Science.gov

Sample records for 3m selective separation

  1. Cost and Performance Report 3M Selective Separation Cartridges

    SciTech Connect

    Pickett, J.B.

    2000-12-19

    In the summer of 1998, the Department of Energy's Office of Environmental Management (EM-50) initiated a water treatment project through its Accelerated Site Technology Deployment (ASTD) program at the Savannah River Site (DOE-SR, 1999). The purpose of the ASTD project was to deploy new and innovative water treatment technologies - that offer significant improvements over existing baseline technologies - in the removal of cesium and strontium from contaminated water. One of the technologies selected by EM-50 was the Selective Separation Cartridge, based on an innovative membrane technology developed the 3M Co., St. Paul, MN (OST-2000).The Savannah River Site is committed to deploy this Selective Separation Cartridge technology at other appropriate locations. It may be appropriate for other Reactor Disassembly Basins, or in-situ groundwater remediation. The deployment of this technology will be considered strongly as opportunities present themselves. The primary lesson learned is to anticipate and plan to reduce the radiation dose from a Cs-137 removal system to As Low As Reasonably Achievable (ALARA) concept. 3M did not include any mitigating actions in their original design and fabrication, primarily because the system was completely constructed before WSRC became deeply involved with the 3M/EM-50 project.

  2. WATER AND WASTEWATER POLISHING USING 3M SELECTIVE SEPARATION REMEDIATION CARTRIDGE TECHNOLOGY

    SciTech Connect

    Hoffmann, K. M.; Scanlan, T. J.; Seely, D. C.

    2002-02-25

    3M has developed technology for selectively removing trace levels of dissolved contaminant materials from liquids using systems operating at flow rates up to 50 gallons per minute. This technology combines active particle chemistries with a particle-loaded membrane to achieve a new medium for liquid waste processing--a spiral wound filter cartridge. This technology has shown success by generating high decontamination factors and reducing contaminants to part per trillion levels. The spiral wound cartridge offers simplified installation, convenient replacement, and clean, easy disposal of a concentrated waste. By incorporating small, high surface area particles (5 to 80 microns) into a sturdy, yet porous, membrane greater removal efficiencies of even trace contaminants can be achieved at higher flow rates than with conventional column systems. In addition, the captive-particle medium prevents channeling of liquids and insures uniform flow across the sorbing particle surface. The cartridges fit into standard, commercially-available housings and whole system capital costs are substantially lower than those of column or reverse osmosis systems. Developmental work at high degrees of water polishing have included removal of mercury from contaminated wastewater, various radionuclides from process water, and organometallic species from surface water discharges. Laboratory testing and on-site demonstration data of these applications show the levels of success that have been achieved thus far.

  3. CARBON DIOXIDE SEPARATION BY SELECTIVE PERMEATION.

    DTIC Science & Technology

    CARBON DIOXIDE , SEPARATION), (*PERMEABILITY, CARBON DIOXIDE ), POROUS MATERIALS, SILICON COMPOUNDS, RUBBER, SELECTION, ADSORPTION, TEMPERATURE, PRESSURE, POLYMERS, FILMS, PLASTICS, MEMBRANES, HUMIDITY.

  4. Selective oxoanion separation using a tripodal ligand

    DOEpatents

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  5. Rare earth separations by selective borate crystallization

    PubMed Central

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation. PMID:28290448

  6. Rare earth separations by selective borate crystallization

    NASA Astrophysics Data System (ADS)

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-03-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation.

  7. Rare earth separations by selective borate crystallization.

    PubMed

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2017-03-14

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln(3+) coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation.

  8. Surface selective membranes for carbon dioxide separation

    SciTech Connect

    Luebke, D.R.; Pennline, H.W.; Myers, C.R.

    2005-09-01

    In this study, hybrid membranes have been developed for the selective separation of CO2 from mixtures containing H2. Beginning with commercially available Pall alumina membrane tubes with nominal pore diameter of 5 nm, hybrids were produced by silation with a variety of functionalities designed to facilitate the selective adsorption of CO2 onto the pore surface. The goal is to produce a membrane which can harness the power of surface diffusion to give the selectivity of polymer membranes with the permeance of inorganic membranes.

  9. Solvent System Selection Strategies in Countercurrent Separation

    PubMed Central

    Liu, Yang; Friesen, J. Brent; McAlpine, James B.; Pauli, Guido F.

    2015-01-01

    The majority of applications in countercurrent and centrifugal partition chromatography, collectively known as countercurrent separation, are dedicated to medicinal plant and natural product research. In countercurrent separation, the selection of the appropriate solvent system is of utmost importance as it is the equivalent to the simultaneous choice of column and eluent in liquid chromatography. However, solvent system selection is often laborious, involving extensive partition and/or analytical trials. Therefore, simplified solvent system selection strategies that predict the partition coefficients and, thus, analyte behavior are in high demand and may advance both the science of countercurrent separation and its applications. The last decade of solvent system selection theory and applications are critically reviewed, and strategies are classified according to their data input requirements. This offers the practitioner an up-to-date overview of rationales and methods for choosing an efficient solvent system, provides a perspective regarding their accuracy, reliability, and practicality, and discusses the possibility of combining multiple methods for enhanced prediction power. PMID:26393937

  10. Evaluation of 3M molecular detection assay (MDA) Salmonella for the detection of Salmonella in selected foods: collaborative study.

    PubMed

    Bird, Patrick; Fisher, Kiel; Boyle, Megan; Huffman, Travis; Benzinger, M Joseph; Bedinghaus, Paige; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Benesh, DeAnn; David, John

    2013-01-01

    The 3M Molecular Detection Assay (MDA) Salmonella is used with the 3M Molecular Detection System for the detection of Salmonella spp. in food, food-related, and environmental samples after enrichment. The assay utilizes loop-mediated isothermal amplification to rapidly amplify Salmonella target DNA with high specificity and sensitivity, combined with bioluminescence to detect the amplification. The 3M MDA Salmonella method was compared using an unpaired study design in a multilaboratory collaborative study to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG 4.05), Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products for raw ground beef and the U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference method for wet dog food following the current AOAC guidelines. A total of 20 laboratories participated. For the 3M MDA Salmonella method, raw ground beef was analyzed using 25 g test portions, and wet dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each matrix were analyzed. Each matrix was artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1512 unpaired replicate samples were analyzed. Statistical analysis was conducted according to the probability of detection (POD). For the low-level raw ground beef test portions, the following dLPOD (difference between the POD of the reference and candidate method) values with 95% confidence intervals were obtained: -0.01 (-0.14, +0.12). For the low-level wet dog food test portions, the following dLPOD with 95% confidence intervals were obtained: -0.04 (-0.16, +0.09). No significant differences were observed in the number of positive

  11. Sample selection and testing of separation processes

    NASA Technical Reports Server (NTRS)

    Karr, L. J.

    1985-01-01

    Phase partitioning, which has become an important tool for the separation and purification of biological materials, was studied. Instruments available for this technique were researched and a countercurrent distribution apparatus, the Biosheff MK2N, was purchased. Various proteins, polysaccharides and cells were studied as models to determine operating procedures and conditions for this piece of equipment. Results were compared with those obtained from other similar equipment, including a nonsynchronous coil planet centrifuge device. Additionally, work was done with affinity ligands attached to PEG, which can further enhance the separation capabilities of phase partitioning.

  12. Isotope separation by selective photodissociation of glyoxal

    DOEpatents

    Marling, John B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

  13. Engineering High-Fidelity Residue Separations for Selective Harvest

    SciTech Connect

    Kevin L. Kenney; Christopher T. Wright; Reed L. Hoskinson; J. Rochard Hess; David J. Muth, Jr.

    2006-07-01

    Composition and pretreatment studies of corn stover and wheat stover anatomical fractions clearly show that some corn and wheat stover anatomical fractions are of higher value than others as a biofeedstock. This premise, along with soil sustainability and erosion control concerns, provides the motivation for the selective harvest concept for separating and collecting the higher value residue fractions in a combine during grain harvest. This study recognizes the analysis of anatomical fractions as theoretical feedstock quality targets, but not as practical targets for developing selective harvest technologies. Rather, practical quality targets were established that identified the residue separation requirements of a selective harvest combine. Data are presented that shows that a current grain combine is not capable of achieving the fidelity of residue fractionation established by the performance targets. However, using a virtual engineering approach, based on an understanding of the fluid dynamics of the air stream separation, the separation fidelity can be significantly improved without significant changes to the harvester design. A virtual engineering model of a grain combine was developed and used to perform simulations of the residue separator performance. The engineered residue separator was then built into a selective harvest test combine, and tests performed to evaluate the separation fidelity. Field tests were run both with and without the residue separator installed in the test combine, and the chaff and straw residue streams were collected during harvest of Challis soft white spring wheat. The separation fidelity accomplished both with and without the residue separator was quantified by laboratory screening analysis. The screening results showed that the engineered baffle separator did a remarkable job of effecting high-fidelity separation of the straw and chaff residue streams, improving the chaff stream purity and increasing the straw stream yield.

  14. Methods for selective functionalization and separation of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H (Inventor); Smalley, Richard E. (Inventor); Marek, legal representative, Irene Marie (Inventor)

    2011-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  15. Highly Selective Separation of DNA Fragments Using Optically Directed Transport

    SciTech Connect

    Braiman, Avital; Rudakov, Fedor M; Thundat, Thomas George

    2010-01-01

    We present a design that allows selective separation of biomolecules of a particular size without performing complete separation of the sample by size. By focusing a laser beam onto a photoelectrode in contact with an electrolyte medium, a highly localized and optically controlled photoelectrophoretic trap is created. Moving the light beam along the photoelectrode consequently moves the trap. We demonstrate that by manipulating the speed of the photoelectrophoretic trap biomolecules of a particular size can be selectively separated from the mixture. We achieve a qualitative agreement between our experimental results and numerical simulations.

  16. Selective gas adsorption and separation in metal-organic frameworks.

    PubMed

    Li, Jian-Rong; Kuppler, Ryan J; Zhou, Hong-Cai

    2009-05-01

    Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal-organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

  17. Selective separation of pyrite and chalcopyrite by biomodulation.

    PubMed

    Chandraprabha, M N; Natarajan, K A; Modak, Jayant M

    2004-09-01

    Selective separation of pyrite from other associated ferrous sulphides at acidic and neutral pH has been a challenging problem. This paper discusses the utility of Acidithiobacillus ferrooxidans for the selective flotation of chalcopyrite from pyrite. Consequent to interaction with bacterial cells, pyrite remained depressed even in the presence of potassium isopropyl xanthate collector while chalcopyrite exhibited significant flotability. However, when the minerals were conditioned together, the selectivity achieved was poor due to the activation of pyrite surface by the copper ions in solution. The selectivity was improved when the sequence of conditioning with bacterial cells and collector was reversed, since the bacterial cells were able to depress collector interacted pyrite effectively, while having negligible effect on chalcopyrite. The observed behaviour is analysed and discussed in detail. The separation obtained was significant both at acidic and alkaline pH. This selectivity achieved was retained when the minerals were interacted with both bacterial cells and collector simultaneously.

