 years (+/-2 sigma) is due to the correction of degassed 3He using the TDG method, but also due to the travel time in the unsaturated zone and the diffusion of bomb peak 3He. CFCs appear to be subject to significant degradation in anoxic groundwater and SF6 is highly susceptible to degassing. We conclude that 3H/3He is the most reliable method to date degassed groundwater and that two-phase flow models such as STOMP are useful tools to assist in the interpretation of degassed groundwater age tracer data.

  4. Degassing of 3H/ 3He, CFCs and SF 6 by denitrification: Measurements and two-phase transport simulations

    NASA Astrophysics Data System (ADS)

    Visser, Ate; Schaap, Joris D.; Broers, Hans Peter; Bierkens, Marc F. P.

    2009-01-01

    The production of N 2 gas by denitrification may lead to the appearance of a gas phase below the water table prohibiting the conservative transport of tracer gases required for groundwater dating. We used a two-phase flow and transport model (STOMP) to study the reliability of 3H/ 3He, CFCs and SF 6 as groundwater age tracers under agricultural land where denitrification causes degassing. We were able to reproduce the amount of degassing ( R2 = 69%), as well as the 3H ( R2 = 79%) and 3He* ( R2 = 76%) concentrations observed in a 3H/ 3He data set using simple 2D models. We found that the TDG correction of the 3H/ 3He age overestimated the control 3He/ 3He age by 2.1 years, due to the accumulation of 3He* in the gas phase. The total uncertainty of degassed 3H/ 3He ages of 6 years (± 2 σ) is due to the correction of degassed 3He* using the TDG method, but also due to the travel time in the unsaturated zone and the diffusion of bomb peak 3He*. CFCs appear to be subject to significant degradation in anoxic groundwater and SF 6 is highly susceptible to degassing. We conclude that 3H/ 3He is the most reliable method to date degassed groundwater and that two-phase flow models such as STOMP are useful tools to assist in the interpretation of degassed groundwater age tracer data.

  5. Imaging features in conventional MRI, spectroscopy and diffusion weighted images of hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS).

    PubMed

    Bender, Benjamin; Klose, Uwe; Lindig, Tobias; Biskup, Saskia; Nägele, Thomas; Schöls, Ludger; Karle, Kathrin N

    2014-12-01

    Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) is a rare autosomal dominant disease caused by mutations within the colony stimulating factor 1 receptor (CSF1R) gene. While a small number of reports on imaging findings in routine MRI exist, reported imaging findings in DWI and spectroscopy are scarce, and limited to not genetically proven case reports. We assessed MRI including DWI and MR spectroscopy in six patients with HDLS and two asymptomatic mutation carriers. A total of 13 MRIs were evaluated and a score of the white-matter lesion (WML) load was calculated. The course of MR abnormalities was followed for 6-19 months in four patients and 95 months in one carrier. MRI revealed widespread white-matter lesions of patchy or confluent pattern especially in the frontal and occipital lobe. The pyramidal tract was less affected than the surrounding tissue in all symptomatic patients on conventional T2WI. Three of four cases with DWI showed small dots of diffusion restriction within WML. Spectroscopy showed increased levels of mIns, Cho and lactate while NAA was decreased. Asymptomatic mutation carriers had, for the age of the patients, unusually pronounced unspecific WMLs. No diffusion restriction or alterations in metabolite levels could be detected in asymptomatic mutation carriers. Microbleeds were not found in any patient. Diffusion restriction seems to be a typical imaging pattern visible in patients with active disease progression in HDLS. Spectroscopic findings and the absence of microbleeds differ clearly from reported findings in CADASIL and subcortical arteriosclerotic encephalopathy. While the distribution and character of WMLs in asymptomatic cases remain unspecific they are likely to represent subclinical markers of HDLS.

  6. Elastic Compton Scattering from 3He

    NASA Astrophysics Data System (ADS)

    Margaryan, Arman; Griesshammer, Harald W.; Phillips, Daniel R.; Strandberg, Bruno; McGovern, Judith A.; Shukla, Deepshikha

    2017-01-01

    We study elastic Compton scattering on 3He using chiral effective field theory (χEFT) at photon energies from 60 MeV to approximately 120 MeV. Experiments to measure this process have been proposed for both MAMI at Mainz and the HI γS facility at TUNL. I will present the revised results of a full calculation at third order in the expansion (O (Q3)). The amplitude involves a sum of both one- and two-nucleon Compton-scattering mechanisms. We have recently computed the fourth-order two-nucleon diagrams. The numerical impact they have on the cross-section results will be discussed. I will also present results in which amplitudes used so far are augmented by the leading effects from Δ (1232) degrees of freedom, a step which has already been performed for the proton and deuteron processes. Both cross sections and doubly-polarized asymmetries will be presented, and the sensitivity of these observables to the values of neutron scalar and spin polarizabilities will be assessed. This material is based upon work supported in part by DOE and George Washington University.

  7. q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans.

    PubMed

    Golkov, Vladimir; Dosovitskiy, Alexey; Sperl, Jonathan I; Menzel, Marion I; Czisch, Michael; Samann, Philipp; Brox, Thomas; Cremers, Daniel

    2016-05-01

    Numerous scientific fields rely on elaborate but partly suboptimal data processing pipelines. An example is diffusion magnetic resonance imaging (diffusion MRI), a non-invasive microstructure assessment method with a prominent application in neuroimaging. Advanced diffusion models providing accurate microstructural characterization so far have required long acquisition times and thus have been inapplicable for children and adults who are uncooperative, uncomfortable, or unwell. We show that the long scan time requirements are mainly due to disadvantages of classical data processing. We demonstrate how deep learning, a group of algorithms based on recent advances in the field of artificial neural networks, can be applied to reduce diffusion MRI data processing to a single optimized step. This modification allows obtaining scalar measures from advanced models at twelve-fold reduced scan time and detecting abnormalities without using diffusion models. We set a new state of the art by estimating diffusion kurtosis measures from only 12 data points and neurite orientation dispersion and density measures from only 8 data points. This allows unprecedentedly fast and robust protocols facilitating clinical routine and demonstrates how classical data processing can be streamlined by means of deep learning.

  8. Relative diffusion of paramagnetic metal complexes of MRI contrast agents in an isotropic hydrogel medium.

    PubMed

    Weerakoon, Bimali Sanjeevani; Osuga, Toshiaki

    2017-03-01

    The observation of molecular diffusion by means of magnetic resonance imaging (MRI) is significant in the evaluation of the metabolic activity of living tissues. Series of MRI examinations were conducted on a diffusion model to study the behaviour of the diffusion process of different-molecular-weight (MW) paramagnetic MRI contrast agents in an isotropic agar hydrogel medium. The model consisted of a solidified 1 % agar gel with an initial concentration of 0.5 mmol/L contrast solution layered on top of the gel. The diffusion process was monitored at pre-determined time intervals of immediately, 1, 6, 9, 23, and 48 h after introduction of the contrast agents onto the agar gel with a T1-weighted spin-echo (SE) pulse sequence. Three types of paramagnetic contrast agents, Gd-DTPA with a MW of 547.57 g/mol, Prohance with a MW of 558.69 g/mol and MnCl2 with a MW of 125.84 g/mol, resulted in an approximate average diffusional displacement ratio of 1:1:2 per hour, respectively, within 48 h of the experiment. Therefore, the results of this study supported the hypothesis that the rate of the diffusion process of MRI contrast agents in the agar hydrogel medium is inversely related to their MWs. However, more repetitions are necessary under various types of experimental conditions and also with various types of contrast media of different MWs for further confirmation and validation of these results.

  9. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage

    NASA Astrophysics Data System (ADS)

    Silvast, Tuomo S.; Kokkonen, Harri T.; Jurvelin, Jukka S.; Quinn, Thomas M.; Nieminen, Miika T.; Töyräs, Juha

    2009-11-01

    Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Ø = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist®, gadodiamide: Omniscan™, ioxaglate: Hexabrix™ or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity.

  10. Polarisation and compression of {sup 3}He for Magnetic Resonance Imaging purposes

    SciTech Connect

    Geurts, D. G.; Brand, J. F. J. van den; Bulten, H. J.; Poolman, H. R.; Ferro-Luzzi, M.; Nicolay, K.

    1998-01-20

    Magnetic Resonance Imaging is often used in medical science as a diagnostic tool for the human body. Conventional MRI uses the NMR signal from the protons of water molecules in tissue to image the interior of the patient's body. However, for certain areas such as the lungs and airways, the usage of a highly polarised gas yields better results. We are currently constructing an apparatus that uses polarised {sup 3}He gas to produce detailed images of those signal-deficient moyeties. We also plan to study possible uptake of polarised {sup 3}He gas by the circulatory system to image other organs.

  11. Interrelations of muscle functional MRI, diffusion-weighted MRI and (31) P-MRS in exercised lower back muscles.

    PubMed

    Hiepe, Patrick; Gussew, Alexander; Rzanny, Reinhard; Anders, Christoph; Walther, Mario; Scholle, Hans-Christoph; Reichenbach, Jürgen R

    2014-08-01

    Exercise-induced changes of transverse proton relaxation time (T2 ), tissue perfusion and metabolic turnover were investigated in the lower back muscles of volunteers by applying muscle functional MRI (mfMRI) and diffusion-weighted imaging (DWI) before and after as well as dynamic (31) P-MRS during the exercise. Inner (M. multifidus, MF) and outer lower back muscles (M. erector spinae, ES) were examined in 14 healthy young men performing a sustained isometric trunk-extension. Significant phosphocreatine (PCr) depletions ranging from 30% (ES) to 34% (MF) and Pi accumulations between 95% (left ES) and 120%-140% (MF muscles and right ES) were observed during the exercise, which were accompanied by significantly decreased pH values in all muscles (∆pH ≈ -0.05). Baseline T2 values were similar across all investigated muscles (approximately 27 ms at 3 T), but revealed right-left asymmetric increases (T2 ,inc ) after the exercise (right ES/MF: T2 ,inc  = 11.8/9.7%; left ES/MF: T2 ,inc  = 4.6/8.9%). Analyzed muscles also showed load-induced increases in molecular diffusion D (p = .007) and perfusion fraction f (p = .002). The latter parameter was significantly higher in the MF than in the ES muscles both at rest and post exercise. Changes in PCr (p = .03), diffusion (p < .01) and perfusion (p = .03) were strongly associated with T2,inc , and linear mixed model analysis revealed that changes in PCr and perfusion both affect T2,inc (p < .001). These findings support previous assumptions that T2 changes are not only an intra-cellular phenomenon resulting from metabolic stress but are also affected by increased perfusion in loaded muscles.

  12. sup 3 He- sup 3 He dating: A case for mixing of young and old groundwaters

    SciTech Connect

    Kamensky, I.L.; Tolstikhin, I.N. ); Tokarev, I.V. )

    1991-10-01

    {sup 3}He/{sup 4}He and {sup 20}Ne/{sup 4}He ratios were measured in shallow underground waters (opened by water-supplying wells) of the Large Vud-Javr intramountain artesian basin in the Khibiny alkaline massif, the Kola Peninsula. The ratios vary from 1.321 {times} 10{sup {minus}6} to 2.065 {times} 10{sup {minus}6} and from 1.412 to 2.941, respectively, and a well-defined correlation is observed between them. Both these ratios in aquifers are known to be time-dependent, the former increases with time due to accumulation of {sup 3}He, produced in waters by {sup 3}H {beta}-decay; the latter decreases due to migration of helium from water-bearing rocks into the waters. The correlation is interpreted as a result of the mixing of two different types of waters. The approximation line enables the authors to estimate the isotopic ratios for the endmembers participating in the mixing and the mean residence time ({tau}) of tritigenic helium-3 in the water: (1) {sup 3}He/{sup 4}He = 3.655 {times} 10{sup {minus}6}, {sup 20}Ne/{sup 4}He = 4.03, and taking into consideration {sup 3}H concentrations in the well waters, {sup 3}H = 31.1 TU (practically the same for all samples), {tau} = 15.8 {plus minus} 1.5 years for the young water; (2) {sup 3}He/{sup 4}He = 0.20 {times} 10{sup {minus}6}, {sup 20}Ne/{sup 4}He = 0.18 and T = 0.11 Ma for the old one, the contribution of the old water being less than 10%. In one well a considerable contribution of modern-day meteoric water, about 16%, is observed.

  13. MR spectroscopy, functional MRI, and diffusion-tensor imaging in the aging brain: a conceptual review.

    PubMed

    Minati, L; Grisoli, M; Bruzzone, M G

    2007-03-01

    In vivo magnetic resonance spectroscopy (MRS), functional magnetic resonance imaging (fMRI), and diffusion-tensor imaging (DTI) have recently opened new possibilities for noninvasively assessing the metabolic, functional, and connectivity correlates of aging in research and clinical settings. The purpose of this article is to provide a conceptual review intended for a multidisciplinary audience, covering physical principles and main findings related to normal aging and senile cognitive impairment. This article is divided into 3 sections, dedicated to MRS, to fMRI, and to DTI. The spectroscopy section surveys physiological function of the observable metabolites, concentration changes in normal aging and their interpretation, and correlation with cognitive performance. The functional MRI section surveys the hemispheric asymmetry reduction model from compensation and de-differentiation viewpoints, memory encoding, retrieval and consolidation, inhibitory control, perception and action, resting-state networks, and functional deactivations. The DTI section surveys age-related changes, correlation with behavioral scores, and transition to cognitive impairment.

  14. Relationship between pretreatment FDG-PET and diffusion-weighted MRI biomarkers in diffuse large B-cell lymphoma

    PubMed Central

    de Jong, Antoinette; Kwee, Thomas C; de Klerk, John MH; Adam, Judit A; de Keizer, Bart; Fijnheer, Rob; Kersten, Marie José; Ludwig, Inge; Jauw, Yvonne WS; Zijlstra, Josée M; den Bos, Indra C Pieters - Van; Stoker, Jaap; Hoekstra, Otto S; Nievelstein, Rutger AJ

    2014-01-01

    The purpose of this study was to determine the correlation between the 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) standardized uptake value (SUV) and the diffusion-weighted magnetic resonance imaging (MRI) apparent diffusion coefficient (ADC) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Pretreatment FDG-PET and diffusion-weighted MRI of 21 patients with histologically proven DLBCL were prospectively analyzed. In each patient, maximum, mean and peak standardized uptake value (SUV) was measured in the lesion with visually highest FDG uptake and in the largest lesion. Mean ADC (ADCmean, calculated with b-values of 0 and 1000 s/mm2) was measured in the same lesions. Correlations between FDG-PET metrics (SUVmax, SUVmean, SUVpeak) and ADCmean were assessed using Pearson’s correlation coefficients. In the lesions with visually highest FDG uptake, no significant correlations were found between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.498, P=0.609 and P=0.595, respectively). In the largest lesions, there were no significant correlations either between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.992, P=0.843 and P=0.894, respectively). The results of this study indicate that the glycolytic rate as measured by FDG-PET and changes in water compartmentalization and water diffusion as measured by the ADC are independent biological phenomena in newly diagnosed DLBCL. Further studies are warranted to assess the complementary roles of these different imaging biomarkers in the evaluation and follow-up of DLBCL. PMID:24795837

  15. 3D structure tensor analysis of light microscopy data for validating diffusion MRI

    PubMed Central

    Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A.; Kohama, Steven G.; Jespersen, Sune Nørhøj; Kroenke, Christopher D.

    2015-01-01

    Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image “stacks” acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations

  16. Motion Compensated Abdominal Diffusion Weighted MRI by Simultaneous Image Registration and Model Estimation (SIR-ME).

    PubMed

    Kurugol, Sila; Freiman, Moti; Afacan, Onur; Domachevsky, Liran; Perez-Rossello, Jeannette M; Callahan, Michael J; Warfield, Simon K

    2015-01-01

    Non-invasive characterization of water molecule's mobility variations by quantitative analysis of diffusion-weighted MRI (DW-MRI) signal decay in the abdomen has the potential to serve as a biomarker in gastrointestinal and oncological applications. Accurate and reproducible estimation of the signal decay model parameters is challenging due to the presence of respiratory, cardiac, and peristalsis motion. Independent registration of each b-value image to the b-value=0 s/mm(2) image prior to parameter estimation might be sub-optimal because of the low SNR and contrast difference between images of varying b-value. In this work, we introduce a motion-compensated parameter estimation framework that simultaneously solves image registration and model estimation (SIR-ME) problems by utilizing the interdependence of acquired volumes along the diffusion weighting dimension. We evaluated the improvement in model parameters estimation accuracy using 16 in-vivo DW-MRI data sets of Crohn's disease patients by comparing parameter estimates obtained using the SIR-ME model to the parameter estimates obtained by fitting the signal decay model to the acquired DW-MRI images. The proposed SIR-ME model reduced the average root-mean-square error between the observed signal and the fitted model by more than 50%. Moreover, the SIR-ME model estimates discriminate between normal and abnormal bowel loops better than the standard parameter estimates.

  17. A compressed-sensing approach for super-resolution reconstruction of diffusion MRI

    PubMed Central

    Ning, Lipeng; Setsompop, Kawin; Michailovich, Oleg; Makris, Nikos; Westin, Carl-Fredrik; Rathi, Yogesh

    2015-01-01

    We present an innovative framework for reconstructing high-spatial-resolution diffusion magnetic resonance imaging (dMRI) from multiple low-resolution (LR) images. Our approach combines the twin concepts of compressed sensing (CS) and classical super-resolution to reduce acquisition time while increasing spatial resolution. We use sub-pixel-shifted LR images with down-sampled and non-overlapping diffusion directions to reduce acquisition time. The diffusion signal in the high resolution (HR) image is represented in a sparsifying basis of spherical ridgelets to model complex fiber orientations with reduced number of measurements. The HR image is obtained as the solution of a convex optimization problem which can be solved using the proposed algorithm based on the alternating direction method of multipliers (ADMM). We qualitatively and quantitatively evaluate the performance of our method on two sets of in-vivo human brain data and show its effectiveness in accurately recovering very high resolution diffusion images. PMID:26221667

  18. Optimal diffusion MRI acquisition for fiber orientation density estimation: an analytic approach.

    PubMed

    White, Nathan S; Dale, Anders M

    2009-11-01

    An important challenge in the design of diffusion MRI experiments is how to optimize statistical efficiency, i.e., the accuracy with which parameters can be estimated from the diffusion data in a given amount of imaging time. In model-based spherical deconvolution analysis, the quantity of interest is the fiber orientation density (FOD). Here, we demonstrate how the spherical harmonics (SH) can be used to form an explicit analytic expression for the efficiency of the minimum variance (maximally efficient) linear unbiased estimator of the FOD. Using this expression, we calculate optimal b-values for maximum FOD estimation efficiency with SH expansion orders of L = 2, 4, 6, and 8 to be approximately b = 1,500, 3,000, 4,600, and 6,200 s/mm(2), respectively. However, the arrangement of diffusion directions and scanner-specific hardware limitations also play a role in determining the realizable efficiency of the FOD estimator that can be achieved in practice. We show how some commonly used methods for selecting diffusion directions are sometimes inefficient, and propose a new method for selecting diffusion directions in MRI based on maximizing the statistical efficiency. We further demonstrate how scanner-specific hardware limitations generally lead to optimal b-values that are slightly lower than the ideal b-values. In summary, the analytic expression for the statistical efficiency of the unbiased FOD estimator provides important insight into the fundamental tradeoff between angular resolution, b-value, and FOD estimation accuracy.

  19. [Effect of vibration caused by time-varying magnetic fields on diffusion-weighted MRI].

    PubMed

    Ogura, Akio; Maeda, Fumie; Miyai, Akira; Hayashi, Kohji; Hongoh, Takaharu

    2006-04-20

    Diffusion-weighted images (DWIs) with high b-factor in the body are often used to detect and diagnose cancer at MRI. The echo planar imaging (EPI) sequence and high motion probing gradient pulse are used at diffusion weighted imaging, causing high table vibration. The purpose of this study was to assess whether the diffusion signal and apparent diffusion coefficient (ADC) values are influenced by this vibration because of time-varying magnetic fields. Two DWIs were compared. In one, phantoms were fixed on the MRI unit's table transmitting the vibration. In the other, phantoms were supported in air, in the absence of vibration. The phantoms called "solution phantoms" were made from agarose of a particular density. The phantoms called "jelly phantoms" were made from agarose that was heated. The diffusion signal and ADC value of each image were compared. The results showed that the signal of DWI units using the solution phantom was not affected by vibration. However, the signal of DWI and ADC were increased in the low-density jelly phantom as a result of vibration, causing the jelly phantom to vibrate. The DWIs of vibrating regions such as the breast maybe be subject to error. A countermeasure seems to be to support the region adequately.

  20. Advantage of Adding Diffusion Weighted Imaging to Routine MRI Examinations in the Diagnostics of Scrotal Lesions

    PubMed Central

    Algebally, Ahmed Mohamed; Tantawy, Hazim Ibrahim; Yousef, Reda Ramadan Hussein; Szmigielski, Wojciech; Darweesh, Adham

    2015-01-01

    Summary Background The purpose of the study is to identify the diagnostic value of adding diffusion weighted images (DWI) to routine MRI examinations of the scrotum. Material/Methods The study included 100 testes of 50 patients with a unilateral testicular disease. Fifty normal contralateral testes were used as a control group. All patients underwent conventional MRI and DWI examinations of the scrotum. The results of MRI and DWI of the group of patients treated surgically were correlated with histopathological findings. The MRI and DWI results of non-surgical cases were correlated with the results of clinical, laboratory and other imaging studies. Comparison of the ADC value of normal and pathological tissues was carried out followed by a statistical analysis. Results There was a significant difference between ADC values of malignant testicular lesions and normal testicular tissues as well as benign testicular lesions (P=0.000). At a cut-off ADC value of ≤0.99, it had a sensitivity of 93.3%, specificity of 90%, positive predictive value of 87.5%, and negative predictive value of 94.7% in the characterization of intratesticular masses. Conclusions Inclusion of DWI to routine MRI has a substantial value in improving diagnosis in patients with scrotal lesions and consequently can reduce unnecessary radical surgical procedures in these patients. PMID:26491491

  1. Brain tissue damage in dementia with Lewy bodies: an in vivo diffusion tensor MRI study.

    PubMed

    Bozzali, M; Falini, A; Cercignani, M; Baglio, F; Farina, E; Alberoni, M; Vezzulli, P; Olivotto, F; Mantovani, F; Shallice, T; Scotti, G; Canal, N; Nemni, R

    2005-07-01

    The aim of the present study was to apply diffusion tensor MRI (DT-MRI), a quantitative MRI measure which reflects tissue organization, to dementia with Lewy bodies (DLB). DT-MRI scans were obtained from 15 patients with probable DLB and 10 sex- and age-matched healthy controls. Abnormalities were found in the corpus callosum, pericallosal areas and the frontal, parietal, occipital and, less prominently, temporal white matter of patients compared with controls. Abnormalities were also found in the caudate nucleus and the putamen. The average grey matter volume was lower in patients than in controls. These findings of concomitant grey matter atrophy and white matter abnormalities (as detected by DT-MRI) in regions with a high prevalence of long connecting fibre tracts might suggest the presence of neurodegeneration involving associative cortices. The modest involvement of the temporal lobe fits with the relative preservation of global neuropsychological measures and memory tasks in the early stage of DLB. The selective involvement of parietal, frontal and occipital lobes might explain some of the clinical and neuropsychological features of DLB, providing a possible distinctive marker for this disease. The abnormalities found in the subcortical grey matter may indicate that DLB and Parkinson's disease share a similar nigrostriatal involvement caused by common pathophysiological mechanisms.

  2. Evaluating kurtosis-based diffusion MRI tissue models for white matter with fiber ball imaging.

    PubMed

    Jensen, Jens H; McKinnon, Emilie T; Glenn, G Russell; Helpern, Joseph A

    2017-01-13

    In order to quantify well-defined microstructural properties of brain tissue from diffusion MRI (dMRI) data, tissue models are typically employed that relate biological features, such as cell morphology and cell membrane permeability, to the diffusion dynamics. A variety of such models have been proposed for white matter, and their validation is a topic of active interest. In this paper, three different tissue models are tested by comparing their predictions for a specific microstructural parameter to a value measured independently with a recently proposed dMRI method known as fiber ball imaging (FBI). The three tissue models are all constructed with the diffusion and kurtosis tensors, and they are hence compatible with diffusional kurtosis imaging. Nevertheless, the models differ significantly in their details and predictions. For voxels with fractional anisotropies (FAs) exceeding 0.5, all three are reasonably consistent with FBI. However, for lower FA values, one of these, called the white matter tract integrity (WMTI) model, is found to be in much better accord with FBI than the other two, suggesting that the WMTI model has a broader range of applicability.

  3. Brain Tissue Compartment Density Estimated Using Diffusion-Weighted MRI Yields Tissue Parameters Consistent With Histology

    PubMed Central

    Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi

    2015-01-01

    We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639

  4. Test-retest reliability of white matter structural brain networks: a multiband diffusion MRI study.

    PubMed

    Zhao, Tengda; Duan, Fei; Liao, Xuhong; Dai, Zhengjia; Cao, Miao; He, Yong; Shu, Ni

    2015-01-01

    The multiband EPI sequence has been developed for the human connectome project to accelerate MRI data acquisition. However, no study has yet investigated the test-retest (TRT) reliability of the graph metrics of white matter (WM) structural brain networks constructed from this new sequence. Here, we employed a multiband diffusion MRI (dMRI) dataset with repeated scanning sessions and constructed both low- and high-resolution WM networks by volume- and surface-based parcellation methods. The reproducibility of network metrics and its dependence on type of construction procedures was assessed by the intra-class correlation coefficient (ICC). We observed conserved topological architecture of WM structural networks constructed from the multiband dMRI data as previous findings from conventional dMRI. For the global network properties, the first order metrics were more reliable than second order metrics. Between two parcellation methods, networks with volume-based parcellation showed better reliability than surface-based parcellation, especially for the global metrics. Between different resolutions, the high-resolution network exhibited higher TRT performance than the low-resolution in terms of the global metrics with a large effect size, whereas the low-resolution performs better in terms of local (region and connection) properties with a relatively low effect size. Moreover, we identified that the association and primary cortices showed higher reproducibility than the paralimbic/limbic regions. The important hub regions and rich-club connections are more reliable than the non-hub regions and connections. Finally, we found WM networks from the multiband dMRI showed higher reproducibility compared with those from the conventional dMRI. Together, our results demonstrated the fair to good reliability of the WM structural brain networks from the multiband EPI sequence, suggesting its potential utility for exploring individual differences and for clinical applications.

  5. Preservation of extraterrestrial 3He in 480-Ma-old marine limestones.

    PubMed

    Patterson, D B; Farley, K A; Schmitz, B

    1998-11-01

    We have measured the helium abundance and isotopic composition of a suite of Lower Ordovician marine limestones and associated fossil meteorites from Kinnekulle, Sweden. Limestone 3He/4He ratios as high as 11.5 times the atmospheric value in fused samples and up to 23 times atmospheric in a single step-heat fraction indicate the presence of extraterrestrial helium, and demonstrate that at least a fraction of the extraterrestrial 3He carried by interplanetary dust particles must be retained against diffusive and diagenetic losses for up to 480 Ma. The carrier phase has not been identified but is not magnetic. Extrapolation of high-temperature 3He diffusivities in these sediments is consistent with strong retention of extraterrestrial 3He under ambient Earth-surface conditions. Combination of the observed helium concentrations with sedimentation rates estimated from conodont biostratigraphy suggest that the flux of extraterrestrial 3He in the Early Ordovician was about 0.5 x 10(-12) cm3 STP cm-2 ka-1, ignoring potential post-deposition helium loss. This value is indistinguishable from the average 3He flux estimated for the Cenozoic Era. In contrast, previous studies of fossil meteorites, Ir abundances, and Os isotopic ratios in the limestone suggest that the total accretion rate of extraterrestrial material during the studied interval was at least an order of magnitude higher than the Cenozoic average. This disparity may reflect significant post-depositional loss of 3He from IDPs within these old limestones; if so, the match between the Ordovician flux and the Cenozoic average would be fortuitous. Alternatively, the size distribution of infalling objects during the Early Ordovician may have been enriched only in extraterrestrial material too large to retain 3He during atmospheric entry heating (> approximately 30 micrometers). The fossil meteorites themselves also preserve extraterrestrial helium. Meteorite 3He concentrations of 2 to 9 x 10(-12) cm3 STP g-1 are

  6. A System for Open-Access 3He Human Lung Imaging at Very Low Field

    PubMed Central

    RUSET, I.C.; TSAI, L.L.; MAIR, R.W.; PATZ, S.; HROVAT, M.I.; ROSEN, M.S.; MURADIAN, I.; NG, J.; TOPULOS, G.P.; BUTLER, J.P.; WALSWORTH, R.L.; HERSMAN, F.W.

    2010-01-01

    We describe a prototype system built to allow open-access very-low-field MRI of human lungs using laser-polarized 3He gas. The system employs an open four-coil electromagnet with an operational B0 field of 4 mT, and planar gradient coils that generate gradient fields up to 0.18 G/cm in the x and y direction and 0.41 G/cm in the z direction. This system was used to obtain 1H and 3He phantom images and supine and upright 3He images of human lungs. We include discussion on challenges unique to imaging at 50 –200 kHz, including noise filtering and compensation for narrow-bandwidth coils. PMID:20354575

  7. Quantified MRI and cognition in TBI with diffuse and focal damage(☆)

    PubMed

    Levine, Brian; Kovacevic, Natasa; Nica, Elena Irina; Schwartz, Michael L; Gao, Fuqiang; Black, Sandra E

    2013-04-10

    In patients with chronic-phase traumatic brain injury (TBI), structural MRI is readily attainable and provides rich anatomical information, yet the relationship between whole-brain structural MRI measures and neurocognitive outcome is relatively unexplored and can be complicated by the presence of combined focal and diffuse injury. In this study, sixty-three patients spanning the full range of TBI severity received high-resolution structural MRI concurrent with neuropsychological testing. Multivariate statistical analysis assessed covariance patterns between volumes of grey matter, white matter, and sulcal/subdural and ventricular CSF across 38 brain regions and neuropsychological test performance. Patients with diffuse and diffuse + focal injury were analyzed both separately and together. Tests of speeded attention, working memory, and verbal learning and memory robustly covaried with a distributed pattern of volume loss over temporal, ventromedial prefrontal, right parietal regions, and cingulate regions. This pattern was modulated by the presence of large focal lesions, but held even when analyses were restricted to those with diffuse injury. Effects were most consistently observed within grey matter. Relative to regional brain volumetric data, clinically defined injury severity (depth of coma at time of injury) showed only weak relation to neuropsychological outcome. The results showed that neuropsychological test performance in patients with TBI is related to a distributed pattern of volume loss in regions mediating mnemonic and attentional processing. This relationship holds for patients with and without focal lesions, indicating that diffuse injury alone is sufficient to cause significant neuropsychological disability in relation to regional volume loss. Quantified structural brain imaging data provides a highly sensitive index of brain integrity that is related to cognitive functioning in chronic phase TBI.

  8. Auditory tracts identified with combined fMRI and diffusion tractography.

    PubMed

    Javad, Faiza; Warren, Jason D; Micallef, Caroline; Thornton, John S; Golay, Xavier; Yousry, Tarek; Mancini, Laura

    2014-01-01

    The auditory tracts in the human brain connect the inferior colliculus (IC) and medial geniculate body (MGB) to various components of the auditory cortex (AC). While in non-human primates and in humans, the auditory system is differentiated in core, belt and parabelt areas, the correspondence between these areas and anatomical landmarks on the human superior temporal gyri is not straightforward, and at present not completely understood. However it is not controversial that there is a hierarchical organization of auditory stimuli processing in the auditory system. The aims of this study were to demonstrate that it is possible to non-invasively and robustly identify auditory projections between the auditory thalamus/brainstem and different functional levels of auditory analysis in the cortex of human subjects in vivo combining functional magnetic resonance imaging (fMRI) with diffusion MRI, and to investigate the possibility of differentiating between different components of the auditory pathways (e.g. projections to areas responsible for sound, pitch and melody processing). We hypothesized that the major limitation in the identification of the auditory pathways is the known problem of crossing fibres and addressed this issue acquiring DTI with b-values higher than commonly used and adopting a multi-fibre ball-and-stick analysis model combined with probabilistic tractography. Fourteen healthy subjects were studied. Auditory areas were localized functionally using an established hierarchical pitch processing fMRI paradigm. Together fMRI and diffusion MRI allowed the successful identification of tracts connecting IC with AC in 64 to 86% of hemispheres and left sound areas with homologous areas in the right hemisphere in 86% of hemispheres. The identified tracts corresponded closely with a three-dimensional stereotaxic atlas based on postmortem data. The findings have both neuroscientific and clinical implications for delineation of the human auditory system in vivo.

  9. Studies of 3He+3He, T+3He, and p +D nuclear reactions relevant to stellar or Big-Bang Nucleosynthesis using ICF plasmas at OMEGA

    NASA Astrophysics Data System (ADS)

    Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Li, Chikang; Seguin, Fredrick; Sio, Hong; Rosenberg, Michael; Rinderknecht, Hans; Petrasso, Richard; Herrmann, Hans; Kim, Yong Ho; Hale, Gerry; McNabb, Dennis; Sayre, Dan; Pino, Jesse; Brune, Carl; Bacher, Andy; Forrest, Chad; Glebov, Vladimir; Stoeckl, Christian; Janezic, Roger; Sangster, Craig

    2014-10-01

    The 3He+3He, T+3He, and p +D reactions directly relevant to Stellar or Big-Bang Nucleosynthesis (BBN) have been studied at the OMEGA laser facility using high-temperature low-density `exploding pusher' implosions. The advantage of using these plasmas is that they better mimic astrophysical systems than cold-target accelerator experiments. Measured proton spectra from the 3He3He reaction are used to constrain nuclear R-matrix modeling. The resulting T+3He γ-ray data rule out an anomalously-high 6Li production during BBN as an explanation to the high observed values in primordial material. The proton spectrum from the T+3He reaction is also being used to constrain the R-matrix model. Recent experiments have probed the p +D reaction for the first time in a plasma; this reaction is relevant to energy production in protostars, brown dwarfs and at higher CM energies to BBN. This work was partially supported by the US DOE, NLUF, LLE, and GA.

  10. A ranking of diffusion MRI compartment models with in vivo human brain data

    PubMed Central

    Ferizi, Uran; Schneider, Torben; Panagiotaki, Eleftheria; Nedjati-Gilani, Gemma; Zhang, Hui; Wheeler-Kingshott, Claudia A M; Alexander, Daniel C

    2014-01-01

    Purpose Diffusion magnetic resonance imaging (MRI) microstructure imaging provides a unique noninvasive probe into tissue microstructure. The technique relies on biophysically motivated mathematical models, relating microscopic tissue features to the magnetic resonance (MR) signal. This work aims to determine which compartment models of diffusion MRI are best at describing measurements from in vivo human brain white matter. Methods Recent work shows that three compartment models, designed to capture intra-axonal, extracellular, and isotropically restricted diffusion, best explain multi-b-value data sets from fixed rat corpus callosum. We extend this investigation to in vivo by using a live human subject on a clinical scanner. The analysis compares models of one, two, and three compartments and ranks their ability to explain the measured data. We enhance the original methodology to further evaluate the stability of the ranking. Results As with fixed tissue, three compartment models explain the data best. However, a clearer hierarchical structure and simpler models emerge. We also find that splitting the scanning into shorter sessions has little effect on the ranking of models, and that the results are broadly reproducible across sessions. Conclusion Three compartments are required to explain diffusion MR measurements from in vivo corpus callosum, which informs the choice of model for microstructure imaging applications in the brain. Magn Reson Med 72:1785–1792, 2014. © 2013 The authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:24347370

  11. Perfusion and diffusion MRI of glioblastoma progression in a four-year prospective temozolomide clinical trial

    SciTech Connect

    Leimgruber, Antoine; Ostermann, Sandrine; Yeon, Eun Jo; Buff, Evelyn; Maeder, Philippe P.; Stupp, Roger; Meuli, Reto A. . E-mail: Reto.Meuli@chuv.ch

    2006-03-01

    Purpose: This study was performed to determine the impact of perfusion and diffusion magnetic resonance imaging (MRI) sequences on patients during treatment of newly diagnosed glioblastoma. Special emphasis has been given to these imaging technologies as tools to potentially anticipate disease progression, as progression-free survival is frequently used as a surrogate endpoint. Methods and Materials: Forty-one patients from a phase II temolozomide clinical trial were included. During follow-up, images were integrated 21 to 28 days after radiochemotherapy and every 2 months thereafter. Assessment of scans included measurement of size of lesion on T1 contrast-enhanced, T2, diffusion, and perfusion images, as well as mass effect. Classical criteria on tumor size variation and clinical parameters were used to set disease progression date. Results: A total of 311 MRI examinations were reviewed. At disease progression (32 patients), a multivariate Cox regression determined 2 significant survival parameters: T1 largest diameter (p < 0.02) and T2 size variation (p < 0.05), whereas perfusion and diffusion were not significant. Conclusion: Perfusion and diffusion techniques cannot be used to anticipate tumor progression. Decision making at disease progression is critical, and classical T1 and T2 imaging remain the gold standard. Specifically, a T1 contrast enhancement over 3 cm in largest diameter together with an increased T2 hypersignal is a marker of inferior prognosis.

  12. Spectroscopic issues in optical polarization of 3He gas for Magnetic Resonance Imaging of human lungs

    NASA Astrophysics Data System (ADS)

    Dohnalik, T.; Głowacz, B.; Olejniczak, Z.; Pałasz, T.; Suchanek, M.; Wojna, A.

    2013-10-01

    The Magnetic Resonance Imaging (MRI) of human lungs for diagnostic purposes became possible by using nuclear spin hyperpolarized noble gases, such as 3He. One of the methods to polarize 3He is the Metastability Exchange Optical Pumping (MEOP), which up to now has been performed at low pressure of about 1 mbar and in low magnetic field below 0.1 T (standard conditions). The equilibrium nuclear polarization can reach up to 80%, but it is dramatically reduced during the subsequent gas compression to the atmospheric pressure that is necessary for the lungs examination. Further polarization losses occur during the transportation of the gas to the hospital scanner. It was shown recently that up to 50% polarization can be obtained at elevated pressure exceeding 20 mbar, by using magnetic field higher than 0.1 T (nonstandard conditions). Therefore, following the construction of the low-field MEOP polarizer located in the lab, a dedicated portable unit was developed, which uses the magnetic field of the 1.5 T MR medical scanner and works in the continuous-flow regime. The first in Poland MRI images of human lungs in vivo were obtained on the upgraded to 3He resonance frequency Siemens Sonata medical scanner. An evident improvement in the image quality was achieved when using the new technique. The paper shows how spectroscopic measurements of 3He carried out in various experimental conditions led both to useful practical results and to significant progress in understanding fundamental processes taking place during MEOP.

  13. Optical Pumping Spin Exchange {sup 3}He Gas Cells for Magnetic Resonance Imaging

    SciTech Connect

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-04

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the {sup 3}He-N{sub 2} mixture. The cells could be refilled. The {sup 3}He reaches around 50% polarization in 5-15 hours.

  14. Recycling of 3He from lung magnetic resonance imaging.

    PubMed

    Salhi, Z; Grossmann, T; Gueldner, M; Heil, W; Karpuk, S; Otten, E W; Rudersdorf, D; Surkau, R; Wolf, U

    2012-06-01

    We have developed the means to recycle (3) He exhaled by patients after imaging the lungs using magnetic resonance of hyperpolarized (3) He. The exhaled gas is collected in a helium leak proof bag and further compressed into a steel bottle. The collected gas contains about 1-2% of (3) He, depending on the amount administered and the number of breaths collected to wash out the (3) He gas from the lungs. (3) He is separated from the exhaled air using zeolite molecular sieve adsorbent at 77 K followed by a cold head at 8 K. Residual gaseous impurities are finally absorbed by a commercial nonevaporative getter. The recycled (3) He gas features high purity, which is required for repolarization by metastability exchange optical pumping. At present, we achieve a collection efficiency of 80-84% for exhaled gas from healthy volunteers and cryogenic separation efficiency of 95%.

  15. Performance Limits of Pulse Tube Cryocoolers Using 3HE

    NASA Astrophysics Data System (ADS)

    Kittel, P.

    2008-03-01

    The enthalpy, entropy, and exergy flows resulting from the real gas effects of 3He in ideal pulse tube cryocoolers are described. The discussion follows a previous description of the real gas effects of 4He in ideal pulse tube cryocoolers and makes use of a recently developed model of the thermophysical properties of 3He. This model is used to describe how the thermodynamic flows are affected by real gas phenomena of 3He and compares these effects to similar effects for 4He. The analysis was done over the pressure range 0.3-2 MPa and temperatures down to 1 K. At 2 MPa there is almost no difference in the cooling power between 3He and 4He. At lower pressures, using 3He is advantageous. There is a 1-2 K reduction in the 3He cooling power vs. temperature curves compared to those for 4He in the 0.3-1 MPa range.

  16. Inter-site and inter-scanner diffusion MRI data harmonization.

    PubMed

    Mirzaalian, H; Ning, L; Savadjiev, P; Pasternak, O; Bouix, S; Michailovich, O; Grant, G; Marx, C E; Morey, R A; Flashman, L A; George, M S; McAllister, T W; Andaluz, N; Shutter, L; Coimbra, R; Zafonte, R D; Coleman, M J; Kubicki, M; Westin, C F; Stein, M B; Shenton, M E; Rathi, Y

    2016-07-15

    We propose a novel method to harmonize diffusion MRI data acquired from multiple sites and scanners, which is imperative for joint analysis of the data to significantly increase sample size and statistical power of neuroimaging studies. Our method incorporates the following main novelties: i) we take into account the scanner-dependent spatial variability of the diffusion signal in different parts of the brain; ii) our method is independent of compartmental modeling of diffusion (e.g., tensor, and intra/extra cellular compartments) and the acquired signal itself is corrected for scanner related differences; and iii) inter-subject variability as measured by the coefficient of variation is maintained at each site. We represent the signal in a basis of spherical harmonics and compute several rotation invariant spherical harmonic features to estimate a region and tissue specific linear mapping between the signal from different sites (and scanners). We validate our method on diffusion data acquired from seven different sites (including two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. Since the extracted rotation invariant spherical harmonic features depend on the accuracy of the brain parcellation provided by Freesurfer, we propose a feature based refinement of the original parcellation such that it better characterizes the anatomy and provides robust linear mappings to harmonize the dMRI data. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across multiple sites before and after data harmonization. We also show results using tract-based spatial statistics before and after harmonization for independent validation of the proposed methodology. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the

  17. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    NASA Astrophysics Data System (ADS)

    Mahmood, Faisal; Johannesen, Helle H.; Geertsen, Poul; Hansen, Rasmus H.

    2017-04-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point for acquiring the DW-MRI scan during the course of treatment, since to our knowledge this important question has not been addressed directly in previous studies. Twenty-nine metastases (N  =  29) from twenty-one patients, treated with whole-brain fractionated external beam RT were analyzed. Patients were scanned with a 1 T MRI system to acquire DW-, T2*W-, T2W- and T1W scans, before start of RT, at each fraction and at follow up two to three months after RT. The DW-MRI parameters were derived using regions of interest based on high b-value images (b  =  800 s mm‑2). Both volumetric and RECIST criteria were applied for response evaluation. It was found that in non-responding metastases the mean ADC decreased and in responding metastases it increased. The volume based response proved to be far more consistently predictable by the ADC change found at fraction number 7 and later, compared to the linear response (RECIST). The perfusion fraction and pseudo diffusion coefficient did not show sufficient prognostic value with either response assessment criteria. In conclusion this study shows that the ADC derived using high b-values may be a reliable biomarker for early assessment of radiotherapy response for brain metastases patients. The earliest response stratification can be achieved using two DW-MRI scans, one pre-treatment and one at treatment day 7–9 (equivalent to 21

  18. Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI

    PubMed Central

    Farooq, Hamza; Xu, Junqian; Nam, Jung Who; Keefe, Daniel F.; Yacoub, Essa; Georgiou, Tryphon; Lenglet, Christophe

    2016-01-01

    Diffusion MRI (dMRI) reveals microstructural features of the brain white matter by quantifying the anisotropic diffusion of water molecules within axonal bundles. Yet, identifying features such as axonal orientation dispersion, density, diameter, etc., in complex white matter fiber configurations (e.g. crossings) has proved challenging. Besides optimized data acquisition and advanced biophysical models, computational procedures to fit such models to the data are critical. However, these procedures have been largely overlooked by the dMRI microstructure community and new, more versatile, approaches are needed to solve complex biophysical model fitting problems. Existing methods are limited to models assuming single fiber orientation, relevant to limited brain areas like the corpus callosum, or multiple orientations but without the ability to extract detailed microstructural features. Here, we introduce a new and versatile optimization technique (MIX), which enables microstructure imaging of crossing white matter fibers. We provide a MATLAB implementation of MIX, and demonstrate its applicability to general microstructure models in fiber crossings using synthetic as well as ex-vivo and in-vivo brain data. PMID:27982056

  19. Early Response of Prostate Carcinoma Xenografts to Docetaxel Chemotherapy Monitored With Diffusion MRI

    PubMed Central

    Jennings, Dominique; Hatton, B Nicholas; Guo, Jingyu; Galons, Jean-Philippe; Trouard, Theodore P; Raghunand, Natarajan; Marshall, James; Gillies, Robert J

    2002-01-01

    Abstract For many anticancer therapies, it would be desirable to accurately monitor and quantify tumor response early in the treatment regimen. This would allow oncologists to continue effective therapies or discontinue ineffective therapies early in the course of treatment, and hence, reduce morbidity. This is especially true for second-line therapies, which have reduced response rates and increased toxicities. Previous works by others and ourselves have shown that water mobility, measured by diffusion-weighted magnetic resonance imaging (DW-MRI), increases early in tumors destined to respond to therapies. In the current communication, we further characterize the utility of DW-MRI to predict response of prostate cancer xenografts to docetaxel in SCID mice in a preclinical setting. The current data illustrate that tumor volumes and secreted prostate-specific antigen both respond strongly to docetaxel in a dose-responsive manner, and the apparent diffusion coefficient of water (ADCw) increases significantly by 2 days even at the lowest doses (10 mg/kg). The ADCw data were parsed by histogram analyses. Our results indicate that DW-MRI can be used for early detection of prostate carcinoma xenograft response to docetaxel chemotherapy. PMID:11988845

  20. Fast and accurate simulations of diffusion-weighted MRI signals for the evaluation of acquisition sequences

    NASA Astrophysics Data System (ADS)

    Rensonnet, Gaëtan; Jacobs, Damien; Macq, Benoît.; Taquet, Maxime

    2016-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) is a powerful tool to probe the diffusion of water through tissues. Through the application of magnetic gradients of appropriate direction, intensity and duration constituting the acquisition parameters, information can be retrieved about the underlying microstructural organization of the brain. In this context, an important and open question is to determine an optimal sequence of such acquisition parameters for a specific purpose. The use of simulated DW-MRI data for a given microstructural configuration provides a convenient and efficient way to address this problem. We first present a novel hybrid method for the synthetic simulation of DW-MRI signals that combines analytic expressions in simple geometries such as spheres and cylinders and Monte Carlo (MC) simulations elsewhere. Our hybrid method remains valid for any acquisition parameters and provides identical levels of accuracy with a computational time that is 90% shorter than that required by MC simulations for commonly-encountered microstructural configurations. We apply our novel simulation technique to estimate the radius of axons under various noise levels with different acquisition protocols commonly used in the literature. The results of our comparison suggest that protocols favoring a large number of gradient intensities such as a Cube and Sphere (CUSP) imaging provide more accurate radius estimation than conventional single-shell HARDI acquisitions for an identical acquisition time.

  1. Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI

    NASA Astrophysics Data System (ADS)

    Katsaloulis, P.; Ghosh, A.; Philippe, A. C.; Provata, A.; Deriche, R.

    2012-05-01

    In this work the fractal architecture of the neuron axonal topography of the human brain is evaluated, as derived from 3-D diffusion MRI (dMRI) acquisitions. This is a 3D extension of work performed previously in 2D regions of interest (ROIs), where the fractal dimension of the neuron axonal topography was computed from dMRI data. A group study with 18 subjects is here conducted and the fractal dimensions D f of the entire 3-D volume of the brains is estimated via the box counting, the correlation dimension and the fractal mass dimension methods. The neuron axon data is obtained using tractography algorithms on diffusion tensor imaging of the brain. We find that all three calculations of D f give consistent results across subjects, namely, they demonstrate fractal characteristics in the short and medium length scales: different fractal exponents prevail at different length scales, an indication of multifractality. We surmise that this complexity stems as a collective property emerging when many local brain units, performing different functional tasks and having different local topologies, are recorded together.

  2. Evaluation of three inverse problem models to quantify skin microcirculation using diffusion-weighted MRI

    NASA Astrophysics Data System (ADS)

    Cordier, G.; Choi, J.; Raguin, L. G.

