Science.gov

Sample records for 3he magnetic resonance

  1. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  2. Polarisation and compression of {sup 3}He for Magnetic Resonance Imaging purposes

    SciTech Connect

    Geurts, D. G.; Brand, J. F. J. van den; Bulten, H. J.; Poolman, H. R.; Ferro-Luzzi, M.; Nicolay, K.

    1998-01-20

    Magnetic Resonance Imaging is often used in medical science as a diagnostic tool for the human body. Conventional MRI uses the NMR signal from the protons of water molecules in tissue to image the interior of the patient's body. However, for certain areas such as the lungs and airways, the usage of a highly polarised gas yields better results. We are currently constructing an apparatus that uses polarised {sup 3}He gas to produce detailed images of those signal-deficient moyeties. We also plan to study possible uptake of polarised {sup 3}He gas by the circulatory system to image other organs.

  3. Development of spatial-temporal ventilation heterogeneity and probability analysis tools for hyperpolarized 3He magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Choy, S.; Ahmed, H.; Wheatley, A.; McCormack, D. G.; Parraga, G.

    2010-03-01

    We developed image analysis tools to evaluate spatial and temporal 3He magnetic resonance imaging (MRI) ventilation in asthma and cystic fibrosis. We also developed temporal ventilation probability maps to provide a way to describe and quantify ventilation heterogeneity over time, as a way to test respiratory exacerbations or treatment predictions and to provide a discrete probability measurement of 3He ventilation defect persistence.

  4. Ventilation defects observed with hyperpolarized 3He magnetic resonance imaging in a mouse model of acute lung injury.

    PubMed

    Thomas, Abe C; Nouls, John C; Driehuys, Bastiaan; Voltz, James W; Fubara, Boma; Foley, Julie; Bradbury, J Alyce; Zeldin, Darryl C

    2011-05-01

    Regions of diminished ventilation are often evident during functional pulmonary imaging studies, including hyperpolarized gas magnetic resonance imaging (MRI), positron emission tomography, and computed tomography (CT). The objective of this study was to characterize the hypointense regions observed via (3)He MRI in a murine model of acute lung injury. LPS at doses ranging from 15-50 μg was intratracheally administered to C57BL/6 mice under anesthesia. Four hours after exposure to either LPS or saline vehicle, mice were imaged via hyperpolarized (3)He MRI. All images were evaluated to identify regions of hypointense signals. Lungs were then characterized by conventional histology, or used to obtain tissue samples from regions of normal and hypointense (3)He signals and analyzed for cytokine content. The characterization of (3)He MRI images identified three distinct types of hypointense patterns: persistent defects, atelectatic defects, and dorsal lucencies. Persistent defects were associated with the administration of LPS. The number of persistent defects depended on the dose of LPS, with a significant increase in mean number of defects in 30-50-μg LPS-dosed mice versus saline-treated control mice. Atelectatic defects predominated in LPS-dosed mice under conditions of low-volume ventilation, and could be reversed with deep inspiration. Dorsal lucencies were present in nearly all mice studied, regardless of the experimental conditions, including control animals that did not receive LPS. A comparison of (3)He MRI with histopathology did not identify tissue abnormalities in regions of low (3)He signal, with the exception of a single region of atelectasis in one mouse. Furthermore, no statistically significant differences were evident in concentrations of IL-1β, IL-6, macrophage inflammatory protein (MIP)-1α, MIP-2, chemokine (C-X-C motif) ligand 1 (KC), TNFα, and monocyte chemotactic protein (MCP)-1 between hypointense and normally ventilated lung regions in LPS

  5. Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics.

    PubMed

    Leary, Del; Svenningsen, Sarah; Guo, Fumin; Bhatawadekar, Swati; Parraga, Grace; Maksym, Geoffrey N

    2016-04-01

    In patients with asthma, magnetic resonance imaging (MRI) provides direct measurements of regional ventilation heterogeneity, the etiology of which is not well-understood, nor is the relationship of ventilation abnormalities with lung mechanics. In addition, respiratory resistance and reactance are often abnormal in asthmatics and the frequency dependence of respiratory resistance is thought to reflect ventilation heterogeneity. We acquiredMRIventilation defect maps, forced expiratory volume in one-second (FEV1), and airways resistance (Raw) measurements, and used a computational airway model to explore the relationship of ventilation defect percent (VDP) with simulated measurements of respiratory system resistance (Rrs) and reactance (Xrs).MRIventilation defect maps were experimentally acquired in 25 asthmatics before, during, and after methacholine challenge and these were nonrigidly coregistered to the airway tree model. Using the model coregistered to ventilation defect maps, we narrowed proximal (9th) and distal (14th) generation airways that were spatially related to theMRIventilation defects. The relationships forVDPwith Raw measured using plethysmography (r = 0.79), and model predictions of Rrs>14(r = 0.91,P < 0.0001) and Rrs>9(r = 0.88,P < 0.0001) were significantly stronger (P = 0.005;P = 0.03, respectively) than withFEV1(r = -0.68,P = 0.0001). The slopes for the relationship ofVDPwith simulated lung mechanics measurements were different (P < 0.0001); among these, the slope for theVDP-Xrs0.2relationship was largest, suggesting thatVDPwas dominated by peripheral airway heterogeneity in these patients. In conclusion, as a first step toward understanding potential links between lung mechanics and ventilation defects, impedance predictions were made using a computational airway tree model with simulated constriction of airways related to ventilation defects measured in mild-moderate asthmatics.

  6. 3He lung imaging in an open access, very-low-field human magnetic resonance imaging system.

    PubMed

    Mair, R W; Hrovat, M I; Patz, S; Rosen, M S; Ruset, I C; Topulos, G P; Tsai, L L; Butler, J P; Hersman, F W; Walsworth, R L

    2005-04-01

    The human lung and its functions are extremely sensitive to gravity; however, the conventional high-field magnets used for most laser-polarized (3)He MRI of the human lung restrict subjects to lying horizontally. Imaging of human lungs using inhaled laser-polarized (3)He gas is demonstrated in an open-access very-low-magnetic-field (<5 mT) MRI instrument. This prototype device employs a simple, low-cost electromagnet, with an open geometry that allows variation of the orientation of the imaging subject in a two-dimensional plane. As a demonstration, two-dimensional lung images were acquired with 4-mm in-plane resolution from a subject in two orientations: lying supine and sitting in a vertical position with one arm raised. Experience with this prototype device will guide optimization of a second-generation very-low-field imager to enable studies of human pulmonary physiology as a function of subject orientation. PMID:15799045

  7. Hyperpolarized 3He and 129Xe magnetic resonance imaging apparent diffusion coefficients: physiological relevance in older never‐ and ex‐smokers

    PubMed Central

    Kirby, Miranda; Ouriadov, Alexei; Svenningsen, Sarah; Owrangi, Amir; Wheatley, Andrew; Etemad‐Rezai, Roya; Santyr, Giles E.; McCormack, David G.; Parraga, Grace

    2014-01-01

    Abstract Noble gas pulmonary magnetic resonance imaging (MRI) is transitioning away from 3He to 129Xe gas, but the physiological/clinical relevance of 129Xe apparent diffusion coefficient (ADC) parenchyma measurements is not well understood. Therefore, our objective was to generate 129Xe MRI ADC for comparison with 3He ADC and with well‐established measurements of alveolar structure and function in older never‐smokers and ex‐smokers with chronic obstructive pulmonary disease (COPD). In four never‐smokers and 10 COPD ex‐smokers, 3He (b = 1.6 sec/cm2) and 129Xe (b = 12, 20, and 30 sec/cm2) ADC, computed tomography (CT) density‐threshold measurements, and the diffusing capacity for carbon monoxide (DLCO) were measured. To understand regional differences, the anterior–posterior (APG) and superior–inferior (∆SI) ADC differences were evaluated. Compared to never‐smokers, COPD ex‐smokers showed greater 3He ADC (P = 0.006), 129Xe ADCb12 (P = 0.006), and ADCb20 (P = 0.006), but not for ADCb30 (P > 0.05). Never‐smokers and COPD ex‐smokers had significantly different APG for 3He ADC (P = 0.02), 129Xe ADCb12 (P = 0.006), and ADCb20 (P = 0.01), but not for ADCb30 (P > 0.05). ∆SI for never‐ and ex‐smokers was significantly different for 3He ADC (P = 0.046), but not for 129Xe ADC (P > 0.05). There were strong correlations for DLCO with 3He ADC and 129Xe ADCb12 (both r = −0.95, P < 0.05); in a multivariate model 129Xe ADCb12 was the only significant predictor of DLCO (P = 0.049). For COPD ex‐smokers, CT relative area <−950 HU (RA950) correlated with 3He ADC (r = 0.90, P = 0.008) and 129Xe ADCb12 (r = 0.85, P = 0.03). In conclusion, while 129Xe ADCb30 may be appropriate for evaluating subclinical or mild emphysema, in this small group of never‐smokers and ex‐smokers with moderate‐to‐severe emphysema, 129Xe ADCb12 provided a physiologically appropriate estimate of gas exchange abnormalities and alveolar microstructure. PMID:25347853

  8. Emphysema Quantification in Inflation-Fixed Lungs Using Low-Dose Computed Tomography and 3He Magnetic Resonance Imaging

    SciTech Connect

    Gierada, David S.; Woods, Jason C.; Jacob, Rick E.; Bierhals, Andrew J.; Choong, Cliff K.; Bartel, Seth T.; Chang, Yulin V.; Das, Nitin A.; Hong, Cheng; Lutey, Barbara; Ritter, Jon H.; Pilgram, Thomas K.; Cooper, Joel D.; Patterson, G Alexander; Battafarano, Richard J.; Meyers, Bryan F.; Yablonskiy, Dmitriy A.; Conradi, Mark S.

    2010-09-02

    Abstract: Objective: To evaluate the use of inflation-fixed lung tissue for emphysema quantification with CT and 3He MR diffusion imaging. Methods: Fourteen subjects representing a range of chronic obstructive pulmonary disease severity who underwent complete or lobar lung resection were studied. CT measurements of lung attenuation and MR measurements of the hyperpolarized 3He apparent diffusion coefficient (ADC) in resected specimens fixed in inflation with heated formalin vapor were compared with measurements obtained before fixation. Results: The mean CT emphysema index was 56% ± 17% before and 58% ± 19% after fixation (P=0.77;R=0.76). Index differences correlated with differences in lung volume (R2=0.47). The mean 3He ADC was 0.40 ± 0.15 cm2/sec before and 0.39 ± 0.14 cm2/sec after fixation (P=0.03, R=0.98). The CT emphysema index and the 3He ADC were correlated before (R=0.89) and after fixation (R=0.79). Conclusion: Concordance of CT and 3He MR imaging measurements in unfixed and inflation-fixed lungs supports the use of inflation-fixed lungs for quantitative imaging studies in emphysema.

  9. Two and three-dimensional segmentation of hyperpolarized 3He magnetic resonance imaging of pulmonary gas distribution

    NASA Astrophysics Data System (ADS)

    Heydarian, Mohammadreza; Kirby, Miranda; Wheatley, Andrew; Fenster, Aaron; Parraga, Grace

    2012-03-01

    A semi-automated method for generating hyperpolarized helium-3 (3He) measurements of individual slice (2D) or whole lung (3D) gas distribution was developed. 3He MRI functional images were segmented using two-dimensional (2D) and three-dimensional (3D) hierarchical K-means clustering of the 3He MRI signal and in addition a seeded region-growing algorithm was employed for segmentation of the 1H MRI thoracic cavity volume. 3He MRI pulmonary function measurements were generated following two-dimensional landmark-based non-rigid registration of the 3He and 1H pulmonary images. We applied this method to MRI of healthy subjects and subjects with chronic obstructive lung disease (COPD). The results of hierarchical K-means 2D and 3D segmentation were compared to an expert observer's manual segmentation results using linear regression, Pearson correlations and the Dice similarity coefficient. 2D hierarchical K-means segmentation of ventilation volume (VV) and ventilation defect volume (VDV) was strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.97, p<.0001) and mean Dice coefficients were greater than 92% for all subjects. 3D hierarchical K-means segmentation of VV and VDV was also strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.64, p<.0001) and the mean Dice coefficients were greater than 91% for all subjects. Both 2D and 3D semi-automated segmentation of 3He MRI gas distribution provides a way to generate novel pulmonary function measurements.

  10. A high-field 3He metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Collier, G.; Pałasz, T.; Wojna, A.; Głowacz, B.; Suchanek, M.; Olejniczak, Z.; Dohnalik, T.

    2013-05-01

    After being hyperpolarized using the technique of Metastability Exchange Optical Pumping (MEOP), 3He can be used as a contrast agent for lung magnetic resonance imaging (MRI). MEOP is usually performed at low magnetic field (˜1 mT) and low pressure (˜1 mbar), which results in a low magnetization production rate. Polarization preserving compression with a compression ratio of order 1000 is also required. It was demonstrated in sealed cells that high nuclear polarization values can be obtained at higher pressures with MEOP, if performed at high magnetic field (non-standard conditions). In this work, the feasibility of building a high-field polarizer that operates within a commercial 1.5 T scanner was evaluated. Preliminary measurements of nuclear polarization with sealed cells filled at different 3He gas pressures (1.33 to 267 mbar) were performed. The use of an annular shape for the laser beam increased by 25% the achievable nuclear polarization equilibrium value (Meq) at 32 and 67 mbar as compared to a Gaussian beam shape. Meq values of 66.4% and 31% were obtained at 32 and 267 mbar, respectively, and the magnetization production rate was increased by a factor of 10 compared to the best results obtained under standard conditions. To study the reproducibility of the method in a polarizing system, the same experiments were performed with small cells connected to a gas handling system. Despite careful cleaning procedure, the purity of the 3He gas could not be matched to that of the sealed cells. Consequently, the polarization build-up times were approximately 3 times longer in the 20-30 mbar range of pressure than those obtained for the 32 mbar sealed cell. However, reasonable Meq values of 40%-60% were achieved in a 90 ml open cell. Based on these findings, a novel compact polarizing system was designed and built. Its typical output is a 3He gas flow rate of 15 sccm with a polarization of 33%. In-vivo lung MRI ventilation images (Signal to Noise Ratio (SNR) of

  11. Enhancement of Magnetization in Liquid 3He at Aerogel Interface

    NASA Astrophysics Data System (ADS)

    Fukui, A.; Kondo, K.; Kato, C.; Obara, K.; Yano, H.; Ishikawa, O.; Hata, T.

    2013-05-01

    A novel feature of condensate state in liquid 3He is predicted theoretically, which consists of spin triplet s-wave Cooper pairs (Higashitani et al. in J. Low. Temp. Phys. 155:83-97, 2009). Such a spin triplet s-wave state will appear inside aerogel near the surface boundary contacting with superfluid 3He-B, and the enhancement of magnetization due to s-wave state is theoretically expected (Nagato et al. in J. Phys. Soc. Jpn. 78:123603, 2009; Higashitani et al. in Phys. Rev. B 85:024524, 2012). In order to detect this proximity effect, we made the interface in columnar glass tube which coated with 2.5 layer 4He, and set a saddle shape NMR coil very near the interface. At 7 bar, we found that superfluidity in liquid 3He inside aerogel never occurred, even at considerably low temperatures. At 24 bar below T/ T c =0.392, we observed no decrease of magnetization with decreasing temperatures. This phenomenon might be due to spin triplet s-wave Cooper pairs.

  12. Nuclear magnetic relaxation of /sup 3/He gas. I. Pure /sup 3/He

    SciTech Connect

    Lusher, C.P.; Secca, M.F.; Richards, M.G.

    1988-07-01

    Longitudinal relaxation times T/sub 1/ have been measured in /sup 3/He gas, using pulsed NMR, for number densities between 3 /times/ 10/sup 23/ and 6 /times/ 10/sup 25/ spins m/sup /minus/3/ and temperatures between 0.6 and 15 K. Relaxation takes place on or near the walls of the Pyrex sample cells and measurements of T/sub 1/ give information about the surface phases. A cryogenic wall coating of solid molecular hydrogen was found to delay the formation of a /sup 3/He monolayer on cooling, and T/sub 1/ measurements were consistent with a binding energy of approx. 13 K for a /sup 3/He atom to a hydrogen surface. At temperatures below approx. 2 K a completed /sup 3/He monolayer forms on the H/sub 2/ coating. No variation of the areal density of monolayer completion with bulk number density at fixed temperature could be observed and the completed /sup 3/He monolayer is thought to be a dense fluid. Baking the Pyrex sample cells under vacuum and using an rf discharge in /sup 3/He gas to clean the walls before sealing in the sample gas were found to increase the observed T/sub 1/'s by up to three orders of magnitude. Once a /sup 3/He monolayer has formed on the H/sub 2/ surface in these cleaned, sealed cells, the dipolar interaction between adsorbed spins is thought to be the dominant source of longitudinal relaxation. The data are consistent with a dipolar relaxation model with a correlation time of approx. 2 /times/ 10/sup /minus/9/ sec. This time is long compared to the value of 10/sup /minus/11/ or 10/sup /minus/12/ sec in the 3D fluid. This suggests that if the surface phase is a 2D fluid and the dipolar mechanism is indeed the dominant one, then the atoms in the 2D fluid are less mobile than in three dimensions. This is consistent with recent susceptibility measurements.

  13. Density of liquid 3He in 8 T magnetic field

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Hasegawa, Syuichi; Okuda, Yuichi

    2000-07-01

    We report a precise measurement of the density of liquid 3He in a 8 T field. Measurements performed at saturated vapour pressure between 30 and 300 mK show a field-induced increase of density. The relative change is about 1×10 -5 in this temperature range. These results are in agreement with a calculation based on a Maxwell relation and the pressure dependence of the susceptibility.

  14. (83)Kr nuclear magnetic moment in terms of that of (3)He.

    PubMed

    Makulski, Włodzimierz

    2014-08-01

    High resolution NMR spectroscopy was applied to precisely determine the (83)Kr nuclear magnetic dipole moment on the basis of new results available for nuclear magnetic shielding in krypton and helium-3 atoms. Small amounts of (3)He as the solutes and (83)Kr as the buffer gas were observed in (3)He and (83)Kr NMR spectra at the constant external field, B0 = 11.7578 T. In each case, the resonance frequencies (ν(He) and ν(Kr)) were linearly dependent on the density of gaseous solvent. The extrapolation of experimental points to the zero density of gaseous krypton allowed for the evaluation of both resonance frequencies free from intermolecular interactions. By combining these measurements with the recommended (83)Kr chemical shielding value, the nuclear magnetic moment could be determined with much better precision than ever before, μ((83)Kr) = -0.9707297(32)μN, with the improvement due to the greater accuracy of the spectral data.

  15. (83)Kr nuclear magnetic moment in terms of that of (3)He.

    PubMed

    Makulski, Włodzimierz

    2014-08-01

    High resolution NMR spectroscopy was applied to precisely determine the (83)Kr nuclear magnetic dipole moment on the basis of new results available for nuclear magnetic shielding in krypton and helium-3 atoms. Small amounts of (3)He as the solutes and (83)Kr as the buffer gas were observed in (3)He and (83)Kr NMR spectra at the constant external field, B0 = 11.7578 T. In each case, the resonance frequencies (ν(He) and ν(Kr)) were linearly dependent on the density of gaseous solvent. The extrapolation of experimental points to the zero density of gaseous krypton allowed for the evaluation of both resonance frequencies free from intermolecular interactions. By combining these measurements with the recommended (83)Kr chemical shielding value, the nuclear magnetic moment could be determined with much better precision than ever before, μ((83)Kr) = -0.9707297(32)μN, with the improvement due to the greater accuracy of the spectral data. PMID:24842240

  16. A 3He Cryostat for Scientific Measurements in Pulsed High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Shaoliang; Li, Liang; Liu, Mengyu; Zuo, Huakun; Peng, Tao

    A top loading 3He cryostat has been developed for scientific experiments with a 60 T pulsed magnetic field facility at Wuhan National High Magnetic Field Center. The cryostat consists of a 4He bath cryostat, a 3He insert and a closed circulation system for 3He gas handling. To eliminate the eddy current heating during the pulse, the tail of the 3He insert with a vacuum space at the bottom is made from fiberglass tubing coated with epoxy. The 3He bath is separated from the 4He bath with the vacuum space. The 4He bath cryostat provides cooling power to condense 3He gas by a neck tube on top of the tail. Experimental results have shown that the sample can be cooled down to 385 mK and kept cold for more than 150 second by one-shot cooling, which is sufficiently long for an experiment in a pulsed high magnetic field.

  17. Development of a 3He nuclear spin flip system on an in-situ SEOP 3He spin filter and demonstration for a neutron reflectometer and magnetic imaging technique

    NASA Astrophysics Data System (ADS)

    Hayashida, H.; Oku, T.; Kira, H.; Sakai, K.; Hiroi, K.; Ino, T.; Shinohara, T.; Imagawa, T.; Ohkawara, M.; Ohoyama, K.; Kakurai, K.; Takeda, M.; Yamazaki, D.; Oikawa, K.; Harada, M.; Miyata, N.; Akutsu, K.; Mizusawa, M.; Parker, J. D.; Matsumoto, Y.; Zhang, S.; Suzuki, J.; Soyama, K.; Aizawa, K.; Arai, M.

    2016-04-01

    We have been developing a 3He neutron spin filter (NSF) using the spin exchange optical pumping (SEOP) technique. The 3He NSF provides a high-energy polarized neutron beam with large beam size. Moreover the 3He NSF can work as a π-flipper for a polarized neutron beam by flipping the 3He nuclear spin using a nuclear magnetic resonance (NMR) technique. For NMR with the in-situ SEOP technique, the polarization of the laser must be reversed simultaneously because a non-reversed laser reduces the polarization of the spin-flipped 3He. To change the polarity of the laser, a half-wavelength plate was installed. The rotation angle of the half-wavelength plate was optimized, and a polarization of 97% was obtained for the circularly polarized laser. The 3He polarization reached 70% and was stable over one week. A demonstration of the 3He nuclear spin flip system was performed at the polarized neutron reflectometer SHARAKU (BL17) and NOBORU (BL10) at J-PARC. Off-specular measurement from a magnetic Fe/Cr thin film and magnetic imaging of a magnetic steel sheet were performed at BL17 and BL10, respectively.

  18. Resonance transition 795-nm Rubidium laser using 3He buffer gas

    SciTech Connect

    Wu, S S; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2007-08-02

    We report the first demonstration of a 795-nm Rubidium resonance transition laser using a buffer gas consisting of pure {sup 3}He. This follows our recent demonstration of a hydrocarbon-free 795-nm Rubidium resonance laser which used naturally-occurring He as the buffer gas. Using He gas that is isotopically enriched with {sup 3}He yields enhanced mixing of the Rb fine-structure levels. This enables efficient lasing at reduced He buffer gas pressure, improving thermal management in high average power Rb lasers and enhancing the power scaling potential of such systems.

  19. Magnetization and spin diffusion of liquid {sup 3}He in aerogel

    SciTech Connect

    Sauls, J. A.; Bunkov, Yu.M.; Collin, E.; Godfrin, H.; Sharma, P.

    2005-07-01

    We report theoretical calculations and experimental measurements of the normal-state spin diffusion coefficient of {sup 3}He in aerogel, including both elastic and inelastic scattering of {sup 3}He quasiparticles, and compare these results with data for {sup 3}He in 98% porous silica aerogel. This analysis provides a determination of the elastic mean free path within the aerogel. Measurements of the magnetization of the superfluid phase in the same aerogel samples provide a test of the theory of pairbreaking and magnetic response of low-energy excitations in the 'dirty' B phase of {sup 3}He in aerogel. A consistent interpretation of the data for the spin-diffusion coefficient, magnetization, and superfluid transition temperature is obtained by including correlation effects in the aerogel density.

  20. Magnetic properties and concurrence for fluid {sup 3}He on kagome lattice

    SciTech Connect

    Ananikian, N. S. Ananikian, L. N.; Lazaryan, H. A.

    2012-10-15

    We present the results of magnetic properties and entanglement for kagome lattice using Heisenberg model with two- and three-site exchange interactions in strong magnetic field. Kagome lattice correspond to the third layer of fluid {sup 3}He absorbed on the surface of graphite. The magnetic properties and concurrence as a measure of pairwise thermal entanglement are studied by means of variational mean-field like treatment based on Gibbs-Bogoliubov inequality. The system exhibits different magnetic behaviors depending on the values of the exchange parameters (J{sub 2}, J{sub 3}). We have obtained the magnetization plateaus at low temperatures. The central theme of the paper is comparing the entanglement and magnetic behavior for kagome lattice. We have found that in the antiferromagnetic region behavior of the concurrence coincides with the magnetic susceptibility one.

  1. Precision Hyperfine Structure of 2;^3P State of ^3He with External Magnetic

    NASA Astrophysics Data System (ADS)

    Wu, Qixue; Drake, G. W. F.

    2007-06-01

    The theory of the Zeeman effect can be used to extrapolate precise measurements for the fine structure or the hyperfine structure to zero-field strength. In the present work, the hyperfine structure of 2;^3P state of ^3He with external magnetic fields is precisely calculated. The values of the fields for 32 crossings and five anticrossings of the magnetic sublevels are theoretically predicted for magnetic field strengths up to 1 Tesla. The results are compared with experimental work. We include the linear terms, diamagnetic terms, and the 2̂ relativistic correction terms in the Zeeman Hamiltonian. All related matrix elements are calculated with high accuracy by the use of double basis set Hylleraas type variational wave functions[1,2].[1] Z. -C. Yan and G.W.F. Drake, Phys. Rev. A 50, R1980 (1994).[2] Q. Wu and G.W.F. Drake, J. Phys. B 40, 393 (2007).

  2. Magnetized liquid 3He at finite temperature: A variational calculation approach

    NASA Astrophysics Data System (ADS)

    Bordbar, Gholam Hossein; Mohammadi Sabet, Mohammad Taghi

    2016-08-01

    Using the spin-dependent (SD) and spin-independent (SI) correlation functions, we have investigated the properties of liquid 3He in the presence of magnetic field at finite temperature. Our calculations have been done using the variational method based on cluster expansion of the energy functional. Our results show that the low field magnetic susceptibility obeys Curie law at high temperatures. This behavior is in a good agreement with the experimental data as well as the molecular field theory results in which the spin dependency has been introduced in correlation function. Reduced susceptibility as a function of temperature as well as reduced temperature has been also investigated, and again we have seen that the spin-dependent correlation function leads to a good agreement with the experimental data. The Landau parameter, F0a, has been calculated, and for this parameter, a value about ‑ 0.75 has been found in the case of spin-spin correlation. In the case of spin-independent correlation function, this value is about ‑ 0.7. Therefore, inclusion of spin dependency in the correlation function leads to a more compatible value of F0a with experimental data. The magnetization and susceptibility of liquid 3He have also been investigated as a function of magnetic field. Our results show a downward curvature in magnetization of system with spin-dependent correlation for all densities and relevant temperatures. A metamagnetic behavior has been observed as a maximum in susceptibility versus magnetic field, when the spin-spin correlation has been considered. This maximum occurs at 45T ≤ B ≤ 100T for all densities and temperatures. This behavior has not been observed in the case of spin-independent correlation function.

  3. Magnetized liquid 3He at finite temperature: A variational calculation approach

    NASA Astrophysics Data System (ADS)

    Bordbar, Gholam Hossein; Mohammadi Sabet, Mohammad Taghi

    2016-08-01

    Using the spin-dependent (SD) and spin-independent (SI) correlation functions, we have investigated the properties of liquid 3He in the presence of magnetic field at finite temperature. Our calculations have been done using the variational method based on cluster expansion of the energy functional. Our results show that the low field magnetic susceptibility obeys Curie law at high temperatures. This behavior is in a good agreement with the experimental data as well as the molecular field theory results in which the spin dependency has been introduced in correlation function. Reduced susceptibility as a function of temperature as well as reduced temperature has been also investigated, and again we have seen that the spin-dependent correlation function leads to a good agreement with the experimental data. The Landau parameter, F0a, has been calculated, and for this parameter, a value about - 0.75 has been found in the case of spin-spin correlation. In the case of spin-independent correlation function, this value is about - 0.7. Therefore, inclusion of spin dependency in the correlation function leads to a more compatible value of F0a with experimental data. The magnetization and susceptibility of liquid 3He have also been investigated as a function of magnetic field. Our results show a downward curvature in magnetization of system with spin-dependent correlation for all densities and relevant temperatures. A metamagnetic behavior has been observed as a maximum in susceptibility versus magnetic field, when the spin-spin correlation has been considered. This maximum occurs at 45T ≤ B ≤ 100T for all densities and temperatures. This behavior has not been observed in the case of spin-independent correlation function.

  4. Measurement of the neutron magnetic form factor from inclusive quasielastic scattering of polarized electrons from polarized [sup 3]He

    SciTech Connect

    Gao, H.; Arrington, J.; Beise, E.J.; Bray, B.; Carr, R.W.; Filippone, B.W.; Lung, A.; McKeown, R.D.; Mueller, B.; Pitt, M.L. ); Jones, C.E. ); DeSchepper, D.; Dodson, G.; Dow, K.; Ent, R.; Farkhondeh, M.; Hansen, J.; Korsch, W.; Kramer, L.H.; Lee, K.; Makins, N.; Milner, R.G.; Tieger, D.R.; Welch, T.P. ); Candell, E.; Napolitano, J.; Wojtsekhowski, B.B.; Tripp, C. ); Lorenzon, W. )

    1994-08-01

    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized [sup 3]He target. The neutron magnetic form factor [ital G][sup [ital n

  5. Radiation-damping effects in a birdcage resonator with hyperpolarised 3He gas NMR at 1.5 T.

    PubMed

    Teh, Kevin; de Zanche, Nicola; Wild, Jim M

    2007-03-01

    The presence and diagnosis of radiation damping could have major implications in NMR experiments with hyperpolarised gases, where accurate knowledge of the flip angle is imperative. In this work radiation damping was observed and investigated in a low-pass birdcage resonator (Q=250) with samples of hyperpolarised 3He at 1.5 T. With an initially highly polarised (P=38%) sample of 3He in a spherical cell, the observed FID had a distorted line shape with a spectral line width that was three times that of the same sample in a virtually depolarised state (1 Hz line width for P<1%). Moreover a linear relation between the sample's magnetisation (M0) and the line width of the spectrum was observed which is indicative of radiation damping. With highly polarised samples, significant radiation damping was observed and the effect was a lower than expected rate of depletion of M0 in RF flip angle calibration experiments, which led to significant underestimate of the RF flip angle. To our knowledge this is the first report of radiation damping in a birdcage resonator with samples hyperpolarised or otherwise. Experimental observation of radiation damping could be used as means of measuring coil efficiency as an alternative to the geometrical filling factor (eta) the definition of which is open to question for a birdcage resonator. Estimates of the birdcage filling factor from the measured damping time constants (eta(RD)=0.4%) are compared to those derived from electromagnetic energy ratios (eta(E)=1.6%) and metallic sphere frequency shift methods (eta(fs)=1.4%). These figures are much lower than the simple volume geometrical upper limit of eta(v)=3.7% derived from the ratio of cell volume to total coil volume (shield included). The physical explanation for this shortfall is that the bulk of the magnetic energy stored in the birdcage is spatially distributed predominantly between the rungs and the shield, and not in the coil centre where the sample is placed and where the B1

  6. Probing "cosmological" defects in superfluid 3He-B with a vibrating-wire resonator.

    PubMed

    Winkelmann, C B; Elbs, J; Bunkov, Yu M; Godfrin, H

    2006-05-26

    We report on the observation of an anomalously high damping measured by a vibrating-wire resonator (VWR) immersed into superfluid at ultralow temperatures. The observed dissipation is orders of magnitude above that corresponding to friction with the dilute normal fraction and superfluid vortices. A clear pinning behavior is also observed, as well as a strong magnetic field dependence. Our analysis points to the interaction of the VWR with a planar topological defect, analogue to cosmological vacua defects, as proposed by Salomaa and Volovik. PMID:16803180

  7. On the K- 4He → Λπ- 3He resonant and non-resonant processes

    NASA Astrophysics Data System (ADS)

    Piscicchia, K.; Wycech, S.; Curceanu, C.

    2016-10-01

    The ongoing data analyses by the AMADEUS/KLOE-2 Collaboration on the 2004-2005 KLOE data revive studies of the K ‾ nuclear absorption at low energies. The aim is to study K ‾ interactions at subthreshold energies and to search for signals of K ‾ meson nuclear states. In this paper the spectrum of the K- 4He → Λπ- 3He reaction is discussed. One - calculable - mode of decay involves P-wave intermediate Σ (1385) resonance. Another mode involves S-wave KN → Λπ amplitude which may be extracted from the experimental results. Comparison of these two allows a check of subthreshold extrapolations of multichannel K ‾ N S-wave interaction models. Given the established significance of the P wave interaction in the K ‾ N system presented here, the obtained spectra will serve for the AMADEUS/KLOE-2 data analysis, in order to properly extract the subthreshold non-resonant transition amplitude.

  8. Second sound experiments in superfluid 3He-A1 phase in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Bastea, Marina

    The Asb1 phase of sp3He is the first observed magnetic superfluid, stable only in the presence of an external magnetic field. Due to the broken relative gauge and spin rotational symmetry, the two associated collective modes, the second sound and the longitudinal spin waves are expected to appear as a single mode which we call the spin-entropy wave. Our work is focused on consistently mapping the behavior of the spin-entropy wave in the superfluid Asb{1} phase of sp3He, under a wide range of experimental conditions. Our results address fundamental questions such as the identification of the order parameter symmetry in the superfluid states, the nature of the pairing state in the Asb1 phase and the superfluid density anisotropy. We extensively investigated the propagation of the spin-entropy wave as a function of temperature, magnetic field between 1 and 8 Tesla and liquid pressure up to 30 bar. Our results show that the superfluid density is directly proportional to the magnitude of the external field in the specified range, as predicted by theory. We discovered that in the vicinity of the transition to the Asb2 phase, over a fairly large temperature range, the spin-entropy wave suffers a divergent attenuation. The observed effects were suggested as evidence for the presence of a minority condensate population, "down spin" pairs, specific for the Asb2 phase, as predicted by Monien and Tewordt. We measured the superfluid density dependence on the pressure between 10 and 30 bar and directly related it to the fourth order coefficients of the Ginzburg-Landau free energy expansion. The pressure dependence of three of these coefficients and their strong coupling corrections was found to be consistent with the theoretical predictions of Sauls and Serene. Our results support the identification of the A phase as the Anderson-Brinkman-Morel axial state and provide an important consistency check for the phase diagram carried out by groups at USC and Cornell. We performed

  9. Light Higgs channel of the resonant decay of magnon condensate in superfluid (3)He-B.

    PubMed

    Zavjalov, V V; Autti, S; Eltsov, V B; Heikkinen, P J; Volovik, G E

    2016-01-08

    In superfluids the order parameter, which describes spontaneous symmetry breaking, is an analogue of the Higgs field in the Standard Model of particle physics. Oscillations of the field amplitude are massive Higgs bosons, while oscillations of the orientation are massless Nambu-Goldstone bosons. The 125 GeV Higgs boson, discovered at Large Hadron Collider, is light compared with electroweak energy scale. Here, we show that such light Higgs exists in superfluid (3)He-B, where one of three Nambu-Goldstone spin-wave modes acquires small mass due to the spin-orbit interaction. Other modes become optical and acoustic magnons. We observe parametric decay of Bose-Einstein condensate of optical magnons to light Higgs modes and decay of optical to acoustic magnons. Formation of a light Higgs from a Nambu-Goldstone mode observed in (3)He-B opens a possibility that such scenario can be realized in other systems, where violation of some hidden symmetry is possible, including the Standard Model.

  10. Light Higgs channel of the resonant decay of magnon condensate in superfluid 3He-B

    PubMed Central

    Zavjalov, V. V.; Autti, S.; Eltsov, V. B.; Heikkinen, P. J.; Volovik, G. E.

    2016-01-01

    In superfluids the order parameter, which describes spontaneous symmetry breaking, is an analogue of the Higgs field in the Standard Model of particle physics. Oscillations of the field amplitude are massive Higgs bosons, while oscillations of the orientation are massless Nambu-Goldstone bosons. The 125 GeV Higgs boson, discovered at Large Hadron Collider, is light compared with electroweak energy scale. Here, we show that such light Higgs exists in superfluid 3He-B, where one of three Nambu-Goldstone spin-wave modes acquires small mass due to the spin–orbit interaction. Other modes become optical and acoustic magnons. We observe parametric decay of Bose-Einstein condensate of optical magnons to light Higgs modes and decay of optical to acoustic magnons. Formation of a light Higgs from a Nambu-Goldstone mode observed in 3He-B opens a possibility that such scenario can be realized in other systems, where violation of some hidden symmetry is possible, including the Standard Model. PMID:26743951

  11. Light Higgs channel of the resonant decay of magnon condensate in superfluid (3)He-B.

    PubMed

    Zavjalov, V V; Autti, S; Eltsov, V B; Heikkinen, P J; Volovik, G E

    2016-01-01

    In superfluids the order parameter, which describes spontaneous symmetry breaking, is an analogue of the Higgs field in the Standard Model of particle physics. Oscillations of the field amplitude are massive Higgs bosons, while oscillations of the orientation are massless Nambu-Goldstone bosons. The 125 GeV Higgs boson, discovered at Large Hadron Collider, is light compared with electroweak energy scale. Here, we show that such light Higgs exists in superfluid (3)He-B, where one of three Nambu-Goldstone spin-wave modes acquires small mass due to the spin-orbit interaction. Other modes become optical and acoustic magnons. We observe parametric decay of Bose-Einstein condensate of optical magnons to light Higgs modes and decay of optical to acoustic magnons. Formation of a light Higgs from a Nambu-Goldstone mode observed in (3)He-B opens a possibility that such scenario can be realized in other systems, where violation of some hidden symmetry is possible, including the Standard Model. PMID:26743951

  12. Development of 3He insert for Magnetization Measurements down to T = 0.4 K with SQUID magnetometer

    NASA Astrophysics Data System (ADS)

    Sato, Yoshiaki; Hasuo, Tadahiko; Inagaki, Yuji; Kawae, Tatsuya

    2015-03-01

    We have developed a 9-mm-diameter 3He insert for precise magnetization measurements down to T = 0.4 K that is attachable to a commercial superconducting quantum interference device magnetometer. The insert is made from a thin-walled stainless steel pipe with an inner diameter of 6.2 mm, which determines the maximum sample size. 3He gas is condensed in the pipe, which is liquefied by 4He gas at T = 1.8 K generated by the magnetometer via the heat exchanger of a Cu vacuum jacket with an outer diameter of 8.6mm soldered to the stainless steel pipe. The temperature of the insert is decreased to T = 0.5 K by evacuating liquid 3He using a rotary pump and then to T = 0.36 K with a sorption pump. From the diamagnetization signal of a superconducting Al chip with a mass below 0.1 mg, the magnetization resolution with the insert is confirmed to be less than 10-7 emu. We measure the temperature dependence of magnetization down to T = 0.5 K in PrxLa1-xPb3, which is a good candidate for the reality of the quadrupolar Kondo effect, using the 3He insert. Non-Fermi liquid behavior of the nonlinear susceptibility in χ3 with a -lnT dependence is detected in the [100] and [110] directions below T = 2.5 K, suggesting the screening of quadrupolar moments. In contrast, χ3 in the [111] direction becomes constant below T = 3 K. The observed features indicate that a low-lying Γ3 doublet plays a crucial role in the anomalous properties of PrxLa1-xPb3.

  13. Measurement of the neutron magnetic form factor from inclusive quasielastic scattering of polarized electrons from polarized {sup 3}He

    SciTech Connect

    Gao, H.; Arrington, J.; Beise, E.J.; Bray, B.; Carr, R.W.; Filippone, B.W.; Lung, A.; McKeown, R.D.; Mueller, B.; Pitt, M.L.; Jones, C.E.; DeSchepper, D.; Dodson, G.; Dow, K.; Ent, R.; Farkhondeh, M.; Hansen, J.; Korsch, W.; Kramer, L.H.; Lee, K.; Makins, N.; Milner, R.G.; Tieger, D.R.; Welch, T.P.; Candell, E.; Napolitano, J.; Wojtsekhowski, B.B.; Tripp, C.; Lorenzon, W.

    1995-07-10

    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized {sup 3}He target. The neutron magnetic form factor {ital G}{sup {ital n}}{sub {ital M}} has been extracted from the measured asymmetry based on recent PWIA calculations using spin-dependent spectral functions. This experiment represents the first measurement of the neutron magnetic form factor using spin-dependent electron scattering. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Measurement of the neutron magnetic form factor from inclusive quasielastic scattering of polarized electrons from polarized {sup 3}He

    SciTech Connect

    Gao, H.; Arrington, J.; Beise, E.J.; Bray, B.; Carr, R.W.; Filippone, B.W.; Lung, A.; McKeown, R.D.; Mueller, B.; Pitt, M.L.; Jones, C.E.; DeSchepper, D.; Dodson, G.; Dow, K.; Ent, R.; Farkhondeh, M.; Hansen, J.; Korsch, W.; Kramer, L.H.; Lee, K.; Makins, N.; Milner, R.G.; Tieger, D.R.; Welch, T.P.; Candell, E.; Napolitano, J.; Wojtsekhowski, B.B.; Tripp, C.; Lorenzon, W.

    1995-05-10

    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized {sup 3}He target. The neutron magnetic form factor {ital G}{sup {ital n}}{sub {ital M}} has been extracted from the measured asymmetry based on recent PWIA calculations using spin-dependent spectral functions. This work represents the first measurement of {ital G}{sup {ital n}}{sub {ital M}} using spin-dependent electron scattering. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Development of a He3-He4 sub Kelvin active magnetic regenerative refrigerator (AMRR) with no moving parts

    NASA Astrophysics Data System (ADS)

    Jahromi, A. E.; Miller, F. K.

    2014-01-01

    Current state of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin cooling over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. We propose an active Magnetic Regenerative Refrigerator (AMRR) that uses a Superfluid Magnetic Pump (SMP) to circulate liquid He3-He4 through a magnetic regenerator to provide the necessary cooling at sub-Kelvin temperatures. Such system will be capable of distributing the cooling load to a relatively large array of objects. One advantage of using a fluid for heat transfer in such systems is to isolate components such as the superconducting magnets from detectors that are sensitive to magnetic fields. Another advantage of the proposed tandem AMRR is that it does not need Gas Gap Heat Switches (GGHS) to transfer heat during various stages of the magnetic cooling. Our proposed system consists of four superconducting magnets, one superleak, and three heat exchangers. It will operate continuously with no moving parts and it will be capable of providing the necessary cooling at sub-Kelvin temperatures for future space science applications.

  16. Coupling between Solid 3He on Aerogel and Superfluid 3He in the Low Temperature Limit

    SciTech Connect

    Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Pickett, G. R.; Tsepelin, V.; Whitehead, R. C. V.; Skyba, P.

    2006-09-07

    We have cooled liquid 3He contained in a 98% open aerogel sample surrounded by bulk superfluid 3He-B at zero pressure to below 120 {mu}K. The aerogel sample is placed in a quasiparticle blackbody radiator cooled by a Lancaster-style nuclear cooling stage to {approx}200 {mu}K. We monitor the temperature of the 3He inside the blackbody radiator using a vibrating wire resonator. We find that reducing the magnetic field on the aerogel sample causes substantial cooling of all the superfluid inside the blackbody radiator. We believe this is due to the demagnetization of the solid 3He layers on the aerogel strands. This system has potential for achieving extremely low temperatures in the confined fluid.