  18. Hybrid Ultramicroporous Materials for Selective Xe Adsorption and Separation

    SciTech Connect

    Mohamed, Mona H.; Elsaidi, Sameh K.; Pham, Tony; Forrest, Katherine A.; Schaef, Herbert T.; Hogan, Adam; Wojtas, Lukasz; Xu, Wenqian; Space, Brian; Zaworotko, Michael J.; Thallapally, Praveen K.

    2016-01-01

    The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, there is a need to develop less energy intensive alternatives such as physisorptive separation using porous materials. Here we show that an underexplored class of porous materials called hybrid ultramicroporous materials (HUMs) based upon inorganic and organic building blocks affords new benchmark selectivity for Xe separation from Xe/Kr mixtures. The isostructural materials, CROFOUR-1-Ni and CROFOUR-2-Ni, are coordination networks that exhibit coordinatively saturated metal centres and two distinct types of micropores, one of which is lined by CrO42- (CROFOUR) anions and the other is decorated by the functionalized organic linker. These nets offer unprecedented selectivity towards Xe, and also address processing and stability limitations of existing porous materials. Modelling experiments indicate that the extraordinary selectivity of these nets is tailored by synergy between the pore size, which is just above the kinetic diameter of Xe, and the strong electrostatics afforded by the CrO42- anions. Column breakthrough experiments demonstrate the potential of the practical use of these materials in Xe/Kr separation at low concentrations at the levels relevant to Xe capture from air and in nuclear fuel reprocessing.

  19. High selectivity ZIF-93 hollow fiber membranes for gas separation.

    PubMed

    Cacho-Bailo, Fernando; Caro, Guillermo; Etxeberría-Benavides, Miren; Karvan, Oğuz; Téllez, Carlos; Coronas, Joaquín

    2015-06-30

    Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

  20. Chromatographic selectivity study of 4-fluorophenylacetic acid positional isomers separation.

    PubMed

    Chasse, Tyson; Wenslow, Robert; Bereznitski, Yuri

    2007-07-13

    Unique properties of the fluorine atom stimulate widespread use and development of new organofluorine compounds in agrochemistry, biotechnology and pharmacology applications. However, relatively few synthetic methods exhibit a high degree of fluorination selectivity, which ultimately results in the presence of structurally related fluorinated isomers in the synthetic product. This outcome is undesirable from a pharmaceutical perspective as positional isomers possess different reactivity, biological activity and toxicity as compared to the desired product. It is advantageous to control positional isomers in the early stages of the synthetic process, as rejection and analysis of these isomers will likely become more difficult in later stages. The current work reports the development of a chromatographic analysis of 2- and 3-fluorophenylacetic acid positional isomer impurities in 4-fluorophenylacetic acid (4-FPAA), a building block in the synthesis of an active pharmaceutical ingredient. The method is employed as a part of a Quality by Design Approach to control purity of the starting material in order to eliminate the presence of undesirable positional isomers in the final drug substance. During method development, a wide range of chromatographic conditions and structurally related positional isomer probe molecules were exploited in an effort to gain insight into the specifics of the separation mechanism. For the systems studied it was shown that the choice of organic modifier played a key role in achieving acceptable separation. Further studies encompassed investigation of temperature influence on retention and selectivity of the FPAA isomers separation. Thermodynamic analysis of these data showed that the selectivity of the 2- and 4- fluorophenylacetic acids separation was dominated by an enthalpic process, while the selectivity of the 4- and 3-fluorophenylacetic acids separation was exclusively entropy driven (Delta(DeltaH degrees approximately 0). Studies of

  1. Selective separation of ultra-fine particles by magnetophoresis

    SciTech Connect

    Ying, T.; Prenger, F. Coyne; Wingo, R. M.; Worl, L. A.

    2002-01-01

    The selective and-specific extraction of species of interest fiom local environmental and other sample sources are importaut fbr scientific research, industrial processes, and environmental applications. A novel process for selective separation of ultrafine particles using 'magnetophoresis' is investigated. The principle of this process is that the direction and velocity of particle movement in a magnetic field are determined by magnetic, gravitational, and drag fbrces. By controlling these fbrces, one is able to control the migration rates of different species and then magnetically fiactionate mixtures of species into discrete groups. This study demonstrated for the fist time the selective separation of various species, such as iron (111) oxide, cupric (11) oxide, samarium (In) oxide, and cerium (III) oxide, by magnetophoresis. To better understand this phenomenon, a fbrce-balance model was developed that provides a good interpretation of the experimental results.

  2. Transport Selectivity of Nuclear Pores, Phase Separation, and Membraneless Organelles.

    PubMed

    Schmidt, H Broder; Görlich, Dirk

    2016-01-01

    Nuclear pore complexes (NPCs) provide a selective passageway for receptor-mediated active transport between nucleus and cytoplasm, while maintaining the distinct molecular compositions of both compartments at large. In this review we discuss how NPCs gain a remarkable sorting selectivity from non-globular FG domains and their phase separation into dense polymer meshworks. The resulting sieve-like FG hydrogels are effective barriers to normal macromolecules but are at the same time highly permeable to shuttling nuclear transport receptors, which bind to FG motifs as well as to their designated cargoes. Phase separation driven by disordered protein domains was recently also recognized as being pivotal to the formation of membraneless organelles, making it an important emerging principle in cell biology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Improved separate solution method for determination of low selectivity coefficients.

    PubMed

    Egorov, Vladimir V; Zdrachek, Elena A; Nazarov, Valentine A

    2014-04-15

    Simple, fast, and theoretically substantiated experimental method for determination of improved selectivity coefficients is proposed. The method is based on the well-known fact that low selectivity coefficients determined by the separate solution method (SSM) are time-dependent and, upon our finding, this dependence is a well-defined linear function of time raised to the certain negative power. In particular, the selectivity coefficients obtained for equally charged primary and foreign ions by SSM linearly depend on time to the minus one-fourth. It was found that extrapolation of experimental data using this function to the intersection with Y axes gives reliable values of rather low selectivity coefficients (down to n × 10(-7)), which strongly differ from those measured using SSM and correspond well with the values obtained using the modified separate solution method (MSSM) proposed by Bakker. At the same time, the new method is free of one very essential limitation inherent to MSSM, namely, it is applicable after the conditioning of electrodes in the primary ion solution and can be repeated many times.

  4. (1) Selective separation and solidification of radioactive nuclides by zeolites

    NASA Astrophysics Data System (ADS)

    Mimura, Hitoshi; Sato, Nobuaki; Kirishima, Akira

    Massive tsunami generated by the Great East Japan Earthquake attacked the Fukushima Daiichi Nuclear Power Plant and caused the nuclear accident of level 7 to overturn the safety myth of the nuclear power generation. The domestic worst accident does not yet reach the convergence, and many inhabitants around the power plant are forced to double pains of earthquake disaster and nuclear accident. Large amounts of high-activity-level water over 200,000 tons are accumulated on the basement floor of each turbine building, which is a serious obstacle to take measures for the nuclear accident. For the decontamination of high-activity-level water containing seawater, the inorganic ion-exchangers having high selectivity are effective especially for the selective removal of radioactive Cs. On the other hand, radioactive Cs and I released into the atmosphere from the power plant spread widely around Fukushima prefecture, and the decontamination of rainwater and soil become the urgent problem. At present, passing about four months after nuclear accident, the radioactive nuclides of 137Cs and 134Cs are mainly contained in the high-activity-level water and the selective adsorbents for radioactive Cs play an important part in the decontamination. Since the construction of original decontamination system is an urgent necessity, selective separation methods using inorganic ion-exchangers are greatly expected. From the viewpoint of cost efficiency and high Cs-selectivity, natural zeolites are effective for the decontamination of radioactive Cs. This special issue deals with the selective separation and solidification of radioactive Cs and Sr using zeolites.

  5. How Many Separable Sources? Model Selection In Independent Components Analysis

    PubMed Central

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  6. MCM-22/silica selective flake nanocomposite membranes for hydrogen separations.

    PubMed

    Choi, Jungkyu; Tsapatsis, Michael

    2010-01-20

    MCM-22/silica composite films were fabricated using layer-by-layer deposition toward a nanoscale realization of the selective flake concept first proposed by Cussler in (J. Membr. Sci. 1990, 52 (3), 275-288). According to this concept, considerable zeolitic transport selectivity can be harvested if plate-like zeolite particles were oriented flat within an appropriate thin film matrix. c-Out-of-plane oriented MCM-22 flakes were chosen because of the expected H(2)-selective (over other permanent gases) molecular sieving action through their c-axis-transport-limiting aperture defined by six SiO(4) tetrahedra. To fill the gaps between MCM-22 particles the evaporation induced self-assembled (EISA) mesoporous silica, introduced by Brinker et al. in (Nature 1997, 389 (6649), 364-368), was selected as a tunable matrix, through which Knudsen diffusion would be the dominant transport mechanism for permanent gases. The repetition of appropriate deposition cycles (i.e., particle deposition and subsequent silica coating) led to the gradual increase of separation performance achieving H(2)/N(2) ideal selectivity as high as 120.

  7. Chemical Lead Optimization of a pan Gq mAChR M1, M3, M5 Positive Allosteric Modulator (PAM) Lead. Part II. Development of potent and highly selective M1 PAM

    PubMed Central

    Bridges, Thomas M.; Kennedy, J. Phillip; Noetzel, Meredith J.; Breininger, Micah L.; Gentry, Patrick R.; Conn, P. Jeffrey

    2010-01-01

    This Letter describes a chemical lead optimization campaign directed at VU0119498, a pan Gq mAChR M1, M3, M5 positive allosteric modulator (PAM) with the goal of developing a selective M1 PAM. An iterative library synthesis approach delivered a potent (M1 EC50 = 830 nM) and highly selective M1 PAM (>30 μM vs. M2-M5). PMID:20156687

  8. SELECTIVE SEPARATION OF URANIUM FROM FERRITIC STAINLESS STEELS

    DOEpatents

    Beaver, R.J.; Cherubini, J.H.

    1963-05-14

    A process is described for separating uranium from a nuclear fuel element comprising a uranium-containing core and a ferritic stainless steel clad by heating said element in a non-carburizing atmosphere at a temperature in the range 850-1050 un. Concent 85% C, rapidly cooling the heated element through the temperature range 815 un. Concent 85% to 650 EC to avoid annealing said steel, and then contacting the cooled element with an aqueous solution of nitric acid to selectively dissolve the uranium. (AEC)

  9. Charged ultrafiltration membranes increase the selectivity of whey protein separations.

    PubMed

    Bhushan, S; Etzel, M R

    2009-04-01

    Ultrafiltration is widely used to concentrate proteins, but fractionation of one protein from another is much less common. This study examined the use of positively charged membranes to increase the selectivity of ultrafiltration and allow the fractionation of proteins from cheese whey. By adding a positive charge to ultrafiltration membranes, and adjusting the solution pH, it was possible to permeate proteins having little or no charge, such as glycomacropeptide, and retain proteins having a positive charge. Placing a charge on the membrane increased the selectivity by over 600% compared to using an uncharged membrane. The data were fit using the stagnant film model that relates the observed sieving coefficient to membrane parameters such as the flux, mass transfer coefficient, and membrane Peclet number. The model was a useful tool for data analysis and for the scale up of membrane separations for whey protein fractionation.