    2008-11-01

    Skin microcirculation plays an important role in diseases such as chronic venous insufficiency and diabetes. Magnetic resonance imaging (MRI) can provide quantitative information with a better penetration depth than other noninvasive methods, such as laser Doppler flowmetry or optical coherence tomography. Moreover, successful MRI skin studies have recently been reported. In this article, we investigate three potential inverse models to quantify skin microcirculation using diffusion-weighted MRI (DWI), also known as q-space MRI. The model parameters are estimated based on nonlinear least-squares (NLS). For each of the three models, an optimal DWI sampling scheme is proposed based on D-optimality in order to minimize the size of the confidence region of the NLS estimates and thus the effect of the experimental noise inherent to DWI. The resulting covariance matrices of the NLS estimates are predicted by asymptotic normality and compared to the ones computed by Monte-Carlo simulations. Our numerical results demonstrate the effectiveness of the proposed models and corresponding DWI sampling schemes as compared to conventional approaches.

  3. Validation of fast diffusion kurtosis MRI for imaging acute ischemia in a rodent model of stroke

    PubMed Central

    Sun, Phillip Zhe; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Lo, Eng H; Ji, Xunming

    2014-01-01

    Diffusion-weighted imaging (DWI) captures ischemic tissue that is likely to infarct, and has become one of the most widely used acute stroke imaging techniques. Diffusion kurtosis imaging (DKI) has lately been postulated as a complementary MRI method to stratify the heterogeneously damaged DWI lesion. However, the conventional DKI acquisition time is relatively long, limiting its use in the acute stroke setting. Recently, Hansen et al. proposed a fast kurtosis mapping method and demonstrated it in fixed brains and control subjects. The fast DKI approach provides mean diffusion and kurtosis measurements under substantially reduced scan time, making it amenable to acute stroke imaging. Because it is not practical to obtain and compare different means of DKI to test whether the fast DKI method can reliably detect diffusion and kurtosis lesions in acute stroke patients, our study investigated its diagnostic value using an animal model of acute stroke, a critical step before fast DKI acquisition can be routinely applied in the acute stroke setting. We found significant correlation, per voxel, between the diffusion and kurtosis coefficients measured using the fast and conventional DKI protocols. In acute stroke rats, both DKI methods yielded diffusion and kurtosis lesions that were in good agreement. Importantly, substantial kurtosis/diffusion lesion mismatch was observed using the conventional (26±13%, P<0.01) and fast DKI methods (23±8%, P<0.01). In addition, regression analysis showed that the kurtosis/diffusion lesion mismatch obtained using conventional and fast DKI methods were substantially correlated (R2=0.57, P=0.02). Our results confirmed that the recently proposed fast DKI method is capable of capturing heterogeneous diffusion and kurtosis lesions in acute ischemic stroke, and thus is suitable for translational applications in the acute stroke clinical setting. PMID:25208309

  4. Validation of fast diffusion kurtosis MRI for imaging acute ischemia in a rodent model of stroke.

    PubMed

    Sun, Phillip Zhe; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Lo, Eng H; Ji, Xunming

    2014-11-01

    Diffusion-weighted imaging (DWI) captures ischemic tissue that is likely to infarct, and has become one of the most widely used acute stroke imaging techniques. Diffusion kurtosis imaging (DKI) has lately been postulated as a complementary MRI method to stratify the heterogeneously damaged DWI lesion. However, the conventional DKI acquisition time is relatively long, limiting its use in the acute stroke setting. Recently, a fast kurtosis mapping method has been demonstrated in fixed brains and control subjects. The fast DKI approach provides mean diffusion and kurtosis measurements under substantially reduced scan time, making it amenable to acute stroke imaging. Because it is not practical to obtain and compare different means of DKI to test whether the fast DKI method can reliably detect diffusion and kurtosis lesions in acute stroke patients, our study investigated its diagnostic value using an animal model of acute stroke, a critical step before fast DKI acquisition can be routinely applied in the acute stroke setting. We found significant correlation, per voxel, between the diffusion and kurtosis coefficients measured using the fast and conventional DKI protocols. In acute stroke rats, the two DKI methods yielded diffusion and kurtosis lesions that were in good agreement. Importantly, substantial kurtosis-diffusion lesion mismatch was observed using the conventional (26 ± 13%, P < 0.01) and fast DKI methods (23 ± 8%, P < 0.01). In addition, regression analysis showed that the kurtosis-diffusion lesion mismatches obtained using conventional and fast DKI methods were substantially correlated (R(2) = 0.57, P = 0.02). Our results confirmed that the recently proposed fast DKI method is capable of capturing heterogeneous diffusion and kurtosis lesions in acute ischemic stroke, and thus is suitable for translational applications in the acute stroke clinical setting.

  5. Modeling diffusion-weighted MRI as a spatially variant Gaussian mixture: Application to image denoising

    PubMed Central

    Gonzalez, Juan Eugenio Iglesias; Thompson, Paul M.; Zhao, Aishan; Tu, Zhuowen

    2011-01-01

    Purpose: This work describes a spatially variant mixture model constrained by a Markov random field to model high angular resolution diffusion imaging (HARDI) data. Mixture models suit HARDI well because the attenuation by diffusion is inherently a mixture. The goal is to create a general model that can be used in different applications. This study focuses on image denoising and segmentation (primarily the former). Methods: HARDI signal attenuation data are used to train a Gaussian mixture model in which the mean vectors and covariance matrices are assumed to be independent of spatial locations, whereas the mixture weights are allowed to vary at different lattice positions. Spatial smoothness of the data is ensured by imposing a Markov random field prior on the mixture weights. The model is trained in an unsupervised fashion using the expectation maximization algorithm. The number of mixture components is determined using the minimum message length criterion from information theory. Once the model has been trained, it can be fitted to a noisy diffusion MRI volume by maximizing the posterior probability of the underlying noiseless data in a Bayesian framework, recovering a denoised version of the image. Moreover, the fitted probability maps of the mixture components can be used as features for posterior image segmentation. Results: The model-based denoising algorithm proposed here was compared on real data with three other approaches that are commonly used in the literature: Gaussian filtering, anisotropic diffusion, and Rician-adapted nonlocal means. The comparison shows that, at low signal-to-noise ratio, when these methods falter, our algorithm considerably outperforms them. When tractography is performed on the model-fitted data rather than on the noisy measurements, the quality of the output improves substantially. Finally, ventricle and caudate nucleus segmentation experiments also show the potential usefulness of the mixture probability maps for

  6. /sup 3/He functions in tokamak-pumped laser systems

    SciTech Connect

    Jassby, D.L.

    1986-10-01

    /sup 3/He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the /sup 3/He(n,p)T reaction, and thereby excite gaseous lasants mixed with the /sup 3/He while simultaneously breeding tritium. The total /sup 3/He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak.

  7. Two and three-dimensional segmentation of hyperpolarized 3He magnetic resonance imaging of pulmonary gas distribution

    NASA Astrophysics Data System (ADS)

    Heydarian, Mohammadreza; Kirby, Miranda; Wheatley, Andrew; Fenster, Aaron; Parraga, Grace

    2012-03-01

    A semi-automated method for generating hyperpolarized helium-3 (3He) measurements of individual slice (2D) or whole lung (3D) gas distribution was developed. 3He MRI functional images were segmented using two-dimensional (2D) and three-dimensional (3D) hierarchical K-means clustering of the 3He MRI signal and in addition a seeded region-growing algorithm was employed for segmentation of the 1H MRI thoracic cavity volume. 3He MRI pulmonary function measurements were generated following two-dimensional landmark-based non-rigid registration of the 3He and 1H pulmonary images. We applied this method to MRI of healthy subjects and subjects with chronic obstructive lung disease (COPD). The results of hierarchical K-means 2D and 3D segmentation were compared to an expert observer's manual segmentation results using linear regression, Pearson correlations and the Dice similarity coefficient. 2D hierarchical K-means segmentation of ventilation volume (VV) and ventilation defect volume (VDV) was strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.97, p<.0001) and mean Dice coefficients were greater than 92% for all subjects. 3D hierarchical K-means segmentation of VV and VDV was also strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.64, p<.0001) and the mean Dice coefficients were greater than 91% for all subjects. Both 2D and 3D semi-automated segmentation of 3He MRI gas distribution provides a way to generate novel pulmonary function measurements.

  8. A survey of current trends in diffusion MRI for structural brain connectivity

    NASA Astrophysics Data System (ADS)

    Ghosh, Aurobrata; Deriche, Rachid

    2016-02-01

    In this paper, we review the state of the art in diffusion magnetic resonance imaging (dMRI) and we present current trends in modelling the brain's tissue microstructure and the human connectome. dMRI is today the only tool that can probe the brain's axonal architecture in vivo and non-invasively, and has grown in leaps and bounds in the last two decades since its conception. A plethora of models with increasing complexity and better accuracy have been proposed to characterise the integrity of the cerebral tissue, to understand its microstructure and to infer its connectivity. Here, we discuss a wide range of the most popular, important and well-established local microstructure models and biomarkers that have been proposed from these models. Finally, we briefly present the state of the art in tractography techniques that allow us to understand the architecture of the brain's connectivity.

  9. Diffusion and ideal MRI techniques to characterize limb-girdle muscular dystrophy

    NASA Astrophysics Data System (ADS)

    Hernández-Salazar, G.; Hidalgo-Tobon, S.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodríguez, A. O.; Delgado-Hernández, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. In the thigh, muscles at the back are affected, with a tendency to preserve the tibialis anterior and gastrocnemius. The aim of this study was to compare quantitative MRI measurements from IDEAL-based imaging and DW imaging in the thigh muscles of adults with LGMDs and healthy volunteers(HC). Six women (three patients and three healthy volunteers) were examined. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee). T1 IDEAL 2D images and diffusion images were acquired. Results demonstrated that the use of noninvasive MRI techniques may provide the means to characterize the muscle through quantitative methods to determine the percentage of fat and ADC values.

  10. Spectral Analysis of Non-ideal MRI Modes: The Effect of Hall Diffusion

    NASA Astrophysics Data System (ADS)

    Mohandas, Gopakumar; Pessah, Martin E.

    2017-03-01

    The effect of magnetic field diffusion on the stability of accretion disks is a problem that has attracted considerable interest of late. In particular, the Hall effect has the potential to bring about remarkable changes in the dynamical behavior of disks that are without parallel. In this paper, we conduct a systematic examination of the linear eigenmodes in a weakly magnetized differentially rotating gas with a special focus on Hall diffusion. We first develop a geometrical representation of the eigenmodes and provide a detailed quantitative description of the polarization properties of the oscillatory modes under the combined influence of the Coriolis and Hall effects. We also analyze the effects of magnetic diffusion on the structure of the unstable modes and derive analytical expressions for the kinetic and magnetic stresses and energy densities associated with the non-ideal magnetorotational instability (MRI). Our analysis explicitly demonstrates that, if the dissipative effects are relatively weak, the kinetic stresses and energies make up the dominant contribution to the total stress and energy density when the equilibrium angular momentum and magnetic field vectors are anti-parallel. This is in sharp contrast to what is observed in the case of the ideal or dissipative MRI. We conduct shearing box simulations and find very good agreement with the results derived from linear theory. Because the modes under consideration are also exact solutions of the nonlinear equations, the unconventional nature of the kinetic and magnetic stresses may have significant implications for the nonlinear evolution in some regions of protoplanetary disks.

  11. Whole-body MRI for full assessment and characterization of diffuse inflammatory myopathy

    PubMed Central

    Elessawy, Saleh Saleh; Abdel Razek, Eman; Tharwat, Samar

    2016-01-01

    Background Conventional magnetic resonance imaging (MRI) is a highly valuable tool for full assessment of the extent of bilateral symmetrical diffuse inflammatory myopathy, owing to its high sensitivity in the detection of edema which correlates with, and sometimes precedes, clinical findings. Purpose To evaluate the use of whole-body (WB)-MRI in characterization and full assessment of the extent and distribution of diffuse inflammatory myopathy. Material and Methods A prospective study on 15 patients presenting with clinical evidence of inflammatory myopathy. It included 4 boys/men and 11 girls/women (age range, 6–44 years; mean age, 25.5 years). 1.5 T WB-MRI was performed and the distribution and extent of disease severity was assessed according to muscle edema on STIR images. Results Four cases of dermatomyositis showed lower limb disease predilection with edema in gluteal, thigh, and calf muscles. The same finding was seen in one case with recurrent polymyositis and three cases with overlap myositis with systemic lupus erythematosus (SLE). Bilateral upper and lower limb myositis was demonstrated in three cases of polymyositis and one case of overlap myositis with scleroderma. Bilateral edema involving all scanned muscle groups was detected in three cases of polymyositis with paraneoplastic syndrome, SLE, and severe active dermatomyositis (including the neck muscles). Conclusion WB-MRI is the diagnostic modality of choice for cases of inflammatory myopathy. It accurately detects the most severely affected muscles candidate for biopsy and provides a reliable baseline study for follow-up of disease progression as well as response to treatment. PMID:27708860

  12. Heat Transfer in 3He -4He Mixtures in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Nemchenko, K.; Rogova, S.; Vikhtinskaya, T.

    2017-02-01

    The paper presents the results of theoretical studies of the transport processes that take place in the newly proposed experiments on study of a vibrating quartz fork in superfluid 3He -4He mixtures. In addition to known mechanisms of energy loss from a vibrating quartz fork such as first sound radiation or interaction with thermal excitations, two more mechanisms specific for 3He -4He mixtures are proposed and studied in the paper. The relative contribution of these mechanisms: second sound and effective diffusion, is considered, and experimental conditions under which these mechanisms become effective are discussed.

  13. Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy.

    PubMed

    Xu, Junzhong; Li, Hua; Harkins, Kevin D; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Does, Mark D; Gore, John C

    2014-12-01

    Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon diameter and volume fraction non-invasively. However, due to the relatively long diffusion times used, e.g. >20ms, the sensitivity to small axons (diameter<2μm) is low, and the derived mean axon diameter has been reported to be overestimated. In the current study, oscillating gradient spin echo (OGSE) diffusion sequences with variable frequency gradients were used to assess rat spinal white matter tracts with relatively short effective diffusion times (1-5ms). In contrast to previous PGSE-based methods, the extra-axonal diffusion cannot be modeled as hindered (Gaussian) diffusion when short diffusion times are used. Appropriate frequency-dependent rates are therefore incorporated into our analysis and validated by histology-based computer simulation of water diffusion. OGSE data were analyzed to derive mean axon diameters and intra-axonal volume fractions of rat spinal white matter tracts (mean axon diameter of ~1.27-5.54μm). The estimated values were in good agreement with histology, including the small axon diameters (<2.5μm). This study establishes a framework for the quantification of nerve morphology using the OGSE method with high sensitivity to small axons.

  14. Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy

    PubMed Central

    Xu, Junzhong; Li, Hua; Harkins, Kevin D.; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Does, Mark D.; Gore, John C.

    2014-01-01

    Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon diameter and volume fraction non-invasively. However, due to the relatively long diffusion times used, e.g. > 20 ms, the sensitivity to small axons (diameter < 2 µm) is low, and the derived mean axon diameter has been reported to be overestimated. In the current study, oscillating gradient spin echo (OGSE) diffusion sequences with variable frequency gradients were used to assess rat spinal white matter tracts with relatively short effective diffusion times (1 – 5 ms). In contrast to previous PGSE-based methods, the extra-axonal diffusion cannot be modeled as hindered (Gaussian) diffusion when short diffusion times are used. Appropriate frequency-dependent rates are therefore incorporated into our analysis and validated by histology-based computer simulation of water diffusion. OGSE data were analyzed to derive mean axon diameters and intra-axonal volume fractions of rat spinal white matter tracts (mean axon diameter ~ 1.27 – 5.54 µm). The estimated values were in good agreement with histology, including the small axon diameters (< 2.5 µm). This study establishes a framework for quantification of nerve morphology using the OGSE method with high sensitivity to small axons. PMID:25225002

  15. Determining Functional Connectivity using fMRI Data with Diffusion-Based Anatomical Weighting

    PubMed Central

    Bowman, F. DuBois; Zhang, Lijun; Derado, Gordana; Chen, Shuo

    2012-01-01

    There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Skudlarski et al., 2008; van den Heuvel et al., 2009; Greicius, et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2009). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically-weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach. PMID:22634220

  16. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging.

    PubMed

    Oishi, Kenichi; Faria, Andreia V; Yoshida, Shoko; Chang, Linda; Mori, Susumu

    2013-11-01

    The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future

  17. Reprint of "Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging".

    PubMed

    Oishi, Kenichi; Faria, Andreia V; Yoshida, Shoko; Chang, Linda; Mori, Susumu

    2014-02-01

    The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future

  18. Quantitative diffusion tensor MRI-based fiber tracking of human skeletal muscle.

    PubMed

    Lansdown, Drew A; Ding, Zhaohua; Wadington, Megan; Hornberger, Jennifer L; Damon, Bruce M

    2007-08-01

    Diffusion-tensor magnetic resonance imaging (DT-MRI) offers great potential for understanding structure-function relationships in human skeletal muscles. The purposes of this study were to demonstrate the feasibility of using in vivo human DT-MRI fiber tracking data for making pennation angle measurements and to test the hypothesis that heterogeneity in the orientation of the tibialis anterior (TA) muscle's aponeurosis would lead to heterogeneity in pennation angle. Eight healthy subjects (5 male) were studied. T(1)-weighted anatomical MRI and DT-MRI data were acquired of the TA muscle. Fibers were tracked from the TA's aponeurosis by following the principal eigenvector. The orientations of the aponeurosis and muscle fiber tracts in the laboratory frame of reference and the orientation of the fiber tracts with respect to the aponeurosis [i.e., the pennation angle (theta)] were determined. The muscle fiber orientations, when expressed relative to the laboratory frame of reference, did not change as functions of superior-to-inferior position. The sagittal and coronal orientations of the aponeurosis did not change in practically significant manners either, but the aponeurosis' axial orientation changed by approximately 40 degrees . As a result, the mean value for theta decreased from 16.3 (SD 6.9) to 11.4 degrees (SD 5.0) along the muscle's superior-to-inferior direction. The mean value of theta was greater in the deep than in the superficial compartment. We conclude that pennation angle measurements of human muscle made using DT-MRI muscle fiber tracking are feasible and reveal that in the foot-head direction, there is heterogeneity in the pennation properties of the human TA muscle.

  19. Supratentorial and infratentorial damage in spinocerebellar ataxia 2: a diffusion-weighted MRI study.

    PubMed

    Salvatore, Elena; Tedeschi, Enrico; Mollica, Carmine; Vicidomini, Caterina; Varrone, Andrea; Coda, Anna Rita Daniela; Brunetti, Arturo; Salvatore, Marco; De Michele, Giuseppe; Filla, Alessandro; Pappatà, Sabina

    2014-05-01

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal-dominant degenerative disorder that is neuropathologically characterized primarily by infratentorial damage, although less severe supratentorial involvement may contribute to the clinical manifestation. Diffusion-weighted imaging (DWI)-Magnetic Resonance Imaging (MRI) studies of SCA2 have enabled in vivo quantification of neurodegeneration in infratentorial regions, whereas supratentorial regions have been explored less thoroughly. We measured microstructural changes in both infratentorial and supratentorial regions in 13 SCA2 patients (9 men, 4 women; mean age, 50 ± 12 years) and 15 controls (10 men, 5 women; mean age, 49 ± 14 years) using DWI-MRI and correlated the DWI changes with disease severity and duration. Disease severity was evaluated using the International Cooperative Ataxia Rating Scale and the Inherited Ataxia Clinical Rating Scale. Cerebral diffusion trace ( D¯) values were generated, and regions of interest (ROIs) and voxel-based analysis with Statistical Parametric Mapping (SPM) were used for data analysis. In SCA2 patients, ROI analysis and SPM confirmed significant increases in D¯ values in the pons, cerebellar white matter (CWM) and middle cerebellar peduncles. Moreover, SPM analysis revealed increased D¯ values in the right thalamus, bilateral temporal cortex/white matter, and motor cortex/pyramidal tract regions. Increased diffusivity in the frontal white matter (FWM) and the CWM was significantly correlated with ataxia severity. DWI-MRI revealed that both infratentorial and supratentorial microstructural changes may characterize SCA2 patients in the course of the disease and might contribute to the severity of the symptoms.

  20. Extremely efficient and deterministic approach to generating optimal ordering of diffusion MRI measurements

    PubMed Central

    Koay, Cheng Guan; Hurley, Samuel A.; Meyerand, M. Elizabeth

    2011-01-01

    Purpose: Diffusion MRI measurements are typically acquired sequentially with unit gradient directions that are distributed uniformly on the unit sphere. The ordering of the gradient directions has significant effect on the quality of dMRI-derived quantities. Even though several methods have been proposed to generate optimal orderings of gradient directions, these methods are not widely used in clinical studies because of the two major problems. The first problem is that the existing methods for generating highly uniform and antipodally symmetric gradient directions are inefficient. The second problem is that the existing methods for generating optimal orderings of gradient directions are also highly inefficient. In this work, the authors propose two extremely efficient and deterministic methods to solve these two problems. Methods: The method for generating nearly uniform point set on the unit sphere (with antipodal symmetry) is based upon the notion that the spacing between two consecutive points on the same latitude should be equal to the spacing between two consecutive latitudes. The method for generating optimal ordering of diffusion gradient directions is based on the idea that each subset of incremental sample size, which is derived from the prescribed and full set of gradient directions, must be as uniform as possible in terms of the modified electrostatic energy designed for antipodally symmetric point set. Results: The proposed method outperformed the state-of-the-art method in terms of computational efficiency by about six orders of magnitude. Conclusions: Two extremely efficient and deterministic methods have been developed for solving the problem of optimal ordering of diffusion gradient directions. The proposed strategy is also applicable to optimal view-ordering in three-dimensional radial MRI. PMID:21928652

  1. Temporal and spatial profile of brain diffusion-weighted MRI after cardiac arrest

    PubMed Central

    Mlynash, M.; Campbell, D.M.; Leproust, E.M.; Fischbein, N.J.; Bammer, R.; Eyngorn, I.; Hsia, A.W.; Moseley, M.; Wijman, C.A.C.

    2010-01-01

    Background and Purpose Diffusion-weighted MRI (DWI) of the brain is a promising technique to help predict functional outcome in comatose survivors of cardiac arrest. We aimed to evaluate prospectively the temporal-spatial profile of brain apparent diffusion coefficient (ADC) changes in comatose survivors during the first 8 days after cardiac arrest. Methods ADC values were measured by two independent and blinded investigators in predefined brain regions in 18 good and 15 poor outcome patients with 38 brain MRIs, and compared with 14 normal controls. The same brain regions were also assessed qualitatively by two other independent and blinded investigators. Results In poor outcome patients, cortical structures, in particular the occipital and temporal lobes, and the putamen exhibited the most profound ADC reductions, which were noted as early as 1.5 days and reached nadir between 3 to 5 days after the arrest. Conversely, when compared to normal controls, good outcome patients exhibited increased diffusivity, in particular in the hippocampus, temporal and occipital lobes, and corona radiata. By the qualitative MRI readings, one or more cortical gray matter structures were read as moderately-to-severely abnormal in all poor outcome patients imaged beyond 54 hours after the arrest, but not in the three patients imaged earlier. Conclusions Brain DWI changes in comatose post-cardiac arrest survivors in the first week after the arrest are region- and time-dependent and differ between good and poor outcome patients. With the increasing use of MRI in this context, it is important to be aware of these relationships. PMID:20595666

  2. Na and Li ion diffusion in modified ASTM C 1260 test by Magnetic Resonance Imaging (MRI)

    SciTech Connect

    Feng, X. Balcom, B.J.; Thomas, M.D.A.; Bremner, T.W.

    2008-12-15

    In the current study, MRI was applied to investigate lithium and sodium ion diffusion in cement paste and mortars containing inert sand and borosilicate glass. Paste and mortars were treated by complying with ASTM C 1260. Lithium and sodium distribution profiles were collected at different ages after different treatments. Results revealed that sodium ions had a greater diffusion rate than lithium ions, suggesting that Na reaches the aggregate particle surface before Li. Results also showed that Na and Li ions had a competitive diffusion process in mortars; soaking in a solution with higher [Li] favored Li diffusion but hindered Na diffusion. In mortars containing glass, a substantial amount of Li was consumed by the formation of ASR products. When [Li] in soaking solution was reduced to 0.37 N, a distinctive Na distribution profile was observed, indicating the free-state Na ions were continuously transformed to solid reaction products by ASR. Hence, in the modified ASTM C 1260 test, [Li] in the storage solution should be controlled at 0.74 N, in order to completely prevent the consumption of Na ions and thus stop ASR.

  3. Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI

    NASA Astrophysics Data System (ADS)

    Ianuş, Andrada; Siow, Bernard; Drobnjak, Ivana; Zhang, Hui; Alexander, Daniel C.

    2013-02-01

    Oscillating gradients provide an optimal probe of small pore sizes in diffusion MRI. While sinusoidal oscillations have been popular for some time, recent work suggests additional benefits of square or trapezoidal oscillating waveforms. This paper presents analytical expressions of the free and restricted diffusion signal for trapezoidal and square oscillating gradient spin echo (OGSE) sequences using the Gaussian phase distribution (GPD) approximation and generalises existing similar expressions for sinusoidal OGSE. Accurate analytical models are necessary for exploitation of these pulse sequences in imaging studies, as they allow model fitting and parameter estimation in reasonable computation times. We evaluate the accuracy of the approximation against synthesised data from the Monte Carlo (MC) diffusion simulator in Camino and Callaghan's matrix method and we show that the accuracy of the approximation is within a few percent of the signal, while providing several orders of magnitude faster computation. Moreover, since the expressions for trapezoidal wave are complex, we test sine and square wave approximations to the trapezoidal OGSE signal. The best approximations depend on the gradient amplitude and the oscillation frequency and are accurate to within a few percent. Finally, we explore broader applications of trapezoidal OGSE, in particular for non-model based applications, such as apparent diffusion coefficient estimation, where only sinusoidal waveforms have been considered previously. We show that with the right apodisation, trapezoidal waves also have benefits by virtue of the higher diffusion weighting they provide compared to sinusoidal gradients.

  4. Early Days of Superfluid ^3He: An Experimenter's View

    NASA Astrophysics Data System (ADS)

    Lee, David

    2010-03-01

    The formulation of the BCS theory led theorists to investigate possible non-S-wave pairing in liquid ^3He. Unfortunately as time went on, estimates for the pairing temperature became unattainably low. Nevertheless, the push to lower temperatures by experimentalists continued and was facilitated by the invention of the dilution refrigerator. Nuclear adiabatic demagnetization could then be used to cool liquid ^3He to ˜1 mK as demonstrated by Goodkind. An alternate approach, suggested by Pomeranchuk, involved adiabatic compression of liquid ^3He into the solid phase. Efforts to develop this technique at the Kapitza Institute, La Jolla and Cornell achieved success in demonstrating cooling of mixtures of liquid and solid ^3He to ˜ 1 mK following dilution refrigerator pre-cooling. Although there was great pessimism regarding the possible observation of pairing in liquid ^3He, the unsettled problem of magnetic ordering in solid ^3He beckoned. Ultimately two phase transition along the melting curve were observed by Osheroff et al at Cornell. Although first associated with solid ^3He, extensive NMR studies showed them to be two new phases of liquid ^3He. A brief history of experiments at various laboratories following the discovery is given, along with early interpretations given by Anderson and Morel and Balian and Werthamer. The key role of Leggett's spin dynamics is also discussed.

  5. The effect of finite diffusion gradient pulse duration on fibre orientation estimation in diffusion MRI.

    PubMed

    Yeh, Chun-Hung; Tournier, J-Donald; Cho, Kuan-Hung; Lin, Ching-Po; Calamante, Fernando; Connelly, Alan

    2010-06-01

    An essential step for fibre-tracking is the accurate estimation of neuronal fibre orientations within each imaging voxel, and a number of methods have been proposed to reconstruct the orientation distribution function based on sampling three-dimensional q-space. In the q-space formalism, very short (infinitesimal) gradient pulses are the basic requirement to obtain the true spin displacement probability density function. On current clinical MR systems however, the diffusion gradient pulse duration (delta) is inevitably finite due to the limit on the achievable gradient intensity. The failure to satisfy the short gradient pulse (SGP) requirement has been a recurrent criticism for fibre orientation estimation based on the q-space approach. In this study, the influence of a finite delta on the DW signal measured as a function of gradient direction is described theoretically and demonstrated through simulations and experimental models. Our results suggest that the current practice of using long delta for DW imaging on human clinical MR scanners, which is enforced by hardware limitations, might in fact be beneficial for estimating fibre orientations. For a given b-value, the prolongation of delta is advantageous for estimating fibre orientations for two reasons: first, it leads to a boost in DW signal in the transverse plane of the fibre. Second, it stretches out the shape of the measured diffusion profile, which improves the contrast between DW orientations. This is especially beneficial for resolving crossing fibres, as this contrast is essential to discriminate between different fibre directions.

  6. Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrast-enhanced MRI of soft tissue tumors.

    PubMed

    Marzi, Simona; Stefanetti, Linda; Sperati, Francesca; Anelli, Vincenzo

    2016-01-01

    Our aim was to evaluate the link between diffusion parameters measured by intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and the perfusion metrics obtained with dynamic contrast-enhanced (DCE) MRI in soft tissue tumors (STTs). Twenty-eight patients affected by histopathologically confirmed STT were included in a prospective study. All patients underwent both DCE MRI and IVIM DWI. The perfusion fraction f, diffusion coefficient D and perfusion-related diffusion coefficient D* were estimated using a bi-exponential function to fit the DWI data. DCE MRI was acquired with a temporal resolution of 3-5 s. Maps of the initial area under the gadolinium concentration curve (IAUGC), time to peak (TTP) and maximum slope of increase (MSI) were derived using commercial software. The relationships between the DCE MRI and IVIM DWI measurements were assessed by Spearman's test. To exclude false positive results under multiple testing, the false discovery rate (FDR) procedure was applied. The Mann-Whitney test was used to evaluate the differences between all variables in patients with non-myxoid and myxoid STT. No significant relationship was found between IVIM parameters and any DCE MRI parameters. Higher f and D*f values were found in non-myxoid tumors compared with myxoid tumors (p = 0.004 and p = 0.003, respectively). MSI was significantly higher in non-myxoid tumors than in myxoid tumors (p = 0.029). From the visual assessments of single clinical cases, both f and D*f maps were in satisfactory agreement with DCE maps in the extreme cases of an avascular mass and a highly vascularized mass, whereas, for tumors with slight vascularity or with a highly heterogeneous perfusion pattern, this association was not straightforward. Although IVIM DWI was demonstrated to be feasible in STT, our data did not support evident relationships between perfusion-related IVIM parameters and perfusion measured by DCE MRI.

  7. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    PubMed Central

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-01-01

    Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208

  8. Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI

    PubMed Central

    Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong

    2016-01-01

    Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R2 = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer. PMID:27934928

  9. Effects of image noise in muscle diffusion tensor (DT)-MRI assessed using numerical simulations.

    PubMed

    Damon, Bruce M

    2008-10-01

    Diffusion tensor (DT)-MRI studies of skeletal muscle provide information about muscle architecture, microstructure, and damage. However, the effects of noise, the diffusion weighting (b)-value, and partial volume artifacts on the estimation of the diffusion tensor (D) are unknown. This study investigated these issues using Monte Carlo simulations of 3 x 9 voxel regions of interest (ROIs) containing muscle, adipose tissue, and intermediate degrees of muscle volume fractions (f(M)). A total of 1000 simulations were performed for each of eight b-values and 11 SNR levels. The dependencies of the eigenvalues (lambda(1-3)), mean diffusivity (lambda), and fractional anisotropy (FA), and the angular deviation of the first eigenvector from its true value (alpha) were observed. For moderate b-values (b = 435-725 s/mm(2)) and f(M) = 1, an accuracy of 5% was obtained for lambda(1-3), lambda, and FA with an SNR of 25. An accuracy of 1% was obtained for lambda(1-3), lambda, and FA with f(M) = 1 and SNR = 50. For regions with f(M) = 8/9, 5% accuracy was obtained with SNR = 40. For alpha, SNRs of >or=25 and >or=45 were required for +/-4.5 degrees uncertainty with f(M) = 1 and f(M) = 0.5, respectively; SNR >or= 60 was required for +/-9 degrees uncertainty in single muscle voxels. These findings may influence the design and interpretation of DT-MRI studies of muscle microstructure, damage, and architecture.

  10. Can Musical Training Influence Brain Connectivity? Evidence from Diffusion Tensor MRI

    PubMed Central

    Moore, Emma; Schaefer, Rebecca S.; Bastin, Mark E.; Roberts, Neil; Overy, Katie

    2014-01-01

    In recent years, musicians have been increasingly recruited to investigate grey and white matter neuroplasticity induced by skill acquisition. The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed investigation of white matter connections within the brain, addressing questions about the effect of musical training on connectivity between specific brain regions. Here, current DT-MRI analysis techniques are discussed and the available evidence from DT-MRI studies into differences in white matter architecture between musicians and non-musicians is reviewed. Collectively, the existing literature tends to support the hypothesis that musical training can induce changes in cross-hemispheric connections, with significant differences frequently reported in various regions of the corpus callosum of musicians compared with non-musicians. However, differences found in intra-hemispheric fibres have not always been replicated, while findings regarding the internal capsule and corticospinal tracts appear to be contradictory. There is also recent evidence to suggest that variances in white matter structure in non-musicians may correlate with their ability to learn musical skills, offering an alternative explanation for the structural differences observed between musicians and non-musicians. Considering the inconsistencies in the current literature, possible reasons for conflicting results are offered, along with suggestions for future research in this area. PMID:24961769

  11. Masking Level Differences – A Diffusion Tensor Imaging and Functional MRI Study

    PubMed Central

    Wack, David S.; Polak, Paul; Furuyama, Jon; Burkard, Robert F.

    2014-01-01

    In our previous study we investigated Masking Level Differences (MLD) using functional Magnetic Resonance Imaging (fMRI), but were unable to confirm neural correlations for the MLD within the auditory cortex and inferior colliculus. Here we have duplicated conditions from our previous study, but have included more participants and changed the study site to a new location with a newer scanner and presentation system. Additionally, Diffusion Tensor Imaging (DTI) is included to allow investigation of fiber tracts that may be involved with MLDs. Twenty participants were included and underwent audiometric testing and MRI scanning. The current study revealed regions of increased and decreased activity within the auditory cortex when comparing the combined noise and signal of the dichotic MLD stimuli (N0Sπ and NπS0) with N0S0. Furthermore, we found evidence of inferior colliculus involvement. Our DTI findings show strong correlations between DTI measures within the brainstem and signal detection threshold levels. Patterns of correlation when the signal was presented only to the right ear showed an extensive network in the left hemisphere; however, the opposite was not true for the signal presented only to the left ear. Our current study was able to confirm what we had previously hypothesized using fMRI, while extending our investigation of MLDs to include the characteristics of connecting neural pathways. PMID:24558392

  12. Applicable apparent diffusion coefficient of an orthotopic mouse model of gastric cancer by improved clinical MRI diffusion weighted imaging

    PubMed Central

    Sun, Jia; Zhang, Xiao-Peng; Li, Xiao-Ting; Tang, Lei; Cui, Yong; Zhang, Xiao-Yan; Sun, Ying-Shi

    2014-01-01

    In vivo imaging studies in animal models are hindered by variables that contribute to poor image quality and measurement reliability. As such we sought to improve the diffusion coefficient (ADC) of an orthotopic mouse model of gastric cancer in diffusion-weighted images (DWI) using alginate moulding and Ultrasonic coupling medium. BGC-823 human gastric cancer cells were subcutaneously injected into the abdomen of nude mice and 1 mm3 primary tumour was orthotopically transplanted. Alginate and coupling medium were applied to the mice and MRI (T2 and DWI) was performed for 6 weeks. Regions of interest (ROI) were drawn and liver and tumour ADC were evaluated. Using alginate moulding, the mean quality total score of DW imaging was 8.53; however, in control animals this value was 5.20 (p < 0.001). The coefficient of variation of ADC of liver in experimental and control groups were 0.071 and 0.270 (p < 0.001), respectively, suggesting this method may be helpful for DWI studies of important human diseases such as gastric cancer. PMID:25123166

  13. Diffusion Weighted MRI and MRS to Differentiate Radiation Necrosis and Recurrent Disease in Gliomas

    NASA Astrophysics Data System (ADS)

    Ewell, Lars

    2006-03-01

    A difficulty encountered in the diagnosis of patients with gliomas is the differentiation between recurrent disease and Radiation Induced Necrosis (RIN). Both can appear as ‘enhancing lesions’ on a typical T2 weighted MRI scan. Magnetic Resonance Spectroscopy (MRS) and Diffusion Weighted MRI (DWMRI) have the potential to be helpful regarding this differentiation. MRS has the ability to measure the concentration of brain metabolites, such as Choline, Creatin and N- Acetyl Aspartate, the ratios of which have been shown to discriminate between RIN and recurrent disease. DWMRI has been linked via a rise in the Apparent Diffusion Coefficient (ADC) to successful treatment of disease. Using both of these complimentary non-invasive imaging modalities, we intend to initiate an imaging protocol whereby we will study how best to combine metabolite ratios and ADC values to obtain the most useful information in the least amount of scan time. We will look for correlations over time between ADC values, and MRS, among different sized voxels.

  14. Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI.

    PubMed

    Sekino, Masaki; Ohsaki, Hiroyuki; Yamaguchi-Sekino, Sachiko; Iriguchi, Norio; Ueno, Shoogo

    2009-09-01

    Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm(2). Our previously published method was improved to infer 3 x 3 conductivity tensor at the low-frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion-weighted images were obtained with b factors up to 4500 s/mm(2). Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low-frequency limit because our method assumed electric currents flowing only through extracellular fluid.

  15. Evaluating contextual processing in diffusion MRI: application to optic radiation reconstruction for epilepsy surgery.

    PubMed

    Tax, Chantal M W; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly

    2014-01-01

    Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.

  16. Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery

    PubMed Central

    Tax, Chantal M. W.; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M.; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly

    2014-01-01

    Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning. PMID:25077946

  17. Solar Source Regions of Energetic 3He Emission

    NASA Astrophysics Data System (ADS)

    Mason, G. M.; Nitta, N. V.; Cohen, C. M.; Wiedenbeck, M. E.

    2012-12-01

    One of the surprising observations from the ACE mission has been the detection of energetic 3He emission occurring over multi-day periods. Previously observations of solar energetic 3He had detected short-lived "impulsive" energetic particle events which were associated with type III bursts and energetic electrons. The ACE observations were able to detect 3He at very low levels (<1% of 4He compared to ~10% in most earlier work) and this showed that the impulsive events often occurred during seemingly continuous multi-day periods of 3He emission. During solar active periods, 3He was present at 1 AU the majority of the time, giving evidence for either semi-continuous processes or else unresolved multiple small injections. The obvious injections during such periods were strongly associated with jet activity By adding STEREO and SDO observations we are seeking to extend the observational picture for these events. First, by following single 3He emitting regions from STEREO-B to ACE to STEREO-A we seek to examine for how long the 3He emission can continue, since any single spacecraft can be magnetically connected to a single region for only a few days and ACE often sees emission periods of that length. Second, by using SDO-AIA we seek to probe further the properties of the emitting regions to see if the previously reported association with jets is seen in events which we can now observe with greater resolution, sensitivity, and cadence than previously possible.

  18. ^3He neutron spin filters for polarized neutron scattering.

    NASA Astrophysics Data System (ADS)

    Chen, Wangchun; Borchers, Julie; Chen, Ying; O'Donovan, Kevin; Erwin, Ross; Lynn, Jeffrey; Majkrzak, Charles; McKenney, Sarah; Gentile, Thomas

    2006-03-01

    Polarized neutron scattering (PNS) is a powerful tool that probes the magnetic structures in a wide variety of magnetic materials. Polarized ^3He gas, produced by optical pumping, can be used to polarize or analyze neutron beams because of the strong spin dependence of the neutron absorption cross section for ^3He. Polarized ^3He neutron spin filters (NSF) have been of great interest in PNS community due to recent significant improvement of their performance. Here I will discuss successful applications using ^3He NSFs in polarized neutron reflectometry (PNR) and triple-axis spectrometry (TAS). In PNR, a ^3He NSF in conjunction with a position-sensitive detector allows for efficient polarization analysis of off-specular scattering over a broad range of reciprocal space. In TAS, a ^3He NSF in combination with a double focusing pyrolytic graphite monochromator provides greater versatility and higher intensity compared to a Heusler polarizer. Finally I will present the results from patterned magnetically-coupled thin films in PNR and our first ``proof-of-principle'' experiment in TAS, both of which were performed using ^3He NSF(s) at the NIST Center for Neutron Research.

  19. Diffusion-Weighted MRI of Malignant versus Benign Portal Vein Thrombosis

    PubMed Central

    Ahn, Jhii-Hyun; Cho, Eun-Suk; Chung, Jae-Joon; Kim, Joo Hee; Kim, Ki Whang

    2016-01-01

    Objective To validate the diffusion-weighted MRI (DWI) for differentiation of benign from malignant portal vein thrombosis. Materials and Methods The Institutional Review Board approved this retrospective study and waived informed consent. A total of 59 consecutive patients (52 men and 7 women, aged 40–85 years) with grossly defined portal vein thrombus (PVT) on hepatic MRI were retrospectively analyzed. Among them, liver cirrhosis was found in 45 patients, and hepatocellular carcinoma in 47 patients. DWI was performed using b values of 50 and 800 sec/mm2 at 1.5-T unit. A thrombus was considered malignant if it enhanced on dynamic CT or MRI; otherwise, it was considered bland. There were 18 bland thrombi and 49 malignant thrombi in 59 patients, including 8 patients with simultaneous benign and malignant PVT. Mean apparent diffusion coefficients (ADCs) of benign and malignant PVTs were compared by using Mann-Whitney U test. Diagnostic accuracy was evaluated using receiver operating characteristic (ROC) curve analysis. Results The mean ADC ± standard deviation of bland and malignant PVT were 1.00 ± 0.39 × 10-3 mm2/sec and 0.92 ± 0.25 × 10-3 mm2/sec, respectively; without significant difference (p = 0.799). The area under ROC curve for ADC was 0.520. An ADC value of > 1.35 × 10-3 mm2/sec predicted bland PVT with a specificity of 94.6% (95% confidence interval [CI]: 84.9–98.9%) and a sensitivity of 22.2% (95% CI: 6.4–47.6%), respectively. Conclusion Due to the wide range and considerable overlap of the ADCs, DWI cannot differentiate the benign from malignant thrombi efficiently. PMID:27390544

  20. Regional MRI Diffusion, White-Matter Hyperintensities, and Cognitive Function in Alzheimer's Disease and Vascular Dementia

    PubMed Central

    Scrascia, Federica; Quattrocchi, Carlo Cosimo; Errante, Yuri; Gangemi, Emma; Curcio, Giuseppe; Ursini, Francesca; Silvestrini, Mauro; Maggio, Paola; Beomonte Zobel, Bruno; Rossini, Paolo Maria; Pasqualetti, Patrizio; Falsetti, Lorenzo; Vernieri, Fabrizio

    2016-01-01

    Background and Purpose An increase in brain water diffusivity as measured using magnetic resonance imaging (MRI) has been recently reported in normal-appearing white matter (NAWM) in patients affected by cognitive impairment. However, it remains to be clarified if this reflects an overt neuronal tissue disruption that leads to degenerative or microvascular lesions. This question was addressed by comparing the regional MRI apparent diffusion coefficients (ADCs) of NAWM in patients affected by Alzheimer's disease (AD) or vascular dementia (VaD). The relationships of ADCs with the white-matter hyperintensity (WMH) burden, carotid atherosclerosis, and cognitive performance were also investigated. Methods Forty-nine AD and 31 VaD patients underwent brain MRI to assess the WMH volume and regional NAWM ADCs, neuropsychological evaluations, and carotid ultrasound to assess the plaque severity and intima-media thickness (IMT). Results Regional ADCs in NAWM did not differ between VaD and AD patients, while the WMH volume was greater in VaD than in AD patients. The ADC in the anterior corpus callosum was related to the WMH volume, while a greater carotid IMT was positively correlated with the temporal ADC and WMH volume. The memory performance was worse in patients with higher temporal ADCs. Constructional praxis scores were related to ADCs in the frontal, and occipital lobes, in the anterior and posterior corpus callosum as well as to the WMH volume. Abstract reasoning was related to frontal, parietal, and temporal ADCs. Conclusions Our data show that higher regional ADCs in NAWM are associated with microcirculatory impairment, as depicted by the WMH volume. Moreover, regional ADCs in NAWM are differently associated with the neuropsychological performances in memory, constructional praxia, and abstract reasoning domains. PMID:27074295

  1. Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain.

    PubMed

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove; Kroenke, Christopher D; Nyengaard, Jens R; Hansen, Brian; Jespersen, Sune Nørhøj

    2016-11-15

    Depression is one of the leading causes of disability worldwide. Immense heterogeneity in symptoms of depression causes difficulty in diagnosis, and to date, there are no established biomarkers or imaging methods to examine depression. Unpredictable chronic mild stress (CMS) induced anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d-MRI) analyses, such as neurite density and diffusion kurtosis imaging (DKI), are able to capture microstructural changes and are considered to be robust tools in preclinical and clinical imaging. The present study utilized d-MRI analyzed with a neurite density model and the DKI framework to investigate microstructure in the hippocampus, prefrontal cortex, caudate putamen and amygdala regions of CMS rat brains by comparison to brains from normal controls. To validate findings of CMS induced microstructural alteration, histology was performed to determine neurite, nuclear and astrocyte density. d-MRI based neurite density and tensor-based mean kurtosis (MKT) were significantly higher, while mean diffusivity (MD), extracellular diffusivity (Deff) and intra-neurite diffusivity(DL) were significantly lower in the amygdala of CMS rat brains. Deff was also significantly lower in the hippocampus and caudate putamen in stressed groups. Histological neurite density corroborated the d-MRI findings in the amygdala and reductions in nuclear and astrocyte density further buttressed the d-MRI results. The present study demonstrated that the d-MRI based neurite density and MKT can reveal specific microstructural changes in CMS rat brains and these parameters might have value in clinical diagnosis of depression and for evaluation of treatment efficacy.

  2. Neutron Detection Alternatives to 3He for National Security Applications

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stephens, Daniel L.; Stromswold, David C.; Van Ginhoven, Renee M.; Woodring, Mitchell L.

    2010-11-21

    One of the main uses for 3He is in gas proportional counters for neutron detection. Large radiation detection systems deployed for homeland security and proliferation detection applications use such systems. Due to the large increase in use of 3He for homeland security and basic research, the supply has dwindled, and can no longer meet the demand. This has led to the search for an alternative technology to replace the use of 3He-based neutron detectors. In this paper, we review the testing of currently commercially available alternative technologies for neutron detection in large systems used in various national security applications.

  3. Recent Advances of Polarized 3He Target at Jefferson Lab

    SciTech Connect

    Yi Qiang

    2011-10-01

    Polarized {sup 3}He target has been widely used in nuclear and particle experiments to study the neutron structure in the spin degree of freedom, as most of the {sup 3}He spin is carried by the unpaired neutron. Spin-Exchange Optical Pumping (SEOP) process is used in Jefferson Lab Hall A to polarize its {sup 3}He target. Through developments in recent years, both the performance and corresponding polarimetry of such a target were greatly improved. Several experiments recently carried out in Hall A benefited remarkably from this target for the record highest figure of merit.

  4. Automatic Segmentation of Human Cortical Layer-Complexes and Architectural Areas Using Ex vivo Diffusion MRI and Its Validation

    PubMed Central

    Bastiani, Matteo; Oros-Peusquens, Ana-Maria; Seehaus, Arne; Brenner, Daniel; Möllenhoff, Klaus; Celik, Avdo; Felder, Jörg; Bratzke, Hansjürgen; Shah, Nadim J.; Galuske, Ralf; Goebel, Rainer; Roebroeck, Alard

    2016-01-01

    Recently, several magnetic resonance imaging contrast mechanisms have been shown to distinguish cortical substructure corresponding to selected cortical layers. Here, we investigate cortical layer and area differentiation by automatized unsupervised clustering of high-resolution diffusion MRI data. Several groups of adjacent layers could be distinguished in human primary motor and premotor cortex. We then used the signature of diffusion MRI signals along cortical depth as a criterion to detect area boundaries and find borders at which the signature changes abruptly. We validate our clustering results by histological analysis of the same tissue. These results confirm earlier studies which show that diffusion MRI can probe layer-specific intracortical fiber organization and, moreover, suggests that it contains enough information to automatically classify architecturally distinct cortical areas. We discuss the strengths and weaknesses of the automatic clustering approach and its appeal for MR-based cortical histology. PMID:27891069

  5. Correlation of diffusion-weighted MRI with whole mount radical prostatectomy specimens.

    PubMed

    Van As, N; Charles-Edwards, E; Jackson, A; Jhavar, S; Reinsberg, S; Desouza, N; Dearnaley, D; Bailey, M; Thompson, A; Christmas, T; Fisher, C; Corbishley, C; Sohaib, S

    2008-06-01

    The purpose of this study was to compare the apparent diffusion coefficient (ADC) of benign central gland (bCG), benign peripheral zone (bPZ) and cancer using diffusion-weighted MRI and whole mount specimens. 11 patients with biopsy-proven prostate cancer underwent diffusion-weighted MRI prior to radical prostatectomy. A single-shot echo planar image technique was used with b-values of 0 s mm(-2), 300 s mm(-2), 500 s mm(-2) and 800 s mm(-2). Whole mount specimens were compared with ADC maps. Areas of cancer, bCG and bPZ were identified, and regions of interest were drawn on ADC maps. Mean ADC values were recorded for all regions of interest, and paired t-tests were performed to compare mean values. Cancer was outlined in nine patients. In two patients, the tumours were too small to correlate with images; bCG was identified in 11 patients and bPZ was identified in 10 patients. Mean ADC values for bCG, bPZ and cancer were, 1.5 x 10(-3) mm(2) s(-1) (standard error (SE) = 0.04), 1.7 x 10(-3) mm(2) s(-1) (SE = 0.1), and 1.3 x 10(-3) mm(2) s(-1) (SE = 0.09), respectively. The most significant difference between benign tissue and cancer existed at b-values of 0-300 s mm(-2) (bCG vs cancer: mean difference = 0. 29, p = 0.001, 95% confidence interval (CI) = 0.17-0.41; bPZ vs cancer: mean difference = 0.34, p = 0.003, 95% CI = 0.18-0.61). In conclusion, we have confirmed, using whole mount verification, a significant difference in the ADC between benign tissue and cancer.