  17. 3He Bilayer Film Adsorbed on Graphite Plated with a Bilayer of 4He: a New Frustrated 2D Magnetic System

    NASA Astrophysics Data System (ADS)

    Neumann, Michael; Nyéki, Ján; Cowan, Brian; Saunders, John

    2006-09-01

    The heat capacity and NMR response of a 3He bilayer adsorbed on graphite plated with a bilayer of 4He have been measured over the temperature range 1-80 mK. We find that the first 3He layer requires the presence of a 3He fluid overlayer before it solidifies. Solidification is completed at a total coverage close to 9.85 nm-2, On further increasing the coverage the heat capacity maximum grows from `antiferromagnetic-like' (AFM-like) to `ferromagnetic-like' (FM-like). On the other hand, when the 3He layer first solidifies, it has a low temperature saturation magnetisation corresponding to a significant fraction of full polarisation, and this increases with increasing coverage. Furthermore the effective exchange constant inferred from the high temperature magnetisation data is always ferromagnetic. The effective exchange constants inferred from the heat capacity and magnetisation are significantly larger than those observed in the second layer of pure 3He films adsorbed on bare graphite. Otherwise there are strong similarities in the coverage dependence of the heat capacity and magnetisation, providing fresh insights into how the magnetic ground state of such 2D magnets evolves as the frustration is tuned with increasing coverage.

  18. Polarized {sup 3}He gas compression system using metastability-exchange optical pumping

    SciTech Connect

    Hussey, D.S.; Rich, D.R.; Belov, A.S.; Tong, X.; Yang, H.; Bailey, C.; Keith, C.D.; Hartfield, J.; Hall, G.D.R.; Black, T.C.; Snow, W.M.; Gentile, T.R.; Chen, W.C.; Jones, G.L.; Wildman, E.

    2005-05-15

    Dense samples (10-100 bar cm) of nuclear spin polarized {sup 3}He are utilized in high energy physics, neutron scattering, atomic physics, and magnetic resonance imaging. Metastability exchange optical pumping can rapidly produce high {sup 3}He polarizations ({approx_equal}80%) at low pressures (few mbar). We describe a polarized {sup 3}He gas compressor system which accepts 0.26 bar l h{sup -1} of {sup 3}He gas polarized to 70% by a 4 W neodymium doped lanthanum magnesium hexaluminate (Nd:LMA) laser and compresses it into a 5 bar cm target with final polarization of 55%. The spin relaxation rates of the system's components have been measured using nuclear magnetic resonance and a model of the {sup 3}He polarization loss based on the measured relaxation rates and the gas flow is in agreement with a {sup 3}He polarization measurement using neutron transmission.

  19. Elastic scattering of pions from tritium and {sup 3}He in the backward hemisphere in the region of the {Delta}{sub 33}(1232) resonance

    SciTech Connect

    Matthews, S.K.

    1993-11-01

    Several experiments have measured nominally-charge-symmetric scattering of pions from tritium ({sup 3}H) and {sup 3}He. These experiments have covered incident pion energies from 142 MeV to 295 MeV and scattering angles up to 110{degrees} in the laboratory. The results have been used to study charge-symmetry breaking and nuclear scattering systematics. In the work I have extended these measurements to angles near 180{degrees} for pion energies of 142 MeV, 180 MeV, 220 MeV, and 256 MeV, which bracket the {Delta}{sub 33} pion-nucleon resonance. This is the most extensive set of {pi}T and {pi}{sup 3}He data in this kinematical region. It will allow tests of scattering theory of pion-nucleus interactions and charge-symmetry breaking in back-angle scattering, and, within the limits of these two theories, it may help improve our understanding of the structure of these nuclei.

  20. Nuclear magnetic resonance gyroscope

    SciTech Connect

    Grover, B.C.

    1984-02-07

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor.

  1. DNP for polarizing liquid {sup 3}He

    SciTech Connect

    Uemtasu, H.; Iwata, T.; Kato, S.; Michigami, T.; Ohizumi, S.; Shishido, T.; Tanaka, A.; Toyama, K.; Tajima, Y.; Yoshida, H. Y.; Kuriyama, N.

    2008-02-06

    Using DNP with zeolite powders and TEMPO, we have developed a method to enhance polarization of liquid {sup 3}He. At magnetic field of 2.5 T and a temperature of around 1.5 K, we have obatined polarization enhancement of liquid {sup 3}He, 2.34 and -1.59 for positive and negative enhancements, respectively.

  2. Polarized 3He- ion source with hyperfine state selection

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Morozov, V.; Dudnikov, A.

    2015-04-01

    High beam polarization is essential to the scientific productivity of a collider. Polarized 3He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized 3He- ion source. This report discusses a polarized 3He- ion source based on the large difference of extra-electron auto-detachment lifetimes of the different 3He- ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ˜ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing 3He- ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, 3He- beam polarization of 90% can be achieved. Such a method of polarized 3He- production has been considered before; however, due to low intensities of the He+ ion sources existing at that time, it was not possible to produce any interesting intensity of polarized 3He- ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness 3He+ beam with an intensity of up to 2 A allowing for selection of up to ˜1-4 mA of 3He- ions with ˜90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of 3He gas. Some features of such a PIS as well as prototype designs are considered. An integrated 3He- ion source design providing high beam polarization could be prepared using existing BNL equipment with incorporation of new designs of the 1) arc discharge plasma generator, 2) extraction system, 3) charge exchange jet, and 4

  3. Magnetic resonance annual, 1988

    SciTech Connect

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system.

  4. Spin Duality on the Neutron ($^3$He)

    SciTech Connect

    Patricia Solvignon

    2006-02-01

    Thomas Jefferson National Accelerator Facility experiment E01-012 measured the ^3He spin structure functions and virtual photon asymmetries in the resonance region in the range 1.03He and the neutron. Preliminary results for A_1^3He are presented as well as an overview of the experimental and theoretical developments.

  5. Spin Duality on the Neutron (^3He)

    SciTech Connect

    Solvignon, Patricia

    2007-02-01

    Thomas Jefferson National Accelerator Facility experiment E01-012 measured the 3He spin structure functions and virtual photon asymmetries in the resonance region in the momentum transfer range 1.0 < Q2 < 4.0 (GeV/c)2. Our date, when compared with existing deep inelastic scattering data, can be used to test quark-hadron duality in g1 and A1 for 3He and the neutron. Preliminary results for A{sub 1}{sup {sup 3}He} are presented, as well as some details about the experiment.

  6. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias

    PubMed Central

    Hsu, Yuan-Yu; Du, An-Tao; Schuff, Norbert; Weiner, Michael W.

    2007-01-01

    This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in dementia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spectroscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential diagnosis and early detection of affected individuals, monitoring disease progression, and evaluation of therapeutic effect. PMID:11563438

  7. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  8. Magnetic Resonance Annual, 1985

    SciTech Connect

    Kressel, H.Y.

    1985-01-01

    The inaugural volume of Magnetic Resonance Annual includes reviews of MRI of the posterior fossa, cerebral neoplasms, and the cardiovascular and genitourinary systems. A chapter on contrast materials outlines the mechanisms of paramagnetic contrast enhancement and highlights several promising contrast agents.

  9. Magnetic resonance imaging

    SciTech Connect

    Stark, D.D.; Bradley, W.G. Jr.

    1988-01-01

    The authors present a review of magnetic resonance imaging. Many topics are explored from instrumentation, spectroscopy, blood flow and sodium imaging to detailed clinical applications such as the differential diagnosis of multiple sclerosis or adrenal adenoma. The emphasis throughout is on descriptions of normal multiplanar anatomy and pathology as displayed by MRI.

  10. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  11. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  12. Resonant magnetic vortices

    SciTech Connect

    Decanini, Yves; Folacci, Antoine

    2003-04-01

    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.

  13. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  14. Magnetic resonance sialography.

    PubMed

    Jungehülsing, M; Fischbach, R; Schröder, U; Kugel, H; Damm, M; Eckel, H E

    1999-10-01

    To evaluate a new noninvasive sialographic technique, we applied a new magnetic resonance technique to 10 healthy volunteers and 21 patients with lesions of the parotid gland. In addition to the usually performed T(1) and T(2) cross-sectional sequences, a heavily T(2)-weighted sequence (TR = 3600 msec, TE = 800 msec) was performed that allowed depiction of the fluid-filled parotid duct system. Twenty-one patients with benign as well as malignant parotid gland pathologies were examined: sialadenitis (n = 6), sicca syndrome (n = 2), pleomorphic adenoma (n = 4), carcinoma of the parotid gland (n = 2), lymphoepithelial carcinoma (n = 1), cystadenolymphoma (n = 3), non-Hodgkin's lymphoma (n = 2), and congenital duct dilatation (n = 1). Stenseńs duct was reliably depicted in all volunteers and patients. The primary branching ducts were reliably depicted in all normal cases. Intraglandular and extraglandular duct dilatations and duct strictures were well depicted in patients with chronic sialadenitis. Sialolithiasis with a calculus obstructing the duct was demonstrated in 2 cases. In conclusion, Initial experience indicates that magnetic resonance sialography can be applied successfully to investigate the duct system of the parotid gland. The usually performed cross-sectional MRI (T(1)- and T(2)-weighted images, gadolinium-DTPA) depicts the internal architecture of the parotid gland with high reliability. Magnetic resonance sialography with heavily T(2)-weighted images adds important information about the ductal system. Because it is completely noninvasive, the only contraindications are the ones generally accepted for MRI.

  15. Magnetic resonance safety.

    PubMed

    Sammet, Steffen

    2016-03-01

    Magnetic resonance imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation, and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy, and the potential risks of MRI contrast agents will also be discussed, and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented. PMID:26940331

  16. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  17. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  18. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Griffith, Robert; Bulatowicz, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  19. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Griffith, Robert; Larsen, Michael

    2014-03-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, design, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.

  20. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is concluding the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This poster will describe the history, operational principles, and design basics of the NMRG including an overview of the NSD designs developed and demonstrated in the DARPA gyro development program. General performance results from phases 3 and 4 will also be presented.

  1. Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating

    DOEpatents

    Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.

    A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.

  2. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael

    2011-05-01

    The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation is currently in phase 4 of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. The micro-NMRG technology is pushing the boundaries of size, weight, power, and performance allowing new small platform applications of navigation grade Inertial Navigation System (INS) technology. Information on the historical development of the technology, basics of operation, task performance goals, application opportunities, and a phase 2 sample of earth rate measurement data will be presented. Funding Provided by the Defense Advanced Research Projects Agency (DARPA)

  3. Magnetic Resonance Imaging Duodenoscope.

    PubMed

    Syms, Richard R A; Young, Ian R; Wadsworth, Christopher A; Taylor-Robinson, Simon D; Rea, Marc

    2013-12-01

    A side-viewing duodenoscope capable of both optical and magnetic resonance imaging (MRI) is described. The instrument is constructed from MR-compatible materials and combines a coherent fiber bundle for optical imaging, an irrigation channel and a side-opening biopsy channel for the passage of catheter tools with a tip saddle coil for radio-frequency signal reception. The receiver coil is magnetically coupled to an internal pickup coil to provide intrinsic safety. Impedance matching is achieved using a mechanically variable mutual inductance, and active decoupling by PIN-diode switching. (1)H MRI of phantoms and ex vivo porcine liver specimens was carried out at 1.5 T. An MRI field-of-view appropriate for use during endoscopic retrograde cholangiopancreatography (ERCP) was obtained, with limited artefacts, and a signal-to-noise ratio advantage over a surface array coil was demonstrated. PMID:23807423

  4. Cardiovascular Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Pelc, Norbert

    2000-03-01

    Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.

  5. nuclear magnetic resonance gyroscope

    SciTech Connect

    Karwacki, F. A.; Griffin, J.

    1985-04-02

    A nuclear magnetic resonance gyroscope which derives angular rotation thereof from the phases of precessing nuclear moments utilizes a single-resonance cell situated in the center of a uniform DC magnetic field. The field is generated by current flow through a circular array of coils between parallel plates. It also utilizes a pump and read-out beam and associated electronics for signal processing and control. Encapsulated in the cell for sensing rotation are odd isotopes of Mercury Hg/sup 199/ and Hg/sup 201/. Unpolarized intensity modulated light from a pump lamp is directed by lenses to a linear polarizer, quarter wave plate combination producing circularly polarized light. The circularly polarized light is reflected by a mirror to the cell transverse to the field for optical pumping of the isotopes. Unpolarized light from a readout lamp is directed by lenses to another linear polarizer. The linearly polarized light is reflected by another mirror to the cell transverse to the field and orthogonal to the pump lamp light. The linear light after transversing the cell strikes an analyzer where it is converted to an intensity-modulated light. The modulated light is detected by a photodiode processed and utilized as feedback to control the field and pump lamp excitation and readout of angular displacement.

  6. The 3He Supply Problem

    SciTech Connect

    Kouzes, Richard T.

    2009-05-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Radiation portal monitors deployed for homeland security and non-proliferation use such detectors. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, for targets or cooling in nuclear research, and for basic research in condensed matter physics. The US supply of 3He comes almost entirely from the decay of tritium used in nuclear weapons by the US and Russia. A few other countries contribute a small amount to the world’s 3He supply. Due to the large increase in use of 3He for homeland security, the supply has dwindled, and can no longer meet the demand. This white paper reviews the problems of supply, utilization, and alternatives.

  7. Dressed spin of {sup 3}He

    SciTech Connect

    Esler, A.; Peng, J. C.; Chandler, D.; Howell, D.; Lamoreaux, S. K.; Liu, C. Y.; Torgerson, J. R.

    2007-11-15

    We report a measurement of dressed spin effects of polarized {sup 3}He atoms from a cold atomic source traversing a region of a constant magnetic field B{sub 0} and a transverse oscillatory dressing field B{sub d}cos{omega}{sub d}t. The observed effects are compared with a numerical simulation using the Bloch equation as well as a calculation based on the dressed atom formalism. An application of the dressed spin of {sup 3}He for a proposed neutron electric dipole moment measurement is also discussed.

  8. Studies of 3He polarization losses during NMR and EPR measurment and Polarized 3He target cell lifetime

    NASA Astrophysics Data System (ADS)

    An, Peibo

    2014-09-01

    The 3He target cell polarized by spin-exchange optical pumping(SEOP) is used as a neutron substitute to study the inner structure of the neutron. In our lab, nuclear-magnetic-resonance(NMR) is used to measure the relative polarization and electron-paramagnetic-resonance(EPR) is used to measure the spin exchange EPR frequency shift parameter of potassium and rubidium in our target cell presented in magnetic fields. The alkali in the cell is used to facilitate the polarization of 3He. The first part of my work presents the study of the polarization losses of the cell during both NMR and EPR. With the help of improved RF coils, we keep the background noise received by pickup coils reasonably low, but three other kinds of losses are inevitable: losses during Adiabatic Fast Passage (AFP) sweep, losses due to flux change caused by different cell orientation with respect to RF fields and physical losses. Fortunately there is only flux change in NMR measurements. The second part of my work presents the study of cell lifetime improvement. The polarization decreases in a process called relaxation exponentially. The lifetime of a cell is how long it can keep its polarization. The typical lifetime of cells produced in our lab is about 22 hours. With a newly designed vacuum system. The 3He target cell polarized by spin-exchange optical pumping(SEOP) is used as a neutron substitute to study the inner structure of the neutron. In our lab, nuclear-magnetic-resonance(NMR) is used to measure the relative polarization and electron-paramagnetic-resonance(EPR) is used to measure the spin exchange EPR frequency shift parameter of potassium and rubidium in our target cell presented in magnetic fields. The alkali in the cell is used to facilitate the polarization of 3He. The first part of my work presents the study of the polarization losses of the cell during both NMR and EPR. With the help of improved RF coils, we keep the background noise received by pickup coils reasonably low, but

  9. Perspectives of hyperpolarized noble gas MRI beyond 3He

    NASA Astrophysics Data System (ADS)

    Lilburn, David M. L.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-04-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed.

  10. Perspectives of hyperpolarized noble gas MRI beyond 3He.

    PubMed

    Lilburn, David M L; Pavlovskaya, Galina E; Meersmann, Thomas

    2013-04-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp (3)He. A particular focus are the many intriguing experiments with (129)Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp (83)Kr MRI is discussed.

  11. Nuclear Magnetic Resonance Gyroscope

    NASA Astrophysics Data System (ADS)

    Larsen, Michael; Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Mirijanian, James; Pavell, James

    2015-05-01

    The Nuclear Magnetic Resonance Gyroscope (NMRG) is being developed by the Northrop Grumman Corporation (NGC). Cold and hot atom interferometer based gyroscopes have suffered from Size, Weight, and Power (SWaP) challenges and limits in bandwidth, scale factor stability, dead time, high rotation rate, vibration, and acceleration. NMRG utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as a reference for determining rotation, providing continuous measurement, high bandwidth, stable scale factor, high rotation rate measurement, and low sensitivity to vibration and acceleration in a low SWaP package. The sensitivity to vibration has been partially tested and demonstrates no measured sensitivity within error bars. Real time closed loop implementation of the sensor significantly decreases environmental and systematic sensitivities and supports a compact and low power digital signal processing and control system. Therefore, the NMRG technology holds great promise for navigation grade performance in a low cost SWaP package. The poster will describe the history, operation, and design of the NMRG. General performance results will also be presented along with recent vibration test results.

  12. Superconducting Magnets for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Feenan, Peter

    2000-03-01

    MRI is now a well established diagnostic technique in medicine. The richness of information provided by magnetic resonance gives rise to a variety of techniques which in turn leads to a variety of magnet designs. Magnet designers must consider suitable superconduting materials for the magnet, but need also to consider the overall fomat of the magnet to maximise patient comfort, access for clinicians and convenience of use - in some examples magnets are destined for use within the operating theatre and special considerations are required for this. Magnet types include; (1) low-field general purpose imagers, (2) extremity imaging, (3) open magnets with exellent all-round access often employing iron or permanent magnetic materials, (4) high-field magnets, and (5) very high-field (7 Tesla and more) magnets for spectroscopy and functional imaging research. Examples of these magnet varieties will be shown and some of the design challenges discussed.

  13. Recent advances in polarized 3 He based neutron spin filter development

    NASA Astrophysics Data System (ADS)

    Chen, Wangchun; Gentile, Thomas; Erwin, Ross; Watson, Shannon; Krycka, Kathryn; Ye, Qiang; NCNR NIST Team; University of Maryland Team

    2015-04-01

    Polarized 3 He neutron spin filters (NSFs) are based on the strong spin-dependence of the neutron absorption cross section by 3 He. NSFs can polarize large area, widely divergent, and broadband neutron beams effectively and allow for combining a neutron polarizer and a spin flipper into a single polarizing device. The last capability utilizes 3 He spin inversion based on the adiabatic fast passage (AFP) nuclear magnetic resonance technique. Polarized 3 He NSFs are significantly expanding the polarized neutron measurement capabilities at the NIST Center for Neutron Research (NCNR). Here we present an overview of 3 He NSF applications to small-angle neutron scattering, thermal triple axis spectrometry, and wide-angle polarization analysis. We discuss a recent upgrade of our spin-exchange optical pumping (SEOP) systems that utilize chirped volume holographic gratings for spectral narrowing. The new capability allows us to polarize rubidium/potassium hybrid SEOP cells over a liter in volume within a day, with 3 He polarizations up to 88%, Finally we discuss how we can achieve nearly lossless 3 He polarization inversion with AFP.

  14. Gas cells for 3He hyperpolarized via spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Tan, J. A.; Woo, S.

    2016-01-01

    We present a device for the production of hyperpolarized 3He, which is widely used in spinrelated nuclear physics research. Spin-exchange optical pumping (SEOP) is employed to polarize 3He enclosed in a circular borosilicate glass cell suitable not only for the production of polarized gas but also for its storage. The portable glass cell can, thus, be transported to any other research facility. The glass cell can be refilled several times. Special attention is given to the preparation and the filling of the cell to minimize the impurities on its walls and in the gas. We employ glass tubes with shorter lengths and larger diameters in the gas-filling system to achieve the improvement in the air flow necessary to obtain purer polarized 3He samples. The cell is prepared, and after it has been filled with rubidium (Rb) and 3He-N2 mixture, it is sealed under high vacuum conditions. The cell containing the mixture is exposed to circularly-polarized laser light with a wavelength of 795 nm at temperatures of 180 - 220 °C for SEOP. The polarization of 3He is measured via nuclear magnetic resonance (NMR). We obtained 40% polarized 3He in less than 15 hours and 50% in about 25 hours. The longitudinal relaxation time T 1 of the polarized 3He we measured was about 58 hours.

  15. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  16. High Efficiency Spin Flipper for the n3He Experiment

    NASA Astrophysics Data System (ADS)

    Hayes, Christopher; n3He Collaboration

    2015-10-01

    The n3He experiment, constructed on the Fundamental Neutron Physics Beamline (FnPB) at the Spallation Neutron Source, is designed to measure the parity violating (PV) proton asymmetry Ap in the capture reaction n +3 He -->3 H + p + 765 keV The asymmetry has an estimated value Ap ~ - 1 ×10-7 and is directly related to the weak isospin conserved couplings hρ0 and ωρ0 which are of fundamental interest in the verification of the meson exchange model of low energy NN intereactions. Data production for the n3He experiment began in February 2015 and is scheduled to continue thru December 2015 - reaching a statistical sensitivity δAp ~10-8 or better. I will discuss the spin flipper which is designed using the theory of double cosine-theta coils, and capable of flipping neutron spins with an efficiency approaching its maximum value ɛsf = 1 . I will also discuss the theory of Spin Magnetic Resonance (SMR) and how it is employed by the spin flipper to flip 60 Hz pulses of cold neutrons over a range of wavelengths.

  17. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  18. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  19. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. PMID:27432660

  20. Coronary magnetic resonance angiography.

    PubMed

    Stuber, Matthias; Weiss, Robert G

    2007-08-01

    Coronary magnetic resonance angiography (MRA) is a powerful noninvasive technique with high soft-tissue contrast for the visualization of the coronary anatomy without X-ray exposure. Due to the small dimensions and tortuous nature of the coronary arteries, a high spatial resolution and sufficient volumetric coverage have to be obtained. However, this necessitates scanning times that are typically much longer than one cardiac cycle. By collecting image data during multiple RR intervals, one can successfully acquire coronary MR angiograms. However, constant cardiac contraction and relaxation, as well as respiratory motion, adversely affect image quality. Therefore, sophisticated motion-compensation strategies are needed. Furthermore, a high contrast between the coronary arteries and the surrounding tissue is mandatory. In the present article, challenges and solutions of coronary imaging are discussed, and results obtained in both healthy and diseased states are reviewed. This includes preliminary data obtained with state-of-the-art techniques such as steady-state free precession (SSFP), whole-heart imaging, intravascular contrast agents, coronary vessel wall imaging, and high-field imaging. Simultaneously, the utility of electron beam computed tomography (EBCT) and multidetector computed tomography (MDCT) for the visualization of the coronary arteries is discussed. PMID:17610288

  1. Functional magnetic resonance imaging.

    PubMed

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks.

  2. Magnetic resonance energy and topological resonance energy.

    PubMed

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference.

  3. Magnetic Resonance Microscopy of the Lung

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan

    1999-11-01

    The lung presents both challenges and opportunities for study by magnetic resonance imaging (MRI). The technical challenges arise from respiratory and cardiac motion, limited signal from the tissues, and unique physical structure of the lung. These challenges are heightened in magnetic resonance microscopy (MRM) where the spatial resolution may be up to a million times higher than that of conventional MRI. The development of successful techniques for MRM of the lung present enormous opportunities for basic studies of lung structure and function, toxicology, environmental stress, and drug discovery by permitting investigators to study this most essential organ nondestructively in the live animal. Over the last 15 years, scientists at the Duke Center for In Vivo Microscopy have developed techniques for MRM in the live animal through an interdisciplinary program of biology, physics, chemistry, electrical engineering, and computer science. This talk will focus on the development of specialized radiofrequency coils for lung imaging, projection encoding methods to limit susceptibility losses, specialized support structures to control and monitor physiologic motion, and the most recent development of hyperpolarized gas imaging with ^3He and ^129Xe.

  4. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  5. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  6. Provision of hyperpolarized {sup 3}He-vectore and its application in MRI

    SciTech Connect

    Bachert, P.; Bock, M.; Knopp, M. W.; Schad, L. R.; Becker, J.; Bermuth, J.; Deninger, A.; Ebert, M.; Grossmann, T.; Heil, W.; Hofmann, D.; Lauer, L.; Otten, E. W.; Surkau, R.; Kauczor, H. U.; Kreitner, K. F.; Nilgens, H.; Roberts, T.; Thelen, M.; Leduc, M.

    1998-01-20

    Magnetic Resonance Imaging (MRI) usually relies on magnetization of hydrogen nuclei (protons) in water or molecules in tissue as source of the signal. Biological environments with low proton content, notably the lungs, are difficult to image. Inhaling of hyperpolarized {sup 3}He gas opens the possibility to investigate ventilated spaces by MRI. To overcome the loss in signal due to the low density of the gas the nuclear polarization of the {sup 3}He spins is greatly enhanced by laser Optical Pumping. For more than three decades Optical Pumping of noble gases has been investigated, using spin exchange scattering (SE) or metastability exchange scattering (ME). Since powerful resonant laser light is available for Optical Pumping, large quantities of {sup 3}He gas can be operated. The original interest was the development of dense spin polarized targets for fundamental research in physics. As a spin off, the possibility of MRI of lung tissue filled with hyperpolarized {sup 129}Xenon was demonstrated in 1994. Later {sup 3}He was used for MRI in a guineapig. While these authors have used the SE method to polarize noble gases, more recently {sup 3}He MRI in human lungs was reported by our group where the ME method is in use.

  7. Measurement of the neutron electric to magnetic form factor ratio at Q2=1.58  GeV2 using the reaction 3He[over →](e[over →],e'n)pp.

    PubMed

    Schlimme, B S; Achenbach, P; Ayerbe Gayoso, C A; Bernauer, J C; Böhm, R; Bosnar, D; Challand, Th; Distler, M O; Doria, L; Fellenberger, F; Fonvieille, H; Gómez Rodríguez, M; Grabmayr, P; Hehl, T; Heil, W; Kiselev, D; Krimmer, J; Makek, M; Merkel, H; Middleton, D G; Müller, U; Nungesser, L; Ott, B A; Pochodzalla, J; Potokar, M; Sánchez Majos, S; Sargsian, M M; Sick, I; Sirca, S; Weinriefer, M; Wendel, M; Yoon, C J

    2013-09-27

    A measurement of beam helicity asymmetries in the reaction 3He[over →](e[over →],e'n)pp is performed at the Mainz Microtron in quasielastic kinematics to determine the electric to magnetic form factor ratio of the neutron GEn/GMn at a four-momentum transfer Q2=1.58  GeV2. Longitudinally polarized electrons are scattered on a highly polarized 3He gas target. The scattered electrons are detected with a high-resolution magnetic spectrometer, and the ejected neutrons are detected with a dedicated neutron detector composed of scintillator bars. To reduce systematic errors, data are taken for four different target polarization orientations allowing the determination of GEn/GMn from a double ratio. We find μnGEn/GMn=0.250±0.058(stat)±0.017(syst). PMID:24116774

  8. Intraoperative magnetic resonance imaging.

    PubMed

    Hall, Walter A; Truwit, Charles L

    2011-01-01

    Neurosurgeons have become reliant on image-guidance to perform safe and successful surgery both time-efficiently and cost-effectively. Neuronavigation typically involves either rigid (frame-based) or skull-mounted (frameless) stereotactic guidance derived from computed tomography (CT) or magnetic resonance imaging (MRI) that is obtained days or immediately before the planned surgical procedure. These systems do not accommodate for brain shift that is unavoidable once the cranium is opened and cerebrospinal fluid is lost. Intraoperative MRI (ioMRI) systems ranging in strength from 0.12 to 3 Tesla (T) have been developed in part because they afford neurosurgeons the opportunity to accommodate for brain shift during surgery. Other distinct advantages of ioMRI include the excellent soft tissue discrimination, the ability to view the surgical site in three dimensions, and the ability to "see" tumor beyond the surface visualization of the surgeon's eye, either with or without a surgical microscope. The enhanced ability to view the tumor being biopsied or resected allows the surgeon to choose a safe surgical corridor that avoids critical structures, maximizes the extent of the tumor resection, and confirms that an intraoperative hemorrhage has not resulted from surgery. Although all ioMRI systems allow for basic T1- and T2-weighted imaging, only high-field (>1.5 T) MRI systems are capable of MR spectroscopy (MRS), MR angiography (MRA), MR venography (MRV), diffusion-weighted imaging (DWI), and brain activation studies. By identifying vascular structures with MRA and MRV, it may be possible to prevent their inadvertent injury during surgery. Biopsying those areas of elevated phosphocholine on MRS may improve the diagnostic yield for brain biopsy. Mapping out eloquent brain function may influence the surgical path to a tumor being resected or biopsied. The optimal field strength for an ioMRI-guided surgical system and the best configuration for that system are as yet

  9. Polarimetries for the Polarized 3 He Target at JLab

    NASA Astrophysics Data System (ADS)

    Ton, Nguyen; Jefferson Lab Polarized 3 He Target Collaboration

    2015-04-01

    At Jefferson Lab, a Polarized 3 He Target has been used as an effective polarized neutron target for studying nucleon spin structure. For the 12 GeV program at JLab, the first stage upgrade of the target aim to increase luminosity by a factor of 2 (to luminosity ~ 2 ×1036 cm-2s-1) while keep maximum in-beam polarization at 60 % with 30 μA beam current and reach a systematic uncertainty of polarimetry below 3 %. During the 6 GeV era, the target polarization was measured by two polarimetries: adiabatic fast passage-nuclear magnetic resonance (AFP-NMR) and electron paramagnetic resonance (EPR). With the upgrade, a new polarimetry, Pulse-NMR, is being studied in the lab for the up-coming metal coated target. In this talk, we will discuss the detail study of AFP-NMR, EPR, Pulsed-NMR measurements and their corresponding uncertainties.

  10. Neutron Polarizers Based on Polarized 3He

    SciTech Connect

    William M. Snow

    2005-05-01

    The goal of this work, which is a collaborative effort between Indiana University, NIST, and Hamilton College, is to extend the technique of polarized neutron scattering into new domains by the development and application of polarized 3He-based neutron spin filters. After the IPNS experiment which measured Zeeman sp[litting in surface scattered neutrons using a polarized 3He cell as a polarization analyzer transporterd by car from Bloomington to Chicago, the Indiana work focused on technical developments to improve the 3He polarization of the Indiana compression system. The compression system was rebuilt with a new valve system which allows gas trapped in the dead volume of the compressors at the end of the piston stroke to be exhausted and conducted back to the optical pumping cell where it can be repolarized. We also incorporated a new intermediate storage volume made at NIST from 1720 glass which will reduce polarization losses between the compressors. Furthermore, we improved the stability of the 1083 nm laser by cooling the LMA rod. We achieved 60% 3he polarization in the optical pumping cell and 87% preservation of the polarization during compression. In parallel we built a magnetically-shielded transport solenoid for use on neutron scattering instruments such as POSY which achieves a fractional field uniformity of better than 10-3 per cm. The field was mapped using an automated 3D field mapping system for in-situ measurement of magnetic field gradients Diluted magnetic semiconductors offer many exciting opportunities for investigation of spintronic effects in solids and are certain to be one of the most active areas of condensed matter physics over then next several years. These materials can act as efficient spin injectors for devices that make use of spin-dependent transport phenomena. We just (late July 2002) finished a neutron reflectivity experiment at NIST on a GaMnAs trilayer film. This material is a ferromagnetic semiconductor which is of interest

  11. B phase with polar distortion in superfluid {sup 3}He in “ordered” aerogel

    SciTech Connect

    Dmitriev, V. V. Senin, A. A.; Soldatov, A. A.; Surovtsev, E. V.; Yudin, A. N.

    2014-12-15

    The properties of the low-temperature superfluid phase of {sup 3}He in “nematically ordered” aerogel in which strands are almost parallel to one another are investigated by nuclear magnetic resonance methods. Such a strong anisotropy of the aerogel affects the phase diagram of {sup 3}He and the structure of superfluid phases. A theoretical model of the B phase with polar distortion is developed. It is shown that this model successfully describes the observed properties of the low-temperature phase.

  12. Magnetic Resonance Cholangiopancreatography (MRCP)

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to evaluate the liver, gallbladder, bile ducts, pancreas ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  13. Magnetic resonance angiography

    MedlinePlus

    ... radiation. To date, no side effects from the magnetic fields and radio waves have been reported. The most ... health care provider before the test. The strong magnetic fields created during an MRI can cause heart pacemakers ...

  14. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  15. Magnetic Resonance Force Microscope Development

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Suh, B.J.; Roukes, M.L.; Midzor, M.; Wigen, P.E.; Childress, J.R.

    1999-06-03

    Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials.

  16. Optimised adiabatic fast passage spin flipping for 3He neutron spin filters

    NASA Astrophysics Data System (ADS)

    McKetterick, T. J.; Boag, S.; Stewart, J. R.; Frost, C. D.; Skoda, M. W. A.; Parnell, S. R.; Babcock, E.

    2011-06-01

    We describe here a method of performing adiabatic fast passage (AFP) spin flipping of polarized 3He used as a neutron spin filter (NSF) to polarize neutron beams. By reversing the spin states of the 3He nuclei the polarization of a neutron beam can be efficiently reversed allowing for the transmission of a neutron beam polarized in either spin state. Using an amplitude modulated frequency sweep lasting 500 ms we can spin flip a polarized 3He neutron spin filter with only 1.8×10-5 loss in 3He polarization. The small magnetic fields (10-15 G) used to house neutron spin filters mean the 3He resonant frequencies are low enough to be generated using a computer with a digital I/O card. The versatility of this systems allows AFP to be performed on any beamline or in any laboratory using 3He neutron spin filters and polarization losses can be minimised by adjusting sweep parameters.

  17. Compressing Spin-Polarized 3He With a Modified Diaphragm Pump

    PubMed Central

    Gentile, T. R.; Rich, D. R.; Thompson, A. K.; Snow, W. M.; Jones, G. L.

    2001-01-01

    Nuclear spin-polarized 3He gas at pressures on the order of 100 kPa (1 bar) are required for several applications, such as neutron spin filters and magnetic resonance imaging. The metastability-exchange optical pumping (MEOP) method for polarizing 3He gas can rapidly produce highly polarized gas, but the best results are obtained at much lower pressure (~0.1 kPa). We describe a compact compression apparatus for polarized gas that is based on a modified commercial diaphragm pump. The gas is polarized by MEOP at a typical pressure of 0.25 kPa (2.5 mbar), and compressed into a storage cell at a typical pressure of 100 kPa. In the storage cell, we have obtained 20 % to 35 % 3He polarization using pure 3He gas and 35 % to 50 % 3He polarization using 3He-4He mixtures. By maintaining the storage cell at liquid nitrogen temperature during compression, the density has been increased by a factor of four. PMID:27500044

  18. Basics of magnetic resonance imaging

    SciTech Connect

    Oldendorf, W.; Oldendorf, W. Jr.

    1988-01-01

    Beginning with the behavior of a compass needle in a magnetic field, this text uses analogies from everyday experience to explain the phenomenon of nuclear magnetic resonance and how it is used for imaging. Using a minimum of scientific abbreviations and symbols, the basics of tissue visualization and characterization are presented. A description of the various types of magnets and scanners is followed by the practical advantages and limitations of MRI relative to x-ray CT scanning.

  19. /sup 3/He functions in tokamak-pumped laser systems

    SciTech Connect

    Jassby, D.L.

    1986-10-01

    /sup 3/He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the /sup 3/He(n,p)T reaction, and thereby excite gaseous lasants mixed with the /sup 3/He while simultaneously breeding tritium. The total /sup 3/He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak.

  20. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  1. Polarized {sup 3}He{sup −} ion source with hyperfine state selection

    SciTech Connect

    Dudnikov, V.; Morozov, V.; Dudnikov, A.

    2015-04-08

    High beam polarization is essential to the scientific productivity of a collider. Polarized {sup 3}He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized {sup 3}He{sup −} ion source. This report discusses a polarized {sup 3}He{sup −} ion source based on the large difference of extra-electron auto-detachment lifetimes of the different {sup 3}He{sup −} ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ∼ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing {sup 3}He{sup −} ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, {sup 3}He{sup −} beam polarization of 90% can be achieved. Such a method of polarized {sup 3}He{sup −} production has been considered before; however, due to low intensities of the He{sup +} ion sources existing at that time, it was not possible to produce any interesting intensity of polarized {sup 3}He{sup −} ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness {sup 3}He{sup +} beam with an intensity of up to 2 A allowing for selection of up to ∼1-4 mA of {sup 3}He{sup −} ions with ∼90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of {sup 3}He gas. Some features of such a PIS as well as prototype designs are considered. An integrated {sup 3}He{sup −} ion source design providing high beam polarization could be

  2. Experiments in Nuclear Magnetic Resonance Microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Yong; Lu, Wei; Choi, J.-H.; Chia, H. J.; Mirsaidov, U. M.; Guchhait, S.; Cambou, A. D.; Cardenas, R.; Park, K.; Markert, J. T.

    2006-03-01

    We report our group's effort in the construction of an 8-T, ^3 He cryostat based nuclear magnetic resonance force microscope (NMRFM). The probe has two independent 3-D of piezoelectric x-y-z positioners for precise positioning of a fiber optic interferometer and a sample/gradient-producing magnet with respect to a micro-cantilever. The piezoelectric positioners have a very uniform controllable step size with virtually no backlash. A novel RF tuning circuit board design is implemented which allows us to simply swap out one RF component board with another for experiments involving different nuclear species. We successfully fabricated and are characterizing 50μm x50μm x0.2μm double torsional oscillators. We have also been characterizing ultrasoft cantilevers whose spring constant is on the order of 10-4 N/m. We also report NMRFM data for ammonium dihydrogen phosphate(ADP) at room temperature using our 1.2-T system. Observed features include the correct shift of the NMR peak with carrier frequency, increases in signal amplitude with both RF field strength and frequency modulation amplitude, and signal oscillation (spin nutation) as a function of tipping RF pulse length. Experiments in progress on NH4MgF3 (at 1.2 T) and MgB2 (at 8.1 T) will also be briefly reviewed. Robert A. Welch Foundation grant No.F-1191 and the National Science Foundation grant No. DMR-0210383.

  3. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  4. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Joshua; Broering, Mark; Korsch, Wolfgang

    2016-05-01

    Off-resonance Faraday rotation can offer a method to measure the nuclear spin optical rotation of the 3 He nucleus and gain access to new information about the atomic polarizability of the Helium atom. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3 He target polarization. Progress towards detecting nuclear spin optical rotation on 3 He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  5. Magnetic resonance apparatus

    DOEpatents

    Jackson, Jasper A.; Cooper, Richard K.

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  6. Optically induced parametric magnetic resonances

    NASA Astrophysics Data System (ADS)

    Jimenez, Ricardo; Knappe, Svenja; Kitching, John

    2011-05-01

    Optically pumped vector magnetometers based on zero-field resonances have reached very high sensitivities by operating at high atomic densities where dephasing due to spin-exchange collisions can be suppressed. Simplified setups, with just one laser beam have measured magnetic fields from the human brain and heart. A key feature in these magnetometers is the introduction of an rf magnetic field along the measurement axis to generate a parametric resonance. Lock-in detection of the transmitted light, at an odd harmonic of the modulation frequency, allows the reduction of the low frequency noise and generates a resonance with dispersive shape. Here we study a zero-field vector magnetometer where the parametric resonances are induced by the vector AC stark-shift of light. This approach does not produce any external magnetic field that could disturb the reading of other magnetometers in the vicinity and could provide an alternative in applications where an applied AC-field cannot be used. We have characterized the vector AC stark-shift effect of light on Rb atoms contained in a micromachined vapor cell with buffer gas. We have obtained parametric resonances induced by modulation of the light-shift. We also analyze the detunings and intensities of the light-shift beam that maintain the magnetometer within the spin-exchange relaxation-free regime.

  7. Magnetic resonance apparatus

    DOEpatents

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  8. Double-quantum vortex in superfluid 3He-A

    PubMed

    Blaauwgeers; Eltsov; Krusius; Ruohio; Schanen; Volovik

    2000-03-30

    Linear defects are generic in continuous media. In quantum systems they appear as topological line defects which are associated with a circulating persistent current. In relativistic quantum field theories they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids and low-density Bose-Einstein condensates as quantized vortex lines. A conventional quantized vortex line consists of a central core around which the phase of the order parameter winds by 27(pi)n, while within the core the order parameter vanishes or is depleted from the bulk value. Usually vortices are singly quantized (that is, have n = 1). But it has been theoretically predicted that, in superfluid 3He-A, vortex lines are possible that have n = 2 and continuous structure, so that the orientation of the multicomponent order parameter changes smoothly throughout the vortex while the amplitude remains constant. Here we report direct proof, based on high-resolution nuclear magnetic resonance measurements, that the most common vortex line in 3He-A has n = 2. One vortex line after another is observed to form in a regular periodic process, similar to a phase-slip in the Josephson effect. PMID:10761908

  9. Resonant magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Byrnes, Christian T.; Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R.

    2012-03-01

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of Script O(10-15 Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

  10. Dressed spin of polarized {sup 3}He in a cell

    SciTech Connect

    Chu, P.-H.; Esler, A. M.; Peng, J. C.; Beck, D. H.; Chandler, D. E.; Clayton, S.; Williamson, S.; Yoder, J.; Hu, B.-Z.; Ngan, S. Y.; Sham, C. H.; So, L. H.

    2011-08-15

    We report a measurement of the modification of the effective precession frequency of polarized {sup 3}He atoms in response to a dressing field in a room-temperature cell. The {sup 3}He atoms were polarized using the metastability spin-exchange method. An oscillating dressing field was then applied perpendicular to the constant magnetic field. Modification of the {sup 3}He effective precession frequency was observed over a broad range of the amplitude and frequency of the dressing field. The observed effects are compared with calculations based on quantum optics formalism.

  11. Limits to magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Mansfield, Peter, Sir

    2002-10-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit.

  12. Fermi liquid parameters of a 2D 3He film

    NASA Astrophysics Data System (ADS)

    Lusher, C. P.; Saunders, J.; Cowan, B. P.

    1990-08-01

    A temperature independent magnetic susceptibility has been observed for the second layer of 3He on graphite for second layer surface densities less than 0.055 Å -2, consistent with 2D Fermi liquid behaviour. The Landau parameter Foa is determined using known values of m ∗/m. The relative dependence of these two parameters is in good agreement with almost localised Fermion theory, as is the case in bulk liquid 3He.

  13. The Panofsky ratio in 3He

    NASA Astrophysics Data System (ADS)

    Corriveau, F.; Hasinoff, M. D.; Measday, D. F.; Poutissou, J.-M.; Salomon, M.

    1987-11-01

    The branching ratios have been measured for γ-ray channels produced by π- stopping in liquid 3He. The results for the Panofsky ratio are P3 = ω( π-3He → π0t)/ ω( π-3He → γt) = 2.83 ± 0.07, and for the ratio of the radiative breakup channels, B3 = ω)( π-3He → γnd + γnnp)/ ω( π-3He → γt) = 1.35 ±0.11.

  14. Tritium/ 3He dating of shallow groundwater

    NASA Astrophysics Data System (ADS)

    Schlosser, Peter; Stute, Martin; Dörr, Helmut; Sonntag, Christian; Münnich, Karl Otto

    1988-08-01

    Combined tritium/ 3He data from three multi-level sampling wells (DFG 1, DFG 4, DFG 7) located at Liedern/ Bocholt, West Germany, are presented and principles of the tritium/ 3He method in shallow groundwater studies are discussed. The 3He excess produced by radioactive decay of bomb tritium (released mainly between 1952 and 1963) is clearly reflected in the data. The tritiogenic 3He signal can be detected with a good resolution (signal/1σ error: ≈ 350). The confinement of the tritiogenic 3He is estimated to approximately 77-85% at site DFG 4. For the bomb tritium peak the deviation of the tritium/ 3He age from the age determined by identifying the groundwater layer recharged between 1962 and 1965 is about 3 years (15%). The deviation can be explained by diffusive 3He loss across the groundwater table and by flow dispersion.