  10. Feature Subset Selection, Class Separability, and Genetic Algorithms

    SciTech Connect

    Cantu-Paz, E

    2004-01-21

    The performance of classification algorithms in machine learning is affected by the features used to describe the labeled examples presented to the inducers. Therefore, the problem of feature subset selection has received considerable attention. Genetic approaches to this problem usually follow the wrapper approach: treat the inducer as a black box that is used to evaluate candidate feature subsets. The evaluations might take a considerable time and the traditional approach might be unpractical for large data sets. This paper describes a hybrid of a simple genetic algorithm and a method based on class separability applied to the selection of feature subsets for classification problems. The proposed hybrid was compared against each of its components and two other feature selection wrappers that are used widely. The objective of this paper is to determine if the proposed hybrid presents advantages over the other methods in terms of accuracy or speed in this problem. The experiments used a Naive Bayes classifier and public-domain and artificial data sets. The experiments suggest that the hybrid usually finds compact feature subsets that give the most accurate results, while beating the execution time of the other wrappers.

  11. Direction selectivity and spatiotemporal separability in simple cortical cells.

    PubMed

    García-Pérez, M A

    1999-01-01

    Simple cells in mammalian visual cortex are quasi-linear mechanisms whose behavior departs from true linearity in a very consistent manner. Empirical research on direction selectivity (DS) clearly illustrates these characteristics. A linear DS cell will be DS for all stimuli, whereas a linear non-DS cell will not be DS for any stimuli. However, many simple cells have opposite preferred directions for stimuli of reversed polarity, and some cells are DS for some stimuli (e.g., moving bars) but not for others (e.g., drifting gratings). Also, linear non-DS cells must have separable spatiotemporal receptive fields (RFs), and linear DS cells must have inseparable RFs. Yet many actual DS cells have separable RFs. Here we present a nonlinear model of simple-cell behavior that reproduces all of these empirical behaviors. The model is a variant of the current linear model, amended to include an interleaved nonlinearity (half-wave rectification) that allows it to mimic the (im)balance of push-pull mechanisms. We present simulation results showing that balanced push-pull mechanisms result in linear behavior, while imbalanced push-pull arrangements produce all of the incongruent DS-related behaviors that have been reported for simple cells.

  12. Recursive Mahalanobis separability measure for gene subset selection.

    PubMed

    Mao, K Z; Tang, Wenyin

    2011-01-01

    Mahalanobis class separability measure provides an effective evaluation of the discriminative power of a feature subset, and is widely used in feature selection. However, this measure is computationally intensive or even prohibitive when it is applied to gene expression data. In this study, a recursive approach to Mahalanobis measure evaluation is proposed, with the goal of reducing computational overhead. Instead of evaluating Mahalanobis measure directly in high-dimensional space, the recursive approach evaluates the measure through successive evaluations in 2D space. Because of its recursive nature, this approach is extremely efficient when it is combined with a forward search procedure. In addition, it is noted that gene subsets selected by Mahalanobis measure tend to overfit training data and generalize unsatisfactorily on unseen test data, due to small sample size in gene expression problems. To alleviate the overfitting problem, a regularized recursive Mahalanobis measure is proposed in this study, and guidelines on determination of regularization parameters are provided. Experimental studies on five gene expression problems show that the regularized recursive Mahalanobis measure substantially outperforms the nonregularized Mahalanobis measures and the benchmark recursive feature elimination (RFE) algorithm in all five problems.

  13. Source separation, selective collection and in reactor digestion of biowaste.

    PubMed

    Gellens, V; Boelens, J; Verstraete, W

    1995-01-01

    Biowaste or the organic fraction of domestic waste, for instance kitchen, fruit and garden waste, is collected selectively in several European communities. The complementary fraction is called the dry or non recyclable fraction. A Dutch study reported that 92% of the participants that have a weekly collection service of both fractions (biowaste and non recyclable fraction) and 80% of the participants in the alternating collection program (one week biowaste and the next week non recyclable fraction) are pleased with separate collection of biowaste. Dominating problems that arise in case of alternating collection are a repulsive odor and an infestation with flies and maggots. By expanding the definition of biowaste to include non recyclable or soiled paper like dirty newspapers, table napkins and paper handkerchiefs, most of these problems can be overcome without changing the way compostable waste is collected and processed. The expanded definition of biowaste was used in this paper. Over a 12 month period a quality survey of the collected biowaste was conducted by the composting facility Intercompost, Hoeselt, Belgium. A special aspect was the fact that in one participating community baby diapers were included in the soiled paper fraction; this is called "biowaste+". The biowaste+ had a 10% non recyclable paper fraction opposed to only 1-2% of non recyclable paper present in the conventional biowaste. Baby diapers were a rather notable part (more than 80%) of this non recyclable paper fraction of biowaste+ and as a consequence might contribute to a large extent to improve the collection and treatment of biowaste. It was demonstrated that rural districts yielded about 35% more biowaste than more urban districts; resp. +/- 122 kg biowaste/capita. year versus +/- 90 kg biowaste/capita. year. In Hoeselt the biowaste+ yield was about 130 kg/capita.year. Biowaste+ is also separately collected in another Belgium community, namely Brecht. The purity level of the biowaste

  14. Homogeneous liquid-liquid extraction method for the selective separation and preconcentration of ultra trace molybdenum.

    PubMed

    Ghiasvand, A R; Shadabi, S; Mohagheghzadeh, E; Hashemi, P

    2005-05-15

    A new simple and efficient homogeneous liquid-liquid extraction method for the selective separation and preconcentration of molybdenyl ions was developed. alpha-Benzoin oxime (ABO) was investigated as a complexing ligand, and perfluorooctanoate ion (PFOA(-)) was applied as a phase-separator agent under strongly acidic conditions. Under the optimal conditions ([ABO]=2.1x10(-3)M, [PFOA(-)]=1.8x10(-2)M, [HNO(3)]=1.7M, [acetone]=11.8% (v/v)), 10mug of molybdenum in 5ml aqueous phase could be extracted quantitatively into 40mul of the sedimented phase. The maximum concentration factor was 125-fold. Thiocyanate was applied as a chromogenic reagent for the direct spectrophotometric determination of molybdenum in the sedimented phase. The reproducibility of the proposed method is at the most 2.4%. The influence of the type and concentration of acid solution, the concentration of ABO, the type and volume of the water-miscible organic solvent, the concentration of PFOA(-), and the effect of different diverse ions on the extraction and determination of molybdenum(VI) were investigated. The proposed method was applied to the extraction and determination of molybdenum(VI) in natural water, Spinach, and Lucerne samples. A satisfactory agreement exists between the results obtained by the proposed method and those reported by GF-AAS.

  15. Functionalized membranes for environmental remediation and selective separation

    NASA Astrophysics Data System (ADS)

    Xiao, Li

    Membrane process including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) have provided numerous successful applications ranging from drinking water purification, wastewater treatment, to material recovery. The addition of functional moiety in the membranes pores allows such membranes to be used in challenging areas including tunable separations, toxic metal capture, and catalysis. In this work, polyvinylidene fluoride (PVDF) MF membrane was functionalized with temperature responsive (poly(N-isopropylacrylamide), PNIPAAm) and pH responsive (polyacrylic acid, PAA) polymers. It's revealed that the permeation of various molecules (water, salt and dextran) through the membrane can be thermally or pH controlled. The introduction of PAA as a polyelectrolyte offers an excellent platform for the immobilization of metal nanoparticles (NPs) applied for degradation of toxic chlorinated organics with significantly increased longevity and stability. The advantage of using temperature and pH responsive polymers/hydrogels also includes the high reactivity and effectiveness in dechlorination. Further advancement on the PVDF functionalization involved the alkaline treatment to create partially defluorinated membrane (Def-PVDF) with conjugated double bounds allowing for the covalent attachment of different polymers. The PAA-Def-PVDF membrane shows pH responsive behavior on both the hydraulic permeability and solute retention. The sponge-like PVDF (SPVDF) membranes by phase inversion were developed through casting PVDF solution on polyester backing. The SPVDF membrane was demonstrated to have 4 times more surface area than commercial PVDF MF membrane, allowing for enhanced nanoparticles loading for chloro-organics degradation. The advanced functionalization method and process were also validated to be able to be scaled-up through the evaluation of full-scale functionalized membrane provided by Ultura Inc. California, USA. Nanofiltration (NF

  16. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  17. Engineering α4β2 nAChRs with reduced or increased nicotine sensitivity via selective disruption of consensus sites in the M3-M4 cytoplasmic loop of the α4 subunit

    PubMed Central

    Biaggi-Labiosa, Nilza M.; Avilés-Pagán, Emir; Caballero-Rivera, Daniel; Báez-Pagán, Carlos; Lasalde-Dominicci, José A.

    2015-01-01

    The α4β2 neuronal nicotinic acetylcholine receptor (nAChR) plays a crucial role in nicotine addiction. These receptors are known to desensitize and up-regulate after chronic nicotine exposure, but the mechanism remains unknown. Currently, the structure and functional role of the intracellular domains of the nAChR are obscure. To study the effect of subunit phosphorylation on α4β2 nAChR function and expression, eleven residues located in the M3-M4 cytoplasmic loop were mutated to alanine and aspartic acid. Two-electrode voltage clamp and 125I-labeled epibatidine binding assays were performed on Xenopus oocytes to assess agonist activation and receptor expression. When ACh was used as an agonist, a decrease in receptor activation was observed for the majority of the mutations. When nicotine was used as an agonist, four mutations exhibited a statistically significant hypersensitivity to nicotine (S438D, S469A, Y576A, and S589A). Additionally, two mutations (S516D and T536A) that displayed normal activation with ACh displayed remarkable reductions in sensitivity to nicotine. Binding assays revealed a constitutive up-regulation in these two nicotine mutations with reduced nicotine sensitivity. These results suggest that consensus phosphorylation residues in the M3-M4 cytoplasmic loop of the α4 subunit play a crucial role in regulating α4β2 nAChR agonist selectivity and functional expression. Furthermore, these results suggest that disruption of specific interactions at PKC putative consensus sites can render α4β2 nAChRs almost insensitive to nicotine without substantial effects on normal AChR function. Therefore, these PKC consensus sites in the M3-M4 cytoplasmic loop of the α4 nAChR subunit could be a target for smoking cessation drugs. PMID:25957813

  18. Engineering α4β2 nAChRs with reduced or increased nicotine sensitivity via selective disruption of consensus sites in the M3-M4 cytoplasmic loop of the α4 subunit.