  6. Apparatus for deformation tests of solids in liquid 3He

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Katakura, S.; Edagawa, K.; Takeuchi, S.; Suzuki, T.

    2000-07-01

    An apparatus for deformation of solids in liquid 3He is constructed. Either tensile deformation or compression of a specimen can be performed by exchanging the assemblies in the 3He pot which has a capacity of about 30 cm3. The pulling rod for transmitting load from the tensile testing machine to the specimen runs inside the outlet tube of 3He, being isolated from 4He bath and almost free from mechanical friction. To measure the change in flow stress with the supernormal transition of superconducting metals, a superconducting magnet is mounted outside of the vacuum chamber which separates the 3He pot and the 4He bath. Under an applied load for plastic deformation the system is stably operative down to 0.6 K, while the lowest temperature achieved is 0.5 K. Some results on Ta and NaCl are presented.

  7. Assessment of non-Gaussian diffusion with singly and doubly stretched biexponential models of diffusion-weighted MRI (DWI) signal attenuation in prostate tissue.

    PubMed

    Hall, Matt G; Bongers, Andre; Sved, Paul; Watson, Geoffrey; Bourne, Roger M

    2015-04-01

    Non-Gaussian diffusion dynamics was investigated in the two distinct water populations identified by a biexponential model of diffusion in prostate tissue. Diffusion-weighted MRI (DWI) signal attenuation was measured ex vivo in two formalin-fixed prostates at 9.4 T with diffusion times Δ = 10, 20 and 40 ms, and b values in the range 0.017-8.2 ms/µm(2) . A conventional biexponential model was compared with models in which either the lower diffusivity component or both of the components of the biexponential were stretched. Models were compared using Akaike's Information Criterion (AIC) and a leave-one-out (LOO) test of model prediction accuracy. The doubly stretched (SS) model had the highest LOO prediction accuracy and lowest AIC (highest information content) in the majority of voxels at Δ = 10 and 20 ms. The lower diffusivity stretching factor (α2 ) of the SS model was consistently lower (range ~0.3-0.9) than the higher diffusivity stretching factor (α1 , range ~0.7-1.1), indicating a high degree of diffusion heterogeneity in the lower diffusivity environment, and nearly Gaussian diffusion in the higher diffusivity environment. Stretched biexponential models demonstrate that, in prostate tissue, the two distinct water populations identified by the simple biexponential model individually exhibit non-Gaussian diffusion dynamics.

  8. Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging

    NASA Astrophysics Data System (ADS)

    Mekkaoui, Imen; Moulin, Kevin; Croisille, Pierre; Pousin, Jerome; Viallon, Magalie

    2016-08-01

    Cardiac motion presents a major challenge in diffusion weighted MRI, often leading to large signal losses that necessitate repeated measurements. The diffusion process in the myocardium is difficult to investigate because of the unqualified sensitivity of diffusion measurements to cardiac motion. A rigorous mathematical formalism is introduced to quantify the effect of tissue motion in diffusion imaging. The presented mathematical model, based on the Bloch-Torrey equations, takes into account deformations according to the laws of continuum mechanics. Approximating this mathematical model by using finite elements method, numerical simulations can predict the sensitivity of the diffusion signal to cardiac motion. Different diffusion encoding schemes are considered and the diffusion weighted MR signals, computed numerically, are compared to available results in literature. Our numerical model can identify the existence of two time points in the cardiac cycle, at which the diffusion is unaffected by myocardial strain and cardiac motion. Of course, these time points depend on the type of diffusion encoding scheme. Our numerical results also show that the motion sensitivity of the diffusion sequence can be reduced by using either spin echo technique with acceleration motion compensation diffusion gradients or stimulated echo acquisition mode with unipolar and bipolar diffusion gradients.

  9. Quantifying the effect of tissue deformation on diffusion-weighted MRI: a mathematical model and an efficient simulation framework applied to cardiac diffusion imaging.

    PubMed

    Mekkaoui, Imen; Moulin, Kevin; Croisille, Pierre; Pousin, Jerome; Viallon, Magalie

    2016-08-07

    Cardiac motion presents a major challenge in diffusion weighted MRI, often leading to large signal losses that necessitate repeated measurements. The diffusion process in the myocardium is difficult to investigate because of the unqualified sensitivity of diffusion measurements to cardiac motion. A rigorous mathematical formalism is introduced to quantify the effect of tissue motion in diffusion imaging. The presented mathematical model, based on the Bloch-Torrey equations, takes into account deformations according to the laws of continuum mechanics. Approximating this mathematical model by using finite elements method, numerical simulations can predict the sensitivity of the diffusion signal to cardiac motion. Different diffusion encoding schemes are considered and the diffusion weighted MR signals, computed numerically, are compared to available results in literature. Our numerical model can identify the existence of two time points in the cardiac cycle, at which the diffusion is unaffected by myocardial strain and cardiac motion. Of course, these time points depend on the type of diffusion encoding scheme. Our numerical results also show that the motion sensitivity of the diffusion sequence can be reduced by using either spin echo technique with acceleration motion compensation diffusion gradients or stimulated echo acquisition mode with unipolar and bipolar diffusion gradients.

  10. Test-retest reliability of structural brain networks from diffusion MRI.

    PubMed

    Buchanan, Colin R; Pernet, Cyril R; Gorgolewski, Krzysztof J; Storkey, Amos J; Bastin, Mark E

    2014-02-01

    Structural brain networks constructed from diffusion MRI (dMRI) and tractography have been demonstrated in healthy volunteers and more recently in various disorders affecting brain connectivity. However, few studies have addressed the reproducibility of the resulting networks. We measured the test-retest properties of such networks by varying several factors affecting network construction using ten healthy volunteers who underwent a dMRI protocol at 1.5T on two separate occasions. Each T1-weighted brain was parcellated into 84 regions-of-interest and network connections were identified using dMRI and two alternative tractography algorithms, two alternative seeding strategies, a white matter waypoint constraint and three alternative network weightings. In each case, four common graph-theoretic measures were obtained. Network properties were assessed both node-wise and per network in terms of the intraclass correlation coefficient (ICC) and by comparing within- and between-subject differences. Our findings suggest that test-retest performance was improved when: 1) seeding from white matter, rather than grey; and 2) using probabilistic tractography with a two-fibre model and sufficient streamlines, rather than deterministic tensor tractography. In terms of network weighting, a measure of streamline density produced better test-retest performance than tract-averaged diffusion anisotropy, although it remains unclear which is a more accurate representation of the underlying connectivity. For the best performing configuration, the global within-subject differences were between 3.2% and 11.9% with ICCs between 0.62 and 0.76. The mean nodal within-subject differences were between 5.2% and 24.2% with mean ICCs between 0.46 and 0.62. For 83.3% (70/84) of nodes, the within-subject differences were smaller than between-subject differences. Overall, these findings suggest that whilst current techniques produce networks capable of characterising the genuine between

  11. The SLAC E-154 {sup 3}He polarimeter

    SciTech Connect

    Romalis, M. V.; Bogorad, P. L.; Cates, G. D.; Kumar, K. S.; Chupp, T. E.; Coulter, K. P.; Smith, T. B.; Welsh, R.; Hughes, E. W.; Johnson, J. R.; Thompson, A. K.

    1998-01-20

    We describe the NMR and Rb Zeeman frequency shift polarimeters used for determining the {sup 3}He polarization in a recent precision measurement of the neutron spin structure function g{sub 1} at SLAC (E-154). We performed a detailed study of the systematic errors associated with the calibration of the NMR polarimeter. A new technique was used for determining the {sup 3}He polarization from the frequency shift of the Rb Zeeman resonance.

  12. Tight Graph Framelets for Sparse Diffusion MRI q-Space Representation.

    PubMed

    Yap, Pew-Thian; Dong, Bin; Zhang, Yong; Shen, Dinggang

    2016-10-01

    In diffusion MRI, the outcome of estimation problems can often be improved by taking into account the correlation of diffusion-weighted images scanned with neighboring wavevectors in q-space. For this purpose, we propose in this paper to employ tight wavelet frames constructed on non-flat domains for multi-scale sparse representation of diffusion signals. This representation is well suited for signals sampled regularly or irregularly, such as on a grid or on multiple shells, in q-space. Using spectral graph theory, the frames are constructed based on quasi-affine systems (i.e., generalized dilations and shifts of a finite collection of wavelet functions) defined on graphs, which can be seen as a discrete representation of manifolds. The associated wavelet analysis and synthesis transforms can be computed efficiently and accurately without the need for explicit eigen-decomposition of the graph Laplacian, allowing scalability to very large problems. We demonstrate the effectiveness of this representation, generated using what we call tight graph framelets, in two specific applications: denoising and super-resolution in q-space using ℓ0 regularization. The associated optimization problem involves only thresholding and solving a trivial inverse problem in an iterative manner. The effectiveness of graph framelets is confirmed via evaluation using synthetic data with noncentral chi noise and real data with repeated scans.

  13. JET (3He)-D scenarios relying on RF heating: survey of selected recent experiments

    SciTech Connect

    Van Eester, D.; Casati, A.; Crombe, K.; de la Luna, E.; Ericsson, G.; Felton, R.; Giroud, C.; Hjalmarsson, A.; Joffrin, E.; Kallne, J.; Kiptily, V.; Marinoni, A.; Santala, M.; Valisa, M.

    2009-03-01

    Recent JET experiments have been devoted to the study of (3He) D plasmas involving radio frequency (RF) heating. This paper starts by discussing the RF heating efficiency theoretically expected in such plasmas, covering both relevant aspects of wave and of particle dynamics. Then it gives a concise summary of the main conclusions drawn from recent experiments that were either focusing on studying RF heating physics aspects or that were adopting RF heating as a tool to study plasma behavior. Depending on the minority concentration chosen, different physical phenomena are observed. At very low concentration (X[3He] < 1%), energetic tails are formed which trigger MHD activity and result in loss of fast particles. Alfv n cascades were observed and gamma ray tomography indirectly shows the impact of sawtooth crashes on the fast particle orbits. Low concentration (X[3He] < 10%) favors minority heating while for X[3He] 10% electron mode conversion damping becomes dominant. Evidence for the Fuchs et al standing wave effect (Fuchs et al 1995 Phys. Plasmas 2 1637 47) on the absorption is presented. RF induced deuterium tails were observed in mode conversion experiments with large X[3He] (18%). As tentative modeling shows, the formation of these tails can be explained as a consequence of wave power absorption by neutral beam particles that efficiently interact with the waves well away from the cold D cyclotron resonance position as a result of their substantial Doppler shift. As both ion and electron RF power deposition profiles in (3He) D plasmas are fairly narrow giving rise to localized heat sources the RF heating method is an ideal tool for performing transport studies. Various of the experiments discussed here were done in plasmas with internal transport barriers (ITBs). ITBs are identified as regions with locally reduced diffusivity, where poloidal spinning up of the plasma is observed. The present know-how on the role of RF heating for impurity transport is also

  14. Development of a 3He-hydraulic actuator for spin pump in superfluid 3He-A1

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Wada, M.; Tanaka, H.; Motoyama, G.; Sumiyama, A.; Aoki, Y.; Okuda, Y.; Murakawa, S.; Karaki, Y.; Kubota, M.; Kojima, H.

    2012-12-01

    The superfluid 3He A1 phase contains a spin-polarized condensate. This property allows novel superfluid spin current experiments. In the mechano-spin effect of the A1 phase a mechanically applied pressure gradient and a superleak-spin filter enable to directly boost spin polarization of 3He in a small chamber. Using a flexible membrane as an electrostatically actuated pump, we carried out such experiments and observed 50% enhancement of spin density. Here we report on a new 3He-hydraulic actuator for achieving greater enhancement of spin density. The actuator consists of two liquid 3He chambers located at a 4.2 K plate and in the interior of the cell. The pressure in the 4.2 K chamber is heater-controlled and it transmits a force onto a membrane in the cell. The motion of the membrane induces spin-polarized current into an accumulation chamber.

  15. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization.

    PubMed

    Canales-Rodríguez, Erick J; Daducci, Alessandro; Sotiropoulos, Stamatios N; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond

    2015-01-01

    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data.

  16. A novel diffusion-tensor MRI approach for skeletal muscle fascicle length measurements.

    PubMed

    Oudeman, Jos; Mazzoli, Valentina; Marra, Marco A; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M; Nederveen, Aart J; Strijkers, Gustav J; Froeling, Martijn

    2016-12-01

    Musculoskeletal (dys-)function relies for a large part on muscle architecture which can be obtained using Diffusion-Tensor MRI (DT-MRI) and fiber tractography. However, reconstructed tracts often continue along the tendon or aponeurosis when using conventional methods, thus overestimating fascicle lengths. In this study, we propose a new method for semiautomatic segmentation of tendinous tissue using tract density (TD). We investigated the feasibility and repeatability of this method to quantify the mean fascicle length per muscle. Additionally, we examined whether the method facilitates measuring changes in fascicle length of lower leg muscles with different foot positions. Five healthy subjects underwent two DT-MRI scans of the right lower leg, with the foot in 15° dorsiflexion, neutral, and 30° plantarflexion positions. Repeatability of fascicle length measurements was assessed using Bland-Altman analysis. Changes in fascicle lengths between the foot positions were tested using a repeated multivariate analysis of variance (MANOVA). Bland-Altman analysis showed good agreement between repeated measurements. The coefficients of variation in neutral position were 8.3, 16.7, 11.2, and 10.4% for soleus (SOL), fibularis longus (FL), extensor digitorum longus (EDL), and tibialis anterior (TA), respectively. The plantarflexors (SOL and FL) showed significant increase in fascicle length from plantarflexion to dorsiflexion, whereas the dorsiflexors (EDL and TA) exhibited a significant decrease. The use of a tract density for semiautomatic segmentation of tendinous structures provides more accurate estimates of the mean fascicle length than traditional fiber tractography methods. The method shows moderate to good repeatability and allows for quantification of changes in fascicle lengths due to passive stretch.

  17. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization

    PubMed Central

    Canales-Rodríguez, Erick J.; Caruyer, Emmanuel; Aja-Fernández, Santiago; Radua, Joaquim; Yurramendi Mendizabal, Jesús M.; Iturria-Medina, Yasser; Melie-García, Lester; Alemán-Gómez, Yasser; Thiran, Jean-Philippe; Sarró, Salvador; Pomarol-Clotet, Edith; Salvador, Raymond

    2015-01-01

    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel MRI signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in human brain data. PMID:26470024

  18. Asymptomatic choroid plexus cysts in the lateral ventricles: an incidental finding on diffusion-weighted MRI.

    PubMed

    Cakir, B; Karakas, H M; Unlu, E; Tuncbilek, N

    2002-10-01

    We assessed the role of diffusion-weighted imaging (DWI) in the detection of choroid plexus cysts. We reviewed more than 1000 patients who had undergone MRI in a 1-year period. We reviewed echo-planar DWI with b=1000 s/mm(2), acquired at 1.0 tesla, for any difference in signal intensity which might indicate choroid plexus cysts. On conventional images, all cystic lesions were isointense with cerebrospinal fluid, and 72 cysts could not be identified. On DWI, 90 rounded high-signal foci were detected in 58 patients; 64 cysts were bilateral. Focal ventricular expansion due to large cysts was observed in nine cases. DWI were found to show choroid plexus cysts undetected within the cerebrospinal fluid on conventional images.

  19. A review of structural MRI and diffusion tensor imaging in schizotypal personality disorder.

    PubMed

    Hazlett, Erin A; Goldstein, Kim E; Kolaitis, Jeanine C

    2012-02-01

    Individuals with schizotypal personality disorder (SPD) share genetic, phenomenologic, and cognitive abnormalities with people diagnosed with schizophrenia. To date, 15 structural MRI studies of the brain have examined size, and 3 diffusion tensor imaging studies have examined white matter connectivity in SPD. Overall, both types of structural neuroimaging modalities have shown temporal lobe abnormalities similar to those observed in schizophrenia, while frontal lobe regions appear to show more sparing. This intriguing pattern suggests that frontal lobe sparing may suppress psychosis, which is consistent with the idea of a possible neuroprotective factor. In this paper, we review these 18 studies and discuss whether individuals with SPD who both resemble and differ from schizophrenia patients in their phenomenology, share some or all of the structural brain imaging characteristics of schizophrenia. We attempt to group the MRI abnormalities in SPD into three patterns: 1) a spectrum of severity-abnormalities are similar to those observed in schizophrenia but not so severe; 2) a spectrum of region-abnormalities affecting some, but not all, brain regions affected in schizophrenia; and 3) a spectrum of compensation-abnormalities reflecting greater-than-normal white matter volume, possibly serving as a buffer or compensatory mechanism protecting the individual with SPD from the frank psychosis observed in schizophrenia.

  20. Whole body MRI: Improved Lesion Detection and Characterization With Diffusion Weighted Techniques

    PubMed Central

    Attariwala, Rajpaul; Picker, Wayne

    2013-01-01

    Diffusion-weighted imaging (DWI) is an established functional imaging technique that interrogates the delicate balance of water movement at the cellular level. Technological advances enable this technique to be applied to whole-body MRI. Theory, b-value selection, common artifacts and target to background for optimized viewing will be reviewed for applications in the neck, chest, abdomen, and pelvis. Whole-body imaging with DWI allows novel applications of MRI to aid in evaluation of conditions such as multiple myeloma, lymphoma, and skeletal metastases, while the quantitative nature of this technique permits evaluation of response to therapy. Persisting signal at high b-values from restricted hypercellular tissue and viscous fluid also permits applications of DWI beyond oncologic imaging. DWI, when used in conjunction with routine imaging, can assist in detecting hemorrhagic degradation products, infection/abscess, and inflammation in colitis, while aiding with discrimination of free fluid and empyema, while limiting the need for intravenous contrast. DWI in conjunction with routine anatomic images provides a platform to improve lesion detection and characterization with findings rivaling other combined anatomic and functional imaging techniques, with the added benefit of no ionizing radiation. PMID:23960006

  1. The visual white matter: The application of diffusion MRI and fiber tractography to vision science

    PubMed Central

    Rokem, Ariel; Takemura, Hiromasa; Bock, Andrew S.; Scherf, K. Suzanne; Behrmann, Marlene; Wandell, Brian A.; Fine, Ione; Bridge, Holly; Pestilli, Franco

    2017-01-01

    Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data. PMID:28196374

  2. Skeletal muscle diffusion tensor-MRI fiber tracking: rationale, data acquisition and analysis methods, applications and future directions.

    PubMed

    Damon, Bruce M; Froeling, Martijn; Buck, Amanda K W; Oudeman, Jos; Ding, Zhaohua; Nederveen, Aart J; Bush, Emily C; Strijkers, Gustav J

    2017-03-01

    The mechanical functions of muscles involve the generation of force and the actuation of movement by shortening or lengthening under load. These functions are influenced, in part, by the internal arrangement of muscle fibers with respect to the muscle's mechanical line of action. This property is known as muscle architecture. In this review, we describe the use of diffusion tensor (DT)-MRI muscle fiber tracking for the study of muscle architecture. In the first section, the importance of skeletal muscle architecture to function is discussed. In addition, traditional and complementary methods for the assessment of muscle architecture (brightness-mode ultrasound imaging and cadaver analysis) are presented. Next, DT-MRI is introduced and the structural basis for the reduced and anisotropic diffusion of water in muscle is discussed. The third section discusses issues related to the acquisition of skeletal muscle DT-MRI data and presents recommendations for optimal strategies. The fourth section discusses methods for the pre-processing of DT-MRI data, the available approaches for the calculation of the diffusion tensor and the seeding and propagating of fiber tracts, and the analysis of the tracking results to measure structural properties pertinent to muscle biomechanics. Lastly, examples are presented of how DT-MRI fiber tracking has been used to provide new insights into how muscles function, and important future research directions are highlighted. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Zeeman relaxation of cold atomic iron and nickel in collisions with {sup 3}He

    SciTech Connect

    Johnson, Cort; Newman, Bonna; Kleppner, Daniel; Greytak, Thomas J.; Brahms, Nathan; Doyle, John M.

    2010-06-15

    We have measured the ratio {gamma} of the diffusion cross section to the angular momentum reorientation cross section in the colliding Fe-{sup 3}He and Ni-{sup 3}He systems. Nickel (Ni) and iron (Fe) atoms are introduced via laser ablation into a cryogenically cooled experimental cell containing cold (<1 K) {sup 3}He buffer gas. Elastic collisions rapidly cool the translational temperature of the ablated atoms to the {sup 3}He temperature. {gamma} is extracted by measuring the decays of the atomic Zeeman sublevels. For our experimental conditions, thermal energy is comparable to the Zeeman splitting. As a result, thermal excitations between Zeeman sublevels significantly impact the observed decay. To determine {gamma} accurately, we introduce a model of Zeeman-state dynamics that includes thermal excitations. We find {gamma}{sub Ni-}{sup 3}{sub He}=5x10{sup 3} and {gamma}{sub Fe-}{sup 3}{sub He{<=}}3x10{sup 3} at 0.75 K in a 0.8-T magnetic field. These measurements are interpreted in the context of submerged shell suppression of spin relaxation, as studied previously in transition metals and rare-earth-metal atoms [C. I. Hancox, S. C. Doret, M. T. Hummon, R. V. Krems, and J. M. Doyle, Phys. Rev. Lett. 94, 013201 (2005); C. I. Hancox, S. C. Doret, M. T. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004); A. Buchachenko, G. Chaasiski, and M. Szczniak, Eur. Phys. J. D 45, 147 (2007)].

  4. Polarized (3) He Spin Filters for Slow Neutron Physics.

    PubMed

    Gentile, T R; Chen, W C; Jones, G L; Babcock, E; Walker, T G

    2005-01-01

    Polarized (3)He spin filters are needed for a variety of experiments with slow neutrons. Their demonstrated utility for highly accurate determination of neutron polarization are critical to the next generation of betadecay correlation coefficient measurements. In addition, they are broadband devices that can polarize large area and high divergence neutron beams with little gamma-ray background, and allow for an additional spin-flip for systematic tests. These attributes are relevant to all neutron sources, but are particularly well-matched to time of flight analysis at spallation sources. There are several issues in the practical use of (3)He spin filters for slow neutron physics. Besides the essential goal of maximizing the (3)He polarization, we also seek to decrease the constraints on cell lifetimes and magnetic field homogeneity. In addition, cells with highly uniform gas thickness are required to produce the spatially uniform neutron polarization needed for beta-decay correlation coefficient experiments. We are currently employing spin-exchange (SE) and metastability-exchange (ME) optical pumping to polarize (3)He, but will focus on SE. We will discuss the recent demonstration of 75 % (3)He polarization, temperature-dependent relaxation mechanism of unknown origin, cell development, spectrally narrowed lasers, and hybrid spin-exchange optical pumping.

  5. Solar source regions of 3HE-rich particle events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Lin, R. P.; Reames, D. V.; Stone, R. G.; Liggett, M.

    1985-01-01

    Hydrogen alpha X-ray, and metric and kilometric radio data to examine the solar sources of energetic 3He-rich particle events observed near earth in association with impulsive 2 to 100 keV electron events were applied. Each 3He/electron event is associated with a kilometric type 3 burst belonging to a family of such bursts characterized by similar interplanetary propagation paths from the same solar active region. The 3He/electron events correlate very well with the interplanetary low frequency radio brightnesses of these events, but progressively worse with signatures from regions closer to the Sun. When H alpha brightnings can be associated with 3He/electron events, they have onsets coinciding to within 1 min of that of the associated metric type 3 burst but are often too small to be reported. The data are consistent with the earlier idea that many type 3 bursts, the 3He/electron events, are due to particle acceleration in the corona, well above the associated H alpha and X-ray flares.

  6. Optical Pumping / Spin Exchange ^3He Neutron Spin Filter Development

    NASA Astrophysics Data System (ADS)

    Hwang, Shenq-Rong; Coulter, Kevin P.; Chupp, Timothy E.; Welsh, Robert C.

    1998-04-01

    We have instrumented a thermal neutron beam line at the 2MW Ford reactor at the University of Michigan to develop a ^3He neutron spin filter test stand. Due to a large, spin depedent neutron cross section at low energies, polarized ^3He can be used as a neutron spin filter. Our ^3He spin filter is a 10 amagat-cm ^3He cell polarized via optical pumping/spin exchange with Rb. The filter is made of Corning 7056 glass filled with Rb , several atmosphere of ^3He and a few hundred torr nitrogen as buffer gas. We apply two 15W diode array lasers to optically pump Rb. In this presentation we will discuss some progress of this development, including a rotating oven design and a stepping motor driven neutron chopper. Preliminary results of the 10 amagat-cm filter will be presented and compared with theoretical calculations. A study of systematic errors from the data acquisition system and the neutron chopper will also be discussed.

  7. Polarized 3He Spin Filters for Slow Neutron Physics

    PubMed Central

    Gentile, T. R.; Chen, W. C.; Jones, G. L.; Babcock, E.; Walker, T. G.

    2005-01-01

    Polarized 3He spin filters are needed for a variety of experiments with slow neutrons. Their demonstrated utility for highly accurate determination of neutron polarization are critical to the next generation of betadecay correlation coefficient measurements. In addition, they are broadband devices that can polarize large area and high divergence neutron beams with little gamma-ray background, and allow for an additional spin-flip for systematic tests. These attributes are relevant to all neutron sources, but are particularly well-matched to time of flight analysis at spallation sources. There are several issues in the practical use of 3He spin filters for slow neutron physics. Besides the essential goal of maximizing the 3He polarization, we also seek to decrease the constraints on cell lifetimes and magnetic field homogeneity. In addition, cells with highly uniform gas thickness are required to produce the spatially uniform neutron polarization needed for beta-decay correlation coefficient experiments. We are currently employing spin-exchange (SE) and metastability-exchange (ME) optical pumping to polarize 3He, but will focus on SE. We will discuss the recent demonstration of 75 % 3He polarization, temperature-dependent relaxation mechanism of unknown origin, cell development, spectrally narrowed lasers, and hybrid spin-exchange optical pumping. PMID:27308140

  8. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain

    PubMed Central

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-01-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice–water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials. © 2015 The Authors NMR in

  9. Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    PubMed

    Grech-Sollars, Matthew; Hales, Patrick W; Miyazaki, Keiko; Raschke, Felix; Rodriguez, Daniel; Wilson, Martin; Gill, Simrandip K; Banks, Tina; Saunders, Dawn E; Clayden, Jonathan D; Gwilliam, Matt N; Barrick, Thomas R; Morgan, Paul S; Davies, Nigel P; Rossiter, James; Auer, Dorothee P; Grundy, Richard; Leach, Martin O; Howe, Franklyn A; Peet, Andrew C; Clark, Chris A

    2015-04-01

    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials.

  10. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project.

    PubMed

    Setsompop, K; Kimmlingen, R; Eberlein, E; Witzel, T; Cohen-Adad, J; McNab, J A; Keil, B; Tisdall, M D; Hoecht, P; Dietz, P; Cauley, S F; Tountcheva, V; Matschl, V; Lenz, V H; Heberlein, K; Potthast, A; Thein, H; Van Horn, J; Toga, A; Schmitt, F; Lehne, D; Rosen, B R; Wedeen, V; Wald, L L

    2013-10-15

    Perhaps more than any other "-omics" endeavor, the accuracy and level of detail obtained from mapping the major connection pathways in the living human brain with diffusion MRI depend on the capabilities of the imaging technology used. The current tools are remarkable; allowing the formation of an "image" of the water diffusion probability distribution in regions of complex crossing fibers at each of half a million voxels in the brain. Nonetheless our ability to map the connection pathways is limited by the image sensitivity and resolution, and also the contrast and resolution in encoding of the diffusion probability distribution. The goal of our Human Connectome Project (HCP) is to address these limiting factors by re-engineering the scanner from the ground up to optimize the high b-value, high angular resolution diffusion imaging needed for sensitive and accurate mapping of the brain's structural connections. Our efforts were directed based on the relative contributions of each scanner component. The gradient subsection was a major focus since gradient amplitude is central to determining the diffusion contrast, the amount of T2 signal loss, and the blurring of the water PDF over the course of the diffusion time. By implementing a novel 4-port drive geometry and optimizing size and linearity for the brain, we demonstrate a whole-body sized scanner with G(max) = 300 mT/m on each axis capable of the sustained duty cycle needed for diffusion imaging. The system is capable of slewing the gradient at a rate of 200 T/m/s as needed for the EPI image encoding. In order to enhance the efficiency of the diffusion sequence we implemented a FOV shifting approach to Simultaneous MultiSlice (SMS) EPI capable of unaliasing 3 slices excited simultaneously with a modest g-factor penalty allowing us to diffusion encode whole brain volumes with low TR and TE. Finally we combine the multi-slice approach with a compressive sampling reconstruction to sufficiently undersample q-space to

  11. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project

    PubMed Central

    Setsompop, K.; Kimmlingen, R.; Eberlein, E.; Witzel, T.; Cohen-Adad, J.; McNab, J.A.; Keil, B.; Tisdall, M.D.; Hoecht, P.; Dietz, P.; Cauley, S.F.; Tountcheva, V.; Matschl, V.; Lenz, V. H.; Heberlein, K.; Potthast, A.; Thein, H.; Van Horn, J.; Toga, A.; Schmitt, F.; Lehne, D.; Rosen, B.R.; Wedeen, V.; Wald, L.L.

    2013-01-01

    Perhaps more than any other “-omics” endeavor, the accuracy and level of detail obtained from mapping the major connection pathways in the living human brain with diffusion MRI depends on the capabilities of the imaging technology used. The current tools are remarkable; allowing the formation of an “image” of the water diffusion probability distribution in regions of complex crossing fibers at each of half a million voxels in the brain. Nonetheless our ability to map the connection pathways is limited by the image sensitivity and resolution, and also the contrast and resolution in encoding of the diffusion probability distribution. The goal of our Human Connectome Project (HCP) is to address these limiting factors by re-engineering the scanner from the ground up to optimize the high b-value, high angular resolution diffusion imaging needed for sensitive and accurate mapping of the brain’s structural connections. Our efforts were directed based on the relative contributions of each scanner component. The gradient subsection was a major focus since gradient amplitude is central to determining the diffusion contrast, the amount of T2 signal loss, and the blurring of the water PDF over the course of the diffusion time. By implementing a novel 4-port drive geometry and optimizing size and linearity for the brain, we demonstrate a whole-body sized scanner with Gmax = 300mT/m on each axis capable of the sustained duty cycle needed for diffusion imaging. The system is capable of slewing the gradient at a rate of 200 T/m/s as needed for the EPI image encoding. In order to enhance the efficiency of the diffusion sequence we implemented a FOV shifting approach to Simultaneous MultiSlice (SMS) EPI capable of unaliasing 3 slices excited simultaneously with a modest g-factor penalty allowing us to diffusion encode whole brain volumes with low TR and TE. Finally we combine the multi-slice approach with a compressive sampling reconstruction to sufficiently undersample q

  12. White-Matter Diffusion fMRI of Mouse Optic Nerve

    PubMed Central

    Spees, William M.; Lin, Tsen-Hsuan; Song, Sheng-Kwei

    2012-01-01

    Non-invasive assessment of white-matter functionality in the nervous system would be a valuable basic neuroscience and clinical diagnostic tool. Using standard MRI techniques, a visual-stimulus-induced 27% decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) is demonstrated for C57BL/6 mouse optic nerve in vivo. No change in ADC|| (diffusion parallel to the optic nerve fibers) was observed during visual stimulation. The stimulus-induced changes are completely reversible. A possible vascular contribution was sought by carrying out the ADC⊥ measurements in hypercapnic mice with and without visual stimulus. Similar effects were seen in room-air-breathing and hypercapnic animals. The in vivo stimulus-induced ADC⊥ decreases are roughly similar to literature reports for ex vivo rat optic nerve preparations under conditions of osmotic swelling. The experimental results strongly suggest that osmotic after-effects of nerve impulses through the axonal fibers are responsible for the observed ADC decrease. PMID:23085108

  13. Diffusion spectrum MRI using body-centered-cubic and half-sphere sampling schemes.

    PubMed

    Kuo, Li-Wei; Chiang, Wen-Yang; Yeh, Fang-Cheng; Wedeen, Van Jay; Tseng, Wen-Yih Isaac

    2013-01-15

    The optimum sequence parameters of diffusion spectrum MRI (DSI) on clinical scanners were investigated previously. However, the scan time of approximately 30 min is still too long for patient studies. Additionally, relatively large sampling interval in the diffusion-encoding space may cause aliasing artifact in the probability density function when Fourier transform is undertaken, leading to estimation error in fiber orientations. Therefore, this study proposed a non-Cartesian sampling scheme, body-centered-cubic (BCC), to avoid the aliasing artifact as compared to the conventional Cartesian grid sampling scheme (GRID). Furthermore, the accuracy of DSI with the use of half-sphere sampling schemes, i.e. GRID102 and BCC91, was investigated by comparing to their full-sphere sampling schemes, GRID203 and BCC181, respectively. In results, smaller deviation angle and lower angular dispersion were obtained by using the BCC sampling scheme. The half-sphere sampling schemes yielded angular precision and accuracy comparable to the full-sphere sampling schemes. The optimum b(max) was approximately 4750 s/mm(2) for GRID and 4500 s/mm(2) for BCC. In conclusion, the BCC sampling scheme could be implemented as a useful alternative to the GRID sampling scheme. Combination of BCC and half-sphere sampling schemes, that is BCC91, may potentially reduce the scan time of DSI from 30 min to approximately 14 min while maintaining its precision and accuracy.

  14. Watershed-based segmentation of the corpus callosum in diffusion MRI

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Rittner, Leticia; Appenzeller, Simone; Lapa, Aline; Lotufo, Roberto

    2012-02-01

    The corpus callosum (CC) is one of the most important white matter structures of the brain, interconnecting the two cerebral hemispheres, and is related to several neurodegenerative diseases. Since segmentation is usually the first step for studies in this structure, and manual volumetric segmentation is a very time-consuming task, it is important to have a robust automatic method for CC segmentation. We propose here an approach for fully automatic 3D segmentation of the CC in the magnetic resonance diffusion tensor images. The method uses the watershed transform and is performed on the fractional anisotropy (FA) map weighted by the projection of the principal eigenvector in the left-right direction. The section of the CC in the midsagittal slice is used as seed for the volumetric segmentation. Experiments with real diffusion MRI data showed that the proposed method is able to quickly segment the CC without any user intervention, with great results when compared to manual segmentation. Since it is simple, fast and does not require parameter settings, the proposed method is well suited for clinical applications.

  15. Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics

    PubMed Central

    Jin, Yan; Shi, Yonggang; Zhan, Liang; Gutman, Boris; de Zubicaray, Greig I.; McMahon, Katie L.; Wright, Margaret J.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    To understand factors that affect brain connectivity and integrity, it is beneficial to automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering them into consistent and recognizable bundles can be difficult as there are wide individual variations in the trajectory and shape of WM pathways. Here we introduce a novel automated tract clustering algorithm based on label fusion – a concept from traditional intensity-based segmentation. Streamline tractography generates many incorrect fibers, so our top-down approach extracts tracts consistent with known anatomy, by mapping multiple hand-labeled atlases into a new dataset. We fuse clustering results from different atlases, using a mean distance fusion scheme. We reliably extracted the major tracts from 105-gradient high angular resolution diffusion images (HARDI) of 198 young normal twins. To compute population statistics, we use a point-wise correspondence method to match, compare, and average WM tracts across subjects. We illustrate our method in a genetic study of white matter tract heritability in twins. PMID:24821529

  16. Bogoliubov-normal interaction and calculation of thermal conductivity of superfluid A1-3He

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Ebrahimian, N.

    2006-09-01

    The diffusive thermal conductivity tensor of the A 1-phase of superfluid 3He at low temperatures and melting pressure are calculated by s-p approximation, by using the Boltzmann equation approach. We obtain that the elements of the diffusive thermal conductivities, Kxx, Kyy, and Kzz, are proportional to T -1. Then we compare the results of this paper and our results of thermal conductivity based on Pfitzner procedure. Temperature dependence of both results is equal but numerical coefficients of them are little different. Also we show that Boguliubov-normal interaction is important in comparison to other interactions.

  17. Neutron (3He) Spin Structure Functions at Low Q^2

    SciTech Connect

    Vincent Sulkosky

    2009-07-01

    Experiment E97-110 was performed at the Thomas Jefferson National Accelerator Facility to provide a precise measurement of the $^{3}$He spin structure functions at low $Q^{2}$ from 0.02 to 0.3~[GeV$/c$]$^{2}$. A longitudinally-polarized electron beam was scattered from a longitudinally or transversely polarized $^{3}$He target. From these data, we have extracted moments of the neutron and $^{3}$He spin structure functions at very low momentum transfers. These data allow us to make a benchmark check of Chiral Perturbation Theory calculations in a region where they are expected to be valid. In these proceedings, the experimental details are discussed and preliminary results on the first moments of the $g_1\\left(x,Q^{2}\\right)$ and $g_2\\left(x,Q^{2}\\right)$ structure functions are presented.

  18. Feasibility of neutron diffraction on solid 3He

    NASA Astrophysics Data System (ADS)

    Siemensmeyer, K.; Schuberth, E. A.; Adams, E. D.; Takano, Y.; Guckelsberger, K.

    2000-07-01

    We have investigated the feasibility of neutron diffraction from solid 3He. The experiment will be performed at the HMI, first aiming for the properties of the antiferromagnetic ordering in the BCC phase and the ferromagnetic order in the HCP phase. Signal and beam heating considerations are essential to account for the enormous neutron absorption cross section of 3He. The study shows that neutron diffraction and transmission experiments are possible, relying on the experience gained from the neutron diffraction experiments on Cu and Ag at nanokelvin temperatures. A pressure cell has been developed which complies with the conflicting demands arising from the neutron and ultralow temperature aspects of the experiment. This work is a first step in an extensive effort to characterize 3He by neutron diffraction.

  19. Strong-Coupling and the Stripe Phase of ^3He

    NASA Astrophysics Data System (ADS)

    Wiman, Joshua J.; Sauls, J. A.

    2016-09-01

    Thin films of superfluid 3He were predicted, based on weak-coupling BCS theory, to have a stable phase which spontaneously breaks translational symmetry in the plane of the film. This crystalline superfluid, or "stripe" phase, develops as a one-dimensional periodic array of domain walls separating degenerate B phase domains. We report calculations of the phases and phase diagram for superfluid 3He in thin films using a strong-coupling Ginzburg-Landau theory that accurately reproduces the bulk 3He superfluid phase diagram. We find that the stability of the Stripe phase is diminished relative to the A phase, but the Stripe phase is stable in a large range of temperatures, pressures, confinement, and surface conditions.

  20. Quark-Hadron Duality in Neutron (3He) Spin Structure

    SciTech Connect

    Solvignon, Patricia; Liyanage, Nilanga; Chen, Jian-Ping; Choi, Seonho; Aniol, Konrad; Averett, Todd; Boeglin, Werner; Camsonne, Alexandre; Cates, Gordon; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chudakov, Eugene; Craver, Brandon; Cusanno, Francesco; Deur, Alexandre; Dutta, Dipangkar; Ent, Rolf; Feuerbach, Robert; Frullani, Salvatore; Gao, Haiyan; Garibaldi, Franco; Gilman, Ronald; Glashausser, Charles; Gorbenko, Viktor; Hansen, Jens-Ole; Higinbotham, Douglas; Ibrahim, Hassan; Jiang, Xiaodong; Jones, Mark; Kelleher, Aidan; Kelly, J.; Keppel, Cynthia; Kim, Wooyoung; Korsch, Wolfgang; Kramer, Kevin; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Ma, Bin; Margaziotis, Demetrius; Markowitz, Pete; McCormick, Kathy; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Monaghan, Peter; Munoz-Camacho, Carlos; Paschke, Kent; Reitz, Bodo; Saha, Arunava; Sheyor, Ran; Singh, Jaideep; Slifer, Karl; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Tobias, William; Urciuoli, Guido; Wang, Kebin; Wijesooriya, Krishni; Wojtsekhowski, Bogdan; Woo, Seungtae; Yang, Jae-Choon; Zheng, Xiaochao; Zhu, Lingyan

    2008-10-01

    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and $^3$He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.

  1. Ultrasensitive 3He magnetometer for measurements of high magnetic fields

    NASA Astrophysics Data System (ADS)

    Nikiel, Anna; Blümler, Peter; Heil, Werner; Hehn, Manfred; Karpuk, Sergej; Maul, Andreas; Otten, Ernst; Schreiber, Laura M.; Terekhov, Maxim

    2014-11-01

    We describe a 3He magnetometer capable to measure high magnetic fields ( B> 0.1 T) with a relative accuracy of better than 10-12. Our approach is based on the measurement of the free induction decay of gaseous, nuclear spin polarized 3He following a resonant radio frequency pulse excitation. The measurement sensitivity can be attributed to the long coherent spin precession time T2 ∗ being of order minutes which is achieved for spherical sample cells in the regime of "motional narrowing" where the disturbing influence of field inhomogeneities is strongly suppressed. The 3He gas is spin polarized in situ using a new, non-standard variant of the metastability exchange optical pumping. We show that miniaturization helps to increase T2 ∗ further and that the measurement sensitivity is not significantly affected by temporal field fluctuations of order 10-4.

  2. 3He Neutron Detector Pressure Effect and Comparison to Models

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-01-14

    Reported here are the results of measurements performed to determine the efficiency of 3He filled proportional counters as a function of gas pressure in the SAIC system. Motivation for these measurements was largely to validate the current model of the SAIC system. Those predictions indicated that the neutron detection efficiency plotted as a function of pressure has a simple, logarithmic shape. As for absolute performance, the model results indicated the 3He pressure in the current SAIC system could not be reduced appreciably while meeting the current required level of detection sensitivity. Thus, saving 3He by reducing its pressure was predicted not to be a viable option in the current SAIC system.

  3. Quark-hadron duality in neutron (3He) spin structure.

    PubMed

    Solvignon, P; Liyanage, N; Chen, J-P; Choi, Seonho; Aniol, K; Averett, T; Boeglin, W; Camsonne, A; Cates, G D; Chang, C C; Chudakov, E; Craver, B; Cusanno, F; Deur, A; Dutta, D; Ent, R; Feuerbach, R; Frullani, S; Gao, H; Garibaldi, F; Gilman, R; Glashausser, C; Gorbenko, V; Hansen, O; Higinbotham, D W; Ibrahim, H; Jiang, X; Jones, M; Kelleher, A; Kelly, J; Keppel, C; Kim, W; Korsch, W; Kramer, K; Kumbartzki, G; Lerose, J J; Lindgren, R; Ma, B; Margaziotis, D J; Markowitz, P; McCormick, K; Meziani, Z-E; Michaels, R; Moffit, B; Monaghan, P; Munoz Camacho, C; Paschke, K; Reitz, B; Saha, A; Sheyor, R; Singh, J; Slifer, K; Sulkosky, V; Tobias, A; Urciuoli, G M; Wang, K; Wijesooriya, K; Wojtsekhowski, B; Woo, S; Yang, J-C; Zheng, X; Zhu, L

    2008-10-31

    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_{1} of the neutron and 3He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c);{2}. Global duality is observed for the spin-structure function g_{1} down to at least Q;{2}=1.8 (GeV/c);{2} in both targets. We have also formed the photon-nucleon asymmetry A1 in the resonance region for 3He and found no strong Q2 dependence above 2.2 (GeV/c);{2}.

  4. 3He spin exchange cells for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Jacob, R. E.; Morgan, S. W.; Saam, B.

    2002-08-01

    We present a protocol for the consistent fabrication of glass cells to provide hyperpolarized (HP) 3He for pulmonary magnetic resonance imaging. The method for producing HP 3He is spin-exchange optical pumping. The valved cells must hold of order 1 atm[middle dot]L of gas at up to 15 atm pressure. Because characteristic spin-exchange times are several hours, the longitudinal nuclear relaxation time T1 for 3He must be several tens of hours and robust with respect to repeated refilling and repolarization. Collisions with the cell wall are a significant and often dominant cause of relaxation. Consistent control of wall relaxation through cell fabrication procedures has historically proven difficult. With the help of the discovery of an important mechanism for wall relaxation that involves magnetic surface sites in the glass, and with the further confirmation of the importance of Rb metal to long wall-relaxation times, we have developed a successful protocol for fabrication of 3He spin exchange cells from inexpensive and easily worked borosilicate (Pyrex) glass. The cells are prepared under vacuum using a high-vacuum oil-free turbomolecular pumping station, and they are sealed off under vacuum after [greater-than-or-equal, slanted]100 mg of distilled Rb metal is driven in. Filling of cells with the requisite 3He-N2 mixture is done on an entirely separate gas-handling system. Our cells can be refilled and the gas repolarized indefinitely with no significant change in their wall properties. Relaxation data are presented for about 30 cells; the majority of these reach a "40/40" benchmark: T1>40 h, and 3He polarizations reach or exceed 40%. Typical polarization times range from 12 to 20 h; 20% polarization can be achieved in 3-5 h.

  5. Neutron-scattering experiment on solid 3He

    NASA Astrophysics Data System (ADS)

    Mat'aš, S.; Bat'ko, I.; Boyko, V.; Schöttl, S.; Siemensmeyer, K.; Raasch, S.; Radulov, I.; Adams, E. D.; Scherline, T. E.

    The central aim of our work is the characterisation of magnetic and crystallographic properties of solid 3He on a microscopic scale. This can only be achieved using neutron-diffraction techniques. The potential of neutron methods in magnetism and their application to nuclear magnetism is well known. They were very successful in the recent investigation of spontaneous nuclear order in copper and silver. The high neutron absorption cross section makes the application of neutron diffraction in solid 3He very difficult - but a careful feasibility study of diffraction experiments shows that new results of fundamental importance in the field of magnetism may be gained.

  6. Anisotropic Phases of Superfluid 3He in Compressed Aerogel

    NASA Astrophysics Data System (ADS)

    Li, J. I. A.; Zimmerman, A. M.; Pollanen, J.; Collett, C. A.; Halperin, W. P.

    2015-03-01

    It has been shown that the relative stabilities of various superfluid states of 3He can be influenced by anisotropy in a silica aerogel framework. We prepared a suite of aerogel samples compressed up to 30% for which we performed pulsed NMR on 3He imbibed within the aerogel. We identified A and B phases and determined their magnetic field-temperature phase diagrams as a function of strain. From these results, we infer that the B phase is distorted by negative strain forming an anisotropic superfluid state more stable than the A phase.

  7. Data for evaluation of fast kurtosis strategies, b-value optimization and exploration of diffusion MRI contrast

    NASA Astrophysics Data System (ADS)

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-08-01

    Here we describe and provide diffusion magnetic resonance imaging (dMRI) data that was acquired in neural tissue and a physical phantom. Data acquired in biological tissue includes: fixed rat brain (acquired at 9.4 T) and spinal cord (acquired at 16.4 T) and in normal human brain (acquired at 3 T). This data was recently used for evaluation of diffusion kurtosis imaging (DKI) contrasts and for comparison to diffusion tensor imaging (DTI) parameter contrast. The data has also been used to optimize b-values for ex vivo and in vivo fast kurtosis imaging. The remaining data was obtained in a physical phantom with three orthogonal fiber orientations (fresh asparagus stems) for exploration of the kurtosis fractional anisotropy. However, the data may have broader interest and, collectively, may form the basis for image contrast exploration and simulations based on a wide range of dMRI analysis strategies.

  8. Data for evaluation of fast kurtosis strategies, b-value optimization and exploration of diffusion MRI contrast

    PubMed Central

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-01-01

    Here we describe and provide diffusion magnetic resonance imaging (dMRI) data that was acquired in neural tissue and a physical phantom. Data acquired in biological tissue includes: fixed rat brain (acquired at 9.4 T) and spinal cord (acquired at 16.4 T) and in normal human brain (acquired at 3 T). This data was recently used for evaluation of diffusion kurtosis imaging (DKI) contrasts and for comparison to diffusion tensor imaging (DTI) parameter contrast. The data has also been used to optimize b-values for ex vivo and in vivo fast kurtosis imaging. The remaining data was obtained in a physical phantom with three orthogonal fiber orientations (fresh asparagus stems) for exploration of the kurtosis fractional anisotropy. However, the data may have broader interest and, collectively, may form the basis for image contrast exploration and simulations based on a wide range of dMRI analysis strategies. PMID:27576023

  9. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes.