  15. Minority and mode conversion heating in (3He)-H JET plasmas

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.; Johnson, T. J.; Hellsten, T.; Ongena, J.; Mayoral, M.-L.; Frigione, D.; Sozzi, C.; Calabro, G.; Lennholm, M.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Cecconello, M.; Coffey, I.; Coyne, A.; Crombe, K.; Czarnecka, A.; Felton, R.; Gatu Johnson, M.; Giroud, C.; Gorini, G.; Hellesen, C.; Jacquet, P.; Kazakov, Ye; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Lin, Y.; Maslov, M.; Monakhov, I.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Stamp, M.; Studholme, W.; Tardocchi, M.; Versloot, T. W.; Vdovin, V.; Whitehurst, A.; Wooldridge, E.; Zoita, V.; EFDA Contributors, JET

    2012-07-01

    Radio frequency (RF) heating experiments have recently been conducted in JET (3He)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic field, this paper documents the heating performance in (3He)-H plasmas at full field, with fundamental cyclotron heating of 3He as the only possible ion heating scheme in view of the foreseen ITER antenna frequency bandwidth. Dominant electron heating with global heating efficiencies between 30% and 70% depending on the 3He concentration were observed and mode conversion (MC) heating proved to be as efficient as 3He minority heating. The unwanted presence of both 4He and D in the discharges gave rise to 2 MC layers rather than a single one. This together with the fact that the location of the high-field side fast wave (FW) cutoff is a sensitive function of the parallel wave number and that one of the locations of the wave confluences critically depends on the 3He concentration made the interpretation of the results, although more complex, very interesting: three regimes could be distinguished as a function of X[3He]: (i) a regime at low concentration (X[3He] < 1.8%) at which ion cyclotron resonance frequency (ICRF) heating is efficient, (ii) a regime at intermediate concentrations (1.8 < X[3He] < 5%) in which the RF performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime at 3He concentrations beyond 6%. In this latter regime, the heating efficiency did not critically depend on the actual concentration while at lower concentrations (X[3He] < 4%) a bigger excursion in heating efficiency is observed and the estimates differ somewhat from shot to shot, also depending on whether local or global signals are chosen for the analysis. The different dynamics at the various concentrations can be traced back to the presence of 2 MC layers and their

  16. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  17. Magnetic resonance imaging in endourology.

    PubMed

    Chan, A J; Prasad, P V; Saltzman, B

    2001-02-01

    Historically, the utilization of magnetic resonance imaging (MRI) in endourology has been limited. The availability of faster and stronger gradient systems has given rise to a number of data acquisition strategies that have significantly broadened the scope of MRI applications. These methods have led to the evaluation of anatomy and function using a single modality, and we describe our experience with MRI for comprehensive evaluation of the obstructed ureteropelvic junction. We also utilize these new imaging sequences in the investigation of alterated renal hemodynamics after extracorporeal shockwave lithotripsy and present our preliminary data on the application of MR perfusion imaging as a noninvasive technique for the evaluation of renal blood flow.

  18. Evanescent Waves Nuclear Magnetic Resonance

    PubMed Central

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  19. Evanescent Waves Nuclear Magnetic Resonance.

    PubMed

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging.

  20. Optically Detected Scanned Probe Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher; Bhallamudi, Vidya; Wang, Hailong; Du, Chunhui; Manuilov, Sergei; Adur, Rohan; Yang, Fengyuan; Hammel, P. Chris

    2014-03-01

    Magnetic resonance is a powerful tool for studying magnetic properties and dynamics of spin systems. Scanned magnetic probes can induce spatially localized resonance due to the strong magnetic field and gradient near the magnetic tip., Nitrogen vacancy centers (NV) in diamond provide a sensitive means of measuring magnetic fields at the nanoscale. We report preliminary results towards using the high sensitivity of NV detection with a scanned magnetic probe to study local magnetic phenomena. This work is supported by the Center for Emergent Materials at The Ohio State University, a NSF Materials Research Science and Engineering Center (DMR-0820414).

  1. Introduction to Nuclear Magnetic Resonance

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    1985-01-01

    The purpose of this paper is to try to give a short overview of what the status is on nuclear magnetic resonance (NMR). It's a subject where one really has to spend some time to look at the physics in detail to develop a proper working understanding. I feel it's not appropriate to present to you density matrices, Hamiltonians of all sorts, and differential equations representing the motion of spins. I'm really going to present some history and status, and show a few very simple concepts involved in NMR. It is a form of radio frequency spectroscopy and there are a great number of nuclei that can be studied very usefully with the technique. NMR requires a magnet, a r.f. transmitter/receiver system, and a data acquisition system.

  2. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yungsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe-based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  3. Tunable Magnetic Resonance in Microwave Spintronics Devices

    NASA Technical Reports Server (NTRS)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  4. Apparatus for investigating resonance with application to magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Murphy, Sytil; Jones, Dyan L.; Gross, Josh; Zollman, Dean

    2015-11-01

    Resonance is typically studied in the context of either a pendulum or a mass on a spring. We have developed an apparatus that enables beginning students to investigate resonant behavior of changing magnetic fields, in addition to the properties of the magnetic field due to a wire and the superposition of magnetic fields. In this resonant system, a compass oscillates at a frequency determined by the compass's physical properties and an external magnetic field. While the analysis is mathematically similar to that of the pendulum, this apparatus has an advantage that the magnetic field is easily controlled, while it is difficult to control the strength of gravity. This apparatus has been incorporated into a teaching module on magnetic resonance imaging.

  5. Advances in mechanical detection of magnetic resonance

    PubMed Central

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge. PMID:18266413

  6. Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.

  7. Magnetic Resonance Elastography of Abdomen

    PubMed Central

    Venkatesh, Sudhakar K.; Ehman, Richard L.

    2015-01-01

    Many diseases cause substantial changes in the mechanical properties of tissue and this provides motivation for developing methods to non-invasively assess the stiffness of tissue using imaging technology. Magnetic resonance elastography (MRE) has emerged as a versatile MRI-based technique, based on direct visualization of propagating shear waves in the tissues. The most established clinical application of MRE in the abdomen is in chronic liver disease. MRE is currently regarded as the most accurate non-invasive technique for detection and staging of liver fibrosis. Increasing experience and ongoing research is leading to exploration of applications in other abdominal organs. In this review article, the current use of MRE in liver disease and the potential future applications of this technology in other parts of the abdomen are surveyed. PMID:25488346

  8. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  9. Magnetic Resonance Imaging of Electrolysis.

    NASA Astrophysics Data System (ADS)

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-02-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.

  10. Pulmonary functional magnetic resonance imaging for paediatric lung disease.

    PubMed

    Kirby, Miranda; Coxson, Harvey O; Parraga, Grace

    2013-09-01

    A better understanding of the anatomic structure and physiological function of the lung is fundamental to understanding the pathogenesis of pulmonary disease and how to design and deliver better treatments and measure response to intervention. Magnetic resonance imaging (MRI) with the hyperpolarised noble gases helium-3 ((3)He) and xenon-129 ((129)Xe) provides both structural and functional pulmonary measurements, and because it does not require the use of x-rays or other ionising radiation, offers the potential for intensive serial and longitudinal studies in paediatric patients. These facts are particularly important in the evaluation of chronic lung diseases such as asthma and cystic fibrosis- both of which can be considered paediatric respiratory diseases with unmet therapy needs. This review discusses MRI-based imaging methods with a focus on hyperpolarised gas MRI. We also discuss the strengths and limitations as well as the future work required for clinical translation towards paediatric respiratory disease. PMID:23522599

  11. Magnetic resonance sees lesions of multiple sclerosis

    SciTech Connect

    Ziporyn, T.

    1985-02-15

    The value of nuclear magnetic resonance imaging in the diagnosis and quantitation of the progression of multiple sclerosis is discussed. Magnetic resonance imaging generates images that reflect differential density and velocity of hydrogen nuclei between cerebral gray and white matter, as well as between white matter and pathological lesions of the disease.

  12. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  13. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  14. Tritiogenic 3He in shallow groundwater

    NASA Astrophysics Data System (ADS)

    Schlosser, Peter; Stute, Martin; Sonntag, Christian; Otto Münnich, Karl

    1989-09-01

    Tritium, helium isotope and neon data from a multi-level sampling well (DFG 7) at Liedern/Bocholt (West Germany) are presented and discussed. The presence of a radiogenic helium component leads to 3He/ 4He ratios below that of atmospheric helium ( minimumδ 3He values≈ -60% ) below about 20 m depth. The 3He profile can be corrected for the nucleogenic 3He component using the neon measurements. Based on the "Vogel" model of a shallow aquifer the tritium/ 3He distributions are simulated for the years 1987, 2000 and 2025. The model results show that under favourable conditions the tritiogenic 3He peak will be detectable in shallow aquifers for at least the next 4 decades. The influence of the vertical flow velocity and the transversal dispersion coefficient on simulated distributions are estimated. 3He confinement is calculated as a function of the vertical flow velocity and the transversal dispersion coefficient. There is a critical value of the vertical flow velocity (about 0.25-0.5 m/year) below which the 3He loss increases rapidly to high values.

  15. Surface Waves on the Superfluids ^3He and ^4He

    NASA Astrophysics Data System (ADS)

    Manninen, M. S.; Ranni, A.; Rysti, J.; Todoshchenko, I. A.; Tuoriniemi, J. T.

    2016-06-01

    Free surface waves were examined both in superfluids ^3He and ^4He with the premise that these inviscid media would represent ideal realizations for this fluid dynamics problem. The work in ^3He is one of the first of its kind, but in ^4He, it was possible to produce a much more complete set of data for meaningful comparison with theoretical models. Most measurements were performed at the zero temperature limit, meaning T< 100 mK for ^4He and T˜ 100 μ K for ^3He. Dozens of surface wave resonances, including up to 11 overtones, were observed and monitored as the liquid depth in the cell was varied. Despite of the wealth of data, perfect agreement with the constructed theoretical models could not be achieved.

  16. Quark-Hadron Duality in Neutron (3He) Spin Structure

    SciTech Connect

    Solvignon, Patricia; Liyanage, Nilanga; Chen, Jian-Ping; Choi, Seonho; Aniol, Konrad; Averett, Todd; Boeglin, Werner; Camsonne, Alexandre; Cates, Gordon; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chudakov, Eugene; Craver, Brandon; Cusanno, Francesco; Deur, Alexandre; Dutta, Dipangkar; Ent, Rolf; Feuerbach, Robert; Frullani, Salvatore; Gao, Haiyan; Garibaldi, Franco; Gilman, Ronald; Glashausser, Charles; Gorbenko, Viktor; Hansen, Jens-Ole; Higinbotham, Douglas; Ibrahim, Hassan; Jiang, Xiaodong; Jones, Mark; Kelleher, Aidan; Kelly, J.; Keppel, Cynthia; Kim, Wooyoung; Korsch, Wolfgang; Kramer, Kevin; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Ma, Bin; Margaziotis, Demetrius; Markowitz, Pete; McCormick, Kathy; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Monaghan, Peter; Munoz-Camacho, Carlos; Paschke, Kent; Reitz, Bodo; Saha, Arunava; Sheyor, Ran; Singh, Jaideep; Slifer, Karl; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Tobias, William; Urciuoli, Guido; Wang, Kebin; Wijesooriya, Krishni; Wojtsekhowski, Bogdan; Woo, Seungtae; Yang, Jae-Choon; Zheng, Xiaochao; Zhu, Lingyan

    2008-10-01

    We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g_1 of the neutron and $^3$He using a polarized 3He target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)^2. Global duality is observed for the spin-structure function g_1 down to at least Q^2 = 1.8 (GeV/c)^2 in both targets. We have also formed the photon-nucleon asymmetry A_1 in the resonance region for 3He and found no strong Q^2-dependence above 2.2 (GeV/c)^2.

  17. Vortices in rotating superfluid 3He.

    PubMed

    Lounasmaa, O V; Thuneberg, E

    1999-07-01

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe.

  18. Vortices in rotating superfluid 3He.

    PubMed

    Lounasmaa, O V; Thuneberg, E

    1999-07-01

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe. PMID:10393895

  19. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled.

  20. Anisotropic phases of superfluid ^{3}he in compressed aerogel.

    PubMed

    Li, J I A; Zimmerman, A M; Pollanen, J; Collett, C A; Halperin, W P

    2015-03-13

    It has been shown that the relative stabilities of various superfluid states of ^{3}He can be influenced by anisotropy in a silica aerogel framework. We prepared a suite of aerogel samples compressed up to 30% for which we performed pulsed NMR on ^{3}He imbibed within the aerogel. We identified A and B phases and determined their magnetic field-temperature phase diagrams as a function of strain. From these results, we infer that the B phase is distorted by negative strain forming an anisotropic superfluid state more stable than the A phase.

  1. Measurement of polarization of 3He with mobile polarized 3He neutron spin filter

    NASA Astrophysics Data System (ADS)

    Ino, T.; Kim, G. N.; Lee, M. W.; Lee, S. M.; Kim, J. Y.; Lee, S. W.; Skoy, V. R.

    2014-03-01

    A mobile polarized 3He neutron spin filter was developed for both optical pumping and transportation, and the polarization of 3He was measured with cold neutrons of HANARO in KAERI. The progress of polarization build-up during the optical pumping of the 3He cell was observed by adiabatic fast-passage NMR system. The 3He cell was made of an alumino-silicate glass GE-180 with a cylindrical shape of 40 mm in diameter and 60 mm in length from KEK. A cell contained 5.74 barṡcm of 3He gas. The whole installation after 8 h pumping was transported to the general-purpose test station of the HANARO research reactor and the polarization of 3He was measured with cold neutrons. The measured polarization of 3He was 0.18 ± 0.01 by measuring the neutron transmission through the 3He cell.

  2. A Precision Measurement of the Transverse Asymmetry A{sub T} from Quasi-elastic {sup 3}He(e,e') process, and the Neutron Magnetic Form Factor GNM at low Q{sup 2}

    SciTech Connect

    Wang Xu

    2002-06-01

    Electromagnetic form factors are fundamental quantities in describing the underlying electromagnetic structure of nucleons. While proton electromagnetic form factors have been determined with good precision, neutron form factors are known poorly, largely due to the lack of free neutron targets. Jefferson Lab Hall A experiment E95-001, a ''precise measurement of the transverse asymmetry A{sub T}' from the quasielastic {sup 3}He(e, e') process,'' was therefore designed to determine precisely the neutron magnetic form factor, G{sub M}{sup n} at low momentum transfer values and was successfully completed in Spring 1999. High precision A{sub T}'data in the quasi-elastic region at Q{sup 2} values of 0.1 to 0.6 (GeV/c){sup 2} were obtained using a high-pressure spin-exchange optically-pumped polarized {sup 3}He gas target with an average polarization of 30%, a longitudinally polarized e{sup -} beam, and two High Resolution Spectrometers: HRSe and HRSh. HRSe was employed to detect scattered electrons from the quasi-elastic kinematic region, and HRSh was employed as a elastic polarimetry to monitor the product of the beam and target polarizations. The extraction of form factors is usually model-dependent. Significant constraints on theoretical calculations are provided bu additional high precision quasi-elastic asymmetry data at Q{sup 2} values of 0.1 and 0.2 (GeV/c){sup 2} in {sup 3}He breakup region, where effects of final state interactions (FSI) and meson exchange currents (MEC) are expected to be large [71]. G{sub M}{sup n} is extracted from a non-relativistic Faddeev calculation which includes both FSI and MEC at Q{sup 2} values of 0.1 and 0.2 (GeV/c){sup 2}. The uncertainties of G{sub M}{sup n} at these Q{sup 2} values are comparable to those of recent experiments with deuterium targets [58]. At the higher Q{sup 2} values from this experiment, G{sub M}{sup n} is extracted from Plane-Wave Impulsive Approximation (PWIA) calculations with a relatively large theoretical

  3. Artifacts in magnetic resonance imaging.

    PubMed

    Krupa, Katarzyna; Bekiesińska-Figatowska, Monika

    2015-01-01

    Artifacts in magnetic resonance imaging and foreign bodies within the patient's body may be confused with a pathology or may reduce the quality of examinations. Radiologists are frequently not informed about the medical history of patients and face postoperative/other images they are not familiar with. A gallery of such images was presented in this manuscript. A truncation artifact in the spinal cord could be misinterpreted as a syrinx. Motion artifacts caused by breathing, cardiac movement, CSF pulsation/blood flow create a ghost artifact which can be reduced by patient immobilization, or cardiac/respiratory gating. Aliasing artifacts can be eliminated by increasing the field of view. An artificially hyperintense signal on FLAIR images can result from magnetic susceptibility artifacts, CSF/vascular pulsation, motion, but can also be found in patients undergoing MRI examinations while receiving supplemental oxygen. Metallic and other foreign bodies which may be found on and in patients' bodies are the main group of artifacts and these are the focus of this study: e.g. make-up, tattoos, hairbands, clothes, endovascular embolization, prostheses, surgical clips, intraorbital and other medical implants, etc. Knowledge of different types of artifacts and their origin, and of possible foreign bodies is necessary to eliminate them or to reduce their negative influence on MR images by adjusting acquisition parameters. It is also necessary to take them into consideration when interpreting the images. Some proposals of reducing artifacts have been mentioned. Describing in detail the procedures to avoid or limit the artifacts would go beyond the scope of this paper but technical ways to reduce them can be found in the cited literature.

  4. Artifacts in Magnetic Resonance Imaging

    PubMed Central

    Krupa, Katarzyna; Bekiesińska-Figatowska, Monika

    2015-01-01

    Summary Artifacts in magnetic resonance imaging and foreign bodies within the patient’s body may be confused with a pathology or may reduce the quality of examinations. Radiologists are frequently not informed about the medical history of patients and face postoperative/other images they are not familiar with. A gallery of such images was presented in this manuscript. A truncation artifact in the spinal cord could be misinterpreted as a syrinx. Motion artifacts caused by breathing, cardiac movement, CSF pulsation/blood flow create a ghost artifact which can be reduced by patient immobilization, or cardiac/respiratory gating. Aliasing artifacts can be eliminated by increasing the field of view. An artificially hyperintense signal on FLAIR images can result from magnetic susceptibility artifacts, CSF/vascular pulsation, motion, but can also be found in patients undergoing MRI examinations while receiving supplemental oxygen. Metallic and other foreign bodies which may be found on and in patients’ bodies are the main group of artifacts and these are the focus of this study: e.g. make-up, tattoos, hairbands, clothes, endovascular embolization, prostheses, surgical clips, intraorbital and other medical implants, etc. Knowledge of different types of artifacts and their origin, and of possible foreign bodies is necessary to eliminate them or to reduce their negative influence on MR images by adjusting acquisition parameters. It is also necessary to take them into consideration when interpreting the images. Some proposals of reducing artifacts have been mentioned. Describing in detail the procedures to avoid or limit the artifacts would go beyond the scope of this paper but technical ways to reduce them can be found in the cited literature. PMID:25745524

  5. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    PubMed Central

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as stepped impedance resonators (SIRs) is investigated. Single element simulation results in free space and in a phantom at 7 tesla (298 MHz) demonstrate the rationale and feasibility of the SIR design strategy. Simulation and image results at 7 tesla in a phantom and human head illustrate the improvements in transmit magnetic field, as well as, RF efficiency (transmit magnetic field versus SAR) when two different SIR designs are incorporated in 8-element volume coil configurations and compared to a volume coil consisting of microstrip elements. PMID:23508243

  6. Magnetic plasmonic Fano resonance at optical frequency.

    PubMed

    Bao, Yanjun; Hu, Zhijian; Li, Ziwei; Zhu, Xing; Fang, Zheyu

    2015-05-13

    Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line-shape magnetic Fano resonance has significant potential applications in low-loss sensing and may serves as suitable elementary building blocks for optical metamaterials.

  7. Enhancement of artificial magnetism via resonant bianisotropy.

    PubMed

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  8. Enhancement of artificial magnetism via resonant bianisotropy

    NASA Astrophysics Data System (ADS)

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-03-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses.

  9. Micro-coil detection of nuclear magnetic resonance for nanofluidic samples

    SciTech Connect

    Shibahara, A.; Casey, A.; Lusher, C. P.; Saunders, J.; Aßmann, C.; Schurig, Th.; Drung, D.

    2014-02-15

    We have developed a novel dc SQUID system with a micro-coil input circuit to act as a local probe of quantum matter and nanosystems. The planar niobium micro-coil pickup loop is located remotely from the SQUID, coupled through a superconducting twisted pair. A high degree of coupling between the coil and the region of interest of similar dimensions (up to ∼ 100 microns) can be achieved. We report nuclear magnetic resonance (NMR) measurements to characterise the sensitivity of these coils to {sup 3}He in the gas phase at 4.2 K in a 30 mT magnetic field.

  10. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  11. Pocket atlas of cranial magnetic resonance imaging

    SciTech Connect

    Haughton, V.M.; Daniels, D.L.

    1986-01-01

    This atlas illustrates normal cerebral anatomy in magnetic resonance images. From their studies in cerebral anatomy utilizing cryomicrotome and other techniques, the authors selected more than 100 high-resolution images that represent the most clinically useful scans.

  12. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    MedlinePlus

    ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) ... time and for your attention! Spotlight Recently posted: Video: Ultrasound-guided Breast Biopsy Video: Breast MRI Video: ...

  13. Chronic liver disease: evaluation by magnetic resonance

    SciTech Connect

    Stark, D.D.; Goldberg, H.I.; Moss, A.A.; Bass, N.M.

    1984-01-01

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR.

  14. Fano resonances in magnetic metamaterials

    SciTech Connect

    Naether, Uta; Molina, Mario I.

    2011-10-15

    We study the scattering of magnetoinductive plane waves by internal (external) capacitive (inductive) defects coupled to a one-dimensional split-ring resonator array. We examine a number of simple defect configurations where Fano resonances occur and study the behavior of the transmission coefficient as a function of the controllable external parameters. We find that for embedded capacitive defects, the addition of a small amount of coupling to second neighbors is necessary for the occurrence of Fano resonance. For external inductive defects, Fano resonances are commonplace, and they can be tuned by changing the relative orientation or distance between the defect and the SSR array.

  15. Magnetic resonance force detection using a membrane resonator.

    PubMed

    Scozzaro, N; Ruchotzke, W; Belding, A; Cardellino, J; Blomberg, E C; McCullian, B A; Bhallamudi, V P; Pelekhov, D V; Hammel, P C

    2016-10-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q∼10(6)[1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300K is 4fN/Hz, indicating a potential low temperature (4K) sensitivity of 25aN/Hz. Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches. PMID:27522542

  16. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, N.; Ruchotzke, W.; Belding, A.; Cardellino, J.; Blomberg, E. C.; McCullian, B. A.; Bhallamudi, V. P.; Pelekhov, D. V.; Hammel, P. C.

    2016-10-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q ∼106 [1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300 K is 4 fN/√{Hz } , indicating a potential low temperature (4 K) sensitivity of 25 aN/√{Hz } . Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches.

  17. Introduction to magnetic resonance methods in photosynthesis.

    PubMed

    Huber, Martina

    2009-01-01

    Electron paramagnetic resonance (EPR) and, more recently, solid-state nuclear magnetic resonance (NMR) have been employed to study photosynthetic processes, primarily related to the light-induced charge separation. Information obtained on the electronic structure, the relative orientation of the cofactors, and the changes in structure during these reactions should help to understand the efficiency of light-induced charge separation. A short introduction to the observables derived from magnetic resonance experiments is given. The relation of these observables to the electronic structure is sketched using the nitroxide group of spin labels as a simple example.

  18. Children's (Pediatric) Magnetic Resonance Imaging

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the inside of ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  19. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... uses radio waves, a magnetic field and a computer to produce detailed pictures of the spine and ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  20. Symmetry protected topological superfluid (3)He-B.

    PubMed

    Mizushima, Takeshi; Tsutsumi, Yasumasa; Sato, Masatoshi; Machida, Kazushige

    2015-03-25

    Owing to the richness of symmetry and well-established knowledge of bulk superfluidity, the superfluid (3)He has offered a prototypical system to study intertwining of topology and symmetry. This article reviews recent progress in understanding the topological superfluidity of (3)He in a multifaceted manner, including symmetry considerations, the Jackiw-Rebbi's index theorem, and the quasiclassical theory. Special focus is placed on the symmetry protected topological superfuidity of the (3)He-B confined in a slab geometry. The (3)He-B under a magnetic field is separated to two different sub-phases: the symmetry protected topological phase and non-topological phase. The former phase is characterized by the existence of symmetry protected Majorana fermions. The topological phase transition between them is triggered by the spontaneous breaking of a hidden discrete symmetry. The critical field is quantitatively determined from the microscopic calculation that takes account of magnetic dipole interaction of the (3)He nucleus. It is also demonstrated that odd-frequency even-parity Cooper pair amplitudes are emergent in low-lying quasiparticles. The key ingredients, symmetry protected Majorana fermions and odd-frequency pairing, bring an important consequence that the coupling of the surface states to an applied field is prohibited by the hidden discrete symmetry, while the topological phase transition with the spontaneous symmetry breaking is accompanied by anomalous enhancement and anisotropic quantum criticality of surface spin susceptibility. We also illustrate common topological features between topological crystalline superconductors and symmetry protected topological superfluids, taking UPt3 and Rashba superconductors as examples.

  1. Nuclear electric dipole moment of 3He

    SciTech Connect

    Stetcu, Ionel; Friar, J L; Hayes, A C; Liu, C P; Navratil, P

    2008-01-01

    In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.

  2. Coherent Photoproduction of pi^+ from 3/^He

    SciTech Connect

    Rakhsha Nasseripour, Barry Berman

    2011-03-01

    We have measured the differential cross section for the $\\gamma$$^3$He$\\rightarrow \\pi^+ t$ reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid $^3$He target. The differential cross sections for the $\\gamma$$^3$He$\\rightarrow \\pi^+ t$ reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.

  3. Trapped Ion Magnetic Resonance: Concepts and Designs

    NASA Astrophysics Data System (ADS)

    Pizarro, Pedro Jose

    A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra and resolve the apparent incompatibility in existing techniques between high information content and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established techniques for trapping ions in high magnetic field and observing electrically the trapping frequencies with high resolution (<1 Hz) and sensitivity (single -ion). A magnetic bottle field gradient couples the spin and spatial motions together and leads to the small spin -dependent force on the ion exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment. A series of fundamental innovations is described to extend magnetic resonance to molecular ions ( cong 100 amu) and nuclear magnetic moments. It is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Methods of inducing spin -dependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency. The first proposal presented builds on Dehmelt's experiment to reveal ESR spectra. A more powerful technique for ESR is then designed where axially synchronized spin transitions perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. The most general approach presented is a continuous Stern-Gerlach effect in which a magnetic field

  4. Superfluid 3He in ``nematically ordered'' aerogel

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vladimir

    2014-03-01

    Liquid 3He immersed in aerogel allows investigation of the influence of impurities on unconventional superfluidity. In most of such experiments silica aerogels are used. These aerogels consist of thin strands which form a ``wisp.'' Although it is established that superfluid phases of 3He in silica aerogels (A-like and B-like) have the same order parameters as A and B phases of bulk 3He, many new phenomena were observed. In particular, it was found that global anisotropy of aerogel (e.g. caused by squeezing or stretching) can orient the order parameter. Depending on prehistory and on the type of the anisotropy the A-like phase may be homogeneous or in a state with random orbital part of the order parameter. Theory predicts that a large stretching anisotropy may even influence the order parameter structure: polar phase (or A phase with polar distortion), which are not realized in bulk 3He, may become more favorable than pure A phase. Large stretching anisotropy is hardly achievable in silica aerogel. Therefore in experiments described in the talk we used a new type of aerogel, consisting of Al2O3 . H2O strands which are parallel to each other, i.e. this aerogel may be considered as infinitely stretched. We found that the superfluid phase diagram of 3He in such ``nematically ordered'' aerogel is different from the case of 3He in silica aerogel and that both observed A and B phases have large polar distortion. This distortion is larger at low pressures and grows on warming. There are indications that a pure polar phase appears near the superfluid transition temperature. Recent results will be also presented.

  5. The multiuniverse transition in superfluid 3He.

    PubMed

    Bunkov, Yury

    2013-10-01

    The symmetry-breaking phase transitions of the universe and of superfluid (3)He may lead to the formation of different states with different order parameters. In both cases the energy potential below the transition temperature has a complicated multidimensional profile with many local minima and saddle points, which correspond to different states. Consequently, not only topological defects, but also islands of different metastable states can be created. Using (3)He we can analyse the properties and experimental consequences of such transitions and, in particular, the first-order phase transition between the two low symmetry states. PMID:24026020

  6. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  7. Magnetic resonance based noninvasive RF nerve stimulator.

    PubMed

    Ganesh Bharadwaj, C V; Yuanjin, Zheng

    2012-01-01

    A noninvasive method of stimulating the nerve by applying radiofrequency has been presented. The design is based on the concept of magnetic resonance based power transfer. A comparison between electric field on the nerve at the frequency of 450-550 KHz with vacuum placed under a human tissue and the case where it is replaced with a resonant and non-resonant structure was analysed. Calculations were performed by using Ansoft HFSS. Power savings of 7.15% was observed when resonant structures were used, compared to vacuum. Theoretical calculation and simulation of fields were presented.

  8. Hyperpolarized helium-3 magnetic resonance imaging of chronic obstructive pulmonary disease exacerbation.

    PubMed

    Kirby, Miranda; Kanhere, Nikhil; Etemad-Rezai, Roya; McCormack, David G; Parraga, Grace

    2013-05-01

    A chronic obstructive pulmonary disease (COPD) exsmoker underwent pulmonary function tests and hyperpolarized helium-3 ((3) He) magnetic resonance imaging (MRI) serially over 4 years, twice prior to and twice following an acute exacerbation (AE). About 2.5 years pre-AE, (3) He ventilation defect percent (VDP) was 16%, the apparent diffusion coefficient (ADC) was 0.34 cm(2) /s, and forced expiratory volume in 1 sec (FEV1 ) was 41%pred . Six months pre-AE, VDP and ADC were worse (29% and 0.38 cm(2) /s, respectively) without worsening FEV1 (47%pred ). After hospitalization and AE treatment, VDP was 20%, whereas FEV1 did not improve (45%pred ); 16 months post-AE, both VDP and ADC remained improved and similar to 4 years prior.

  9. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    PubMed

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  10. Magnetic resonance imaging: effects of magnetic field strength

    SciTech Connect

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-04-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields.

  11. Scanning ferromagnetic resonance microscopy and resonant heating of magnetite nanoparticles: Demonstration of thermally detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Sakran, F.; Copty, A.; Golosovsky, M.; Davidov, D.; Monod, P.

    2004-05-01

    We report a 9 GHz microwave scanning probe based on a slit aperture for spatially resolved magnetic resonance detection. We use patterned layers of dispersed magnetite Fe3O4 nanoparticles and demonstrate low-field ferromagnetic resonance images with a spatial resolution of 15 μm. We also demonstrate localized heating of magnetite nanoparticles via ferromagnetic resonance absorption which can be controlled by an external dc magnetic field. Using our microwave probe as a transmitter and a temperature sensor (thermocouple or infrared detector), we show thermally detected magnetic resonance at room temperature.

  12. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  13. Model formalism of liquid /sup 3/He-B at equilibrium

    SciTech Connect

    Goldstein, L.; Goldstein, J.C.

    1980-04-01

    The approximate formal treatment of the nuclear spin system of normal liquid /sup 3/He given some time ago is extended to the ordered /sup 3/He phase. The formalism leads to the prediction of normal thermal behavior of /sup 3/He-B at lower pressures and at temperatures approaching its phase-boundary temperatures. In contrast to the disordered normal liquid phase, which is thermally anomalous, the entropy of the /sup 3/He-B decreases on isothermal compression, or its isobaric volume expansion coefficient is positive. The equilibrium thermal behavior of ordered /sup 3/He-B is thus qualitatively different from that of disordered liquid /sup 3/He. Experimental control of these aspects of the liquid /sup 3/He phase transformation is lacking at the present time. Both early and new /sup 3/He-B paramagnetic susceptibility data, extended recently over a wide reduced-temperature range, disclose a fundamental competition between the spontaneous ordering mechanism responsible for the existence of /sup 3/He-B and the specific ordering process imposed upon this phase on application of an external constant and uniform magnetic field. As a consequence, magnetized /sup 3/He-B will be shown to increase its entropy on isothermal magnetization and to cool on adiabatic magnetization. The magnetocaloric effect is, however, only moderate. The competition of the ordering process leads to the delay or possibly even to the suppression of the formation of the ordered phase, a state of affairs foreseen in our earlier work. At low or moderate magnetic field strengths, the zero-field phase-boundary temperatures are shown to shift toward lower temperatures while, simultaneously, the order of the phase change decreases, from second order, in the absence of the field, to first order. Although of model-theoretic character, involving limitations of various types, the rich physical content of /sup 3/He-B at equilibrium clearly emerges in the present work.

  14. Magnetic resonance imaging of iliotibial band syndrome.

    PubMed

    Ekman, E F; Pope, T; Martin, D F; Curl, W W

    1994-01-01

    Seven cases of iliotibial band syndrome and the pathoanatomic findings of each, as demonstrated by magnetic resonance imaging, are presented. These findings were compared with magnetic resonance imaging scans of 10 age- and sex-matched control knees without evidence of lateral knee pain. Magnetic resonance imaging signal consistent with fluid was seen deep to the iliotibial band in the region of the lateral femoral epicondyle in five of the seven cases. Additionally, when compared with the control group, patients with iliotibial band syndrome demonstrated a significantly thicker iliotibial band over the lateral femoral epicondyle (P < 0.05). Thickness of the iliotibial band in the disease group was 5.49 +/- 2.12 mm, as opposed to 2.52 +/- 1.56 mm in the control group. Cadaveric dissections were performed on 10 normal knees to further elucidate the exact nature of the area under the iliotibial band. A potential space, i.e., a bursa, was found between the iliotibial band and the knee capsule. This series suggests that magnetic resonance imaging demonstrates objective evidence of iliotibial band syndrome and can be helpful when a definitive diagnosis is essential. Furthermore, correlated with anatomic dissection, magnetic resonance imaging identifies this as a problem within a bursa beneath the iliotibial band and not a problem within the knee joint.

  15. Magnetic material arrangement in oriented termites: a magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Alves, O. C.; Wajnberg, E.; de Oliveira, J. F.; Esquivel, D. M. S.

    2004-06-01

    Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite's body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 10 4 erg/cm 3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.

  16. Magnetic resonance imaging by using nano-magnetic particles

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.; Khorramdin, A.; Isapour, Gh.

    2014-11-01

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants.

  17. Magnetic resonance of magnetic fluid and magnetoliposome preparations

    NASA Astrophysics Data System (ADS)

    Morais, Paulo C.; Santos, Judes G.; Skeff Neto, K.; Pelegrini, Fernando; De Cuyper, Marcel

    2005-05-01

    In this study, magnetic resonance was used to investigate lauric acid-coated magnetite-based magnetic fluid particles and particles which are surrounded by a double layer of phospholipid molecules (magnetoliposomes). The data reveal the presence of monomers and dimers in both samples. Whereas evidence for a thermally induced disruption of dimers is found in the magnetic fluid, apparently, the bilayer phospholipid envelop prevents the dissociation in the magnetoliposome samples.

  18. Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Mueller, B. W.; Miller, F. K.

    2016-10-01

    A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.

  19. The influence of restricted geometry of diamagnetic nanoporous media on 3He relaxation

    NASA Astrophysics Data System (ADS)

    Alakshin, E. M.; Gazizulin, R. R.; Zakharov, M. Yu.; Klochkov, A. V.; Morozov, E. V.; Salikhov, T. M.; Safin, T. R.; Safiullin, K. R.; Tagirov, M. S.; Shabanova, O. B.

    2015-01-01

    This is an experimental study of the spin kinetics of 3He in contact with diamagnetic samples of inverse opals SiO2, and LaF3 nanopowder. It is demonstrated that the nuclear magnetic relaxation of the absorbed 3He occurs due to the modulation of dipole-dipole interaction by the quantum motion in the two-dimensional film. It is found that the relaxation of liquid 3He occurs through a spin diffusion to the absorption layer, and that the restricted geometry of diamagnetic nanoporous media has an influence on the 3He relaxation.

  20. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  1. Magnetic resonance imaging of the body

    SciTech Connect

    Higgins, C.B.; Hricak, H.

    1987-01-01

    This text provides reference to magnetic resonance imaging (MRI) of the body. Beginning with explanatory chapters on the physics, instrumentation, and interpretation of MRI, it proceeds to the normal anatomy of the neck, thorax, abdomen, and pelvis. Other chapters cover magnetic resonance imaging of blood flow, the larynx, the lymph nodes, and the spine, as well as MRI in obstetrics. The text features detailed coverage of magnetic resonance imaging of numerous disorders and disease states, including neck disease, thoracic disease; breast disease; congenital and acquired heart disease; vascular disease; diseases of the liver, pancreas, and spleen; diseases of the kidney, adrenals, and retroperitoneum; diseases of the male and female pelvis; and musculoskeletal diseases. Chapters on the biological and environmental hazards of MRI, the current clinical status of MRI in comparison to other imaging modalities, and economic considerations are also included.

  2. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  3. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  4. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. PMID:25700116

  5. Three dimensional magnetic resonance imaging by magnetic resonance force microscopy with a sharp magnetic needle.

    PubMed

    Tsuji, S; Yoshinari, Y; Park, H S; Shindo, D

    2006-02-01

    An electropolished magnetic needle made of Nd(2)Fe(14)B permanent magnet was used for obtaining better spatial resolution than that achieved in our previous work. We observed the magnetic field gradient |G(Z)|=80.0G/microm and the field strength B=1250G at Z approximately 8.8 microm from the top of the needle. The use of this needle for three dimensional magnetic resonance force microscopy at room temperature allowed us to achieve the voxel resolution to be 0.6 microm x 0.6 microm x 0.7 microm in the reconstructed image of DPPH phantom. The acquisition time spent for the whole data collection over 64 x 64 x 16 points, including an iterative signal average by six times per point, was about 10 days.

  6. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    PubMed Central

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-01-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show 1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and 2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements. PMID:22771528

  7. Phase-contrast MRI and CFD modeling of apparent 3He gas flow in rat pulmonary airways

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and (2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  8. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    SciTech Connect

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Rick E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and that (2) remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  9. Magnetic Resonance Imaging of Perirenal Pathology.

    PubMed

    Glockner, James F; Lee, Christine U

    2016-05-01

    The perirenal space can be involved by a variety of neoplastic, inflammatory, infectious, and proliferative disorders. Magnetic resonance imaging is often an ideal technique for identification and staging of lesions arising within the perirenal space, with its superior soft tissue characterization as well as its ability to visualize extension into blood vessels and adjacent organs. This pictorial essay describes the magnetic resonance imaging appearance of a variety of pathologies which can arise from or involve the perirenal space, and provides a framework for categorization and differential diagnosis of these lesions.

  10. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  11. Clinical applications of magnetic resonance cholangiopancreatography.

    PubMed

    Prasad, S R; Sahani, D; Saini, S

    2001-01-01

    Magnetic resonance cholangiopancreatography (MRCP) is a novel imaging technique used for noninvasive work-up of patients with pancreaticobiliary disease. Magnetic resonance cholangiopancreatography is useful in the evaluation of a host of pancreaticobiliary disorders, such as congenital disorders, calculus disease, biliary strictures, sclerosing cholangitis, chronic pancreatitis, and cystic pancreatic lesions. It not only provides useful preoperative information to surgeons and gastroenterologists but also serves as a valuable tool in the assessment of postoperative pancreaticobiliary ductal anatomy. Recent refinement of techniques allows faster imaging with superior image resolution. This review summarizes the role of MRCP in clinical practice.

  12. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  13. Surface tension maximum of liquid 3He

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Hasegawa, Syuichi; Suzuki, Masaru; Okuda, Yuichi

    2000-07-01

    The surface tension of liquid 3He was measured using the capillary-rise method. Suzuki et al. have reported that its temperature dependence was almost quenched below 120 mK. Here we have examined it with higher precision and found that it has a small maximum around 100 mK. The amount of the maximum is about 3×10 -4 as a fraction of the surface tension at 0 K. The density of liquid 3He increases with temperature by about 5×10 -4 in Δ ρ/ ρ between 0 and 100 mK. This density change could be one of the reasons of the surface tension maximum around 100 mK.

  14. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  15. Ferromagnetic resonance with a magnetic Josephson junction

    NASA Astrophysics Data System (ADS)

    Barnes, S. E.; Aprili, M.; Petković, I.; Maekawa, S.

    2011-02-01

    We show experimentally and theoretically that there is a coupling via the Aharonov-Bohm phase between the order parameter of a ferromagnet and a singlet, s-wave, Josephson super-current. We have investigated the possibility of measuring the dispersion of such spin-waves by varying the magnetic field applied in the plane of the junction and demonstrated the electromagnetic nature of the coupling by the observation of magnetic resonance side-bands to microwave induced Shapiro steps.

  16. Magnetic resonances of ions in biological systems.

    PubMed

    Engström, Stefan; Bowman, Joseph D

    2004-12-01

    A magnetic field transduction mechanism based on an ion oscillator model is derived from an explicit quantum mechanical description. The governing equation prescribes how the electric dipole moment of an ion oscillating in a symmetric potential well evolves under the influence of an arbitrary magnetic field. The resulting equation is an analog of the Bloch equation, a well-studied model for magnetic resonances in atomic and molecular spectroscopy. The differential equation for this ion oscillator model is solved numerically for a few illustrative magnetic field exposures, showing when those resonances occur with single frequency, linearly polarized fields. Our formulation makes explicit the conditions that must be present for magnetic fields to produce observable biological effects under the ion oscillator model. The ion's potential well must have symmetry sufficient to produce a degenerate excited state, e.g., octahedral or trigonal bipyramid potentials. The impulse that excites the ion must be spatially correlated with the orientation of the detector that reads off the final state of the oscillator. The orientation between the static and oscillating magnetic fields that produces resonance is a complicated function of the field magnitudes and frequency. We suggest several classes of experiments that could critically test the validity of the model presented here.

  17. Enhancement of artificial magnetism via resonant bianisotropy

    PubMed Central

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-01-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses. PMID:26941126

  18. Low-temperature instability of uniform spin precession in the B phase of pure {sup 3}He and {sup 3}He in an aerogel

    SciTech Connect

    Surovtsev, E. V. Fomin, I. A.

    2010-08-15

    The magnetic-field dependences of the threshold temperature of the low-temperature instability of uniform spin precession in pure {sup 3}He-B and {sup 3}He-B in an aerogel have been determined for the bulk mechanism. These dependences appear to be different. The theoretical dependence of the threshold temperature for the pure case has been compared with the experimental dependence. The threshold temperature of the instability for {sup 3}He in the aerogel has been estimated for typical experimental conditions.