    PubMed

    Biaggi-Labiosa, Nilza M; Avilés-Pagán, Emir; Caballero-Rivera, Daniel; Báez-Pagán, Carlos A; Lasalde-Dominicci, José A

    2015-12-01

    The α4β2 neuronal nicotinic acetylcholine receptor (nAChR) plays a crucial role in nicotine addiction. These receptors are known to desensitize and up-regulate after chronic nicotine exposure, but the mechanism remains unknown. Currently, the structure and functional role of the intracellular domains of the nAChR are obscure. To study the effect of subunit phosphorylation on α4β2 nAChR function and expression, eleven residues located in the M3-M4 cytoplasmic loop were mutated to alanine and aspartic acid. Two-electrode voltage clamp and 125I-labeled epibatidine binding assays were performed on Xenopus oocytes to assess agonist activation and receptor expression. When ACh was used as an agonist, a decrease in receptor activation was observed for the majority of the mutations. When nicotine was used as an agonist, four mutations exhibited a statistically significant hypersensitivity to nicotine (S438D, S469A, Y576A, and S589A). Additionally, two mutations (S516D and T536A) that displayed normal activation with ACh displayed remarkable reductions in sensitivity to nicotine. Binding assays revealed a constitutive up-regulation in these two nicotine mutations with reduced nicotine sensitivity. These results suggest that consensus phosphorylation residues in the M3-M4 cytoplasmic loop of the α4 subunit play a crucial role in regulating α4β2 nAChR agonist selectivity and functional expression. Furthermore, these results suggest that disruption of specific interactions at PKC putative consensus sites can render α4β2 nAChRs almost insensitive to nicotine without substantial effects on normal AChR function. Therefore, these PKC consensus sites in the M3-M4 cytoplasmic loop of the α4 nAChR subunit could be a target for smoking cessation drugs.

  19. Dynamic graphene filters for selective gas-water-oil separation.

    PubMed

    Bong, Jihye; Lim, Taekyung; Seo, Keumyoung; Kwon, Cho-Ah; Park, Ju Hyun; Kwak, Sang Kyu; Ju, Sanghyun

    2015-09-23

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries.

  20. Dynamic graphene filters for selective gas-water-oil separation

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Lim, Taekyung; Seo, Keumyoung; Kwon, Cho-Ah; Park, Ju Hyun; Kwak, Sang Kyu; Ju, Sanghyun

    2015-09-01

    Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries.

  1. Selectivity trend of gas separation through nanoporous graphene

    DOE PAGES

    Liu, Hongjun; Chen, Zhongfang; Dai, Sheng; ...

    2014-01-29

    We demonstrate that porous graphene can efficiently separate gases according to their molecular sizes using molecular dynamic (MD) simulations,. The flux sequence from the classical MD simulation is H2>CO2>>N2>Ar>CH4, which generally follows the trend in the kinetic diameters. Moreover, this trend is also confirmed from the fluxes based on the computed free energy barriers for gas permeation using the umbrella sampling method and kinetic theory of gases. Both brute-force MD simulations and free-energy calcualtions lead to the flux trend consistent with experiments. Case studies of two compositions of CO2/N2 mixtures further demonstrate the separation capability of nanoporous graphene.

  2. Selectivity trend of gas separation through nanoporous graphene

    SciTech Connect

    Liu, Hongjun; Chen, Zhongfang; Dai, Sheng; Jiang, De-en

    2014-01-29

    We demonstrate that porous graphene can efficiently separate gases according to their molecular sizes using molecular dynamic (MD) simulations,. The flux sequence from the classical MD simulation is H2>CO2>>N2>Ar>CH4, which generally follows the trend in the kinetic diameters. Moreover, this trend is also confirmed from the fluxes based on the computed free energy barriers for gas permeation using the umbrella sampling method and kinetic theory of gases. Both brute-force MD simulations and free-energy calcualtions lead to the flux trend consistent with experiments. Case studies of two compositions of CO2/N2 mixtures further demonstrate the separation capability of nanoporous graphene.

  3. WATER SEPARATION BY SELECTIVE PERMEATION THROUGH MICROPOROUS MATERIALS

    DTIC Science & Technology

    cellulose acetate to transmit water vapor but to block the passage of permanent gases. A modified dry-vane type commercial compressor was used to produce a high suction level. While positive evidence of vapor transfer and water condensation were observed, problems of complete edgewise sealing of the cellulose acetate membrane and the cooling and suction limitations of the oil-free, modified commercial pump precluded achievement of design water removal rates. Further work to perfect water droplet separation from air

  4. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  5. Metal-Organic Frameworks for Highly Selective Separations

    SciTech Connect

    Omar M. Yaghi

    2009-09-28

    This grant was focused on the study of metal-organic frameworks with these specific objectives. (1) To examine the use of MOFs with well-defined open metal sites for binding of gases and small organics. (2) To develop a strategy for producing MOFs that combine large pore size with high surface area for their use in gas adsorption and separation of polycyclic organic compounds. (3) To functionalize MOFs for the storage of inert gases such as methane. A brief outline of our progress towards these objectives is presented here as it forms part of the basis for the ideas to be developed under the present proposal.

  6. Creating breakthroughs at 3M.

    PubMed

    von Hippel, E; Thomke, S; Sonnack, M

    1999-01-01

    Most senior managers want their product development teams to create break-throughs--new products that will allow their companies to grow rapidly and maintain high margins. But more often they get incremental improvements to existing products. That's partly because companies must compete in the short term. Searching for breakthroughs is expensive and time consuming; line extensions can help the bottom line immediately. In addition, developers simply don't know how to achieve breakthroughs, and there is usually no system in place to guide them. By the mid-1990s, the lack of such a system was a problem even for an innovative company like 3M. Then a project team in 3M's Medical-Surgical Markets Division became acquainted with a method for developing breakthrough products: the lead user process. The process is based on the fact that many commercially important products are initially thought of and even prototyped by "lead users"--companies, organizations, or individuals that are well ahead of market trends. Their needs are so far beyond those of the average user that lead users create innovations on their own that may later contribute to commercially attractive breakthroughs. The lead user process transforms the job of inventing breakthroughs into a systematic task of identifying lead users and learning from them. The authors explain the process and how the 3M project team successfully navigated through it. In the end, the team proposed three major new product lines and a change in the division's strategy that has led to the development of breakthrough products. And now several more divisions are using the process to break away from incrementalism.

  7. The 3-m Cologne radiotelescope

    NASA Astrophysics Data System (ADS)

    Winnewisser, G.; Vowinkel, B.

    1984-03-01

    The design and operation of the Cologne radiotelescope and its application to the spectroscopic study of interstellar molecules are surveyed. A table of technical specifications, a block diagram of the data-processing system, and sample spectra are provided. The 3-m-diameter main reflector has a surface precision of 30 microns rms, permitting observations at wavelengths as low as 0.3 mm, although atmospheric conditions at Cologne limit this to about 2.6 mm. The computer control system, 80-90-GHz heterodyne receiver, and spectrometer/continuum back ends are examined in detail. Plans call for installation of the telescope at the Gornergrat observatory (3126 m elevation) in Switzerland in fall, 1984, to expand the wavelength range. The role of the Cologne telescope as a complement to and training installation for the planned space instruments GIRL, ISO, and FIRST is indicated.

  8. SELECTIVE SEPARATION OF URANIUM FROM THORIUM, PROTACTINIUM AND FISSION PRODUCTS BY PEROXIDE DISSOLUTION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-08-18

    A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.

  9. Applications of nanomaterials in liquid chromatography: opportunities for separation with high efficiency and selectivity.

    PubMed

    Zhang, Zhengxiang; Wang, Zhiyong; Liao, Yiping; Liu, Huwei

    2006-08-01

    During recent decades, great efforts have been made to improve the chemical stability, selectivity, and separation efficiency of stationary phases in liquid chromatography. Significant progress has been achieved, especially after the introduction of nanomaterials into separation science. This review covers the applications of nanomaterials playing various roles in liquid chromatography. Future possibilities for developing nanomaterial-based stationary phases are also discussed.

  10. Simulation of helium-methane mixture separation on selectively permeable membranes

    NASA Astrophysics Data System (ADS)

    Naumkin, V. S.

    2016-10-01

    In the article, the helium-methane mixture separation on the various types of membranes was considered. A flat membrane module was studied. It was made of two channels connected by a semipermeable membrane. It was shown that high membrane selectivity could not always provide a high degree of mixture separation.

  11. Selective aqueous extraction of organics coupled with trapping by membrane separation

    DOEpatents

    van Eikeren, Paul; Brose, Daniel J.; Ray, Roderick J.

    1991-01-01

    An improvement to processes for the selective extractation of organic solutes from organic solvents by water-based extractants is disclosed, the improvement comprising coupling various membrane separation processes with the organic extraction process, the membrane separation process being utilized to continuously recycle the water-based extractant and at the same time selectively remove or concentrate organic solute from the water-based extractant.

  12. Selective aqueous extraction of organics coupled with trapping by membrane separation

    SciTech Connect

    van Eikeren, P.; Brose, D.J.; Ray, R.J.

    1991-08-20

    This patent describes improvement in an organic/aqueous extraction process for the extraction of an organic solute from an organic solvent or solvent mixture with an aqueous-based extractant. The improvement comprises continuously recycling the aqueous-based extractant through a membrane separation process that selectively removes the organic solute from the aqueous-based extractant, the membrane separation process being selected from at least one of reverse osmosis, nanofiltration, ultrafiltration, membrane distillation, pervaporation, membrane contactor and supported-liquid membrane.

  13. Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide.

    PubMed

    Kim, Seonghwan; Yoon, Hansun; Shin, Dongyoon; Lee, Jaehan; Yoon, Jeyong

    2017-11-15

    Electrochemical selective ion separation via capacitive deionization, for example, separation of lithium resource from brine, using lithium ion batteries is proposed and demonstrated to have the potential for separating specific ions selectively from a solution containing diverse ions. This separation method is of great industrial concern because of applicability in various fields such as deionization, water softening, purification, heavy metal removal, and resource recovery. Nevertheless, besides the selectivity of materials for lithium ion batteries toward Li(+), there is very little investigation on the selectivity of the materials for sodium ion batteries toward Na(+). Here, the electrochemical selectivity of sodium manganese oxide (Na0.44MnO2), one of the most widely used material in sodium ion batteries, for Na(+) and other cations (K(+), Mg(2+), and Ca(2+)) is investigated. Selective Na(+) separation using the system consisting of Na0.44MnO2 and a Ag/AgCl electrode is successfully demonstrated from a solution containing diverse cations (Na(+), K(+), Mg(2+), and Ca(2+)) via a two-step process that involves a capturing step (charging process) and a releasing step (discharging process). The results showed that Na0.44-xMnO2 has over 13 times higher selectivity for Na(+) than for K(+) and 6-8times higher selectivity for Na(+) than for Mg(2+) and Ca(2+) in the electrolyte containing equal concentrations of the respective ions. Additionally, as a practical demonstration, Na(+) was successfully separated from an industrial raw material used for pure KOH production (estimated ratio of Na(+):K(+)=1:200). Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Microscale phase separator for selective extraction of CO2 from methanol solution flow

    NASA Astrophysics Data System (ADS)

    Fazeli, Abdolreza; Moghaddam, Saeed

    2014-12-01

    This study is aimed at understanding the limits in reducing the size of a membrane-based CO2 separator and its pressure head needs and energy consumption, while maximizing its selectivity. The separator consists of a flow channel capped by a hydrophobic nanoporous membrane through which CO2 exits the anode flow stream of a direct methanol fuel cell (DMFC). A systematic study is conducted to determine the effect of differential pressure across the membrane, flow velocity, and flow channel dimensions on the separation process. The extraction flux was found to change linearly with pressure difference across the membrane. The effect of flow velocity on the extraction flux was negligible up to a critical velocity beyond which the separation process ceased. The separation selectivity enhanced by increasing the differential pressure across the membrane but did not change with varying the flow velocity and channel depth. Using the findings of the first part of the study, an optimal micro-separator (with a footprint of approximately 10 × 1 mm2) was designed/fabricated for a 20 W DMFC and its performance was experimentally analyzed. An unprecedented separation selectivity of close to 200 was achieved at a differential pressure of about 10 kPa and negligible energy consumption.