    PubMed

    Andersson, Jesper L R; Sotiropoulos, Stamatios N

    2015-11-15

    Diffusion MRI offers great potential in studying the human brain microstructure and connectivity. However, diffusion images are marred by technical problems, such as image distortions and spurious signal loss. Correcting for these problems is non-trivial and relies on having a mechanism that predicts what to expect. In this paper we describe a novel way to represent and make predictions about diffusion MRI data. It is based on a Gaussian process on one or several spheres similar to the Geostatistical method of "Kriging". We present a choice of covariance function that allows us to accurately predict the signal even from voxels with complex fibre patterns. For multi-shell data (multiple non-zero b-values) the covariance function extends across the shells which means that data from one shell is used when making predictions for another shell.

  10. Serial diffusion MRI to monitor and model treatment response of the targeted nanotherapy CRLX101

    PubMed Central

    Ng, Thomas S.C.; Wert, David; Sohi, Hargun; Procissi, Daniel; Colcher, David; Raubitschek, Andrew A.; Jacobs, Russell E.

    2013-01-01

    Purpose Targeted nanotherapies are being developed to improve tumor drug delivery and enhance therapeutic response. Techniques that can predict response will facilitate clinical translation and may help define optimal treatment strategies. We evaluated the efficacy of diffusion-weighted magnetic resonance imaging to monitor early response to CRLX101 nanotherapy (formerly IT-101), and explored its potential as a therapeutic response predictor using a mechanistic model of tumor cell-proliferation. Experimental Design Diffusion MRI was serially performed following CRLX101 administration in a mouse lymphoma model. Apparent diffusion coefficients (ADC) extracted from the data were used as treatment response biomarkers. Animals treated with irinotecan (CPT-11) and saline were imaged for comparison. ADC data were also input into a mathematical model of tumor growth. Histological analysis using cleaved-caspase 3, TUNEL, Ki-67 and H&E were conducted on tumor samples for correlation with imaging results. Results CRLX101 treated tumors at day 2, 4, 7 post-treatment exhibited changes in mean ADC=16 ± 9%, 24 ± 10% 49 ± 17% and size (TV)=−5 ± 3%, −30 ± 4% and −45 ± 13% respectively. Both parameters were statistically greater than controls (p(ADC) ≤ 0.02, and p(TV) ≤ 0.01 at day 4 and 7), and noticeably greater than CPT-11 treated tumors (ADC=5 ± 5%, 14 ± 7% and 18 ± 6%, TV=−15 ± 5%, −22 ± 13% and −26 ± 8%). Model-derived parameters for cell-proliferation obtained using ADC data distinguished CRLX101 treated tumors from controls (p = 0.02). Conclusions Temporal changes in ADC specified early CRLX101 treatment response and could be used to model image-derived cell-proliferation rates following treatment. Comparisons of targeted and non-targeted treatments highlight the utility of non-invasive imaging and modeling to evaluate, monitor and predict responses to targeted nanotherapeutics. PMID:23532891

  11. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI.

    PubMed

    Jones, Derek K; Knösche, Thomas R; Turner, Robert

    2013-06-01

    Diffusion-weighted MRI (DW-MRI) has been increasingly used in imaging neuroscience over the last decade. An early form of this technique, diffusion tensor imaging (DTI) was rapidly implemented by major MRI scanner companies as a scanner selling point. Due to the ease of use of such implementations, and the plausibility of some of their results, DTI was leapt on by imaging neuroscientists who saw it as a powerful and unique new tool for exploring the structural connectivity of human brain. However, DTI is a rather approximate technique, and its results have frequently been given implausible interpretations that have escaped proper critique and have appeared misleadingly in journals of high reputation. In order to encourage the use of improved DW-MRI methods, which have a better chance of characterizing the actual fiber structure of white matter, and to warn against the misuse and misinterpretation of DTI, we review the physics of DW-MRI, indicate currently preferred methodology, and explain the limits of interpretation of its results. We conclude with a list of 'Do's and Don'ts' which define good practice in this expanding area of imaging neuroscience.

  12. Hyperpolarized helium-3 mouse lung MRI: Studies of lung structure and function

    NASA Astrophysics Data System (ADS)

    Dugas, Joseph Paul

    Hyperpolarized 3He magnetic resonance imaging (MRI) of human and animal lungs has displayed promising and useful applications to studies of lung structure and function in both healthy and diseased lungs. Hyperpolarized 3He MRI allows the visualization of gas in the gas-exchange spaces of the lungs (as opposed to tissue) and has proven especially effective in studying diseases that are characterized by ventilation defects, such as emphysema. In particular, in-vivo measurements of the 3He apparent diffusion coefficient (ADC) can quantify lung structure by measuring its restrictive effects on the motion of 3He spins. This allows for detection and longitudinal tracking of changes in micro-architecture that result from disease destruction of alveolar walls. Due, in part, to the difficulties inherent in administering and imaging hyperpolarized 3He within the small (0.5 cc volume) mouse lung, applications of hyperpolarized 3He MRI techniques to laboratory mice are scarce. We have been able to implement and improve the techniques of hyperpolarized 3He mouse lung MRI and subsequently apply them to studies of several mouse models of disease, including elastase-induced emphysema, smoking-induced emphysema, and lung cancer. Here we detail the design, development, and implementation of a versatile, electronically-controlled, small animal ventilator that is capable of delivering tiny volumes of hyperpolarized 3He, mixed with oxygen, to the mouse and is also compatible with both the easily depolarized 3He gas and the highly magnetic environment within and around an imaging magnet. Also described are NM techniques developed to improve the signal-to-noise ratio of our images and effectively utilize the gas hyperpolarization. Applications of these technologies and techniques to small animal models of disease are presented wherein we have measured up to a 35% increase in 3He ADC in mice with elastase-induced emphysema as compared to healthy mice. We also demonstrate the potential

  13. Progress in Polarized 3He Ion Source at RCNP

    SciTech Connect

    Tanaka, M.; Takahashi, Y.; Shimoda, T.; Yasui, S.; Yosoi, M.; Takahisa, K.; Shimakura, N.; Plis, Yu. A.; Donets, E. D.

    2007-06-13

    A long history on the polarized 3He ion source developed at RCNP is presented. We started with an 'OPPIS' (Optical Pumping Polarized Ion Source) and later found the fundamental difficulties in the OPPIS. To overcome them an 'EPPIS' (Electron Pumping Polarized Ion Source) was proposed and its validity was experimentally proven. However, a serious technical disadvantage was also found in the EPPIS. To avoid this disadvantage we proposed a new concept, 'SEPIS' (Spin Exchange Polarized Ion Source), which uses an enhanced spin-exchange cross section theoretically expected at low 3He+ incident energies in the 3He+ + Rb system. Next, we describe the present status of the SEPIS development: construction of a bench test device allowing the measurements of not only the spin-exchange cross sections {sigma}se but also the electron capture cross sections {sigma}ec for the 3He+ + Rb system. The latest experimental data on {sigma}ec are presented and compared with other previous experimental data and the theoretical calculations.Finally, a design study of the SEPIS for practical use in nuclear (cyclotron) and particle physics (synchrotron) is shortly mentioned.

  14. {sup 3}He neutral current detectors at SNO

    SciTech Connect

    Elliott, S.R.; Browne, M.C.; Doe, P.J.

    1998-09-01

    The flux of solar neutrinos measured via charged and neutral current interactions can provide a model independent test of neutrino oscillations. Since the Sudbury Neutrino Observatory uses heavy water as a target, it has a large sensitivity to both interactions. A technique for observing the neutral current breakup of the deuteron using {sup 3}He proportional counters is described.

  15. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon.

    PubMed

    Flowers, R M; Farley, K A

    2012-12-21

    The Grand Canyon is one of the most dramatic features on Earth, yet when and why it was carved have been controversial topics for more than 150 years. Here, we present apatite (4)He/(3)He thermochronometry data from the Grand Canyon basement that tightly constrain the near-surface cooling history associated with canyon incision. (4)He/(3)He spectra for eastern Grand Canyon apatites of differing He date, radiation damage, and U-Th zonation yield a self-consistent cooling history that substantially validates the He diffusion kinetic model applied here. Similar data for the western Grand Canyon provide evidence that it was excavated to within a few hundred meters of modern depths by ~70 million years ago (Ma), in contrast to the conventional model in which the entire canyon was carved since 5 to 6 Ma.

  16. Surface Scattering Effect and the Stripe Order in Films of the Superfluid 3He B Phase

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi

    2016-09-01

    Surface scattering effects in thin films of the superfluid 3He B phase have been theoretically investigated, with an emphasis on the stability of the stripe order with spontaneous broken translational symmetry in the film plane and quasiparticle excitations in this spatially inhomogeneous phase. Based on the Ginzburg-Landau theory in the weak coupling limit, we have shown that the stripe order, which was originally discussed for a film with two specular surfaces, can be stable in a film with one specular and one diffusive surfaces which should correspond to superfluid 3He on a substrate. It is also found by numerically solving the Eilenberger equation that due to the stripe structure, a midgap state distinct from the surface Andreev bound state emerges and its signature is reflected in the local density of states.

  17. q-Space diffusion MRI (QSI) of the disease progression in the spinal cords of the Long Evans shaker: diffusion time and apparent anisotropy

    PubMed Central

    Anaby, Debbie; Duncan, Ian D.; Smith, Chelsey M.; Cohen, Yoram

    2014-01-01

    q-Space diffusion MRI (QSI) was used to study the spinal cords of Long Evans shaker (les) rats, a model of dysmyelination, and their age-matched controls at different maturation stages. Diffusion was measured parallel and perpendicular to the fibers of the spinal cords of the two groups and at different diffusion times. The results showed that QSI is able to detect the dysmyelination process that occurs in this model in the different stages of the disease. The differences in the diffusion characteristics of the spinal cords of the two groups were found to be larger when the diffusion time was increased from 22 to 100 ms. We found that the radial mean displacement is a much better parameter than the QSI fractional anisotropy (FA) to document the differences between the two groups. We observed that the degree of myelination affects the diffusion characteristics of the tissues, but has a smaller effect on FA. All of the extracted diffusion parameters that are affected by the degree of myelination are affected in a diffusion time-dependent fashion, suggesting that the terms apparent anisotropy, apparent fractional anisotropy and even apparent root-mean-square displacement (rmsD) are more appropriate. PMID:24123305

  18. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.

    PubMed

    Marica, Florea; Jofré, Sergio Andrés Bea; Mayer, K Ulrich; Balcom, Bruce J; Al, Tom A

    2011-07-01

    This work is focused on measuring the concentration distribution of a conservative tracer in a homogeneous synthetic porous material and in heterogeneous natural sandstone using MRI techniques, and on the use of spatially resolved porosity data to define spatially variable diffusion coefficients in heterogeneous media. The measurements are made by employing SPRITE, a fast MRI method that yields quantitative, spatially-resolved tracer concentrations in porous media. Diffusion experiments involving the migration of H(2)O into D(2)O-saturated porous media are conducted. One-dimensional spatial distributions of H(2)O-tracer concentrations acquired from experiments with the homogeneous synthetic calcium silicate are fitted with the one-dimensional analytical solution of Fick's second law to confirm that the experimental method provides results that are consistent with expectations for Fickian diffusion in porous media. The MRI-measured concentration profiles match well with the solution for Fick's second law and provide a pore-water diffusion coefficient of 1.75×10(-9)m(2)s(-1). The experimental approach was then extended to evaluate diffusion in a heterogeneous natural sandstone in three dimensions. The relatively high hydraulic conductivity of the sandstone, and the contrast in fluid density between the H(2)O tracer and the D(2)O pore fluid, lead to solute transport by a combination of diffusion and density-driven advection. The MRI measurements of spatially distributed tracer concentration, combined with numerical simulations allow for the identification of the respective influences of advection and diffusion. The experimental data are interpreted with the aid of MIN3P-D - a multicomponent reactive transport code that includes the coupled processes of diffusion and density-driven advection. The model defines local diffusion coefficients as a function of spatially resolved porosity measurements. The D(e) values calculated for the heterogeneous sandstone and used to

  19. Symmetry protected topological superfluid (3)He-B.

    PubMed

    Mizushima, Takeshi; Tsutsumi, Yasumasa; Sato, Masatoshi; Machida, Kazushige

    2015-03-25

    Owing to the richness of symmetry and well-established knowledge of bulk superfluidity, the superfluid (3)He has offered a prototypical system to study intertwining of topology and symmetry. This article reviews recent progress in understanding the topological superfluidity of (3)He in a multifaceted manner, including symmetry considerations, the Jackiw-Rebbi's index theorem, and the quasiclassical theory. Special focus is placed on the symmetry protected topological superfuidity of the (3)He-B confined in a slab geometry. The (3)He-B under a magnetic field is separated to two different sub-phases: the symmetry protected topological phase and non-topological phase. The former phase is characterized by the existence of symmetry protected Majorana fermions. The topological phase transition between them is triggered by the spontaneous breaking of a hidden discrete symmetry. The critical field is quantitatively determined from the microscopic calculation that takes account of magnetic dipole interaction of the (3)He nucleus. It is also demonstrated that odd-frequency even-parity Cooper pair amplitudes are emergent in low-lying quasiparticles. The key ingredients, symmetry protected Majorana fermions and odd-frequency pairing, bring an important consequence that the coupling of the surface states to an applied field is prohibited by the hidden discrete symmetry, while the topological phase transition with the spontaneous symmetry breaking is accompanied by anomalous enhancement and anisotropic quantum criticality of surface spin susceptibility. We also illustrate common topological features between topological crystalline superconductors and symmetry protected topological superfluids, taking UPt3 and Rashba superconductors as examples.

  20. Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging

    PubMed Central

    Kana, Rajesh K.; Murdaugh, Donna L.; Libero, Lauren E.; Pennick, Mark R.; Wadsworth, Heather M.; Deshpande, Rishi; Hu, Christi P.

    2011-01-01

    Newly emerging theories suggest that the brain does not function as a cohesive unit in autism, and this discordance is reflected in the behavioral symptoms displayed by individuals with autism. While structural neuroimaging findings have provided some insights into brain abnormalities in autism, the consistency of such findings is questionable. Functional neuroimaging, on the other hand, has been more fruitful in this regard because autism is a disorder of dynamic processing and allows examination of communication between cortical networks, which appears to be where the underlying problem occurs in autism. Functional connectivity is defined as the temporal correlation of spatially separate neurological events1. Findings from a number of recent fMRI studies have supported the idea that there is weaker coordination between different parts of the brain that should be working together to accomplish complex social or language problems2,3,4,5,6. One of the mysteries of autism is the coexistence of deficits in several domains along with relatively intact, sometimes enhanced, abilities. Such complex manifestation of autism calls for a global and comprehensive examination of the disorder at the neural level. A compelling recent account of the brain functioning in autism, the cortical underconnectivity theory,2,7 provides an integrating framework for the neurobiological bases of autism. The cortical underconnectivity theory of autism suggests that any language, social, or psychological function that is dependent on the integration of multiple brain regions is susceptible to disruption as the processing demand increases. In autism, the underfunctioning of integrative circuitry in the brain may cause widespread underconnectivity. In other words, people with autism may interpret information in a piecemeal fashion at the expense of the whole. Since cortical underconnectivity among brain regions, especially the frontal cortex and more posterior areas 3,6, has now been relatively

  1. Diffuse Infantile Hepatic Hemangioendothelioma With Early Central Enhancement in an Adult: A Case Report of CT and MRI Findings.

    PubMed

    Dong, Aisheng; Dong, Hui; Zuo, Changjing; He, Tianlin

    2015-12-01

    Infantile hepatic hemangioendothelioma (IHH) is the most common vascular tumor of the liver in infancy. Adult with IHH is extremely rare. We presented a diffuse IHH in an adult patient with computed tomography (CT) and magnetic resonance image (MRI) findings.A 39-year-old man was admitted to our hospital because of a 2-year history of abnormal liver function tests and a 7-day history of jaundice. Physical examination revealed enlarged liver. Unenhanced abdominal CT showed enlargement of the liver with diffuse hypodensity. Enhanced CT on the arterial phase revealed multiple centrally enhanced lesions diffusely involved the enlarged liver. The enhanced areas of the lesions became larger on the portal phase and all the lesions became homogeneous enhanced on the delayed phase. These lesions showed heterogeneously hyperintense on T2-weighted image, hypointense on T1-weighted image, and early centrally enhanced on dynamic gadolinium-enhanced MRI, with complete tumor enhancement after 180 s. The patient underwent orthotopic liver transplantation. IHH type 2 was confirmed by pathology. The patient died of tumor recurrence in the liver 4 months after transplantation.Unlike the previously described imaging appearances of IHH, this case showed diffuse nodules with early central enhancement on CT and MRI. Considering the importance of the ability to differentiate IHH from other hepatic tumors, radiologists should be aware of these imaging appearances to establish knowledge of the entire spectrum of IHH.

  2. Thalamic involvement in paroxysmal kinesigenic dyskinesia: a combined structural and diffusion tensor MRI analysis.

    PubMed

    Kim, Ji Hyun; Kim, Dong-Wook; Kim, Jung Bin; Suh, Sang-Il; Koh, Seong-Beom

    2015-04-01

    Alteration of basal ganglia-thalamocortical circuit has been hypothesized to play a role in the pathophysiology underlying paroxysmal kinesigenic dyskinesia (PKD). We investigated macrostructural and microstructural changes in PKD patients using structural and diffusion tensor magnetic resonance imaging (MRI) analyses. Twenty-five patients with idiopathic PKD and 25 control subjects were prospectively studied on a 3T magnetic resonance (MR) scanner. Cortical thickness analysis was used to evaluate cortical gray matter (GM) changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical GM structures, respectively. Tract-based spatial statistics (TBSS) was used to evaluate white matter integrity changes in a whole-brain manner, and region-of-interest (ROI) analysis of diffusion tensor metrics was performed in subcortical GM structures. Compared to controls, PKD patients exhibited a reduction in volume of bilateral thalami and regional shape deformation mainly localized to the anterior and medial aspects of bilateral thalami. TBSS revealed an increase in fractional anisotropy (FA) of bilateral thalami and right anterior thalamic radiation in patients relative to controls. ROI analysis also showed an increase in FA of bilateral thalami in patients compared to controls. We have shown evidence for thalamic abnormalities of volume reduction, regional shape deformation, and increased FA in patients with PKD. Our novel findings of concomitant macrostructural and microstructural abnormalities in the thalamus lend further support to previous observations indicating causal relationship between a preferential lesion in the thalamus and development of PKD, thus providing neuroanatomical basis for the involvement of thalamus within the basal ganglia-thalamocortical pathway in PKD.

  3. Bingham-NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI.

    PubMed

    Tariq, Maira; Schneider, Torben; Alexander, Daniel C; Gandini Wheeler-Kingshott, Claudia A; Zhang, Hui

    2016-06-01

    This paper presents Bingham-NODDI, a clinically-feasible technique for estimating the anisotropic orientation dispersion of neurites. Direct quantification of neurite morphology on clinical scanners was recently realised by a diffusion MRI technique known as neurite orientation dispersion and density imaging (NODDI). However in its current form NODDI cannot estimate anisotropic orientation dispersion, which is widespread in the brain due to common fanning and bending of neurites. This work proposes Bingham-NODDI that extends the NODDI formalism to address this limitation. Bingham-NODDI characterises anisotropic orientation dispersion by utilising the Bingham distribution to model neurite orientation distribution. The new model estimates the extent of dispersion about the dominant orientation, separately along the primary and secondary dispersion orientations. These estimates are subsequently used to estimate the overall dispersion about the dominant orientation and the dispersion anisotropy. We systematically evaluate the ability of the new model to recover these key parameters of anisotropic orientation dispersion with standard NODDI protocol, both in silico and in vivo. The results demonstrate that the parameters of the proposed model can be estimated without additional acquisition requirements over the standard NODDI protocol. Thus anisotropic dispersion can be determined and has the potential to be used as a marker for normal brain development and ageing or in pathology. We additionally find that the original NODDI model is robust to the effects of anisotropic orientation dispersion, when the quantification of anisotropic dispersion is not of interest.

  4. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    PubMed

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)).

  5. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited.

    PubMed

    Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo

    2014-11-18

    Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.

  6. Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI

    PubMed Central

    Wang, Sijia; Peterson, Daniel J.; Gatenby, J. C.; Li, Wenbin; Grabowski, Thomas J.; Madhyastha, Tara M.

    2017-01-01

    Correction of echo planar imaging (EPI)-induced distortions (called “unwarping”) improves anatomical fidelity for diffusion magnetic resonance imaging (MRI) and functional imaging investigations. Commonly used unwarping methods require the acquisition of supplementary images during the scanning session. Alternatively, distortions can be corrected by nonlinear registration to a non-EPI acquired structural image. In this study, we compared reliability using two methods of unwarping: (1) nonlinear registration to a structural image using symmetric normalization (SyN) implemented in Advanced Normalization Tools (ANTs); and (2) unwarping using an acquired field map. We performed this comparison in two different test-retest data sets acquired at differing sites (N = 39 and N = 32). In both data sets, nonlinear registration provided higher test-retest reliability of the output fractional anisotropy (FA) maps than field map-based unwarping, even when accounting for the effect of interpolation on the smoothness of the images. In general, field map-based unwarping was preferable if and only if the field maps were acquired optimally. PMID:28270762

  7. Emphysema Quantification in Inflation-Fixed Lungs Using Low-Dose Computed Tomography and 3He Magnetic Resonance Imaging

    SciTech Connect

    Gierada, David S.; Woods, Jason C.; Jacob, Rick E.; Bierhals, Andrew J.; Choong, Cliff K.; Bartel, Seth T.; Chang, Yulin V.; Das, Nitin A.; Hong, Cheng; Lutey, Barbara; Ritter, Jon H.; Pilgram, Thomas K.; Cooper, Joel D.; Patterson, G Alexander; Battafarano, Richard J.; Meyers, Bryan F.; Yablonskiy, Dmitriy A.; Conradi, Mark S.

    2010-09-02

    Abstract: Objective: To evaluate the use of inflation-fixed lung tissue for emphysema quantification with CT and 3He MR diffusion imaging. Methods: Fourteen subjects representing a range of chronic obstructive pulmonary disease severity who underwent complete or lobar lung resection were studied. CT measurements of lung attenuation and MR measurements of the hyperpolarized 3He apparent diffusion coefficient (ADC) in resected specimens fixed in inflation with heated formalin vapor were compared with measurements obtained before fixation. Results: The mean CT emphysema index was 56% ± 17% before and 58% ± 19% after fixation (P=0.77;R=0.76). Index differences correlated with differences in lung volume (R2=0.47). The mean 3He ADC was 0.40 ± 0.15 cm2/sec before and 0.39 ± 0.14 cm2/sec after fixation (P=0.03, R=0.98). The CT emphysema index and the 3He ADC were correlated before (R=0.89) and after fixation (R=0.79). Conclusion: Concordance of CT and 3He MR imaging measurements in unfixed and inflation-fixed lungs supports the use of inflation-fixed lungs for quantitative imaging studies in emphysema.

  8. Evidence for Split NMR Lines in Ferromagnetic 3He Films

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Zhang, Jinshan; Du, Yuliang; Gould, C. M.; Bozler, H. M.

    2006-09-01

    In earlier experiments on ferromagnetic 3He films, we observed a complex lineshape due in part to the dipolar field generated by polarization of the 3He nuclei. Much of the complex lineshape can be explained by the known distribution of the Grafoil platelets. However, there remained some evidence for a split NMR line at some temperatures. In our new experiments on ZYX grade exfoliated graphite where the size of individual platelets is much larger and the angular distribution is three times smaller, this splitting has become more evident over a wider range of temperatures. Now it is clear that the complex lineshape includes two peaks along with remaining orientation effects. We also find that roughly 2% of our signal comes from randomly oriented platelets. We present the details of our model for analyzing these lineshapes and the experimental results for the line splitting at several coverages in the ferromagnetic range. We discuss the possible sources of this line splitting.

  9. Proton polarization from π+ absorption in 3He

    NASA Astrophysics Data System (ADS)

    Maytal-Beck, S.; Aclander, J.; Altman, A.; Ashery, D.; Hahn, H.; Moinester, M. A.; Rahav, A.; Feltham, A.; Jones, G.; Pavan, M.; Sevior, M.; Hutcheon, D.; Ottewell, D.; Smith, G. R.; Niskanen, J. A.

    1992-05-01

    We present the first polarization measurements for pion absorption on a nucleus heavier than the deuteron. The polarization of protons resulting from π+ absorption in the 3He was measured at bombarding energies of 120 and 250 MeV. Protons from absorption in a quasideuteron were selected by applying kinematical constraints. A significant discrepancy was observed between the experimental results and theoretical predictions. At 120 MeV the measured polarizations for 3He are consistent with those of the deuteron. At 250 MeV the angular distribution of the polarization is significantly different than for the deuteron, showing sensitivity to the nuclear density, and thus may be sensitive to short range correlations between nucleons.

  10. Overview of the n3He Experiment and Target Chamber

    NASA Astrophysics Data System (ADS)

    McCrea, Mark; n3He Collaboration

    2017-01-01

    The n3He Experiment aims to measure the parity-violating asymmetry in the direction of proton emission relative to the initial neutron polarization direction in the reaction n-> +3 He -> T + p + 765 keV to a high precision. The size of the asymmetry is estimated to be in the range - 9 . 5 - 2 . 5 ×10-8 , and our goal statistical accuracy is 2 ×10-8 . The experiment ran at the Spallation Neutron Source with data taking completing at the end of 2015. The experiment used a Helium-3 ionization chamber as the combined target and detector. Data analysis is underway and is currently in an advanced stage

  11. Non-Gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and Alzheimer’s disease☆

    PubMed Central

    Falangola, Maria F.; Jensen, Jens H.; Tabesh, Ali; Hu, Caixia; Deardorff, Rachael L.; Babb, James S.; Ferris, Steven; Helpern, Joseph A.

    2017-01-01

    We report the first application of a novel diffusion-based MRI method, called diffusional kurtosis imaging (DKI), to investigate changes in brain tissue microstructure in patients with mild cognitive impairment (MCI) and AD and in cognitively intact controls. The subject groups were characterized and compared in terms of DKI-derived metrics for selected brain regions using analysis of covariance with a Tukey multiple comparison correction. Receiver operating characteristic (ROC) and binary logistic regression analyses were used to assess the utility of regional diffusion measures, alone and in combination, to discriminate each pair of subject groups. ROC analyses identified mean and radial kurtoses in the anterior corona radiata as the best individual discriminators of MCI from controls, with the measures having an area under the ROC curve (AUC) of 0.80 and 0.82, respectively. The next best discriminators of MCI from controls were diffusivity and kurtosis (both mean and radial) in the prefrontal white matter (WM), with each measure having an AUC between 0.77 and 0.79. Finally, the axial diffusivity in the hippocampus was the best overall discriminator of MCI from AD, having an AUC of 0.90. These preliminary results suggest that non-Gaussian diffusion MRI may be beneficial in the assessment of microstructural tissue damage at the early stage of MCI and may be useful in developing biomarkers for the clinical staging of AD. PMID:23602730

  12. Internal Magnus effects in superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Salmelin, R. H.; Salomaa, M. M.; Mineev, V. P.

    The orbital angular momentum of the coherently aligned Cooper pairs in superfluid (3)He-A is transmitted to an object immersed in the condensate. The authors evaluate the quasiparticle-scattering asymmetry experienced by a negative ion; this leads to a measurable, purely quantum-mechanical Magnus force deflecting the ion's trajectory. Close to T(sub c), possible hydrodynamic Magnus effects are smaller by the factor delta sub A/(k sub B)(T sub c).

  13. Thermal Conductivity of Spin-Polarized Liquid {sup 3}He

    SciTech Connect

    Sawkey, D.; Puech, L.; Wolf, P.E.

    2006-06-02

    We present the first measurements of the thermal conductivity of spin-polarized normal liquid {sup 3}He. Using the rapid melting technique to produce nuclear polarizations up to 0.7, and a vibrating wire both as a heater and a thermometer, we show that, unlike the viscosity, the conductivity increases much less than predicted for s-wave scattering. We suggest that this might be due to a small probability for head-on collisions between quasiparticles.

  14. Hard Two-body Photodisintegration of ^3He

    SciTech Connect

    Pomerantz, Ishay Ari; Ilieva, Yordanka Yordanova; Gilman, Ronald; Higinbotham, Douglas W.; Piasetzky, Eliazer Israel; Strauch, Steffen

    2013-06-01

    We have measured cross sections for the {gamma}+{sup 3}He->p+d reaction at photon energies of 0.4 - 1.4 GeV and a center-of-mass angle of 90 deg. We observe dimensional scaling above 0.7 GeV at this center-of-mass angle. This is the first observation of dimensional scaling in the photodisintegration of a nucleus heavier than the deuteron.

  15. NOVEL CONCEPTS FOR ISOTOPIC SEPARATION OF 3HE/4HE

    SciTech Connect

    Roy, L.; Nigg, H.; Watson, H.

    2012-09-04

    The research outlined below established theoretical proof-of-concept using ab initio calculations that {sup 3}He can be separated from {sup 4}He by taking advantage of weak van der Waals interactions with other higher molecular weight rare gases such as xenon. To the best of our knowledge, this is the only suggested method that exploits the physical differences of the isotopes using a chemical interaction.

  16. Uranium Neutron Coincidence Collar Model Utilizing 3He

    SciTech Connect

    Siciliano, Edward R.; Rogers, Jeremy L.; Schweppe, John E.; Lintereur, Azaree T.; Kouzes, Richard T.

    2012-07-30

    The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based alternative system in a configuration typically used for 3He-based coincidence counter applications. The specific application selected for boron-lined tube replacement in this project was one of the Uranium Neutron Coincidence Collar (UNCL) designs. This report, providing results for model development of a UNCL, is a deliverable under Task 2 of the project. The current UNCL instruments utilize 3He tubes. As the first step in developing and optimizing a boron-lined proportional counter based version of the UNCL, models of eight different 3He-based UNCL detectors currently in use were developed and evaluated. A comparison was made between the simulated results and measured efficiencies for those systems with values reported in the literature. The reported experimental measurements for efficiencies and die-away times agree to within 10%.

  17. Incorporating metal into polarized 3He target cells

    NASA Astrophysics Data System (ADS)

    Katugampola, Sumudu K.; Matyas, Daniel J.; Wang, Yunxiao; Tobias, William A.; Nelyubin, Vladimir; Cates, Gordon D.

    2017-01-01

    An upcoming measurement at Jefferson Laboratory (JLab) of the electric form factor of the neutron will utilize a polarized 3He target at high luminosity. While polarized 3He targets at JLab have previously been made entirely of glass, we describe progress toward incorporating metal windows for the electron beam. Under the conditions of our targets, very few studies have been done on the spin-relaxation of nuclear-polarized 3He on metal surfaces. We have found good performance by using Oxygen Free High Conductivity (OFHC) copper substrates electroplated with gold. The glass-to-metal transitions within our test cells were based on Housekeeper seals. We have further established that Uranium glass (Canary glass) has excellent spin-relaxation properties, and can serve as a transition glass from Pyrex to Aluminosilicate glass (GE180). Another finding was that spin-relaxation properties were sensitive to the manner in which cells were annealed, an important issue because of constraints when annealing cells containing both metal and glass.

  18. Chiral Phases of Superfluid 3He in an Anisotropic Medium

    NASA Astrophysics Data System (ADS)

    Sauls, James

    2013-03-01

    I report theoretical results for the phases of superfluid 3He infused into homogeneous uniaxial aerogel. Ginzburg-Landau (GL) theory for a class of equal-spin-pairing (ESP) states in a medium with uniaxial anisotropy is developed and used to analyze recent experiments on uniaxially strained aerogels. For 3He in an axially ``stretched'' aerogel GL theory predicts a transition from normal liquid into a chiral ABM phase in which the chirality axis is aligned along the strain axis. This state is protected from random fluctuations in the anisotropy direction, has a positive NMR shift, a sharp NMR resonance line and is in quantitative agreement with NMR in the high-temperature ESP-1 phase of superfluid 3He in axially stretched aerogel. A second transition into a bi-axial phase is predicted to onset at a slightly lower temperature. This phase is an ESP state, breaks time-reversal symmetry, and is defined by an order parameter that spontaneously breaks axial rotation symmetry. The bi-axial phase has a continuous degeneracy associated with broken axial symmetry. Theoretical predictions for the NMR frequency shifts provide an identification of the ESP-2 phase as the bi-axial state, partially disordered by random anisotropy (Larkin-Imry-Ma effect). Supported by National Science Foundation Grant DMR-1106315.

  19. Resonant quasiparticle-ion scattering in anisotropic superfluid 3He

    NASA Astrophysics Data System (ADS)

    Salmelin, R. H.; Salomaa, M. M.

    1990-03-01

    Low-energy excitations in quantum fluids are most directly encountered by ions. In the superfluid phases of 3He the relevant elementary excitations are Bogoliubov quasiparticles, which undergo repeated scattering off an ion in the presence of a divergent density of states. We present a quantum-mechanical calculation of the resonant 3He quasiparticle-scattering-limited mobility for negative ions in the anisotropic bulk 3A (A phase) and 3P (polar phase) that is exact when the quasiparticles scatter elastically. We develop a numerical scheme to solve the singular equations for quasiparticle-ion scattering in the A and P phases. Both of these superfluid phases feature a uniaxially symmetric order parameter but distinct topology for the magnitude of the energy gap on the Fermi sphere, i.e., points versus lines of nodes. In particular, the perpetual orbital circulation of Cooper pairs in 3A results in a novel, purely quantum-mechanical intrinsic Magnus effect, which is absent in the polar phase, where Cooper pairs possess no spontaneous orbital angular momentum. This is of interest also for transport properties of heavy-fermion superconductors. We discuss the 3He quasiparticle-ion cross sections, which allow one to account for the mobility data with essentially no free parameters. The calculated mobility thus facilitates an introduction of ``ion spectroscopy'' to extract useful information on fundamental properties of the superfluid state, such as the temperature dependence of the energy gap in 3A.

  20. High Efficiency Spin Flipper for the n3He Experiment

    NASA Astrophysics Data System (ADS)

    Hayes, Christopher; n3He Collaboration

    2015-10-01

    The n3He experiment, constructed on the Fundamental Neutron Physics Beamline (FnPB) at the Spallation Neutron Source, is designed to measure the parity violating (PV) proton asymmetry Ap in the capture reaction n +3 He -->3 H + p + 765 keV The asymmetry has an estimated value Ap ~ - 1 ×10-7 and is directly related to the weak isospin conserved couplings hρ0 and ωρ0 which are of fundamental interest in the verification of the meson exchange model of low energy NN intereactions. Data production for the n3He experiment began in February 2015 and is scheduled to continue thru December 2015 - reaching a statistical sensitivity δAp ~10-8 or better. I will discuss the spin flipper which is designed using the theory of double cosine-theta coils, and capable of flipping neutron spins with an efficiency approaching its maximum value ɛsf = 1 . I will also discuss the theory of Spin Magnetic Resonance (SMR) and how it is employed by the spin flipper to flip 60 Hz pulses of cold neutrons over a range of wavelengths.

  1. Objective estimates of mantle 3He in the ocean and implications for constraining the deep ocean circulation

    NASA Astrophysics Data System (ADS)

    Holzer, Mark; DeVries, Timothy; Bianchi, Daniele; Newton, Robert; Schlosser, Peter; Winckler, Gisela

    2017-01-01

    Hydrothermal vents along the ocean's tectonic ridge systems inject superheated water and large amounts of dissolved metals that impact the deep ocean circulation and the oceanic cycling of trace metals. The hydrothermal fluid contains dissolved mantle helium that is enriched in 3He relative to the atmosphere, providing an isotopic tracer of the ocean's deep circulation and a marker of hydrothermal sources. This work investigates the potential for the 3He/4He isotope ratio to constrain the ocean's mantle 3He source and to provide constraints on the ocean's deep circulation. We use an ensemble of 11 data-assimilated steady-state ocean circulation models and a mantle helium source based on geographically varying sea-floor spreading rates. The global source distribution is partitioned into 6 regions, and the vertical profile and source amplitude of each region are varied independently to determine the optimal 3He source distribution that minimizes the mismatch between modeled and observed δ3He. In this way, we are able to fit the observed δ3He distribution to within a relative error of ∼15%, with a global 3He source that ranges from 640 to 850 mol yr-1, depending on circulation. The fit captures the vertical and interbasin gradients of the δ3He distribution very well and reproduces its jet-sheared saddle point in the deep equatorial Pacific. This demonstrates that the data-assimilated models have much greater fidelity to the deep ocean circulation than other coarse-resolution ocean models. Nonetheless, the modelled δ3He distributions still display some systematic biases, especially in the deep North Pacific where δ3He is overpredicted by our models, and in the southeastern tropical Pacific, where observed westward-spreading δ3He plumes are not well captured. Sources inferred by the data-assimilated transport with and without isopycnally aligned eddy diffusivity differ widely in the Southern Ocean, in spite of the ability to match the observed distributions of

  2. Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation

    NASA Astrophysics Data System (ADS)

    Siegel, Andrew M.; Culver, Joseph P.; Mandeville, Joseph B.; Boas, David A.

    2003-05-01

    The time courses of oxyhaemoglobin ([HbO2]), deoxyhaemoglobin ([HbR]) and total haemoglobin ([HbT]) concentration changes following cortical activation in rats by electrical forepaw stimulation were measured using diffuse optical tomography (DOT) and compared to similar measurements performed previously with fMRI at 2.0 T and 4.7 T. We also explored the qualitative effects of varying stimulus parameters on the temporal evolution of the hemodynamic response. DOT images were reconstructed at a depth of 1.5 mm over a 1 cm square area from 2 mm anterior to bregma to 8 mm posterior to bregma. The measurement set included 9 sources and 16 detectors with an imaging frame rate of 10 Hz. Both DOT [HbR] and [HbO2] time courses were compared to the fMRI BOLD time course during stimulation, and the DOT [HbT] time course was compared to the fMRI cerebral plasma volume (CPV) time course. We believe that DOT and fMRI can provide similar temporal information for both blood volume and deoxyhaemoglobin changes, which helps to cross-validate these two techniques and to demonstrate that DOT can be useful as a complementary modality to fMRI for investigating the hemodynamic response to neuronal activity.

  3. Diffusion-Weighted MRI for Nodal Staging of Head and Neck Squamous Cell Carcinoma: Impact on Radiotherapy Planning

    SciTech Connect

    Dirix, Piet; Vandecaveye, Vincent; De Keyzer, Frederik; Op de beeck, Katya; Poorten, Vincent Vander; Delaere, Pierre; Verbeken, Eric; Hermans, Robert; Nuyts, Sandra

    2010-03-01

    Purpose: To evaluate the use of diffusion-weighted magnetic resonance imaging (DW-MRI) for nodal staging and its impact on radiotherapy (RT) planning. Methods and Materials: Twenty-two patients with locally advanced head and neck squamous cell carcinoma underwent contrast-enhanced computed tomography (CT), as well as MRI (with routine and DW sequences) prior to neck dissection. After topographic correlation, lymph nodes were evaluated microscopically with prekeratin immunostaining. Pathology results were correlated with imaging findings and an RT planning study was performed for these surgically treated patients. One set of target volumes was based on conventional imaging only, and another set was based on the corresponding DW-MRI images. A third reference set was contoured based solely on pathology results. Results: A sensitivity of 89% and a specificity of 97% per lymph node were found for DW-MRI. Nodal staging agreement between imaging and pathology was significantly stronger for DW-MRI (kappa = 0.97; 95% confidence interval [CI], 0.84-1.00) than for conventional imaging (kappa = 0.56; 95% CI, 0.16-0.96; p = 0.019, by McNemar's test). For both imaging modalities, the absolute differences between RT volumes and those obtained by pathology were calculated. Using an exact paired Wilcoxon test, the observed difference was significantly larger for conventional imaging than for DW-MRI for nodal gross tumor volume (p = 0.0013), as well as for nodal clinical target volume (p = 0.0415) delineation. Conclusions: These results suggest that DW-MRI is superior to conventional imaging for preradiotherapy nodal staging of head and neck squamous cell carcinoma, and provides a potential impact on organsparing and tumor control.

  4. Spatially constrained incoherent motion method improves diffusion-weighted MRI signal decay analysis in the liver and spleen

    PubMed Central

    Taimouri, Vahid; Afacan, Onur; Perez-Rossello, Jeannette M.; Callahan, Michael J.; Mulkern, Robert V.; Warfield, Simon K.; Freiman, Moti

    2015-01-01

    Purpose: To evaluate the effect of the spatially constrained incoherent motion (SCIM) method on improving the precision and robustness of fast and slow diffusion parameter estimates from diffusion-weighted MRI in liver and spleen in comparison to the independent voxel-wise intravoxel incoherent motion (IVIM) model. Methods: We collected diffusion-weighted MRI (DW-MRI) data of 29 subjects (5 healthy subjects and 24 patients with Crohn’s disease in the ileum). We evaluated parameters estimates’ robustness against different combinations of b-values (i.e., 4 b-values and 7 b-values) by comparing the variance of the estimates obtained with the SCIM and the independent voxel-wise IVIM model. We also evaluated the improvement in the precision of parameter estimates by comparing the coefficient of variation (CV) of the SCIM parameter estimates to that of the IVIM. Results: The SCIM method was more robust compared to IVIM (up to 70% in liver and spleen) for different combinations of b-values. Also, the CV values of the parameter estimations using the SCIM method were significantly lower compared to repeated acquisition and signal averaging estimated using IVIM, especially for the fast diffusion parameter in liver (CVIV IM = 46.61 ± 11.22, CVSCIM = 16.85 ± 2.160, p < 0.001) and spleen (CVIV IM = 95.15 ± 19.82, CVSCIM = 52.55 ± 1.91, p < 0.001). Conclusions: The SCIM method characterizes fast and slow diffusion more precisely compared to the independent voxel-wise IVIM model fitting in the liver and spleen. PMID:25832079

  5. The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE).

    PubMed

    Szczepankiewicz, Filip; van Westen, Danielle; Englund, Elisabet; Westin, Carl-Fredrik; Ståhlberg, Freddy; Lätt, Jimmy; Sundgren, Pia C; Nilsson, Markus

    2016-11-15

    The structural heterogeneity of tumor tissue can be probed by diffusion MRI (dMRI) in terms of the variance of apparent diffusivities within a voxel. However, the link between the diffusional variance and the tissue heterogeneity is not well-established. To investigate this link we test the hypothesis that diffusional variance, caused by microscopic anisotropy and isotropic heterogeneity, is associated with variable cell eccentricity and cell density in brain tumors. We performed dMRI using a novel encoding scheme for diffusional variance decomposition (DIVIDE) in 7 meningiomas and 8 gliomas prior to surgery. The diffusional variance was quantified from dMRI in terms of the total mean kurtosis (MKT), and DIVIDE was used to decompose MKT into components caused by microscopic anisotropy (MKA) and isotropic heterogeneity (MKI). Diffusion anisotropy was evaluated in terms of the fractional anisotropy (FA) and microscopic fractional anisotropy (μFA). Quantitative microscopy was performed on the excised tumor tissue, where structural anisotropy and cell density were quantified by structure tensor analysis and cell nuclei segmentation, respectively. In order to validate the DIVIDE parameters they were correlated to the corresponding parameters derived from microscopy. We found an excellent agreement between the DIVIDE parameters and corresponding microscopy parameters; MKA correlated with cell eccentricity (r=0.95, p<10(-7)) and MKI with the cell density variance (r=0.83, p<10(-3)). The diffusion anisotropy correlated with structure tensor anisotropy on the voxel-scale (FA, r=0.80, p<10(-3)) and microscopic scale (μFA, r=0.93, p<10(-6)). A multiple regression analysis showed that the conventional MKT parameter reflects both variable cell eccentricity and cell density, and therefore lacks specificity in terms of microstructure characteristics. However, specificity was obtained by decomposing the two contributions; MKA was associated only to cell eccentricity, and MKI

  6. Dynamics of the connectome in Huntington's disease: A longitudinal diffusion MRI study

    PubMed Central

    Odish, Omar F.F.; Caeyenberghs, Karen; Hosseini, Hadi; van den Bogaard, Simon J.A.; Roos, Raymund A.C.; Leemans, Alexander

    2015-01-01

    Objectives To longitudinally investigate the connectome in different stages of Huntington's disease (HD) by applying graph theoretical analysis to diffusion MRI data. Experimental design We constructed weighted structural networks and calculated their topological properties. Twenty-two premanifest (preHD), 10 early manifest HD and 24 healthy controls completed baseline and 2 year follow-up scans. We stratified the preHD group based on their predicted years to disease onset into a far (preHD-A) and near (preHD-B) to disease onset group. We collected clinical and behavioural measures per assessment time point. Principle observations We found a significant reduction over time in nodal betweenness centrality both in the early manifest HD and preHD-B groups as compared to the preHD-A and control groups, suggesting a decrease of importance of specific nodes to overall network organization in these groups (FDR adjusted ps < 0.05). Additionally, we found a significant longitudinal decrease of the clustering coefficient in preHD when compared to healthy controls (FDR adjusted p < 0.05), which can be interpreted as a reduced capacity for internodal information processing at the local level. Furthermore, we demonstrated dynamic changes to hub-status loss and gain both in preHD and early manifest HD. Finally, we found significant cross-sectional as well as longitudinal relationships between graph metrics and clinical and neurocognitive measures. Conclusions This study demonstrates divergent longitudinal changes to the connectome in (pre) HD compared to healthy controls. This provides novel insights into structural correlates associated with clinical and cognitive functions in HD and possible compensatory mechanisms at play in preHD. PMID:26288754

  7. Improved B0-distortion correction in diffusion MRI using interlaced q-space sampling and constrained reconstruction

    PubMed Central

    Bhushan, Chitresh; Joshi, Anand A.; Leahy, Richard M.; Haldar, Justin P.

    2013-01-01

    Purpose To enable high-quality correction of susceptibility-induced geometric distortion artifacts in diffusion MRI images without increasing scan time. Theory and Methods A new method for distortion correction is proposed based on subsampling a generalized version of the state-of-the-art reversed-gradient distortion correction method. Rather than acquire each q-space sample multiple times with different distortions (as in the conventional reversed-gradient method), we sample each q-space point once with an interlaced sampling scheme that measures different distortions at different q-space locations. Distortion correction is achieved using a novel constrained reconstruction formulation that leverages the smoothness of diffusion data in q-space. Results The effectiveness of the proposed method is demonstrated with simulated and in vivo diffusion MRI data. The proposed method is substantially faster than the reversed-gradient method, and can also provide smaller intensity errors in the corrected images and smaller errors in derived quantitative diffusion parameters. Conclusion The proposed method enables state-of-the-art distortion correction performance without increasing data acquisition time. PMID:24464424

  8. Nuclear Ordered Phases of Solid 3He in Silver Sinters

    NASA Astrophysics Data System (ADS)

    Schuberth, Erwin A.; Kath, Matthias; Bago, Simone

    2006-09-01

    To determine the exact spin structure of the nuclear magnetic ordered phases of solid 3He, the U2D2 low field and the high field phases above 0.4 T, a European Research and Training Network for neutron scattering from the ordered solid was established which consisted of a collaboration with the Hahn Meitner Institute, Berlin, and other European and US groups. For this experiment it is crucial to grow a single crystal within the sinter needed for cooling the solid to temperatures of the order of 500 μK and to keep it cold long enough to measure a magnetic neutron diffraction. The sinter is also necessary to absorb the major part (> 90%) of the heat generated by the neutron capture and decay reaction of the 3He nucleus. In this work we studied the growth of crystals in Ag sinters of different pore sizes and with different growth speeds to find an optimal way to obtain single crystalline samples, or at least samples with only a few grains. We used SQUID magnetometry and NMR to measure the magnetization in the ordered phases. They were indicated by the known drop of the intensity, both in the NMR signal and in the dc magnetization, for the U2D2 phase, and by an increase of about 30% for the high field phase. The best results for cooling were obtained with sinters made from 700 Å "Japanese powder" with a packing fraction of 50% which were annealed at 130 °C after sintering and then had a calculated particle size of about 4200 Å. In the dc magnetization we found a paramagnetic surface contribution from a few monolayers of 3He down to 500 μK in addition to the bulk magnetization.

  9. Fermion Monte Carlo Calculations on Liquid-3He

    SciTech Connect

    Kalos, M H; Colletti, L; Pederiva, F

    2004-03-16

    Methods and results for calculations of the ground state energy of the bulk system of {sup 3}He atoms are discussed. Results are encouraging: they believe that they demonstrate that their methods offer a solution of the ''fermion sign problem'' and the possibility of direct computation of many-fermion systems with no uncontrolled approximations. Nevertheless, the method is still rather inefficient compared with variational or fixed-node approximate methods. There appears to be a significant populations size effect. The situation is improved by the inclusion of ''Second Stage Importance Sampling'' and of ''Acceptance/Rejection'' adapted to their needs.