  19. 3He Spin-Dependent Cross Sections and Sum Rules

    SciTech Connect

    Slifer, Karl; Amaryan, Moscov; Amaryan, Moskov; Auerbach, Leonard; Averett, Todd; Berthot, J.; Bertin, Pierre; Bertozzi, William; Black, Tim; Brash, Edward; Brown, D.; Burtin, Etienne; Calarco, John; Cates, Gordon; Chai, Zhengwei; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Ciofi, Claudio; Cisbani, Evaristo; De Jager, Cornelis; Deur, Alexandre; DiSalvo, R.; Dieterich, Sonja; Djawotho, Pibero; Finn, John; Fissum, Kevin; Fonvieille, Helene; Frullani, Salvatore; Gao, Haiyan; Gao, Juncai; Garibaldi, Franco; Gasparian, Ashot; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Glashausser, Charles; Glockle, W.; Golak, J.; Goldberg, Emma; Gomez, Javier; Gorbenko, Viktor; Hansen, Jens-Ole; Hersman, F.; Holmes, Richard; Huber, Garth; Hughes, Emlyn; Humensky, Thomas; Incerti, Sebastien; Iodice, Mauro; Jensen, S.; Jiang, Xiaodong; Jones, C.; Jones, G.; Jones, Mark; Jutier, Christophe; Kamada, H.; Ketikyan, Armen; Kominis, Ioannis; Korsch, Wolfgang; Kramer, Kevin; Kumar, Krishna; Kumbartzki, Gerfried; Kuss, Michael; Lakuriqi, Enkeleida; Laveissiere, Geraud; LeRose, John; Liang, Meihua; Liyanage, Nilanga; Lolos, George; Malov, Sergey; Marroncle, Jacques; McCormick, Kathy; McKeown, Robert; Meziani, Zein-Eddine; Michaels, Robert; Mitchell, Joseph; Nogga, Andreas; Pace, Emanuele; Papandreou, Zisis; Pavlin, Tina; Petratos, Gerassimos; Pripstein, David; Prout, David; Ransome, Ronald; Roblin, Yves; Rowntree, David; Rvachev, Marat; Sabatie, Franck; Saha, Arunava; Salme, Giovanni; SCOPETTA, S.; Skibinski, R.; Souder, Paul; Saito, Teijiro; Strauch, Steffen; Suleiman, Riad; Takahashi, Kazunori; Todor, Luminita; Tsubota, Hiroaki; Ueno, Hiroaki; Urciuoli, Guido; van der Meer, Rob; Vernin, Pascal; Voskanyan, Hakob; Witala, Henryk; Wojtsekhowski, Bogdan; Xiong, Feng; Xu, Wang; Yang, Jae-Choon; Zhang, Bin; Zolnierczuk, Piotr

    2008-07-01

    We present a measurement of the spin-dependent cross sections for the \\vec{^3He}(\\vec{e},e')X} reaction in the quasielastic and resonance regions at four-momentum transfer 0.1 < Q^2< 0.9 GeV^2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt--Cottingham and extended GDH sum rules for the first time. Impulse approximation and exact three-body Faddeev calculations are also compared to the data in the quasielastic region.

  20. Off-center magnetic resonance imaging with permanent magnets

    NASA Astrophysics Data System (ADS)

    Abele, Manlio G.; Rusinek, Henry

    2008-04-01

    Magnets for magnetic resonance imaging are currently designed as structures that are symmetric with respect to the geometric center O of the magnet cavity. This symmetry results in a symmetric field configuration, where point O coincides with the imaging center S defined as the point where the field gradient is zero. However, in many clinical applications such as breast or spine imaging, the region of interest is displaced from the geometric center. We present a design method for yokeless permanent magnets, where the position of point S is dictated by the imaging requirements. The magnet is composed of uniformly magnetized triangular prisms and it does not require a ferromagnetic yoke to channel the magnetic flux. Given an arbitrary polygonal cavity, the design depends on the position of point F, where the magnetostatic potential is assumed to be equal to the magnetostatic potential of the external medium. For a long magnet, the position of the imaging center S coincides with point F. As an example of the off-center design, we analyze a three-dimensional yokeless magnet with cavity of width=length=80cm and height=45cm. The magnet generates a field above 0.5T when constructed using the NdFeB alloy of remanence larger than 1.3T. The off-center configuration offers flexibility in magnet design that makes it possible to focus on a particular region of the human body, without increasing magnet cavity, magnet size, or its weight

  1. Nuclear Magnetic Resonance Technology for Medical Studies.

    ERIC Educational Resources Information Center

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  2. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  3. Magnetic Resonance Imaging in Biomedical Engineering

    NASA Astrophysics Data System (ADS)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  4. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  5. Analytical Methods for Characterizing Magnetic Resonance Probes

    PubMed Central

    Manus, Lisa M.; Strauch, Renee C.; Hung, Andy H.; Eckermann, Amanda L.; Meade, Thomas J.

    2012-01-01

    SUMMARY The efficiency of Gd(III) contrast agents in magnetic resonance image enhancement is governed by a set of tunable structural parameters. Understanding and measuring these parameters requires specific analytical techniques. This Feature describes strategies to optimize each of the critical Gd(III) relaxation parameters for molecular imaging applications and the methods employed for their evaluation. PMID:22624599

  6. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  7. Sports health magnetic resonance imaging challenge.

    PubMed

    Howell, Gary A; Stadnick, Michael E; Awh, Mark H

    2010-11-01

    Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians.

  8. Sample spinner for nuclear magnetic resonance spectrometer

    SciTech Connect

    Stejskal, E.O.

    1984-05-01

    A sample spinner for a nuclear magnetic resonance spectrometer having improved operating characteristics is described comprising a rotor supported at both ends by support gas bearings and positioned by a thrust gas bearing. Improved support gas bearings are also described which result in a spinner exhibiting long-term stable operation characteristics.

  9. Use of Magnetic Resonance in Pancreaticobiliary Emergencies.

    PubMed

    Bates, David D B; LeBedis, Christina A; Soto, Jorge A; Gupta, Avneesh

    2016-05-01

    This article presents the magnetic resonance protocols, imaging features, diagnostic criteria, and complications of commonly encountered emergencies in pancreaticobiliary imaging. Pancreatic trauma, bile leak, acute cholecystitis, biliary obstruction, and pancreatitis are discussed. Various classifications and complications that can arise with these conditions, as well as artifacts that may mimic pathology, are also included. PMID:27150328

  10. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  11. Magnetic Resonance Force Microscopy Detected Long-Lived Spin Magnetization

    PubMed Central

    Chen, Lei; Longenecker, Jonilyn G.; Moore, Eric W.; Marohn, John A.

    2015-01-01

    Magnetic resonance force microscopy (MRFM), which combines magnetic resonance imaging with scanning probe microscopy together, is capable of performing ultra-sensitive detection of spin magnetization. In an attempt to observe dynamic nuclear polarization (DNP) in an MRFM experiment, which could possibly further improve its sensitivity towards a single proton spin, a film of perdeuterated polystyrene doped with a nitroxide electron-spin probe was prepared. A high-compliance cantilever with a 4 μm diameter magnetic tip was brought near the film at a temperature of 7.3 K and in a background magnetic field of ~0.6 T. The film was irradiated with 16.7 GHz microwaves while the resulting transient change in cantilever frequency was recorded in real time. In addition to observing the expected prompt change in cantilever frequency due to saturation of the nitroxide’s electron-spin magnetization, we observed a persistent cantilever frequency change. Based on its magnitude, lifetime, and field dependence, we tentatively attribute the persistent signal to polarized deuteron magnetization created via transfer of magnetization from electron spins. Further measurements of the persistent signal’s dependence on the cantilever amplitude and tip-sample separation are presented and explained by the cross-effect DNP mechanism in high magnetic field gradients. PMID:26097251

  12. Interaction of magnetic resonators studied by the magnetic field enhancement

    NASA Astrophysics Data System (ADS)

    Hou, Yumin

    2013-12-01

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters-shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  13. Interaction of magnetic resonators studied by the magnetic field enhancement

    SciTech Connect

    Hou, Yumin

    2013-12-15

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  14. An introduction to nuclear magnetic resonance in biomedicine.

    PubMed

    Andrew, E R

    1990-02-01

    In this paper the author illustrates the historical aspects of the development, first, of the fundamental principles of nuclear magnetic resonance and, second, the extension of these principles to magnetic resonance imaging and in vivo spectroscopy.

  15. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  16. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  17. Volume coil based on hybridized resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Jouvaud, C.; Abdeddaim, R.; Larrat, B.; de Rosny, J.

    2016-01-01

    We present an electromagnetic device based on hybridization of four half-wavelength dipoles which increases the uniformity and the strength of the radio-frequency (RF) field of a Magnetic Resonant Imaging (MRI) apparatus. Numerical results show that this Hybridized Coil (HC) excited with a classical loop coil takes advantage of the magnetic hybrid modes. The distribution of the RF magnetic field is experimentally confirmed on a 7-T MRI with a gelatin phantom. Finally, the HC is validated in vivo by imaging the head of an anesthetized rat. We measure an overall increase of the signal to noise ratio with up to 2.4 fold increase in regions of interest far from the active loop coil.

  18. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  19. Intense polarized /sup 3/He ion source

    SciTech Connect

    Slobodrian, R.J.; Bertrand, R.; Grioux, J.; Labrie, R.; Lapainte, R.; Meunier, J.F.; Pigeon, G.; Pouliot, L.; Rioux, C.; Roy, R.

    1985-10-01

    This source is based on the atomic polarization of the 2/sup 3/S/sub 1/ metastable state of the neutral atom. A version suitable for operation on the high voltage terminal of a CN Van de Graaff has been constructed, bench tested and installed in the terminal of a 7.5 MV machine. The polarization of the atomic beam is higher than 90%. It is now fully operational and a current of /sup 3/He/sup +/ of 300 nA has been measured after acceleration.

  20. Neonatal life support during magnetic resonance imaging.

    PubMed

    Groenendaal, F; Leusink, C; Nijenhuis, M; Janssen, M J H

    2002-01-01

    Magnetic resonance techniques are required frequently for the assessment of the brain of ill neonates. In the present study, the effects of a 1.5 T MR scanner on devices for life support were assessed. A ventilator (Dräger Babylog 2000) was tested in the 1.5 T magnet, using a neonatal ventilation tester and 1.5-5 m tubes. In a special MR incubator, temperature and humidity were measured at 1-min intervals. Infusion was tested with the pump outside the magnet room: infusion rates and time to alarm were tested with 7-m tubes. The ventilator performed normally at a magnetic field line of 2 mT, although the alarms failed. The incubator created a temperature of 35.9 degrees C and humidity of 40.7%, which was acceptable for examinations of 45 min. The alarm limits of the infusion pump placed outside the magnet at 7 m were within company limits. The study indicates that magnetic resonance examinations can be performed safely in ill preterm neonates who require life-support devices.

  1. Anisotropice superfluid fraction of3He A1 phase

    NASA Astrophysics Data System (ADS)

    Bastea, M.; Kojima, H.

    1995-11-01

    The superfluid fraction of3He a1 phase is computed from measurements of the velocity of spin/entropy waves induced in a cylindrical chamber, for two different directions of the magnetic field: parallel and perpendicular to the axis of the chamber. The ratio of the superfluid fractions in the parallel and perpendicular orientations is 1.85, and does not depend on the field between 1 and 5 Tesla. We adapt a theoretical texture model to account for the superfluid flow, and the results are consistent with the above ratio and direct estimates of superfluid velocity.

  2. Magnetic resonance of calcified tissues

    PubMed Central

    Wehrli, Felix W.

    2016-01-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues – key among them bone – are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author’s laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI. PMID:23414678

  3. Magnetic resonance of calcified tissues

    NASA Astrophysics Data System (ADS)

    Wehrli, Felix W.

    2013-04-01

    MRI of the human body is largely made possible by the favorable relaxation properties of protons of water and triacyl glycerides prevalent in soft tissues. Hard tissues - key among them bone - are generally less amenable to measurement with in vivo MR imaging techniques, not so much as a result of the lower proton density but rather due to the extremely short life-times of the proton signal in water bound to solid-like entities, typically collagen, or being trapped in micro-pores. Either mechanism can enhance T2 relaxation by up to three orders of magnitude relative to their soft-tissue counterparts. Detection of these protons requires solid-state techniques that have emerged in recent years and that promise to add a new dimension to the study of hard tissues. Alternative approaches to probe calcified tissues exploit their characteristic magnetic properties. Bone, teeth and extra-osseous calcium-containing biomaterials are unique in that they are more diamagnetic than all other tissues and thus yield information indirectly by virtue of the induced magnetic fields present in their vicinity. Progress has also been made in methods allowing very high-resolution structural imaging of trabecular and cortical bone relying on detection of the surrounding soft-tissues. This brief review, much of it drawn from work conducted in the author's laboratory, seeks to highlight opportunities with focus on early-stage developments for image-based assessment of structure, function, physiology and mechanics of calcified tissues in humans via liquid and solid-state approaches, including proton, deuteron and phosphorus NMR and MRI.

  4. Nuclear Electric Dipole Moment of 3He

    SciTech Connect

    Stetcu, I; P.Liu, C; Friar, J L; Hayes, A C; Navratil, P

    2008-04-08

    A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of {sup 3}He and the expected sensitivity of such a measurement to the underlying CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {pi}-, {rho}-, and {omega}-exchanges, we find that the pion-exchange contribution dominates. Finally, our results suggest that a measurement of the {sup 3}He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

  5. Nuclear Electric Dipole Moment of ^{3}_He

    SciTech Connect

    Stetcu, I.; Liu, C.-P.; Friar, J. L.; Hayes, A. C.; Navratil, P.

    2008-01-01

    A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of ^{3}_He and the expected sensitivity of such a measurement to the underlyng CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {\\pi}-, {\\rho}-, and {\\omega}-exchanges, we find that the pion-exchange contribution dominates. Our results suggest that a measurement of the ^{3}_He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

  6. [Magnetic resonance compatibility research for coronary mental stents].

    PubMed

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect. PMID:26027299

  7. [Magnetic resonance compatibility research for coronary mental stents].

    PubMed

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  8. MR Imaging of Apparent 3He Gas Transport in Narrow Pipes and Rodent Airways

    PubMed Central

    Minard, Kevin R.; Jacob, Richard E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2013-01-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm-diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Nevertheless, flow splitting at airway branches is still evident and use of 3D vector flow mapping is shown to reveal surprising detail that highlights the correlation between gas dynamics and lung structure. PMID:18667344

  9. MR Imaging of Apparent 3He Gas Transport in Narrow Pipes and Rodent Airways

    SciTech Connect

    Minard, Kevin R.; Jacob, Rick E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2008-10-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm-diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Flow splitting at airway branches is still evident, however, and use of 3D vector flow mapping is shown to provide a quantitative view of pulmonary gas supply that highlights the correlation of airflow dynamics with lung structure.

  10. Magnetic resonance imaging with an optical atomicmagnetometer

    SciTech Connect

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-05-09

    Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.

  11. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.

  12. A hyperpolarized equilibrium for magnetic resonance

    PubMed Central

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10−3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  13. A hyperpolarized equilibrium for magnetic resonance.

    PubMed

    Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B; Mewis, Ryan E; Highton, Louise A R; Kenny, Stephen M; Green, Gary G R; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; von Elverfeldt, Dominik

    2013-01-01

    Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all ¹H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10⁻³ Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application. PMID:24336292

  14. Case studies of multi-day 3He-rich solar energetic particle periods

    NASA Astrophysics Data System (ADS)

    Chen, Nai-hwa; Bučík, Radoslav; Innes, Davina E.; Mason, Glenn M.

    2015-08-01

    Context. Impulsive solar energetic particle events in the inner heliosphere show the long-lasting enrichment of 3He. Aims: We study the source regions of long-lasting 3He-rich solar energetic particle (SEP) events Methods: We located the responsible open magnetic field regions, we combined potential field source surface extrapolations with the Parker spiral, and compared the magnetic field of the identified source regions with in situ magnetic fields. The candidate open field regions are active region plages. The activity was examined by using extreme ultraviolet images from the Solar Dynamics Observatory (SDO) and STEREO together with radio observations from STEREO and WIND. Results: Multi-day periods of 3He-rich SEP events are associated with ion production in single active region. Small flares or coronal jets are their responsible solar sources. We also find that the 3He enrichment may depend on the occurrence rate of coronal jets.

  15. Foundations of Advanced Magnetic Resonance Imaging

    PubMed Central

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B.; Krueger, Gunnar; Moseley, Michael E.; Glover, Gary H.

    2005-01-01

    Summary: During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now—within a few minutes—acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths. PMID:15897944

  16. Foundations of advanced magnetic resonance imaging.

    PubMed

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B; Krueger, Gunnar; Moseley, Michael E; Glover, Gary H

    2005-04-01

    During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now-within a few minutes-acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths.

  17. Magnetic resonance angiography: physical principles and applications.

    PubMed

    Kiruluta, Andrew J M; González, R Gilberto

    2016-01-01

    Magnetic resonance angiography (MRA) is the visualization of hemodynamic flow using imaging techniques that discriminate flowing spins in blood from those in stationary tissue. There are two classes of MRA methods based on whether the magnetic resonance imaging signal in flowing blood is derived from the amplitude of the moving spins, the time-of-flight methods, or is based on the phase accumulated by these flowing spins, as in phase contrast methods. Each method has particular advantages and limitations as an angiographic imaging technique, as evidenced in their application space. Here we discuss the physics of MRA for both classes of imaging techniques, including contrast-enhanced approaches and the recent rapid expansion of the techniques to fast acquisition and processing techniques using parallel imaging coils as well as their application in high-field MR systems such as 3T and 7T. PMID:27432663

  18. Proton magnetic resonance spectroscopy in multiple sclerosis

    SciTech Connect

    Wolinsky, J.S.; Narayana, P.A.; Fenstermacher, M.J. )

    1990-11-01

    Regional in vivo proton magnetic resonance spectroscopy provides quantitative data on selected chemical constituents of brain. We imaged 16 volunteers with clinically definite multiple sclerosis on a 1.5 tesla magnetic resonance scanner to define plaque-containing volumes of interest, and obtained localized water-suppressed proton spectra using a stimulated echo sequence. Twenty-five of 40 plaque-containing regions provided spectra of adequate quality. Of these, 8 spectra from 6 subjects were consistent with the presence of cholesterol or fatty acids; the remainder were similar to those obtained from white matter of normal volunteers. This early experience with regional proton spectroscopy suggests that individual plaques are distinct. These differences likely reflect dynamic stages of the evolution of the demyelinative process not previously accessible to in vivo investigation.

  19. Combined Confocal and Magnetic Resonance Microscopy

    SciTech Connect

    Wind, Robert A.; Majors, Paul D.; Minard, Kevin R.; Ackerman, Eric J.; Daly, Don S.; Holtom, Gary R.; Thrall, Brian D.; Weber, Thomas J.

    2002-05-12

    Confocal and magnetic resonance microscopy are both used to study live cells in a minimally invasive way. Both techniques provide complementary information. Therefore, by examining cells simultaneously with both methodologies, more detailed information is obtained than is possible with each of the microscopes individually. In this paper two configurations of a combined confocal and magnetic resonance microscope described. In both cases the sample compartment is part of a temperature regulated perfusion system. The first configuration is capable of studying large single cells or three-dimensional cell agglomerates, whereas with the second configuration monolayers of mammalian cells can be investigated . Combined images are shown of Xenopus laevis frog oocytes, model JB6 tumor spheroids, and a single layer of Chinese hamster ovary cells. Finally, potential applications of the combined microscope are discussed.

  20. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  1. Nuclear magnetic resonance in Kondo lattice systems.

    PubMed

    Curro, Nicholas J

    2016-06-01

    Nuclear magnetic resonance has emerged as a vital tool to explore the fundamental physics of Kondo lattice systems. Because nuclear spins experience two different hyperfine couplings to the itinerant conduction electrons and to the local f moments, the Knight shift can probe multiple types of spin correlations that are not accessible via other techniques. The Knight shift provides direct information about the onset of heavy electron coherence and the emergence of the heavy electron fluid.

  2. Nuclear magnetic resonance quantum information processing

    PubMed Central

    Serra, R. M.; Oliveira, I. S.

    2012-01-01

    For the past decade, nuclear magnetic resonance (NMR) has been established as a main experimental technique for testing quantum protocols in small systems. This Theme Issue presents recent advances and major challenges of NMR quantum information possessing (QIP), including contributions by researchers from 10 different countries. In this introduction, after a short comment on NMR-QIP basics, we briefly anticipate the contents of this issue. PMID:22946031

  3. Cardiovascular magnetic resonance phase contrast imaging.

    PubMed

    Nayak, Krishna S; Nielsen, Jon-Fredrik; Bernstein, Matt A; Markl, Michael; D Gatehouse, Peter; M Botnar, Rene; Saloner, David; Lorenz, Christine; Wen, Han; S Hu, Bob; Epstein, Frederick H; N Oshinski, John; Raman, Subha V

    2015-01-01

    Cardiovascular magnetic resonance (CMR) phase contrast imaging has undergone a wide range of changes with the development and availability of improved calibration procedures, visualization tools, and analysis methods. This article provides a comprehensive review of the current state-of-the-art in CMR phase contrast imaging methodology, clinical applications including summaries of past clinical performance, and emerging research and clinical applications that utilize today's latest technology. PMID:26254979

  4. The mean ionic charge of silicon in 3HE-rich solar flares

    NASA Technical Reports Server (NTRS)

    Luhn, A.; Klecker, B.; Hovestadt, E.; Moebius, E.

    1985-01-01

    Mean ionic charge of iron in 3He-rich solar flares and the average mean charge of Silicon for 23 #He-rich periods during the time interval from September 1978 to October 1979 were determined. It is indicated that the value of the mean charge state of Silicon is higher than the normal flare average by approximately 3 units and in perticular it is higher then the value predicted by resonant heating models for 3He-rich solar flares.

  5. {sup 3}He melting pressure thermometry

    SciTech Connect

    Ni, W.; Xia, J.S.; Adams, E.D.

    1995-10-01

    High-precision measurements of the {sup 3}He melting pressure versus temperature have been made from 500 {mu}K to 25 mK using a {sup 60}Co nuclear orientation primary thermometer and a Pt NMR susceptibility secondary thermometer. Temperatures for the fixed points on the melting curve are: the superfluid A transition T{sub A}=2.505 mK, the A-B transition T{sub AB}=1.948 mK, and the solid ordering temperature T{sub N}=0.934 mK. These fixed points and a functional form for P(T) constitute a convenient temperature scale, based on a primary thermometer, usable to well below 1 mK.

  6. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  7. Textural domain walls in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi

    Owing to the richness of symmetry, the superfluid 3He serves as a rich repository of topological quantum phenomena. This includes the emergence of surface Majorana fermions and their quantum mass acquisition at the topological critical point. Furthermore, the marriage of the prototype topological superfluid with nanofabrication techniques brings about a rich variety of spontaneous symmetry breaking, such as the formation of the stripe order and nontrivial domain walls. In this work, we examine the possible formation of textural domain walls in the superfluid 3He-B confined to a thin slab with a sub-micron thickness. When an applied magnetic field is much higher than the dipolar field, two nearly degenerate ground states appear, which are characterized by the Ising order associated with the spontaneous breaking of a magnetic order-two symmetry, lcirc;z = + 1 and - 1 . We here discuss the structure of the textural domain wall formed by the spatial modulation of the Ising order, such as low-lying quasiparticle excitations and spontaneous spin current. We also report bosonic modes bound to the textural domain wall.

  8. Metastability exchange optical pumping of 3He gas up to hundreds of millibars at 4.7 Tesla

    NASA Astrophysics Data System (ADS)

    Nikiel-Osuchowska, Anna; Collier, Guilhem; Głowacz, Bartosz; Pałasz, Tadeusz; Olejniczak, Zbigniew; Wȩglarz, Władysław P.; Tastevin, Geneviève; Nacher, Pierre-Jean; Dohnalik, Tomasz

    2013-09-01

    Metastability exchange optical pumping (MEOP) is experimentally investigated in 3He at 4.7 T, at room temperature and for gas pressures ranging from 1 to 267 mbar. The 23S-23P transition at 1083 nm is used for optical pumping and for detection of the laser-induced orientation of 3He atoms in the rf discharge plasma. The collisional broadening rate is measured (12.0 ± 0.4 MHz mbar-1 FHWM) and taken into account for accurate absorption-based measurements of both nuclear polarization in the ground state and atom number density in the metastable 23S state. The results lay the ground for a comprehensive assessment of the efficiency of MEOP, by comparison with achievements at lower field (1 mT-2 T) over an extended range of operating conditions. Stronger hyperfine decoupling in the optically pumped 23S state is observed to systematically lead to slower build-up of 3He orientation in the ground state, as expected. The nuclear polarizations obtained at 4.7 T still decrease at high pressure but in a less dramatic way than observed at 2 T in the same sealed glass cells. To date, thanks to the linear increase in gas density, they correspond to the highest nuclear magnetizations achieved by MEOP in pure 3He gas. The improved efficiency puts less demanding requirements for compression stages in polarized gas production systems and makes high-field MEOP particularly attractive for magnetic resonance imaging of the lungs, for instance.

  9. Magnetic Resonance Microscopy of Collagen Mineralization

    PubMed Central

    Chesnick, Ingrid E.; Mason, Jeffrey T.; Giuseppetti, Anthony A.; Eidelman, Naomi; Potter, Kimberlee

    2008-01-01

    A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T2) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T2 values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T2 values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 ± 0.02 for control strips to a maximum value of 0.31 ± 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils. PMID:18487295

  10. Compact low field magnetic resonance imaging magnet: Design and optimization

    NASA Astrophysics Data System (ADS)

    Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

    2000-03-01

    Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

  11. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Gentile, T. R.; Ye, Q.; Kirchhoff, A.; Watson, S. M.; Rodriguez-Rivera, J. A.; Qiu, Y.; Broholm, C.

    2016-09-01

    Wide-angle polarization analysis with polarized 3He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells.

  12. Electron bubbles and Weyl fermions in chiral superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Shevtsov, Oleksii; Sauls, J. A.

    2016-08-01

    Electrons embedded in liquid 3He form mesoscopic bubbles with large radii compared to the interatomic distance between 3He atoms, voids of Nbubble≈200 3He atoms, generating a negative ion with a large effective mass that scatters thermal excitations. Electron bubbles in chiral superfluid 3He-A also provide a local probe of the ground state. We develop a scattering theory of Bogoliubov quasiparticles by negative ions embedded in 3He-A that incorporates the broken symmetries of 3He-A , particularly broken symmetries under time reversal and mirror symmetry in a plane containing the chiral axis l ̂. Multiple scattering by the ion potential, combined with branch conversion scattering by the chiral order parameter, leads to a spectrum of Weyl fermions bound to the ion that support a mass current circulating the electron bubble—a mesoscopic realization of chiral edge currents in superfluid 3He-A films. A consequence is that electron bubbles embedded in 3He-A acquire angular momentum, L ≈-(Nbubble/2 ) ℏ l ̂ , inherited from the chiral ground state. We extend the scattering theory to calculate the forces on a moving electron bubble, both the Stokes drag and a transverse force, FW=e/c v ×BW , defined by an effective magnetic field, BW∝l ̂ , generated by the scattering of thermal quasiparticles off the spectrum of Weyl fermions bound to the moving ion. The transverse force is responsible for the anomalous Hall effect for electron bubbles driven by an electric field reported by the RIKEN group. Our results for the scattering cross section, drag, and transverse forces on moving ions are compared with experiments and shown to provide a quantitative understanding of the temperature dependence of the mobility and anomalous Hall angle for electron bubbles in normal and superfluid 3He-A . We also discuss our results in relation to earlier work on the theory of negative ions in superfluid 3He.

  13. A compact SEOP 3He neutron spin filter with AFP NMR

    NASA Astrophysics Data System (ADS)

    Ino, Takashi; Arimoto, Yasushi; Shimizu, Hirohiko M.; Sakaguchi, Yoshifumi; Sakai, Kenji; Kira, Hiroshi; Shinohara, Takenao; Oku, Takayuki; Suzuki, Jun-ichi; Kakurai, Kazuhisa; Chang, Lieh-Jeng

    2012-02-01

    We developed AFP NMR in an aluminum container for polarized noble gas nuclei. The radio frequency magnetic field inside the aluminum container was designed from computer simulations. The polarization loss by the AFP spin flip of 3He was measured to be as low as 3.8×10-4. With this technique, a compact in-situ polarizing 3He neutron spin filter with AFP NMR is demonstrated.

  14. Magnetic resonance at the quantum limit

    NASA Astrophysics Data System (ADS)

    Bertet, Patrice

    The detection and characterization of paramagnetic species by electron-spin resonance (ESR) spectroscopy has numerous applications in chemistry, biology, and materials science. Most ESR spectrometers rely on the inductive detection of the small microwave signals emitted by the spins during their Larmor precession into a microwave resonator in which they are embedded. Using the tools offered by circuit Quantum Electrodynamics (QED), namely high quality factor superconducting micro-resonators and Josephson parametric amplifiers that operate at the quantum limit when cooled at 20mK, we report an increase of the sensitivity of inductively detected ESR by 4 orders of magnitude over the state-of-the-art, enabling the detection of 1700 Bismuth donor spins in silicon with a signal-to-noise ratio of 1 in a single echo. We also demonstrate that the energy relaxation time of the spins is limited by spontaneous emission of microwave photons into the measurement line via the resonator, which opens the way to on-demand spin initialization via the Purcell effect. These results constitute a first step towards circuit QED experiments with magnetically coupled individual spins.

  15. Development of Laser-Polarized Noble Gas Magnetic Resonance Imaging (MRI) Technology

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    2004-01-01

    We are developing technology for laser-polarized noble gas nuclear magnetic resonance (NMR), with the aim of enabling it as a novel biomedical imaging tool for ground-based and eventually space-based application. This emerging multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation, perfusion, and gas-exchange. In addition, laser-polarized noble gases (3He and 1BXe) do not require a large magnetic field for sensitive NMR detection, opening the door to practical MRI with novel, open-access magnet designs at very low magnetic fields (and hence in confined spaces). We are pursuing two specific aims in this technology development program. The first aim is to develop an open-access, low-field (less than 0.01 T) instrument for MRI studies of human gas inhalation as a function of subject orientation, and the second aim is to develop functional imaging of the lung using laser-polarized He-3 and Xe-129.

  16. First observation of two hyperfine transitions in antiprotonic 3He

    PubMed Central

    Friedreich, S.; Barna, D.; Caspers, F.; Dax, A.; Hayano, R.S.; Hori, M.; Horváth, D.; Juhász, B.; Kobayashi, T.; Massiczek, O.; Sótér, A.; Todoroki, K.; Widmann, E.; Zmeskal, J.

    2011-01-01

    We report on the first experimental results for microwave spectroscopy of the hyperfine structure of p¯3He+. Due to the helium nuclear spin, p¯3He+ has a more complex hyperfine structure than p¯4He+, which has already been studied before. Thus a comparison between theoretical calculations and the experimental results will provide a more stringent test of the three-body quantum electrodynamics (QED) theory. Two out of four super-super-hyperfine (SSHF) transition lines of the (n,L)=(36,34) state were observed. The measured frequencies of the individual transitions are 11.12559(14) GHz and 11.15839(18) GHz, less than 1 MHz higher than the current theoretical values, but still within their estimated errors. Although the experimental uncertainty for the difference of these frequencies is still very large as compared to that of theory, its measured value agrees with theoretical calculations. This difference is crucial to be determined because it is proportional to the magnetic moment of the antiproton. PMID:21822351

  17. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  18. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  19. Multiparametric magnetic resonance imaging of prostate cancer.

    PubMed

    Hedgire, Sandeep S; Oei, Tamara N; McDermott, Shaunagh; Cao, Kai; Patel M, Zena; Harisinghani, Mukesh G

    2012-07-01

    In India, prostate cancer has an incidence rate of 3.9 per 100,000 men and is responsible for 9% of cancer-related mortality. It is the only malignancy that is diagnosed with an apparently blind technique, i.e., transrectal sextant biopsy. With increasing numbers of high-Tesla magnetic resonance imaging (MRI) equipment being installed in India, the radiologist needs to be cognizant about endorectal MRI and multiparametric imaging for prostate cancer. In this review article, we aim to highlight the utility of multiparamteric MRI in prostate cancer. It plays a crucial role, mainly in initial staging, restaging, and post-treatment follow-up. PMID:23599562

  20. Creating a magnetic resonance imaging ontology.

    PubMed

    Lasbleiz, Jérémy; Saint-Jalmes, Hervé; Duvauferrier, Régis; Burgun, Anita

    2011-01-01

    The goal of this work is to build an ontology of Magnetic Resonance Imaging. The MRI domain has been analysed regarding MRI simulators and the DICOM standard. Tow MRI simulators have been analysed: JEMRIS, which is developed in XML and C++, has a hierarchical organisation and SIMRI, which is developed in C, has a good representation of MRI physical processes. To build the ontology we have used Protégé 4, owl2 that allows quantitative representations. The ontology has been validated by a reasoner (Fact++) and by a good representation of DICOM headers and of MRI processes. The MRI ontology would improved MRI simulators and eased semantic interoperability. PMID:21893854

  1. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  2. Cardiovascular magnetic resonance in systemic hypertension

    PubMed Central

    2012-01-01

    Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension. PMID:22559053

  3. Magnetic Resonance Imaging of Pediatric Neurologic Emergencies.

    PubMed

    Lall, Neil U; Stence, Nicholas V; Mirsky, David M

    2015-12-01

    Although computed tomography is often the first line of imaging in the emergency setting, magnetic resonance imaging (MRI) is of increasing importance in the evaluation of central nervous system emergencies in the pediatric population. As such, it is necessary to understand the indications for which MRI may be necessary. This article reviews the unique pathophysiologic entities affecting the pediatric population and the associated MRI findings. Specifically, utility of emergent MRI and characteristic appearances of traumatic brain injury, traumatic spinal injury, nonaccidental trauma, arterial ischemic stroke, cerebral sinovenous thrombosis, stroke mimics, and central nervous system infections are described. PMID:26636636

  4. Magnetic resonance imaging in central pontine myelinolysis.

    PubMed Central

    Thompson, P D; Miller, D; Gledhill, R F; Rossor, M N

    1989-01-01

    Magnetic resonance imaging (MRI) was performed in two patients in whom a clinical diagnosis of central pontine myelinolysis (CPM) had been made. MRI showed lesions in the pons in both cases about 2 years after the illness, at a time when the spastic quadriparesis and pseudobulbar palsy had recovered. The persisting abnormal signals in CPM are likely to be due to fibrillary gliosis. Persistence of lesions on MRI means that the diagnosis of CPM may be electively, after the acute illness has resolved. Images PMID:2732743

  5. Magnetic resonance-guided prostate interventions.

    PubMed

    Haker, Steven J; Mulkern, Robert V; Roebuck, Joseph R; Barnes, Agnieska Szot; Dimaio, Simon; Hata, Nobuhiko; Tempany, Clare M C

    2005-10-01

    We review our experience using an open 0.5-T magnetic resonance (MR) interventional unit to guide procedures in the prostate. This system allows access to the patient and real-time MR imaging simultaneously and has made it possible to perform prostate biopsy and brachytherapy under MR guidance. We review MR imaging of the prostate and its use in targeted therapy, and describe our use of image processing methods such as image registration to further facilitate precise targeting. We describe current developments with a robot assist system being developed to aid radioactive seed placement. PMID:16924169

  6. Magnetic Resonance (MR) Metabolic Imaging in Glioma.

    PubMed

    Chaumeil, Myriam M; Lupo, Janine M; Ronen, Sabrina M

    2015-11-01

    This review is focused on describing the use of magnetic resonance (MR) spectroscopy for metabolic imaging of brain tumors. We will first review the MR metabolic imaging findings generated from preclinical models, focusing primarily on in vivo studies, and will then describe the use of metabolic imaging in the clinical setting. We will address relatively well-established (1) H MRS approaches, as well as (31) P MRS, (13) C MRS and emerging hyperpolarized (13) C MRS methodologies, and will describe the use of metabolic imaging for understanding the basic biology of glioma as well as for improving the characterization and monitoring of brain tumors in the clinic.

  7. Magnetic Resonance of Pelvic and Gastrointestinal Emergencies.

    PubMed

    Wongwaisayawan, Sirote; Kaewlai, Rathachai; Dattwyler, Matthew; Abujudeh, Hani H; Singh, Ajay K

    2016-05-01

    Magnetic resonance (MR) imaging is gaining increased acceptance in the emergency setting despite the continued dominance of computed tomography. MR has the advantages of more precise tissue characterization, superior soft tissue contrast, and a lack of ionizing radiation. Traditional barriers to emergent MR are being overcome by streamlined imaging protocols and newer rapid-acquisition sequences. As the utilization of MR imaging in the emergency department increases, a strong working knowledge of the MR appearance of the most commonly encountered abdominopelvic pathologies is essential. In this article, MR imaging protocols and findings of acute pelvic, scrotal, and gastrointestinal pathologies are discussed. PMID:27150327

  8. Magnetic Resonance Imaging of Spinal Emergencies.

    PubMed

    Kawakyu-O'Connor, Daniel; Bordia, Ritu; Nicola, Refky

    2016-05-01

    Magnetic resonance (MR) imaging of the spine is increasingly being used in the evaluation of spinal emergencies because it is highly sensitive and specific in the diagnosis of acute conditions of the spine. The prompt and accurate recognition allows for appropriate medical and surgical intervention. This article reviews the MR imaging features of common emergent conditions, such as spinal trauma, acute disc herniation, infection, and tumors. In addition, we describe common MR imaging sequences, discuss challenges encountered in emergency imaging of the spine, and illustrate multiple mimics of acute conditions. PMID:27150322

  9. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  10. Magnetic resonance imaging of anorectal malformations.

    PubMed

    Podberesky, Daniel J; Towbin, Alexander J; Eltomey, Mohamed A; Levitt, Marc A

    2013-11-01

    Anorectal malformation (ARM) occurs in approximately 1 in 5000 newborns and is frequently accompanied by anomalies of the genitalia, gynecologic system, urinary tract, spine, and skeletal system. Diagnostic imaging plays a central role in ARM evaluation. Because of the lack of ionizing radiation, excellent intrinsic contrast resolution, multiplanar imaging capabilities, technical advances in hardware, and innovative imaging protocols, magnetic resonance (MR) imaging is increasingly important in assessment of ARM patients in utero, postnatally before definitive surgical correction, and in the postoperative period. This article discusses the role of MR imaging in evaluating ARM patients. PMID:24183526

  11. Magnetic resonance imaging in rheumatology. An overview.

    PubMed

    Nissenbaum, M A; Adamis, M K

    1994-05-01

    Magnetic resonance (MR) imaging has revolutionized the assessment of pathology involving the musculoskeletal system. The soft tissue contrast, superb resolution, multiplanar acquisition potential, and the ability to monitor physiologic processes combine the best features of other imaging modalities. The sensitivity and specificity of MR imaging for a wide range of disease processes matches or supersedes conventional radiology, nuclear medicine, and clinical examination. This article provides a brief overview of the use of MR imaging for some of the more common clinical situations confronting the rheumatologist.

  12. Proton Magnetic Resonance Spectroscopy in Multiple Sclerosis

    PubMed Central

    Sajja, Balasrinivasa R.; Wolinsky, Jerry S.

    2008-01-01

    Synopsis Proton magnetic resonance spectroscopy (1H-MRS) provides tissue metabolic information in vivo. This article reviews the role of MRS-determined metabolic alterations in lesions, normal appearing white matter, gray matter, and spinal cord in advancing our knowledge of pathological changes in multiple sclerosis (MS). In addition, the role of MRS in objectively evaluating therapeutic efficacy is reviewed. This potential metabolic information makes MRS a unique tool to follow MS disease evolution, understanding its pathogenesis, evaluating the disease severity, establishing a prognosis, and objectively evaluating the efficacy of therapeutic interventions. PMID:19064199

  13. Magnetic resonance imaging of the elbow.

    PubMed

    Steinbach, L S; Fritz, R C; Tirman, P F; Uffman, M

    1997-11-01

    Magnetic resonance imaging (MRI) provides useful information regarding the elbow joint. Many abnormalities seen in the elbow are a result of trauma, often from sports such as baseball and tennis. Elbow problems are frequently related to the medial tension-lateral compression phenomenon where repeated valgus stress produces flexor-pronator strain, ulnar collateral ligament sprain, ulnar traction spurring, and ulnar neuropathy. The lateral compression causes osteochondritis dissecans of the capitellum and radial head, degenerative arthritis, and loose bodies. Other elbow abnormalities seen on MRI include radial collateral ligament injuries, biceps and triceps tendon injuries, other nerve entrapment syndromes, loose bodies, osseous and soft tissue trauma, arthritis, and masses, including bursae.

  14. Magnetic resonance images of chronic patellar tendinitis.

    PubMed

    Bodne, D; Quinn, S F; Murray, W T; Bolton, T; Rudd, S; Lewis, K; Daines, P; Bishop, J; Cochran, C

    1988-01-01

    Chronic patellar tendinitis can be a frustrating diagnostic and therapeutic problem. This report evaluates seven tendons in five patients with chronic patellar tendinitis. The etiologies included "jumper's knee" and Osgood-Schlatter disease. In all cases magnetic resonance images (MRI) showed thickening of the tendon. Some of the tendons had focal areas of thickening which helped establish the etiology. All cases had intratendinous areas of increased signal which, in four cases, proved to be chronic tendon tears. MRI is useful in evaluating chronic patellar tendinitis because it establishes the diagnosis, detects associated chronic tears, and may help determine appropriate rehabilitation.

  15. Magnetization transfer magnetic resonance imaging: a clinical review.

    PubMed

    Mehta, R C; Pike, G B; Enzmann, D R

    1996-08-01

    Magnetic resonance imaging has traditionally used the T1 and T2 relaxation times and proton density (PD) of tissue water (hydrogen protons) to manipulate contrast. Magnetization transfer (MT) is a new form of tissue contrast based on the physical concept that tissues contain two or more separate populations of hydrogen protons: a highly mobile (free) hydrogen (water) pool, Hr, and an immobile (restricted) hydrogen pool, Hr, the latter being those protons bound to large macromolecular proteins and lipids, such as those found in such cellular membranes as myelin. Direct observation of the Hr magnetization pool is normally not possible because of its extremely short T2 time (< 200 microseconds). But saturation of the restricted pool will have a detectable effect on the mobile (free) proton pool. Saturation of the restricted pool decreases the signal of the free pool by transferring the restricted pool's saturation. Exchange of magnetization between the free and restricted hydrogen protons is a substantial mechanism for spin-lattice (T1) relaxation in tissues and the physical basis of MT. Through an appropriately designed pulse sequence, magnetization transfer contrast (MTC) can be produced. MT contrast is different from T1, T2, and PD, and it likely reflects the structural integrity of the tissue being imaged. A variety of clinically important uses of MT have emerged. In this clinical review of the neuroradiological applications of MT, we briefly review the physics of MT, the appearance of normal brain with MT, and the use of MT as a method of contrast enhancement/background suppression and in tissue characterization, such as evaluation of multiple sclerosis and other white-matter lesions and tumors. The role of MT in small-vessel visualization on three-dimensional time-of-flight magnetic resonance angiography and in head and neck disease and newer applications of MT are also elaborated. PMID:8870180

  16. sup 3 He- sup 3 He dating: A case for mixing of young and old groundwaters

    SciTech Connect

    Kamensky, I.L.; Tolstikhin, I.N. ); Tokarev, I.V. )

    1991-10-01

    {sup 3}He/{sup 4}He and {sup 20}Ne/{sup 4}He ratios were measured in shallow underground waters (opened by water-supplying wells) of the Large Vud-Javr intramountain artesian basin in the Khibiny alkaline massif, the Kola Peninsula. The ratios vary from 1.321 {times} 10{sup {minus}6} to 2.065 {times} 10{sup {minus}6} and from 1.412 to 2.941, respectively, and a well-defined correlation is observed between them. Both these ratios in aquifers are known to be time-dependent, the former increases with time due to accumulation of {sup 3}He, produced in waters by {sup 3}H {beta}-decay; the latter decreases due to migration of helium from water-bearing rocks into the waters. The correlation is interpreted as a result of the mixing of two different types of waters. The approximation line enables the authors to estimate the isotopic ratios for the endmembers participating in the mixing and the mean residence time ({tau}) of tritigenic helium-3 in the water: (1) {sup 3}He/{sup 4}He = 3.655 {times} 10{sup {minus}6}, {sup 20}Ne/{sup 4}He = 4.03, and taking into consideration {sup 3}H concentrations in the well waters, {sup 3}H = 31.1 TU (practically the same for all samples), {tau} = 15.8 {plus minus} 1.5 years for the young water; (2) {sup 3}He/{sup 4}He = 0.20 {times} 10{sup {minus}6}, {sup 20}Ne/{sup 4}He = 0.18 and T = 0.11 Ma for the old one, the contribution of the old water being less than 10%. In one well a considerable contribution of modern-day meteoric water, about 16%, is observed.