  15. Mass selective separation applied to radioisotopes of cesium: Mass selective applied to radioisotopes

    SciTech Connect

    Dion, Michael; Eiden, Greg; Farmer, Orville; Finch, Zach; Liezers, Martin

    2016-07-22

    A developed technique that uses the intrinsic mass-based separation capability of a quadrupole mass spectrometer has been used to resolve spectral radiometric interference of two isotopes of the same element. In this work the starting sample was a combination of 137Cs and 134Cs and was (activity) dominated by 137Cs and this methodology separated and “implanted” 134Cs that was later quantified for spectral features and ac- tivity with traditional radiometric techniques. This work demonstrated a 134Cs/137Cs activity ratio enhancement of >4 orders of magnitude and complete removal of 137Cs spectral features from the implanted target mass (i.e., 134).

  16. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    NASA Technical Reports Server (NTRS)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  17. Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers

    DOEpatents

    Pinnau, Ingo; Lokhandwala, Kaaeid; Nguyen, Phuong; Segelke, Scott

    1997-11-18

    A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.

  18. Enhancement of selective separation on molecularly imprinted monolith by molecular crowding agent.

    PubMed

    Wang, Xian-Hua; Dong, Qian; Ying, Ling-Ling; Chi, Shuai-Shuai; Lan, Yao-Han; Huang, Yan-Ping; Liu, Zhao-Sheng

    2017-01-01

    In this study, a new molecularly imprinted polymer chiral stationary phase (MIP-CSP) was prepared utilizing molecular crowding agent for improvement the selective separation ability. S-amlodipine (S-AML), methacrylic acid (MAA), ethylene glycol dimethacrylate (EDMA), and polymethyl methacrylate (PMMA) were selected as template, functional monomer, cross-linker, and molecular crowding agent, respectively. The composition of formulas for MIP-CSP was optimized, and the permeability and structural feature of resultant MIP-CSP were characterized. The effect of mobile-phase composition, including ionic strength, pH, and organic modifier content, was investigated for achieving the selective separation of rac-amlodipine (rac-AML) on MIP-CSP. The baseline separation of rac-AML was achieved with resolution of 1.58, whereas no selective separation was observed on the imprinted monolith without molecular crowding agent. The perturbation chromatography method was successfully applied to evaluate the recognition mechanism of templates on MIP-CSP. The retention time of S-AML detected in typical analytical conditions was obviously greater than the time of negative peak derived from perturbation, which indicated the retention of template may be due to the imprinted cavities on MIP-CSP. Additionally, the result of Van't Hoff analysis indicated that the chiral separation of rac-AML on MIP-CSP was an entropy-driven process, which supported the molecular imprinting theory. These results reveal that molecular crowding is a potential strategy for preparation of MIP-CSP with excellent selective separation ability. Graphical Abstract Improvement of chiral separation on molecularly imprinted monolith by molecular crowding condition.

  19. Selective separation of Eu{sup 3+} using polymer-enhanced ultrafiltration

    SciTech Connect

    Norton, M.V.

    1994-03-01

    A process to selectively remove {sup 241}Am from liquid radioactive waste was investigated as an actinide separation method applicable to Hanford and other waste sites. The experimental procedures involved removal of Eu, a nonradioactive surrogate for Am, from aqueous solutions at pH 5 using organic polymers in conjunction with ultrafiltration. Commercially available polyacrylic acid (60,000 MW) and Pacific Northwest Laboratory`s (PNL) synthesized E3 copolymer ({approximately}10,000 MW) were tested. Test solutions containing 10 {mu}g/mL of Eu were dosed vath each polymer at various concentrations in order to bind Eu (i.e., by complexation and/or cation exchange) for subsequent rejection by an ultrafiltration coupon. Test solutions were filtered with and without polymer to determine if enhanced Eu separation could be achieved from polymer treatment. Both polymers significantly increased Eu removal. Optimum concentrations were 20 {mu}g/mL of polyacrylic acid and 100 {mu}g/mL of E3 for 100% Eu rejection by the Amicon PM10 membrane at 55 psi. In addition to enhancement of removal, the polymers selectively bound Eu over Na, suggesting that selective separation of Eu was possible. This suggests that polymer-enhanced ultrafiltration is a potential process for separation of {sup 241}Am from Hanford tank waste, further investigation of binding agents and membranes effective under very alkaline and high ionic strength is warranted. This process also has potential applications for selective separation of toxic metals from industrial process streams.

  20. Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator.

    PubMed

    Lin, Bill K; McFaul, Sarah M; Jin, Chao; Black, Peter C; Ma, Hongshen

    2013-01-01

    The separation of cells based on their biomechanical properties, such as size and deformability, is important in applications such as the identification of circulating tumor cells, where morphological differences can be used to distinguish target cancer cells from contaminant leukocytes. Existing filtration-based separation processes are limited in their selectivity and their ability to extract the separated cells because of clogging in the filter microstructures. We present a cell separation device consisting of a hydrodynamic concentrator and a microfluidic ratchet mechanism operating in tandem. The hydrodynamic concentrator removes the majority of the fluid and a fraction of leukocytes based on size, while the microfluidic ratchet mechanism separates cancer cells from leukocytes based on a combination of size and deformability. The irreversible ratcheting process enables highly selective separation and robust extraction of separated cells. Using cancer cells spiked into leukocyte suspensions, the complete system demonstrated a yield of 97%, while enriching the concentration of target cancer cells 3000 fold relative to the concentration of leukocytes.

  1. Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator

    PubMed Central

    Lin, Bill K.; McFaul, Sarah M.; Jin, Chao; Black, Peter C.; Ma, Hongshen

    2013-01-01

    The separation of cells based on their biomechanical properties, such as size and deformability, is important in applications such as the identification of circulating tumor cells, where morphological differences can be used to distinguish target cancer cells from contaminant leukocytes. Existing filtration-based separation processes are limited in their selectivity and their ability to extract the separated cells because of clogging in the filter microstructures. We present a cell separation device consisting of a hydrodynamic concentrator and a microfluidic ratchet mechanism operating in tandem. The hydrodynamic concentrator removes the majority of the fluid and a fraction of leukocytes based on size, while the microfluidic ratchet mechanism separates cancer cells from leukocytes based on a combination of size and deformability. The irreversible ratcheting process enables highly selective separation and robust extraction of separated cells. Using cancer cells spiked into leukocyte suspensions, the complete system demonstrated a yield of 97%, while enriching the concentration of target cancer cells 3000 fold relative to the concentration of leukocytes. PMID:24404034

  2. Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications

    SciTech Connect

    Mei Hong; Richard D. Noble; John L. Falconer

    2006-09-24

    Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H{sub 2} separation from other light gases (CO{sub 2}, CH{sub 4}, CO). However, zeolite membranes have not been successful for H{sub 2} separation from light gases because the zeolite pores are either too big or the membranes have a large number of defects. The objective of this study is to develop zeolite membranes that are more suitable for H{sub 2} separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO{sub 2} and CH{sub 4} adsorption. Silylation on B-ZSM-5 membranes increased H{sub 2} selectivity both in single component and in mixtures with CO{sub 2}CO{sub 2}, CH{sub 4}, or N2. Single gas and binary mixtures of H{sub 2}/CO{sub 2} and H{sub 2}/CH{sub 4} were separated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one BZSM-5 membrane after silylation, the H2/CO{sub 2} separation selectivity at 473 K increased from 1.4 to 37, whereas the H{sub 2}/CH{sub 4} separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated B-ZSM-5 membrane was activated, but the CO{sub 2} and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H{sub 2} permeance and H{sub 2}/CO{sub 2} and H{sup 2} /CH{sub 4

  3. Selective Separation of Metal Ions via Monolayer Nanoporous Graphene with Carboxyl Groups.

    PubMed

    Li, Zhan; Liu, Yanqi; Zhao, Yang; Zhang, Xin; Qian, Lijuan; Tian, Longlong; Bai, Jing; Qi, Wei; Yao, Huijun; Gao, Bin; Liu, Jie; Wu, Wangsuo; Qiu, Hongdeng

    2016-10-18

    Graphene-coated plastic substrates, such as polyethylene terephthalate (PET), are regularly used in flexible electronic devices. Here we demonstrate a new application of the graphene-coated nanoporous PET membrane for the selective separation of metal ions in an ion exchange manner. Irradiation with swift heavy ions is used to perforate graphene and PET substrate. This process could create graphene nanopores with carboxyl groups, thus forming conical holes in the PET after chemical etching to support graphene nanopores. Therefore, a monolayer nanoporous graphene membrane with a PET substrate is constructed successfully to investigate its ionic selective separation. We find that the permeation ratio of ions strongly depends on the temperature and H(+) concentration in the driving solution. An electric field can increase the permeation ratio of ions through the graphene nanopores, but it inhibits the ion selective separation. Moreover, the structure of the graphene nanopore with carboxyl groups is resolved at the density functional theory level. The results show the asymmetric structure of the nanopore with carboxyl groups, and the analysis indicates that the ionic permeation can be attributed to the ion exchange between metal ions and protons on the two sides of graphene nanopores. These results would be beneficial to the design of membrane separation materials made from graphene with efficient online and offline bulk separation.

  4. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    SciTech Connect

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  5. ID NMR Separation of overlapping powder patterns by selective fr irradiation and switching-angle spinning

    NASA Astrophysics Data System (ADS)

    Ashida, Jun; Nakai, Toshihito; Terao, Takehiko

    1990-05-01

    ID NMR techniques for separately obtaining individual powder patterns for chemically distinct nuclei using selective rf irra- diation and switching of the spinner axis are proposed, which saves considerable time compared with the previous 2D approaches. A method has been applied for simultaneously obtaining all of the 13C chemical-shift powder patterns in p-diacetylbenzene.

  6. Balancing Selection in Species with Separate Sexes: Insights from Fisher’s Geometric Model

    PubMed Central

    Connallon, Tim; Clark, Andrew G.