  10. 3He Spin-Dependent Cross Sections and Sum Rules

    SciTech Connect

    Slifer, Karl; Amaryan, Moscov; Amaryan, Moskov; Auerbach, Leonard; Averett, Todd; Berthot, J.; Bertin, Pierre; Bertozzi, William; Black, Tim; Brash, Edward; Brown, D.; Burtin, Etienne; Calarco, John; Cates, Gordon; Chai, Zhengwei; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Ciofi, Claudio; Cisbani, Evaristo; De Jager, Cornelis; Deur, Alexandre; DiSalvo, R.; Dieterich, Sonja; Djawotho, Pibero; Finn, John; Fissum, Kevin; Fonvieille, Helene; Frullani, Salvatore; Gao, Haiyan; Gao, Juncai; Garibaldi, Franco; Gasparian, Ashot; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Glashausser, Charles; Glockle, W.; Golak, J.; Goldberg, Emma; Gomez, Javier; Gorbenko, Viktor; Hansen, Jens-Ole; Hersman, F.; Holmes, Richard; Huber, Garth; Hughes, Emlyn; Humensky, Thomas; Incerti, Sebastien; Iodice, Mauro; Jensen, S.; Jiang, Xiaodong; Jones, C.; Jones, G.; Jones, Mark; Jutier, Christophe; Kamada, H.; Ketikyan, Armen; Kominis, Ioannis; Korsch, Wolfgang; Kramer, Kevin; Kumar, Krishna; Kumbartzki, Gerfried; Kuss, Michael; Lakuriqi, Enkeleida; Laveissiere, Geraud; LeRose, John; Liang, Meihua; Liyanage, Nilanga; Lolos, George; Malov, Sergey; Marroncle, Jacques; McCormick, Kathy; McKeown, Robert; Meziani, Zein-Eddine; Michaels, Robert; Mitchell, Joseph; Nogga, Andreas; Pace, Emanuele; Papandreou, Zisis; Pavlin, Tina; Petratos, Gerassimos; Pripstein, David; Prout, David; Ransome, Ronald; Roblin, Yves; Rowntree, David; Rvachev, Marat; Sabatie, Franck; Saha, Arunava; Salme, Giovanni; SCOPETTA, S.; Skibinski, R.; Souder, Paul; Saito, Teijiro; Strauch, Steffen; Suleiman, Riad; Takahashi, Kazunori; Todor, Luminita; Tsubota, Hiroaki; Ueno, Hiroaki; Urciuoli, Guido; van der Meer, Rob; Vernin, Pascal; Voskanyan, Hakob; Witala, Henryk; Wojtsekhowski, Bogdan; Xiong, Feng; Xu, Wang; Yang, Jae-Choon; Zhang, Bin; Zolnierczuk, Piotr

    2008-07-01

    We present a measurement of the spin-dependent cross sections for the \\vec{^3He}(\\vec{e},e')X} reaction in the quasielastic and resonance regions at four-momentum transfer 0.1 < Q^2< 0.9 GeV^2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt--Cottingham and extended GDH sum rules for the first time. Impulse approximation and exact three-body Faddeev calculations are also compared to the data in the quasielastic region.

  11. High-pressure /sup 3/He gas scintillation neutron spectrometer

    SciTech Connect

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, /sup 3/He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10/sup -3/ (n/cm/sup 2/)/sup -1/. The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector.

  12. Hard Photodisintegration of Proton Pairs in {sup 3}He

    SciTech Connect

    Piasetzky, Eli; Pomerantz, Ishay; Higinbotham, D.; Strauch, S.; Gilman, R.

    2008-10-13

    Hard deuteron photodisintegration has been investigated for 20 years, as its cross section follows the constituent counting rule and it provides insight into the interplay between hadronic and quark-gluon degrees of freedom in high-momentum transfer exclusive reactions. We have now measured for the first time hard pp-pair disintegration in the reaction {gamma}{sup 3}He{yields}pp+n, using kinematics corresponding to a spectator neutron. Cross sections were measured for 90 deg. c.m. at 8 beam energies, from 0.8 to 4.7 GeV. Preliminary results will be presented and compared to the hard deuteron photodisintegration data.

  13. Quasi-elastic electron scattering from polarized 3He

    SciTech Connect

    H. J. Bulten; Ricardo Alarcon; Th. Bauer; D. Boersma; T. Botto; J. F. J. van den Brand; L. van Buuren; Rolf Ent; M. Ferro-Luzzi; D. Geurts; M. Harvey; Peter Heimberg; D. Highinbotham; Kees de Jager; Blaine Norum; I. Passchier; H. R. Poolman; M. van den Putte; E. Six; J. Steijger; D. Szczerba; H. de Vries

    1997-08-01

    Quasi-elastic electron scattering may provide precise information on the S and the D-wave parts of the {sup 3}He ground-state wave function, the neutron form factors, and the role of spin-dependent reaction mechanism effects. An experiment is being performed at the AmPS storage ring at NIKHEF (Amsterdam, the Netherlands), where polarized electrons (up to 900 MeV) are used in combination with large acceptance electron and hadron detectors. Preliminary results from data at four-momentum transfer squared Q{sup 2} = 0.15 GeV{sup 2} are presented.

  14. 3He spin-dependent cross sections and sum rules.

    PubMed

    Slifer, K; Amarian, M; Auerbach, L; Averett, T; Berthot, J; Bertin, P; Bertozzi, B; Black, T; Brash, E; Brown, D; Burtin, E; Calarco, J; Cates, G; Chai, Z; Chen, J-P; Choi, Seonho; Chudakov, E; Ciofi Degli Atti, C; Cisbani, E; de Jager, C W; Deur, A; DiSalvo, R; Dieterich, S; Djawotho, P; Finn, M; Fissum, K; Fonvieille, H; Frullani, S; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Glöckle, W; Golak, J; Goldberg, E; Gomez, J; Gorbenko, V; Hansen, J-O; Hersman, B; Holmes, R; Huber, G M; Hughes, E; Humensky, B; Incerti, S; Iodice, M; Jensen, S; Jiang, X; Jones, C; Jones, G; Jones, M; Jutier, C; Kamada, H; Ketikyan, A; Kominis, I; Korsch, W; Kramer, K; Kumar, K; Kumbartzki, G; Kuss, M; Lakuriqi, E; Laveissiere, G; Lerose, J J; Liang, M; Liyanage, N; Lolos, G; Malov, S; Marroncle, J; McCormick, K; McKeown, R D; Meziani, Z-E; Michaels, R; Mitchell, J; Nogga, A; Pace, E; Papandreou, Z; Pavlin, T; Petratos, G G; Pripstein, D; Prout, D; Ransome, R; Roblin, Y; Rowntree, D; Rvachev, M; Sabatié, F; Saha, A; Salmè, G; Scopetta, S; Skibiński, R; Souder, P; Saito, T; Strauch, S; Suleiman, R; Takahashi, K; Teijiro, S; Todor, L; Tsubota, H; Ueno, H; Urciuoli, G; Van der Meer, R; Vernin, P; Voskanian, H; Witała, H; Wojtsekhowski, B; Xiong, F; Xu, W; Yang, J-C; Zhang, B; Zolnierczuk, P

    2008-07-11

    We present a measurement of the spin-dependent cross sections for the 3He over -->(e over -->,e')X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1< or =Q2< or =0.9 GeV2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region.

  15. Evaluation of Fat Suppression of Diffusion-weighted Imaging Using Section Select Gradient Reversal Technique on 3 T Breast MRI.

    PubMed

    Takemori, Daichi; Kimura, Daisuke; Yamada, Eiji; Higashida, Mitsuji

    2016-07-01

    This study evaluates fat suppression of diffusion-weighted imaging (DWI) using section select gradient reversal (SSGR) technique in clinical images on 3 T breast MRI. A total of 20 patients with breast cancer were examined at a Philips Ingenia 3 T MRI. We acquired DWI with SPAIR, SSGR-SPAIR, STIR, and SSGR-STIR. We evaluated contrast between the fat region and lesion, the coefficient of variance (CV) of the fat region and the apparent diffusion coefficient (ADC) of normal breast tissue and lesion. The contrast between the fat region and lesion was improved with SSGR technique. The CV of the fattest region did not have any significant difference in SPAIR technique (p>0.05), but it was significantly decreased in the STIR technique using SSGR technique (p<0.05). Positive correlation was observed in ADC value between SPAIR and other fat suppression techniques (SSGR-SPAIR, STIR, SSGR-STIR). DWI using SSGR technique was suggested to be effective on 3 T breast MRI.

  16. Nuclear reaction analysis as a tool for the 3He thermal evolution in Li2TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Carella, E.; Sauvage, T.; Bès, R.; Courtois, B.; González, M.

    2014-08-01

    Li2TiO3 ceramic is one of the promising solid breeding candidates for fuel generation in deuterium-tritium Fusion reactors. The Tritium (T) release characteristics consist of a complex combination of gas diffusion stages inside the solid. Considering that this ceramic will produce high concentration of gaseous transmutation products (3H and 4He) when exposed to high-energy neutrons, there are considerable interests in studying 3He thermal evolution for the fundamental understanding of the light ion behavior in breeder blanket materials under reactor conditions. 3He atoms used to simulate the 4He incorporation were implanted by a 600 keV ion beam at a fluence of 1017 at/cm2 and the 3He(d,α)1H nuclear reaction analysis (NRA) technique was subsequently used to study depth profiles evolution after different thermal annealing treatments. The release experiments showed that 3He outgassing is not effective at room temperature, remaining quite negligible till 300 °C. After this temperature, the 3He content in the sample reduces steadily with increasing the annealing temperature, and less than 5% of the initial 3He concentration was found at 900 °C after an isochronal annealing, without significant depth-profile broadening. Scanning and transmission electron microscopies characterization highlight the microstructural changes of the implanted and annealed ceramic within the nuclear cascades zone. The correlation of results obtained by electron microscopy and NRA technique leads to the conclusion that the helium release is governed by a transport mechanism that involves rapid migration/diffusion through interconnected gas cavities and resulting microcracks before reaching grain boundaries and opened pores.

  17. Effect of an intermediate bcc phase on the evolution of superfluid inclusions in an hcp 3He-4He matrix

    NASA Astrophysics Data System (ADS)

    Birchenko, A. P.; Mihin, N. P.; Neoneta, A. S.; Rudavskii, E. Ya.; Fysun, Ya. Yu.

    2016-09-01

    Pulsed NMR is used to study the evolution of liquid inclusions formed in an hcp matrix during rapid cooling of a 3He-4He solution containing 1.05% 3He. The diffusion coefficient of 3He in the liquid inclusions as they evolve is measured by a spin echo technique with two probe pulses. The measurements were made at 1.67 K, which corresponds to the region of the bcc phase in the phase diagram, and at 1.38 K, where the bcc phase is absent. It is found that during the evolution in both cases, the liquid inclusions are smaller than the diffusion length and diffusion is restricted. The measured coefficient of restricted diffusion made it possible to determine the characteristic size of the inclusions. In the first case, during the evolution of the liquid inclusions an intermediate bcc phase in the form of dendrites develops and separates the liquid inclusions into a mass of fine droplets. Because of the rapid growth of the bcc phase, the size of the droplets decreases rapidly and the process ends with the disappearance of the bcc phase and the formation of an amorphous state. The results derived from the measured diffusion coefficient correlate with the behavior of the spin-lattice relaxation time in this kind of system. In the second case, at a lower temperature, the bcc phase does not develop and the evolution of the liquid inclusions is accompanied by a very slow reduction in their size until their complete solidification.

  18. Textural domain walls in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi

    Owing to the richness of symmetry, the superfluid 3He serves as a rich repository of topological quantum phenomena. This includes the emergence of surface Majorana fermions and their quantum mass acquisition at the topological critical point. Furthermore, the marriage of the prototype topological superfluid with nanofabrication techniques brings about a rich variety of spontaneous symmetry breaking, such as the formation of the stripe order and nontrivial domain walls. In this work, we examine the possible formation of textural domain walls in the superfluid 3He-B confined to a thin slab with a sub-micron thickness. When an applied magnetic field is much higher than the dipolar field, two nearly degenerate ground states appear, which are characterized by the Ising order associated with the spontaneous breaking of a magnetic order-two symmetry, lcirc;z = + 1 and - 1 . We here discuss the structure of the textural domain wall formed by the spatial modulation of the Ising order, such as low-lying quasiparticle excitations and spontaneous spin current. We also report bosonic modes bound to the textural domain wall.

  19. Effective theory of 3H and 3He

    NASA Astrophysics Data System (ADS)

    König, Sebastian; Grießhammer, Harald W.; Hammer, H.-W.; van Kolck, U.

    2016-06-01

    We present a new perturbative expansion for pionless effective field theory with Coulomb interactions in which at leading order (LO) the spin-singlet nucleon-nucleon channels are taken in the unitarity limit. Presenting results up to next-to-leading order for the Phillips line and the neutron-deuteron doublet-channel phase shift, we find that a perturbative expansion in the inverse {}1{S}0 scattering lengths converges rapidly. Using a new systematic treatment of the proton-proton sector that isolates the divergence due to one-photon exchange, we renormalize the corresponding contribution to the {}3{{H}} -{}3{He} binding energy splitting and demonstrate that the Coulomb force in pionless EFT is a completely perturbative effect in the trinucleon bound-state regime. In our new expansion, the LO is exactly isospin-symmetric. At next-to-leading order, we include isospin breaking via the Coulomb force and two-body scattering lengths, and find for the energy splitting {({E}B{(}3{He})-{E}B{(}3{{H}}))}{NLO}\\quad =(-0.86+/- 0.17)\\quad {MeV}.

  20. The 3H-3He Charge Radii Difference

    SciTech Connect

    Myers, Luke S.; Arrington, John R.; Higinbotham, Douglas W.

    2016-03-01

    The upcoming E12-14-009 [1] experiment at Jefferson Lab will determine the ratio of the electric form factors for the A=3 mirror nuclei 3He and 3H. The measurement will use a 1.1 GeV electron beam, a special collimator plate to allow for simultaneous optics measurements, and the low-activity tritium target being prepared for Jefferson Lab. By observing the dependence of the form factor ratio as a function of Q2 over 0.05–0.09 GeV2, the dependence of the radii extraction on the shape of the form factors is minimized. As a result, we anticipate the uncertainty of the extracted charge radii difference to be 0.03 fm, a reduction of 70% from the current measurement. Using precise measurements of the 3He charge radius from isotopic shift or μHe measurements [2–4], we can deduce the absolute 3H charge radius. The results will provide a direct comparison to recent calculations of the charge radii.

  1. 3He film flow on a round rim beaker

    NASA Astrophysics Data System (ADS)

    Steel, S. C.; Harrison, J. P.; Zawadzki, P.; Sachrajda, A.

    1994-06-01

    The superfluid properties of thin (100 150 nm) of3He were investigated by measuring the rate at which a beaker of liquid3He emptied itself through the adsorbed film, with the film thickness δ decreasing as the level dropped. A beaker rim with a semicircular cross-section was used to provide a well defined geometry and to avoid the effects of small scratches that may have affected earlier experiments. The film thicknesses were determined by Atkins' oscillaton measurements of4He films on the same surface. The superfluid transition temperature in the film T {/c F } was suppressed below the bulk value T {/c B }, and was close to being described by 2δ/ξ( T {/c F }) = π, as expected for A-phase. The critical current density was more than an order of magnitude smaller than expected for pair-breaking. When a4He monolayer was adsorbed on the substrate, there was no suppresson of T {/c F }.

  2. Effect of Aerogel Anisotropy in Superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. M.; Li, J. I. A.; Pollanen, J.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.

    2014-03-01

    Two theories have been advanced to describe the effects of anisotropic impurity introduced by stretched silica aerogel on the orientation of the orbital angular momentum l& circ; in superfluid 3He-A. These theories disagree on whether the anisotropy will orient l& circ; perpendicular[2] or parallel[3] to the strain axis. In order to examine this question we have produced and characterized a homogeneous aerogel sample with uniaxial anisotropy introduced during growth, corresponding to stretching of the aerogel. These samples have been shown to stabilize two new chiral states;[4] the higher temperature state being the subject of the present study. Using pulsed NMR we have performed experiments on 3He-A imbibed in this sample in two orientations: strain parallel and perpendicular to the applied magnetic field. From the NMR frequency shifts as a function of tip angle and temperature, we find that the angular momentum l& circ; is oriented along the strain axis, providing evidence for the theory advanced by Sauls. This work was supported by the National Science Foundation, DMR-1103625.

  3. Pion absorption on 3He at low energies

    NASA Astrophysics Data System (ADS)

    Hahn, H.; Altman, A.; Ashery, D.; Gefen, G.; Gill, D. R.; Johnson, R. R.; Levy-Nathansohn, R.; Moinester, M. A.; Sevior, M.; Trelle, R. P.

    1996-03-01

    The reactions 3He(π+,pp)p and 3He(π-,pn)n were studied at 37.0 MeV by coincidence detection of two nucleons. The differential cross sections were separated to two-nucleon (σ2N), three-nucleon (σ3N), and final-state interaction (σFSI) components. For π+, the σ2N angular distribution is symmetric about 90°, and the total cross section is 1.5 times the cross section measured for d(π+,pp). For π-, the angular distribution is asymmetric (backward peaked). The asymmetry increases with decreasing energy, indicating increasing pion s-wave contribution at lower energies. The fraction of the cross section induced by s-wave pions as calculated by a partial wave amplitude analysis is 13%. The measured total cross sections are σ2N(π-)=0.85+/-0.08 mb and σ2N(π+)=7.9+/-0.5 mb; σ3N(π-)=1.6+/-0.7 mb and σ3N(π+)=1.3+/-0.3 mb. A new evaluation of σ3N at Tπ=62.5 and 82.8 MeV is given, using data from an earlier experiment. The cross sections leading to the two-nucleon final-state interaction at Tπ=37.0 MeV are also estimated.

  4. Interaction of Hydrogen Atoms with Helium Films: Sticking Probabilities for H on 3He and 4He, and the Binding Energy of H on 3He

    NASA Astrophysics Data System (ADS)

    Jochemsen, R.; Morrow, M.; Berlinsky, A. J.; Hardy, W. N.

    1981-09-01

    Magnetic resonance at 1420 MHz in zero magnetic field and for 0.063He, the rate constant for recombination and the frequency shift for H on 3He, and the sticking probability for H on 3He and 4He. The binding energy for H on liquid 3He is found to be 0.42+/-0.05 K, and the sticking probabilities are 0.035 for H on 4He and 0.016 for H on 3He.

  5. Vertical groundwater flow estimated from the bomb pulse of 36Cl and tritiogenic 3He

    NASA Astrophysics Data System (ADS)

    Mahara, Y.; Ohta, T.

    2011-12-01

    The boring well was approximately excavated to 400 m depth from the ground surface on the tableland in the Central Shimokita Peninsula, Japan. Collecting pore-water, some fresh boring cores were sampled on the site during the excavation of borehole. Samples of groundwater were collected by using the sampling device with the water inflating packer system to protect various contaminations, after excavating the borehole. The atmospheric maximum concentration in bomb pulse in the northern hemisphere was reported to observe in 1955 for 36Cl and in 1963 for 3H, respectively. Since the half-life of 36Cl is much longer than 3H, the decay loss of 36Cl was negligible small for a short time until sampling groundwater in 2001 and 2003. On the other hand, the half-life of 3H is very short compared with that of 36Cl. Most of 3H was converted into the tritiogenic 3He in groundwater for the past 38 years after rainwater infiltrating toward the groundwater table. Profiles of dissolved 4He concentration, tritiogenic 3He and 36Cl/Cl ratio were observed in groundwater of the borehole. The total dissolved 4He concentration ranged from 5.8×10-8 at the ground surface to 7.5×10-8 ccSTP/g at the depth of 200 m below the ground surface and it was almost equilibrated with the atmospheric 4He in pore-water (Fig. 1). The bomb pulses of tritiogenic 3He and 36Cl were left from the depth of 101 m below the ground surface to the depth of 132 m, respectively (Figs. 2 and 3). There was a slight difference in the location between the bomb pulse of 36Cl and that of tritiogenic 3He. The downward flow velocity of groundwater were simply estimated to be 2.8 m/y from the marked position of bomb pulse in the profile of 36Cl/Cl ratio and to be 2.7 m/y from the position of the bomb pulse peak of tritiogenic 3He, separately. These two rough estimations were good agreed with each other. The estimation suggests that the vertical flow of groundwater on the tableland is approximated with the downward piston

  6. XQ-NLM: Denoising Diffusion MRI Data via x-q Space Non-Local Patch Matching.

    PubMed

    Chen, Geng; Wu, Yafeng; Shen, Dinggang; Yap, Pew-Thian

    2016-10-01

    Noise is a major issue influencing quantitative analysis in diffusion MRI. The effects of noise can be reduced by repeated acquisitions, but this leads to long acquisition times that can be unrealistic in clinical settings. For this reason, post-acquisition denoising methods have been widely used to improve SNR. Among existing methods, non-local means (NLM) has been shown to produce good image quality with edge preservation. However, currently the application of NLM to diffusion MRI has been mostly focused on the spatial space (i.e., the x-space), despite the fact that diffusion data live in a combined space consisting of the x-space and the q-space (i.e., the space of wavevectors). In this paper, we propose to extend NLM to both x-space and q-space. We show how patch-matching, as required in NLM, can be performed concurrently in x-q space with the help of azimuthal equidistant projection and rotation invariant features. Extensive experiments on both synthetic and real data confirm that the proposed x-q space NLM (XQ-NLM) outperforms the classic NLM.

  7. A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury.

    PubMed

    Sanchez-Carrion, Rocio; Fernandez-Espejo, Davinia; Junque, Carme; Falcon, Carles; Bargallo, Nuria; Roig, Teresa; Bernabeu, Montserrat; Tormos, José M; Vendrell, Pere

    2008-11-15

    Traumatic brain injury (TBI) patients have working memory deficits and altered patterns of brain activation during this function. The evolution of the impairment has not been examined to date. This study investigated longitudinal changes in brain activation during a working memory task. Twelve patients with severe and diffuse TBI and ten healthy matched controls were fMRI scanned twice at a 6-month interval during an n-back task (0-, 2- and 3-back). All the TBI patients selected presented signs of diffuse axonal injury on CT but had no evidence of focal lesions on MRI clinical examination. Significant changes in brain activation over time were observed in patients, but not in controls. During the first examination, though both groups engaged bilateral fronto-parietal regions known to be involved in working memory, activation of the right superior frontal gyrus was low in the TBI group. However, the difference between TBI and controls had decreased significantly after 6 months. A factor analysis confirmed the greater increase in activation in the right superior frontal cortex in the TBI group than in healthy controls, leading to normalization of the brain activation pattern. In conclusion, this longitudinal study provides evidence of a progressive normalization of the working memory activation pattern after diffuse axonal injury in severe TBI, coinciding with an improvement in performance on this function.

  8. Chiral phases of superfluid 3He in an anisotropic medium

    NASA Astrophysics Data System (ADS)

    Sauls, J. A.

    2013-12-01

    Recent advances in the fabrication and characterization of anisotropic silica aerogels with exceptional homogeneity provide new insight into the nature of unconventional pairing in disordered anisotropic media. I report theoretical analysis and predictions for the equilibrium phases of superfluid 3He infused into a low-density, homogeneous uniaxial aerogel. Ginzburg-Landau (GL) theory for a class of equal-spin-pairing (ESP) states in a medium with uniaxial anisotropy is developed and used to analyze recent experiments on uniaxially strained aerogels. For 3He in an axially “stretched” aerogel, GL theory predicts a transition from normal liquid into a chiral Anderson-Morel phase at Tc1 in which the chirality axis l̂ is aligned along the strain axis. This orbitally aligned state is protected from random fluctuations in the anisotropy direction, has a positive nuclear magnetic resonance (NMR) frequency shift, a sharp NMR resonance line, and is identified with the high-temperature ESP-1 phase of superfluid 3He in axially stretched aerogel. A second transition into a biaxial phase is predicted to onset at a slightly lower temperature Tc2

  9. Chemotherapy response evaluation in a mouse model of gastric cancer using intravoxel incoherent motion diffusion-weighted MRI and histopathology

    PubMed Central

    Cheng, Jin; Wang, Yi; Zhang, Chun-Fang; Wang, He; Wu, Wei-Zhen; Pan, Feng; Hong, Nan; Deng, Jie

    2017-01-01

    AIM To determine the role of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) magnetic resonance imaging (MRI) using a bi-exponential model in chemotherapy response evaluation in a gastric cancer mouse model. METHODS Mice bearing MKN-45 human gastric adenocarcinoma xenografts were divided into four treated groups (TG1, 2, 3 and 4, n = 5 in each group) which received Fluorouracil and Calcium Folinate and a control group (CG, n = 7). DW-MRI scans with 14 b-values (0-1500 s/mm2) were performed before and after treatment on days 3, 7, 14 and 21. Fast diffusion component (presumably pseudo-perfusion) parameters including the fast diffusion coefficient (D*) and fraction volume (fp), slow diffusion coefficient (D) and the conventional apparent diffusion coefficients (ADC) were calculated by fitting the IVIM model to the measured DW signals. The median changes from the baseline to each post-treatment time point for each measurement (ΔADC, ΔD* and Δfp) were calculated. The differences in the median changes between the two groups were compared using the mixed linear regression model by the restricted maximum likelihood method shown as z values. Histopathological analyses including Ki-67, CD31, TUNEL and H&E were conducted in conjunction with the MRI scans. The median percentage changes were compared with the histopathological analyses between the pre- and post-treatment for each measurement. RESULTS Compared with the control group, D* in the treated group decreased significantly (ΔD*treated% = -30%, -34% and -20%, with z = -5.40, -4.18 and -1.95. P = 0.0001, 0.0001 and 0.0244) and fp increased significantly (Δfptreated% = 93%, 113% and 181%, with z = 4.63, 5.52, and 2.12, P = 0.001, 0.0001 and 0.0336) on day 3, 7 and 14, respectively. Increases in ADC in the treated group were higher than those in the control group on days 3 and 14 (z = 2.44 and 2.40, P = 0.0147 and P = 0.0164). CONCLUSION Fast diffusion measurements derived from the bi-exponential IVIM model

  10. 4-D segmentation and normalization of 3He MR images for intrasubject assessment of ventilated lung volumes

    NASA Astrophysics Data System (ADS)

    Contrella, Benjamin; Tustison, Nicholas J.; Altes, Talissa A.; Avants, Brian B.; Mugler, John P., III; de Lange, Eduard E.

    2012-03-01

    Although 3He MRI permits compelling visualization of the pulmonary air spaces, quantitation of absolute ventilation is difficult due to confounds such as field inhomogeneity and relative intensity differences between image acquisition; the latter complicating longitudinal investigations of ventilation variation with respiratory alterations. To address these potential difficulties, we present a 4-D segmentation and normalization approach for intra-subject quantitative analysis of lung hyperpolarized 3He MRI. After normalization, which combines bias correction and relative intensity scaling between longitudinal data, partitioning of the lung volume time series is performed by iterating between modeling of the combined intensity histogram as a Gaussian mixture model and modulating the spatial heterogeneity tissue class assignments through Markov random field modeling. Evaluation of the algorithm was retrospectively applied to a cohort of 10 asthmatics between 19-25 years old in which spirometry and 3He MR ventilation images were acquired both before and after respiratory exacerbation by a bronchoconstricting agent (methacholine). Acquisition was repeated under the same conditions from 7 to 467 days (mean +/- standard deviation: 185 +/- 37.2) later. Several techniques were evaluated for matching intensities between the pre and post-methacholine images with the 95th percentile value histogram matching demonstrating superior correlations with spirometry measures. Subsequent analysis evaluated segmentation parameters for assessing ventilation change in this cohort. Current findings also support previous research that areas of poor ventilation in response to bronchoconstriction are relatively consistent over time.

  11. Comparison of Diffuse Weighted Imaging and Fluid Attenuation Inversion Recovery Sequences of MRI in Brain Multiple Sclerosis Plaques Detection

    PubMed Central

    NAFISI-MOGHADAM, Reza; RAHIMDEL, Abolghasem; SHANBEHZADEH, Tahereh; FALLAH, Razieh

    2017-01-01

    Objective Suitable magnetic resonance imaging (MRI) techniques from conventional to new devices can help physicians in diagnosis and follow up of Multiple Sclerosis (MS) patients. The aim of present research was to compare effectiveness of Fluid Attenuation Inversion Recovery (FLAIR) sequence of conventional MRI and Diffuse Weighted Imaging (DWI) sequence as a new technique in detection of brain MS plaques. Materials & Methods In this analytic cross sectional study, sample size was assessed as 40 people to detect any significant difference between two sequences with a level of 0.05. DWI and FLAIR sequences of without contrast brain MRI of consecutive MS patients referred to MRI center of Shahid Sadoughi Hospital, Yazd, Iran from January to May 2012, were evaluated. Results Thirty-two females and 8 males with mean age of 35.20±9.80 yr (range = 11-66 yr) were evaluated and finally 340 plaques including 127(37.2%) in T2WI, 127(37.2%) in FLAIR, 63(18.5%) in DWI and 24(7.1%) in T1WI were detected. FLAIR sequence was more efficient than DWI in detection of brain MS plaques, oval, round, amorphous plaque shapes, frontal and occipital lobes, periventricular, intracapsular, corpus callosum, centrum semiovale, subcortical, basal ganglia plaques and diameter of detected MS plaques in DWI sequence was smaller than in FLAIR. Conclusion Old lesion can be detected by conventional MRI and new techniques might be more useful in early inflammatory phase of MS and assessment of experimental treatments. PMID:28277551

  12. Choosing the polarity of the phase-encoding direction in diffusion MRI: Does it matter for group analysis?

    PubMed Central

    Kennis, M.; van Rooij, S.J.H.; Kahn, R.S.; Geuze, E.; Leemans, A.

    2016-01-01

    Notorious for degrading diffusion MRI data quality are so-called susceptibility-induced off-resonance fields, which cause non-linear geometric image deformations. While acquiring additional data to correct for these distortions alleviates the adverse effects of this artifact drastically – e.g., by reversing the polarity of the phase-encoding (PE) direction – this strategy is often not an option due to scan time constraints. Especially in a clinical context, where patient comfort and safety are of paramount importance, acquisition specifications are preferred that minimize scan time, typically resulting in data obtained with only one PE direction. In this work, we investigated whether choosing a different polarity of the PE direction would affect the outcome of a specific clinical research study. To address this methodological question, fractional anisotropy (FA) estimates of FreeSurfer brain regions were obtained in civilian and combat controls, remitted posttraumatic stress disorder (PTSD) patients, and persistent PTSD patients before and after trauma-focused therapy and were compared between diffusion MRI data sets acquired with different polarities of the PE direction (posterior-to-anterior, PA and anterior-to-posterior, AP). Our results demonstrate that regional FA estimates differ on average in the order of 5% between AP and PA PE data. In addition, when comparing FA estimates between different subject groups for specific cingulum subdivisions, the conclusions for AP and PA PE data were not in agreement. These findings increase our understanding of how one of the most pronounced data artifacts in diffusion MRI can impact group analyses and should encourage users to be more cautious when interpreting and reporting study outcomes derived from data acquired along a single PE direction. PMID:27158586

  13. Neonatal Neurobehavior and Diffusion MRI Changes in Brain Reorganization Due to Intrauterine Growth Restriction in a Rabbit Model

    PubMed Central

    Eixarch, Elisenda; Batalle, Dafnis; Illa, Miriam; Muñoz-Moreno, Emma; Arbat-Plana, Ariadna; Amat-Roldan, Ivan; Figueras, Francesc; Gratacos, Eduard

    2012-01-01

    Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with a high risk of abnormal neurodevelopment. The timing and patterns of brain reorganization underlying IUGR are poorly documented. We developed a rabbit model of IUGR allowing neonatal neurobehavioral assessment and high resolution brain diffusion magnetic resonance imaging (MRI). The aim of the study was to describe the pattern and functional correlates of fetal brain reorganization induced by IUGR. Methodology/Principal Findings IUGR was induced in 10 New Zealand fetal rabbits by ligation of 40–50% of uteroplacental vessels in one horn at 25 days of gestation. Ten contralateral horn fetuses were used as controls. Cesarean section was performed at 30 days (term 31 days). At postnatal day +1, neonates were assessed by validated neurobehavioral tests including evaluation of tone, spontaneous locomotion, reflex motor activity, motor responses to olfactory stimuli, and coordination of suck and swallow. Subsequently, brains were collected and fixed and MRI was performed using a high resolution acquisition scheme. Global and regional (manual delineation and voxel based analysis) diffusion tensor imaging parameters were analyzed. IUGR was associated with significantly poorer neurobehavioral performance in most domains. Voxel based analysis revealed fractional anisotropy (FA) differences in multiple brain regions of gray and white matter, including frontal, insular, occipital and temporal cortex, hippocampus, putamen, thalamus, claustrum, medial septal nucleus, anterior commissure, internal capsule, fimbria of hippocampus, medial lemniscus and olfactory tract. Regional FA changes were correlated with poorer outcome in neurobehavioral tests. Conclusions IUGR is associated with a complex pattern of brain reorganization already at birth, which may open opportunities for early intervention. Diffusion MRI can offer suitable imaging biomarkers to characterize and monitor

  14. Reducing slab boundary artifacts in three‐dimensional multislab diffusion MRI using nonlinear inversion for slab profile encoding (NPEN)

    PubMed Central

    Koopmans, Peter J.; Frost, Robert; Miller, Karla L.

    2015-01-01

    Purpose To propose a method to reduce the slab boundary artifacts in three‐dimensional multislab diffusion MRI. Methods Bloch simulation is used to investigate the effects of multiple factors on slab boundary artifacts, including characterization of residual errors on diffusion quantification. A nonlinear inversion method is proposed to simultaneously estimate the slab profile and the underlying (corrected) image. Results Correction results of numerical phantom and in vivo data demonstrate that the method can effectively remove slab boundary artifacts for diffusion data. Notably, the nonlinear inversion is also successful at short TR, a regimen where previously proposed methods (slab profile encoding and weighted average) retain residual artifacts in both diffusion‐weighted images and diffusion metrics (mean diffusion coefficient and fractional anisotropy). Conclusion The nonlinear inversion for removing slab boundary artifacts provides improvements over existing methods, particularly at the short TRs required to maximize SNR efficiency. Magn Reson Med 76:1183–1195, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26510172

  15. Surface-based reconstruction and diffusion MRI in the assessment of gray and white matter damage in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe

    2014-03-01

    Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.

  16. Steady-state free precession with hyperpolarized 3He: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Wild, Jim M.; Teh, Kevin; Woodhouse, Neil; Paley, Martyn N. J.; Fichele, Stan; de Zanche, Nicola; Kasuboski, Larry

    2006-11-01

    The magnetization response of hyperpolarized 3He gas to a steady-state free precession (SSFP) sequence was simulated using matrix product operators. The simulations included the effects of flip angle ( α), sequence timings, resonant frequency, gas diffusion coefficient, imaging gradients, T1 and T2. Experiments performed at 1.5 T, on gas phantoms and with healthy human subjects, confirm the predicted theory, and indicate increased SNR with SSFP through use of higher flip angles when compared to optimized spoiled gradient echo (SPGR). Simulations and experiments show some compromise to the SNR and some point spread function broadening at high α due to the incomplete refocusing of transverse magnetization, caused by diffusion dephasing from the readout gradient. Mixing of gas polarization levels by diffusion between slices is also identified as a source of signal loss in SSFP at higher α through incomplete refocusing. Nevertheless, in the sample experiments, a SSFP sequence with an optimized flip angle of α = 20°, and 128 sequential phase encoding views, showed a higher SNR when compared to SPGR ( α = 7.2°) with the same bandwidth. Some of the gas sample experiments demonstrated a transient signal response that deviates from theory in the initial phase. This was identified as being caused by radiation damping interactions between the large initial transverse magnetization and the high quality factor ( Q = 250) birdcage resonator. In 3He NMR experiments, performed without imaging gradients, diffusion dephasing can be mitigated, and the effective T2 is relatively long (⩾1 s). Under these circumstances the SSFP sequence behaves like a CPMG sequence with sin( α/2) weighting of SNR. Experiments and simulations were also performed to characterize the off-resonance behaviour of the SSFP HP 3He signal. Characteristic banding artifacts due to off-resonance harmonic beating were observed in some of the in vivo SSFP images, for instance in axial slices close to the

  17. Steady-state free precession with hyperpolarized 3He: experiments and theory.

    PubMed

    Wild, Jim M; Teh, Kevin; Woodhouse, Neil; Paley, Martyn N J; Fichele, Stan; de Zanche, Nicola; Kasuboski, Larry

    2006-11-01

    The magnetization response of hyperpolarized 3He gas to a steady-state free precession (SSFP) sequence was simulated using matrix product operators. The simulations included the effects of flip angle (alpha), sequence timings, resonant frequency, gas diffusion coefficient, imaging gradients, T1 and T2. Experiments performed at 1.5 T, on gas phantoms and with healthy human subjects, confirm the predicted theory, and indicate increased SNR with SSFP through use of higher flip angles when compared to optimized spoiled gradient echo (SPGR). Simulations and experiments show some compromise to the SNR and some point spread function broadening at high alpha due to the incomplete refocusing of transverse magnetization, caused by diffusion dephasing from the readout gradient. Mixing of gas polarization levels by diffusion between slices is also identified as a source of signal loss in SSFP at higher alpha through incomplete refocusing. Nevertheless, in the sample experiments, a SSFP sequence with an optimized flip angle of alpha=20 degrees, and 128 sequential phase encoding views, showed a higher SNR when compared to SPGR (alpha=7.2 degrees) with the same bandwidth. Some of the gas sample experiments demonstrated a transient signal response that deviates from theory in the initial phase. This was identified as being caused by radiation damping interactions between the large initial transverse magnetization and the high quality factor (Q=250) birdcage resonator. In 3He NMR experiments, performed without imaging gradients, diffusion dephasing can be mitigated, and the effective T2 is relatively long (1 s). Under these circumstances the SSFP sequence behaves like a CPMG sequence with sinalpha/2 weighting of SNR. Experiments and simulations were also performed to characterize the off-resonance behaviour of the SSFP HP 3He signal. Characteristic banding artifacts due to off-resonance harmonic beating were observed in some of the in vivo SSFP images, for instance in axial slices

  18. Direct energy conversion system for D(3)-He fusion

    NASA Astrophysics Data System (ADS)

    Tomita, Y.; Shu, L. Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D(3)-He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC'. The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DEC's bring about the high efficient fusion plant.

  19. APT {sup 3}He target/blanket. Topical report

    SciTech Connect

    1995-03-01

    The {sup 3}He target/blanket (T/B) preconceptual design for the 3/8-Goal facility is based on a 1000-MeV, 200-mA accelerator to produce a high-intensity proton beam that is expanded and then strikes one of two T/B modules. Each module consists of a centralized neutron source made of tungsten and lead, a proton beam backstop region made of zirconium and lead, and a moderator made of D{sub 2}O. Helium-3 gas is circulated through the neutron source region and the blanket to create tritium through neutron capture. The gas is continually processed to extract the tritium with an online separation process.

  20. Alpha Backgrounds in the SNO ^3He Proportional Counter Array

    NASA Astrophysics Data System (ADS)

    Stonehill, Laura

    2006-04-01

    The Sudbury Neutrino Observatory (SNO) has recently deployed an array of proportional counters known as Neutral Current Detectors (NCDs) to detect thermalized neutrons via the ^3He(n,p)^3H reaction. The primary physics background to the neutron-capture signal is alpha particle emission from uranium- and thorium-chain decays in the NCD walls. The expected capture rate of neutrons from the neutral-current neutrino reaction on deuterium is three per day and the intrinsic alpha background rate is approximately 250 alphas per day. Fewer than 10% of these alphas fall into the energy range where neutron-capture signals occur, and a substantial number of these can be eliminated by pulse-shape analysis. This talk will focus on measurements of the alpha backgrounds in the NCDs and the extent to which these alphas contaminate the neutron-capture signal region.

  1. Realization of administration unit for 3He with gas recycling

    NASA Astrophysics Data System (ADS)

    Güldner, M.; Becker, S.; Friesenecker, A.; Gast, K. K.; Heil, W.; Karpuk, S.; Otten, E. W.; Rivoire, J.; Salhi, Z.; Scholz, A.; Schreiber, L. M.; Terekhov, M.; Weiss, P.; Wolf, U.; Zentel, J.

    2011-06-01

    Hyperpolarized (HP) noble gases (3He,129Xe) are used for MR-imaging of the lung. In the majority of case the HP gas is filled in Tedlarbags and directly inhaled by the patients. Starting from an earlier pilot device, an administration unit was built respectively to the Medical Devices Law to administer patients HP noble gas boli in defined quantities and at a predefined time during inspiration with high reproducibility and reliability without reducing MR-quality. The patient's airflows are monitored and recorded. It is possible to use gas admixtures, measure the polarization on-line and collect the exhaled gas for later recycling. The first images with healthy volunteers were taken with this setup in a clinical study. Current results will be presented.

  2. Electrodisintegration of 3He below and above deuteron breakup threshold

    SciTech Connect

    Marcucci, L. E.; Viviani, M.; Schiavilla, R.; Kievsky, A.; Rosati, S.

    2005-02-01

    Recent advances in the study of electrodisintegration of 3He are presented and discussed. The pair-correlated hyperspherical harmonics method is used to calculate the initial and final state wave functions, with a realistic Hamiltonian consisting of the Argonne v18 two-nucleon and Urbana IX three-nucleon interactions. The model for the nuclear current and charge operators retains one- and many-body contributions. Particular attention is made in the construction of the two-body current operators arising from the momentum-dependent part of the two-nucleon interaction. Three-body current operators are also included so that the full current operator is strictly conserved. The present model for the nuclear current operator is tested comparing theoretical predictions and experimental data of pd radiative capture cross section and spin observables.

  3. {sup 3}He target for Hall C at CEBAF

    SciTech Connect

    Zeidman, B.; Zeuli, A.

    1995-08-01

    A major fraction of the physics program for Hall C involves scattering from cryogenic targets of the lightest nuclei, i.e. H, D, and {sup 3,4}He. Argonne is constructing the He target that will consist of a 4cm cylinder, operating at a pressure of 10 atmospheres and a temperature of {approximately}5.2 degrees Kelvin. CEBAF is currently constructing a cryo-target system for liquid H and D cells and the cooled, pressurized helium targets. The He target system includes cell loop, the He supply systems, and the additional equipment needed to ensure minimum loss of {sup 3}He in the event of target rupture. Some of the major components have been completed, while the balance of the system will be ready for installation this fiscal year.

  4. Estimation of the extraterrestrial 3He and 20Ne fluxes on Earth from He and Ne systematics in marine sediments

    NASA Astrophysics Data System (ADS)

    Chavrit, Déborah; Moreira, Manuel; Moynier, Frédéric

    2016-04-01

    Sediments contain interplanetary dust particles (IDPs) carrying extraterrestrial noble gases, such as 3He, which have previously been used to estimate the IDP accretion flux over time and the duration of past environmental events. However, due to its high diffusivity, He can be lost by diffusion either due to frictional heating during entry in the atmosphere, or once it has been incorporated in the sediments. Therefore the absolute values of 3He IDP fluxes cannot be known. Due to its lower diffusivity, Ne is less likely to be lost by diffusion than He and can potentially provide an absolute IDP flux value. Here, we studied the Ne and He isotopic composition of 21 sediments of different ages (3 to 38 Myr, 56 Myr and 183 Myr) in order to better constrain the retention of 3He in such deposits. The samples are carbonates from 2 sites of the Integrated Ocean Drilling Program (IODP), which previously showed evidence of detectable extraterrestrial 3He, and from the Sancerre core in the Paris basin. The 3He/4He, 20Ne/22Ne and 21Ne/22Ne ratios of decarbonated residues vary respectively from 0.09×10-6 to 76.5×10-6, 9.54±0.08 to 11.30±0.60 and from 0.0295±0.0001 to 0.0344±0.0003. These isotopic compositions can be explained by a mixing between two terrestrial components (atmosphere and radiogenic He and nucleogenic Ne present in the terrigenous fractions) and an extraterrestrial component. The linear relationship between 20Ne/22Ne and 3He/22Ne ratios shows that the extraterrestrial component has a unique composition and is similar to the He and Ne composition of implanted solar wind. This composition is different from the individual stratospheric IDPs for which the Ne and He isotopic compositions have been measured. We suggest that this difference is due to a bias in the sampling of the individual IDPs previously analyzed toward the largest ones that are more likely to lose He during entry in the atmosphere. Our data further constrains the size of the majority of the

  5. Estimation of the extraterrestrial 3He and 20Ne fluxes on Earth from He and Ne systematics in marine sediments

    NASA Astrophysics Data System (ADS)

    Chavrit, Déborah; Moreira, Manuel A.; Moynier, Frédéric

    2016-02-01

    Sediments contain interplanetary dust particles (IDPs) carrying extraterrestrial noble gases, such as 3He, which have previously been used to estimate the IDP accretion flux over time and the duration of past environmental events. However, due to its high diffusivity, He can be lost by diffusion either due to frictional heating during entry in the atmosphere, or once it has been incorporated in the sediments. Therefore the absolute values of 3He IDP fluxes cannot be known. Due to its lower diffusivity, Ne is less likely to be lost by diffusion than He and can potentially provide an absolute IDP flux value. Here, we studied the Ne and He isotopic composition of 21 sediments of different ages (3 to 38 Myr, 56 Myr and 183 Myr) in order to better constrain the retention of 3He in such deposits. The samples are carbonates from 2 sites of the Integrated Ocean Drilling Program (IODP), which previously showed evidence of detectable extraterrestrial 3He, and from the Sancerre core in the Paris basin. The 3He/4He, 20Ne/22Ne and 21Ne/22Ne ratios of decarbonated residues vary respectively from 0.09 ×10-6 to 76.5 ×10-6, 9.54 ± 0.08 to 11.30 ± 0.60 and from 0.0295 ± 0.0001 to 0.0344 ± 0.0003. These isotopic compositions can be explained by a mixing between two terrestrial components (atmosphere and radiogenic He and nucleogenic Ne present in the terrigenous fractions) and an extraterrestrial component. The linear relationship between 20Ne/22Ne and 3He/22Ne ratios shows that the extraterrestrial component has a unique composition and is similar to the He and Ne composition of implanted solar wind. This composition is different from the individual stratospheric IDPs for which the Ne and He isotopic compositions have been measured. We suggest that this difference is due to a bias in the sampling of the individual IDPs previously analyzed toward the largest ones that are more likely to lose He during entry in the atmosphere. Our data further constrains the size of the majority

  6. Evaluation of Treatment Associated Inflammatory Response on Diffusion Weighted-MRI and FDG-PET Imaging Biomarkers

    PubMed Central

    Galbán, Craig J.; Bhojani, Mahaveer S; Lee, Kuei C.; Meyer, Charles R.; Van Dort, Marcian; Kuszpit, Kyle; Koeppe, Robert A.; Ranga, Rajesh; Moffat, Bradford A.; Johnson, Timothy D.; Chenevert, Thomas L.; Rehemtulla, Alnawaz; Ross, Brian D.

    2010-01-01

    Purpose Functional imaging biomarkers of cancer treatment response offer the potential for early determination of outcome through assessment of biochemical, physiological, and micro-environmental readouts. Cell death may result in an immunological response thus complicating interpretation of biomarker readouts. This study evaluated the temporal impact of treatment-associated inflammatory activity on diffusion-MRI and FDG-PET imaging biomarkers to delineate the effects of the inflammatory response on imaging readouts. Experimental Design Rats with intracerebral 9L gliosarcomas were separated into four groups consisting of control, an immunosuppressive agent dexamethasone (Dex), 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), and BCNU+Dex (BCNU+Dex). Animals were imaged using diffusion-weighted MRI and FDG-PET at 0, 3 and 7 days post-treatment. Results In the BCNU and BCNU+Dex treated animal groups, diffusion values increased progressively over the 7 day study period to about 23% over baseline. FDG %SUV decreased at day 3 (−30.9%) but increased over baseline levels at day 7 (+20.1%). FDG-PET of BCNU+Dex treated animals were found to have %SUV reductions of −31.4% and −24.7% at days 3 and 7, respectively following treatment. Activated macrophages were observed on day 7 in the BCNU treatment group with much fewer found in the BCNU+Dex group. Conclusions Results revealed treatment-associated inflammatory response following tumor therapy resulted in accentuation of tumor diffusion response along with a corresponding increase in tumor FDG uptake due to the presence of glucose-consuming activated macrophages. The dynamics and magnitude of potential inflammatory response should be considered when interpreting imaging biomarker results. PMID:20160061

  7. Clinical Implications of Diffuse Excessive High Signal Intensity (DEHSI) on Neonatal MRI in School Age Children Born Extremely Preterm

    PubMed Central

    Padilla, Nelly; Skiöld, Béatrice; Eklöf, Eva; Mårtensson, Gustaf; Vollmer, Brigitte; Ådén, Ulrika

    2016-01-01

    Objective Magnetic resonance imaging (MRI) of the brain carried out during the neonatal period shows that 55–80% of extremely preterm infants display white matter diffuse excessive high signal intensity (DEHSI). Our aim was to study differences in developmental outcome at the age of 6.5 years in children born extremely preterm with and without DEHSI. Study Design This was a prospective cohort study of 83 children who were born in Stockholm, Sweden, between 2004 and 2007, born at gestational age of < 27 weeks + 0 days and who underwent an MRI scan of their brain at term equivalent age. The outcome measures at 6.5 years included testing 66 children with the modified Touwen neurology examination, the Movement Assessment Battery for Children 2, the Wechsler Intelligence Scale for Children—Fourth Edition, Beery Visual-motor Integration test—Sixth Edition, and the Strengths and Difficulties Questionnaire. Group-wise comparisons were done between children with and without DEHSI using Student t-test, Mann Whitney U test, Chi square test and regression analysis. Results DEHSI was detected in 39 (59%) of the 66 children who were assessed at 6.5 years. The presence of DEHSI was not associated with mild neurological dysfunction, scores on M-ABC assessment, cognition, visual-motor integration, or behavior at 6.5 years. Conclusion The presence of qualitatively defined DEHSI on neonatal MRI did not prove to be a useful predictor of long-term impairment in children born extremely preterm. PMID:26886451

  8. Assessment of multiexponential diffusion features as MRI cancer therapy response metrics.

    PubMed

    Hoff, Benjamin A; Chenevert, Thomas L; Bhojani, Mahaveer S; Kwee, Thomas C; Rehemtulla, Alnawaz; Le Bihan, Denis; Ross, Brian D; Galbán, Craig J

    2010-11-01

    The aim of this study was to empirically test the effect of chemotherapy-induced tissue changes in a glioma model as measured by several diffusion indices calculated from nonmonoexponential formalisms over a wide range of b-values. We also compared these results to the conventional two-point apparent diffusion coefficient calculation using nominal b-values. Diffusion-weighted imaging was performed over an extended range of b-values (120-4000 sec/mm(2) ) on intracerebral rat 9L gliomas before and after a single dose of 1,3-bis(2-chloroethyl)-1-nitrosourea. Diffusion indices from three formalisms of diffusion-weighted signal decay [(a) two-point analytical calculation using either low or high b-values, (b) a stretched exponential formalism, and (c) a biexponential fit] were tested for responsiveness to therapy-induced differences between control and treated groups. Diffusion indices sensitive to "fast diffusion" produced the largest response to treatment, which resulted in significant differences between groups. These trends were not observed for "slow diffusion" indices. Although the highest rate of response was observed from the biexponential formalism, this was not found to be significantly different from the conventional monoexponential apparent diffusion coefficient method. In conclusion, parameters from the more complicated nonmonoexponential formalisms did not provide additional sensitivity to treatment response in this glioma model beyond that observed from the two-point conventional monoexponential apparent diffusion coefficient method.