  17. Nuclear magnetic resonance imaging of liver hemangiomas

    SciTech Connect

    Sigal, R.; Lanir, A.; Atlan, H.; Naschitz, J.E.; Simon, J.S.; Enat, R.; Front, D.; Israel, O.; Chisin, R.; Krausz, Y.

    1985-10-01

    Nine patients with cavernous hemangioma of the liver were examined by nuclear magnetic resonance imaging (MRI) with a 0.5 T superconductive magnet. Spin-echo technique was used with varying time to echo (TE) and repetition times (TR). Results were compared with /sup 99m/Tc red blood cell (RBC) scintigraphy, computed tomography (CT), echography, and arteriography. Four illustrated cases are reported. It was possible to establish a pattern for MRI characteristics of cavernous hemangiomas; rounded or smooth lobulated shape, marked increase in T1 and T2 values as compared with normal liver values. It is concluded that, although more experience is necessary to compare the specificity with that of ultrasound and CT, MRI proved to be very sensitive for the diagnosis of liver hemangioma, especially in the case of small ones which may be missed by /sup 99m/Tc-labeled RBC scintigraphy.

  18. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.

    1986-01-01

    During the past year the Woodlands Baylor Magnetic Resonance Imaging (MRI) facility became fully operational. A detailed description of this facility is given. One significant instrument addition this year was the 100 MHz, 40cm bore superconducting imaging spectrometer. This instrument gives researchers the capability to acquire high energy phosphate spectra. This will be used to investigate ATP, phosphocreatinine and inorganic phosphate changes in normal and atrophied muscle before, during and after exercise. An exercise device for use within the bore of the imaging magnet is under design/construction. The results of a study of T sub 1 and T sub 2 changes in atrophied muscle in animals and human subjects are given. The imaging and analysis of the lower leg of 15 research subjects before and after 5 weeks of complete bedrest was completed. A compilation of these results are attached.

  19. Near-Zero-Field Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Theis, T.; Blanchard, J. W.; Ring, H.; Ganssle, P.; Appelt, S.; Blümich, B.; Pines, A.; Budker, D.

    2011-09-01

    We investigate nuclear magnetic resonance (NMR) in near zero field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J coupling). This is in stark contrast to the high-field case, where heteronuclear J couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with nontrivial spectra.

  20. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  1. PREFACE: JCNS Workshop on Modern Trends in Production and Applications of Polarized 3He

    NASA Astrophysics Data System (ADS)

    Ioffe, Alexander; Babcock, Earl; Gutberlet, Thomas

    2011-03-01

    Polarized neutron scattering techniques are an indispensable and highly requested tool for studying magnetic phenomena in condensed matter. The different coherent and incoherent scattering of isotopes such as protons and deuterons also allows applications of polarized neutrons in soft matter and biological studies of molecular and macromolecular dynamics. One method to polarize neutrons is to use polarized 3He gas which absorbs, or filters, one spin state of the neutron beam as it passes through it. Only about ten years ago, early polarized neutron scattering experiments using such 3He neutron spin filters (3He NSF) were being conducted using starting 3He polarizations of 55%. Currently there are two different commonly used methods to polarize high quantities of 3He. These methods both collisionally transfer spin polarization to ground state 3He nucleuses; one method uses optical pumping of an excited metastable state of 3He atoms, and the other uses optical pumping of the ground state of an alkali-metal vapour. Within the last decade immense progress in both methods has resulted in 3He polarizations of up to 80% being reported in atmosphere-pressure 3He cells by the world's leading labs. This progress in optical pumped 3He promises to give rise to much more efficient and novel polarized neutron scattering experiments as and also impacts other areas of science. Polarized 3He is additionally applied in research fields such as particle physics, fundamental studies and medicine. Thus not only the techniques and methods of polarization, but the research groups themselves exploring polarized 3He, have a large breadth and diversity spanning different fields of science and locations in the world. Given this diversity, it is rare for this community to meet as a group at any one meeting or conference. Because it is crucial to discuss new developments in 3He polarization in a multi-disciplinary international setting, an international workshop on "Modern Trends in Production

  2. Nuclear magnetic resonance in magnets with a helicoidal magnetic structure in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

    2014-11-01

    In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

  3. Magnetic resonance elastography hardware design: a survey.

    PubMed

    Tse, Z T H; Janssen, H; Hamed, A; Ristic, M; Young, I; Lamperth, M

    2009-05-01

    Magnetic resonance elastography (MRE) is an emerging technique capable of measuring the shear modulus of tissue. A suspected tumour can be identified by comparing its properties with those of tissues surrounding it; this can be achieved even in deep-lying areas as long as mechanical excitation is possible. This would allow non-invasive methods for cancer-related diagnosis in areas not accessible with conventional palpation. An actuating mechanism is required to generate the necessary tissue displacements directly on the patient in the scanner and three different approaches, in terms of actuator action and position, exist to derive stiffness measurements. However, the magnetic resonance (MR) environment places considerable constraints on the design of such devices, such as the possibility of mutual interference between electrical components, the scanner field, and radio frequency pulses, and the physical space restrictions of the scanner bore. This paper presents a review of the current solutions that have been developed for MRE devices giving particular consideration to the design criteria including the required vibration frequency and amplitude in different applications, the issue of MR compatibility, actuation principles, design complexity, and scanner synchronization issues. The future challenges in this field are also described.

  4. General review of magnetic resonance elastography

    PubMed Central

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-01

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  5. PLANTAR THROMBOPHLEBITIS: MAGNETIC RESONANCE IMAGING FINDINGS

    PubMed Central

    Miranda, Frederico Celestino; Carneiro, Renato Duarte; Longo, Carlos Henrique; Fernandes, Túlio Diniz; Rosemberg, Laércio Alberto; de Gusmão Funari, Marcelo Buarque

    2015-01-01

    Objective: Demonstrate the magnetic resonance imaging (MRI) findings in plantar thrombophlebitis. Methods: Retrospective review of twenty patients with pain in the plantar region of the foot, in which the MRI findings indicated plantar thrombophlebitis. Results: A total of fourteen men and six women, mean age 46.7 years were evaluated. Eight of these patients also underwent Doppler ultrasonography, which confirmed the thrombophlebitis. The magnetic resonance images were evaluated in consensus by two radiologists with experience in musculoskeletal radiology (more than 10 years each), showing perivascular edema in all twenty patients (100%) and muscle edema in nineteen of the twenty patients (95%). All twenty patients had intraluminal intermediate signal intensity on T2-weighted (100%) and venous ectasia was present in seventeen of the twenty cases (85%). Collateral veins were visualized in one of the twenty patients (5%). All fourteen cases (100%), in which intravenous contrast was administered, showed perivenular tissues enhancement and intraluminal filling defect. Venous ectasia, loss of compressibility and no flow on Doppler ultrasound were also observed in all eight cases examined by the method. Conclusion: MRI is a sensitive in the evaluation of plant thrombophlebitis in patients with plantar foot pain. PMID:27047898

  6. Magnetic resonance imaging. Application to family practice.

    PubMed Central

    Goh, R. H.; Somers, S.; Jurriaans, E.; Yu, J.

    1999-01-01

    OBJECTIVE: To review indications, contraindications, and risks of using magnetic resonance imaging (MRI) in order to help primary care physicians refer patients appropriately for MRI, screen for contraindications to using MRI, and educate patients about MRI. QUALITY OF EVIDENCE: Recommendations are based on classic textbooks, the policies of our MRI group, and a literature search using MEDLINE with the MeSH headings magnetic resonance imaging, brain, musculoskeletal, and spine. The search was limited to human, English-language, and review articles. Evidence in favour of using MRI for imaging the head, spine, and joints is well established. For cardiac, abdominal, and pelvic conditions, MRI has been shown useful for certain indications, usually to complement other modalities. MAIN MESSAGE: For demonstrating soft tissue conditions, MRI is better than computed tomography (CT), but CT shows bone and acute bleeding better. Therefore, patients with trauma or suspected intracranial bleeding should have CT. Tumours, congenital abnormalities, vascular structures, and the cervical or thoracic spine show better on MRI. Either modality can be used for lower back pain. Cardiac, abdominal, and pelvic abnormalities should be imaged with ultrasound or CT before MRI. Contraindications for MRI are mainly metallic implants or shrapnel, severe claustrophobia, or obesity. CONCLUSIONS: With the increasing availability of MRI scanners in Canada, better understanding of the indications, contraindications, and risks will be helpful for family physicians and their patients. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:10509224

  7. General review of magnetic resonance elastography.

    PubMed

    Low, Gavin; Kruse, Scott A; Lomas, David J

    2016-01-28

    Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing "virtual palpation", MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration. PMID:26834944

  8. Novel Magnetic Resonance Imaging Techniques in Brain Tumors.

    PubMed

    Nechifor, Ruben E; Harris, Robert J; Ellingson, Benjamin M

    2015-06-01

    Magnetic resonance imaging is a powerful, noninvasive imaging technique with exquisite sensitivity to soft tissue composition. Magnetic resonance imaging is primary tool for brain tumor diagnosis, evaluation of drug response assessment, and clinical monitoring of the patient during the course of their disease. The flexibility of magnetic resonance imaging pulse sequence design allows for a variety of image contrasts to be acquired, including information about magnetic resonance-specific tissue characteristics, molecular dynamics, microstructural organization, vascular composition, and biochemical status. The current review highlights recent advancements and novel approaches in MR characterization of brain tumors.

  9. Phosphorus 31 nuclear magnetic resonance examination of female reproductive tissues

    SciTech Connect

    Noyszewski, E.A.; Raman, J.; Trupin, S.R.; McFarlin, B.L.; Dawson, M.J. )

    1989-08-01

    Nuclear magnetic resonance spectroscopy is a powerful method of investigating the relationship between metabolism and function in living tissues. We present evidence that the phosphorus 31 spectra of myometrium and placenta are functions of physiologic state and gestational age. Specific spectroscopic abnormalities are observed in association with disorders of pregnancy and gynecologic diseases. Our results suggest that noninvasive nuclear magnetic resonance spectroscopy examinations may sometimes be a useful addition to magnetic resonance imaging examinations, and that nuclear magnetic resonance spectroscopy of biopsy specimens could become a cost-effective method of evaluating certain biochemical abnormalities.

  10. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are

  11. BROADBAND EXCITATION IN NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Tycko, R.

    1984-10-01

    Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along with computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The

  12. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  13. Acoustic noise during functional magnetic resonance imaging.

    PubMed

    Ravicz, M E; Melcher, J R; Kiang, N Y

    2000-10-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  14. Functional magnetic resonance imaging using RASER

    PubMed Central

    Goerke, Ute; Garwood, Michael; Ugurbil, Kamil

    2010-01-01

    Although functional imaging of neuronal activity by magnetic resonance imaging (fMRI) has become the primary methodology employed in studying the brain, significant portions of the brain are inaccessible by this methodology due to its sensitivity to macroscopic magnetic field inhomogeneities induced near air filled cavities in the head. In this paper, we demonstrate that this sensitivity is eliminated by a novel pulse sequence, RASER (rapid acquisition by sequential excitation and refocusing) (Chamberlain et al., 2007), that can generate functional maps. This is accomplished because RASER acquired signals are purely and perfectly T2 weighted, without any T2*-effects that are inherent in the other image acquisition schemes employed to date. T2-weighted fMRI sequences are also more specific to the site of neuronal activity at ultrahigh magnetic fields than T2*-variations since they are dominated by signal components originating from the tissue in the capillary bed. The RASER based fMRI response is quantified; it is shown to have inherently less noisy time series and to provide fMRI in brain regions, such as the orbitofrontal cortex, which are challenging to image with conventional techniques. PMID:20699123

  15. SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields

    SciTech Connect

    Moessle, Michael; Hatridge, Michael; Clarke, John

    2006-08-14

    in MRI using laser polarized noble gases such as {sup 3}He or {sup 129}Xe (10-12). Hyperpolarized gases were used successfully to image the human lung in fields on the order of several mT (13-15). To overcome the sensitivity loss of Faraday detection at low frequencies, ultrasensitive magnetometers based on the Superconducting QUantum Interference Device (SQUID) (16) are used to detect NMR and MRI signals (17-24). Recently, SQUID-based MRI systems capable of acquiring in vivo images have appeared. For example, in the 10-mT system of Seton et al. (18) signals are coupled to a SQUID via a superconducting tuned circuit, while Clarke and coworkers (22, 25, 26) developed a system at 132 {micro}T with an untuned input circuit coupled to a SQUID. In a quite different approach, atomic magnetometers have been used recently to detect the magnetization (27) and NMR signal (28) of hyperpolarized gases. This technique could potentially be used for low-field MRI in the future. The goal of this review is to summarize the current state-of-the-art of MRI in microtesla fields detected with SQUIDs. The principles of SQUIDs and NMR are briefly reviewed. We show that very narrow NMR linewidths can be achieved in low magnetic fields that are quite inhomogeneous, with illustrative examples from spectroscopy. After describing our ultralow-field MRI system, we present a variety of images. We demonstrate that in microtesla fields the longitudinal relaxation T{sub 1} is much more material dependent than is the case in high fields; this results in a substantial improvement in 'T{sub 1}-weighted contrast imaging'. After outlining the first attempts to combine microtesla NMR with magnetoencephalography (MEG) (29), we conclude with a discussion of future directions.

  16. Studies of 3He+3He, T+3He, and p +D nuclear reactions relevant to stellar or Big-Bang Nucleosynthesis using ICF plasmas at OMEGA

    NASA Astrophysics Data System (ADS)

    Zylstra, Alex; Gatu Johnson, Maria; Frenje, Johan; Li, Chikang; Seguin, Fredrick; Sio, Hong; Rosenberg, Michael; Rinderknecht, Hans; Petrasso, Richard; Herrmann, Hans; Kim, Yong Ho; Hale, Gerry; McNabb, Dennis; Sayre, Dan; Pino, Jesse; Brune, Carl; Bacher, Andy; Forrest, Chad; Glebov, Vladimir; Stoeckl, Christian; Janezic, Roger; Sangster, Craig

    2014-10-01

    The 3He+3He, T+3He, and p +D reactions directly relevant to Stellar or Big-Bang Nucleosynthesis (BBN) have been studied at the OMEGA laser facility using high-temperature low-density `exploding pusher' implosions. The advantage of using these plasmas is that they better mimic astrophysical systems than cold-target accelerator experiments. Measured proton spectra from the 3He3He reaction are used to constrain nuclear R-matrix modeling. The resulting T+3He γ-ray data rule out an anomalously-high 6Li production during BBN as an explanation to the high observed values in primordial material. The proton spectrum from the T+3He reaction is also being used to constrain the R-matrix model. Recent experiments have probed the p +D reaction for the first time in a plasma; this reaction is relevant to energy production in protostars, brown dwarfs and at higher CM energies to BBN. This work was partially supported by the US DOE, NLUF, LLE, and GA.

  17. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  18. The magnetic resonance imaging-linac system.

    PubMed

    Lagendijk, Jan J W; Raaymakers, Bas W; van Vulpen, Marco

    2014-07-01

    The current image-guided radiotherapy systems are suboptimal in the esophagus, pancreas, kidney, rectum, lymph node, etc. These locations in the body are not easily accessible for fiducials and cannot be visualized sufficiently on cone-beam computed tomographies, making daily patient set-up prone to geometrical uncertainties and hinder dose optimization. Additional interfraction and intrafraction uncertainties for those locations arise from motion with breathing and organ filling. To allow real-time imaging of all patient tumor locations at the actual treatment position a fully integrated 1.5-T, diagnostic quality, magnetic resonance imaging with a 6-MV linear accelerator is presented. This system must enable detailed dose painting at all body locations. PMID:24931095

  19. Magnetic Resonance Imaging of the Knee

    PubMed Central

    Hash, Thomas W.

    2013-01-01

    Context: Magnetic resonance imaging (MRI) affords high-resolution visualization of the soft tissue structures (menisci, ligaments, cartilage, etc) and bone marrow of the knee. Evidence Acquisition: Pertinent clinical and research articles in the orthopaedic and radiology literature over the past 30 years using PubMed. Results: Ligament tears can be accurately assessed with MRI, but distinguishing partial tears from ruptures of the anterior cruciate ligament (ACL) can be challenging. Determining the extent of a partial tear is often extremely difficult to accurately assess. The status of the posterolateral corner structures, menisci, and cartilage can be accurately evaluated, although limitations in the evaluation of certain structures exist. Patellofemoral joint, marrow, tibiofibular joint, and synovial pathology can supplement physical examination findings and provide definitive diagnosis. Conclusions: MRI provides an accurate noninvasive assessment of knee pathology. PMID:24381701

  20. Simplifying cardiovascular magnetic resonance pulse sequence terminology.

    PubMed

    Friedrich, Matthias G; Bucciarelli-Ducci, Chiara; White, James A; Plein, Sven; Moon, James C; Almeida, Ana G; Kramer, Christopher M; Neubauer, Stefan; Pennell, Dudley J; Petersen, Steffen E; Kwong, Raymond Y; Ferrari, Victor A; Schulz-Menger, Jeanette; Sakuma, Hajime; Schelbert, Erik B; Larose, Éric; Eitel, Ingo; Carbone, Iacopo; Taylor, Andrew J; Young, Alistair; de Roos, Albert; Nagel, Eike

    2014-01-01

    We propose a set of simplified terms to describe applied Cardiovascular Magnetic Resonance (CMR) pulse sequence techniques in clinical reports, scientific articles and societal guidelines or recommendations. Rather than using various technical details in clinical reports, the description of the technical approach should be based on the purpose of the pulse sequence. In scientific papers or other technical work, this should be followed by a more detailed description of the pulse sequence and settings. The use of a unified set of widely understood terms would facilitate the communication between referring physicians and CMR readers by increasing the clarity of CMR reports and thus improve overall patient care. Applied in research articles, its use would facilitate non-expert readers' understanding of the methodology used and its clinical meaning. PMID:25551695

  1. Cine magnetic resonance imaging of eye movements.

    PubMed

    Bailey, C C; Kabala, J; Laitt, R; Weston, M; Goddard, P; Hoh, H B; Potts, M J; Harrad, R A

    1993-01-01

    Cine magnetic resonance imaging (MRI) is a technique in which multiple sequential static orbital MRI films are taken while the patient fixates a series of targets across the visual field. These are then sequenced to give a graphic animation to the eyes. The excellent soft tissue differentiation of MRI, combined with the dynamic imaging, allows rapid visualisation, and functional assessment of the extraocular muscles. Good assessment of contractility can be obtained, but the technique does not allow study of saccadic or pursuit eye movements. We have used this technique in 36 patients with a range of ocular motility disorders, including thyroid-related ophthalmopathy, blow-out fracture, post-operative lost or slipped muscle, and Duane's syndrome.

  2. Magnetic resonance imaging after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Leblanc, Adrian

    1993-01-01

    A number of physiological changes were demonstrated in bone, muscle, and blood from exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long-duration space missions is an important NASA goal. Historically, NASA has had to rely on tape measures, x-ray, and metabolic balance studies with collection of excreta and blood specimens to obtain this information. The development of magnetic resonance imaging (MRI) offers the possibility of greatly extending these early studies in ways not previously possible; MRI is also non-invasive and safe; i.e., no radiation exposure. MRI provides both superb anatomical images for volume measurements of individual structures and quantification of chemical/physical changes induced in the examined tissues. This investigation will apply MRI technology to measure muscle, intervertebral disc, and bone marrow changes resulting from exposure to microgravity.

  3. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    SciTech Connect

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-11-11

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied.

  4. Magnetic resonance imaging of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Tofts, P S; Johnson, G; Landon, D N

    1986-01-01

    Triethyl tin(TET)-induced cerebral oedema has been studied in cats by magnetic resonance imaging (MRI), and the findings correlated with the histology and fine structure of the cerebrum following perfusion-fixation. MRI is a sensitive technique for detecting cerebral oedema, and the distribution and severity of the changes correlate closely with the morphological abnormalities. The relaxation times, T1 and T2 increase progressively as the oedema develops, and the proportional increase in T2 is approximately twice that in T1. Analysis of the magnetisation decay curves reveals slowly-relaxing and rapidly-relaxing components which probably correspond to oedema fluid and intracellular water respectively. The image appearances taken in conjunction with relaxation data provide a basis for determining the nature of the oedema in vivo. Images PMID:3806109

  5. [Structural magnetic resonance imaging in epilepsy].

    PubMed

    Álvarez-Linera Prado, J

    2012-01-01

    Magnetic resonance imaging is the main structural imaging in epilepsy. In patients with focal seizures, detection (and characterization) of a structural lesion consistent with electroclinical data allows therapeutic decisions without having to resort to other more expensive or invasive diagnostic procedures. The identification of some lesions may provide prognostic value, as in the case of Mesial Temporal Sclerosis (MTS) or may contribute to genetic counseling, as in the case of some Malformations of Cortical Development (MCD). The aim of this paper is to review the current state of structural MRI techniques, propose a basic protocol of epilepsy and mention the indications for structural MRI. Also, review the semiology of the main causes of epilepsy, with emphasis on MTS and MCD, by its highest frequency and by the special impact that MRI has shown in dealing with these entities.

  6. Two-dimensional nuclear magnetic resonance petrophysics.

    PubMed

    Sun, Boqin; Dunn, Keh-Jim

    2005-02-01

    Two-dimensional nuclear magnetic resonance (2D NMR) opens a wide area for exploration in petrophysics and has significant impact to petroleum logging technology. When there are multiple fluids with different diffusion coefficients saturated in a porous medium, this information can be extracted and clearly delineated from CPMG measurements of such a system either using regular pulsing sequences or modified two window sequences. The 2D NMR plot with independent variables of T2 relaxation time and diffusion coefficient allows clear separation of oil and water signals in the rocks. This 2D concept can be extended to general studies of fluid-saturated porous media involving other combinations of two or more independent variables, such as chemical shift and T1/T2 relaxation time (reflecting pore size), proton population and diffusion contrast, etc. PMID:15833623

  7. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology.

    PubMed

    Jakab, András; Pogledic, Ivana; Schwartz, Ernst; Gruber, Gerlinde; Mitter, Christian; Brugger, Peter C; Langs, Georg; Schöpf, Veronika; Kasprian, Gregor; Prayer, Daniela

    2015-12-01

    The recent technological advancement of fast magnetic resonance imaging (MRI) sequences allowed the inclusion of diffusion tensor imaging, functional MRI, and proton MR spectroscopy in prenatal imaging protocols. These methods provide information beyond morphology and hold the key to improving several fields of human neuroscience and clinical diagnostics. Our review introduces the fundamental works that enabled these imaging techniques, and also highlights the most recent contributions to this emerging field of prenatal diagnostics, such as the structural and functional connectomic approach. We introduce the advanced image processing approaches that are extensively used to tackle fetal or maternal movement-related image artifacts, and which are necessary for the optimal interpretation of such imaging data. PMID:26614130

  8. Magnetic resonance imaging near metal implants.

    PubMed

    Koch, K M; Hargreaves, B A; Pauly, K Butts; Chen, W; Gold, G E; King, K F

    2010-10-01

    The desire to apply magnetic resonance imaging (MRI) techniques in the vicinity of embedded metallic hardware is increasing. The soft-tissue contrast available with MR techniques is advantageous in diagnosing complications near an increasing variety of MR-safe metallic hardware. Near such hardware, the spatial encoding mechanisms utilized in conventional MRI methods are often severely compromised. Mitigating these encoding difficulties has been the focus of numerous research investigations over the past two decades. Such approaches include view-angle tilting, short echo-time projection reconstruction acquisitions, single-point imaging, prepolarized MRI, and postprocessing image correction. Various technical advances have also enabled the recent development of two alternative approaches that have shown promising clinical potential. Here, the physical principals and proposed solutions to the problem of MRI near embedded metal are discussed.

  9. In vivo nuclear magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Bryan, R. N.; Johnson, P.; Schonfeld, E.; Jhingran, S. G.

    1984-01-01

    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle.

  10. Musculoskeletal applications of nuclear magnetic resonance

    SciTech Connect

    Moon, K.L. Jr.; Genant, H.K.; Helms, C.A.; Chafetz, N.I.; Crooks, L.E.; Kaufman, L.

    1983-04-01

    Thirty healthy subjects and 15 patients with a variety of musculoskeletal disorders were examined by conventional radiography, computed tomography (CT), and nuclear magnetic resonance (NMR). NMR proved capable of demonstrating important anatomic structures in the region of the lumbosacral spine. Lumbar disk protrusion was demonstrated in three patients with CT evidence of the disease. NMR appeared to differentiate annulus fibrosus from nucleus pulposus in intervertebral disk material. Avascular necrosis of the femoral head was demonstrated in two patients. The cruciate ligaments of the knee were well defined by NMR. Musceles, tendons and ligaments, and blood vessels could be reliably differentiated, and the excellent soft-tissue contrast of NMR proved useful in the evaluation of bony and soft-tissue tumors. NMR holds promise in the evaluation of musculoskeletal disorders.

  11. A novel digital magnetic resonance imaging spectrometer.

    PubMed

    Liu, Zhengmin; Zhao, Cong; Zhou, Heqin; Feng, Huanqing

    2006-01-01

    Spectrometer is the essential part of magnetic resonance imaging (MRI) system. It controls the transmitting and receiving of signals. Many commercial spectrometers are now available. However, they are usually costly and complex. In this paper, a new digital spectrometer based on PCI extensions for instrumentation (PXI) architecture is presented. Radio frequency (RF) pulse is generated with the method of digital synthesis and its frequency and phase are continuously tunable. MR signal acquired by receiver coils is processed by digital quadrature detection and filtered to get the k-space data, which avoid the spectral distortion due to amplitude and phase errors between two channels of traditional detection. Compared to the conventional design, the presented spectrometer is built with general PXI platform and boards. This design works in a digital manner with features of low cost, high performance and accuracy. The experiments demonstrate its efficiency.

  12. Magnetic resonance imaging of the heart.

    PubMed

    Tscholakoff, D; Higgins, C B

    1985-01-01

    Magnetic resonance imaging (MRI) is a completely noninvasive technique for the evaluation of the cardiovascular system. With a multi-section technique and the spin echo pulse sequence the entire heart can be examined within six to ten minutes. All our cardiac MR studies were performed with electrocardiographic (ECG) gating, to obtain adequate resolution of the cardiac structures. With this technique, patients and animals with a variety of cardiac abnormalities were studied. The examined pathologic conditions included acute and chronic myocardial infarctions and their complications, hypertrophic and congestive cardiomyopathies, congenital heart diseases and pericardial diseases. MRI offers an enormous potential for cardiovascular diagnosis, even beyond the demonstration of pathoanatomy, because of the capability for direct tissue characterization and blood flow measurements.

  13. Chest magnetic resonance imaging: a protocol suggestion*

    PubMed Central

    Hochhegger, Bruno; de Souza, Vinícius Valério Silveira; Marchiori, Edson; Irion, Klaus Loureiro; Souza Jr., Arthur Soares; Elias Junior, Jorge; Rodrigues, Rosana Souza; Barreto, Miriam Menna; Escuissato, Dante Luiz; Mançano, Alexandre Dias; Araujo Neto, César Augusto; Guimarães, Marcos Duarte; Nin, Carlos Schuler; Santos, Marcel Koenigkam; Silva, Jorge Luiz Pereira e

    2015-01-01

    In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI) has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation. PMID:26811555

  14. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1993-01-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  15. Stem cell labeling for magnetic resonance imaging.

    PubMed

    Himmelreich, Uwe; Hoehn, Mathias

    2008-01-01

    In vivo applications of cells for the monitoring of their cell dynamics increasingly use non-invasive magnetic resonance imaging. This imaging modality allows in particular to follow the migrational activity of stem cells intended for cell therapy strategies. All these approaches require the prior labeling of the cells under investigation for excellent contrast against the host tissue background in the imaging modality. The present review discusses the various routes of cell labeling and describes the potential to observe both cell localization and their cell-specific function in vivo. Possibilities for labeling strategies, pros and cons of various contrast agents are pointed out while potential ambiguities or problems of labeling strategies are emphasized.

  16. Functional magnetic resonance imaging studies of language.

    PubMed

    Small, Steven L; Burton, Martha W

    2002-11-01

    Functional neuroimaging of language builds on almost 150 years of study in neurology, psychology, linguistics, anatomy, and physiology. In recent years, there has been an explosion of research using functional imaging technology, especially positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), to understand the relationship between brain mechanisms and language processing. These methods combine high-resolution anatomic images with measures of language-specific brain activity to reveal neural correlates of language processing. This article reviews some of what has been learned about the neuroanatomy of language from these imaging techniques. We first discuss the normal case, organizing the presentation according to the levels of language, encompassing words (lexicon), sound structure (phonemes), and sentences (syntax and semantics). Next, we delve into some unusual language processing circumstances, including second languages and sign languages. Finally, we discuss abnormal language processing, including developmental and acquired dyslexia and aphasia.

  17. [Gastric magnetic resonance study (methods, semiotics)].

    PubMed

    Stashuk, G A

    2003-01-01

    The paper shows the potentialities of gastric study by magnetic resonance imaging (MRI). The methodic aspects of gastric study have been worked out. The MRI-semiotics of the unchanged and tumor-affected wall of the stomach and techniques in examining patients with gastric cancer of various sites are described. Using the developed procedure, MRI was performed in 199 patients, including 154 patients with gastric pathology and 45 control individuals who had no altered gastric wall. Great emphasis is placed on the role of MRI in the diagnosis of endophytic (diffuse) gastric cancer that is of priority value in its morphological structure. MRI was found to play a role in the diagnosis of the spread of a tumorous process both along the walls of the stomach and to its adjacent anatomic structures.

  18. Magnetic resonance imaging in amyotrophic lateral sclerosis.

    PubMed

    Kollewe, Katja; Körner, Sonja; Dengler, Reinhard; Petri, Susanne; Mohammadi, Bahram

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder which is incurable to date. As there are many ongoing studies with therapeutic candidates, it is of major interest to develop biomarkers not only to facilitate early diagnosis but also as a monitoring tool to predict disease progression and to enable correct randomization of patients in clinical trials. Magnetic resonance imaging (MRI) has made substantial progress over the last three decades and is a practical, noninvasive method to gain insights into the pathology of the disease. Disease-specific MRI changes therefore represent potential biomarkers for ALS. In this paper we give an overview of structural and functional MRI alterations in ALS with the focus on task-free resting-state investigations to detect cortical network failures. PMID:22848820

  19. Evaluation of Possible Nuclear Magnetic Resonance Diagnostic Techniques for Tokamak Experiments

    SciTech Connect

    S.J. Zweben; T.W. Kornack; D. Majeski; G. Schilling; C.H. Skinner; R. Wilson

    2002-08-05

    Potential applications of nuclear magnetic resonance (NMR) diagnostic techniques to tokamak experiments are evaluated. NMR frequencies for hydrogen isotopes and low-Z nuclei in such experiments are in the frequency range approximately equal to 20-200 MHz, so existing RF [radio-frequency] antennas could be used to rotate the spin polarization and to make the NMR measurements. Our tentative conclusion is that such measurements are possible if highly spin polarized H or (superscript)3He gas sources (which exist) are used to fuel these plasmas. In addition, NMR measurements of the surface layers of the first wall (without plasma) may also be possible, e.g., to evaluate the inventory of tritium inside the vessel.

  20. Magnetic resonance imaging of infectious meningitis and ventriculitis in adults.

    PubMed

    Hazany, Saman; Go, John L; Law, Meng

    2014-10-01

    Magnetic resonance imaging findings of meningitis are usually nonspecific with respect to the causative pathogen because the brain response to these insults is similar in most cases. In this article, we will use a few representative cases to describe the characteristic magnetic resonance findings of meningitis and its complications, including ventriculitis. PMID:25296276

  1. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to present images which reflect the spatial distribution and/or magnetic resonance spectra which reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical parameters derived from the images and/or spectra may also be produced. The device includes...

  2. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to present images which reflect the spatial distribution and/or magnetic resonance spectra which reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical parameters derived from the images and/or spectra may also be produced. The device includes...

  3. Magnetic Resonance Studies of Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Vazquez Reina, Rafael

    In today's society there is high demand to have access to energy for portable devices in different forms. Capacitors with high performance in small package to achieve high charge/discharge rates, and batteries with their ability to store electricity and make energy mobile are part of this demand. The types of internal dielectric material strongly affect the characteristics of a capacitor, and its applications. In a battery, the choice of the electrolyte plays an important role in the Solid Electrolyte Interphase (SEI) formation, and the cathode material for high output voltage. Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopy are research techniques that exploit the magnetic properties of the electron and certain atomic nuclei to determine physical and chemical properties of the atoms or molecules in which they are contained. Both EPR and NMR spectroscopy technique can yield meaningful structural and dynamic information. Three different projects are discussed in this dissertation. First, High energy density capacitors where EPR measurements described herein provide an insight into structural and chemical differences in the dielectric material of a capacitor. Next, as the second project, Electrolyte solutions where an oxygen-17 NMR study has been employed to assess the degree of preferential solvation of Li+ ions in binary mixtures of EC (ethylene carbonate) and DMC (dimethyl carbonate) containing LiPF6 (lithium hexafluo-rophosphate) which may be ultimately related to the SEI formation mechanism. The third project was to study Bismuth fluoride as cathode material for rechargeable batteries. The objective was to study 19F and 7Li MAS NMR of some nanocomposite cathode materials as a conversion reaction occurring during lithiation and delithation of the BiF3/C nanocomposite.

  4. Could magnetic resonance provide in vivo histology?

    PubMed Central

    Dominietto, Marco; Rudin, Markus

    2014-01-01

    The diagnosis of a suspected tumor lesion faces two basic problems: detection and identification of the specific type of tumor. Radiological techniques are commonly used for the detection and localization of solid tumors. Prerequisite is a high intrinsic or enhanced contrast between normal and neoplastic tissue. Identification of the tumor type is still based on histological analysis. The result depends critically on the sampling sites, which given the inherent heterogeneity of tumors, constitutes a major limitation. Non-invasive in vivo imaging might overcome this limitation providing comprehensive three-dimensional morphological, physiological, and metabolic information as well as the possibility for longitudinal studies. In this context, magnetic resonance based techniques are quite attractive since offer at the same time high spatial resolution, unique soft tissue contrast, good temporal resolution to study dynamic processes and high chemical specificity. The goal of this paper is to review the role of magnetic resonance techniques in characterizing tumor tissue in vivo both at morphological and physiological levels. The first part of this review covers methods, which provide information on specific aspects of tumor phenotypes, considered as indicators of malignancy. These comprise measurements of the inflammatory status, neo-vascular physiology, acidosis, tumor oxygenation, and metabolism together with tissue morphology. Even if the spatial resolution is not sufficient to characterize the tumor phenotype at a cellular level, this multiparametric information might potentially be used for classification of tumors. The second part discusses mathematical tools, which allow characterizing tissue based on the acquired three-dimensional data set. In particular, methods addressing tumor heterogeneity will be highlighted. Finally, we address the potential and limitation of using MRI as a tool to provide in vivo tissue characterization. PMID:24454320

  5. Cardiovascular Magnetic Resonance Imaging in Experimental Models

    PubMed Central

    Price, Anthony N.; Cheung, King K.; Cleary, Jon O; Campbell, Adrienne E; Riegler, Johannes; Lythgoe, Mark F

    2010-01-01

    Cardiovascular magnetic resonance (CMR) imaging is the modality of choice for clinical studies of the heart and vasculature, offering detailed images of both structure and function with high temporal resolution. Small animals are increasingly used for genetic and translational research, in conjunction with models of common pathologies such as myocardial infarction. In all cases, effective methods for characterising a wide range of functional and anatomical parameters are crucial for robust studies. CMR is the gold-standard for the non-invasive examination of these models, although physiological differences, such as rapid heart rate, make this a greater challenge than conventional clinical imaging. However, with the help of specialised magnetic resonance (MR) systems, novel gating strategies and optimised pulse sequences, high-quality images can be obtained in these animals despite their small size. In this review, we provide an overview of the principal CMR techniques for small animals for example cine, angiography and perfusion imaging, which can provide measures such as ejection fraction, vessel anatomy and local blood flow, respectively. In combination with MR contrast agents, regional dysfunction in the heart can also be identified and assessed. We also discuss optimal methods for analysing CMR data, particularly the use of semi-automated tools for parameter measurement to reduce analysis time. Finally, we describe current and emerging methods for imaging the developing heart, aiding characterisation of congenital cardiovascular defects. Advanced small animal CMR now offers an unparalleled range of cardiovascular assessments. Employing these methods should allow new insights into the structural, functional and molecular basis of the cardiovascular system. PMID:21331311

  6. Burn injury by nuclear magnetic resonance imaging.

    PubMed

    Eising, Ernst G; Hughes, Justin; Nolte, Frank; Jentzen, Walter; Bockisch, Andreas

    2010-01-01

    Nuclear magnetic resonance imaging has become a standard diagnostic procedure in clinical medicine and is well known to have hazards for patients with pacemaker or metallic foreign bodies. Compared to CT, the frequency of MRI examinations is increasing due to the missing exposure of the patients by X-rays. Furthermore, high-field magnetic resonance tomograph (MRT) with 3 T has entered clinical practice, and 7-T systems are installed in multiple scientific institutions. On the other hand, the possibility of burn injuries has been reported only in very few cases. Based on a clinical finding of a burn injury in a 31-year-old male patient during a routine MRI of the lumbar spine with standard protocol, the MR scanner was checked and the examination was simulated in an animal model. The patient received a third-degree burn injury of the skin of the right hand and pelvis in a small region of skin contact. The subsequent control of the MRI scanner indicated no abnormal values for radiofrequency (RF) and power. In the subsequent animal experiment, comparable injuries could only be obtained by high RF power in a microwave stove. It is concluded that 'tissue loops' resulting from a contact between hand and pelvis must be avoided. With regard to forensic aspects, the need to inform patients of such a minimal risk can be avoided if the patients are adequately positioned using an isolating material between the hands and pelvis. These facts must be emphasized more in the future, if high-field MRI with stronger RF gradients is available in routine imaging. PMID:20630342

  7. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOEpatents

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  8. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    SciTech Connect

    Nishimura, Seiya

    2014-12-15

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.

  9. Compact electrically detected magnetic resonance setup

    NASA Astrophysics Data System (ADS)

    Eckardt, Michael; Behrends, Jan; Münter, Detlef; Harneit, Wolfgang

    2015-04-01

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a "large-scale" state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  10. Compact electrically detected magnetic resonance setup

    SciTech Connect

    Eckardt, Michael Harneit, Wolfgang; Behrends, Jan; Münter, Detlef

    2015-04-15

    Electrically detected magnetic resonance (EDMR) is a commonly used technique for the study of spin-dependent transport processes in semiconductor materials and electro-optical devices. Here, we present the design and implementation of a compact setup to measure EDMR, which is based on a commercially available benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical detection part uses mostly off-the-shelf electrical components and is thus highly customizable. We present a characterization and calibration procedure for the instrument that allowed us to quantitatively reproduce results obtained on a silicon-based reference sample with a “large-scale” state-of-the-art instrument. This shows that EDMR can be used in novel contexts relevant for semiconductor device fabrication like clean room environments and even glove boxes. As an application example, we present data on a class of environment-sensitive objects new to EDMR, semiconducting organic microcrystals, and discuss similarities and differences to data obtained for thin-film devices of the same molecule.

  11. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  12. Dynamics of the 1st order phase transition between the nuclear ordered phases of solid 3He

    NASA Astrophysics Data System (ADS)

    Tanaka, Takayoshi; Ito, Hideaki; Sasaki, Yutaka; Mizusaki, Takao

    2005-08-01

    Dynamics of the 1st order phase transition between the U2D2 and the high field phases (HFP) was studied by field-cycling method between these phases by using ultra low temperature magnetic resonance imaging (ULT-MRI). Single Crystal of U2D2 3He was produced at the bottom of compressional cell in superfluid 3He-B at about 0.5 mK. Domain distribution in the U2D2 crystal was examined by ULT-MRI. We have measured the NMR signal intensity to extract the time-evolution of the HFP, after the static magnetic field was swept quickly through the critical field BC1 and was stayed at B=BC1+ΔB. The volume concentration of the U2D2 decreased exponentially in time during the early stage of the phase transition. The rate constant depended positively on ΔB. After the phase transition to the HFP was completed, the static field decreased through BC1 and was fixed at B=BC1-ΔB. The observed rate constant was similar to the value in the opposite direction with identical ΔB. This exponential evolution and ΔB dependence of its rate suggest that the early stage of the phase transition is controlled by the nucleation process.

  13. Precise Extraction of the Neutron Magnetic Form Factor from Quasi-elastic 3He(pol)(e(pol),e') at Q^2 = 0.1-0.6 (GeV/c)^2

    SciTech Connect

    Jens-ole Hansen; Brian Anderson; Leonard Auerbach; Todd Averett; William Bertozzi; Tim Black; John Calarco; Lawrence Cardman; Gordon Cates; Zhengwei Chai; Jiang-Ping Chen; Seonho Choi; Eugene Chudakov; Steve Churchwell; G Corrado; Christopher Crawford; Daniel Dale; Alexandre Deur; Pibero Djawotho; Dipangkar Dutta; John Finn; Haiyan Gao; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Walter Gloeckle; Jacek Golak; Javier Gomez; Viktor Gorbenko; F. Hersman; Douglas Higinbotham; Richard Holmes; Calvin Howell; Emlyn Hughes; Thomas Humensky; Sebastien Incerti; Piotr Zolnierczuk; Cornelis De Jager; John Jensen; Xiaodong Jiang; Cathleen Jones; Mark Jones; R Kahl; H Kamada; A Kievsky; Ioannis Kominis; Wolfgang Korsch; Kevin Kramer; Gerfried Kumbartzki; Michael Kuss; Enkeleida Lakuriqi; Meihua Liang; Nilanga Liyanage; John LeRose; Sergey Malov; Demetrius Margaziotis; Jeffery Martin; Kathy McCormick; Robert McKeown; Kevin McIlhany; Zein-Eddine Meziani; Robert Michaels; Greg Miller; Joseph Mitchell; Sirish Nanda; Emanuele Pace; Tina Pavlin; Gerassimos Petratos; Roman Pomatsalyuk; David Pripstein; David Prout; Ronald Ransome; Yves Roblin; Marat Rvachev; Giovanni Salme; Michael Schnee; Charles Seely; Taeksu Shin; Karl Slifer; Paul Souder; Steffen Strauch; Riad Suleiman; Mark Sutter; Bryan Tipton; Luminita Todor; M Viviani; Branislav Vlahovic; John Watson; Claude Williamson; H Witala; Bogdan Wojtsekhowski; Feng Xiong; Wang Xu; Jen-chuan Yeh

    2006-05-05

    We have measured the transverse asymmetry A{sub T'} in the quasi-elastic {sup 3}/rvec He/(/rvec e/,e') process with high precision at Q{sup 2}-values from 0.1 to 0.6 (GeV/c){sup 2}. The neutron magnetic form factor G{sub M}{sup n} was extracted at Q{sup 2}-values of 0.1 and 0.2 (GeV/c){sup 2} using a non-relativistic Faddeev calculation which includes both final-state interactions (FSI) and meson-exchange currents (MEC). Theoretical uncertainties due to the FSI and MEC effects were constrained with a precision measurement of the spin-dependent asymmetry in the threshold region of {sup 3}/rvec He/(/rvec e/,e'). We also extracted the neutron magnetic form factor G{sub M}{sup n} at Q{sup 2}-values of 0.3 to 0.6 (GeV/c){sup 2} based on Plane Wave Impulse Approximation calculations.