    2014-01-01

    How common is balancing selection, and what fraction of phenotypic variance is attributable to balanced polymorphisms? Despite decades of research, answers to these questions remain elusive. Moreover, there is no clear theoretical prediction about the frequency with which balancing selection is expected to arise within a population. Here, we use an extension of Fisher’s geometric model of adaptation to predict the probability of balancing selection in a population with separate sexes, wherein polymorphism is potentially maintained by two forms of balancing selection: (1) heterozygote advantage, where heterozygous individuals at a locus have higher fitness than homozygous individuals, and (2) sexually antagonistic selection (a.k.a. intralocus sexual conflict), where the fitness of each sex is maximized by different genotypes at a locus. We show that balancing selection is common under biologically plausible conditions and that sex differences in selection or sex-by-genotype effects of mutations can each increase opportunities for balancing selection. Although heterozygote advantage and sexual antagonism represent alternative mechanisms for maintaining polymorphism, they mutually exist along a balancing selection continuum that depends on population and sex-specific parameters of selection and mutation. Sexual antagonism is the dominant mode of balancing selection across most of this continuum. PMID:24812306

  7. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans.

    PubMed

    Chandraprabha, M N; Natarajan, K A; Somasundaran, P

    2004-08-15

    Effective methods for selective separation using flotation or flocculation of arsenopyrite from pyrite by biomodulation using Acidithiobacillus ferrooxidans are presented here. Adhesion of the bacterium to the surface of arsenopyrite was very slow compared to that to pyrite, resulting in a difference in surface modification of the minerals subsequent to interaction with cells. The cells were able to effectively depress pyrite flotation in presence of collectors like potassium isopropyl xanthate and potassium amyl xanthate. On the other hand the flotability of arsenopyrite after conditioning with the cells was not significantly affected. The activation of pyrite by copper sulfate was reduced when the minerals were conditioned together, resulting in better selectivity. Selective separation could also be achieved by flocculation of biomodulated samples.

  8. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  9. Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation.

    PubMed

    Ma, Qinglang; Cheng, Hongfei; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2016-04-27

    The increasing number of oil spill accidents have a catastrophic impact on our aquatic environment. Recently, special wettable materials used for the oil/water separation have received significant research attention. Due to their opposing affinities towards water and oil, i.e., hydrophobic and oleophilic, or hydrophilic and oleophobic, such materials can be used to remove only one phase from the oil/water mixture, and simultaneously repel the other phase, thus achieving selective oil/water separation. Moreover, the synergistic effect between the surface chemistry and surface architecture can further promote the superwetting behavior, resulting in the improved separation efficiency. Here, recently developed materials with special wettability for selective oil/water separation are summarized and discussed. These materials can be categorized based on their oil/water separating mechanisms, i.e., filtration and absorption. In each section, representative studies will be highlighted, with emphasis on the materials wetting properties and innovative aspects. Finally, challenges and future research directions in this emerging and promising research field will be briefly described. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation.

    PubMed

    Ma, Qinglang; Cheng, Hongfei; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2016-02-22

    The increasing number of oil spill accidents have a catastrophic impact on our aquatic environment. Recently, special wettable materials used for the oil/water separation have received significant research attention. Due to their opposing affinities towards water and oil, i.e., hydrophobic and oleophilic, or hydrophilic and oleophobic, such materials can be used to remove only one phase from the oil/water mixture, and simultaneously repel the other phase, thus achieving selective oil/water separation. Moreover, the synergistic effect between the surface chemistry and surface architecture can further promote the superwetting behavior, resulting in the improved separation efficiency. Here, recently developed materials with special wettability for selective oil/water separation are summarized and discussed. These materials can be categorized based on their oil/water separating mechanisms, i.e., filtration and absorption. In each section, representative studies will be highlighted, with emphasis on the materials wetting properties and innovative aspects. Finally, challenges and future research directions in this emerging and promising research field will be briefly described. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adsorbate shape selectivity: Separation of the HF/134a azeotrope over carbogenic molecular sieve

    SciTech Connect

    Hong, A.; Mariwala, R.K.; Kane, M.S.; Foley, H.C.

    1995-03-01

    Experimental evidence is provided for adsorptive shape selectivity in the separation of the azeotrope between HF and 1,1,1,2-tetrafluoroethane (134a) over pyrolyzed poly(furfuryl alcohol)-derived carbogenic molecular sieve (PPFA-CMS). The separation can be accomplished over coconut charcoal or Carbosieve G on the basis of the differences in the extent of equilibrium adsorption of HF and 134a. On these adsorbents 134a is more strongly bound than HF, thus it elutes much more slowly from the bed. The heat of adsorption for 134a in the vicinity of 200 C on Carbosieve G is {approximately}8.8 kcal/mol. In contrast, when the same azeotropic mixture is separated over PPFA-CMS prepared at 500 C, 134a is not adsorbed. As a result 134a elutes from the bed first, followed by HF. The reversal is brought about by the narrower pore size and pore size distribution of the PPFA-CMS versus that for Carbosieve G. Thus the separation over PPFA-CMS is an example of adsorbate shape selectivity and represents a limiting case of kinetic separation.

  12. Sulfate Separation by Selective Crystallization with a Bis-iminoguanidinium Ligand

    DOE PAGES

    Seipp, Charles A.; Williams, Neil J.; Custelcean, Radu

    2016-01-01

    One simple and effective method for selective sulfate separation from aqueous solutions by crystallization with a bis-guanidinium ligand, 1,4-benzene-bis(iminoguanidinium) (BBIG), is demonstrated. The ligand is synthesized as the chloride salt (BBIG-Cl) by in situ imine condensation of terephthalaldehyde with aminoguanidinium chloride in water, followed by crystallization as the sulfate salt (BBIG-SO4). Alternatively, BBIG-Cl is synthesized ex situ in larger scale from ethanol. Furthermore, the sulfate separation ability of the BBIG ligand is demonstrated by selective and quantitative crystallization of sulfate from seawater. These ligands can then be recycled by neutralization of BBIG-SO4 with aqueous NaOH and crystallization of the neutralmore » bis-iminoguanidine, which can be converted back into BBIG-Cl with aqueous HCl and reused in another separation cycle. Finally, 35S-labeled sulfate and β liquid scintillation counting are employed for monitoring the sulfate concentration in solution. Overall, this protocol will instruct the user in the necessary skills to synthesize a ligand, employ it in the selective crystallization of sulfate from aqueous solutions, and quantify the separation efficiency.« less

  13. Sulfate Separation by Selective Crystallization with a Bis-iminoguanidinium Ligand

    SciTech Connect

    Seipp, Charles A.; Williams, Neil J.; Custelcean, Radu

    2016-01-01

    One simple and effective method for selective sulfate separation from aqueous solutions by crystallization with a bis-guanidinium ligand, 1,4-benzene-bis(iminoguanidinium) (BBIG), is demonstrated. The ligand is synthesized as the chloride salt (BBIG-Cl) by in situ imine condensation of terephthalaldehyde with aminoguanidinium chloride in water, followed by crystallization as the sulfate salt (BBIG-SO4). Alternatively, BBIG-Cl is synthesized ex situ in larger scale from ethanol. Furthermore, the sulfate separation ability of the BBIG ligand is demonstrated by selective and quantitative crystallization of sulfate from seawater. These ligands can then be recycled by neutralization of BBIG-SO4 with aqueous NaOH and crystallization of the neutral bis-iminoguanidine, which can be converted back into BBIG-Cl with aqueous HCl and reused in another separation cycle. Finally, 35S-labeled sulfate and β liquid scintillation counting are employed for monitoring the sulfate concentration in solution. Overall, this protocol will instruct the user in the necessary skills to synthesize a ligand, employ it in the selective crystallization of sulfate from aqueous solutions, and quantify the separation efficiency.

  14. Sulfate Separation by Selective Crystallization with a Bis-iminoguanidinium Ligand.

    PubMed

    Seipp, Charles A; Williams, Neil J; Custelcean, Radu

    2016-09-08

    A simple and effective method for selective sulfate separation from aqueous solutions by crystallization with a bis-guanidinium ligand, 1,4-benzene-bis(iminoguanidinium) (BBIG), is demonstrated. The ligand is synthesized as the chloride salt (BBIG-Cl) by in situ imine condensation of terephthalaldehyde with aminoguanidinium chloride in water, followed by crystallization as the sulfate salt (BBIG-SO4). Alternatively, BBIG-Cl is synthesized ex situ in larger scale from ethanol. The sulfate separation ability of the BBIG ligand is demonstrated by selective and quantitative crystallization of sulfate from seawater. The ligand can be recycled by neutralization of BBIG-SO4 with aqueous NaOH and crystallization of the neutral bis-iminoguanidine, which can be converted back into BBIG-Cl with aqueous HCl and reused in another separation cycle. Finally, (35)S-labeled sulfate and β liquid scintillation counting are employed for monitoring the sulfate concentration in solution. Overall, this protocol will instruct the user in the necessary skills to synthesize a ligand, employ it in the selective crystallization of sulfate from aqueous solutions, and quantify the separation efficiency.

  15. Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes.

    PubMed

    Qiu, Xiaoyan; Yu, Haizhou; Karunakaran, Madhavan; Pradeep, Neelakanda; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2013-01-22

    An integral asymmetric membrane was fabricated in a fast and one-step process by combining the self-assembly of an amphiphilic block copolymer (PS-b-P4VP) with nonsolvent-induced phase separation. The structure was found to be composed of a thin layer of densely packed highly ordered cylindrical channels with uniform pore sizes perpendicular to the surface on top of a nonordered sponge-like layer. The as-assembled membrane obtained a water flux of more than 3200 L m(-2) h(-1) bar(-1), which was at least an order of magnitude higher than the water fluxes of commercially available membranes with comparable pore sizes, making this membrane particularly well suited to size-selective and charge-based separation of biomolecules. To test the performance of the membrane, we conducted diffusion experiments at the physiological pH of 7.4 using bovine serum albumin (BSA) and globulin-γ, two proteins with different diameters but too close in size (2-fold difference in molecular mass) to be efficiently separated via conventional dialysis membrane processes. The diffusion rate differed by a factor of 87, the highest value reported to date. We also analyzed charge-based diffusive transport and separation of two proteins of similar molecular weight (BSA and bovine hemoglobin (BHb)) through the membrane as a function of external pH. The membrane achieved a selectivity of about 10 at pH 4.7, the isoelectric point (pI) of BSA. We then positively charged the membrane to improve the separation selectivity. With the modified membrane BSA was completely blocked when the pH was 7.0, the pI of BHb, while BHb was completely blocked at pH 4.7. Our results demonstrate the potential of our asymmetric membrane to efficiently separate biological substances/pharmaceuticals in bioscience, biotechnology, and biomedicine applications.

  16. [Synthesis and applications of chiral metal-organic framework in the selective separation of enantiomers].

    PubMed

    Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Chirality is a universal phenomenon in nature. Chiral separation is vitally important in drug development, agricultural chemistry, pharmacology, environmental science, biology and many other fields. Chiral metal-organic frameworks (MOFs) are a new group of porous materials with special topology and designable pore structures, as well as their high specific surface area, porosity, excellent thermal stability, solvent resistance, etc. Thus, chiral MOFs are promising with various applications in the field of analytical chemistry. This review summarizes the synthesis strategies of chiral MOFs and their applications in the selective separation of enantiomers, as well as related mechanism.