  9. Comparison of Diffusion MRI Acquisition Protocols for the In Vivo Characterization of the Mouse Spinal Cord: Variability Analysis and Application to an Amyotrophic Lateral Sclerosis Model

    PubMed Central

    Marcuzzo, Stefania; Bonanno, Silvia; Padelli, Francesco; Moreno-Manzano, Victoria; García-Verdugo, José Manuel; Bernasconi, Pia; Mantegazza, Renato; Bruzzone, Maria Grazia; Zucca, Ileana

    2016-01-01

    Diffusion-weighted Magnetic Resonance Imaging (dMRI) has relevant applications in the microstructural characterization of the spinal cord, especially in neurodegenerative diseases. Animal models have a pivotal role in the study of such diseases; however, in vivo spinal dMRI of small animals entails additional challenges that require a systematical investigation of acquisition parameters. The purpose of this study is to compare three acquisition protocols and identify the scanning parameters allowing a robust estimation of the main diffusion quantities and a good sensitivity to neurodegeneration in the mouse spinal cord. For all the protocols, the signal-to-noise and contrast-to noise ratios and the mean value and variability of Diffusion Tensor metrics were evaluated in healthy controls. For the estimation of fractional anisotropy less variability was provided by protocols with more diffusion directions, for the estimation of mean, axial and radial diffusivity by protocols with fewer diffusion directions and higher diffusion weighting. Intermediate features (12 directions, b = 1200 s/mm2) provided the overall minimum inter- and intra-subject variability in most cases. In order to test the diagnostic sensitivity of the protocols, 7 G93A-SOD1 mice (model of amyotrophic lateral sclerosis) at 10 and 17 weeks of age were scanned and the derived diffusion parameters compared with those estimated in age-matched healthy animals. The protocols with an intermediate or high number of diffusion directions provided the best differentiation between the two groups at week 17, whereas only few local significant differences were highlighted at week 10. According to our results, a dMRI protocol with an intermediate number of diffusion gradient directions and a relatively high diffusion weighting is optimal for spinal cord imaging. Further work is needed to confirm these results and for a finer tuning of acquisition parameters. Nevertheless, our findings could be important for the

  10. Systematic optimization of MRI guided near infrared diffuse optical spectroscopy in breast

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; Xu, Junqing; Gui, Jiang; Pogue, Brian W.; Paulsen, Keith D.

    2015-03-01

    A hybrid frequency domain (FD)-continuous wave (CW) MRI/NIRS system was validated in a clinical trial involving patients with at least ACR 4 radiologic findings in Xi'an, China. In this study, MRI guided nonlinear iterative reconstruction of near-infrared spectroscopy (NIRS) images with limited phase data is investigated. In addition, a systematic optimization of the system hardware design has been conducted as well. We are able to get less than 3% variation in tumor contrast to the surrounding normal tissue, by reducing the number of FD detectors from 16 to 6, showing the potential of reducing the FD detectors. Furthermore, a lookup table of the scattering properties has been made by averaging four MRI-identified breast density groups. By using this look-up table for the patient with the noisy phase data, similar AUCs and p-values are achieved for differentiating the malignant from benign patients.

  11. Diffusion and clearance of superparamagnetic iron oxide nanoparticles infused into the rat striatum studied by MRI and histochemical techniques

    NASA Astrophysics Data System (ADS)

    Wang, F. H.; Kim, D. K.; Yoshitake, T.; Johansson, S. M.; Bjelke, B.; Muhammed, M.; Kehr, J.

    2011-01-01

    The purpose of the present study was to investigate, by MRI and histochemical techniques, the diffusion and clearance abilities of superparamagnetic iron oxide nanoparticles (SPION) coated with dextran (Dextran-SPION) and gold (Au-SPION) following their local infusions into the rat brain. In separate groups of anesthetized rats, the Dextran-SPION and Au-SPION were infused at concentrations of 0.01, 0.1, 1 and 5 µg Fe/0.5 µl and at the flow rate of 0.5 µl min - 1 into the left and right striata, respectively. Repetitive T2-weighted spin-echo MRI scans were performed at time intervals of 1, 6, 12, 24, 48, 72 h, and one, two and eight weeks after inoculation. Following infusion of Dextran-SPION (0.1 µg and 1 µg Fe), the maximal distribution volume was observed at about 12-24 h after inoculation and two weeks later the Fe signals were undetectable for the lower dose. On the other hand, Au-SPION remained tightly localized in the closest vicinity of the infusion site as revealed by unchanged MRI signal intensities and strong histochemical staining of Fe2 + and Fe3 + ions in the corresponding brain slices. Immunohistochemical staining of astrocytic and microglial reactions revealed that there were no marked differences in GFAP, VIM or OX-42 labeling observed between the nanoparticle types, however the astrocytic reaction was more pronounced in rats receiving nanoparticles compared to the control (aCSF-infused) rats. In conclusion, the present data demonstrate that the viral-sized Dextran-SPION were able to diffuse freely through the interstitial space of the brain being progressively cleared out from the infusion site within two weeks. Thus, Dextran-SPION could be beneficially used in MRI-guided diagnostic applications such as in experimental oncology or as labels and carriers for targeted drug delivery, whereas Au-SPION could be used for labeling and tracking the transplanted stem cells in experimental MRI.

  12. WE-G-18C-09: Separating Perfusion and Diffusion Components From Diffusion Weighted MRI of Rectum Tumors Based On Intravoxel Incoherent Motion (IVIM) Analysis

    SciTech Connect

    Tyagi, N; Wengler, K; Mazaheri, Y; Hunt, M; Deasy, J; Gollub, M

    2014-06-15

    Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*, the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.

  13. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE PAGES

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  14. [Microstructure of the lung: diffusion measurement of hyperpolarized 3Helium].

    PubMed

    Morbach, Andreas E; Gast, Klaus K; Schmiedeskamp, Jörg; Herweling, Annette; Windirsch, Michael; Dahmen, Anja; Ley, Sebastian; Heussel, Claus-Peter; Heil, Werner; Kauczor, Hans-Ulrich; Schreiber, Wolfgang G

    2006-01-01

    Imaging methods to study the lung are traditionally based on x-ray or on radioactive contrast agents. Conventional magnetic resonance imaging (MRI) has only limited applications for lung imaging because of the low tissue density of protons concentration of hydrogen atoms, which are usually the basis for the imaging. The introduction of hyperpolarized noble gases as a contrast agent in MRI has opened new possibilities for lung diagnosis. The present paper describes this new technique. Diffusion-weighted MRI for assessment of the lung microstructure is presented here as an example of the new possibilities of functional imaging. Studies to determine the sensitivity of the diffusion measurement and regarding the correlation with traditionally established methods are also presented, along with results of the measurement of the reproducibility determined in a clinical pilot study on healthy volunteers and patients. Furthermore, a pilot measurement of the 3He diffusion tensor in the lung is presented.

  15. Immunochemotherapy with Intensive Consolidation for Primary CNS Lymphoma: A Pilot Study and Prognostic Assessment by Diffusion-Weighted MRI

    PubMed Central

    Wieduwilt, Matthew J.; Valles, Francisco; Issa, Samar; Behler, Caroline M.; Hwang, James; McDermott, Michael; Treseler, Patrick; O’Brien, Joan; Shuman, Marc A.; Cha, Soonmee; Damon, Lloyd E.; Rubenstein, James L.

    2012-01-01

    Purpose We evaluated a novel therapy for primary central nervous system (CNS) lymphoma (PCNSL) using induction immunochemotherapy with high-dose methotrexate, temozolomide and rituximab (MT-R) followed by intensive consolidation with infusional etoposide and high-dose cytarabine (EA). In addition, we evaluated the prognostic value of the minimum apparent diffusion coefficient (ADCmin) derived from diffusion-weighted magnetic resonance imaging (DW-MRI) in patients treated with this regimen. Experimental Design Thirty-one patients (median age, 61; median KPS, 60) received induction with methotrexate every 14 days for 8 planned cycles. Rituximab was administered the first 6 cycles and temozolomide administered on odd-numbered cycles. Patients with responsive or stable CNS disease received EA consolidation. Pretreatment DW-MRI was used to calculate the ADCmin of contrast-enhancing lesions. Results The complete response rate for MT-R induction was 52%. At a median follow-up of 79 months, the 2-year progression-free and overall survival were 45% and 58%, respectively. For patients receiving EA consolidation, the 2-year progression-free and overall survival were 78% and 93%, respectively. EA consolidation was also effective in an additional 3 patients who presented with synchronous CNS and systemic lymphoma. Tumor ADCmin <384 × 10−6 mm2/s was significantly associated with shorter progression-free and overall survival. Conclusions MT-R induction was effective and well-tolerated. MT-R followed by EA consolidation yielded progression-free and overall survival outcomes comparable to regimens using chemotherapy followed by whole-brain radiotherapy consolidation but without evidence of neurotoxicity. Tumor ADCmin derived from DW-MRI provided better prognostic information for PCNSL patients treated with the MTR-EA regimen than established clinical risk scores. PMID:22228634

  16. Diffusion MRI: Pitfalls, literature review and future directions of research in mild traumatic brain injury.

    PubMed

    Delouche, Aurélie; Attyé, Arnaud; Heck, Olivier; Grand, Sylvie; Kastler, Adrian; Lamalle, Laurent; Renard, Felix; Krainik, Alexandre

    2016-01-01

    Mild traumatic brain injury (mTBI) is a leading cause of disability in adults, many of whom report a distressing combination of physical, emotional and cognitive symptoms, collectively known as post-concussion syndrome, that persist after the injury. Significant developments in magnetic resonance diffusion imaging, involving voxel-based quantitative analysis through the measurement of fractional anisotropy or mean diffusivity, have enhanced our knowledge on the different stages of mTBI pathophysiology. Other diffusion imaging-derived techniques, including diffusion kurtosis imaging with multi-shell diffusion and high-order tractography models, have recently demonstrated their usefulness in mTBI. Our review starts by briefly outlining the physical basis of diffusion tensor imaging including the pitfalls for use in brain trauma, before discussing findings from diagnostic trials testing its usefulness in assessing brain structural changes in patients with mTBI. Use of different post-processing techniques for the diffusion imaging data, identified the corpus callosum as the most frequently injured structure in mTBI, particularly at sub-acute and chronic stages, and a crucial location for evaluating functional outcome. However, structural changes appear too subtle for identification using traditional diffusion biomarkers, thus disallowing expansion of these techniques into clinical practice. In this regard, more advanced diffusion techniques are promising in the assessment of this complex disease.

  17. Hard photodisintegration of 3He into a p d pair

    NASA Astrophysics Data System (ADS)

    Maheswari, Dhiraj; Sargsian, Misak M.

    2017-02-01

    The recent measurements of high energy photodisintegration of a 3He nucleus to a p d pair at 90∘ center of mass demonstrated an energy scaling consistent with the quark counting rule with an unprecedentedly large exponent of s-17. To understand the underlying mechanism of this process, we extended the theoretical formalism of the hard rescattering mechanism (HRM) to calculate the γ 3He→p d reaction. In HRM the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons, generating a hard two-body system in the final state of the reaction. Within the HRM we derived the parameter-free expression for the differential cross section of the reaction, which is expressed through the 3He→p d transition spectral function, the cross section of hard p d →p d scattering, and the effective charge of the quarks being interchanged during the hard rescattering process. The numerical estimates of all these factors resulted in the magnitude of the cross section, which is surprisingly in good agreement with the data.

  18. Spin Pumping in Superfluid ^3He in High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Suzuki, K.; Aoki, Y.; Yamaguchi, A.; Ishimoto, H.

    2008-03-01

    The spin flow dynamics in superfluid ^3He A1 phase in magnetic field has been studied up to 13 tesla. The apparatus consists of a large reservoir of of A1 phase in which a small enclosed chamber with a built-in differential pressure sensor is immersed. The chamber is connected to the reservoir via a superleak channel. The chamber is fabricated from Macor parts such that the residual heat leak is much reduced from those in our experiments. Our focus is on the measurement of relaxation of the induced pressure subsequent to either magnetically induced spin-polarized superflow or by electrostatic spin pumping. In general, both methods of measurement show that the relaxation time (τ) of the induced pressure tends to vanish smoothly as the transition temperature Tc2 is approached. However, the observed dependence of τ on magnetic field is different. The measured τ by the field gradient method continues to increase up to 8 tesla. On the other hand, τ measured by the spin pumping method tends to saturate to a constant between 5 and 13 tesla. The discrepancy is unexpected and not yet understood.

  19. Andreev reflection in rotating superfluid {sup 3}He-B

    SciTech Connect

    Eltsov, V. B.; Hosio, J. J.; Krusius, M. Mäkinen, J. T.

    2014-12-15

    Andreev reflection of quasiparticle excitations from quantized line vortices is reviewed in the isotropic B phase of superfluid {sup 3}He in the temperature regime of ballistic quasiparticle transport at T ≤ 0.20T{sub c}. The reflection from an array of rectilinear vortices in solid-body rotation is measured with a quasiparticle beam illuminating the array mainly in the orientation along the rotation axis. The result is in agreement with the calculated Andreev reflection. The Andreev signal is also used to analyze the spin-down of the superfluid component after a sudden impulsive stop of rotation from an equilibrium vortex state. In a measuring setup where the rotating cylinder has a rough bottom surface, annihilation of the vortices proceeds via a leading rapid turbulent burst followed by a trailing slow laminar decay, from which the mutual friction dissipation can be determined. In contrast to the currently accepted theory, it is found to have a finite value in the zero-temperature limit: α(T→0) = (5 ± 0.5) × 10{sup −4}.

  20. Optical interferometry in superfluid {sup 3}He-B

    SciTech Connect

    Alles, H.; Ruutu, J.P.; Babkin, A.V.; Hakonen, P.J.; Sonin, E.B.

    1996-03-01

    The authors report interferometric measurements in 0.1...1 mm thick films of superfluid {sup 3}He-B. The menisci of three different rotational states of the superfluid were observed and analyzed theoretically using two-fluid hydrodynamics: These are (i) the equilibrium vortex state in which the superfluid and the normal components corotate (solid body rotation), (ii) the vortex-free state (the Landau state), in which only the normal component rotates, and (iii) the quasistationary vortex state in which only the superfluid fraction rotates (pure superfluid rotation). The Landua state manifested itself by a reduced parabolic meniscus at rotation speeds below the critical angular velocity {Omega}{sub c}{approx_lt} 0.2 rad/s for vortex formation. Transition from the Landua state to the equilibrium vortex state yielded a sudden deepening of the meniscus when {Omega}{sub c} was exceeded. After a rapid halt of the cryostat, the authors observed a novel meniscus which was produced by the superfluid rotation while the normal component was at rest. The enhanced depth of this meniscus is governed by the reactive mutual friction parameter B{prime}. By employing laser light, both for imaging and for thermomechanical excitation, the authors measured the response of a thin superfluid layer to a heat pulse and analyzed it within the theory of two fluid hydrodynamics. The data were employed, using the dispersion relation for thin film oscillations, to deduce the second viscosity coefficient {zeta}{sub 3} close to T{sub c}.

  1. MR Imaging of Apparent 3He Gas Transport in Narrow Pipes and Rodent Airways

    SciTech Connect

    Minard, Kevin R.; Jacob, Rick E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2008-10-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm-diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Flow splitting at airway branches is still evident, however, and use of 3D vector flow mapping is shown to provide a quantitative view of pulmonary gas supply that highlights the correlation of airflow dynamics with lung structure.

  2. Transfer Excitation Processes Observed in N3+-He and O3+-He Collisions at Elab = 33 eV

    NASA Astrophysics Data System (ADS)

    Itoh, Yoh

    2016-09-01

    We measured the relative state-selective differential cross sections (DCSs) for one-electron capture reactions using a crossed-beam apparatus. The scattering angle θlab studied in the laboratory frame ranged from -3.0 to 22° and the laboratory collision energy Elab was 33 eV. Only the transfer excitation processes, i.e., the electron capture reactions with the simultaneous excitation of the projectile, were observed. The DCSs were determined for the following reactions: N3+ (1s2 2s2 1S) + He (1s2 1S) → N2+ (1s2 2s2p2 2D) + He+ (1s 2S) + 10.3 eV, O3+ (1s2 2s2 2p 2P) + He (1s2 1S) → O2+ (1s2 2s 2p3 3P) + He+ (1s 2S) + 12.7 eV, and O3+ (1s2 2s2 2p 2P) + He (1s2 1S) → O2+ (1s2 2s 2p3 3D) + He+ (1s 2S) + 15.5 eV. In the N3+-He system, the DCSs for the reaction are zero at the center-of-mass angle θcm = 0 and show a peak at a certain angle and a shoulder at a larger angle. In the O3+-He system, the DCSs are again zero at θcm = 0. The capture process to the O2+ (1s2 2s 2p3 3P) state is mainly observed at smaller scattering angles, and the reaction to the O2+ (1s2 2s 2p3 3D) state becomes dominant with increasing scattering angle. A classical trajectory analysis within the two-state approximation based on the ab initio potentials for (NHe)3+ revealed that the transfer excitation of a two-electron process takes place through a single crossing of the relevant potentials.

  3. Comment on "Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis".

    PubMed

    Balser, Dana S; Rood, Robert T; Bania, T M

    2007-08-31

    Eggleton et al. (Reports, 8 December 2006, p. 1580) reported on a deep-mixing mechanism in low-mass stars caused by a Rayleigh-Taylor instability that destroys all of the helium isotope 3He produced during the star's lifetime. Observations of 3He in planetary nebulae, however, indicate that some stars produce prodigious amounts of 3He. This is inconsistent with the claim that all low-mass stars should destroy 3He.

  4. Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing

    PubMed Central

    Chen, Geng; Zhang, Pei; Li, Ke; Wee, Chong-Yaw; Wu, Yafeng; Shen, Dinggang; Yap, Pew-Thian

    2016-01-01

    Diffusion magnetic resonance imaging is widely used to investigate diffusion patterns of water molecules in the human brain. It provides information that is useful for tracing axonal bundles and inferring brain connectivity. Diffusion axonal tracing, namely tractography, relies on local directional information provided by the orientation distribution functions (ODFs) estimated at each voxel. To accurately estimate ODFs, data of good signal-to-noise ratio and sufficient angular samples are desired. This is however not always available in practice. In this paper, we propose to improve ODF estimation by using inter-subject image correlation. Specifically, we demonstrate that diffusion-weighted images acquired from different subjects can be transformed to the space of a target subject to drastically increase the number of angular samples to improve ODF estimation. This is largely due to the incoherence of the angular samples generated when the diffusion signals are reoriented and warped to the target space. To reorient the diffusion signals, we propose a new spatial normalization method that directly acts on diffusion signals using local affine transforms. Experiments on both synthetic data and real data show that our method can reduce noise-induced artifacts, such as spurious ODF peaks, and yield more coherent orientations. PMID:27892534

  5. Temporal Variability in the Accretion Rate of Interplanetary Dust Using (3)He as a Tracer

    NASA Technical Reports Server (NTRS)

    Farley, K. A.

    2005-01-01

    The research supported by this grant falls under three topics: 1) Weekly Interplanetary Dust Sampling via (3)He; 2) Extraterrestrial (3)He at Major Impact Boundaries; 3) Completing a Moderately-High Resolution Record of Extraterrestrial (3)He Flux: A Major Asteroidal Break up Event at 8.2 Ma.

  6. Short-term reproducibility of apparent diffusion coefficient estimated from diffusion-weighted MRI of the prostate

    PubMed Central

    Sadinski, Meredith; Medved, Milica; Karademir, Ibrahim; Wang, Shiyang; Peng, Yahui; Jiang, Yulei; Sammet, Steffen; Karczmar, Gregory; Oto, Aytekin

    2015-01-01

    Purpose The purpose of the study is to determine short-term reproducibility of apparent diffusion coefficient (ADC) estimated from diffusion-weighted magnetic resonance (DW-MR) imaging of the prostate. Methods Fourteen patients with biopsy-proven prostate cancer were studied under an Institutional Review Board-approved protocol. Each patient underwent two, consecutive and identical DW-MR scans on a 3T system. ADC values were calculated from each scan and a deformable registration was performed to align corresponding images. The prostate and cancerous regions of interest (ROIs) were independently analyzed by two radiologists. The prostate volume was analyzed by sextant. Per-voxel absolute and relative percentage variations in ADC were compared between sextants. Per-voxel and per-ROI variations in ADC were calculated for cancerous ROIs. Results Per-voxel absolute difference in ADC in the prostate ranged from 0 to 1.60 × 10−3 mm2/s (per-voxel relative difference 0% to 200%, mean 10.5%). Variation in ADC was largest in the posterior apex (0% to 200%, mean 11.6%). Difference in ADC variation between sextants was not statistically significant. Cancer ROIs’ per-voxel variation in ADC ranged from 0.001 × 10−3 to 0.841 × 10−3 mm2/s (0% to 67.4%, mean 11.2%) and per-ROI variation ranged from 0 to 0.463 × 10−3 mm2/s (mean 0.122 × 10−3 mm2/s). Conclusions Variation in ADC within the human prostate is reasonably small, and is on the order of 10%. PMID:25805558

  7. TOMOGRAPHIC RECONSTRUCTION OF DIFFUSION PROPAGATORS FROM DW-MRI USING OPTIMAL SAMPLING LATTICES

    PubMed Central

    Ye, Wenxing; Entezari, Alireza; Vemuri, Baba C.

    2010-01-01

    This paper exploits the power of optimal sampling lattices in tomography based reconstruction of the diffusion propagator in diffusion weighted magnetic resonance imaging (DWMRI). Optimal sampling leads to increased accuracy of the tomographic reconstruction approach introduced by Pickalov and Basser [1]. Alternatively, the optimal sampling geometry allows for further reducing the number of samples while maintaining the accuracy of reconstruction of the diffusion propagator. The optimality of the proposed sampling geometry comes from the information theoretic advantages of sphere packing lattices in sampling multidimensional signals. These advantages are in addition to those accrued from the use of the tomographic principle used here for reconstruction. We present comparative results of reconstructions of the diffusion propagator using the Cartesian and the optimal sampling geometry for synthetic and real data sets. PMID:20596298

  8. Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue--implications for MRI studies of human autopsy samples.

    PubMed

    Shepherd, Timothy M; Flint, Jeremy J; Thelwall, Peter E; Stanisz, Greg J; Mareci, Thomas H; Yachnis, Anthony T; Blackband, Stephen J

    2009-02-01

    High-resolution imaging of human autopsy tissues may improve our understanding of in vivo MRI findings, but interpretation is complicated because samples are obtained by immersion fixation following a postmortem interval (PMI). This study tested the hypotheses that immersion fixation and PMI's from 0-24 h would alter the water relaxation and diffusion properties in rat cortical slice and spinal cord models of human nervous tissue. Diffusion data collected from rat cortical slices at multiple diffusion times (10-60 ms) and b-values (7-15,000 s/mm(2)) were analyzed using a two-compartment model with exchange. Rat spinal cords were characterized with standard diffusion tensor imaging (21 directions, b=1250 s/mm(2)). Switching from perfusion- to immersion-fixation at 0 h PMI altered most MRI properties of rat cortical slices and spinal cords, including a 22% decrease in fractional anisotropy (P<0.001). After 4 h PMI, cortical slice T(1) and T(2) increased 22% and 65% respectively (P<0.001), transmembrane water exchange decreased 23% (P<0.001) and intracellular proton fraction increased 25% (P=0.002). After 6 h PMI, spinal cord white matter fractional anisotropy had decreased 38% (P<0.001). MRI property changes were observed for PMIs up to 24 h. The MRI changes correlated with protease activity and histopathological signs of autolysis. Thus, immersion fixation and/or even short PMIs (4-6 h) altered the MRI properties of rat nervous tissue. This suggests comparisons between in vivo clinical MRI and MRI data from human autopsy tissues should be interpreted with caution.

  9. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water.

    PubMed

    Song, Sheng-Kwei; Sun, Shu-Wei; Ramsbottom, Michael J; Chang, Chen; Russell, John; Cross, Anne H

    2002-11-01

    Myelin loss and axonal damage are both observed in white matter injuries. Each may have significant impact on the long-term disability of patients. Currently, there does not exist a noninvasive biological marker that enables differentiation between myelin and axonal injury. We describe herein the use of magnetic resonance diffusion tensor imaging (DTI) to quantify the effect of dysmyelination on water directional diffusivities in brains of shiverer mice in vivo. The principal diffusion eigenvalues of eight axonal fiber tracts that can be identified with certainty on DTI maps were measured. The water diffusivity perpendicular to axonal fiber tracts, lambda(perpendicular), was significantly higher in shiverer mice compared with age-matched controls, reflecting the lack of myelin and the increased freedom of cross-fiber diffusion in white matter. The water diffusivity parallel to axonal fiber tracts, lambda(parallel), was not different, which is consistent with the presence of intact axons. It is clear that dysmyelination alone does not impact lambda(parallel). The presence of intact axons in the setting of incomplete myelination was confirmed by electron microscopy. Although further validation is still needed, our finding suggests that changes in lambda(perpendicular) and lambda(parallel) may potentially be used to differentiate myelin loss versus axonal injury.

  10. Microstructural models for diffusion MRI in breast cancer and surrounding stroma: an ex vivo study

    PubMed Central

    Siow, Bernard; Panagiotaki, Eleftheria; Hipwell, John H.; Mertzanidou, Thomy; Owen, Julie; Gazinska, Patrycja; Pinder, Sarah E.; Alexander, Daniel C.; Hawkes, David J.

    2016-01-01

    The diffusion signal in breast tissue has primarily been modelled using apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM) and diffusion tensor (DT) models, which may be too simplistic to describe the underlying tissue microstructure. Formalin‐fixed breast cancer samples were scanned using a wide range of gradient strengths, durations, separations and orientations. A variety of one‐ and two‐compartment models were tested to determine which best described the data. Models with restricted diffusion components and anisotropy were selected in most cancerous regions and there were no regions in which conventional ADC or DT models were selected. Maps of ADC generally related to cellularity on histology, but maps of parameters from more complex models suggest that both overall cell volume fraction and individual cell size can contribute to the diffusion signal, affecting the specificity of ADC to the tissue microstructure. The areas of coherence in diffusion anisotropy images were small, approximately 1 mm, but the orientation corresponded to stromal orientation patterns on histology. PMID:28000292

  11. Measurement of laser heating in spin exchange optical pumping by NMR diffusion sensitization gradients

    SciTech Connect

    Parnell, Steven R.; Deppe, Martin H.; Ajraoui, Salma; Parra-Robles, Juan; Wild, Jim M.; Boag, Stephen

    2010-05-15

    This paper details pulsed gradient NMR measurements of the {sup 3}He diffusion coefficient in sealed cells during spin exchange optical pumping. The potential of ultra low field magnetic resonance imgaing (MRI) and NMR for noninvasive measurement of cell pressure is demonstrated. Diffusion sensitization gradients allow measurement of the {sup 3}He diffusion coefficient from which the pressure and/or temperature of the gas can be determined during optical pumping. The pressure measurements were compared with neutron time of flight transmission measurements. Good agreement was observed between the temperature/pressure measurements and predictions based on Chapman-Enskog theory. The technique had sufficient sensitivity to observe the diffusion coefficient increasing with temperature in a sealed cell. With this method, evidence for laser heating of the {sup 3}He during optical pumping was found. The results show that NMR diffusion measurements allow noninvasive measurement of the cell temperature and/or pressure in an optical pumping setup. The method can be expanded using MRI to probe the spatial distribution of the diffusion coefficient. These techniques can be applied to the further investigation of polarization limiting effects such as laser heating.

  12. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain.

    PubMed

    Westin, Carl-Fredrik; Knutsson, Hans; Pasternak, Ofer; Szczepankiewicz, Filip; Özarslan, Evren; van Westen, Danielle; Mattisson, Cecilia; Bogren, Mats; O'Donnell, Lauren J; Kubicki, Marek; Topgaard, Daniel; Nilsson, Markus

    2016-07-15

    This work describes a new diffusion MR framework for imaging and modeling of microstructure that we call q-space trajectory imaging (QTI). The QTI framework consists of two parts: encoding and modeling. First we propose q-space trajectory encoding, which uses time-varying gradients to probe a trajectory in q-space, in contrast to traditional pulsed field gradient sequences that attempt to probe a point in q-space. Then we propose a microstructure model, the diffusion tensor distribution (DTD) model, which takes advantage of additional information provided by QTI to estimate a distributional model over diffusion tensors. We show that the QTI framework enables microstructure modeling that is not possible with the traditional pulsed gradient encoding as introduced by Stejskal and Tanner. In our analysis of QTI, we find that the well-known scalar b-value naturally extends to a tensor-valued entity, i.e., a diffusion measurement tensor, which we call the b-tensor. We show that b-tensors of rank 2 or 3 enable estimation of the mean and covariance of the DTD model in terms of a second order tensor (the diffusion tensor) and a fourth order tensor. The QTI framework has been designed to improve discrimination of the sizes, shapes, and orientations of diffusion microenvironments within tissue. We derive rotationally invariant scalar quantities describing intuitive microstructural features including size, shape, and orientation coherence measures. To demonstrate the feasibility of QTI on a clinical scanner, we performed a small pilot study comparing a group of five healthy controls with five patients with schizophrenia. The parameter maps derived from QTI were compared between the groups, and 9 out of the 14 parameters investigated showed differences between groups. The ability to measure and model the distribution of diffusion tensors, rather than a quantity that has already been averaged within a voxel, has the potential to provide a powerful paradigm for the study of

  13. The diffusion tensor imaging (DTI) component of the NIH MRI study of normal brain development (PedsDTI).

    PubMed

    Walker, Lindsay; Chang, Lin-Ching; Nayak, Amritha; Irfanoglu, M Okan; Botteron, Kelly N; McCracken, James; McKinstry, Robert C; Rivkin, Michael J; Wang, Dah-Jyuu; Rumsey, Judith; Pierpaoli, Carlo

    2016-01-01

    The NIH MRI Study of normal brain development sought to characterize typical brain development in a population of infants, toddlers, children and adolescents/young adults, covering the socio-economic and ethnic diversity of the population of the United States. The study began in 1999 with data collection commencing in 2001 and concluding in 2007. The study was designed with the final goal of providing a controlled-access database; open to qualified researchers and clinicians, which could serve as a powerful tool for elucidating typical brain development and identifying deviations associated with brain-based disorders and diseases, and as a resource for developing computational methods and image processing tools. This paper focuses on the DTI component of the NIH MRI study of normal brain development. In this work, we describe the DTI data acquisition protocols, data processing steps, quality assessment procedures, and data included in the database, along with database access requirements. For more details, visit http://www.pediatricmri.nih.gov. This longitudinal DTI dataset includes raw and processed diffusion data from 498 low resolution (3 mm) DTI datasets from 274 unique subjects, and 193 high resolution (2.5 mm) DTI datasets from 152 unique subjects. Subjects range in age from 10 days (from date of birth) through 22 years. Additionally, a set of age-specific DTI templates are included. This forms one component of the larger NIH MRI study of normal brain development which also includes T1-, T2-, proton density-weighted, and proton magnetic resonance spectroscopy (MRS) imaging data, and demographic, clinical and behavioral data.

  14. Spatial and temporal hemodynamic study of human primary visual cortex using simultaneous functional MRI and diffuse optical tomography

    PubMed Central

    Zhang, Xiaofeng; Toronov, Vladislav Y.; Webb, Andrew G.

    2011-01-01

    The blood oxygenation level dependent (BOLD) functional MRI and near infrared optical tomography have been widely used to investigate the hemodynamic response to functional stimulation in the human brain. In this paper, we present a complete methodology of integrating the two imaging modalities to study the underlying physiological mechanism of hemodynamic response in the human primary visual cortex. The integration was made feasible thanks to the development of an MRI-compatible optical probe. The optical imaging was conducted using a frequency-domain near infrared spectrometer. The 3-dimentional optical image reconstruction was based on diffuse optical tomography (DOT) using the perturbative approach. The sensitivity function of the forward problem was obtained using Monte Carlo method. From our preliminary observation, the spatial activation pattern of deoxyhemoglobin is consistent with the BOLD signal map. The patterns of oxy- and deoxyhemoglobin are very similar. The temporal hemodynamic response shows an increased total hemoglobin concentration, which indicates an increment of cerebral blood volume (CBV) during physiological activation. PMID:17282286

  15. 3-D diffusion tensor MRI anisotropy content-adaptive finite element head model generation for bioelectromagnetic imaging.

    PubMed

    Lee, W H; Kim, T S; Kim, Andrew T; Lee, S Y

    2008-01-01

    Realistic finite element (FE) head models have been successfully applied to bioelectromagnetic problems due to a realistic representation of arbitrary head geometry with inclusion of anisotropic material properties. In this paper, we propose a new automatic FE mesh generation scheme to generate a diffusion tensor MRI (DT-MRI) white matter anisotropy content-adaptive FE head model. We term this kind of mesh as wMesh. With this meshing technique, the anisotropic electrical conductivities derived from DT-MRIs can be best incorporated into the model. The influence of the white matter anisotropy on the EEG forward solutions has been studied via our wMesh head models. The scalp potentials computed from the anisotropic wMesh models against those of the isotropic models have been compared. The results describe that there are substantial changes in the scalp electrical potentials between the isotropic and anisotropic models, indicating that the inclusion of the white matter anisotropy is critical for accurate computation of E/MEG forward and inverse solutions. This fully automatic anisotropy-adaptive wMesh meshing scheme could be useful for modeling of individual-specific FE head models with better incorporation of the white matter anisotropic property towards bioelectromagnetic imaging.

  16. T2 and Apparent Diffusion Coefficient of MRI Reflect Maturation of Tissue-Engineered Auricular Cartilage Subcutaneously Transplanted in Rats.

    PubMed

    Fujihara, Yuko; Nitta, Naotaka; Misawa, Masaki; Hyodo, Koji; Shirasaki, Yoshio; Hayashi, Kazuhiko; Kosaka, Ryo; Homma, Kazuhiro; Numano, Tomokazu; Kuribayashi, Shouta; Watanabe, Yasushi; Sato, Jiro; Ohtomo, Kuni; Takato, Tsuyoshi; Hoshi, Kazuto

    2016-05-01

    In cartilage regenerative medicine, autologous chondrocyte implantation (ACI) has been applied clinically for partial defects of joint cartilage or nasal augmentation. To make treatment with ACI more effective and prevalent, modalities to evaluate the quality of transplanted constructs noninvasively are necessary. In this study, we compared the efficacy of several noninvasive modalities for evaluating the maturation of tissue-engineered auricular cartilage containing a biodegradable polymer scaffold. We first transplanted tissue-engineered cartilage consisting of human auricular chondrocytes, atelocollagen gel, and a poly-l-lactic acid (PLLA) porous scaffold subcutaneously into the back of athymic nude rats. Eight weeks after transplantation, the rats were examined by magnetic resonance imaging (MRI), X-ray, and ultrasound as noninvasive modalities. Then, the excised constructs were examined by histological and biochemical analysis including toluidine blue (TB) staining, glycosaminoglycans content, and enzyme-linked immunosorbent assay of type II collagen. Among the modalities examined, transverse relaxation time (T2) and apparent diffusion coefficient of MRI showed quite a high correlation with histological and biochemical results, suggesting that these can effectively detect the maturation of tissue-engineered auricular cartilage. Since these noninvasive modalities would realize time-course analysis of the maturation of tissue-engineered auricular cartilage, this study provides a substantial insight for improving the quality of tissue-engineered cartilage, leading to improvement of the quality and technique in cartilage regenerative medicine.

  17. Dissociable diffusion MRI patterns of white matter microstructure and connectivity in Alzheimer’s disease spectrum

    PubMed Central

    Doan, Nhat Trung; Engvig, Andreas; Persson, Karin; Alnæs, Dag; Kaufmann, Tobias; Rokicki, Jaroslav; Córdova-Palomera, Aldo; Moberget, Torgeir; Brækhus, Anne; Barca, Maria Lage; Engedal, Knut; Andreassen, Ole A.; Selbæk, Geir; Westlye, Lars T.

    2017-01-01

    Recent efforts using diffusion tensor imaging (DTI) have documented white matter (WM) alterations in Alzheimer’s disease (AD). The full potential of whole-brain DTI, however, has not been fully exploited as studies have focused on individual microstructural indices independently. In patients with AD (n = 79), mild (MCI, n = 55) and subjective (SCI, n = 30) cognitive impairment, we applied linked independent component analysis (LICA) to model inter-subject variability across five complementary DTI measures (fractional anisotropy (FA), axial/radial/mean diffusivity, diffusion tensor mode), two crossing fiber measures estimated using a multi-compartment crossing-fiber model reflecting the volume fraction of the dominant (f1) and non-dominant (f2) diffusion orientation, and finally, connectivity density obtained from full-brain probabilistic tractography. The LICA component explaining the largest data variance was highly sensitive to disease severity (AD < MCI < SCI) and revealed widespread coordinated decreases in FA and f1 with increases in all diffusivity measures in AD. Additionally, it reflected regional coordinated decreases and increases in f2, mode and connectivity density, implicating bidirectional alterations of crossing fibers in the fornix, uncinate fasciculi, corpus callosum and major sensorimotor pathways. LICA yielded improved diagnostic classification performance compared to univariate region-of-interest features. Our results document coordinated WM microstructural and connectivity alterations in line with disease severity across the AD continuum. PMID:28338052

  18. Clinically silent choroid plexus cyst: evaluation by diffusion-weighted MRI.

    PubMed

    Kinoshita, Toshibumi; Moritani, Toshio; Hiwatashi, Akio; Numaguchi, Yuji; Wang, Henry Z; Westesson, Per-Lennart A; Sugihara, Shuji; Matsusue, Eiji; Fujii, Shinya; Ohama, Eisaku; Ogawa, Toshihide

    2005-04-01

    We retrospectively reviewed diffusion-weighted magnetic resonance images of 57 patients with a choroid plexus cyst diagnosed by contrast-enhanced T1-weighted imaging. All the cysts appeared to represent incidental findings. Thirty-eight of 57 patients had bilateral cysts and 19 had unilateral ones. On diffusion-weighted images, 78 of 95 cysts showed homogeneously high signal intensity, 12 showed focal high signal areas, and 5 had no portion with a high signal. The apparent diffusion coefficient of the high signal areas in the cysts was (1.46+/-0.14) x10(-3) mm(2)/s, intermediate between the apparent diffusion coefficients of cerebrospinal fluid and cerebral white matter, (3.15+/-0.67) x10(-3) and (0.79+/-0.22) x10(-3) mm(2)/s, respectively. Pathological correlation was available in one case, showing high signal intensity areas in the glomera of the choroid plexuses in the lateral ventricles on diffusion-weighted images corresponding to gelatinous cysts with highly proteinaceous content.

  19. Combined diffusion and strain tensor MRI reveals a heterogeneous, planar pattern of strain development during isometric muscle contraction.

    PubMed

    Englund, Erin K; Elder, Christopher P; Xu, Qing; Ding, Zhaohua; Damon, Bruce M

    2011-05-01

    The purposes of this study were to create a three-dimensional representation of strain during isometric contraction in vivo and to interpret it with respect to the muscle fiber direction. Diffusion tensor MRI was used to measure the muscle fiber direction of the tibialis anterior (TA) muscle of seven healthy volunteers. Spatial-tagging MRI was used to measure linear strains in six directions during separate 50% maximal isometric contractions of the TA. The strain tensor (E) was computed in the TA's deep and superficial compartments and compared with the respective diffusion tensors. Diagonalization of E revealed a planar strain pattern, with one nonzero negative strain (ε(N)) and one nonzero positive strain (ε(P)); both strains were larger in magnitude (P < 0.05) in the deep compartment [ε(N) = -40.4 ± 4.3%, ε(P) = 35.1 ± 3.5% (means ± SE)] than in the superficial compartment (ε(N) = -24.3 ± 3.9%, ε(P) = 6.3 ± 4.9%). The principal shortening direction deviated from the fiber direction by 24.0 ± 1.3° and 39.8 ± 6.1° in the deep and superficial compartments, respectively (P < 0.05, deep vs. superficial). The deviation of the shortening direction from the fiber direction was due primarily to the lower angle of elevation of the shortening direction over the axial plane than that of the fiber direction. It is concluded that three-dimensional analyses of strain interpreted with respect to the fiber architecture are necessary to characterize skeletal muscle contraction in vivo. The deviation of the principal shortening direction from the fiber direction may relate to intramuscle variations in fiber length and pennation angle.

  20. Conductivity tensor mapping of the human brain using diffusion tensor MRI

    PubMed Central

    Tuch, David S.; Wedeen, Van J.; Dale, Anders M.; George, John S.; Belliveau, John W.

    2001-01-01

    Knowledge of the electrical conductivity properties of excitable tissues is essential for relating the electromagnetic fields generated by the tissue to the underlying electrophysiological currents. Efforts to characterize these endogenous currents from measurements of the associated electromagnetic fields would significantly benefit from the ability to measure the electrical conductivity properties of the tissue noninvasively. Here, using an effective medium approach, we show how the electrical conductivity tensor of tissue can be quantitatively inferred from the water self-diffusion tensor as measured by diffusion tensor magnetic resonance imaging. The effective medium model indicates a strong linear relationship between the conductivity and diffusion tensor eigenvalues (respectively, σ and d) in agreement with theoretical bounds and experimental measurements presented here (σ/d ≈ 0.844 ± 0.0545 S⋅s/mm3, r2 = 0.945). The extension to other biological transport phenomena is also discussed. PMID:11573005

  1. BOX SPLINE BASED 3D TOMOGRAPHIC RECONSTRUCTION OF DIFFUSION PROPAGATORS FROM MRI DATA.

    PubMed

    Ye, Wenxing; Portnoy, Sharon; Entezari, Alireza; Vemuri, Baba C; Blackband, Stephen J

    2011-06-09

    This paper introduces a tomographic approach for reconstruction of diffusion propagators, P( r ), in a box spline framework. Box splines are chosen as basis functions for high-order approximation of P( r ) from the diffusion signal. Box splines are a generalization of B-splines to multivariate setting that are particularly useful in the context of tomographic reconstruction. The X-Ray or Radon transform of a (tensor-product B-spline or a non-separable) box spline is a box spline - the space of box splines is closed under the Radon transform.We present synthetic and real multi-shell diffusion-weighted MR data experiments that demonstrate the increased accuracy of P( r ) reconstruction as the order of basis functions is increased.

  2. An analytical model for estimating water exchange rate in white matter using diffusion MRI.

    PubMed

    Davoodi-Bojd, Esmaeil; Chopp, Michael; Soltanian-Zadeh, Hamid; Wang, Shiyang; Ding, Guangliang; Jiang, Quan

    2014-01-01

    Substantial effort is being expended on using micro-structural modeling of the white matter, with the goal of relating diffusion weighted magnetic resonance imaging (DWMRI) to the underlying structure of the tissue, such as axonal density. However, one of the important parameters affecting diffusion is the water exchange rate between the intra- and extra-axonal space, which has not been fully investigated and is a crucial marker of brain injury such as multiple sclerosis (MS), stroke, and traumatic brain injury (TBI). To our knowledge, there is no diffusion analytical model which includes the Water eXchange Rate (WXR) without the requirement of short gradient pulse (SGP) approximation. We therefore propose a new analytical model by deriving the diffusion signal for a permeable cylinder, assuming a clinically feasible pulse gradient spin echo (PGSE) sequence. Simulations based on Markov Random Walk confirm that the exchange parameter included in our model has a linear correlation (R2>0.88) with the actual WXR. Moreover, increasing WXR causes the estimated values of diameter and volume fraction of the cylinders to increase and decrease, respectively, which is consistent with our findings from histology measurements in tissues near TBI regions. This model was also applied to the diffusion signal acquired from ex vivo brains of 14 male (10 TBI and 4 normal) rats using hybrid diffusion imaging. The estimated values of axon diameter and axonal volume fraction are in agreement with their corresponding histological measurements in normal brains, with 0.96 intra-class correlation coefficient value resulting from consistency analysis. Moreover, a significant increase (p = 0.001) in WXR and diameter and decrease in axonal volume fraction in the TBI boundary were detected in the TBI rats compared with the normal rats.

  3. Quantifying the Diffusion of a Fluid through Membranes by RemoteDetection MRI

    SciTech Connect

    Telkki, Ville-Veikko; Hilty, Christian; Garcia, Sandra; Harel,Elad; Pines, Alexander

    2006-10-24

    We present a method to measure self-diffusion acrossmembranes without the need for concentration or pressure gradients.Hyperpolarized xenon in combination with remote detection of NMR allowsthe measurement of membrane permeation, even in the gas phase. Theresulting images allow quantification of the amount of fluid diffusedthrough the membrane, and represent an alternative, potentially moreprecise way of measuring a membrane diffusion coefficient. The use ofremote detection of NMR allows for non-invasive signal encoding coupledto sensitive detection, making this approach ideal for the study ofdiffusion in intact devices such as fuel cells or separationsystems.

  4. An evaluation of the contributions of diffusion and exchange in relaxation enhancement by MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Gossuin, Yves; Roch, Alain; Muller, Robert N.; Gillis, Pierre

    2002-09-01

    Magnetic compounds are known to enhance water proton relaxation, either by diffusion or by proton exchange. An experimental procedure to distinguish both mechanisms is proposed and validated by relaxation measurements made in water-methanol solutions of Dy 3+, Ni 2+, Gd 3+, Tempo, and AMI-25. The test discriminates according to the character of the transverse relaxation in water-methanol solutions: a mono-exponential decay corresponds to diffusion, while a bi-exponential decay indicates the contribution of a proton exchange. The study of ferritin and akaganeite particle solutions confirms the occurrence of a proton exchange between protons belonging to hydroxyl groups of the particle surface and free water protons.

  5. Neural substrates of vulnerability to postsurgical delirium as revealed by presurgical diffusion MRI.

    PubMed

    Cavallari, Michele; Dai, Weiying; Guttmann, Charles R G; Meier, Dominik S; Ngo, Long H; Hshieh, Tammy T; Callahan, Amy E; Fong, Tamara G; Schmitt, Eva; Dickerson, Bradford C; Press, Daniel Z; Marcantonio, Edward R; Jones, Richard N; Inouye, Sharon K; Alsop, David C

    2016-04-01

    Despite the significant impact of postoperative delirium on surgical outcomes and the long-term prognosis of older patients, its neural basis has not yet been clarified. In this study we investigated the impact of premorbid brain microstructural integrity, as measured by diffusion tensor imaging before surgery, on postoperative delirium incidence and severity, as well as the relationship among presurgical cognitive performance, diffusion tensor imaging abnormalities and postoperative delirium. Presurgical diffusion tensor imaging scans of 136 older (≥70 years), dementia-free subjects from the prospective Successful Aging after Elective Surgery study were analysed blind to the clinical data and delirium status. Primary outcomes were postoperative delirium incidence and severity during the hospital stay, as assessed by the Confusion Assessment Method. We measured cognition before surgery using general cognitive performance, a composite score based on a battery of neuropsychological tests. We investigated the association between presurgical diffusion tensor imaging parameters of brain microstructural integrity (i.e. fractional anisotropy, axial, mean and radial diffusivity) with postoperative delirium incidence and severity. Analyses were adjusted for the following potential confounders: age, gender, vascular comorbidity status, and general cognitive performance. Postoperative delirium occurred in 29 of 136 subjects (21%) during hospitalization. Presurgical diffusion tensor imaging abnormalities of the cerebellum, cingulum, corpus callosum, internal capsule, thalamus, basal forebrain, occipital, parietal and temporal lobes, including the hippocampus, were associated with delirium incidence and severity, after controlling for age, gender and vascular comorbidities. After further controlling for general cognitive performance, diffusion tensor imaging abnormalities of the cerebellum, hippocampus, thalamus and basal forebrain still remained associated with delirium

  6. Constrained reverse diffusion for thick slice interpolation of 3D volumetric MRI images.

    PubMed

    Neubert, Aleš; Salvado, Olivier; Acosta, Oscar; Bourgeat, Pierrick; Fripp, Jurgen

    2012-03-01

    Due to physical limitations inherent in magnetic resonance imaging scanners, three dimensional volumetric scans are often acquired with anisotropic voxel resolution. We investigate several interpolation approaches to reduce the anisotropy and present a novel approach - constrained reverse diffusion for thick slice interpolation. This technique was compared to common methods: linear and cubic B-Spline interpolation and a technique based on non-rigid registration of neighboring slices. The methods were evaluated on artificial MR phantoms and real MR scans of human brain. The constrained reverse diffusion approach delivered promising results and provides an alternative for thick slice interpolation, especially for higher anisotropy factors.