  14. Experimental Test in a Tokamak of Fusion with Spin-Polarized D and 3He

    SciTech Connect

    Honig, Arnold; Sandorfi, Andrew

    2007-06-13

    An experiment to test polarization retention of highly polarized D and 3He fusion fuels prior to their fusion reactions in a tokamak is in preparation. The fusion reaction rate with 100% vector polarized reactants is expected from simple theory to increase by a factor of 1.5. With presently available polarizations, fusion reaction enhancements of {approx}15% are achievable and of significant interest, while several avenues for obtaining higher polarizations are open. The potential for survival of initial fusion fuel polarizations at {approx}108 K plasma core temperatures ({approx}5KeV) throughout the time interval preceding fusion burn was addressed in a seminal paper in 1982. While the positive conclusion from those calculations suggests that reaction enhancements are indeed feasible, this crucial factor has never been tested in a high temperature plasma core because of difficulties in preparation and injection of sufficiently polarized fusion fuels into a high temperature reactor fusion plasma. Our solution to these problems employs a new source of highly polarized D in the form of solid HD which has been developed and used in our laboratories. Solid HD is compatible with fusion physics in view of its simplicity of elemental composition and very long (weeks) relaxation times at 4K temperature, allowing efficient polarization-preserving cold-transfer operations. Containment and polarization of the HD within polymer capsules, similar to those used in inertial confinement fusion (ICF), is an innovation which simplifies the cold-transfer of polarized fuel from the dilution refrigerator polarization-production apparatus to other liquid helium temperature cryostats, for storage, transport and placement into the barrel of a cryogenic pellet gun for firing at high velocity into the reactor. The other polarized fuel partner, 3He, has been prepared as a polarized gas for applications including high-energy polarized targets and magnetic resonance imaging (MRI) scans. It

  15. Experimental Test in a Tokamak of Fusion with Spin-Polarized D and 3He

    NASA Astrophysics Data System (ADS)

    Honig, Arnold; Sandorfi, Andrew

    2007-06-01

    An experiment to test polarization retention of highly polarized D and 3He fusion fuels prior to their fusion reactions in a tTokamak is in preparation. The fusion reaction rate with 100% vector polarized reactants is expected from simple theory to increase by a factor of 1.5. With presently available polarizations, fusion reaction enhancements of ˜15% are achievable and of significant interest, while several avenues for obtaining higher polarizations are open. The potential for survival of initial fusion fuel polarizations at ˜108 K plasma core temperatures (˜5KeV) throughout the time interval preceding fusion burn was addressed in a seminal paper in 1982. While the positive conclusion from those calculations suggests that reaction enhancements are indeed feasible, this crucial factor has never been tested in a high temperature plasma core because of difficulties in preparation and injection of sufficiently polarized fusion fuels into a high temperature reactorfusion plasma. Our solution to these problems employs a new source of highly polarized D in the form of solid HD which has been developed and used in our laboratories. Solid HD is compatible with fusion physics in view of its simplicity of elemental composition and very long (weeks) relaxation times at 4K temperature, allowing efficient polarization-preserving cold-transfer operations. Containment and polarization of the HD within polymer capsules, similar to those used in inertial confinement fusion (ICF), is an innovation which simplifies the cold-transfer of polarized fuel from the dilution refrigerator polarization-production apparatus to other liquid helium temperature cryostats, for storage, transport and placement into the barrel of a cryogenic pellet gun for firing at high velocity into the reactor. The other polarized fuel partner, 3He, has been prepared as a polarized gas for applications including high-energy polarized targets and magnetic resonance imaging (MRI) scans. It will be introduced

  16. Polarized 3He+2 ions in the Alternate Gradient Synchrotron to RHIC transfer line

    NASA Astrophysics Data System (ADS)

    Tsoupas, N.; Huang, H.; Méot, F.; Ptitsyn, V.; Roser, T.; Trbojevic, D.

    2016-09-01

    The proposed electron-hadron collider (eRHIC) to be built at Brookhaven National Laboratory (BNL) will allow the collisions of 20 GeV polarized electrons with 250 GeV polarized protons, or 100 GeV /n polarized 3He+2 ions, or other unpolarized ion species. The large value of the anomalous magnetic moment of the 3He nucleus GHe=(g -2 )/2 =-4.184 (where g is the g -factor of the 3He nuclear spin) combined with the peculiar layout of the transfer line which transports the beam bunches from the Alternate Gradient Synchrotron (AGS) to the Relativistic Heavy Ion Collider (RHIC) makes the transfer and injection of polarized 3He ions from AGS to RHIC (AtR) a special case as we explain in the paper. Specifically in this paper we calculate the stable spin direction of a polarized 3He beam at the exit of the AtR line which is also the injection point of RHIC, and we discuss a simple modifications of the AtR beam-transfer-line, to perfectly match the stable spin direction of the injected polarized 3He beam to that of the circulating beam, at the injection point of RHIC.

  17. Cardiac imaging using gated magnetic resonance

    SciTech Connect

    Lanzer, P.; Botvinick, E.H.; Schiller, N.B.

    1984-01-01

    To overcome the limitations of magnetic resonance (MR) cardiac imaging using nongated data acquisition, three methods for acquiring a gating signal, which could be applied in the presence of a magnetic field, were tested; an air-filled plethysmograph, a laser-Doppler capillary perfusion flowmeter, and an electrocardiographic gating device. The gating signal was used for timing of MR imaging sequences (IS). Application of each gating method yielded significant improvements in structural MR image resolution of the beating heart, although with both plethysmography and laser-Doppler velocimetry it was difficult to obtain cardiac images from the early portion of the cardiac cycle due to an intrinsic delay between the ECG R wave and peripheral detection of the gating signal. Variations in the temporal relationship between the R wave and plethysmographic and laser-Doppler signals produced inconsistencies in the timing of IS. Since the ECG signal is virtually free of these problems, the preferable gating technique is IS synchronization with an electrocardiogram. The gated images acquired with this method provide sharp definition of internal cardiac morphology and can be temporarily referenced to end diastole and end systole or intermediate points.

  18. Multi-dimensionally encoded magnetic resonance imaging

    PubMed Central

    Lin, Fa-Hsuan

    2013-01-01

    Magnetic resonance imaging typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here we propose the multi-dimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel RF coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. PMID:22926830

  19. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    PubMed

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  20. Microrobotic navigable entities for Magnetic Resonance Targeting.

    PubMed

    Martel, Sylvain

    2010-01-01

    Magnetic Resonance Targeting (MRT) uses MRI for gathering tracking data to determine the position of microscale entities with the goal of guiding them towards a specific target in the body accessible through the vascular network. At full capabilities, a MRT platform designed to treat a human would consist of a clinical MRI scanner running special algorithms and upgraded to provide propulsion gradient up to approximately 400mT/m to enable entities as small as a few tens of micrometers in diameter and containing magnetic nanoparticles (MNP) to be steered at vessel bifurcations based on tracking information. Indeed, using a clinical MRI system, we showed that such single entity with a diameter as small as 15microm is detectable in gradient-echo scans. Among many potential interventions, targeted cancer therapy is a good initial application for such new microrobotic approach since secondary toxicity for the patient could be reduced while increasing therapeutic efficacy using lower dosages. Although many types of such entities are needed to provide a larger set of tools, here, only three initial types designed with different functionalities and for different types of cancer are briefly described. Initially designed for targeted chemo-embolization of liver tumors, the first type known as Therapeutic Magnetic Micro-Carriers (TMMC) consists in its present form of approximately 50 microm PLGA microparticles containing therapeutics and approximately 180 nm FeCo MNP. For the second type, MNP are not only used for propulsion and tracking, but also actuation based on a local elevation of the temperature. In its simplest form, it consists of approxiamtely 20 nm MNP embedded in a thermo-sensitive hydrogel known as PNIPA, allowing additional functionalities such as computer triggered drug release and targeted hyperthermia. The third type initially considered to target colorectal tumors, consists of 1-2 microm MR-trackable and controllable MC-1 Magnetotactic Bacteria (MTB) with

  1. Overhauser-enhanced magnetic resonance elastography.

    PubMed

    Salameh, Najat; Sarracanie, Mathieu; Armstrong, Brandon D; Rosen, Matthew S; Comment, Arnaud

    2016-05-01

    Magnetic resonance elastography (MRE) is a powerful technique to assess the mechanical properties of living tissue. However, it suffers from reduced sensitivity in regions with short T2 and T2 * such as in tissue with high concentrations of paramagnetic iron, or in regions surrounding implanted devices. In this work, we exploit the longer T2 * attainable at ultra-low magnetic fields in combination with Overhauser dynamic nuclear polarization (DNP) to enable rapid MRE at 0.0065 T. A 3D balanced steady-state free precession based MRE sequence with undersampling and fractional encoding was implemented on a 0.0065 T MRI scanner. A custom-built RF coil for DNP and a programmable vibration system for elastography were developed. Displacement fields and stiffness maps were reconstructed from data recorded in a polyvinyl alcohol gel phantom loaded with stable nitroxide radicals. A DNP enhancement of 25 was achieved during the MRE sequence, allowing the acquisition of 3D Overhauser-enhanced MRE (OMRE) images with (1.5 × 2.7 × 9) mm(3) resolution over eight temporal steps and 11 slices in 6 minutes. In conclusion, OMRE at ultra-low magnetic field can be used to detect mechanical waves over short acquisition times. This new modality shows promise to broaden the scope of conventional MRE applications, and may extend the utility of low-cost, portable MRI systems to detect elasticity changes in patients with implanted devices or iron overload.

  2. Control of Transport-Barrier Relaxations by Resonant Magnetic Perturbations

    SciTech Connect

    Leconte, M.; Beyer, P.; Benkadda, S.

    2009-01-30

    Transport-barrier relaxation oscillations in the presence of resonant magnetic perturbations are investigated using three-dimensional global fluid turbulence simulations from first principles at the edge of a tokamak. It is shown that resonant magnetic perturbations have a stabilizing effect on these relaxation oscillations and that this effect is due mainly to a modification of the pressure profile linked to the presence of both residual magnetic island chains and a stochastic layer.

  3. Quantifying mixing using magnetic resonance imaging.

    PubMed

    Tozzi, Emilio J; McCarthy, Kathryn L; Bacca, Lori A; Hartt, William H; McCarthy, Michael J

    2012-01-25

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  4. Quantifying Mixing using Magnetic Resonance Imaging

    PubMed Central

    Tozzi, Emilio J.; McCarthy, Kathryn L.; Bacca, Lori A.; Hartt, William H.; McCarthy, Michael J.

    2012-01-01

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media 1, 2. The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile 1H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  5. Quantifying mixing using magnetic resonance imaging.

    PubMed

    Tozzi, Emilio J; McCarthy, Kathryn L; Bacca, Lori A; Hartt, William H; McCarthy, Michael J

    2012-01-01

    Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for

  6. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  7. Cosmogenic 3He in igneous and fossil tooth enamel fluorapatite

    NASA Astrophysics Data System (ADS)

    Farley, K. A.; Cerling, T. E.; Fitzgerald, P. G.

    2001-02-01

    Igneous fluorapatite samples from a suite of six granitic rocks from the Transantarctic Mountains have high 3He concentrations (to 5×10 9 atoms g -1) and high 3He/ 4He ratios (to 9×10 -7). These values are far higher than those found in several hundred igneous apatites from elsewhere around the world and are higher than can be attributed to nuclear reactions on 6Li. This 3He is almost certainly derived from cosmic ray reactions in rocks with high exposure ages at high latitude and elevation. Several samples of fossil tooth enamel fluorapatite from the Turkana Basin of Kenya are similarly rich in 3He, with up to 1×10 7 atoms 3He g -1 and 3He/ 4He ratios up to 4×10 -6. Again, this 3He is most logically attributed to cosmic ray reactions. Provided that cosmogenic 3He, like radiogenic 4He, is quantitatively retained in fluorapatite under Earth surface conditions, routine 3He exposure dating of this common phase may be possible. Based on its chemical composition, the 3He production rate in fluorapatite is about 100 atoms g -1 yr -1 at sea level and high latitude. Using this rate the apatites from the Transantarctic Mountains have apparent exposure ages of 0.5-6.2 Myr, in agreement with values elsewhere in the range. The fossil tooth enamel samples have apparent exposure ages ranging from a few up to 130 kyr. Such high exposure ages suggest some of these fossils may be lag deposits with a very long residence time at or near the Earth's surface. 3He exposure ages can provide insights to the depositional and reworking history of enamel-bearing fossils. At present the major limitations to 3He exposure dating of fluorapatite are purification of sufficient amounts of material and measurement of small amounts of 3He in the presence of large quantities of 4He. In addition, further work is necessary to establish the nucleogenic 3He background in fluorapatite.

  8. Comparative study of nuclear effects in polarized electron scattering from 3 He

    DOE PAGES

    Ethier, J. J.; Melnitchouk, W.

    2013-11-01

    We present a detailed analysis of nuclear effects in inclusive electron scattering from polarized 3He nuclei for polarization asymmetries, structure functions and their moments, both in the nucleon resonance and deep-inelastic regions. We compare the results of calculations within the weak binding approximation at finite Q2 with the effective polarization ansatz often used in experimental data analyses, and explore the impact of Δ components in the nuclear wave function and nucleon off-shell corrections on extractions of the free neutron structure. Using the same framework we also make predictions for the Q2 dependence of quasielastic scattering from polarized 3He, data onmore » which can be used to constrain the spin-dependent nuclear smearing functions in 3He.« less

  9. Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane

    1986-04-22

    Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.

  10. Tunable remanent state resonance frequency in arrays of magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Encinas, Armando; Demand, Marc; Vila, Laurent; Piraux, Luc; Huynen, Isabelle

    2002-09-01

    The zero-field microwave absorption, or natural ferromagnetic resonance, spectra in arrays of electrodeposited magnetic nanowires is studied as a function of the saturation magnetization of NiCu, NiFe, CoNiFe, and CoFe alloys of several compositions. Measurements show that due to the shape anisotropy, these systems present strong absorption peaks in the absence of an applied magnetic field in the GHz range due to the ferromagnetic resonance. Furthermore, the zero-field resonance frequency is observed to be independent of the wire diameter and density as well as the magnetic history and its value depends only on the material, through the saturation magnetization and the gyromagnetic factor. It is shown that, using different electrolytic solutions and depositing at different electrostatic potentials, the alloy composition can be varied and the remanent state resonance frequency can be tailored quasicontinuously between 4 and 31 GHz.

  11. Nuclear magnetic resonance for cultural heritage.

    PubMed

    Brai, Maria; Camaiti, Mara; Casieri, Cinzia; De Luca, Francesco; Fantazzini, Paola

    2007-05-01

    Nuclear magnetic resonance (NMR) portable devices are now being used for nondestructive in situ analysis of water content, pore space structure and protective treatment performance in porous media in the field of cultural heritage. It is a standard procedure to invert T(1) and T(2) relaxation data of fully water-saturated samples to get "pore size" distributions, but the use of T(2) requires great caution. It is well known that dephasing effects due to water molecule diffusion in a magnetic field gradient can affect transverse relaxation data, even if the smallest experimentally available half echo time tau is used in Carr-Purcell-Meiboom-Gill experiments. When a portable single-sided NMR apparatus is used, large field gradients due to the instrument, at the scale of the sample, are thought to be the dominant dephasing cause. In this paper, T(1) and T(2) (at different tau values) distributions were measured in natural (Lecce stone) and artificial (brick samples coming from the Greek-Roman Theatre of Taormina) porous media of interest for cultural heritage by a standard laboratory instrument and a portable device. While T(1) distributions do not show any appreciable effect from inhomogeneous fields, T(2) distributions can show strong effects, and a procedure is presented based on the dependence of 1/T(2) on tau to separate pore-scale gradient effects from sample-scale gradient effects. Unexpectedly, the gradient at the pore scale can be, in some cases, strong enough to make negligible the effects of gradients at the sample scale of the single-sided device.

  12. Magnetic resonance imaging of oscillating electrical currents

    PubMed Central

    Halpern-Manners, Nicholas W.; Bajaj, Vikram S.; Teisseyre, Thomas Z.; Pines, Alexander

    2010-01-01

    Functional MRI has become an important tool of researchers and clinicians who seek to understand patterns of neuronal activation that accompany sensory and cognitive processes. However, the interpretation of fMRI images rests on assumptions about the relationship between neuronal firing and hemodynamic response that are not firmly grounded in rigorous theory or experimental evidence. Further, the blood-oxygen-level-dependent effect, which correlates an MRI observable to neuronal firing, evolves over a period that is 2 orders of magnitude longer than the underlying processes that are thought to cause it. Here, we instead demonstrate experiments to directly image oscillating currents by MRI. The approach rests on a resonant interaction between an applied rf field and an oscillating magnetic field in the sample and, as such, permits quantitative, frequency-selective measurements of current density without spatial or temporal cancellation. We apply this method in a current loop phantom, mapping its magnetic field and achieving a detection sensitivity near the threshold required for the detection of neuronal currents. Because the contrast mechanism is under spectroscopic control, we are able to demonstrate how ramped and phase-modulated spin-lock radiation can enhance the sensitivity and robustness of the experiment. We further demonstrate the combination of these methods with remote detection, a technique in which the encoding and detection of an MRI experiment are separated by sample flow or translation. We illustrate that remotely detected MRI permits the measurement of currents in small volumes of flowing water with high sensitivity and spatial resolution. PMID:20421504

  13. Ferromagnetic Resonance Studies of Magnetic Recording Media

    NASA Astrophysics Data System (ADS)

    Yu, Yuwu

    1995-01-01

    Angular dependence of maximum remanence (ADMR) and/or x-ray diffraction (XRD) techniques have been used to determine particle orientation distributions for various recording media, including gamma -rm Fe_2O_3, Co- gamma-rm Fe_2O_3, CrO_2, Ba-ferrite, and MP tapes. A distribution of column directions for metal evaporated (ME) tape has been determined from transmission electron microscopy (TEM) pictures. However, the ferromagnetic resonance (FMR) results suggest a much more narrow distribution of magnetic anisotropy directions. For Ba-ferrite tapes, the distribution functions measured by ADMR are consistent with those by XRD if interparticle interactions are accounted for. The predetermined distribution function has been used to fit FMR spectra for the above tapes. Landau-Lifshitz damping constants have been measured with high accuracy for particulate recording media. An excellent correlation has been found between the damping constants and the switching constants for these media. The results suggest that the FMR technique may be useful in predicting the switching speed of particulate recording media. The FMR technique is also useful in looking for methods of increasing the damping constant of recording media. Possible methods of increasing the switching speed of Ba-ferrite media have been studied. The reduction of Ba-ferrite particles in a hydrogen atmosphere increases the damping constant significantly. It is predicted that reduced Ba-ferrite probably switches faster than ordinary Ba-ferrite. Qualitative discussions on the origin of damping for various recording media have been presented within the framework of magnon relaxation theory. The dependence of the damping constant on magnetic properties, such as particle orientation, media coercivity, and particle interactions are also discussed.

  14. Magnetic resonance imaging in cardiac amyloidosis

    SciTech Connect

    O'Donnell, J.K.; Go, R.T.; Bott-Silverman, C.; Feiglin, D.H.; Salcedo, E.; MacIntyre, W.J.

    1984-01-01

    Primary amyloidosis (AL) involves the myocardium in 90% of cases and may present as apparent ischemia, vascular disease, or congestive heart failure. Two-dimensional echocardiography (echo) has proven useful in the diagnosis, particularly in differentiating AL from constrictive pericarditis. The findings of thickened RV and LV myocardium, normal LV cavity dimension, and a diffuse hyperrefractile ''granular sparkling'' appearance are virtually diagnostic. Magnetic resonance (MR) imaging may improve the resolution of anatomic changes seen in cardiac AL and has the potential to provide more specific information based on biochemical tissue alterations. In this preliminary study, the authors obtained both MR and echo images in six patients with AL and biopsy-proven myocardial involvement. 5/6 patients also had Tc-99 PYP myocardial studies including emission tomography (SPECT). MR studies utilized a 0.6 Tesla superconductive magnet. End diastolic gated images were obtained with TE=30msec and TR=R-R interval on the ECG. 6/6 pts. showed LV wall thickening which was concentric and included the septum. Papillary muscles were identified in all and were enlarged in 3/6. 4/6 pts. showed RV wall thickening but to a lesser degree than LV. Pericardial effusions were present in 4 cases. These findings correlated well with the results of echo although MR gave better RV free wall resolution. PYP scans were positive in 3 pts. but there was no correlation with degree of LV thickening. The authors conclude that there are no identifiable MR findings in patients with cardiac AL which encourage further attempts to characterize myocardial involvement by measurement of MR relaxation times in vivo.

  15. Real-time magnetic resonance imaging investigation of resonance tuning in soprano singing

    PubMed Central

    Bresch, Erik; Narayanan, Shrikanth

    2010-01-01

    This article investigates using real-time magnetic resonance imaging the vocal tract shaping of 5 soprano singers during the production of two-octave scales of sung vowels. A systematic shift of the first vocal tract resonance frequency with respect to the fundamental is shown to exist for high vowels across all subjects. No consistent systematic effect on the vocal tract resonance could be shown across all of the subjects for other vowels or for the second vocal tract resonance. PMID:21110548

  16. Multifrequency inversion in magnetic resonance elastography.

    PubMed

    Papazoglou, Sebastian; Hirsch, Sebastian; Braun, Jürgen; Sack, Ingolf

    2012-04-21

    Time-harmonic shear wave elastography is capable of measuring viscoelastic parameters in living tissue. However, finite tissue boundaries and waveguide effects give rise to wave interferences which are not accounted for by standard elasticity reconstruction methods. Furthermore, the viscoelasticity of tissue causes dispersion of the complex shear modulus, rendering the recovered moduli frequency dependent. Therefore, we here propose the use of multifrequency wave data from magnetic resonance elastography (MRE) for solving the inverse problem of viscoelasticity reconstruction by an algebraic least-squares solution based on the springpot model. Advantages of the method are twofold: (i) amplitude nulls appearing in single-frequency standing wave patterns are mitigated and (ii) the dispersion of storage and loss modulus with drive frequency is taken into account by the inversion procedure, thereby avoiding subsequent model fitting. As a result, multifrequency inversion produces fewer artifacts in the viscoelastic parameter map than standard single-frequency parameter recovery and may thus support image-based viscoelasticity measurement. The feasibility of the method is demonstrated by simulated wave data and MRE experiments on a phantom and in vivo human brain. Implemented as a clinical method, multifrequency inversion may improve the diagnostic value of time-harmonic MRE in a large variety of applications.

  17. Magnetic resonance imaging of total body fat.

    PubMed

    Thomas, E L; Saeed, N; Hajnal, J V; Brynes, A; Goldstone, A P; Frost, G; Bell, J D

    1998-11-01

    In this study we assessed different magnetic resonance imaging (MRI) scanning regimes and examined some of the assumptions commonly made for measuring body fat content by MRI. Whole body MRI was used to quantify and study different body fat depots in 67 women. The whole body MRI results showed that there was a significant variation in the percentage of total internal, as well as visceral, adipose tissue across a range of adiposity, which could not be predicted from total body fat and/or subcutaneous fat. Furthermore, variation in the amount of total, subcutaneous, and visceral adipose tissue was not related to standard anthropometric measurements such as skinfold measurements, body mass index, and waist-to-hip ratio. Finally, we show for the first time subjects with a percent body fat close to the theoretical maximum (68%). This study demonstrates that the large variation in individual internal fat content cannot be predicted from either indirect methods or direct imaging techniques, such as MRI or computed tomography, on the basis of a single-slice sampling strategy. PMID:9804581

  18. Magnetic resonance imaging of urinary calculi.

    PubMed

    Dawson, C; Aitken, K; Ng, K; Dolke, G; Gadian, D; Whitfield, H N

    1994-01-01

    Accurate prediction of the response of an individual patient to lithotripsy remains impossible. Certain factors such as the chemical composition, size, and position of the calculus are known to be important in determining the success rate. This paper reports the use of magnetic resonance imaging (MRI) to evaluate 141 urinary calculi in vitro. A wide range of signals for each chemical type of calculus was found on each of the three imaging sequences used (T1-weighted, T2-weighted, and proton density). None of the chemical groups examined showed a typical MRI profile allowing it to be distinguished from the other groups. Analysis of variance showed a statistical difference between signals for apatite and struvite on the T1-weighted sequence, and between struvite and uric acid on the proton density sequence (both, P < 0.05). These results show for the first time that MRI is capable of distinguishing between different chemical types of stones. This is particularly important for the comparison of struvite and apatite which appear to be similar in conventional investigations but have quite different hardness values. Further work is in progress correlating the results of this study with stone microhardness and extracorporeal shockwave lithotripsy fragility tests to determine whether MRI accurately predicts the success of lithotripsy.

  19. Magnetic Resonance Imaging of Pituitary Tumors.

    PubMed

    Bonneville, Jean-François

    2016-01-01

    Magnetic Resonance Imaging (MRI) is currently considered a major keystone of the diagnosis of diseases of the hypothalamic-hypophyseal region. However, the relatively small size of the pituitary gland, its location deep at the skull base and the numerous physiological variants present in this area impede the precise assessment of the anatomical structures and, particularly, of the pituitary gland itself. The diagnosis of the often tiny lesions of this region--such as pituitary microadenomas--is then difficult if the MRI technology is not optimized and if potential artifacts and traps are not recognized. Advanced MRI technology can not only depict small lesions with greater reliability, but also help in the differential diagnosis of large tumors. In these, defining the presence or absence of invasion is a particularly important task. This review describes and illustrates the radiological diagnosis of the different tumors of the sellar region, from the common prolactinomas, nonfunctioning adenomas and Rathke's cleft cysts, to the less frequent and more difficult to detect corticotroph pituitary adenomas in Cushing's disease, and other neoplastic and nonneoplastic entities. Finally, some hints are given to facilitate the differential diagnosis of sellar lesions. PMID:27003878

  20. Neural network segmentation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Frederick, Blaise

    1990-07-01

    Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover once trained they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network by varying imaging parameters MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. A neural network classifier for image segmentation was implemented on a Sun 4/60 and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter white matter cerebrospinal fluid bone and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities and the image was subsequently segmented by the classifier. The classifier''s performance was evaluated as a function of network size number of network layers and length of training. A single layer neural network performed quite well at

  1. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  2. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  3. Magnetic resonance imaging of total body fat.

    PubMed

    Thomas, E L; Saeed, N; Hajnal, J V; Brynes, A; Goldstone, A P; Frost, G; Bell, J D

    1998-11-01

    In this study we assessed different magnetic resonance imaging (MRI) scanning regimes and examined some of the assumptions commonly made for measuring body fat content by MRI. Whole body MRI was used to quantify and study different body fat depots in 67 women. The whole body MRI results showed that there was a significant variation in the percentage of total internal, as well as visceral, adipose tissue across a range of adiposity, which could not be predicted from total body fat and/or subcutaneous fat. Furthermore, variation in the amount of total, subcutaneous, and visceral adipose tissue was not related to standard anthropometric measurements such as skinfold measurements, body mass index, and waist-to-hip ratio. Finally, we show for the first time subjects with a percent body fat close to the theoretical maximum (68%). This study demonstrates that the large variation in individual internal fat content cannot be predicted from either indirect methods or direct imaging techniques, such as MRI or computed tomography, on the basis of a single-slice sampling strategy.

  4. Imaging tumor hypoxia by magnetic resonance methods.

    PubMed

    Pacheco-Torres, Jesús; López-Larrubia, Pilar; Ballesteros, Paloma; Cerdán, Sebastián

    2011-01-01

    Tumor hypoxia results from the negative balance between the oxygen demands of the tissue and the capacity of the neovasculature to deliver sufficient oxygen. The resulting oxygen deficit has important consequences with regard to the aggressiveness and malignancy of tumors, as well as their resistance to therapy, endowing the imaging of hypoxia with vital repercussions in tumor prognosis and therapy design. The molecular and cellular events underlying hypoxia are mediated mainly through hypoxia-inducible factor, a transcription factor with pleiotropic effects over a variety of cellular processes, including oncologic transformation, invasion and metastasis. However, few methodologies have been able to monitor noninvasively the oxygen tensions in vivo. MRI and MRS are often used for this purpose. Most MRI approaches are based on the effects of the local oxygen tension on: (i) the relaxation times of (19)F or (1)H indicators, such as perfluorocarbons or their (1)H analogs; (ii) the hemodynamics and magnetic susceptibility effects of oxy- and deoxyhemoglobin; and (iii) the effects of paramagnetic oxygen on the relaxation times of tissue water. (19)F MRS approaches monitor tumor hypoxia through the selective accumulation of reduced nitroimidazole derivatives in hypoxic zones, whereas electron spin resonance methods determine the oxygen level through its influence on the linewidths of appropriate paramagnetic probes in vivo. Finally, Overhauser-enhanced MRI combines the sensitivity of EPR methodology with the resolution of MRI, providing a window into the future use of hyperpolarized oxygen probes.

  5. Magnetic resonance imaging: present and future applications

    PubMed Central

    Johnston, Donald L.; Liu, Peter; Wismer, Gary L.; Rosen, Bruce R.; Stark, David D.; New, Paul F.J.; Okada, Robert D.; Brady, Thomas J.

    1985-01-01

    Magnetic resonance (MR) imaging has created considerable excitement in the medical community, largely because of its great potential to diagnose and characterize many different disease processes. However, it is becoming increasingly evident that, because MR imaging is similar to computed tomography (CT) scanning in identifying structural disorders and because it is more costly and difficult to use, this highly useful technique must be judged against CT before it can become an accepted investigative tool. At present MR imaging has demonstrated diagnostic superiority over CT in a limited number of important, mostly neurologic, disorders and is complementary to CT in the diagnosis of certain other disorders. For most of the remaining organ systems its usefulness is not clear, but the lack of ionizing radiation and MR's ability to produce images in any tomographic plane may eventually prove to be advantageous. The potential of MR imaging to display in-vivo spectra, multinuclear images and blood-flow data makes it an exciting investigative technique. At present, however, MR imaging units should be installed only in medical centres equipped with the clinical and basic research facilities that are essential to evaluate the ultimate role of this technique in the care of patients. ImagesFig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14 PMID:3884120

  6. Fetal magnetic resonance imaging and ultrasound.

    PubMed

    Wataganara, Tuangsit; Ebrashy, Alaa; Aliyu, Labaran Dayyabu; Moreira de Sa, Renato Augusto; Pooh, Ritsuko; Kurjak, Asim; Sen, Cihat; Adra, Abdallah; Stanojevic, Milan

    2016-07-01

    Magnetic resonance imaging (MRI) has been increasingly adopted in obstetrics practice in the past three decades. MRI aids prenatal ultrasound and improves diagnostic accuracy for selected maternal and fetal conditions. However, it should be considered only when high-quality ultrasound cannot provide certain information that affects the counseling, prenatal intervention, pregnancy course, and delivery plan. Major indications of fetal MRI include, but are not restricted to, morbidly adherent placenta, selected cases of fetal brain anomalies, thoracic lesions (especially in severe congenital diaphragmatic hernia), and soft tissue tumors at head and neck regions of the fetus. For fetal anatomy assessment, a 1.5-Tesla machine with a fast T2-weighted single-shot technique is recommended for image requisition of common fetal abnormalities. Individual judgment needs to be applied when considering usage of a 3-Tesla machine. Gadolinium MRI contrast is not recommended during pregnancy. MRI should be avoided in the first half of pregnancy due to small fetal structures and motion artifacts. Assessment of fetal cerebral cortex can be achieved with MRI in the third trimester. MRI is a viable research tool for noninvasive interrogation of the fetus and the placenta. PMID:27092644

  7. Vibration safety limits for magnetic resonance elastography.

    PubMed

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2008-02-21

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  8. Segmentation of neuroanatomy in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  9. Magnetic resonance imaging in glenohumeral instability

    PubMed Central

    Jana, Manisha; Gamanagatti, Shivanand

    2011-01-01

    The glenohumeral joint is the most commonly dislocated joint of the body and anterior instability is the most common type of shoulder instability. Magnetic resonance (MR) imaging, and more recently, MR arthrography, have become the essential investigation modalities of glenohumeral instability, especially for pre-procedure evaluation before arthroscopic surgery. Injuries associated with glenohumeral instability are variable, and can involve the bones, the labor-ligamentous components, or the rotator cuff. Anterior instability is associated with injuries of the anterior labrum and the anterior band of the inferior glenohumeral ligament, in the form of Bankart lesion and its variants; whereas posterior instability is associated with reverse Bankart and reverse Hill-Sachs lesion. Multidirectional instability often has no labral pathology on imaging but shows specific osseous changes such as increased chondrolabral retroversion. This article reviews the relevant anatomy in brief, the MR imaging technique and the arthrographic technique, and describes the MR findings in each type of instability as well as common imaging pitfalls. PMID:22007285

  10. TOPICAL REVIEW: Endovascular interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bartels, L. W.; Bakker, C. J. G.

    2003-07-01

    Minimally invasive interventional radiological procedures, such as balloon angioplasty, stent placement or coiling of aneurysms, play an increasingly important role in the treatment of patients suffering from vascular disease. The non-destructive nature of magnetic resonance imaging (MRI), its ability to combine the acquisition of high quality anatomical images and functional information, such as blood flow velocities, perfusion and diffusion, together with its inherent three dimensionality and tomographic imaging capacities, have been advocated as advantages of using the MRI technique for guidance of endovascular radiological interventions. Within this light, endovascular interventional MRI has emerged as an interesting and promising new branch of interventional radiology. In this review article, the authors will give an overview of the most important issues related to this field. In this context, we will focus on the prerequisites for endovascular interventional MRI to come to maturity. In particular, the various approaches for device tracking that were proposed will be discussed and categorized. Furthermore, dedicated MRI systems, safety and compatibility issues and promising applications that could become clinical practice in the future will be discussed.

  11. Nuclear magnetic resonance imaging of the kidney

    SciTech Connect

    Hricak, H.; Crooks, L.; Sheldon, P.; Kaufman, L.

    1983-02-01

    The role of nuclear magnetic resonance (NMR) imaging of the kidney was analyzed in 18 persons (6 normal volunteers, 3 patients with pelvocaliectasis, 2 with peripelvic cysts, 1 with renal sinus lipomatosis, 3 with renal failure, 1 with glycogen storage disease, and 2 with polycystic kidney disease). Ultrasound and/or computed tomography (CT) studies were available for comparison in every case. In the normal kidney distinct anatomical structures were clearly differentiated by NMR. The best anatomical detail ws obtained with spin echo (SE) imaging, using a pulse sequence interval of 1,000 msec and an echo delay time of 28 msec. However, in the evaluation of normal and pathological conditions, all four intensity images (SE 500/28, SE 500/56, SE 1,000/28, and SE 1,000/56) have to be analyzed. No definite advantage was found in using SE imaging with a pulse sequence interval of 1,500 msec. Inversion recovery imaging enhanced the differences between the cortex and medulla, but it had a low signal-to-noise level and, therefore, a suboptimal overall resolution. The advantages of NMR compared with CT and ultrasound are discussed, and it is concluded that NMR imaging will prove to be a useful modality in the evaluation of renal disease.

  12. Magnetic Resonance Image Example Based Contrast Synthesis

    PubMed Central

    Roy, Snehashis; Carass, Aaron; Prince, Jerry L.

    2013-01-01

    The performance of image analysis algorithms applied to magnetic resonance images is strongly influenced by the pulse sequences used to acquire the images. Algorithms are typically optimized for a targeted tissue contrast obtained from a particular implementation of a pulse sequence on a specific scanner. There are many practical situations, including multi-institution trials, rapid emergency scans, and scientific use of historical data, where the images are not acquired according to an optimal protocol or the desired tissue contrast is entirely missing. This paper introduces an image restoration technique that recovers images with both the desired tissue contrast and a normalized intensity profile. This is done using patches in the acquired images and an atlas containing patches of the acquired and desired tissue contrasts. The method is an example-based approach relying on sparse reconstruction from image patches. Its performance in demonstrated using several examples, including image intensity normalization, missing tissue contrast recovery, automatic segmentation, and multimodal registration. These examples demonstrate potential practical uses and also illustrate limitations of our approach. PMID:24058022

  13. Magnetic resonance imaging of skeletal muscle disease.

    PubMed

    Damon, Bruce M; Li, Ke; Bryant, Nathan D

    2016-01-01

    Neuromuscular diseases often exhibit a temporally varying, spatially heterogeneous, and multifaceted pathology. The goals of this chapter are to describe and evaluate the use of quantitative magnetic resonance imaging (MRI) methods to characterize muscle pathology. The following criteria are used for this evaluation: objective measurement of continuously distributed variables; clear and well-understood relationship to the pathology of interest; sensitivity to improvement or worsening of clinical status; and the measurement properties of accuracy and precision. Two major classes of MRI methods meet all of these criteria: (1) MRI methods for measuring muscle contractile volume or cross-sectional area by combining structural MRI and quantitative fat-water MRI; and (2) an MRI method for characterizing the edema caused by inflammation, the measurement of the transverse relaxation time constant (T2). These methods are evaluated with respect to the four criteria listed above and examples from neuromuscular disorders are provided. Finally, these methods are summarized and synthesized and recommendations for additional quantitative MRI developments are made. PMID:27430444

  14. Magnetic Resonance Imaging at Ultrahigh Fields

    PubMed Central

    Uğurbil, Kamil

    2014-01-01

    Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultra-high fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. PMID:24686229

  15. Multifrequency inversion in magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Papazoglou, Sebastian; Hirsch, Sebastian; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Time-harmonic shear wave elastography is capable of measuring viscoelastic parameters in living tissue. However, finite tissue boundaries and waveguide effects give rise to wave interferences which are not accounted for by standard elasticity reconstruction methods. Furthermore, the viscoelasticity of tissue causes dispersion of the complex shear modulus, rendering the recovered moduli frequency dependent. Therefore, we here propose the use of multifrequency wave data from magnetic resonance elastography (MRE) for solving the inverse problem of viscoelasticity reconstruction by an algebraic least-squares solution based on the springpot model. Advantages of the method are twofold: (i) amplitude nulls appearing in single-frequency standing wave patterns are mitigated and (ii) the dispersion of storage and loss modulus with drive frequency is taken into account by the inversion procedure, thereby avoiding subsequent model fitting. As a result, multifrequency inversion produces fewer artifacts in the viscoelastic parameter map than standard single-frequency parameter recovery and may thus support image-based viscoelasticity measurement. The feasibility of the method is demonstrated by simulated wave data and MRE experiments on a phantom and in vivo human brain. Implemented as a clinical method, multifrequency inversion may improve the diagnostic value of time-harmonic MRE in a large variety of applications.

  16. Scatter-based magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Papazoglou, Sebastian; Xu, Chao; Hamhaber, Uwe; Siebert, Eberhard; Bohner, Georg; Klingebiel, Randolf; Braun, Jürgen; Sack, Ingolf

    2009-04-01

    Elasticity is a sensitive measure of the microstructural constitution of soft biological tissues and increasingly used in diagnostic imaging. Magnetic resonance elastography (MRE) uniquely allows in vivo measurement of the shear elasticity of brain tissue. However, the spatial resolution of MRE is inherently limited as the transformation of shear wave patterns into elasticity maps requires the solution of inverse problems. Therefore, an MRE method is introduced that avoids inversion and instead exploits shear wave scattering at elastic interfaces between anatomical regions of different shear compliance. This compliance-weighted imaging (CWI) method can be used to evaluate the mechanical consistency of cerebral lesions or to measure relative stiffness differences between anatomical subregions of the brain. It is demonstrated that CWI-MRE is sensitive enough to reveal significant elasticity variations within inner brain parenchyma: the caudate nucleus (head) was stiffer than the lentiform nucleus and the thalamus by factors of 1.3 ± 0.1 and 1.7 ± 0.2, respectively (P < 0.001). CWI-MRE provides a unique method for characterizing brain tissue by identifying local stiffness variations.

  17. Magnetic resonance force microscopy with a permanent magnet on the cantilever

    SciTech Connect

    Zhang, Z.; Hammel, P.C.

    1997-02-01

    The magnetic resonance force microscope (MRFM) is a microscopic 3-D imaging instrument based on a recent proposal to detect magnetic resonance signals mechanically using a micro-mechanical resonator. MRFM has been successfully demonstrated in various magnetic resonance experiments including electron spin resonance, ferromagnetic resonances and nuclear magnetic resonance. In order to apply this ultra-high, 3-D spatial resolution technique to samples of arbitrary size and shape, the magnetic particle which generates the field gradient {del}{bold B}, (and, therefore, the force {bold F = (m {center_dot} {del}B)} between itself and the spin magnetization {bold m} of the sample) will need to be mounted on the mechanical resonator. Up to the present, all experiments have been performed with the sample mounted on the resonator. This is done, in part, to avoid the spurious response of the mechanical resonator which is generated by the variation of the magnetization of the magnetic particle as the external field is varied.

  18. Resonant microwave cavity for 8.5-12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Colton, J. S.; Wienkes, L. R.

    2009-03-01

    We present a newly developed microwave resonant cavity for use in optically detected magnetic resonance (ODMR) experiments. The cylindrical quasi-TE011 mode cavity is designed to fit in a 1 in. magnet bore to allow the sample to be optically accessed and to have an adjustable resonant frequency between 8.5 and 12 GHz. The cavity uses cylinders of high dielectric material, so-called "dielectric resonators," in a double-stacked configuration to determine the resonant frequency. Wires in a pseudo-Helmholtz configuration are incorporated into the cavity to provide frequencies for simultaneous nuclear magnetic resonance (NMR). The system was tested by measuring cavity absorption as microwave frequencies were swept, by performing ODMR on a zinc-doped InP sample, and by performing optically detected NMR on a GaAs sample. The results confirm the suitability of the cavity for ODMR with simultaneous NMR.

  19. Sensitive magnetic force detection with a carbon nanotube resonator

    SciTech Connect

    Willick, Kyle; Haapamaki, Chris; Baugh, Jonathan

    2014-03-21

    We propose a technique for sensitive magnetic point force detection using a suspended carbon nanotube (CNT) mechanical resonator combined with a magnetic field gradient generated by a ferromagnetic gate electrode. Numerical calculations of the mechanical resonance frequency show that single Bohr magneton changes in the magnetic state of an individual magnetic molecule grafted to the CNT can translate to detectable frequency shifts, on the order of a few kHz. The dependences of the resonator response to device parameters such as length, tension, CNT diameter, and gate voltage are explored and optimal operating conditions are identified. A signal-to-noise analysis shows that, in principle, magnetic switching at the level of a single Bohr magneton can be read out in a single shot on timescales as short as 10 μs. This force sensor should enable new studies of spin dynamics in isolated single molecule magnets, free from the crystalline or ensemble settings typically studied.

  20. The Thermal Boundary Resistance of the Superfluid 3He A-B Phase Interface in the Low Temperature Limit

    SciTech Connect

    Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Martin, H.; Pickett, G. R.; Roberts, J. E.; Tsepelin, V.

    2006-09-07

    We have constructed a vertical cylindrical cell in which we cool superfluid 3He to the low temperature limit. At the top and bottom of this cylinder are pairs of vibrating wire resonators (VWRs), one to act as a heater and the other as a thermometer. Quasiparticle excitations are created by driving the heater VWRs. These excitations can only leave the cylinder via a small hole at the top. Using a shaped magnetic field, we can produce a layer of A phase across the tube, while maintaining low field B phase in the vicinity of the VWRs for reliable thermometry. Preliminary results show that the two A-B interfaces lead to a measurable extra resistance for quasiparticles between the top and bottom of the cylinder.

  1. [Magnetic resonance imaging and magnetic resonance spectroscopy methods for measuring intra- and extra-cellular pH: clinical implications].