  17. Design and Development of Selective Extractants for An/Ln Separations

    SciTech Connect

    Robert T. Paine

    2009-12-04

    This study has succeeded in further developing phosphinoylmethyl pyridine compounds as selective recognition and separations agents for trivalent lanthanide and actinide ions present in nuclear materials. The parameters for efficient separations have been further elucidated and factors important to further development have been identified. Further development will lead to optimal extractant design for effective actinide ion partitioning under process practical conditions. The primary objective of the project involved the design, synthesis, and characterization of the extraction performance of 2,6-bis(phosphinomethyl)pyridine N,P,P{prime}-trioxides (NOPOPO) as potential reagents for the separation of Am, Cm, and fission product lanthanides from other transuranics and fission products and for acting as a separations 'platform' for the mutual separation of Am/Cm from the lanthanides. The secondary but critical objective of the project focused on the characterization of aqueous acid and radiation stability of NOPOPO ligands. Further, the project served as a interdisciplinary training vehicle for new, young investigators in actinide separations chemistry.

  18. Chromatographic separation as selection process for prebiotic evolution and the origin of the genetic code.

    PubMed

    Lehmann, U

    1985-01-01

    A model for the evolution of a translation apparatus has been suggested where oligonucleotides in a hairpin conformation act as primordial adapters. Specifically activated amino acids are assumed to be attached to these hairpin molecules. For the specific activation, a chromatographic separation of, e.g. ala and CMP from gly and GMP can be accomplished on silica (e.g. of volcanic origin) with aqueous salt solutions. Other adsorbents like clays (kaolin, bentonite, montmorillonite), different silicates (florisil, magnesium trisilicate, calcium silicate, talc), hydroxyapatite, barium sulfate, calcium carbonate, calcium fluoride and titanoxide have been examined as model systems for the separation of nucleotides, nucleosides and amino acids on mineral surfaces. The possible role of chromatographic separation of amino acids for the formation of proteinoids, composed of selected amino acids, is also considered.

  19. Selective separation of oil and water with mesh membranes by capillarity.

    PubMed

    Yu, Yuanlie; Chen, Hua; Liu, Yun; Craig, Vincent S J; Lai, Zhiping

    2016-09-01

    The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications.

  20. Selective comprehensive multidimensional separation for resolution enhancement in high performance liquid chromatography. Part II: applications.

    PubMed

    Groskreutz, Stephen R; Swenson, Michael M; Secor, Laura B; Stoll, Dwight R

    2012-03-09

    In this second paper of a two-part series, we demonstrate the utility of an approach to enhancing the resolution of select portions of conventional 1D-LC separations, which we refer to as selective comprehensive two-dimensional HPLC (sLC × LC), in three quite different example applications. In the first paper of the series we described the principles of this approach, which breaks the long-standing link in online multi-dimensional chromatography between the timescales of sampling the first dimension (¹D) separation and the separation of fractions of ¹D effluent in the second dimension. In the first example, the power of the sLC × LC approach to significantly reduce the analysis time and method development effort is demonstrated by selectively enhancing the resolution of critical pairs of peaks that are unresolved by a one-dimensional separation (1D-LC) alone. Transfer and subsequent ²D separations of multiple fractions of a particular ¹D peak produces a two-dimensional chromatogram that reveals the coordinates of the peaks in the 2D separation space. The added time dimension of sLC × LC chromatograms also facilitates the application of sophisticated chemometric curve resolution algorithms to further resolve peaks that are otherwise chromatographically unresolved. This is demonstrated in this work by the targeted analysis of phenytoin in urban wastewater effluent using UV diode array detection. Quantitation by both standard addition and external calibration methods yielded results that were not statistically different from 2D-LC/MS/MS analysis of the same samples. Next, we demonstrate the utility of sLC × LC for reducing ion suppression due to matrix effects in electrospray ionization mass spectrometry through the analysis of cocaine in urban wastewater effluent. Finally, we explore the flexibility of the approach in its application to two select regions of a single ¹D separation of triclosan and cocaine. The diversity of these applications demonstrates the

  1. Genetics Home Reference: 3-M syndrome

    MedlinePlus

    ... Kuklik M, Zemkova D, Kozlowski K. 3-M syndrome in two sisters. J Paediatr Child Health. 2002 Aug;38(4):419-22. Citation on PubMed Temtamy SA, Aglan MS, Ashour AM, Ramzy MI, Hosny LA, Mostafa MI. 3-M syndrome: a report of three Egyptian cases with review ...

  2. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOEpatents

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  3. The Use of Polyacrylamide as a Selective Depressant in the Separation of Chalcopyrite and Galena

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    High molecular weight polyacrylamide (PAM) was tested as a potential selective depressant in the differential flotation separation of galena and chalcopyrite using potassium ethyl xanthate (KEX) as a collector. In single mineral flotation, PAM depressed chalcopyrite while galena was floatable. Mechanism study indicated that PAM could adsorb on galena through hydrogen bonding, and on chalcopyrite through hydrogen bonding as well as ammonium-copper complexation. KEX could only break up the galena-PAM bonding. It is the combined use of PAM and KEX that caused the selectivity. In mineral mixture flotation, galena and chalcopyrite could be separated by PAM and KEX only after EDTA treatment of the mineral mixtures. Time of flight secondary ion mass spectrometric (ToF-SIMS) measurements indicated that when galena and chalcopyrite were present together in the suspension, PAM adsorbed on both galena and chalcopyrite. However, after prior treatment of the mineral mixture by EDTA, PAM mainly adsorbed on chalcopyrite.

  4. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE PAGES

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    2016-06-20

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  5. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    SciTech Connect

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    2016-06-20

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  6. Technical Feasibility of Selectively Separating Rare Earth Elements by Vapor Phase Extraction and Condensation

    NASA Astrophysics Data System (ADS)

    Lyons, Katie

    Experiments were performed to evaluate the technical feasibility of selectively separating selected rare earth halides (bromides and chlorides) using a volatilization and condensation technique. Initially, optimum chloridizing and bromidizing roast parameters were secured in studies performed on reagent grade rare earth oxide samples and subsequently confirmed in tests performed on mineral ore and concentrate samples. The volatilization and condensation experiments were performed by placing the subject rare earth halide samples in an argon-purged multiple-zone tube furnace wherein the temperature profile was controlled to establish separate vaporization and condensation regions. Following each experiment, condensate and solid residue samples were analyzed to determine their respective rare earth element contents. The analytical results indicate potential exists for separating the more volatile halide species from those with relatively low vapor pressures; separation of species with intermediate vapor pressures was inconclusive. In most experiments, the rare earth halide vaporization efficiencies were severely limited by the extremely hygroscopic nature of the rare earth halides coupled with their high affinities for oxygen. At elevated temperatures, the hydrates react with halides to produce rare earth oxyhalides and oxides, which are not volatile at the temperatures (up to 1400 °C) considered in this research.

  7. A microporous metal-organic framework for selective C2H2 and CO2 separation

    NASA Astrophysics Data System (ADS)

    Lin, Rong-Guang; Lin, Rui-Biao; Chen, Banglin

    2017-08-01

    A quartzlike metal-organic framework with interesting one dimensional channel has been synthesized. It exhibits considerable acetylene and carbon dioxide uptake of 41.5 and 24.6 cm3 g-1, respectively, and relatively high selectivity for separation of C2H2/C2H4, C2H2/CH4, CO2/CH4 and CO2/N2 at ambient condition.

  8. Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications

    SciTech Connect

    Mei Hong; Richard Noble; John Falconer

    2007-09-24

    Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H2 separation from other light gases (CO2, CH4, CO). However, current zeolite membranes have either too big zeolite pores or a large number of defects and have not been successful for H2 separation from light gases. The objective of this study is to develop zeolite membranes that are more suitable for H2 separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO2 and CH4 adsorption. Silylation on B-ZSM-5 membranes increased H2 selectivity both in single component and in mixtures with CO2, CH4, or N2. Single gas and binary mixtures of H2/CO2 and H2/CH4 were permeated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one B-ZSM-5 membrane after silylation, the H2/CO2 separation selectivity at 473 K increased from 1.4 to 37, whereas the H2/CH4 separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated BZSM-5 membrane was activated with activation energy of {approx}10 kJ/mol, but the CO2 and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H2 permeance and H2/CO2 and H2/CH4 separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 mol{center_dot}m-2{center

  9. Gas separation mechanism of CO2 selective amidoxime-poly(1-trimethylsilyl-1-propyne) membranes

    DOE PAGES

    Feng, Hongbo; Hong, Tao; Mahurin, Shannon Mark; ...

    2017-05-09

    Polymeric membranes for CO2 separation have drawn significant attention in academia and industry. We prepared amidoxime-functionalized poly(1-trimethylsilyl-1-propyne) (AO-PTMSP) membranes through hydrosilylation and post-polymerization modification. Compared to neat PTMSP membranes, the AO-PTMSP membranes showed significant enhancements in CO2/N2 gas separation performance (CO2 permeability ~6000 Barrer; CO2/N2 selectivity 17). This systematic study provides clear guidelines on how to tune the CO2-philicity within PTMSP matrices and the effects on gas selectivity. Key parameters for elucidating the gas transport mechanism were discussed based on CO2 sorption measurements and fractional free volume estimates. The effect of the AO content on CO2/N2 selectivity was further examinedmore » by means of density functional theory calculations. Here, both experimental and theoretical data provide consistent results that conclusively show that CO2/N2 separation performance is enhanced by increased CO2 polymer interactions.« less

  10. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Mao, Ying-bo; Wen, Shu-ming; Liu, Jian; Xian, Yong-jun; Feng, Qi-cheng

    2015-02-01

    Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satisfactory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mechanisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions released from the ancient fluids reached 1.02 × 10-6 mol/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 × 10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.

  11. Flame treatment for the selective wetting and separation of PVC and PET

    SciTech Connect

    Pascoe, R.D.; O'Connell, B

    2003-07-01

    Flame treatment has been used for many years to modify the surface of plastics to allow coatings to be added. The effect of the treatment is to produce hydrophilic species on the surface of the plastic making it water-wettable. The production of hydrophilic plastic surfaces is also required in the selective separation of plastics by froth flotation. For the process to be selective one plastic must be rendered hydrophilic while another remains hydrophobic. In this study the potential for separation of PVC and PET has been investigated. Flame treatment was shown to be very effective in producing a hydrophilic surface on both plastics, although the process was not selective under the conditions investigated. Raising the temperature of the plastics above their softening point produced a hydrophobic recovery. As the softening point of PVC was significantly lower than for PET it was possible to produce a significant difference in hydrophobicity, as judged using contact angle measurement. When immersed in water the contact angle of the PVC was found to be strongly dependent on the pH. Good separation efficiency of the two plastics was achieved by froth flotation from pH 4 to 9. One particular advantage of the technique is that no chemical reagents may be required in the flotation stage. The practicalities of designing a flake treatment system however have to be addressed before considering it to be a viable industrial process.