  7. Comparison of Tortuosity Values for MnCl2 and Bacterial Diffusion in a Packed Column Using Magnetic Resonance Imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Smith, J. A.; Ford, R. M.; Fernandez, E. J.

    2002-12-01

    Diffusion through porous media is dependent on the tortuous path of the solute and can be described using a path tortuosity, τ . In this study, we use magnetic resonance imaging (MRI) to analyze the diffusion of a conservative tracer and of bacteria through a packed column to compare predictions for porous-media tortuosity. MRI is a noninvasive imaging technique for visualizing changes in concentration in a packed column as a function of time. Manganese chloride, MnCl2, is a contrasting agent readily detected using MRI. Paramagnetic magnetite particles are attached to the surface of Pseudomonas putida F1 cells using an antibody, thereby enabling us to measure changes in bacterial density within the packed column. In separate experiments, MnCl2 and bacterial distributions within a column of glass-coated polystyrene beads are imaged using MRI, with a spatial resolution of 300 μm. MnCl2 or bacteria labeled with magnetite are introduced into one half of a specially designed chromatography column packed with glass-coated polystyrene beads. Impinging flow is used to create an initial step change in concentration and diffusion is monitored over time using MRI. One-dimensional MnCl2 diffusion and bacterial random motility in porous media have the same mathematical form, with terms for tortuosity and diffusion or motility, respectively. Dbulk is the bulk aqueous diffusion coefficient for MnCl2, 1.24x10-5 cm2/sec, and μ bulk is the bulk motility coefficient for P. putida F1, 3.20x10-5 cm2/sec. Both sets of diffusion data are analyzed by fitting numerical simulations of model equations to experimental data and determining the column tortuosity, τ . We have found that the column tortuosity observed using MnCl2 diffusion data is an order of magnitude smaller than that observed using bacterial diffusion data. This discrepancy suggests that bacteria swimming through porous media may experience a more tortuous path than other diffusing solutes. We believe that at small pore

  8. MRI Edge Enhancement as a Diffusive Discord of Spin Phase Structure

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Duh, Andrej; Mohorič, Aleš; Serša, Igor

    1999-03-01

    The enhancement of magnetic resonance image intensity near impermeable boundaries can be nicely described by a new approach where the diffusional spin echo attenuation is linked to the correlation function of molecular motion. In this method the spin phase structure created by the applied gradient is considered to be a composition of plane waves with the wave vectors representing feasible momentum states of a particle in confinement. The enhancement of edges on the magnetic resonance images (MRI) comes out as a discord of plane waves due to particle motion. It results from the average of the wave phase by using the cumulant expansion in the Gaussian approximation. The acquired analytical expression describes the MRI signal space distribution where the enhancement of edges depends on the intensity and the duration of gradient sequence as well as on the length of the mean squared particle displacement in restricted geometry. This new method works well with gradients of general waveform and is, therefore, suitable for imaging sequences where finite or even modulated gradients are usually used.

  9. Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods

    NASA Astrophysics Data System (ADS)

    Pop, Mihaela; Ghugre, Nilesh R.; Ramanan, Venkat; Morikawa, Lily; Stanisz, Greg; Dick, Alexander J.; Wright, Graham A.

    2013-08-01

    Many have speculated that MRI signal characteristics can be used to identify regions of heterogeneous infarct associated with an arrhythmogenic substrate; however, direct evidence of this relationship is limited. The aim of this study was to demonstrate the remodelling characteristics of fibrosis by means of histology and high-resolution MR imaging. For this purpose, we performed whole-mount histology in heart samples (n = 9) collected from five swine at six weeks post-infarction and compared the extent of fibrosis in the infarcted areas delineated in these histological images with that obtained ex vivo by MRI using late gadolinium-enhancement (LGE) and diffusion-weighted imaging (DWI) methods. All MR images were obtained at a submillimetre resolution (i.e., voxel size of 0.6×0.6×1.2 mm3). Specifically, in the histology images, we differentiated moderate fibrosis (consisting of a mixture of viable and non-viable myocytes, known as border zone, BZ) from severe fibrosis (i.e., the dense scar). Correspondingly, tissue heterogeneities in the MR images were categorized by a Gaussian mixture model into healthy, BZ and scar. Our results showed that (a) both MRI methods were capable of qualitatively distinguishing sharp edges between dense scar and healthy tissue from regions of heterogeneous BZ; (b) the BZ and dense scar areas had intermediate-to-high increased values of signal intensity in the LGE images and of apparent diffusion coefficient in the DWI, respectively. In addition, as demonstrated by the Picrosirius Red and immunohistochemistry stains, the viable bundles in the BZ were clearly separated by thin collagen strands and had reduced expression of Cx43, whereas the core scar was composed of dense fibrosis. A quantitative analysis demonstrated that the comparison between BZ/scar extent in LGE and DWI to the corresponding areas identified in histology yielded very good correlations (i.e., for the scar identified by LGE, R2 was 0.96 compared to R2 = 0.93 for the

  10. Segmentation of high angular resolution diffusion MRI using sparse riemannian manifold clustering.

    PubMed

    Çetingül, H Ertan; Wright, Margaret J; Thompson, Paul M; Vidal, René

    2014-02-01

    We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to model diffusion and cast the ODF segmentation problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and to the concentration parameters, and show its superior performance compared to alternative methods when analyzing complex fiber configurations. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers and white matter fiber tracts of clinical importance.

  11. Detecting compartmental non-Gaussian diffusion with symmetrized double-PFG MRI.

    PubMed

    Paulsen, Jeffrey L; Özarslan, Evren; Komlosh, Michal E; Basser, Peter J; Song, Yi-Qiao

    2015-11-01

    Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical indications of stroke and other tissue pathologies. However, when conventional NMR techniques are applied to biological tissues and other heterogeneous materials, the presence of multiple compartments (pores) with different Gaussian diffusivities will also contribute to the measurement of non-Gaussian behavior. Here we present symmetrized double PFG (sd-PFG), which can separate these two contributions to non-Gaussian signal decay as having distinct angular modulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously extract kurtosis as an oscillation from samples with isotropic or uniformly oriented anisotropic pores, and can generally extract a combination of compartmental anisotropy and kurtosis. The method further fixes its sensitivity with respect to the time dependence of the apparent diffusion coefficient. We experimentally demonstrate the measurement of the fourth cumulant (kurtosis) of diffusion and find it consistent with theoretical predictions. By enabling the unambiguous identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to help identify the underlying micro-structural changes corresponding to current kurtosis based diagnostics, and act as a novel source of contrast to better resolve tissue micro-structure.

  12. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Quantitative measurement of lung microstructure is of great significance in assessment of pulmonary disease, particularly in the earliest stages. Conventional stereological assessment of ex-vivo fixed tissue specimens under the microscope has a long and successful tradition and is regarded as a gold standard, but the invasive nature limits its applications and the practicality of use in longitudinal studies. The technique for diffusion MRI-based 3He lung morphometry was previously developed and validated for human lungs, and was recently extended to ex-vivo mouse lungs. The technique yields accurate, quantitative information about the microstructure and geometry of acinar airways. In this dissertation, the 3He lung morphometry technique is for the first time successfully implemented for in-vivo studies of mice. It can generate spatially-resolved maps of parameters that reveal the microstructure of mouse lung. Results in healthy mice indicate excellent agreement between in-vivo morphometry via 3He MRI and microscopic morphometry after sacrifice. The implementation and validation of 3He morphometry in healthy mice open up new avenues for application of the technique as a precise, noninvasive, in-vivo biomarker of changes in lung microstructure, within various mouse models of lung disease. We have applied 3He morphometry to the Sendai mouse model of lung disease. Specifically, the Sendai-virus model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human COPD and asthma, but the effect on distal lung parenchyma had not been investigated. We imaged the time course and regional distribution of mouse lung microstructural changes in vivo after Sendai virus (SeV) infection with 1H and 3He diffusion MRI. 1H MR images detected the SeV-induced pulmonary inflammation in vivo and 3He lung morphometry showed modest increase in alveolar duct radius distal to airway

  13. A possible in situ 3H and 3He source in Earth's interior: an alternative explanation of origin of 3He in deep Earth.

    PubMed

    Jiang, Songsheng; Liu, Jing; He, Ming

    2010-07-01

    Origin of (3)He in the Earth is a mystery. Lacking a production mechanism, scientists assume (3)He was trapped in the Earth, when the Earth was formed. In contrast to this assumption, we have found (3)He and (3)H concentrations in excess of the atmospheric values in the deep waters of the volcanic Lakes Pavin (France), Laacher (Germany) and Nemrut (Turkey). This paper reports the result of finding (3)H in these three volcanic lakes that appear to originate from the mantle. Because (3)H has a half-life of 12.3 years, this (3)H and the resulting (3)He must have formed recently in the mantle and not be part of a primordial reservoir. The nuclear reactions that generate tritium might be a source of "missing" energy in the interior of the Earth.

  14. White matter alterations in adults with probable developmental coordination disorder: an MRI diffusion tensor imaging study.

    PubMed

    Williams, Jacqueline; Kashuk, Saman R; Wilson, Peter H; Thorpe, Graham; Egan, Gary F

    2017-01-18

    Movement skill difficulties in children [or developmental coordination disorder (DCD)] often persist into adulthood (in up to 70% of cases). The suggestion of white matter microstructure alterations in children with DCD raises the question of whether similar alterations are present in adults with probable DCD (pDCD). Twelve adults with pDCD and 11 adults without pDCD underwent diffusion tensor imaging. The results showed that the pDCD group had significantly lower fractional anisotropy in the corticospinal tract and superior longitudinal fasciculus and lower mean diffusivity in the internal capsule and inferior longitudinal fasciculus. This suggests reduced white matter integrity in parietofrontal and corticospinal tracts, with possible compensatory increases in white matter integrity along the visual ventral stream and front-occipital networks. These findings support recent neuroimaging studies in children with DCD and suggest persistent neurobiological alterations along white matter tracts that are known to support motor planning, cognition and their association.

  15. Collagen fibers mediate MRI-detected water diffusion and anisotropy in breast cancers.

    PubMed

    Kakkad, Samata; Zhang, Jiangyang; Akhbardeh, Alireza; Jacob, Desmond; Krishnamachary, Balaji; Solaiyappan, Meiyappan; Jacobs, Michael A; Raman, Venu; Leibfritz, Dieter; Glunde, Kristine; Bhujwalla, Zaver M

    2016-10-01

    Collagen 1 (Col1) fibers play an important role in tumor interstitial macromolecular transport and cancer cell dissemination. Our goal was to understand the influence of Col1 fibers on water diffusion, and to examine the potential of using noninvasive diffusion tensor imaging (DTI) to indirectly detect Col1 fibers in breast lesions. We previously observed, in human MDA-MB-231 breast cancer xenografts engineered to fluoresce under hypoxia, relatively low amounts of Col1 fibers in fluorescent hypoxic regions. These xenograft tumors together with human breast cancer samples were used here to investigate the relationship between Col1 fibers, water diffusion and anisotropy, and hypoxia. Hypoxic low Col1 fiber containing regions showed decreased apparent diffusion coefficient (ADC) and fractional anisotropy (FA) compared to normoxic high Col1 fiber containing regions. Necrotic high Col1 fiber containing regions showed increased ADC with decreased FA values compared to normoxic viable high Col1 fiber regions that had increased ADC with increased FA values. A good agreement of ADC and FA patterns was observed between in vivo and ex vivo images. In human breast cancer specimens, ADC and FA decreased in low Col1 containing regions. Our data suggest that a decrease in ADC and FA values observed within a lesion could predict hypoxia, and a pattern of high ADC with low FA values could predict necrosis. Collectively the data identify the role of Col1 fibers in directed water movement and support expanding the evaluation of DTI parameters as surrogates for Col1 fiber patterns associated with specific tumor microenvironments as companion diagnostics and for staging.

  16. Diagnosing necrotic meningioma: a distinctive imaging pattern in diffusion MRI and MR spectroscopy.

    PubMed

    Ben-Arie, Gal; Serlin, Yonatan; Ivens, Sebastian; Benifla, Mony; Cagnano, Emanuela; Melamed, Israel; Merkin, Vladimir; Shelef, Ilan

    2017-02-01

    The differential diagnosis of necrotic meningiomas includes brain abscess and malignant neoplasms. We report and discuss hereby the work-up of two patients diagnosed with necrotic meningioma using diffusion-weighted imaging, magnetic resonance spectroscopy, resective surgery, and histopathology. The purpose of the present article is to add to the scant literature on the use of advanced imaging modalities in the routine investigation of brain lesions and their utility in arriving at the final diagnosis.

  17. Near threshold two meson production with the pd→3Heπ+π- and pd→3HeK+K- reactions

    NASA Astrophysics Data System (ADS)

    Bellemann, F.; Berg, A.; Bisplinghoff, J.; Bohlscheid, G.; Ernst, J.; Henrich, C.; Hinterberger, F.; Ibald, R.; Jahn, R.; Jarczyk, L.; Joosten, R.; Kozela, A.; Machner, H.; Magiera, A.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Munkel, J.; von Neumann-Cosel, P.; Rosendaal, D.; von Rossen, P.; Schnitker, H.; Scho, K.; Smyrski, J.; Strzalkowski, A.; Tölle, R.; Wilkin, C.

    2000-06-01

    Near threshold two meson production via the reactions pd→3Heπ+π- and pd→3HeK+K- was measured kinematically complete with the MOMO experiment at COSY. The obtained two pion invariant mass spectra and angular distributions depict a remarkable deviation from phase space. The two kaon data are consistent with phase space topped by a clear signal of the φ meson.

  18. Thermodynamic properties of liquid 3He- 4He mixtures at zero pressure for temperatures below 250 mK and 3He concentrations below 8%

    NASA Astrophysics Data System (ADS)

    Kuerten, J. G. M.; Castelijns, C. A. M.; de Waele, A. T. A. M.; Gijsman, H. M.

    We calculated the thermodynamic quantities of dilute liquid 3He- 4He mixtures, starting from experimental values of the specific heat and the osmotic pressure. The calculations are confined to temperatures below 250 mK and 3He concentrations below 8% at zero pressure. Some results are especially useful for dilution refrigeration. Contrary to the calculations previously performed by Radebaugh, our results are in good agreement with the experimental date on both the osmotic pressure and the osmotic enthalpy.

  19. Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry

    PubMed Central

    Eaton‐Rosen, Zach; Orasanu, Eliza; Price, David; Bainbridge, Alan; Cardoso, M. Jorge; Kendall, Giles S.; Robertson, Nicola J.; Marlow, Neil; Ourselin, Sebastien

    2016-01-01

    Abstract Infants born prematurely are at increased risk of adverse neurodevelopmental outcome. The measurement of white matter tissue composition and structure can help predict functional performance. Specifically, measurements of myelination and indicators of myelination status in the preterm brain could be predictive of later neurological outcome. Quantitative imaging of myelin could thus serve to develop biomarkers for prognosis or therapeutic intervention; however, accurate estimation of myelin content is difficult. This work combines diffusion MRI and multi‐component T2 relaxation measurements in a group of 37 infants born very preterm and scanned between 27 and 58 weeks equivalent gestational age. Seven infants have longitudinal data at two time points that we analyze in detail. Our aim is to show that measurement of the myelin water fraction is achievable using widely available pulse sequences and state‐of‐the‐art algorithmic modeling of the MR imaging procedure and that a multi‐component fitting routine to multi‐shell diffusion weighted data can show differences in neurite density and local spatial arrangement in grey and white matter. Inference on the myelin water fraction allows us to demonstrate that the change in diffusion properties of the preterm thalamus is not solely due to myelination (that increase in myelin content accounts for about a third of the observed changes) whilst the decrease in the posterior white matter T2 has no significant component that is due to myelin water content. This work applies multi‐modal advanced quantitative neuroimaging to investigate changing tissue properties in the longitudinal setting. Hum Brain Mapp 37:2479–2492, 2016. © The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:26996400

  20. The spectra of mixed 3He-4He droplets

    NASA Astrophysics Data System (ADS)

    Fantoni, S.; Guardiola, R.; Navarro, J.; Zuker, A.

    2005-08-01

    The diffusion Monte Carlo technique is used to calculate and analyze the excitation spectrum of He3 atoms bound to a cluster of He4 atoms by using a previously determined optimum filling of single-fermion orbits with well-defined orbital angular momentum L, spin S, and parity quantum numbers. The study concentrates on the energies and shapes of the three kinds of states for which the fermionic part of the wave function is a single Slater determinant: maximum L or maximum S states within a given orbit, and fully polarized clusters. The picture that emerges is that of systems with strong shell effects, whose binding and excitation energies are essentially determined by averages over configuration at fixed number of particles and spin, i.e., by the monopole properties of an effective Hamiltonian.

  1. Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: Correlation between radiologic and histopathologic findings

    SciTech Connect

    Vandecaveye, Vincent; Keyzer, Frederik de; Nuyts, Sandra; Deraedt, Karen; Dirix, Piet; Hamaekers, Pascal; Vander Poorten, Vincent; Delaere, Pierre; Hermans, Robert . E-mail: Robert.Hermans@uzleuven.be

    2007-03-15

    Purpose: To investigate the value of diffusion weighted magnetic resonance imaging (DW-MRI) in differentiating persistent or recurrent head and neck squamous cell carcinoma (HNSCC) from nontumoral postradiotherapeutic alterations. Methods and Materials: In 26 patients with suspicion of persistent or recurrent HNSCC, MRI of the head and neck was performed, including routine turbo spin-echo (TSE) sequences and an additional echo-planar DW-MRI sequence, using a large range of b-values (0-1000 s/mm{sup 2}). Apparent diffusion coefficient (ADC) maps were calculated. In the suspect areas at the primary site and in the suspect lymph nodes, signal intensity was measured on the native b0 and b1000 images and ADC values were calculated for these tissues. The same was done for surrounding irradiated normal tissue. Imaging results were correlated to histopathology. Results: Signal intensity on native b0 images was significantly lower for HNSCC than for nontumoral postradiotherapeutic tissue (p < 0.0001), resulting in a sensitivity of 66.2%, specificity of 60.8%, and accuracy of 62.4%. Signal intensity on native b1000 images was significantly higher for HNSCC than for nontumoral tissue (p < 0.0001), resulting in a sensitivity of 71.6%, specificity of 71.3%, and accuracy of 71.4%. ADC values were significantly lower for HNSCC than for nontumoral tissue (p < 0.0001), resulting in a sensitivity of 94.6%, specificity of 95.9%, and accuracy of 95.5%. When compared with computed tomography, TSE-MRI and fluorodeoxyglucose-positron emission tomography, DW-MRI yielded fewer false-positive results in persistent primary site abnormalities and in persistent adenopathies, and aided in the detection of subcentimetric nodal metastases. Conclusions: Diffusion weighted-MRI accurately differentiates persistent or recurrent HNSCC from nontumoral tissue changes after (chemo)radiotherapy.

  2. Automatic right ventricle segmentation in cardiac MRI via anisotropic diffusion and SPCNN

    NASA Astrophysics Data System (ADS)

    Wang, Kemin; Ma, Yurun; Lei, Ruoming; Yang, Zhen; Ma, Yide

    2017-02-01

    Cardiac Magnetic Resonance Image (CMRI) is a significant assistant for the cardiovascular disease clinical diagnosis. The segmentation of right ventricle (RV) is essential for cardiac function evaluation, especially for RV function measurement. Automatic RV segmentation is difficult due to the intensity inhomogeneity and the irregular shape. In this paper, we propose an automatic RV segmentation framework. Firstly, we use the anisotropic diffusion to filter the CMRI. And then, the endocardium is extracted by the simplified pulse coupled neural network (SPCNN) segmentation. At last, the morphologic processors are used to obtain the epicardium. The experiment results show that our method obtains a good performance for both the endocardium and the epicardium segmentation.

  3. Asymmetric Interhemispheric Transfer in the Auditory Network: Evidence from TMS, Resting-State fMRI, and Diffusion Imaging.

    PubMed

    Andoh, Jamila; Matsushita, Reiko; Zatorre, Robert J

    2015-10-28

    Hemispheric asymmetries in human auditory cortical function and structure are still highly debated. Brain stimulation approaches can complement correlational techniques by uncovering causal influences. Previous studies have shown asymmetrical effects of transcranial magnetic stimulation (TMS) on task performance, but it is unclear whether these effects are task-specific or reflect intrinsic network properties. To test how modulation of auditory cortex (AC) influences functional networks and whether this influence is asymmetrical, the present study measured resting-state fMRI connectivity networks in 17 healthy volunteers before and immediately after TMS (continuous theta burst stimulation) to the left or right AC, and the vertex as a control. We also examined the relationship between TMS-induced interhemispheric signal propagation and anatomical properties of callosal auditory fibers as measured with diffusion-weighted MRI. We found that TMS to the right AC, but not the left, resulted in widespread connectivity decreases in auditory- and motor-related networks in the resting state. Individual differences in the degree of change in functional connectivity between auditory cortices after TMS applied over the right AC were negatively related to the volume of callosal auditory fibers. The findings show that TMS-induced network modulation occurs, even in the absence of an explicit task, and that the magnitude of the effect differs across individuals as a function of callosal structure, supporting a role for the corpus callosum in mediating functional asymmetry. The findings support theoretical models emphasizing hemispheric differences in network organization and are of practical significance in showing that brain stimulation studies need to take network-level effects into account.

  4. Transport in very dilute solutions of 3He in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Baym, Gordon; Beck, D. H.; Pethick, C. J.

    2013-07-01

    Motivated by a proposed experimental search for the electric dipole moment of the neutron (nEDM) utilizing neutron-3He capture in a dilute solution of 3He in superfluid 4He, we derive the transport properties of dilute solutions in the regime where the 3He are classically distributed and rapid 3He-3He scatterings keep the 3He in equilibrium. Our microscopic framework takes into account phonon-phonon, phonon-3He, and 3He-3He scatterings. We then apply these calculations to measurements by Rosenbaum [J. Low Temp. Phys.JLTPAC0022-229110.1007/BF00655864 16, 131 (1974)] and by Lamoreaux [Europhys. Lett.EULEEJ0295-507510.1209/epl/i2002-00408-4 58, 718 (2002)] of dilute solutions in the presence of a heat flow. We find satisfactory agreement of theory with the data, serving to confirm our understanding of the microscopics of the helium in the future nEDM experiment.

  5. Cluster folding model analysis of 3He elastic and inelastic scattering from 12C

    NASA Astrophysics Data System (ADS)

    Khallaf, S. A. E.; Nossair, A. M. A.; Ebrahim, A. A.; Ebraheem, Awad A.

    2003-02-01

    Angular distributions of differential cross sections for the 12C( 3He, 3He) 12C, 12C( 3He, 3He) 12C ∗ reactions at E=72 MeV have been analyzed with a double folding cluster model DFC based on five sets of the effective N-N interaction of Gaussian form with different parameters. The transition to the (2 +; 4.44 MeV) state in 12C is studied and the deformation length δ2 is extracted. It is found that the extracted deformation length is sensitive to the nuclear model used and it is similar to the corresponding value found in the literature.

  6. Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Mueller, B. W.; Miller, F. K.

    2016-10-01

    A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.

  7. Performance of Apparent Diffusion Coefficient Values and Conventional MRI Features in Differentiating Tumefactive Demyelinating Lesions From Primary Brain Neoplasms

    PubMed Central

    Mabray, Marc C.; Cohen, Benjamin A.; Villanueva-Meyer, Javier E.; Valles, Francisco E.; Barajas, Ramon F.; Rubenstein, James L.; Cha, Soonmee

    2015-01-01

    OBJECTIVE Tumefactive demyelinating lesions (TDLs) remain one of the most common brain lesions to mimic a brain tumor, particularly primary CNS lymphoma (PCNSL) and high-grade gliomas. The purpose of our study was to evaluate the ability of apparent diffusion coefficient (ADC) values and conventional MRI features to differentiate TDLs from PCNSLs and high-grade gliomas. MATERIALS AND METHODS Seventy-five patients (24 patients with TDLs, 28 with PCNSLs, and 23 with high-grade gliomas) with 168 brain lesions (70 TDLs, 68 PCNSLs, and 30 high-grade gliomas) who underwent DWI before surgery or therapy were included in the study. Minimum ADC (ADCmin) and average ADC (ADCavg) values were calculated for each lesion. ANOVA and ROC analyses were performed. ROC analyses were also performed for the presence of incomplete rim enhancement and for the number of lesions. Multiple-variable logistic regression with ROC analysis was then performed to evaluate performance in multiple-variable models. RESULTS ADCmin was statistically significantly higher (p < 0.01) in TDLs (mean, 0.886; 95% CI, 0.802–0.931) than in PCNSLs (0.547; 95% CI, 0.496–0.598) and high-grade gliomas (0.470; 95% CI, 0.385–0.555). (All ADC values in this article are reported in units of × 10−3 mm2/s.) ADCavg was statistically significantly higher (p < 0.01) in TDLs (mean, 1.362; 95% CI, 1.268–1.456) than in PCNSLs (0.990; 95% CI, 0.919–1.061) but not in high-grade gliomas (1.216; 95% CI, 1.074–1.356). Multiple-variable models showed statistically significant individual effects and superior diagnostic performance on ROC analysis. CONCLUSION TDLs can be diagnosed on preoperative MRI with a high degree of specificity; MRI features of incomplete rim enhancement, high ADC values, and a large number of lesions individually increase the probability and diagnostic confidence that a lesion is a TDL. PMID:26496556

  8. Staging of Primary Abdominal Lymphomas: Comparison of Whole-Body MRI with Diffusion-Weighted Imaging and 18F-FDG-PET/CT

    PubMed Central

    Stecco, Alessandro; Buemi, Francesco; Quagliozzi, Martina; Lombardi, Mariangela; Santagostino, Alberto; Sacchetti, Gian Mauro; Carriero, Alessandro

    2015-01-01

    Background. The purpose of this study was to compare the accuracy of whole-body MRI with diffusion-weighted sequences (WB-DW-MRI) with that of 18F-FDG-PET/CT in the staging of patients with primary gastrointestinal lymphoma. Methods. This retrospective study involved 17 untreated patients with primary abdominal gastrointestinal lymphoma. All patients underwent 18F-FDG-PET/CT and WB-DW-MRI. Histopathology findings or at least 6 months of clinical and radiological follow-up was the gold standard. The Musshoff-modified Ann Arbor system was used for staging, and diagnostic accuracy was evaluated on a per-node basis. Results. WB-DW-MRI exhibited 100% sensitivity, 96.3% specificity, and 96.1% and 100% positive and negative predictive values (PPV and NPV), respectively. The sensitivity, specificity, and PPV and NPV of PET/CT were 95.9%, 100%, and 100% and 96.4%, respectively. There were no statistically significant differences between the two techniques (p = 0.05). The weighted kappa agreement statistics with a 95% confidence interval were 0.97 (0.95–0.99) between the two MRI readers and 0.87 (0.82–0.92) between the two methods. Conclusions. WB-DW-MRI appears to have a comparable diagnostic value to 18F-FDG-PET/CT in staging patients with gastrointestinal lymphoma. PMID:26798331

  9. Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom to determine which acquisition scheme and analysis method to use?

    PubMed Central

    Ning, Lipeng; Laun, Frederik; Gur, Yaniv; DiBella, Edward V. R.; Deslauriers-Gauthier, Samuel; Megherbi, Thinhinane; Ghosh, Aurobrata; Zucchelli, Mauro; Menegaz, Gloria; Fick, Rutger; St-Jean, Samuel; Paquette, Michael; Aranda, Ramon; Descoteaux, Maxime; Deriche, Rachid; O’Donnell, Lauren; Rathi, Yogesh

    2015-01-01

    Diffusion magnetic resonance imaging (dMRI) is the modality of choice for investigating in-vivo white matter connectivity and neural tissue architecture of the brain. The diffusion-weighted signal in dMRI reflects the diffusivity of water molecules in brain tissue and can be utilized to produce image-based biomarkers for clinical research. Due to the constraints on scanning time, a limited number of measurements can be acquired within a clinically feasible scan time. In order to reconstruct the dMRI signal from a discrete set of measurements, a large number of algorithms have been proposed in recent years in conjunction with varying sampling schemes, i.e., with varying b-values and gradient directions. Thus, it is imperative to compare the performance of these reconstruction methods on a single data set to provide appropriate guidelines to neuroscientists on making an informed decision while designing their acquisition protocols. For this purpose, the SParse Reconstruction Challenge (SPARC) was held along with the workshop on Computational Diffusion MRI (at MICCAI 2014) to validate the performance of multiple reconstruction methods using data acquired from a physical phantom. A total of 16 reconstruction algorithms (9 teams) participated in this community challenge. The goal was to reconstruct single b-value and/or multiple b-value data from a sparse set of measurements. In particular, the aim was to determine an appropriate acquisition protocol (in terms of the number of measurements, b-values) and the analysis method to use for a neuroimaging study. The challenge did not delve on the accuracy of these methods in estimating model specific measures such as fractional anisotropy (FA) or mean diffusivity, but on the accuracy of these methods to fit the data. This paper presents several quantitative results pertaining to each reconstruction algorithm. The conclusions in this paper provide a valuable guideline for choosing a suitable algorithm and the corresponding

  10. Contributions of bilateral white matter to chronic aphasia symptoms as assessed by diffusion tensor MRI

    PubMed Central

    Geva, Sharon; Correia, Marta M.; Warburton, Elizabeth A.

    2015-01-01

    Language reorganisation following stroke has been studied widely. However, while studies of brain activation and grey matter examined both hemispheres, studies of white matter changes have mostly focused on the left hemisphere. Here we examined the relationship between bilateral hemispheric white matter and aphasia symptoms. 15 chronic stroke patients with aphasia and 18 healthy adults were studied using Diffusion Weighted Imaging data. By applying histogram analysis, Tract-Based Spatial Statistics, tractography and lesion-tract overlap methods, it was found that damage to the left hemisphere in general, and to the arcuate fasciculus in particular, correlated with impairments on word repetition, object naming, sentence comprehension and homophone and rhyme judgement. However, no such relationship was found in the right hemisphere. It is suggested that while some language function in aphasia can be explained by damage to the left arcuate fasciculus, it cannot be explained by looking at the contra-lesional tract. PMID:26401977

  11. Broca's area and its striatal and thalamic connections: a diffusion-MRI tractography study

    PubMed Central

    Ford, Anastasia A.; Triplett, William; Sudhyadhom, Atchar; Gullett, Joseph; McGregor, Keith; FitzGerald, David B.; Mareci, Thomas; White, Keith; Crosson, Bruce

    2013-01-01

    In the recent decades structural connectivity between Broca's area and the basal ganglia has been postulated in the literature, though no direct evidence of this connectivity has yet been presented. The current study investigates this connectivity using a novel diffusion-weighted imaging (DWI) fiber tracking method in humans in vivo. Our findings suggest direct connections between sub-regions of Broca's area and the anterior one-third of the putamen, as well as the ventral anterior nucleus of the thalamus. Thus, we are the first to provide a detailed account of inferred circuitry involving basal ganglia, thalamus, and Broca's area, which would be a prerequisite to substantiate their support of language processing. PMID:23675324

  12. Sensitivity of Diffusion-Weighted STEAM MRI and EPI-DWI to Infratentorial Ischemic Stroke

    PubMed Central

    Hohenhaus, Marc; Kunze, Claudia; Schmidt, Wolf; Brunecker, Peter; Villringer, Kersten; Merboldt, Klaus-Dietmar; Frahm, Jens; Fiebach, Jochen B.

    2016-01-01

    Objectives To assess the sensitivity of stimulated echo acquisition mode diffusion weighted imaging (STEAM-DWI) to ischemic stroke in comparison to echo-planar imaging diffusion weighted imaging (EPI-DWI) in the infratentorial compartment. Methods Fifty-seven patients presenting with clinical features of infratentorial stroke underwent STEAM-DWI, high-resolution EPI-DWI (HR-DWI, 2.5 mm slice thickness) and low-resolution EPI-DWI (LR-DWI, 5 mm slice thickness). Four readers assessed the presence of ischemic lesions and artifacts. Agreement between sequences and interobserver agreement on the presence of ischemia were calculated. The sensitivities of the DWI sequences were calculated in 45 patients with a confirmed diagnosis of infratentorial stroke. Results Median time from symptom onset to imaging was 24 hours. STEAM-DWI agreed with LR-DWI in 89.5% of cases (kappa = 0.72, p<0.0001) and with HR-DWI in 89.5% of cases (kappa = 0.68, p<0.0001). STEAM-DWI showed fewer intraparenchymal artifacts (1/57) than HR-DWI (44/57) and LR-DWI (41/57). Ischemia was visible in 87% of cases for LR-DWI, 93% of cases for HR-DWI, and 89% of cases for STEAM-DWI. Interobserver agreement was good for STEAM-DWI (kappa = 0.62, p<0.0001). Conclusions Compared to the best currently available MR sequence for detecting ischemia (HR-DWI), STEAM-DWI shows fewer artifacts and a similar sensitivity to infratentorial stroke. PMID:27529697

  13. 3T diffusion-weighted MRI of the thyroid gland with reduced distortion: preliminary results

    PubMed Central

    Nagala, S; Priest, A N; McLean, M A; Jani, P; Graves, M J

    2013-01-01

    Objective: Single-shot diffusion-weighted (DW) echo planar imaging (EPI), which is commonly used for imaging the thyroid, is characterised by severe blurring and distortion. The objectives of this work were: 1, to show that a reduced-field of view (r-FOV) DW EPI technique can improve image quality; and 2, to investigate the effect of different reconstruction strategies on the resulting apparent diffusion coefficients (ADCs). Methods: We implemented a single-shot, r-FOV DW EPI technique with a two-dimensional radiofrequency excitation pulse for DW imaging of the thyroid at 3T. Images were reconstructed using root sum of squares (SOS) and an optimal-B1 reconstruction (OBR). Phantom and in vivo experiments were performed to compare r-FOV and conventional full-FOV DW EPI with root SOS and OBR. Results: r-FOV with OBR substantially improved image quality at 3T. In phantoms, r-FOV gave more accurate ADCs than full-FOV. In vivo r-FOV always gave lower ADC values with respect to the full-FOV technique irrespective of the reconstruction used and whether only two or multiple b-values were used to compute the ADCs. Conclusion: r-FOV DW EPI can reduce image blurring and distortion at the expense of a low signal-to-noise ratio. OBR is a promising reconstruction technique for accurate ADC measurements in lower signal-to-noise ratio regimes, although further studies are needed to characterise its performance. Advances in knowledge: DW imaging of the thyroid at 3T could potentially benefit from r-FOV acquisition strategies, such as the r-FOV DW EPI technique proposed in this paper. PMID:23770539

  14. Diffusion Tensor Imaging of the Uterine Zones Related to the Menstrual Cycle and Menopausal Status at 3 Tesla MRI

    PubMed Central

    Kılıçkesmez, Özgür; Fırat, Zeynep; Oygen, Ayşegül; Bozkurt, Duygu Kara; Güzelbey, Tevfik; Gürses, Bengi; Taşdelen, Neslihan

    2016-01-01

    Background Diffusion and diffusion tensor imaging techniques (DTI) are widely available and used both in central nervous system and body imaging, including gynecological diseases. Aims The aims of this study were to assess the capability of DTI of uterine zones in relation to the menstrual cycle and ascertain the normal apparent diffusion coefficient and fractional anisotropy values at 3T magnetic resonance imaging (MRI). Study Design Prospective clinical study. Methods A total of 13 young reproductive and 12 postmenopausal healthy volunteers were included in the study. MRI examination included sagittal T2-weighted and single-shot echo planar imaging DTI obtained under free breathing. Fractional anisotropy (FA) values of the endometrium, junctional zone, and myometrium were determined. Results The median (minimum-maximum) FA of the endometrium, myometrium, and junctional zone of the reproductive group were 0.31 (0.260–0.465), 0.42 (0.302–0.664), and 0.58 (0.420–0.745), respectively, in the proliferative phase and 0.26 (0.180–0.413), 0.48 (0.357–0.656), and 0.59 (0.490–0.675)], respectively, in the secretory phase. In the postmenopausal group, the FA values of the endometrium, myometrium, and junctional zone were 0.275 (0.136–0.425), 0.255 (0.191–0.553), and 0.27 (0.129–0.397), respectively. Apparent diffusion coefficient (ADC) values of the endometrium, myometrium, and junctional zone of the reproductive group were 1.25±0.254 (0.970–1.463), 1.67 (1.213–1.854), and 1.23 (0.853–1.301), respectively, in the proliferative phase and 1.32±0.283 (1.165–1.706), 1.55 (1.360–1.791), and 1.17 (1.163–1.705), respectively, in the secretory phase. In the postmenopausal group, the ADC values of the endometrium, myometrium, and junctional zone were measured as 1.100±0.192 (0.850–1.302), 1.14 (0.864–1.283), and 1.09 (0.912–1.291). The FA values of the endometrium and myometrium were lower in the secretory phase of the reproductive group, while

  15. Network over-connectivity differentiates autism spectrum disorder from other developmental disorders in toddlers: A diffusion MRI study.

    PubMed

    Conti, E; Mitra, J; Calderoni, S; Pannek, K; Shen, K K; Pagnozzi, A; Rose, S; Mazzotti, S; Scelfo, D; Tosetti, M; Muratori, F; Cioni, G; Guzzetta, A

    2017-01-17

    Advanced connectivity studies in toddlers with Autism Spectrum Disorder (ASD) are increasing and consistently reporting a disruption of brain connectivity. However, most of these studies compare ASD and typically developing subjects, thus providing little information on the specificity of the abnormalities detected in comparison with other developmental disorders (other-DD). We recruited subjects aged below 36 months who received a clinical diagnosis of Neurodevelopmental Disorder (32 ASD and 16 other-DD including intellectual disability and language disorder) according to DSM-IV TR. Structural and diffusion MRI were acquired to perform whole brain probabilistic and anatomically constrained tractography. Network connectivity matrices were built encoding the number of streamlines (DNUM ) and the tract-averaged fractional anisotropy (DFA ) values connecting each pair of cortical and subcortical regions. Network Based Statistics (NBS) was finally applied on the connectivity matrices to evaluate the network differences between the ASD and other-DD groups. The network differences resulted in an over-connectivity pattern (i.e., higher DNUM and DFA values) in the ASD group with a significance of P < 0.05. No contra-comparison results were found. The over-connectivity pattern in ASD occurred in networks primarily involving the fronto-temporal nodes, known to be crucial for social-skill development and basal ganglia, related to restricted and repetitive behaviours in ASD. To our knowledge, this is the first network-based diffusion study comparing toddlers with ASD and those with other-DD. Results indicate the detection of different connectivity patterns in ASD and other-DD at an age when clinical differential diagnosis is often challenging. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  16. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    SciTech Connect

    Xie, Y; Wang, C; Horton, J; Chang, Z

    2015-06-15

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b = 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.

  17. Current concepts on magnetic resonance imaging (MRI) perfusion-diffusion assessment in acute ischaemic stroke: a review & an update for the clinicians

    PubMed Central

    Roldan-Valadez, Ernesto; Lopez-Mejia, Mariana

    2014-01-01

    Recently, several medical societies published joint statements about imaging recommendations for acute stroke and transient ischaemic attack patients. In following with these published guidelines, we considered it appropriate to present a brief, practical and updated review of the most relevant concepts on the MRI assessment of acute stroke. Basic principles of the clinical interpretation of diffusion, perfusion, and MRI angiography (as part of a global MRI protocol) are discussed with accompanying images for each sequence. Brief comments on incidence and differential diagnosis are also included, together with limitations of the techniques and levels of evidence. The purpose of this article is to present knowledge that can be applied in day-to-day clinical practice in specialized stroke units or emergency rooms to attend patients with acute ischaemic stroke or transient ischaemic attack according to international standards. PMID:25758570

  18. Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating

    DOEpatents

    Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.

    A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.

  19. Type 3 solar radio bursts and 3HE-rich events

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Stone, R. G.

    1985-01-01

    The kilometric radio data for 3He-rich events during the 1979 to 82 time period were investigated. Type 3 bursts are present for each event as expected from the prevous electron 3He-event association. A list of identified solar events is presented.

  20. Fusion product studies via fast ion D-D and D-3He fusion on JET

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Hellsten, T.; Kiptily, V. G.; Craciunescu, T.; Eriksson, J.; Fitzgerald, M.; Girardo, J.-B.; Goloborod'ko, V.; Hellesen, C.; Hjalmarsson, A.; Johnson, T.; Kazakov, Y.; Koskela, T.; Mantsinen, M.; Monakhov, I.; Nabais, F.; Nocente, M.; Perez von Thun, C.; Rimini, F.; Santala, M.; Schneider, M.; Tardocchi, M.; Tsalas, M.; Yavorskij, V.; Zoita, V.; Contributors, JET

    2016-11-01

    Dedicated fast ion D-D and D-3He fusion experiments were performed on JET with carbon wall (2008) and ITER-like wall (2014) for testing the upgraded neutron and energetic ion diagnostics of fusion products. Energy spectrum of D-D neutrons was the focus of the studies in pure deuterium plasmas. A significant broadening of the energy spectrum of neutrons born in D-D fast fusion was observed, and dependence of the maximum D and D-D neutron energies on plasma density was established. Diagnostics of charged products of aneutronic D-3He fusion reactions, 3.7 MeV alpha-particles similar to those in D-T fusion, and 14.6 MeV protons, were the focus of the studies in D-3He plasmas. Measurements of 16.4 MeV gamma-rays born in the weak secondary branch of D(3He, γ)5Li reaction were used for assessing D-3He fusion power. For achieving high yield of D-D and D-3He reactions at relatively low levels of input heating power, an acceleration of D beam up to the MeV energy range was used employing 3rd harmonic (f=3{{f}CD} ) ICRH technique. These results were compared to the techniques of D beam injection into D-3He mixture, and 3He-minority ICRH in D plasmas.

  1. 4 He adsorption on a 3He-plated graphite surface

    NASA Astrophysics Data System (ADS)

    Kwon, Yongkyung; Ahn, Jeonghwan

    Path-integral Monte Carlo (PIMC) calculations have been performed for 4He atoms on top of the 3He first layer on graphite. For this we ignore Fermi statistics of solidified 3He adatoms while Bose statistics of 4He atoms are fully incorporated. We first find that the first 3He layer exhibits a 7/12 commensurate solid structure at the areal density of 0.111 Å-2, which turns out to be identical to the experimental value for its completion density. Additional adsorption of 4He atoms above the complete first 3He layer is found to sustain the underlying 3He commensurate structure and the second 4He layer is observed to display the 4/7 commensurate structure with respect to the first-layer commensurate 3He solid at the areal density of 0.0636 Å-2. Furthermore, it is found that the 4/7 commensurate structure of the second-layer 4He atoms can be formed above a mixture of the first-layer 3He and 4He atoms on graphite. These PIMC results suggest that the 4/7 commensurate structure of the second-layer 4He atoms on graphite, whose existence on top of the first 4He layer has long been in dispute, may be realized on a 3He-plated graphite surface. This could lead to a new approach to observe two-dimensional supersolidity in 4He on graphite.

  2. Case Report of False-Negative Diffusion-Weighted Image of Brain Magnetic Resonance Imaging (MRI) in Acute Ischemic Stroke

    PubMed Central

    Chang, Wei-Lun; Lai, Ji-Ching; Chen, Rong-Fu; Hu, Han-Hwa; Pan, Chau-Shiung

    2017-01-01

    Patient: Male, 75 Final Diagnosis: Acute ischemic stroke Symptoms: Dizziness • unsteady gait Medication: — Clinical Procedure: None Specialty: Radiology Objective: Challenging differential diagnosis Background: Acute ischemic stroke is a major cause of mortality and morbidity in Taiwan. Diffusion-weighted image (DWI) is a sensitive and common strategy used for imaging acute ischemic stroke. Case report: We present a case of a negative DWI MRI for detecting acute ischemic stroke in a clinical setting. A 75-year-old male had a DWI performed after onset of symptoms suggesting acute ischemic stroke. The initial DWI result was negative at 72 hours of presentation. The neurological symptoms of the patient persisted and DWI was repeated. After 14 days, the DWI data confirmed and demonstrated an acute ischemic stroke. The delay in DWI confirmation, from symptom onset until DWI diagnosis, was 336 hours. Conclusions: DWI may not have 100% sensitivity and accuracy in early stages of acute ischemic stroke. The time course to the development of abnormalities detected by DWI may be longer than anticipated. PMID:28111452

  3. Gaining insight of fetal brain development with diffusion MRI and histology.

    PubMed

    Huang, Hao; Vasung, Lana

    2014-02-01

    Human brain is extraordinarily complex and yet its origin is a simple tubular structure. Its development during the fetal period is characterized by a series of accurately organized events which underlie the mechanisms of dramatic structural changes during fetal development. Revealing detailed anatomy at different stages of human fetal brain development provides insight on understanding not only this highly ordered process, but also the neurobiological foundations of cognitive brain disorders such as mental retardation, autism, schizophrenia, bipolar and language impairment. Diffusion tensor imaging (DTI) and histology are complementary tools which are capable of delineating the fetal brain structures at both macroscopic and microscopic levels. In this review, the structural development of the fetal brains has been characterized with DTI and histology. Major components of the fetal brain, including cortical plate, fetal white matter and cerebral wall layer between the ventricle and subplate, have been delineated with DTI and histology. Anisotropic metrics derived from DTI were used to quantify the microstructural changes during the dynamic process of human fetal cortical development and prenatal development of other animal models. Fetal white matter pathways have been traced with DTI-based tractography to reveal growth patterns of individual white matter tracts and corticocortical connectivity. These detailed anatomical accounts of the structural changes during fetal period may provide the clues of detecting developmental and cognitive brain disorders at their early stages. The anatomical information from DTI and histology may also provide reference standards for diagnostic radiology of premature newborns.

  4. Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography.

    PubMed

    Dayan, Michael; Munoz, Monica; Jentschke, Sebastian; Chadwick, Martin J; Cooper, Janine M; Riney, Kate; Vargha-Khadem, Faraneh; Clark, Chris A

    2015-01-01

    The optic radiation (OR) is a component of the visual system known to be myelin mature very early in life. Diffusion tensor imaging (DTI) and its unique ability to reconstruct the OR in vivo were used to study structural maturation through analysis of DTI metrics in a cohort of 90 children aged 5-18 years. As the OR is at risk of damage during epilepsy surgery, we measured its position relative to characteristic anatomical landmarks. Anatomical distances, DTI metrics and volume of the OR were investigated for age, gender and hemisphere effects. We observed changes in DTI metrics with age comparable to known trajectories in other white matter tracts. Left lateralization of DTI metrics was observed that showed a gender effect in lateralization. Sexual dimorphism of DTI metrics in the right hemisphere was also found. With respect to OR dimensions, volume was shown to be right lateralised and sexual dimorphism demonstrated for the extent of the left OR. The anatomical results presented for the OR have potentially important applications for neurosurgical planning.

  5. Mapping of ApoE4 related white matter damage using diffusion MRI

    NASA Astrophysics Data System (ADS)

    Tsao, Sinchai; Gajawelli, Niharika; Hwang, Darryl H.; Kriger, Stephen; Law, Meng; Chui, Helena; Weiner, Michael; Lepore, Natasha

    2014-04-01

    ApoliopoproteinE Ɛ4 (ApoE-Ɛ4) polymorphism is the most well known genetic risk factor for developing Alzheimers Disease. The exact mechanism through which ApoE 4 increases AD risk is not fully known, but may be related to decreased clearance and increased oligomerization of Aβ. By making measurements of white matter integrity via diffusion MR and correlating the metrics in a voxel-based statistical analysis with ApoE-Ɛ4 genotype (whilst controlling for vascular risk factor, gender, cognitive status and age) we are able to identify changes in white matter associated with carrying an ApoE Ɛ4 allele. We found potentially significant regions (Puncorrected < 0:05) near the hippocampus and the posterior cingulum that were independent of voxels that correlated with age or clinical dementia rating (CDR) status suggesting that ApoE may affect cognitive decline via a pathway in dependent of normal aging and acute insults that can be measured by CDR and Framingham Coronary Risk Score (FCRS).