    PubMed

    Ballesteros, P; Pérez-Mayoral, E; Benito, M; Cerdán, S

    2008-01-01

    We review the different methods for measuring pH by magnetic resonance imaging and magnetic resonance spectroscopy and discuss their potential diagnostic repercussions. We begin with a brief description of intra- and extra-cellular pH regulation in physiological and pathological conditions. Then we present the main 31P or 1H magnetic resonance spectroscopy procedures, which are based on the dependence of the pH on the chemical displacements of the intrinsic intracellular inorganic phosphate or of the H2 proton of imidazole in extrinsic indicators. Finally, we describe the procedures that use magnetic resonance imaging, whose main tool is the dependence of the pH (i) on the relaxivity of certain paramagnetic contrast agents, or (ii) on the processes of magnetic transference between diamagnetic molecules (DIACEST) or paramagnetic molecules (PARACEST) and the free water in the tissues. We briefly illustrate the potential clinical applications of these new procedures.

  2. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  3. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  4. Practical magnetic resonance imaging evaluation of peripheral nerves in children: magnetic resonance neurography.

    PubMed

    Cortes, Cesar; Ramos, Yanerys; Restrepo, Ricardo; Restrepo, Jose Andres; Grossman, John A I; Lee, Edward Y

    2013-07-01

    Magnetic resonance (MR) imaging is an excellent tool for the evaluation of peripheral nerves in children not only because of its excellent soft tissue contrast resolution but also because it is noninvasive and does not use ionizing radiation. In nonconclusive cases, MR neurography can be complementary to physical examination and electromyography in identifying a specific affected nerve and the site of the lesion. This article reviews the MR imaging technique used in the evaluation of peripheral nerves (ie, MR neurography), its major indications, and the common pathologic conditions encountered in the pediatric population.

  5. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  6. Element Selective X-ray Detected Magnetic Resonance

    SciTech Connect

    Goulon, J.; Rogalev, A.; Wilhelm, F.; Jaouen, N.; Goulon-Ginet, C.; Goujon, G.; Youssef, J. Ben; Indenbom, M. V.

    2007-01-19

    Element selective X-ray Detected Magnetic Resonance (XDMR) was measured on exciting the Fe K-edge in a high quality YIG thin film. Resonant pumping at high microwave power was achieved in the nonlinear foldover regime and X-ray Magnetic Circular Dichroism (XMCD) was used to probe the time-invariant change of the magnetization {delta}Mz due to the precession of orbital magnetization densities of states (DOS) at the Fe sites. This challenging experiment required us to design a specific instrumentation which is briefly described.

  7. Observation of a new superfluid phase for 3He embedded in nematically ordered aerogel

    PubMed Central

    Zhelev, N.; Reichl, M.; Abhilash, T. S.; Smith, E. N.; Nguyen, K. X.; Mueller, E. J.; Parpia, J. M.

    2016-01-01

    In bulk superfluid 3He at zero magnetic field, two phases emerge with the B-phase stable everywhere except at high pressures and temperatures, where the A-phase is favoured. Aerogels with nanostructure smaller than the superfluid coherence length are the only means to introduce disorder into the superfluid. Here we use a torsion pendulum to study 3He confined in an extremely anisotropic, nematically ordered aerogel consisting of ∼10 nm-thick alumina strands, spaced by ∼100 nm, and aligned parallel to the pendulum axis. Kinks in the development of the superfluid fraction (at various pressures) as the temperature is varied correspond to phase transitions. Two such transitions are seen in the superfluid state, and we identify the superfluid phase closest to Tc at low pressure as the polar state, a phase that is not seen in bulk 3He. PMID:27669660

  8. Heavy-baryon chiral perturbation theory approach to thermal neutron capture on {sup 3}He

    SciTech Connect

    Lazauskas, Rimantas; Park, Tae-Sun

    2011-03-15

    The cross section for radiative thermal neutron capture on {sup 3}He ({sup 3}He+n{yields}{sup 4}He+{gamma}; known as the hen reaction) is calculated based on heavy-baryon chiral perturbation theory. The relevant M1 operators are derived up to next-to-next-to-next-to-leading order (N{sup 3}LO). The initial and final nuclear wave functions are obtained from the rigorous Faddeev-Yakubovski equations for five sets of realistic nuclear interactions. Up to N{sup 3}LO, the M1 operators contain two low-energy constants, which appear as the coefficients of nonderivative two-nucleon contact terms. After determining these two constants using the experimental values of the magnetic moments of the triton and {sup 3}He, we carry out a parameter-free calculation of the hen cross section. The results are in good agreement with the data.

  9. Observation of a new superfluid phase for 3He embedded in nematically ordered aerogel

    NASA Astrophysics Data System (ADS)

    Zhelev, N.; Reichl, M.; Abhilash, T. S.; Smith, E. N.; Nguyen, K. X.; Mueller, E. J.; Parpia, J. M.

    2016-09-01

    In bulk superfluid 3He at zero magnetic field, two phases emerge with the B-phase stable everywhere except at high pressures and temperatures, where the A-phase is favoured. Aerogels with nanostructure smaller than the superfluid coherence length are the only means to introduce disorder into the superfluid. Here we use a torsion pendulum to study 3He confined in an extremely anisotropic, nematically ordered aerogel consisting of ~10 nm-thick alumina strands, spaced by ~100 nm, and aligned parallel to the pendulum axis. Kinks in the development of the superfluid fraction (at various pressures) as the temperature is varied correspond to phase transitions. Two such transitions are seen in the superfluid state, and we identify the superfluid phase closest to Tc at low pressure as the polar state, a phase that is not seen in bulk 3He.

  10. Recent Advances of Polarized 3He Target at Jefferson Lab

    SciTech Connect

    Yi Qiang

    2011-10-01

    Polarized {sup 3}He target has been widely used in nuclear and particle experiments to study the neutron structure in the spin degree of freedom, as most of the {sup 3}He spin is carried by the unpaired neutron. Spin-Exchange Optical Pumping (SEOP) process is used in Jefferson Lab Hall A to polarize its {sup 3}He target. Through developments in recent years, both the performance and corresponding polarimetry of such a target were greatly improved. Several experiments recently carried out in Hall A benefited remarkably from this target for the record highest figure of merit.

  11. Neutron Detection Alternatives to 3He for National Security Applications

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stephens, Daniel L.; Stromswold, David C.; Van Ginhoven, Renee M.; Woodring, Mitchell L.

    2010-11-21

    One of the main uses for 3He is in gas proportional counters for neutron detection. Large radiation detection systems deployed for homeland security and proliferation detection applications use such systems. Due to the large increase in use of 3He for homeland security and basic research, the supply has dwindled, and can no longer meet the demand. This has led to the search for an alternative technology to replace the use of 3He-based neutron detectors. In this paper, we review the testing of currently commercially available alternative technologies for neutron detection in large systems used in various national security applications.

  12. Calculation of Leggett-Takagi Relaxation in Vortices of Superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Laine, S. M.; Thuneberg, E. V.

    2016-05-01

    We calculate the relaxation of Brinkman-Smith mode via Leggett-Takagi relaxation in the presence of an isolated vortex in superfluid 3He-B. The calculation is based on an analytical solution of the order parameter far from the vortex axis. We obtain an expression for the dissipated power per vortex length as a function of the tipping angle of the magnetization and the orientation of the static magnetic field with respect to the vortex.

  13. Nuclear magnetic resonance imaging in patients with cardiac pacing devices.

    PubMed

    Buendía, Francisco; Sánchez-Gómez, Juan M; Sancho-Tello, María J; Olagüe, José; Osca, Joaquín; Cano, Oscar; Arnau, Miguel A; Igual, Begoña

    2010-06-01

    Currently, nuclear magnetic resonance imaging is contraindicated in patients with a pacemaker or implantable cardioverter-defibrillator. This study was carried out because the potential risks in this situation need to be clearly defined. This prospective study evaluated clinical and electrical parameters before and after magnetic resonance imaging was performed in 33 patients (five with implantable cardioverter-defibrillators and 28 with pacemakers). In these patients, magnetic resonance imaging was considered clinically essential. There were no clinical complications. There was a temporary communication failure in two cases, sensing errors during imaging in two cases, and a safety signal was generated in one pacemaker at the maximum magnetic resonance frequency and output level. There were no technical restrictions on imaging nor were there any permanent changes in the performance of the cardiac pacing device. PMID:20515632

  14. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance

    PubMed Central

    Rao, Krishnasree; Matulevicius, Susan

    2016-01-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis. PMID:27303242

  15. Nuclear Magnetic Double Resonance Using Weak Perturbing RF Fields

    ERIC Educational Resources Information Center

    Reynolds, G. Fredric

    1977-01-01

    Describes a nuclear magnetic resonance experimental example of spin tickling; also discusses a direct approach for verifying the relative signs of coupling constants in three-spin cyclopropyl systems. (SL)

  16. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, Barry L.; Raymond, Kenneth N.; Huberty, John P.; White, David L.

    1991-01-01

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided.

  17. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOEpatents

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  18. Nuclear magnetic resonance data of C10H13ITe

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  19. Nuclear magnetic resonance data of C9H11ITe

    NASA Astrophysics Data System (ADS)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  20. Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field

    NASA Astrophysics Data System (ADS)

    Mukai, Y.; Hirori, H.; Yamamoto, T.; Kageyama, H.; Tanaka, K.

    2016-01-01

    We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (˜40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.

  1. Nuclear magnetic resonance in environmental engineering: principles and applications.

    PubMed

    Lens, P N; Hemminga, M A

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measurements and imaging are presented. Then, the use of NMR is illustrated and reviewed in studies of biodegradation and biotransformation of soluble and solid organic matter, removal of nutrients and xenobiotics, fate of heavy metal ions, and transport processes in bioreactor systems.

  2. Cost effectiveness of magnetic resonance imaging in the neurosciences.

    PubMed Central

    Szczepura, A K; Fletcher, J; Fitz-Patrick, J D

    1991-01-01

    OBJECTIVES--To measure, in a service setting, the effect of magnetic resonance imaging on diagnosis, diagnostic certainty, and patient management in the neurosciences; to measure the cost per patient scanned; to estimate the marginal cost of imaging and compare this with its diagnostic impact; to measure changes in patients' quality of life; and to record the diagnostic pathway leading to magnetic resonance imaging. DESIGN--Controlled observational study using questionnaires on diagnosis and patient management before and after imaging. Detailed costing study. Quality of life questionnaires at the time of imaging and six months later. Diagnostic pathways extracted from medical records for a representative sample. SETTING--Regional superconducting 1.5 T magnetic resonance service. SUBJECTS--782 consecutive neuroscience patients referred by consultants for magnetic resonance imaging during June 1988-9; diagnostic pathways recorded for 158 cases. MAIN OUTCOME MEASURES--Costs of magnetic resonance imaging and preliminary investigations; changes in planned management and resulting savings; changes in principal diagnosis and diagnostic certainty; changes in patients' quality of life. RESULTS--Average cost of magnetic resonance imaging was estimated at 206.20/patient pounds (throughput 2250 patients/year, 1989-90 prices including contrast and upgrading). Before magnetic resonance imaging diagnostic procedures cost 164.40/patient pounds (including inpatient stays). Management changed after imaging in 208 (27%) cases; saving an estimated 80.90/patient pounds. Confidence in planned management increased in a further 226 (29%) referrals. Consultants' principal diagnosis changed in 159 of 782 (20%) referrals; marginal cost per diagnostic change was 626 pounds. Confidence in diagnosis increased in 236 (30%) referrals. No improvement in patients' quality of life at six month assessment. CONCLUSIONS--Any improvement in diagnosis with magnetic resonance imaging is achieved at a

  3. Use of Magnetic Resonance in the Evaluation of Cranial Trauma.

    PubMed

    Altmeyer, Wilson; Steven, Andrew; Gutierrez, Juan

    2016-05-01

    MR imaging is an extremely useful tool in the evaluation of traumatic brain injury in the emergency department. Although CT still plays the dominant role in urgent patient triage, MR imaging's impact on traumatic brain injury imaging continues to expand. MR imaging has shown superiority to CT for certain traumatic processes, such as diffuse axonal injury, cerebral contusion, and infarction. Magnetic resonance angiography and magnetic resonance venography allow emergent vascular imaging for patients that should avoid ionizing radiation or intravenous contrast. PMID:27150321

  4. Use of magnetic resonance imaging in pharmacogenomics

    PubMed Central

    Viviani, Roberto; Lehmann, Marie-Louise; Stingl, Julia C

    2014-01-01

    Because of the large variation in the response to psychoactive medication, many studies have attempted to uncover genetic factors that determine response. While considerable knowledge exists on the large effects of genetic polymorphisms on pharmacokinetics and plasma concentrations of drugs, effects of the concentration at the target site and pharmacodynamic effects on brain functions in disease are much less known. This article reviews the role of magnetic resonance imaging (MRI) to visualize response to medication in brain behaviour circuits in vivo in humans and assess the influence of pharmacogenetic factors. Two types of studies have been used to characterize effects of medication and genetic variation. In task-related activation studies the focus is on changes in the activity of a neural circuit associated with a specific psychological process. The second type of study investigates resting state perfusion. These studies provide an assessment of vascular changes associated with bioavailability of drugs in the brain, but may also assess changes in neural activity after binding of centrally active agents. Task-related pharmacogenetic studies of cognitive function have characterized the effects in the prefrontal cortex of genetic polymorphisms of dopamine receptors (DRD2), metabolic enzymes (COMT) and in the post-synaptic signalling cascade under the administration of dopamine agonists and antagonists. In contrast, pharmacogenetic imaging with resting state perfusion is still in its infancy. However, the quantitative nature of perfusion imaging, its non-invasive character and its repeatability might be crucial assets in visualizing the effects of medication in vivo in man during therapy. PMID:23802603

  5. Recent advances in cardiac magnetic resonance.

    PubMed

    Greulich, Simon; Arai, Andrew E; Sechtem, Udo; Mahrholdt, Heiko

    2016-01-01

    Cardiac magnetic resonance (CMR) is a non-invasive imaging modality that has rapidly emerged during the last few years and has become a valuable, well-established clinical tool. Beside the evaluation of anatomy and function, CMR has its strengths in providing detailed non-invasive myocardial tissue characterization, for which it is considered the current diagnostic gold standard. Late gadolinium enhancement (LGE), with its capability to detect necrosis and to separate ischemic from non-ischemic cardiomyopathies by distinct LGE patterns, offers unique clinical possibilities. The presence of LGE has also proven to be a good predictor of an adverse outcome in various studies. T2-weighted (T2w) images, which are supposed to identify areas of edema and inflammation, are another CMR approach to tissue characterization. However, T2w images have not held their promise owing to several technical limitations and potential physiological concerns. Newer mapping techniques may overcome some of these limitations: they assess quantitatively myocardial tissue properties in absolute terms and show promising results in studies for characterization of diffuse fibrosis (T1 mapping) and/or inflammatory processes (T2 mapping). However, these techniques are still research tools and are not part of the clinical routine yet. T2* CMR has had significant impact in the management of thalassemia because it is possible to image the amount of iron in the heart and the liver, improving both diagnostic imaging and the management of patients with thalassemia. CMR findings frequently have clinical impact on further patient management, and CMR seems to be cost effective in the clinical routine. PMID:27635240

  6. Magnetic Resonance Imaging of Normal Pressure Hydrocephalus.

    PubMed

    Bradley, William G

    2016-04-01

    Normal pressure hydrocephalus (NPH) is a syndrome found in the elderly, which is characterized by ventriculomegaly and deep white matter ischemia (DWMI) on magnetic resonance imaging (MRI) and the clinical triad of gait disturbance, dementia, and urinary incontinence. NPH has been estimated to account for up to 10% of cases of dementia and is significant because it is treatable by ventriculoperitoneal shunting. Patients with a known cause of chronic communicating hydrocephalus, that is, meningitis or hemorrhage, tend to respond better than patients with the so-called "idiopathic" form, most likely because of poor selection criteria in the past. Good response to shunting has been associated with hyperdynamic cerebrospinal fluid (CSF) flow through the aqueduct. In the early days of MRI, patients with a large CSF flow void extending from the foramen of Monro through the aqueduct to the fourth ventricle had an excellent chance of responding to ventriculoperitoneal shunting (P < 0.003). Today, we use phase-contrast MRI to measure the volume of CSF flowing through the aqueduct in either direction over a cardiac cycle. When this aqueductal CSF stroke volume is sufficiently elevated, there is an excellent chance of shunt responsiveness (100% positive predictive value in 1 study). Idiopathic NPH appears to be a "two-hit" disease-benign external hydrocephalus (BEH) in infancy followed by DWMI in late adulthood. As BEH occurs when the sutures are still open, these infants present with large heads, a finding also noted in patients with NPH. Although BEH has been attributed to immature arachnoidal granulations with decreased CSF resorptive capacity, this now appears to be permanent and may lead to a parallel pathway for CSF resorption via the extracellular space of the brain. With DWMI, the myelin lipid is lost, exposing the polar water molecules to myelin protein, increasing resistance to CSF outflow and leading to backing up of CSF and hydrocephalus.

  7. Recent advances in cardiac magnetic resonance

    PubMed Central

    Greulich, Simon; Arai, Andrew E.; Sechtem, Udo; Mahrholdt, Heiko

    2016-01-01

    Cardiac magnetic resonance (CMR) is a non-invasive imaging modality that has rapidly emerged during the last few years and has become a valuable, well-established clinical tool. Beside the evaluation of anatomy and function, CMR has its strengths in providing detailed non-invasive myocardial tissue characterization, for which it is considered the current diagnostic gold standard. Late gadolinium enhancement (LGE), with its capability to detect necrosis and to separate ischemic from non-ischemic cardiomyopathies by distinct LGE patterns, offers unique clinical possibilities. The presence of LGE has also proven to be a good predictor of an adverse outcome in various studies. T2-weighted (T2w) images, which are supposed to identify areas of edema and inflammation, are another CMR approach to tissue characterization. However, T2w images have not held their promise owing to several technical limitations and potential physiological concerns. Newer mapping techniques may overcome some of these limitations: they assess quantitatively myocardial tissue properties in absolute terms and show promising results in studies for characterization of diffuse fibrosis (T1 mapping) and/or inflammatory processes (T2 mapping). However, these techniques are still research tools and are not part of the clinical routine yet. T2* CMR has had significant impact in the management of thalassemia because it is possible to image the amount of iron in the heart and the liver, improving both diagnostic imaging and the management of patients with thalassemia. CMR findings frequently have clinical impact on further patient management, and CMR seems to be cost effective in the clinical routine. PMID:27635240

  8. Magnetic Resonance Imaging of Normal Pressure Hydrocephalus.

    PubMed

    Bradley, William G

    2016-04-01

    Normal pressure hydrocephalus (NPH) is a syndrome found in the elderly, which is characterized by ventriculomegaly and deep white matter ischemia (DWMI) on magnetic resonance imaging (MRI) and the clinical triad of gait disturbance, dementia, and urinary incontinence. NPH has been estimated to account for up to 10% of cases of dementia and is significant because it is treatable by ventriculoperitoneal shunting. Patients with a known cause of chronic communicating hydrocephalus, that is, meningitis or hemorrhage, tend to respond better than patients with the so-called "idiopathic" form, most likely because of poor selection criteria in the past. Good response to shunting has been associated with hyperdynamic cerebrospinal fluid (CSF) flow through the aqueduct. In the early days of MRI, patients with a large CSF flow void extending from the foramen of Monro through the aqueduct to the fourth ventricle had an excellent chance of responding to ventriculoperitoneal shunting (P < 0.003). Today, we use phase-contrast MRI to measure the volume of CSF flowing through the aqueduct in either direction over a cardiac cycle. When this aqueductal CSF stroke volume is sufficiently elevated, there is an excellent chance of shunt responsiveness (100% positive predictive value in 1 study). Idiopathic NPH appears to be a "two-hit" disease-benign external hydrocephalus (BEH) in infancy followed by DWMI in late adulthood. As BEH occurs when the sutures are still open, these infants present with large heads, a finding also noted in patients with NPH. Although BEH has been attributed to immature arachnoidal granulations with decreased CSF resorptive capacity, this now appears to be permanent and may lead to a parallel pathway for CSF resorption via the extracellular space of the brain. With DWMI, the myelin lipid is lost, exposing the polar water molecules to myelin protein, increasing resistance to CSF outflow and leading to backing up of CSF and hydrocephalus. PMID:27063662

  9. Small Animal Imaging with Magnetic Resonance Microscopy

    PubMed Central

    Driehuys, Bastiaan; Nouls, John; Badea, Alexandra; Bucholz, Elizabeth; Ghaghada, Ketan; Petiet, Alexandra; Hedlund, Laurence W.

    2009-01-01

    Small animal magnetic resonance microscopy (MRM) has evolved significantly from testing the boundaries of imaging physics to its expanding use today as a tool in non-invasive biomedical investigations. This review is intended to capture the state-of-the-art in MRM for scientists who may be unfamiliar with this modality, but who want to apply its capabilities to their research. We therefore include a brief review of MR concepts and methods of animal handling and support before covering a range of MRM applications including the heart, lung, brain, and the emerging field of MR histology. High-resolution anatomical imaging reveals increasingly exquisite detail in healthy animals and subtle architectural aberrations that occur in genetically altered models. Resolution of 100 µm in all dimensions is now routinely attained in living animals, and 10 µm3 is feasible in fixed specimens. Such images almost rival conventional histology while allowing the object to be viewed interactively in any plane. MRM is now increasingly used to provide functional information in living animals. Images of the beating heart, breathing lung, and functioning brain can be recorded. While clinical MRI focuses on diagnosis, MRM is used to reveal fundamental biology or to non-invasively measure subtle changes in the structure or function of organs during disease progression or in response to experimental therapies. The ability of MRM to provide a detailed functional and anatomical picture in rats and mice, and to track this picture over time, makes it a promising platform with broad applications in biomedical research. PMID:18172332

  10. Magnetic Resonance Imaging in Postprostatectomy Radiotherapy Planning

    SciTech Connect

    Sefrova, Jana; Odrazka, Karel; Paluska, Petr; Belobradek, Zdenek; Brodak, Milos; Dolezel, Martin; Prosvic, Petr; Macingova, Zuzana; Vosmik, Milan; Hoffmann, Petr; Louda, Miroslav; Nejedla, Anna

    2012-02-01

    Purpose: To investigate whether the use of magnetic resonance imaging (MRI) in prostate bed treatment planning could influence definition of the clinical target volume (CTV) and organs at risk. Methods and Materials: A total of 21 consecutive patients referred for prostate bed radiotherapy were included in the present retrospective study. The CTV was delineated according to the European Organization for Research and Treatment of Cancer recommendations on computed tomography (CT) and T{sub 1}-weighted (T{sub 1}w) and T{sub 2}-weighted (T{sub 2}w) MRI. The CTV magnitude, agreement, and spatial differences were evaluated on the planning CT scan after registration with the MRI scans. Results: The CTV was significantly reduced on the T{sub 1}w and T{sub 2}w MRI scans (13% and 9%, respectively) compared with the CT scans. The urinary bladder was drawn smaller on the CT scans and the rectum was smaller on the MRI scans. On T{sub 1}w MRI, the rectum and urinary bladder were delineated larger than on T{sub 2}w MRI. Minimal agreement was observed between the CT and T{sub 2}w images. The main spatial differences were measured in the superior and superolateral directions in which the CTV on the MRI scans was 1.8-2.9 mm smaller. In the posterior and inferior border, no difference was seen between the CT and T{sub 1}w MRI scans. On the T{sub 2}w MRI scans, the CTV was larger in these directions (by 1.3 and 1.7 mm, respectively). Conclusions: The use of MRI in postprostatectomy radiotherapy planning resulted in a reduction of the CTV. The main differences were found in the superior part of the prostate bed. We believe T{sub 2}w MRI enables more precise definition of prostate bed CTV than conventional planning CT.

  11. Recent advances in cardiac magnetic resonance

    PubMed Central

    Greulich, Simon; Arai, Andrew E.; Sechtem, Udo; Mahrholdt, Heiko

    2016-01-01

    Cardiac magnetic resonance (CMR) is a non-invasive imaging modality that has rapidly emerged during the last few years and has become a valuable, well-established clinical tool. Beside the evaluation of anatomy and function, CMR has its strengths in providing detailed non-invasive myocardial tissue characterization, for which it is considered the current diagnostic gold standard. Late gadolinium enhancement (LGE), with its capability to detect necrosis and to separate ischemic from non-ischemic cardiomyopathies by distinct LGE patterns, offers unique clinical possibilities. The presence of LGE has also proven to be a good predictor of an adverse outcome in various studies. T2-weighted (T2w) images, which are supposed to identify areas of edema and inflammation, are another CMR approach to tissue characterization. However, T2w images have not held their promise owing to several technical limitations and potential physiological concerns. Newer mapping techniques may overcome some of these limitations: they assess quantitatively myocardial tissue properties in absolute terms and show promising results in studies for characterization of diffuse fibrosis (T1 mapping) and/or inflammatory processes (T2 mapping). However, these techniques are still research tools and are not part of the clinical routine yet. T2* CMR has had significant impact in the management of thalassemia because it is possible to image the amount of iron in the heart and the liver, improving both diagnostic imaging and the management of patients with thalassemia. CMR findings frequently have clinical impact on further patient management, and CMR seems to be cost effective in the clinical routine.

  12. Tools for cardiovascular magnetic resonance imaging

    PubMed Central

    Krishnamurthy, Ramkumar; Cheong, Benjamin

    2014-01-01

    In less than fifteen years, as a non-invasive imaging option, cardiovascular MR has grown from a being a mere curiosity to becoming a widely used clinical tool for evaluating cardiovascular disease. Cardiovascular magnetic resonance imaging (CMRI) is now routinely used to study myocardial structure, cardiac function, macro vascular blood flow, myocardial perfusion, and myocardial viability. For someone entering the field of cardiac MR, this rapid pace of development in the field of CMRI might make it difficult to identify a cohesive starting point. In this brief review, we have attempted to summarize the key cardiovascular imaging techniques that have found widespread clinical acceptance. In particular, we describe the essential cardiac and respiratory gating techniques that form the backbone of all cardiovascular imaging methods. It is followed by four sections that discuss: (I) the gradient echo techniques that are used to assess ventricular function; (II) black-blood turbo spin echo (SE) methods used for morphologic assessment of the heart; (III) phase-contrast based techniques for the assessment of blood flow; and (IV) CMR methods for the assessment of myocardial ischemia and viability. In each section, we briefly summarize technical considerations relevant to the clinical use of these techniques, followed by practical information for its clinical implementation. In each of those four areas, CMRI is considered either as the benchmark imaging modality against which the diagnostic performance of other imaging modalities are compared against, or provides a complementary capability to existing imaging techniques. We have deliberately avoided including cutting-edge CMR imaging techniques practiced at few academic centers, and restricted our discussion to methods that are widely used and are likely to be available in a clinical setting. Our hope is that this review would propel an interested reader toward more comprehensive reviews in the literature. PMID:24834409

  13. Phosphorus magnetic resonance spectroscopy studies in schizophrenia.

    PubMed

    Yuksel, Cagri; Tegin, Cuneyt; O'Connor, Lauren; Du, Fei; Ahat, Ezgi; Cohen, Bruce M; Ongur, Dost

    2015-09-01

    Phosphorus magnetic resonance spectroscopy ((31)P MRS) allows in vivo quantification of phosphorus metabolites that are considered to be related to membrane turnover and energy metabolism. In schizophrenia (SZ), (31)P MRS studies found several abnormalities in different brain regions suggesting that alterations in these pathways may be contributing to the pathophysiology. In this paper, we systematically reviewed the (31)P MRS studies in SZ published to date by taking patient characteristics, medication status and brain regions into account. Publications written in English were searched on http://www.ncbi.nlm.nih.gov/pubmed/, by using the keywords 'phosphomonoester', 'phosphodiester', 'ATP', 'phosphocreatine', 'phosphocholine', 'phosphoethanolamine','glycerophosphocholine', 'glycerophosphoethanolamine', 'pH', 'schizophrenia', and 'MRS'. Studies that measured (31)P metabolites in SZ patients were included. This search identified 52 studies. Reduced PME and elevated PDE reported in earlier studies were not replicated in several subsequent studies. One relatively consistent pattern was a decrease in PDE in chronic patients in the subcortical structures. There were no consistent patterns for the comparison of energy related phosphorus metabolites between patients and controls. Also, no consistent pattern emerged in studies seeking relationship between (31)P metabolites and antipsychotic use and other clinical variables. Despite emerging patterns, methodological heterogeneities and shortcomings in this literature likely obscure consistent patterns among studies. We conclude with recommendations to improve study designs and (31)P MRS methods in future studies. We also stress the significance of probing into the dynamic changes in energy metabolism, as this approach reveals abnormalities that are not visible to steady-state measurements. PMID:26228415

  14. Gamow-Teller unit cross sections for (t,{sup 3}He) and ({sup 3}He,t) reactions

    SciTech Connect

    Perdikakis, G.; Austin, Sam M.; Galaviz, D.; Tur, C.; Zegers, R. G. T.; Deaven, J. M.; Guess, C. J.; Hitt, G. W.; Meharchand, R.; Bazin, D.; Grinyer, G. F.; Caesar, C.; Herlitzius, C.; Gade, A.; Howard, M. E.; Smith, E. E.; Noji, S.; Sakai, H.; Shimbara, Y.

    2011-05-15

    The proportionality between differential cross sections at vanishing linear momentum transfer and Gamow-Teller transition strength, expressed in terms of the unit cross section ({sigma}{sub GT}), was studied as a function of target mass number for (t,{sup 3}He) and ({sup 3}He,t) reactions at 115A MeV and 140A MeV, respectively. Existing ({sup 3}He,t) and (t,{sup 3}He) data on targets with mass number 12{<=}A{<=}120 were complemented with new and reevaluated (t,{sup 3}He) data on proton, deuteron, {sup 6}Li, and {sup 12}C targets. It was found that in spite of the small difference in beam energies between the two probes, the unit cross sections have a nearly identical and simple dependence on target mass number A, for A{>=}12: {sigma}{sub GT}=109/A{sup 0.65}. The factorization of the unit cross sections in terms of a kinematical factor, a distortion factor, and the strength of the effective spin-isospin transfer nucleus-nucleus interaction was investigated. Simple phenomenological functions depending on mass number A were extracted for the latter two. By comparison with plane and distorted-wave Born approximation calculations, it was found that the use of a short-range approximation for knock-on exchange contributions to the transition amplitude results in overestimated cross sections for reactions involving the composite ({sup 3}He,t) and (t,{sup 3}He) probes.

  15. Single Molecule Magnetic Force Detection with a Carbon Nanotube Resonator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Walker, Sean; Baugh, Jonathan

    2015-03-01

    Single molecule magnets (SMMs) sit at the boundary between macroscopic magnetic behaviour and quantum phenomena. Detecting the magnetic moment of an individual SMM would allow exploration of this boundary, and could enable technological applications based on SMMs such as quantum information processing. Detection of these magnetic moments remains an experimental challenge, particularly at the time scales of relaxation and decoherence. We present a technique for sensitive magnetic force detection that should permit such measurements. A suspended carbon nanotube (CNT) mechanical resonator is combined with a magnetic field gradient generated by a ferromagnetic gate electrode, which couples the magnetic moment of a nanomagnet to the resonant motion of the CNT. Numerical calculations of the mechanical resonance show that resonant frequency shifts on the order of a few kHz arise due to single Bohr magneton changes in magnetic moment. A signal-to-noise analysis based on thermomechanical noise shows that magnetic switching at the level of a Bohr magneton can be measured in a single shot on timescales as short as 10 μs. This sensitivity should enable studies of the spin dynamics of an isolated SMM, within the spin relaxation timescales for many available SMMs. Supported by NSERC.

  16. Prostate Cancer: The Role of Multiparametric Magnetic Resonance Imaging.

    PubMed

    Dias, João Lopes; Pina, João Magalhães; João, Raquel; Fialho, Joana; Carmo, Sandra; Leal, Cecília; Bilhim, Tiago; Marques, Rui Mateus; Pinheiro, Luís Campos

    2015-01-01

    Multiparametric magnetic resonance imaging has been increasingly used for detection, localization and staging of prostate cancer over the last years. It combines high-resolution T2 weighted-imaging and at least two functional techniques, which include dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and magnetic resonance imaging spectroscopy. Although the combined use of a pelvic phased-array and an endorectal coil is considered the state-of-the-art for magnetic resonance imaging evaluation of prostate cancer, endorectal coil is only absolute mandatory for magnetic resonance imaging spectroscopy at 1.5 T. Sensitivity and specificity levels in cancer detection and localization have been improving with functional technique implementation, compared to T2 weighted-imaging alone. It has been particularly useful to evaluate patients with abnormal PSA and negative biopsy. Moreover, the information added by the functional techniques may correlate to cancer aggressiveness and therefore be useful to select patients for focal radiotherapy, prostate sparing surgery, focal ablative therapy and active surveillance. However, more studies are needed to compare the functional techniques and understand the advantages and disadvantages of each one. This article reviews the basic principles of prostatic mp-magnetic resonance imaging, emphasizing its role on detection, staging and active surveillance of prostate cancer.

  17. Simultaneous Measurement of Magnetic Resonance and Neuronal Signals

    NASA Astrophysics Data System (ADS)

    Espy, Michelle

    2007-03-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) at ultra low magnetic fields (ULF, ˜ microT) have advantages over their counterparts at higher magnetic fields, despite the reduction in signal strength. Among these advantages are that the instrumentation uses superconducting quantum interference devices (SQUIDs), and is now compatible with simultaneous measurements of biomagnetic signals, such as magnetoencephalography (MEG). This presents a new opportunity for noninvasive simultaneous functional and anatomical brain imaging. We present here the physical basis and experimental evidence for a variety of ULF-MRI techniques being developed at Los Alamos to enable simultaneous anatomical and functional imaging of the human brain. We conclude by presenting a novel technique, based on the resonant interaction between the magnetic fields such as those that arise from neural activity and the spin population in ULF-MRI experiments, that may enable direct tomographic imaging of the consequences of neural activity.

  18. Ultrasound Attenuation in Liquid ^3He/High Porosity Aerogel

    NASA Astrophysics Data System (ADS)

    Choi, H. C.; Mulders, N.

    2005-11-01

    High porosity silica aerogels have been extensively used to study the influence of disorder in p-wave superfluid ^3He. Experimental investigations performed during the last decade revealed three distinct superfluid phases in liquid ^3He /98% aerogel system. The three phases found in this system are called as A, B, and A1-like phases (using the same nomenclature as in the bulk), although only the spin component of the order parameter has been studied and found to resemble that of corresponding bulk phases. A complete understanding of the microscopic structure of the p-wave superfluid phases requires identification of both orbital and spin components of the order parameter. Until now, there is no experimental attempt to directly probe the orbital structure in ^3He/aerogel system. To resolve this issue, we performed acoustic measurements by direct transmission of ultrasound through the ^3He/98% aerogel sample. We will present and discuss our preliminary results.

  19. Chapter 1 Magnetic Resonance Contributions to Other Sciences

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    In 1947, I.I. Rabi invented the molecular beam magnetic resonance method for the important, but limited purpose, of measuring nuclear magnetic moments and five of us working in his laboratory immediately began such experiments. The first experiments with LiCl gave the expected single resonance for each nucleus, but we were surprised to discover six resonances for the proton in H2, which we soon showed was due to the magnetic effects of the other proton and the rotating charged molecule: from these measurements we could also obtain new information on molecular structure. We had another shock when we studied D2 and found the resonance curves were spread more widely for D2 than H2 even though the magnetic interactions should have been much smaller. We found we could explain this by assuming that the deuteron had an electric quadrupole moment and J. Schwinger pointed out that this would require the existence of a previously unsuspected electric tensor force between the neutron and the proton. With this, the resonance method was giving new fundamental information about nuclear forces. In 1944, Rabi and I pointed out that it should be possible by the Dirac theory and our past resonance experiments to calculate exactly the hyperfine interaction between the electron and the proton in the hydrogen atom and we had two graduate students, Nafe and Nelson do the experiment and they found a disagreement which led J. Schwinger to develop the first successful relativistic quantum field theory and QED. In 1964, Purcell, Bloch and others detected magnetic resonance transitions by the effect of the transition on the oscillator, called NMR, making possible measurements on liquids, solids and gases and giving information on chemical shifts and thermal relaxation times T1 and T2. I developed a magnetic resonance method for setting a limit to the EDM of a neutron in a beam and with others for neutrons stored in a suitably coated bottle. Magnetic resonance measurements provide high

  20. Polar Phase of Superfluid (3)He in Anisotropic Aerogel.

    PubMed

    Dmitriev, V V; Senin, A A; Soldatov, A A; Yudin, A N

    2015-10-16

    We report the first observation of the polar phase of superfluid (3)He. This phase appears in (3)He confined in a new type of aerogel with a nearly parallel arrangement of strands which play the role of ordered impurities. Our experiments qualitatively agree with theoretical predictions and suggest that in other systems with unconventional Cooper pairing (e.g., in unconventional superconductors) similar phenomena may be found in the presence of anisotropic impurities.

  1. sup 3 He and methane in the Gulf of Aden

    SciTech Connect

    Jean-Baptiste, P.; Alaux, G. ); Belviso, S.; Nguyen, B.C.; Mihalopoulos, N. )

    1990-01-01

    During the OCEAT cruise (July, 1987), the vertical and spatial distributions of {sup 3}He and methane were measured at six stations over the West Sheba Ridge (Gulf of Aden). The results show significant {delta}{sup 3}He anomalies (up to 49%). The authors conclude that the origin of this signal is independent from the well known Red Sea hydrothermal {sup 3}He (of the Red Sea Brines). Thus, active hydrothermalism occurs in this extensional basin associated with spreading along an incipient mid-ocean ridge. The {sup 3}He input from the Gulf of Aden accounts for the S-N positive gradient in {sup 3}He concentration observed in the western part of the Indian Ocean. Several methane anomalies are also present (up to 664 nl/l,i.e., 25 times the regional methane background), but the CH{sub 4} and {sup 3}He signals are not systematically correlated, suggesting complex production and consumption mechanisms of methane in these areas. The authors results confirm previous observations in the South West Pacific Ocean.

  2. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    SciTech Connect

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-03-27

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum ina cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16 100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32 200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable"sensitive volumes."

  3. Electron paramagnetic resonance of nitroxide-doped magnetic fluids

    NASA Astrophysics Data System (ADS)

    Morais, P. C.; Alonso, A.; Silva, O.; Buske, N.

    2002-11-01

    Electron paramagnetic resonance was used to investigate surface-coated magnetite-based magnetic fluids doped with TEMPOL. Two magnetic fluid samples, having magnetite nanoparticles with average diameter of 94 Å and coated with different coating layers (lauric acid plus ethoxylated polyalcohol in one case and oleoylsarcosine in the other case), were doped with TEMPOL (6 mM and pH 7.4) and investigated as a function of the nanoparticle concentration. The resonance field and the resonance linewidth both scale linearly with the nanoparticle concentration.

  4. [Magnetic-resonance tomography in diagnosis of hepatopancreatoduodenal tumors].

    PubMed

    Portnoĭ, L M; Denisova, L B; Utkina, E V; Safiullina, I M; Denisov, V A; Sachechelashvili, G L

    2003-01-01

    Results of magnetic-resonance tomography (MRT) in 112 patients with diseases of hepatopancreatoduodenal zone were analyzed, 24 of them had tumors of bile ducts and pancreas. New noninvasive diagnostic method--magnetic-resonance cholangiopancreatography (MRCPG)--performed in addition to routine MRT was evaluated. The technique of MRCPG, analysis of results, manetic-resonance semiotics are presented. This method is compared with endoscopic retrograde cholangiopancreatography. It is concluded that combination of consentional MRT with MRCPG increases possibilities in diagnosis of hepatopancreatoduodenal cancers, complicated by obstructive jaundice, as a rule.

  5. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the pelvic floor, ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  6. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid.

    PubMed

    Li, Xianli; Ding, Hui

    2012-12-15

    All-fiber magnetic-field sensor based on a device consisting of a microfiber knot resonator and magnetic fluid is proposed for the first time in this Letter. Sensor principles and package technology are introduced in detail. Experimental results show that the resonance wavelength of the proposed sensor regularly varies with changes to the applied magnetic field. When the magnetic field is increased to 600 Oe, the wavelength shift reaches nearly 100 pm. Moreover, the sensor responding to the 50 Hz alternating magnetic field is also experimentally investigated, and a minimal detectable magnetic-field strength of 10 Oe is successfully achieved.

  7. Resonant magnetic scattering in holmium at an undulator source

    SciTech Connect

    Gruebel, G.; Als-Nielsen, J.; Vettier, C.; Gibbs, D.; Bohr, J.; Pengra, D.

    1994-06-01

    The resonance properties of the magnetic cross section of antiferromagnetic holmium were studied at the L absorption edges. A polarization analysis of the magnetic cross section was performed at the L{sub III} and L{sub II} edges using {pi} polarized incident x-rays.

  8. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-25

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications.

  9. The Nobel Prize in Medicine for Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Fry, Charles G.

    2004-01-01

    Nobel Prize in Medicine awarded in December 2003 to chemist Paul C. Lauterbur and physicist Peter Mansfield for the development of magnetic resonance imaging (MRI), a long overdue recognition of the huge impact MRI has had in medical diagnostics and research is mentioned. MRI was derived, and remains an extension of nuclear magnetic resonance…

  10. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  11. Parametric resonance induced chaos in magnetic damped driven pendulum

    NASA Astrophysics Data System (ADS)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  12. Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.

    PubMed

    Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath

    2015-11-25

    Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications. PMID:26450363

  13. 8-Cavity Planar Coil for Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodriguez, A. O.; Favila, R. G.; Salgado, P.; Reynoso, G.; Barrios, F. A.

    2003-09-01

    Multiloop resonator coils have become a good alternative in Magnetic Resonance Spectroscopy of the brain. This is due to the fact that, these type of coils are able to generate high Signal-to-Noise Ratios compared whith the conventional single-loop coils. In this paper, a receiving-only surface coil based on the (8 cavity configuration) magnetron tube is described to perform Magnetic Resonance Spectroscopy. Magnetic Resonance spectra from a spectroscopic phantom were obtained. All spectroscopic experiments were obtained using a 1.5T clinical imager (Signa LX equipped with V. 5.8, General Electric Medical Systems) and the pulse sequence PRESS. To compare performance of the resonator coil, phantom spectra were also measured with a commercial surface coil (7.5 cm diameter). Coil performance comparison shows that the magnetron planar coil is able to produce an important improvement in Signal-to-Noise Ratio. This coil prototype is also fully compatible with clinical scanners and commonly-used spectroscopy sequences. The magnetron resonator coil can generate high-quality magnetic resonance spectra of phantoms.

  14. A Faraday effect position sensor for interventional magnetic resonance imaging.

    PubMed

    Bock, M; Umathum, R; Sikora, J; Brenner, S; Aguor, E N; Semmler, W

    2006-02-21

    An optical sensor is presented which determines the position and one degree of orientation within a magnetic resonance tomograph. The sensor utilizes the Faraday effect to measure the local magnetic field, which is modulated by switching additional linear magnetic fields, the gradients. Existing methods for instrument localization during an interventional MR procedure often use electrically conducting structures at the instruments that can heat up excessively during MRI and are thus a significant danger for the patient. The proposed optical Faraday effect position sensor consists of non-magnetic and electrically non-conducting components only so that heating is avoided and the sensor could be applied safely even within the human body. With a non-magnetic prototype set-up, experiments were performed to demonstrate the possibility of measuring both the localization and the orientation in a magnetic resonance tomograph. In a 30 mT m(-1) gradient field, a localization uncertainty of 1.5 cm could be achieved.

  15. Structure of magnetic resonance in 87Rb atoms

    NASA Astrophysics Data System (ADS)

    Kozlov, A. N.; Zibrov, S. A.; Zibrov, A. A.; Yudin, V. I.; Taichenachev, A. V.; Yakovlev, V. P.; Tsygankov, E. A.; Zibrov, A. S.; Vassiliev, V. V.; Velichansky, V. L.