  6. Nuclear georeactor origin of oceanic basalt 3He/4He, evidence, and implications.

    PubMed

    Herndon, J Marvin

    2003-03-18

    Nuclear georeactor numerical simulation results yield substantial (3)He and (4)He production and (3)He(4)He ratios relative to air (R(A)) that encompass the entire 2-SD (2sigma) confidence level range of tabulated measured (3)He(4)He ratios of basalts from along the global spreading ridge system. Georeactor-produced (3)He(4)He ratios are related to the extent of actinide fuel consumption at time of production and are high near the end of the georeactor lifetime. Georeactor numerical simulation results and the observed high (3)He(4)He ratios measured in Icelandic and Hawaiian oceanic basalts indicate that the demise of the georeactor is approaching. Within the present level of uncertainty, one cannot say precisely when georeactor demise will occur, whether in the next century, in a million years, or in a billion years from now.

  7. Nuclear georeactor origin of oceanic basalt 3He/4He, evidence, and implications

    PubMed Central

    Herndon, J. Marvin

    2003-01-01

    Nuclear georeactor numerical simulation results yield substantial 3He and 4He production and 3He/4He ratios relative to air (RA) that encompass the entire 2-SD (2σ) confidence level range of tabulated measured 3He/4He ratios of basalts from along the global spreading ridge system. Georeactor-produced 3He/4He ratios are related to the extent of actinide fuel consumption at time of production and are high near the end of the georeactor lifetime. Georeactor numerical simulation results and the observed high 3He/4He ratios measured in Icelandic and Hawaiian oceanic basalts indicate that the demise of the georeactor is approaching. Within the present level of uncertainty, one cannot say precisely when georeactor demise will occur, whether in the next century, in a million years, or in a billion years from now. PMID:12615991

  8. Application of Sol-Gel Technology to High Pressure Polarized 3HE Nuclear Targets

    NASA Astrophysics Data System (ADS)

    Tobias, W. A.; Cates, G. D.; Chaput, J.; Deur, A.; Rohrbaugh, S.; Singh, J.

    2003-01-01

    High-purity sol-gel solutions have been developed to coat the interior surface of glass vessels used for polarizing 3He by spin-exchange optical pumping. Such cells have been shown to exhibit 3He longitudinal lifetimes T1 in excess of 350 hours1. The sol-gel technique was designed to minimize spin-relaxation due to wall collisions so that only dipole-dipole interactions between colliding 3He atoms dominate in the relaxation process. Until now, sol-gel technology had not been applied to high pressure 3He gas targets used in nuclear scattering experiments. A description of the sol-gel technique and recent developments on its integration into the production of 3He targets will be presented.

  9. Differentiation of pancreatic carcinoma and mass-forming focal pancreatitis: qualitative and quantitative assessment by dynamic contrast-enhanced MRI combined with diffusion-weighted imaging

    PubMed Central

    Zhang, Ting-Ting; Wang, Li; Liu, Huan-huan; Zhang, Cai-yuan; Li, Xiao-ming; Lu, Jian-ping; Wang, Deng-bin

    2017-01-01

    Differentiation between pancreatic carcinoma (PC) and mass-forming focal pancreatitis (FP) is invariably difficult. For the differential diagnosis, we qualitatively and quantitatively assessed the value of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) in PC and FP in the present study. This study included 32 PC and 18 FP patients with histological confirmation who underwent DCE-MRI and DWI. The time-signal intensity curve (TIC) of PC and FP were classified into 5 types according to the time of reaching the peak, namely, type I, II, III, IV, and V, respectively, and two subtypes, namely, subtype-a (washout type) and subtype-b (plateau type) according to the part of the TIC profile after the peak. Moreover, the mean and relative apparent diffusion coefficient (ADC) value between PC and FP on DWI were compared. The type V TIC was only recognized in PC group (P < 0.01). Type IV b were more frequently observed in PC (P = 0.036), while type- IIa (P < 0.01), type- Ia (P = 0.037) in FP. We also found a significant difference in the mean and relative ADC value between PC and FP. The combined image set of DCE-MRI and DWI yielded an excellent sensitivity, specificity, and diagnostic accuracy (96.9%, 94.4%, and 96.0%). The TIC of DCE-MRI and ADC value of DWI for pancreatic mass were found to provide reliable information in differentiating PC from FP, and the combination of DCE-MRI and DWI can achieve a higher sensitivity, specificity, and diagnostic accuracy. PMID:27661003

  10. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.

    PubMed

    Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P

    2014-01-15

    Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available.

  11. The Search for Meterorites with Complex Exposure Histories Amoung Ordinary Chondrites with Low 3HE/21NE Ratios

    SciTech Connect

    Welton, K C; Nishiizumi, K; Caffee, M W

    2001-04-30

    In calculating cosmic-ray exposure ages of meteorites it is generally assumed that the meteoroids were expelled from a shielded position within their parent body and then experienced a single stage exposure before colliding with Earth. The combination of noble gas and radionuclide measurements in several large meteorites, such as Jilin and Bur Ghelaui, have revealed complex exposure histories: i.e. an initial exposure on the surface of an asteroid (or within meter-sized meteoroid), followed by a second exposure as a smaller object. In fact, orbital dynamics calculations predicted that at least 30% of the meteorites arriving on Earth experienced two- or multiple-stage exposure histories [1]. More recently, after the recognition that the Yarkovsky effect plays an important role in delivering meteorites from the asteroid belt to Earth-crossing orbits, it was confirmed that complex exposure histories should be common [2]. Nevertheless, despite the ability to measure a wide range of radionuclides with accelerator mass spectrometry (AMS), only a few meteorites with complex exposure histories have been identified [e.g. 3,4]. The question is whether the relatively paucity of complex exposure histories is real or have we simply overlooked complex-exposure histories. In this work we focus on meteorites with low {sup 3}He/{sup 21}Ne ratios, since it is known that most meteorites with complex exposure histories have relatively low {sup 3}He/{sup 21}Ne ratios, i.e. the {sup 3}He/{sup 21}Ne ratio is below the ''Bern-line''. Several hypotheses have been suggested for these low {sup 3}He/{sup 21}Ne ratios, including solar heating in low-perihelion orbits, shock-related diffusion of He during the collision that ejected the meteoroid, or an artifact of high shielding conditions [4]. The first two hypotheses seem to be supported by low radiogenic {sup 4}He concentrations in samples with low {sup 3}He, whereas Monte Carlo calculations have shown that some of the low {sup 3}He/{sup 21

  12. T(T,2n)4He and 3He(3He,2p)4He: The Reaction Mechanism from Solar Energies to 10 MeV

    NASA Astrophysics Data System (ADS)

    Bacher, A. D.; Brune, C. R.; Sayre, D. B.; Hale, G. M.; Frenje, J. A.; Gatu Johnson, M.

    2016-03-01

    We have studied the energy dependence of the reaction mechanism of the T(t,2n)4He reaction at stellar energies and of its charge symmetric analog reaction 3He(3He,2p)4He at energies up 10 MeV. We find that the reaction mechanism changes dramatically over this energy range in part due to the interference of the two identical fermions in the three-body final state. This contribution is dedicated to the memory of Tom Tombrello, my Ph.D. advisor at Cal Tech, who died in 2014.

  13. Interpretation of the Processes 3He(e,e'p)2H and 3He(e,e'p)(pn) at High Missing Momenta

    NASA Astrophysics Data System (ADS)

    Ciofi Degli Atti, C.; Kaptari, L. P.

    2005-07-01

    Using realistic three-body wave functions corresponding to the AV18 interaction, it is shown that the effects of the final state interaction in the exclusive processes 3He(e,e'p)2H and 3He(e,e'p)(pn), can be successfully treated in terms of a generalized eikonal approximation based upon the direct calculation of the Feynman diagrams describing the rescattering of the struck nucleon. The relevant role played by the double rescattering contribution at high values of the missing momentum is illustrated.

  14. Interpretation of the processes 3He(e,e'p)2H and 3He(e,e'p)(pn) at high missing momenta.

    PubMed

    Ciofi degli Atti, C; Kaptari, L P

    2005-07-29

    Using realistic three-body wave functions corresponding to the AV18 interaction, it is shown that the effects of the final state interaction in the exclusive processes 3He(e,e'p)2H and 3He(e,e'p)(pn), can be successfully treated in terms of a generalized eikonal approximation based upon the direct calculation of the Feynman diagrams describing the rescattering of the struck nucleon. The relevant role played by the double rescattering contribution at high values of the missing momentum is illustrated.

  15. Comparison of helium and heavy ion spectra in /sup 3/He-rich solar flares with model calculations based on stochastic Fermi acceleration in Alfven turbulence

    SciTech Connect

    Moebius, E.; Scholer, M.; Hovestadt, D.; Klecker, B.; Gloeckler, G.

    1982-08-01

    A systematic study of the He isotopes, O, and Fe in six /sup 3/He-rich solar flares during the 1977--1979 period using the dE/dx versus E Ultralow Energy Wide Angle Telescope (ULEWAT) of the Max-Planck-Institut/University of Maryland experiment on ISEE 1 and ISEE 3 revealed that the /sup 3/He spectrum is generally harder than that of /sup 4/He, and the O spectrum is harder than that of Fe in the energy range 0.4--4. MeV per nucleon. At higher energies the flux of the anomalous cosmic ray component exceeds the flux of /sup 4/He and O solar particles for 1977. The spectra as measured for /sup 3/He and /sup 4/He are basically in agreement with a stationary model based on stochastic Fermi acceleration in Alfven turbulence including the corresponding rigidity-dependent diffusive particle loss. The oxygen and iron spectra, however, differ from the ones predicted by the model: the variation of the Fe/O ratio is larger than predicted. It is suggested that the occasional observation of a maximum of the /sup 3/He spectrum is due to a short time injection of /sup 3/He and a long time injection of normal composition material. Subject headings: cosmic rays: general: particle acceleration: Sun: abundances: Sun:flares

  16. Feasibility and Diagnostic Accuracy of Ischemic Stroke Territory Recognition Based on Two-Dimensional Projections of Three-Dimensional Diffusion MRI Data

    PubMed Central

    Wrosch, Jana Katharina; Volbers, Bastian; Gölitz, Philipp; Gilbert, Daniel Frederic; Schwab, Stefan; Dörfler, Arnd; Kornhuber, Johannes; Groemer, Teja Wolfgang

    2015-01-01

    This study was conducted to assess the feasibility and diagnostic accuracy of brain artery territory recognition based on geoprojected two-dimensional maps of diffusion MRI data in stroke patients. In this retrospective study, multiplanar diffusion MRI data of ischemic stroke patients was used to create a two-dimensional map of the entire brain. To guarantee correct representation of the stroke, a computer-aided brain artery territory diagnosis was developed and tested for its diagnostic accuracy. The test recognized the stroke-affected brain artery territory based on the position of the stroke in the map. The performance of the test was evaluated by comparing it to the reference standard of each patient’s diagnosed stroke territory on record. This study was designed and conducted according to Standards for Reporting of Diagnostic Accuracy (STARD). The statistical analysis included diagnostic accuracy parameters, cross-validation, and Youden Index optimization. After cross-validation on a cohort of 91 patients, the sensitivity of this territory diagnosis was 81% with a specificity of 87%. With this, the projection of strokes onto a two-dimensional map is accurate for representing the affected stroke territory and can be used to provide a static and printable overview of the diffusion MRI data. The projected map is compatible with other two-dimensional data such as EEG and will serve as a useful visualization tool. PMID:26635717

  17. Multimodality Functional Imaging in Radiation Therapy Planning: Relationships between Dynamic Contrast-Enhanced MRI, Diffusion-Weighted MRI, and 18F-FDG PET

    PubMed Central

    Mera Iglesias, Moisés; Aramburu Núñez, David; del Olmo Claudio, José Luis; Salvador Gómez, Francisco; Driscoll, Brandon; Coolens, Catherine; Alba Castro, José L.; Muñoz, Victor

    2015-01-01

    Objectives. Biologically guided radiotherapy needs an understanding of how different functional imaging techniques interact and link together. We analyse three functional imaging techniques that can be useful tools for achieving this objective. Materials and Methods. The three different imaging modalities from one selected patient are ADC maps, DCE-MRI, and 18F-FDG PET/CT, because they are widely used and give a great amount of complementary information. We show the relationship between these three datasets and evaluate them as markers for tumour response or hypoxia marker. Thus, vascularization measured using DCE-MRI parameters can determine tumour hypoxia, and ADC maps can be used for evaluating tumour response. Results. ADC and DCE-MRI include information from 18F-FDG, as glucose metabolism is associated with hypoxia and tumour cell density, although 18F-FDG includes more information about the malignancy of the tumour. The main disadvantage of ADC maps is the distortion, and we used only low distorted regions, and extracellular volume calculated from DCE-MRI can be considered equivalent to ADC in well-vascularized areas. Conclusion. A dataset for achieving the biologically guided radiotherapy must include a tumour density study and a hypoxia marker. This information can be achieved using only MRI data or only PET/CT studies or mixing both datasets. PMID:25788972

  18. SU-F-303-13: Initial Evaluation of Four Dimensional Diffusion- Weighted MRI (4D-DWI) and Its Effect On Apparent Diffusion Coefficient (ADC) Measurement

    SciTech Connect

    Liu, Y; Yin, F; Czito, B; Bashir, M; Palta, M; Cai, J; Zhong, X; Dale, B

    2015-06-15

    Purpose: Diffusion-weighted imaging(DWI) has been shown to have superior tumor-to-tissue contrast for cancer detection.This study aims at developing and evaluating a four dimensional DWI(4D-DWI) technique using retrospective sorting method for imaging respiratory motion for radiotherapy planning,and evaluate its effect on Apparent Diffusion Coefficient(ADC) measurement. Materials/Methods: Image acquisition was performed by repeatedly imaging a volume of interest using a multi-slice single-shot 2D-DWI sequence in the axial planes and cine MRI(served as reference) using FIESTA sequence.Each 2D-DWI image were acquired in xyz-diffusion-directions with a high b-value(b=500s/mm2).The respiratory motion was simultaneously recorded using bellows.Retrospective sorting was applied in each direction to reconstruct 4D-DWI.The technique was evaluated using a computer simulated 4D-digital human phantom(XCAT),a motion phantom and a healthy volunteer under an IRB-approved study.Motion trajectories of regions-of-interests(ROI) were extracted from 4D-DWI and compared with reference.The mean motion trajectory amplitude differences(D) between the two was calculated.To quantitatively analyze the motion artifacts,XCAT were controlled to simulate regular motion and the motions of 10 liver cancer patients.4D-DWI,free-breathing DWI(FB- DWI) were reconstructed.Tumor volume difference(VD) of each phase of 4D-DWI and FB-DWI from the input static tumor were calculated.Furthermore, ADC was measured for each phase of 4D-DWI and FB-DWI data,and mean tumor ADC values(M-ADC) were calculated.Mean M-ADC over all 4D-DWI phases was compared with M-ADC calculated from FB-DWI. Results: 4D-DWI of XCAT,the motion phantom and the healthy volunteer demonstrated the respiratory motion clearly.ROI D values were 1.9mm,1.7mm and 2.0mm,respectively.For motion artifacts analysis,XCAT 4D-DWI images show much less motion artifacts compare to FB-DWI.Mean VD for 4D-WDI and FB-DWI were 8.5±1.4% and 108±15

  19. Gas cells for 3He hyperpolarized via spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Tan, J. A.; Woo, S.

    2016-01-01

    We present a device for the production of hyperpolarized 3He, which is widely used in spinrelated nuclear physics research. Spin-exchange optical pumping (SEOP) is employed to polarize 3He enclosed in a circular borosilicate glass cell suitable not only for the production of polarized gas but also for its storage. The portable glass cell can, thus, be transported to any other research facility. The glass cell can be refilled several times. Special attention is given to the preparation and the filling of the cell to minimize the impurities on its walls and in the gas. We employ glass tubes with shorter lengths and larger diameters in the gas-filling system to achieve the improvement in the air flow necessary to obtain purer polarized 3He samples. The cell is prepared, and after it has been filled with rubidium (Rb) and 3He-N2 mixture, it is sealed under high vacuum conditions. The cell containing the mixture is exposed to circularly-polarized laser light with a wavelength of 795 nm at temperatures of 180 - 220 °C for SEOP. The polarization of 3He is measured via nuclear magnetic resonance (NMR). We obtained 40% polarized 3He in less than 15 hours and 50% in about 25 hours. The longitudinal relaxation time T 1 of the polarized 3He we measured was about 58 hours.

  20. Cosmogenic 3He in terrestrial rocks: The summit lavas of Maui

    PubMed Central

    Craig, H.; Poreda, R. J.

    1986-01-01

    We have identified terrestrial cosmic rayproduced 3He in three lava flows on the crest of Haleakala Volcano on Maui, 3 km above sea level, and ≈0.5 million years old. Although these lavas, like all oceanic basalts, contain primordial 3He from the mantle, the “cosmogenic” component (3HeC) can be identified unambiguously because it is extractable only by high-temperature vacuum fusion. In contrast, a large fraction of the mantle helium resides in fluid inclusions and can be extracted by vacuum crushing, leaving a residual component with 3He/4He ratios as high as 75× those in the atmosphere, which can be liberated by melting the crushed grains. Cosmogenic 3He is present in both olivines and clinopyroxenes at 0.8-1.2 × 10-12 ml(STP)/g and constitutes 75% ± 5% of the total 3He present. The observed 3HeC levels require a cosmic ray exposure age of only some 64,000 years, much less than the actual age of the lavas, if there is no erosion. Using a model that includes effects of uplift or submergence as well as erosion, we calculate an apparent “erosion rate” of the order of 8.5 m/106 years for the western rim of the summit crater, as an example of the application of measurements of cosmogenic rare gases to terrestrial geological problems. PMID:16593671

  1. Third sound and stability of 3He-4He mixture films

    SciTech Connect

    Anderson, R. H.; Krotscheck, E.; Miller, M. D.

    2006-09-07

    We study third sound and the interaction between 3He adatoms in two thin 3He-4He mixture films from a first-principles, microscopic theory. Utilizing the variational, hypernetted-chain Euler-Lagrange (HNC-EL) theory as applied to inhomogeneous boson systems, we calculate chemical potentials for both the 4He superfluid film and the physisorbed 3He. Numerical density derivatives of the chemical potentials lead to the sought-after third sound speeds that clearly reflect a layered structure of at least seven oscillations. In this paper, we report third sound on model substrates: Nuclepore, and sodium. We find that the effect of the 3He depends sensitively on the particular 4He film coverage. Our most important result is that, with the addition of 3He, the third sound speed can either increase or decrease. In fact, in some regimes, the added 3He destabilizes the film and can drive ''layering transitions'', leading to fairly complicated geometric structures of the film in which the outermost layer is predicted to consist of phase-separated regions of 3He and 4He.

  2. Recent advances in polarized 3 He based neutron spin filter development

    NASA Astrophysics Data System (ADS)

    Chen, Wangchun; Gentile, Thomas; Erwin, Ross; Watson, Shannon; Krycka, Kathryn; Ye, Qiang; NCNR NIST Team; University of Maryland Team

    2015-04-01

    Polarized 3 He neutron spin filters (NSFs) are based on the strong spin-dependence of the neutron absorption cross section by 3 He. NSFs can polarize large area, widely divergent, and broadband neutron beams effectively and allow for combining a neutron polarizer and a spin flipper into a single polarizing device. The last capability utilizes 3 He spin inversion based on the adiabatic fast passage (AFP) nuclear magnetic resonance technique. Polarized 3 He NSFs are significantly expanding the polarized neutron measurement capabilities at the NIST Center for Neutron Research (NCNR). Here we present an overview of 3 He NSF applications to small-angle neutron scattering, thermal triple axis spectrometry, and wide-angle polarization analysis. We discuss a recent upgrade of our spin-exchange optical pumping (SEOP) systems that utilize chirped volume holographic gratings for spectral narrowing. The new capability allows us to polarize rubidium/potassium hybrid SEOP cells over a liter in volume within a day, with 3 He polarizations up to 88%, Finally we discuss how we can achieve nearly lossless 3 He polarization inversion with AFP.

  3. Enhanced IR hollow cathode laser in a 3He Ne gas mixture

    NASA Astrophysics Data System (ADS)

    Stefanova, M. S.; Pramatarov, P. M.; Karelin, A. V.

    2005-09-01

    An experimental and theoretical study on 3He-Ne and 4He-Ne helical hollow cathode lasers is presented. Enhanced laser operation on the near IR NeI lines is observed when the natural isotope 4He is substituted by the lighter isotope 3He. A four-fold increase in the laser output power and a three-fold increase in the laser gain for the strongest NeI 1.1523 µm line is measured in the 3He-Ne gas mixture compared to the 4He-Ne gas mixture. On the basis of the theoretical analysis done by means of a non-stationary kinetic model for the negative glow plasma of 3He-Ne and 4He-Ne hollow cathode lasers, a study on the changes in the particle kinetics is carried out and an explanation of the experimental results is proposed. In the 3He-Ne mixture the electron temperature is lower than in the 4He-Ne mixture, while the gas temperature is higher. As a result the helium triplet metastable density and the rate constant for excitation transfer to neon atoms are higher in the 3He-Ne mixture. The lower laser level de-excitation due to intra-multiplet mixing of 2p1-10levels by 3He atoms is more efficient.

  4. Anomalous yield reduction in direct-drive DT implosions due to 3He addition

    SciTech Connect

    Herrmann, Hans W; Langenbrunner, James R; Mack, Joseph M; Cooley, James H; Wilson, Douglas C; Evans, Scott C; Sedillo, Tom J; Kyrala, George A; Caldwell, Stephen E; Young, Carlton A; Nobile, Arthur; Wermer, Joseph R; Paglieri, Stephen N; Mcevoy, Aaron M; Kim, Yong Ho; Batha, Steven H; Horsfield, Colin J; Drew, Dave; Garbett, Warren; Rubery, Michael; Glebov, Vladimir Yu; Roberts, Samuel; Frenje, Johan A

    2008-01-01

    Glass capsules were imploded in direct drive on the OMEGA laser [T. R. Boehly et aI., Opt. Commun. 133, 495, 1997] to look for anomalous degradation in deuterium/tritium (DT) yield (i.e., beyond what is predicted) and changes in reaction history with {sup 3}He addition. Such anomalies have previously been reported for D/{sup 3}He plasmas, but had not yet been investigated for DT/{sup 3}He. Anomalies such as these provide fertile ground for furthering our physics understanding of ICF implosions and capsule performance. A relatively short laser pulse (600 ps) was used to provide some degree of temporal separation between shock and compression yield components for analysis. Anomalous degradation in the compression component of yield was observed, consistent with the 'factor of two' degradation previously reported by MIT at a 50% {sup 3}He atom fraction in D{sub 2} using plastic capsules [Rygg et aI., Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT, but consistent with LANL results in D{sub 2}/{sup 3}He [Wilson, et aI., lml Phys: Conf Series 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression ofcapsules containing {sup 3}He. Leading candidate explanations are poorly understood Equation-of-State (EOS) for gas mixtures, and unanticipated particle pressure variation with increasing {sup 3}He addition.

  5. The cosmological density of baryons from observations of 3He+ in the Milky Way.

    PubMed

    Bania, T M; Rood, Robert T; Balser, Dana S

    2002-01-03

    Primordial nucleosynthesis after the Big Bang can be constrained by the abundances of the light elements and isotopes 2H, 3He, 4He and 7Li (ref. 1). The standard theory of stellar evolution predicts that 3He is also produced by solar-type stars, so its abundance is of interest not only for cosmology, but also for understanding stellar evolution and the chemical evolution of the Galaxy. The 3He abundance in star-forming (H II) regions agrees with the present value for the local interstellar medium, but seems to be incompatible with the stellar production rates inferred from observations of planetary nebulae, which provide a direct test of stellar evolution theory. Here we develop our earlier observations, which, when combined with recent theoretical developments in our understanding of light-element synthesis and destruction in stars, allow us to determine an upper limit for the primordial abundance of 3He relative to hydrogen: 3He/H = (1.1 +/- 0.2) x 10(-5). The primordial density of all baryons determined from the 3He data is in excellent agreement with the densities calculated from other cosmological probes. The previous conflict is resolved because most solar-mass stars do not produce enough 3He to enrich the interstellar medium significantly.

  6. The heavy ion composition in 3HE-rich solar flares

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Reames, D. V.; Hovestadt, D.; Vonrosenvinge, T. T.

    1985-01-01

    The 3He-rich flares show a tendency to be enriched in heavy ions, and that this enrichment covers the charge range through Fe. The discovery of this association was responsible, in part, for the discarding of 3He enrichment models which involved spallation or thermonuclear reactions, since such models were unable to produce heavy nuclei enhancement. Results of a survey of heavy nucleus abundances observed in 66 3He-rich flares which occurred over the period October 1978 to June 1982 are presented.

  7. Polarized {sup 3}He{sup −} ion source with hyperfine state selection

    SciTech Connect

    Dudnikov, V.; Morozov, V.; Dudnikov, A.

    2015-04-08

    High beam polarization is essential to the scientific productivity of a collider. Polarized {sup 3}He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized {sup 3}He{sup −} ion source. This report discusses a polarized {sup 3}He{sup −} ion source based on the large difference of extra-electron auto-detachment lifetimes of the different {sup 3}He{sup −} ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ∼ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing {sup 3}He{sup −} ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, {sup 3}He{sup −} beam polarization of 90% can be achieved. Such a method of polarized {sup 3}He{sup −} production has been considered before; however, due to low intensities of the He{sup +} ion sources existing at that time, it was not possible to produce any interesting intensity of polarized {sup 3}He{sup −} ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness {sup 3}He{sup +} beam with an intensity of up to 2 A allowing for selection of up to ∼1-4 mA of {sup 3}He{sup −} ions with ∼90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of {sup 3}He gas. Some features of such a PIS as well as prototype designs are considered. An integrated {sup 3}He{sup −} ion source design providing high beam polarization could be

  8. Recent advances in spin-exchange pumped polarized 3He target technology

    NASA Astrophysics Data System (ADS)

    Smith, T. B.; Chupp, T. E.; Coulter, K. P.; Welsh, R. C.

    1998-02-01

    We have produced long lifetime 3He spin-exchange cells from Corning 7056 glass. The lifetimes of single cells have approached the 3He 3He bulk-limited lifetime (250 h at a density of 8 × 10 19 cm -3, (3 amagats)). Corning 7056 glass has the advantage of being a much easier glass for the glassblower to work, allowing for more complex cell designs. In our experiments at Michigan and at SLAC, we have implemented laser diode arrays for spin-exchange optical pumping. In particular, for experiment E154 at SLAC, we achieved high polarizations in high-density 3He targets using laser diode arrays.

  9. Triple oxygen isotopic composition of the high-3He/4He mantle

    NASA Astrophysics Data System (ADS)

    Starkey, N. A.; Jackson, C. R. M.; Greenwood, R. C.; Parman, S.; Franchi, I. A.; Jackson, M.; Fitton, J. G.; Stuart, F. M.; Kurz, M.; Larsen, L. M.

    2016-03-01

    Measurements of Xe isotope ratios in ocean island basalts (OIB) suggest that Earth's mantle accreted heterogeneously, and that compositional remnants of accretion are sampled by modern, high-3He/4He OIB associated with the Icelandic and Samoan plumes. If so, the high-3He/4He source may also have a distinct oxygen isotopic composition from the rest of the mantle. Here, we test if the major elements of the high-3He/4He source preserve any evidence of heterogeneous accretion using measurements of three oxygen isotopes on olivine from a variety of high-3He/4He OIB locations. To high precision, the Δ17O value of high-3He/4He olivines from Hawaii, Pitcairn, Baffin Island and Samoa, are indistinguishable from bulk mantle olivine (Δ17OBulk Mantle - Δ17OHigh 3He/4He olivine = -0.002 ± 0.004 (2 × SEM)‰). Thus, there is no resolvable oxygen isotope evidence for heterogeneous accretion in the high-3He/4He source. Modelling of mixing processes indicates that if an early-forming, oxygen-isotope distinct mantle did exist, either the anomaly was extremely small, or the anomaly was homogenised away by later mantle convection. The δ18O values of olivine with the highest 3He/4He ratios from a variety of OIB locations have a relatively uniform composition (∼5‰). This composition is intermediate to values associated with the depleted MORB mantle and the average mantle. Similarly, δ18O values of olivine from high-3He/4He OIB correlate with radiogenic isotope ratios of He, Sr, and Nd. Combined, this suggests that magmatic oxygen is sourced from the same mantle as other, more incompatible elements and that the intermediate δ18O value is a feature of the high-3He/4He mantle source. The processes responsible for the δ18O signature of high-3He/4He mantle are not certain, but δ18O-87Sr/86Sr correlations indicate that it may be connected to a predominance of a HIMU-like (high U/Pb) component or other moderate δ18O components recycled into the high-3He/4He source.

  10. Recent advances of polarized {sup 3}He target at Jefferson Lab

    SciTech Connect

    Qiang Yi

    2011-10-24

    Polarized {sup 3}He targets have been widely used in nuclear and particle physics experiments to study neutron structure in the spin degree of freedom, as most of the {sup 3}He spin is carried by the unpaired neutron. The Spin-Exchange Optical Pumping (SEOP) process is used in Jefferson Lab Hall A to polarize its {sup 3}He target. In recent years, both the performance and corresponding polarimetry of such a target have been greatly improved. Several experiments recently carried out in Hall A have achieved record high figure of merit using this target.

  11. Investigation of the {sup 3}He wave function by quasifree scattering

    SciTech Connect

    Jones, C.E.; Hansen, J.O.; Bloch, C.

    1995-08-01

    The analysis of the data from the CE25 experiment at IUCF, which measured the target and beam analyzing powers and the spin correlation parameter in {sup 3}He(p,2p) and {sup 3}He(p,pn) quasielastic scattering, is nearing completion. At low missing momentum, the extracted polarization of the neutron and proton in {sup 3}He are consistent with Faddeev calculations. Two papers, one reporting the physics results and one describing the experiment, were published. The data from this experiment indicates that for q {>=} 500 MeV/c the plane wave impulse approximation is valid.

  12. Brain structural connectivity increases concurrent with functional improvement: Evidence from diffusion tensor MRI in children with cerebral palsy during therapy

    PubMed Central

    Englander, Zoë A.; Sun, Jessica; Laura Case; Mikati, Mohamad A.; Kurtzberg, Joanne; Song, Allen W.

    2015-01-01

    Cerebral Palsy (CP) refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005). Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this challenge. To maximize the potential for functional improvement, all children in this trial received autologous cord blood transfusions (with order randomized with a placebo administration over 2 years) in conjunction with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging (MRI) is used to improve our understanding of how these interventions affect brain development, and to develop biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI) and subsequent brain connectome analyses were performed in a subset of children enrolled in the clinical trial (n = 17), who all exhibited positive but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations between increases in white matter (WM) connectivity and functional improvement were demonstrated; however no significant relationships between either of these factors with the age of the child at time of enrollment were identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mechanisms of functional improvement, as well as to identify treatments that can best facilitate functional improvement upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study. PMID:25610796

  13. Brain structural connectivity increases concurrent with functional improvement: evidence from diffusion tensor MRI in children with cerebral palsy during therapy.

    PubMed

    Englander, Zoë A; Sun, Jessica; Laura Case; Mikati, Mohamad A; Kurtzberg, Joanne; Song, Allen W

    2015-01-01

    Cerebral Palsy (CP) refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005). Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this challenge. To maximize the potential for functional improvement, all children in this trial received autologous cord blood transfusions (with order randomized with a placebo administration over 2 years) in conjunction with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging (MRI) is used to improve our understanding of how these interventions affect brain development, and to develop biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI) and subsequent brain connectome analyses were performed in a subset of children enrolled in the clinical trial (n = 17), who all exhibited positive but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations between increases in white matter (WM) connectivity and functional improvement were demonstrated; however no significant relationships between either of these factors with the age of the child at time of enrollment were identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mechanisms of functional improvement, as well as to identify treatments that can best facilitate functional improvement upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study.

  14. A Method for Automated Classification of Parkinson’s Disease Diagnosis Using an Ensemble Average Propagator Template Brain Map Estimated from Diffusion MRI

    PubMed Central

    Banerjee, Monami; Okun, Michael S.; Vaillancourt, David E.; Vemuri, Baba C.

    2016-01-01

    Parkinson’s disease (PD) is a common and debilitating neurodegenerative disorder that affects patients in all countries and of all nationalities. Magnetic resonance imaging (MRI) is currently one of the most widely used diagnostic imaging techniques utilized for detection of neurologic diseases. Changes in structural biomarkers will likely play an important future role in assessing progression of many neurological diseases inclusive of PD. In this paper, we derived structural biomarkers from diffusion MRI (dMRI), a structural modality that allows for non-invasive inference of neuronal fiber connectivity patterns. The structural biomarker we use is the ensemble average propagator (EAP), a probability density function fully characterizing the diffusion locally at a voxel level. To assess changes with respect to a normal anatomy, we construct an unbiased template brain map from the EAP fields of a control population. Use of an EAP captures both orientation and shape information of the diffusion process at each voxel in the dMRI data, and this feature can be a powerful representation to achieve enhanced PD brain mapping. This template brain map construction method is applicable to small animal models as well as to human brains. The differences between the control template brain map and novel patient data can then be assessed via a nonrigid warping algorithm that transforms the novel data into correspondence with the template brain map, thereby capturing the amount of elastic deformation needed to achieve this correspondence. We present the use of a manifold-valued feature called the Cauchy deformation tensor (CDT), which facilitates morphometric analysis and automated classification of a PD versus a control population. Finally, we present preliminary results of automated discrimination between a group of 22 controls and 46 PD patients using CDT. This method may be possibly applied to larger population sizes and other parkinsonian syndromes in the near future. PMID

  15. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Gentile, T. R.; Ye, Q.; Kirchhoff, A.; Watson, S. M.; Rodriguez-Rivera, J. A.; Qiu, Y.; Broholm, C.

    2016-09-01

    Wide-angle polarization analysis with polarized 3He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells.

  16. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Josh; Broering, Mark; Korsch, Wolfgang

    2016-03-01

    Off-resonance Faraday rotation can offer a new method to monitor the nuclear spin polarization of a dense 3He target and gain access to new information about the magnetic polarizability of the 3He nucleus. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3He target polarization. Progress towards detecting nuclear spin optical rotation on 3He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  17. The enigmatic high 3He/4He mantle: Characteristics and Origins. (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.

    2009-12-01

    Noble gas isotopes measured in some oceanic island basalts (OIBs) exhibit ratios that are associated with the solar wind and the atmosphere of Jupiter, suggesting that the lavas tap portions of an ancient reservoir that still resides in the Earth’s mantle [e.g., 1]. High 3He/4He, as seen in the sources of some OIBs, can therefore serve as a powerful indicator for tracing ancient signatures that have survived in the Earth’s interior. However, the storage mechanisms and reasons for long-term survival of the high 3He/4He signature in the Earth’s convecting mantle are poorly understood. One important observation is that high 3He/4He lavas have 143Nd/144Nd ratios that are higher than chondrites, suggesting that they were derived from a mantle reservoir that suffered ancient depletion. The association of primitive, high 3He/4He with depleted, nonprimitive 143Nd/144Nd in OIBs is not straightforward and a number of models have been developed to resolve this apparent complexity [e.g., 2,3,4,5,6]. It is also becoming apparent that the high 3He/4He reservoir is heterogeneous. High 3He/4He (>30 times atmospheric) lavas from Hawaii, Iceland and Galapagos have more depleted 143Nd/144Nd (0.51294-0.51297) than lavas with similarly high 3He/4He from Samoa (0.51283). In fact, the highest 3He/4He sample from each southern hemisphere high 3He/4He hotspot (FOZO-A, austral) exhibits lower 143Nd/144Nd ratios their northern hemisphere (FOZO-B, boreal) counterparts. The mechanism for this separation is unknown, but it is similar in spatial scale to the DUPAL anomaly, a globe-encircling feature of isotopic enrichment observed primarily in southern hemisphere OIBs. With the exception of Baffin Is. picrites [7], high 3He/4He OIBs also exhibit evidence for Ti, Ta, and Nb (TITAN) enrichment relative to low 3He/4He OIBs. This was interpreted as the result of addition of refractory, rutile-bearing eclogite to a peridotitic high 3He/4He reservoir [8]. This hypothesis is supported by the

  18. Sol-gel coatings for high pressure polarized ^3He nuclear targets

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Cates, Gordon D.; Chaput, Julien; Singh, Jaideep; Tobias, William A.

    2001-11-01

    Sol-gel coated glass cells have been shown to exhibit longitudinal lifetimes T1 in excess of 350 hours for ^3He that is polarized by spin-exchange optical pumping.( Ming F. Hsu shape et al, Appl. Phys. Lett.) series 77 (2000) 2069. The sol-gel technique was designed to minimize spin-relaxation due to wall collisions so that only dipole-dipole interactions between colliding ^3He atoms dominate in the relaxation process. Until now, sol-gel technology has not been applied to high pressure ^3He gas targets used in nuclear scattering experiments. Latest developments on incorporating the sol-gel technique in the production of these ^3He targets will be presented.

  19. Critical Care Needs in Patients with Diffusion-Weighted Imaging Negative MRI after tPA - Does One Size Fit All?

    PubMed Central

    Faigle, Roland; Marsh, Elisabeth B.; Llinas, Rafael H.; Urrutia, Victor C.

    2015-01-01

    Background and Purpose Patients who receive intravenous (IV) tissue plasminogen activator (tPA) for ischemic stroke are currently monitored in an intensive care unit (ICU) or a comparable stroke unit for at least 24 hours due to the high frequency of neurological exams and vital sign checks. The present study evaluates ICU needs in patients with diffusion-weighted imaging (DWI) negative MRI after IV tPA. Methods A retrospective chart review was performed for 209 patients who received IV tPA for acute stroke. Data on stroke risk factors, physiologic parameters, stroke severity, MRI characteristics, and final diagnosis were collected. The timing and nature of ICU interventions, if needed, was recorded. Multivariable logistic regression was used to determine factors associated with subsequent ICU needs. Results Patients with cerebral infarct on MRI after tPA had over 9 times higher odds of requiring ICU care compared to patients with DWI negative MRI (OR 9.2, 95% CI 2.49–34.15). All DWI negative patients requiring ICU care did so by the end of tPA infusion (p = 0.006). Among patients with DWI negative MRI, need for ICU interventions was associated with higher NIH Stroke Scale (NIHSS) scores (p<0.001), uncontrolled hypertension (p<0.001), seizure at onset (p = 0.002), and reduced estimated glomerular filtration rate (eGFR) (p = 0.010). Conclusions Only a small number of DWI negative patients required ICU care. In patients without critical care needs by the end of thrombolysis, post-tPA MRI may be considered for triaging DWI negative patients to a less resource intense monitoring environment. PMID:26517543

  20. The Triple Oxygen Isotopic Composition of High 3He/4He Mantle

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Parman, S. W.; Starkey, N.; Greenwood, R.; Franchi, I.; Jackson, M. G.; Fitton, J. G.; Stewart, F. M.; Larsen, L. M.

    2015-12-01

    Measurements of Xe isotope ratios in ocean island basalts (OIB) suggest that Earth's mantle accreted heterogeneously, and that compositional remnants of accretion are sampled by modern, high-3He/4He OIB associated with the Icelandic and Samoan plumes [1]. If so, the high-3He/4He source may also have a distinct oxygen isotopic composition from the rest of the mantle. Here, we test if the major elements of the high-3He/4He source preserve any evidence of heterogeneous accretion using measurements of three oxygen isotopes on olivine from a variety of high-3He/4He OIB locations. To high precision, the ∆17O value of high-3He/4He olivines from Hawaii, Pitcairn, Baffin Island and Samoa, are indistinguishable from bulk mantle olivine (Δ17OBulk Mantle - Δ17OHigh 3He/4He olivine = -0.002 ± 0.004 (2 x SEM) ‰). Thus, there is no resolvable oxygen isotope evidence for heterogeneous accretion in the high-3He/4He source. Modelling of mixing processes indicates that if an early-forming, oxygen-isotope distinct mantle did exist, either the anomaly was extremely small, or the anomaly was homogenised away by later mantle convection. The δ18O values of olivine with the highest 3He/4He ratios from a variety of OIB locations have a relatively uniform composition (~5 ‰). This composition is intermediate to values associated with the depleted MORB mantle and the average mantle. Similarly, δ18O values of olivine from high-3He/4He OIB correlate with radiogenic isotope ratios of He, Sr, and Nd. Combined, this suggests that oxygen remains coupled to the more incompatible elements during melt production and migration and that the intermediate δ18O value is a feature of the mantle source. The processes responsible for the δ18O signature of high-3He/4He mantle are not certain, but δ18O-87Sr/86Sr correlations indicate that it may be connected to a predominance of a HIMU-like (high U/Pb) component or other moderate δ18O components recycled into the high-3He/4He source. [1] S

  1. The mean ionic charge of silicon in 3HE-rich solar flares

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Klecker, B.; Hovestadt, E.; Moebius, E.

    1985-01-01

    Mean ionic charge of iron in 3He-rich solar flares and the average mean charge of Silicon for 23 #He-rich periods during the time interval from September 1978 to October 1979 were determined. It is indicated that the value of the mean charge state of Silicon is higher than the normal flare average by approximately 3 units and in perticular it is higher then the value predicted by resonant heating models for 3He-rich solar flares.

  2. High-efficiency microstructured semiconductor neutron detectors for direct 3He replacement

    NASA Astrophysics Data System (ADS)

    Fronk, R. G.; Bellinger, S. L.; Henson, L. C.; Huddleston, D. E.; Ochs, T. R.; Sobering, T. J.; McGregor, D. S.

    2015-04-01

    High-efficiency Microstructured Semiconductor Neutron Detectors (MSNDs) have been tiled and arranged in a cylindrical form factor in order to serve as a direct replacement to aging and increasingly expensive 3He gas-filled proportional neutron detectors. Two 6-in long by 2-in diameter cylinders were constructed and populated with MSNDs which were then directly compared to a 4 atm Reuter Stokes 3He detector of the same dimensions. The Generation 1 MSND-based 3Helium-Replacement (HeRep Mk I) device contained sixty-four 1-cm2 active-area MSNDs, each with an intrinsic neutron detection efficiency of approximately 7%. A Generation 2 device (the HeRep Mk II) was populated with thirty 4-cm2 active-area MSNDs, with an intrinsic thermal neutron detection efficiency of approximately 30%. The MSNDs of each HeRep were integrated to count as a single device. The 3He proportional counter and the HeRep devices were tested while encased in a cylinder of high-density polyethylene measuring a total of 6-in by 9-in. The 3He counter and the HeRep Mk II were each placed 1 m from a 54-ng 252Cf source and tested for efficiency. The 3He proportional counter had a net count rate of 17.13±0.10 cps at 1 m. The HeRep Mk II device had a net count rate of 17.60±0.10 cps, amounting to 102.71±2.65% of the 3He gas counter while inside of the moderator. Outside of moderator, the 3He tube had a count rate of 3.35±0.05 cps and the HeRep Mk II device reported 3.19±05, amounting to 95.15±9.04% of the 3He neutron detector.

  3. Meson exchange currents for nuclear muon capture by {sup 3}He

    SciTech Connect

    Congleton, J.G.; Truhlik, E.

    1995-05-10

    We have calculated exchange corrections for nuclear muon capture by {sup 3}He using the hard pion method for the currents and wavefunctions for {sup 3}He and {sup 3}H found by the coupled rearrangement channel method. The result for the rate (triton asymmetry) has an uncertainty of 3% (1%) due mainly to the uncertainty in the value of {ital f}{sub {pi}{ital N}{Delta}} (various factors). {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. SANS study of phase separation in solid {sup 3}He-{sup 4}He

    SciTech Connect

    Koster, J.P.; Nagler, S.E.; Adams, E.D.; Wignall, G.D.

    1994-12-31

    Small angle neutron scattering has been used to study phase separation in a quantum alloy, solid {sup 3}He{sub x}-{sup 4}He{sub 1{minus}x}. The onset of phase separation is marked by a dramatic increase in the measured scattering. A simple interpretation of the results suggests that the late-stage phase separation kinetics are dominated by an increase in the concentration of {sup 3}He atoms in preexisting precipitate regions.

  5. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  6. Transport of polarized 3He for the nEDM experiment at the SNS

    NASA Astrophysics Data System (ADS)

    Rao, Thomas; Beck, Douglas; Koivuniemi, Jaakko; Silvera, Ike; Williamson, Steven; Yao, Weijun; nEDM Collaboration

    2016-09-01

    The neutron electric dipole moment (nEDM) experiment at the ORNL SNS aims to determine the neutron's electric dipole moment to an accuracy of 5.4 x 10-28 e cm by measuring the Lamor precession of neutrons using the spin dependent reaction n +3He =>p +3H +764KeV. In the experiment polarized 3He is injected into a free surface of 4He, and then brought to the measurement cell and removed once it depolarizes. The proposed transport method for the 3He, the heat flush mechanism, must be tested. In the heat flush mechanism a thermal gradient along a long pipe, generates phonons whose collisions with 3He, drives 3He transport to the cold end of the pipe. Tests of the heat flush mechanism by measuring the change in 3He concentration at the cold end of a long pipe, using a capacitive pressure sensor, are underway at Harvard University. Work supported in part by NSF Grants PHY-1440011 and PHY-1506416.

  7. Primordial 3He in South Atlantic deep waters from sources on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Rüth, Christine; Well, Roland; Roether, Wolfgang

    2000-06-01

    Helium isotope data from three zonal WOCE sections (11°S, 19°S and 30°S) in the South Atlantic are presented. Among other features we find a distinct δ 3He-maximum above the Mid-Atlantic Ridge (MAR) at all three latitudes. Using a hydrographic multiparameter analysis, we separate 3He emanating from the MAR from the large-scale 3He background. To our knowledge, this is the first confirmation of input of primordial 3He at the MAR in the South Atlantic. The source appears to be weak compared with the Pacific sources, causing 3He elevations (relative to background values) of only 2-3% directly above the MAR. This exceeds by several times the statistical and systematic data uncertainties, which amount to 0.35% each, so that detailed contouring of the MAR-derived 3He is possible. At 30°S and 11°S, a significant signal extends westward over at least 2000 km, whereas at 19°S the signal is more confined to the ridge area. The westward extensions indicate westward flow at depths near the ridge crest elevation, contradicting flow directions deduced previously by Reid (1989).

  8. Compressing Spin-Polarized 3He With a Modified Diaphragm Pump

    PubMed Central

    Gentile, T. R.; Rich, D. R.; Thompson, A. K.; Snow, W. M.; Jones, G. L.

    2001-01-01

    Nuclear spin-polarized 3He gas at pressures on the order of 100 kPa (1 bar) are required for several applications, such as neutron spin filters and magnetic resonance imaging. The metastability-exchange optical pumping (MEOP) method for polarizing 3He gas can rapidly produce highly polarized gas, but the best results are obtained at much lower pressure (~0.1 kPa). We describe a compact compression apparatus for polarized gas that is based on a modified commercial diaphragm pump. The gas is polarized by MEOP at a typical pressure of 0.25 kPa (2.5 mbar), and compressed into a storage cell at a typical pressure of 100 kPa. In the storage cell, we have obtained 20 % to 35 % 3He polarization using pure 3He gas and 35 % to 50 % 3He polarization using 3He-4He mixtures. By maintaining the storage cell at liquid nitrogen temperature during compression, the density has been increased by a factor of four. PMID:27500044

  9. An Update on 3He Correlation Function Research for the SNS nEDM collaboration

    NASA Astrophysics Data System (ADS)

    Reid, Austin; Golub, Robert; Dipert, Robert

    2016-09-01

    In the 65 years since Ramsey's null result for the neutron's permanent electric dipole moment (nEDM), techniques have become increasingly sensitive, establishing the present upper limit of 3 ×10-26 e .cm . This value was limited by an unexpected source of error: a freqency shift with linear dependence on the electric field colloquially called a false EDM. The next generation nEDM sensing apparatus being developed for the Spallation Neutron Source at Oak Ridge National Laboratory uses a 3He comagenetometer in a pure helium-II bath. The false EDM in 3He may be related to the 3He's position autocorrelation function, which in turn is accessible by a detailed study of T1 decay in hyperpolarized 3He. Existing measurements of this system were limited by temperature, noise, and 3He concentration. Dramatic improvements have been made on all three fronts by improving the thermal connection between the measurment cell and the dilution refrigerator, by adding additional shielding and a SQUID package, and by developing a MEOP 3He polarization system. Data collection is underway. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-97ER41042.

  10. Terrestrial cosmogenic 3He: where are we 30 years after its discovery?

    NASA Astrophysics Data System (ADS)

    Blard, Pierre-Henri; Pik, Raphaël; Farley, Kenneth A.; Lavé, Jérôme; Marrocchi, Yves

    2016-04-01

    It is now 30 years since cosmogenic 3He has been detected for the first time in a terrestrial sample (Kurz, 1986). 3He is now a widely used geochemical tool in many fields of Earth sciences: volcanology, tectonics, paleoclimatology. 3He has the advantage to have a high "production rate" to "detection limit" ratio, allowing surfaces as young as hundred of years to be dated. Although its nuclear stability implies several limitations, it moreover represents a useful alternative to 10Be in mafic environments. This contribution is a review of the progresses that have been accomplished since this discovery, and discuss strategies to improve both the accuracy and the precision of this geochronometer. 1) Measurement of cosmogenic 3He Correction of magmatic 3He. To estimate the non-cosmogenic magmatic 3He, Kurz (1986) invented a two steps method involving crushing of phenocrysts (