    2016-05-01

    Magnetic resonance at the F g = 1 rightleftarrows F e = 1 transition of the D 1 line in 87Rb has been studied with pumping and detection by linearly polarized radiation and detection at the double frequency of the radiofrequency field. The intervals of allowed values of the static and alternating magnetic fields in which magnetic resonance has a single maximum have been found. The structure appearing beyond these intervals has been explained. It has been shown that the quadratic Zeeman shift is responsible for the three-peak structure of resonance; the radiofrequency shift results in the appearance of additional extrema in resonance, which can be used to determine the relaxation constant Γ2. The possibility of application in magnetometry has been discussed.

  16. Effect of magnetic nanoparticle shape on flux amplification in inductive coil magnetic resonance detection

    NASA Astrophysics Data System (ADS)

    Barbic, Mladen; ElBidweihy, Hatem

    2016-09-01

    We model and analyze the effect of particle shape on the signal amplification in inductive coil magnetic resonance detection using the reversible transverse magnetic susceptibility of oriented magnetic nanostructures. Utilizing the single magnetic domain Stoner-Wohlfarth model of uniform magnetization rotation, we reveal that different ellipsoidal particle shapes can have a pronounced effect on the magnetic flux enhancement in detection configurations typical of magnetic resonance settings. We compare and contrast the prolate ellipsoids, oblate ellipsoids, and exchange-biased spheres and show that the oblate ellipsoids and exchange-biased spheres have a significantly higher flux amplification effect than the prolate ellipsoids considered previously. In addition, oblate ellipsoids have a much broader polarizing magnetic field range over which their transverse flux amplification is significant. We show the dependence of transverse flux amplification on magnetic resonance bias field and discuss the resulting signal-to-noise ratio of inductive magnetic resonance detection due to the magnetic nanoparticle-filled core of the magnetic resonance detection coil.

  17. Accelerated nanoscale magnetic resonance imaging through phase multiplexing

    SciTech Connect

    Moores, B. A.; Eichler, A. Takahashi, H.; Navaretti, P.; Degen, C. L.; Tao, Y.

    2015-05-25

    We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species ({sup 1}H, {sup 19}F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.

  18. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  19. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  20. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  1. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  2. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  3. Catheter steering using a Magnetic Resonance Imaging system.

    PubMed

    Lalande, Viviane; Gosselin, Frederick P; Martel, Sylvain

    2010-01-01

    A catheter is successfully bent and steered by applying magnetic gradients inside a Magnetic Resonance Imaging system (MRI). One to three soft ferromagnetic spheres are attached at the distal tip of the catheter with different spacing between the spheres. Depending on the interactions between the spheres, progressive or discontinuous/jumping displacement was observed for increasing magnetic load. This phenomenon is accurately predicted by a simple theoretical dipole interaction model. PMID:21096567

  4. Nuclear magnetic resonance spectroscopy with single spin sensitivity.

    PubMed

    Müller, C; Kong, X; Cai, J-M; Melentijević, K; Stacey, A; Markham, M; Twitchen, D; Isoya, J; Pezzagna, S; Meijer, J; Du, J F; Plenio, M B; Naydenov, B; McGuinness, L P; Jelezko, F

    2014-08-22

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen-vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four (29)Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds.

  5. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2016-07-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov-Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms.

  6. One-pot synthesis of magnetic nanoclusters enabling atherosclerosis-targeted magnetic resonance imaging

    PubMed Central

    Kukreja, Aastha; Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Lee, Taeksu; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2014-01-01

    In this study, dextran-encrusted magnetic nanoclusters (DMNCs) were synthesized using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast agents to detect inflammatory disease. PMID:24904209

  7. One-pot synthesis of magnetic nanoclusters enabling atherosclerosis-targeted magnetic resonance imaging.

    PubMed

    Kukreja, Aastha; Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Lee, Taeksu; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2014-01-01

    In this study, dextran-encrusted magnetic nanoclusters (DMNCs) were synthesized using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast agents to detect inflammatory disease.

  8. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  9. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Characterize a Rodent Model of Covert Stroke

    NASA Astrophysics Data System (ADS)

    Herrera, Sheryl Lyn

    Covert stroke (CS) comprises lesions in the brain often associated by risk factors such as a diet high in fat, salt, cholesterol and sugar (HFSCS). Developing a rodent model for CS incorporating these characteristics is useful for developing and testing interventions. The purpose of this thesis was to determine if magnetic resonance (MR) can detect brain abnormalities to confirm this model will have the desired anatomical effects. Ex vivo MR showed brain abnormalities for rats with the induced lesions and fed the HFSCS diet. Spectra acquired on the fixed livers had an average percent area under the fat peak relative to the water peak of (20+/-4)% for HFSCS and (2+/-2)% for control. In vivo MR images had significant differences between surgeries to induce the lesions (p=0.04). These results show that applying MR identified abnormalities in the rat model and therefore is important in the development of this CS rodent model.

  10. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.

    PubMed

    Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania

    2015-09-01

    Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions.

  11. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.

    PubMed

    Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania

    2015-09-01

    Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. PMID:26113221

  12. Magnetic resonance imaging of neonates in the magnetic resonance compatible incubator

    PubMed Central

    Helwich, Ewa; Rutkowska, Magdalena; Stankiewicz, Joanna; Terczyńska, Iwona

    2016-01-01

    Introduction The authors present the first experience in neonatal magnetic resonance imaging (MRI) examinations using an MR compatible incubator (INC) at the Institute of Mother and Child. Material and methods Forty-nine examinations of 47 newborns (20 girls, 27 boys) were performed using the GE Signa HDxt 1.5T system and INC Nomag IC 1.5. Demographic data, anesthetic methods and MRI findings in the INC in comparison with previously performed imaging were analyzed. Results Thirty-two neonates were prematurely born (68.1%) at gestational age 23–37 weeks, mean: 29.9 weeks. They were examined at 26 weeks postmenstrual age to 1 month corrected age, mean: 37.5 weeks. Body weight of newborns on the study day was 600–4300 g, mean: 2724 g. Seventeen (34.7%) children were examined in physiological sleep, 32 (65.3%) anesthetized. In none of them did anesthesiological complications or disease worsening occur. In 43 (91.5%) children brain MRI was performed, in 4 (8.5%) MRI of the spinal cord and canal and of the abdomen/pelvis. In children prenatally examined by MRI, the INC provided new diagnostic information in 5 (83.3%) cases, in neonates studied after birth by ultrasound in 32 (82%). Magnetic resonance imaging in the INC did not entail additional knowledge in 9 (18.7%) cases. Conclusions The INC enables MRI in preterm newborns and those with low/extremely low body weight. These studies are necessary to assess the extent of changes in the central nervous system and other organs. Incubator coils, designed specifically for neonates, allow more accurate diagnosis than previously used coils for adults. MRI results allow one to determine prognosis, for more accurate planning of diagnostics, helping to make appropriate therapeutic decisions. PMID:27695498

  13. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    SciTech Connect

    Tomimatsu, Toru Shirai, Shota; Hashimoto, Katsushi Sato, Ken; Hirayama, Yoshiro

    2015-08-15

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs.

  14. Three-dimensional magnetic recording using ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Suto, Hirofumi; Kudo, Kiwamu; Nagasawa, Tazumi; Kanao, Taro; Mizushima, Koichi; Sato, Rie

    2016-07-01

    To meet the ever-increasing demand for data storage, future magnetic recording devices will need to be made three-dimensional by implementing multilayer recording. In this article, we present methods of detecting and manipulating the magnetization direction of a specific layer selectively in a vertically stacked multilayer magnetic system, which enable layer-selective read and write operations in three-dimensional magnetic recording devices. The principle behind the methods is ferromagnetic resonance excitation in a microwave magnetic field. By designing each magnetic recording layer to have a different ferromagnetic resonance frequency, magnetization excitation can be induced individually in each layer by tuning the frequency of an applied microwave magnetic field, and this selective magnetization excitation can be utilized for the layer-selective operations. Regarding media for three-dimensional recording, when layers of a perpendicular magnetic material are vertically stacked, dipolar interaction between multiple recording layers arises and is expected to cause problems, such as degradation of thermal stability and switching field distribution. To solve these problems, we propose the use of an antiferromagnetically coupled structure consisting of hard and soft magnetic layers. Because the stray fields from these two layers cancel each other, antiferromagnetically coupled media can reduce the dipolar interaction.

  15. Dynamics of vortex nucleation in sup 3 He- A flow

    SciTech Connect

    Kopnin, N.B.; Soininen, P.I.; Salomaa, M.M. )

    1992-03-01

    Quantum phase slippage in superfluid {sup 3}He flow is simulated numerically in rectangular slab geometries. Assuming that the flow is confined to a channel having horizontal surfaces close to each other, the spatial problem reduces to the two transverse dimensions; we report time-dependent computer simulations of superfluid {sup 3}He flow in 2+1 dimensions using the time-dependent Ginzburg-Landau equations. The quantum-dynamic processes of phase slippage in {sup 3}He are demonstrated to be associated with superfluid vortex nucleation; we thus confirm Anderson's assumption for phase slippage through vortex motion in superfluids. We also find several other phase-slip scenarios involving vortices, phase-slip lines, and combinations thereof for the coupled multicomponent order-parameter amplitudes. We consider both diffuse and specular boundary conditions at the side walls and demonstrate that our results are essentially independent of the boundaries. We compute the critical current for vortex nucleation as a function of the channel width, and compare it with existing theories of vortex nucleation; we also discuss our calculations in connection with experiments on phase slippage in {sup 3}He flow. One of our most important results is that the superfluid order parameter for the vortices generated in the computer simulations does not vanish anywhere; i.e., the vortices possess superfluid core structures; hence the processes of phase slip for superfluid {sup 3}He are nonlocal in space-time.

  16. Solar source regions of 3HE-rich particle events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Lin, R. P.; Reames, D. V.; Stone, R. G.; Liggett, M.

    1985-01-01

    Hydrogen alpha X-ray, and metric and kilometric radio data to examine the solar sources of energetic 3He-rich particle events observed near earth in association with impulsive 2 to 100 keV electron events were applied. Each 3He/electron event is associated with a kilometric type 3 burst belonging to a family of such bursts characterized by similar interplanetary propagation paths from the same solar active region. The 3He/electron events correlate very well with the interplanetary low frequency radio brightnesses of these events, but progressively worse with signatures from regions closer to the Sun. When H alpha brightnings can be associated with 3He/electron events, they have onsets coinciding to within 1 min of that of the associated metric type 3 burst but are often too small to be reported. The data are consistent with the earlier idea that many type 3 bursts, the 3He/electron events, are due to particle acceleration in the corona, well above the associated H alpha and X-ray flares.

  17. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors.

    PubMed

    Harel, Elad; Schröder, Leif; Xu, Shoujun

    2008-01-01

    Nuclear magnetic resonance (NMR) is a well-established analytical technique in chemistry. The ability to precisely control the nuclear spin interactions that give rise to the NMR phenomenon has led to revolutionary advances in fields as diverse as protein structure determination and medical diagnosis. Here, we discuss methods for increasing the sensitivity of magnetic resonance experiments, moving away from the paradigm of traditional NMR by separating the encoding and detection steps of the experiment. This added flexibility allows for diverse applications ranging from lab-on-a-chip flow imaging and biological sensors to optical detection of magnetic resonance imaging at low magnetic fields. We aim to compare and discuss various approaches for a host of problems in material science, biology, and physics that differ from the high-field methods routinely used in analytical chemistry and medical imaging.

  18. Nuclear electric dipole moment of {sup 3}He

    SciTech Connect

    Stetcu, I.; Friar, J. L.; Hayes, A. C.; Liu, C.-P.; Navratil, P.

    2009-01-28

    In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.

  19. Strong-Coupling and the Stripe Phase of ^3He

    NASA Astrophysics Data System (ADS)

    Wiman, Joshua J.; Sauls, J. A.

    2016-09-01

    Thin films of superfluid 3He were predicted, based on weak-coupling BCS theory, to have a stable phase which spontaneously breaks translational symmetry in the plane of the film. This crystalline superfluid, or "stripe" phase, develops as a one-dimensional periodic array of domain walls separating degenerate B phase domains. We report calculations of the phases and phase diagram for superfluid 3He in thin films using a strong-coupling Ginzburg-Landau theory that accurately reproduces the bulk 3He superfluid phase diagram. We find that the stability of the Stripe phase is diminished relative to the A phase, but the Stripe phase is stable in a large range of temperatures, pressures, confinement, and surface conditions.

  20. Nuclear magnetic resonance force microscopy at high magnetic field and low temperature

    NASA Astrophysics Data System (ADS)

    Marohn, John A.; Harrell, Lee H.; Thurber, Kent; Fainchtein, Raul; Smith, Doran D.

    2000-03-01

    We will report detection of nuclear magnetic resonance at 6.5 Tesla from a micron-scale sample by magnetic resonance force microscopy (MRFM) at low-temperature. We will detail a ``bare bones" one-inch diameter probe (including a novel ``string and spring" fiber positioning element, a tuned and matched RF coil, and a heating element) suitable for simple variable-temperature magnetic-resonance force microscopy studies. The compact probe design succeeded in minimizing both deleterious thermal drifts in the positions of probe components and pickup of environmental vibrations. In studying Nd-doped calcium fluoride at a magnetic field higher than has previously been employed in an MRFM experiment, we found that even sample-on-cantilever experiments can be complicated by the cantilever's resonance frequency changing with magnetic field.

  1. Rotational quenching of CS in ultracold 3He collisions

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2016-08-01

    Quantum mechanical scattering calculations of rotational quenching of CS (v = 0) collision with 3He are performed at ultracold temperatures and results are compared with isotopic 4He collision. Rotational quenching cross sections and rate coefficients have been calculated in the ultracold region for rotational levels up to j = 10 using the He-CS potential energy surface computed at the CCSD(T)/aug-cc-pVQZ level of theory. The quenching cross sections are found to be two orders of magnitude larger for the 3He than the 4He isotope under ultracold conditions. Wigner threshold law is found to be valid below 10-3 K temperature.

  2. SOLAR SOURCES OF {sup 3}He-RICH SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 24

    SciTech Connect

    Nitta, Nariaki V.; Wang, Linghua; Cohen, Christina M. S.; Wiedenbeck, Mark E. E-mail: glenn.mason@jhuapl.edu E-mail: cohen@srl.caltech.edu

    2015-06-20

    Using high-cadence EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 {sup 3}He-rich solar energetic particle events at ≲1 MeV nucleon{sup −1} that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of {sup 3}He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, {sup 3}He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the {sup 3}He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous studies, the magnetic connection between the source region and the observer is not always reproduced adequately by the simple potential field source surface model combined with the Parker spiral. Instead, we find a broad longitudinal distribution of the source regions extending well beyond the west limb, with the longitude deviating significantly from that expected from the observed solar wind speed.

  3. Solar Sources of 3He-rich Solar Energetic Particle Events in Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki V.; Mason, Glenn M.; Wang, Linghua; Cohen, Christina M. S.; Wiedenbeck, Mark E.

    2015-06-01

    Using high-cadence EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 3He-rich solar energetic particle events at ≲1 MeV nucleon-1 that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of 3He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, 3He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the 3He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous studies, the magnetic connection between the source region and the observer is not always reproduced adequately by the simple potential field source surface model combined with the Parker spiral. Instead, we find a broad longitudinal distribution of the source regions extending well beyond the west limb, with the longitude deviating significantly from that expected from the observed solar wind speed.

  4. Zeeman relaxation of cold atomic iron and nickel in collisions with {sup 3}He

    SciTech Connect

    Johnson, Cort; Newman, Bonna; Kleppner, Daniel; Greytak, Thomas J.; Brahms, Nathan; Doyle, John M.

    2010-06-15

    We have measured the ratio {gamma} of the diffusion cross section to the angular momentum reorientation cross section in the colliding Fe-{sup 3}He and Ni-{sup 3}He systems. Nickel (Ni) and iron (Fe) atoms are introduced via laser ablation into a cryogenically cooled experimental cell containing cold (<1 K) {sup 3}He buffer gas. Elastic collisions rapidly cool the translational temperature of the ablated atoms to the {sup 3}He temperature. {gamma} is extracted by measuring the decays of the atomic Zeeman sublevels. For our experimental conditions, thermal energy is comparable to the Zeeman splitting. As a result, thermal excitations between Zeeman sublevels significantly impact the observed decay. To determine {gamma} accurately, we introduce a model of Zeeman-state dynamics that includes thermal excitations. We find {gamma}{sub Ni-}{sup 3}{sub He}=5x10{sup 3} and {gamma}{sub Fe-}{sup 3}{sub He{<=}}3x10{sup 3} at 0.75 K in a 0.8-T magnetic field. These measurements are interpreted in the context of submerged shell suppression of spin relaxation, as studied previously in transition metals and rare-earth-metal atoms [C. I. Hancox, S. C. Doret, M. T. Hummon, R. V. Krems, and J. M. Doyle, Phys. Rev. Lett. 94, 013201 (2005); C. I. Hancox, S. C. Doret, M. T. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004); A. Buchachenko, G. Chaasiski, and M. Szczniak, Eur. Phys. J. D 45, 147 (2007)].

  5. Desktop fast-field cycling nuclear magnetic resonance relaxometer.

    PubMed

    Sousa, Duarte Mesquita; Marques, Gil Domingos; Cascais, José Manuel; Sebastião, Pedro José

    2010-07-01

    In this paper a new type of Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometer with low power consumption (200W) and cycle to cycle field stability better than 10(-4) is described. The new high-permeability magnet was designed to allow for good magnetic field homogeneity and allows for the sample rotation around an axis perpendicular to magnetic field, operating with magnetic fields between 0 and 0.21T. The power supply of the new relaxometer was specially developed in order to have steady state accurate currents and allow for magnetic field switching times less than 3ms. Additional control circuits were developed and included to compensate the Earth magnetic field component parallel to the field axis and to compensate for parasitic currents. The main aspects of the developed circuits together with some calibrating experimental results using the liquid crystal compounds 5CB and 8CB are presented and discussed.

  6. Current-induced spin torque resonance of a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Schreier, Michael; Chiba, Takahiro; Niedermayr, Arthur; Lotze, Johannes; Huebl, Hans; Geprägs, Stephan; Takahashi, Saburo; Bauer, Gerrit E. W.; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2015-10-01

    We report the observation of current-induced spin torque resonance in yttrium iron garnet/platinum bilayers. An alternating charge current at GHz frequencies in the platinum gives rise to dc spin pumping and spin Hall magnetoresistance rectification voltages, induced by the Oersted fields of the ac current and the spin Hall effect-mediated spin transfer torque. In ultrathin yttrium iron garnet films, we observe spin transfer torque actuated magnetization dynamics which are significantly larger than those generated by the ac Oersted field. Spin transfer torques thus efficiently couple charge currents and magnetization dynamics also in magnetic insulators, enabling charge current-based interfacing of magnetic insulators with microwave devices.

  7. Magnetic anisotropy of polycrystalline magnetoferritin investigated by SQUID and electron magnetic resonance

    NASA Astrophysics Data System (ADS)

    Moro, F.; de Miguel, R.; Jenkins, M.; Gómez-Moreno, C.; Sells, D.; Tuna, F.; McInnes, E. J. L.; Lostao, A.; Luis, F.; van Slageren, J.

    2014-06-01

    Magnetoferritin molecules with an average inorganic core diameter of 5.7±1.6 nm and polycrystalline internal structure were investigated by a combination of transmission electron microscopy, magnetic susceptibility, magnetization, and electron magnetic resonance (EMR) experiments. The temperature and frequency dependence of the magnetic susceptibility allowed for the determination of the magnetic anisotropy on an experimental time scale which spans from seconds to nanoseconds. In addition, angle-dependent EMR experiments were carried out for the determination of the nanoparticle symmetry and internal magnetic field. Due to the large surface to volume ratio, the nanoparticles show larger and uniaxial rather than cubic magnetic anisotropies compared to bulk maghemite and magnetite.

  8. Magnetic resonance imaging of transplanted stem cell fate in stroke.

    PubMed

    Aghayan, Hamid Reza; Soleimani, Masoud; Goodarzi, Parisa; Norouzi-Javidan, Abbas; Emami-Razavi, Seyed Hasan; Larijani, Bagher; Arjmand, Babak

    2014-05-01

    Nowadays, scientific findings in the field of regeneration of nervous system have revealed the possibility of stem cell based therapies for damaged brain tissue related disorders like stroke. Furthermore, to achieve desirable outcomes from cellular therapies, one needs to monitor the migration, engraftment, viability, and also functional fate of transplanted stem cells. Magnetic resonance imaging is an extremely versatile technique for this purpose, which has been broadly used to study stroke and assessment of therapeutic role of stem cells. In this review we searched in PubMed search engine by using following keywords; "Stem Cells", "Cell Tracking", "Stroke", "Stem Cell Transplantation", "Nanoparticles", and "Magnetic Resonance Imaging" as entry terms and based on the mentioned key words, the search period was set from 1976 to 2012. The main purpose of this article is describing various advantages of molecular and magnetic resonance imaging of stem cells, with focus on translation of stem cell research to clinical research.

  9. Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes

    NASA Astrophysics Data System (ADS)

    Hertel, Stefan Andreas; Wang, Xindi; Hosking, Peter; Simpson, M. Cather; Hunter, Mark; Galvosas, Petrik

    2015-07-01

    Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.

  10. Magnetic resonance spectroscopy and imaging for the study of fossils.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies.

  11. Development and application of methods to quantify spatial and temporal hyperpolarized 3He MRI ventilation dynamics: preliminary results in chronic obstructive pulmonary disease

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Wheatley, Andrew; McCormack, David G.; Parraga, Grace

    2010-03-01

    Hyperpolarized helium-3 (3He) magnetic resonance imaging (MRI) has emerged as a non-invasive research method for quantifying lung structural and functional changes, enabling direct visualization in vivo at high spatial and temporal resolution. Here we described the development of methods for quantifying ventilation dynamics in response to salbutamol in Chronic Obstructive Pulmonary Disease (COPD). Whole body 3.0 Tesla Excite 12.0 MRI system was used to obtain multi-slice coronal images acquired immediately after subjects inhaled hyperpolarized 3He gas. Ventilated volume (VV), ventilation defect volume (VDV) and thoracic cavity volume (TCV) were recorded following segmentation of 3He and 1H images respectively, and used to calculate percent ventilated volume (PVV) and ventilation defect percent (VDP). Manual segmentation and Otsu thresholding were significantly correlated for VV (r=.82, p=.001), VDV (r=.87 p=.0002), PVV (r=.85, p=.0005), and VDP (r=.85, p=.0005). The level of agreement between these segmentation methods was also evaluated using Bland-Altman analysis and this showed that manual segmentation was consistently higher for VV (Mean=.22 L, SD=.05) and consistently lower for VDV (Mean=-.13, SD=.05) measurements than Otsu thresholding. To automate the quantification of newly ventilated pixels (NVp) post-bronchodilator, we used translation, rotation, and scaling transformations to register pre-and post-salbutamol images. There was a significant correlation between NVp and VDV (r=-.94 p=.005) and between percent newly ventilated pixels (PNVp) and VDP (r=- .89, p=.02), but not for VV or PVV. Evaluation of 3He MRI ventilation dynamics using Otsu thresholding and landmark-based image registration provides a way to regionally quantify functional changes in COPD subjects after treatment with beta-agonist bronchodilators, a common COPD and asthma therapy.

  12. Precision neutron interferometric measurement of the n- 3He coherent neutron scattering length

    NASA Astrophysics Data System (ADS)

    Huffman, P. R.; Jacobson, D. L.; Schoen, K.; Arif, M.; Black, T. C.; Snow, W. M.; Werner, S. A.

    2004-07-01

    A measurement of the n- 3He coherent scattering length using neutron interferometry is reported. The result, bc =(5.8572±0.0072) fm , improves the measured precision of any single measurement of bc by a factor of eight; the previous world average, bc =(5.74±0.04) fm , now becomes bc =(5.853±0.007) fm . Measurements of the n-p , n-d , and n- 3He coherent scattering lengths have now been performed using the same technique, thus allowing one to extract the scattering length ratios: parameters that minimize systematic errors. We obtain values of bn 3He / bnp =(-1.5668±0.0021) and bnd / bnp =(-1.7828±0.0014) . Using the new world average value of bc and recent high-precision spin-dependent scattering length data also determined by neutron optical techniques, we extract new values for the bound singlet and triple scattering lengths of b0 =(9.949±0.027) fm and b1 =(4.488±0.017) fm for the n- 3He system. The free nuclear singlet and triplet scattering lengths are a0 =(7.456±0.020) fm and a1 =(3.363±0.013) fm . The coherent scattering cross section is σc =(4.305±0.007) b and the total scattering cross section is σs =(5.837±0.014) b . Comparisons of a0 and a1 to the only existing high-precision theoretical predictions for the n- 3He system, calculated using a resonating group technique with nucleon-nucleon potentials incorporating three-nucleon forces, have been performed. Neutron scattering length measurements in few-body systems are now sensitive enough to probe small effects not yet adequately treated in present theoretical models.

  13. Magnetic Resonance, Functional (fMRI) -- Brain

    MedlinePlus

    ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ... The images can then be examined on a computer monitor, transmitted electronically, printed or copied to a ...

  14. A Faraday effect position sensor for interventional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bock, M.; Umathum, R.; Sikora, J.; Brenner, S.; Aguor, E. N.; Semmler, W.

    2006-02-01

    An optical sensor is presented which determines the position and one degree of orientation within a magnetic resonance tomograph. The sensor utilizes the Faraday effect to measure the local magnetic field, which is modulated by switching additional linear magnetic fields, the gradients. Existing methods for instrument localization during an interventional MR procedure often use electrically conducting structures at the instruments that can heat up excessively during MRI and are thus a significant danger for the patient. The proposed optical Faraday effect position sensor consists of non-magnetic and electrically non-conducting components only so that heating is avoided and the sensor could be applied safely even within the human body. With a non-magnetic prototype set-up, experiments were performed to demonstrate the possibility of measuring both the localization and the orientation in a magnetic resonance tomograph. In a 30 mT m-1 gradient field, a localization uncertainty of 1.5 cm could be achieved. This paper has been presented in parts at the 11th Annual Meeting of the International Society for Magnetic Resonance in Medicine in Toronto, 2003.

  15. Magnetic resonance imaging in entomology: a critical review

    PubMed Central

    Hart, A.G.; Bowtell, R.W.; Köckenberger, W.; Wenseleers, T.; Ratnieks, F.L.W.

    2003-01-01

    Magnetic resonance imaging (MRI) enables in vivo imaging of organisms. The recent development of the magnetic resonance microscope (MRM) has enabled organisms within the size range of many insects to be imaged. Here, we introduce the principles of MRI and MRM and review their use in entomology. We show that MRM has been successfully applied in studies of parasitology, development, metabolism, biomagnetism and morphology, and the advantages and disadvantages relative to other imaging techniques are discussed. In addition, we illustrate the images that can be obtained using MRM. We conclude that although MRM has significant potential, further improvements to the technique are still desirable if it is to become a mainstream imaging technology in entomology. Abbreviation: CSI chemical shift imaging. The dependence of the resonance frequency of a nucleus on the chemical binding of the atom or molecule in which it is contained. (N)MRI (nuclear) magnetic resonance imaging MRM magnetic resonance microscopy Voxel A contraction for volume element, which is the basic unit of MR reconstruction; represented as a pixel in the display of the MR image. PMID:15841222

  16. Duffing oscillation-induced reversal of magnetic vortex core by a resonant perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Qiu, Z. Q.; Hwang, Chanyong

    2014-08-01

    Nonlinear dynamics of the magnetic vortex state in a circular nanodisk was studied under a perpendicular alternating magnetic field that excites the radial modes of the magnetic resonance. Here, we show that as the oscillating frequency is swept down from a frequency higher than the eigenfrequency, the amplitude of the radial mode is almost doubled to the amplitude at the fixed resonance frequency. This amplitude has a hysteresis vs. frequency sweeping direction. Our result showed that this phenomenon was due to a Duffing-type nonlinear resonance. Consequently, the amplitude enhancement reduced the vortex core-switching magnetic field to well below 10 mT. A theoretical model corresponding to the Duffing oscillator was developed from the Landau-Lifshitz-Gilbert equation to explore the physical origin of the simulation result. This work provides a new pathway for the switching of the magnetic vortex core polarity in future magnetic storage devices.

  17. Duffing oscillation-induced reversal of magnetic vortex core by a resonant perpendicular magnetic field

    PubMed Central

    Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Qiu, Z. Q.; Hwang, Chanyong

    2014-01-01

    Nonlinear dynamics of the magnetic vortex state in a circular nanodisk was studied under a perpendicular alternating magnetic field that excites the radial modes of the magnetic resonance. Here, we show that as the oscillating frequency is swept down from a frequency higher than the eigenfrequency, the amplitude of the radial mode is almost doubled to the amplitude at the fixed resonance frequency. This amplitude has a hysteresis vs. frequency sweeping direction. Our result showed that this phenomenon was due to a Duffing-type nonlinear resonance. Consequently, the amplitude enhancement reduced the vortex core-switching magnetic field to well below 10 mT. A theoretical model corresponding to the Duffing oscillator was developed from the Landau–Lifshitz–Gilbert equation to explore the physical origin of the simulation result. This work provides a new pathway for the switching of the magnetic vortex core polarity in future magnetic storage devices. PMID:25145837

  18. Duffing oscillation-induced reversal of magnetic vortex core by a resonant perpendicular magnetic field.

    PubMed

    Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Qiu, Z Q; Hwang, Chanyong

    2014-01-01

    Nonlinear dynamics of the magnetic vortex state in a circular nanodisk was studied under a perpendicular alternating magnetic field that excites the radial modes of the magnetic resonance. Here, we show that as the oscillating frequency is swept down from a frequency higher than the eigenfrequency, the amplitude of the radial mode is almost doubled to the amplitude at the fixed resonance frequency. This amplitude has a hysteresis vs. frequency sweeping direction. Our result showed that this phenomenon was due to a Duffing-type nonlinear resonance. Consequently, the amplitude enhancement reduced the vortex core-switching magnetic field to well below 10 mT. A theoretical model corresponding to the Duffing oscillator was developed from the Landau-Lifshitz-Gilbert equation to explore the physical origin of the simulation result. This work provides a new pathway for the switching of the magnetic vortex core polarity in future magnetic storage devices. PMID:25145837

  19. Duffing oscillation-induced reversal of magnetic vortex core by a resonant perpendicular magnetic field.

    PubMed

    Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Qiu, Z Q; Hwang, Chanyong

    2014-01-01

    Nonlinear dynamics of the magnetic vortex state in a circular nanodisk was studied under a perpendicular alternating magnetic field that excites the radial modes of the magnetic resonance. Here, we show that as the oscillating frequency is swept down from a frequency higher than the eigenfrequency, the amplitude of the radial mode is almost doubled to the amplitude at the fixed resonance frequency. This amplitude has a hysteresis vs. frequency sweeping direction. Our result showed that this phenomenon was due to a Duffing-type nonlinear resonance. Consequently, the amplitude enhancement reduced the vortex core-switching magnetic field to well below 10 mT. A theoretical model corresponding to the Duffing oscillator was developed from the Landau-Lifshitz-Gilbert equation to explore the physical origin of the simulation result. This work provides a new pathway for the switching of the magnetic vortex core polarity in future magnetic storage devices.

  20. Computation of flow pressure fields from magnetic resonance velocity mapping.

    PubMed

    Yang, G Z; Kilner, P J; Wood, N B; Underwood, S R; Firmin, D N

    1996-10-01

    Magnetic resonance phase velocity mapping has unrivalled capacities for acquiring in vivo multi-directional blood flow information. In this study, the authors set out to derive both spatial and temporal components of acceleration, and hence differences of pressure in a flow field using cine magnetic resonance velocity data. An efficient numerical algorithm based on the Navier-Stokes equations for incompressible Newtonian fluid was used. The computational approach was validated with in vitro flow phantoms. This work aims to contribute to a better understanding of cardiovascular dynamics and to serve as a basis for investigating pulsatile pressure/flow relationships associated with normal and impaired cardiovascular function. PMID:8892202

  1. Radiofrequency microcoils for magnetic resonance imaging and spectroscopy.

    PubMed

    Webb, A G

    2013-04-01

    Small radiofrequency coils, often termed "microcoils", have found extensive use in many areas of magnetic resonance. Their advantageous properties include a very high intrinsic sensitivity, a high (several MHz) excitation and reception bandwidth, the fact that large arrays can fit within the homogeneous volume of the static magnetic field, and the very high resonance frequencies (several GHz) that can be achieved. This review concentrates on recent developments in the construction of single and multiple RF microcoil systems, and new types of experiments that can be performed using such assemblies.

  2. [Neonatal cerebral venous thrombosis: diagnosis by magnetic resonance angiography].

    PubMed

    Puig, J; Pedraza, S; Méndez, J; Trujillo, A

    2006-01-01

    Neonatal cerebral venous thrombosis (NCVT) is a rare, severe neuropathology of multiple etiology and variable clinical presentation. We describe the case of a 25-day-old infant that presented with a tonic convulsion. Ultrasound examination showed tetraventricular hemorrhage. Magnetic resonance imaging (MRI) showed the presence of acute thrombosis of the deep and superficial venous systems associated to a hemorrhagic infarct of the left thalamus. Coagulation study revealed a deficit of protein C. Thrombosis of deep cerebral veins must be ruled out as a cause of a neonatal convulsive crisis. The presence of a hemorrhagic thalamic lesion supports the diagnosis of NCVT, which must in turn be confirmed by magnetic resonance angiography (MRA).

  3. Malformations of cortical development: 3T magnetic resonance imaging features

    PubMed Central

    Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa

    2015-01-01

    Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429

  4. Development of magnetic resonance technology for noninvasive boron quantification

    SciTech Connect

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.

  5. Functional magnetic resonance imaging in medicine and physiology

    SciTech Connect

    Moonen, C.T.W.; van Zijl, P.C.M.; Frank, J.A.; Bihan, D.L.; Becker, E.D. )

    1990-10-05

    Magnetic resonance imaging (MRI) is a well-established diagnostic tool that provides detailed information about macroscopic structure and anatomy. Recent advances in MRI allow the noninvasive spatial evaluation of various biophysical and biochemical processes in living systems. Specifically, the motion of water can be measured in processes such as vascular flow, capillary flow, diffusion, and exchange. In addition, the concentrations of various metabolites can be determined for the assessment of regional regulation of metabolism. Examples are given that demonstrate the use of functional MRI for clinical and research purposes. This development adds a new dimension to the application of magnetic resonance to medicine and physiology.

  6. Cranial and spinal magnetic resonance imaging: A guide and atlas

    SciTech Connect

    Daniels, D.L.; Haughton, V.M.

    1987-01-01

    This atlas provides a clinical guide to interpreting cranial and spinal magnetic resonance images. The book includes coverage of the cerebrum, temporal bone, and cervical, thoracic, and lumbar spine, with more than 400 scan images depicting both normal anatomy and pathologic findings. Introductory chapters review the practical physics of magnetic resonance (MR) imaging, offer guidelines for interpreting cranial MR scans, and provide coverage of each anatomic region of the cranium and spine. For each region, scans accompanied by captions, show normal anatomic sections matched with MR images. These are followed by MR scans depicting various disease states.

  7. Radiofrequency microcoils for magnetic resonance imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Webb, A. G.

    2013-04-01

    Small radiofrequency coils, often termed “microcoils”, have found extensive use in many areas of magnetic resonance. Their advantageous properties include a very high intrinsic sensitivity, a high (several MHz) excitation and reception bandwidth, the fact that large arrays can fit within the homogeneous volume of the static magnetic field, and the very high resonance frequencies (several GHz) that can be achieved. This review concentrates on recent developments in the construction of single and multiple RF microcoil systems, and new types of experiments that can be performed using such assemblies.

  8. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  9. Artifacts and pitfalls in shoulder magnetic resonance imaging.

    PubMed

    Marcon, Gustavo Felix; Macedo, Tulio Augusto Alves

    2015-01-01

    Magnetic resonance imaging has revolutionized the diagnosis of shoulder lesions, in many cases becoming the method of choice. However, anatomical variations, artifacts and the particularity of the method may be a source of pitfalls, especially for less experienced radiologists. In order to avoid false-positive and false-negative results, the authors carried out a compilation of imaging findings that may simulate injury. It is the authors' intention to provide a useful, consistent and comprehensive reference for both beginner residents and skilled radiologists who work with musculoskeletal magnetic resonance imaging, allowing for them to develop more precise reports and helping them to avoid making mistakes.

  10. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  11. Electron Paramagnetic Resonance of Single Magnetic Moment on a Surface

    PubMed Central

    Berggren, P.; Fransson, J.

    2016-01-01

    We address electron spin resonance of single magnetic moments in a tunnel junction using time-dependent electric fields and spin-polarized current. We show that the tunneling current directly depends on the local magnetic moment and that the frequency of the external electric field mixes with the characteristic Larmor frequency of the local spin. The importance of the spin-polarized current induced anisotropy fields acting on the local spin moment is, moreover, demonstrated. Our proposed model thus explains the absence of an electron spin resonance for a half integer spin, in contrast with the strong signal observed for an integer spin. PMID:27156935

  12. Magnetic resonance imaging using gadolinium-based contrast agents.

    PubMed

    Mitsumori, Lee M; Bhargava, Puneet; Essig, Marco; Maki, Jeffrey H

    2014-02-01

    The purpose of this article was to review the basic properties of available gadolinium-based magnetic resonance contrast agents, discuss their fundamental differences, and explore common and evolving applications of gadolinium-based magnetic resonance contrast throughout the body excluding the central nervous system. A more specific aim of this article was to explore novel uses of these gadolinium-based contrast agents and applications where a particular agent has been demonstrated to behave differently or be better suited for certain applications than the other contrast agents in this class.

  13. Magnetic resonance imaging as a tool for extravehicular activity analysis

    NASA Technical Reports Server (NTRS)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  14. Magnetic Resonance Spectroscopy of siRNA-Based Cancer Therapy

    PubMed Central

    Penet, Marie-France; Chen, Zhihang; Mori, Noriko; Krishnamachary, Balaji; Bhujwalla, Zaver M.

    2016-01-01

    Small interfering RNA (siRNA) is routinely used as a biological tool to silence specific genes, and is under active investigation in cancer treatment strategies. Noninvasive magnetic resonance spectroscopy (MRS) provides the ability to assess the functional effects of siRNA-mediated gene silencing in cultured cancer cells, and following nanoparticle-based delivery in tumors in vivo. Here we describe the use of siRNA to downregulate choline kinase, a critical enzyme in choline phospholipid metabolism of cancer cells and tumors, and the use of 1H MRS of cells and 1H magnetic resonance spectroscopic imaging (MRSI) of tumors to assess the efficacy of the downregulation. PMID:26530913

  15. Acoustic Spectroscopy of Superfluid 3He in Aerogel

    SciTech Connect

    Davis, J. P.; Choi, H.; Pollanen, J.; Halperin, W. P.

    2006-09-07

    We have designed an experiment to study the role of global anisotropic quasiparticle scattering on the dirty aerogel superfluid 3He system. We observe significant regions of two stable phases at temperatures below the superfluid transition at a pressure of 25 bar for a 98% aerogel.

  16. Minimal mass size of a stable {sup 3}He cluster

    SciTech Connect

    Guardiola, R.; Navarro, J.

    2005-03-01

    The minimal number of {sup 3}He atoms required to form a bound cluster has been estimated by means of a diffusion Monte Carlo procedure within the fixed-node approximation. Several importance sampling wave functions have been employed in order to consider different shell-model configurations. The resulting upper bound for the minimal number is 32 atoms.

  17. Progress in Polarized 3He Ion Source at RCNP

    SciTech Connect

    Tanaka, M.; Takahashi, Y.; Shimoda, T.; Yasui, S.; Yosoi, M.; Takahisa, K.; Shimakura, N.; Plis, Yu. A.; Donets, E. D.

    2007-06-13

    A long history on the polarized 3He ion source developed at RCNP is presented. We started with an 'OPPIS' (Optical Pumping Polarized Ion Source) and later found the fundamental difficulties in the OPPIS. To overcome them an 'EPPIS' (Electron Pumping Polarized Ion Source) was proposed and its validity was experimentally proven. However, a serious technical disadvantage was also found in the EPPIS. To avoid this disadvantage we proposed a new concept, 'SEPIS' (Spin Exchange Polarized Ion Source), which uses an enhanced spin-exchange cross section theoretically expected at low 3He+ incident energies in the 3He+ + Rb system. Next, we describe the present status of the SEPIS development: construction of a bench test device allowing the measurements of not only the spin-exchange cross sections {sigma}se but also the electron capture cross sections {sigma}ec for the 3He+ + Rb system. The latest experimental data on {sigma}ec are presented and compared with other previous experimental data and the theoretical calculations.Finally, a design study of the SEPIS for practical use in nuclear (cyclotron) and particle physics (synchrotron) is shortly mentioned.

  18. The use of plasmon resonances in thermally assisted magnetic recording

    SciTech Connect

    Zhang, Z.; Mayergoyz, I. D.

    2008-04-01

    The numerical study of plasmon resonances as optical means for light delivery in thermally assisted magnetic recording is reported. The analysis of two distinct designs is performed. In these designs, the plasmon resonances in metallic nanoparticles and perforated metallic nanofilms are used, respectively. The specific plasmon modes that create the strongest and well-localized (on nanoscale) optical fields have been identified. The issues of coupling of incident laser radiation to these plasmon modes as well as the sharpness of plasmon resonances are discussed.

  19. Thermal Transport by Ballistic Quasiparticles in Superfluid 3He-B in the Low Temperature Limit

    SciTech Connect

    Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Martin, H.; Pickett, G. R.; Roberts, J. E.; Tsepelin, V.

    2006-09-07

    In the temperature range below 0.2Tc, the gas of thermal excitations from the superfluid 3He-B ground state is in the ultra-dilute ballistic regime. Here we discuss preliminary measurements of the transport properties of this quasiparticle gas in a cell of cylindrical geometry with dimensions much smaller than any mean free path. The vertical cylinder, constructed from epoxy-coated paper, has vibrating wire resonator (VWR) heaters and thermometers at the top and bottom, and a small aperture at the top which provides the only exit for quasiparticles. Using the thermometer VWRs, we measure the difference in quasiparticle density between the top and bottom of the tube when we excite the top or bottom VWR heater. This gives information about the transport of energy along the cylindrical 3He sample and hence about the scattering behaviour involved when a quasiparticle impinges on the cylinder wall.

  20. Probing Bogoliubov Quasiparticles in Superfluid ^3He with a `Vibrating-Wire Like' MEMS Device

    NASA Astrophysics Data System (ADS)

    Defoort, M.; Dufresnes, S.; Ahlstrom, S. L.; Bradley, D. I.; Haley, R. P.; Guénault, A. M.; Guise, E. A.; Pickett, G. R.; Poole, M.; Woods, A. J.; Tsepelin, V.; Fisher, S. N.; Godfrin, H.; Collin, E.

    2016-05-01

    We have measured the interaction between superfluid ^3He-B and a micro-machined goalpost-shaped device at temperatures below 0.2 T_c. The measured damping follows well the theory developed for vibrating wires, in which the Andreev reflection of quasiparticles in the flow field around the moving structure leads to a nonlinear frictional force. At low velocities, the damping force is proportional to velocity, while it tends to saturate for larger excitations. Above a velocity of 2.6 mm s^{-1}, the damping abruptly increases, which is interpreted in terms of Cooper-pair breaking. Interestingly, this critical velocity is significantly lower than that reported with other mechanical probes immersed in superfluid ^3He. Furthermore, we report on a nonlinear resonance shape for large motion amplitudes that we interpret as an inertial effect due to quasiparticle friction, but other mechanisms could possibly be invoked as well.