  12. Novel syntergistic agent for selective separation of yttrium from other rare earth metals

    SciTech Connect

    Miyata, Terufumi; Goto, Masahiro; Nakashio, Fumiyuki

    1995-06-01

    An oil-soluble synergistic agent has been developed for the selective separation of yttrium (Y) from the other rare earth metals. The synergistic agent is a polyaminocarboxylic acid alkylderivative and has interfacial activity like that of surfactants. Separation of yttrium from heavy rare earth metals (erbium (Er) and holmium (Ho)) in the presence of the synergistic agent was carried out with a 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester as a carrier using a hollow-fiber membrane extractor. The new agent shows a synergistic effect on the permeation rate of rare earth metals at the oil-water interface. By the addition of a small amount of the agent, the selectivity for yttrium from the two rare earth metals was enhanced remarkably, because of the permeation rate of Y was selectively decreased compared with those of Er and Ho. The synergistic effect is discussed from the viewpoint of the stability constant for rare earth metals and the interfacial activity of the synergistic agent. The difference in interaction between the synergistic agent and rare earth ions at the oil-water interface results in an increase in the separation efficiency.

  13. Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method.

    PubMed

    Burat, Firat; Güney, Ali; Olgaç Kangal, M

    2009-06-01

    More and more polymer wastes are generated by industry and householders today. Recycling is an important process to reduce the amount of waste resulting from human activities. Currently, recycling technologies use relatively homogeneous polymers because hand-sorting waste is costly. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. At present, most waste polymers cause serious environmental problems. Burning polymers for recycling is not practiced since poisonous gases are released during the burning process. Particularly, polyvinyl chloride (PVC) materials among waste polymers generate hazardous HCl gas, dioxins containing Cl, etc., which lead to air pollution and shorten the life of the incinerator. In addition, they make other polymers difficult to recycle. Both polyethylene terephthalate (PET) and PVC have densities of 1.30-1.35g /cm(3) and cannot be separated using conventional gravity separation techniques. For this reason, polymer recycling needs new techniques. Among these techniques, froth flotation, which is also used in mineral processing, can be useful because of its low cost and simplicity. The main objective of this research is to recycle PET and PVC selectively from post-consumer polymer wastes and virgin polymers by using froth flotation. According to the results, all PVC particles were floated with 98.8% efficiency in virgin polymer separation while PET particles were obtained with 99.7% purity and 57.0% efficiency in post-consumer polymer separation.

  14. Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method

    SciTech Connect

    Burat, Firat; Gueney, Ali; Olgac Kangal, M.

    2009-06-15

    More and more polymer wastes are generated by industry and householders today. Recycling is an important process to reduce the amount of waste resulting from human activities. Currently, recycling technologies use relatively homogeneous polymers because hand-sorting waste is costly. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. At present, most waste polymers cause serious environmental problems. Burning polymers for recycling is not practiced since poisonous gases are released during the burning process. Particularly, polyvinyl chloride (PVC) materials among waste polymers generate hazardous HCl gas, dioxins containing Cl, etc., which lead to air pollution and shorten the life of the incinerator. In addition, they make other polymers difficult to recycle. Both polyethylene terephthalate (PET) and PVC have densities of 1.30-1.35 g/cm{sup 3} and cannot be separated using conventional gravity separation techniques. For this reason, polymer recycling needs new techniques. Among these techniques, froth flotation, which is also used in mineral processing, can be useful because of its low cost and simplicity. The main objective of this research is to recycle PET and PVC selectively from post-consumer polymer wastes and virgin polymers by using froth flotation. According to the results, all PVC particles were floated with 98.8% efficiency in virgin polymer separation while PET particles were obtained with 99.7% purity and 57.0% efficiency in post-consumer polymer separation.

  15. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres.

    PubMed

    Fu, Jianwei; Xin, Qianqian; Wu, Xuechen; Chen, Zhonghui; Yan, Ya; Liu, Shujun; Wang, Minghuan; Xu, Qun

    2016-01-01

    Polydopamine (PDA) microspheres, synthesized by a facile oxidation polymerization route, were evaluated as a potential adsorbent for selective adsorption and separation of organic dyes. The adsorption processes towards nine water-soluble dyes (anionic dyes: methyl orange (MO), eosin-Y (EY), eosin-B (EB), acid chrome blue K (ACBK), neutral dye: neutral red (NR), and cationic dyes: rhodamine B (RhB), malachite green (MG), methylene blue (MB), safranine T (ST)) were thoroughly investigated. The adsorption selectivity of organic dyes onto PDA microspheres was successfully applied for the separation of dyes mixtures. Various influential factors such as solution pH, temperature, and contact time were employed to ascertain the optimal condition for adsorption of representative organic dyes including MB, MG and NR. The pseudo-first-order and pseudo-second-order kinetics models were used to fit the adsorption kinetics process. Five isothermal adsorption models (Langmuir, Dubnin-Radushkevich, Temkin, Freundlich and Harkins-Jura) were used to investigate the adsorption thermodynamics properties. The results showed that the PDA microspheres owned good selective adsorption ability towards cationic dyes. The adsorption kinetics process conformed to the pseudo-second-order kinetics model and the Langmuir isotherm model was more appropriate for tracing the adsorption behavior than other isotherm models. Thus, we can conclude PDA microspheres may be a high-efficiency selective adsorbent towards some cationic dyes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    From left to right: Richard Rawls, Chip Holloway, and Art Hayhurst standing next to the Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  17. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Back view of the SAGE III Bench Checkout Unit, Portable Image Generator (PIG) on tripod, and the Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  18. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Full view of the SAGE III Bench Checkout Unit, Collimated Source Bench (CSB), Portable Image Generator (PIG) on tripod, and Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  19. Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption.

    PubMed

    Liu, Xiaojuan; Ge, Lei; Li, Wei; Wang, Xiuzhong; Li, Feng

    2015-01-14

    The removal of oil and organic pollutants from water is highly desired due to frequent oil spill accidents, as well as the increase of industrial oily wastewater. Here, superhydrophobic and superoleophilic textile has been successfully prepared for the application of effective oil/water separation and selective oil adsorption. This textile was fabricated by functionalizing the commercial textile with layered double hydroxide (LDH) microcrystals and low surface energy molecules. The LDH microcrystals were immobilized on the microfibers of the textile through an in situ growth method, and they formed a nestlike microstructure. The combination of the hierarchical structure and the low surface energy molecules made the textile superhydrophobic and superoleophilic. Further experiments demonstrated that the as-prepared textile not only can be applied as effective membrane materials for the separation of oil and water mixtures with high separation efficiency (>97%), but also can be used as a bag for the selective oil adsorption from water. Thus, such superhydrophobic and superoleophilic textile is a very promising material for the application of oil spill cleanup and industrial oily wastewater treatment.

  20. Membranes based on polymer miscibility for selective transport and separation of metallic ions.

    PubMed

    Zioui, Djamila; Arous, Omar; Mameri, Nabil; Kerdjoudj, Hacène; Sebastian, M San; Vilas, J L; Nunes-Pereira, J; Lanceros-Méndez, Senentxu

    2017-08-15

    Polymer inclusion membranes (PIM) used for selective transport and separation of metallic ions have emerged in recent times. Their expansion depends on the method of preparation and their suitable structure and physico-chemical characteristics. In this paper, a novel category of membranes for ions separation is reported. The membranes were synthesized by thermally induced phase separation using a mixture of polyvinylidene fluoride (PVDF) and cellulose triacetate (CTA) plasticized by tris(2-ethylhexyl) phosphate (TEHP) and with di-(2-ethylhexyl) phosphoric acid (D2EHPA) incorporated into the polymer as carrier to increase specific interactions between polymers. PIM membrane exhibited a hydrophobic (∼100°) and thermally stable up to ∼200°C porous homogenous structure. The transport of Ni(II), Zn(II) and Pb(II) from aqueous solutions was studied by competitive transport across polymer inclusion membranes (PIM). Competitive transport of ions in solution across PIM provide the selectivity order: Ni(2+) (45%)>Pb(2+) (35%)>Zn(2+) (5%). A long-term transport experiment was carried out to study the durability of the system. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.

    PubMed

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R(2) = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Non-selective Separation of Bacterial Cells with Magnetic Nanoparticles Facilitated by Varying Surface Charge

    PubMed Central

    Gao, Xin-Lei; Shao, Ming-Fei; Xu, Yi-Sheng; Luo, Yi; Zhang, Kai; Ouyang, Feng; Li, Ji

    2016-01-01

    Recovering microorganisms from environmental samples is a crucial primary step for understanding microbial communities using molecular ecological approaches. It is often challenging to harvest microorganisms both efficiently and unselectively, guaranteeing a similar microbial composition between original and separated biomasses. A magnetic nanoparticles (MNPs) based method was developed to effectively separate microbial biomass from glass fiber pulp entrapped bacteria. Buffering pH and nanoparticle silica encapsulation significantly affected both biomass recovery and microbial selectivity. Under optimized conditions (using citric acid coated Fe3O4, buffering pH = 2.2), the method was applied in the pretreatment of total suspended particle sampler collected bioaerosols, the effective volume for DNA extraction was increased 10-folds, and the overall method detection limit of microbial contaminants in bioaerosols significantly decreased. A consistent recovery of the majority of airborne bacterial populations was demonstrated by in-depth comparison of microbial composition using 16S rRNA gene high-throughput sequencing. Surface charge was shown as the deciding factor for the interaction between MNPs and microorganisms, which helps developing materials with high microbial selectivity. To our knowledge, this study is the first report using MNPs to separate diverse microbial community unselectively from a complex environmental matrix. The technique is convenient and sensitive, as well as feasible to apply in monitoring of microbial transport and other related fields. PMID:27990136

  3. Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation

    SciTech Connect

    Guney, Ali; Poyraz, M. Ibrahim; Kangal, Olgac Burat, Firat

    2013-09-15

    Highlights: • Both PET and PVC have nearly the same densities. • The best pH value will be 4 for optimizing pH values. • Malic acid gave the best results for selective separation of PET and PVC. - Abstract: Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each other by flotation method which is useful mineral processing technique with its low cost and simplicity. The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency.

  4. Selective Separation and Determination of Heavy Metals (Cd, Pb, Cr) Speciation Forms from Hortic Antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.

    2009-04-01

    The speciation, inter-phases distribution and biodisponibility of heavy metals in soils represent one of main problem of environmental geochemistry and agro-chemistry. This problem is very important in case of hortic antrosols (soils from glasshouses) for the elimination of agricultural products (fruits, vegetables) contamination with heavy metals. In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have bee performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation

  5. Size-selective separation of DNA fragments by using lysine-functionalized silica particles

    PubMed Central

    Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng

    2016-01-01

    In this work, a facile and efficient approach has been demonstrated for size-selective separation of DNA fragments by using lysine-functionalized silica particles. At a given pH, the environmental ionic strength can be utilized to alter the electrostatic interactions of lysine-functionalized silica particles with DNA fragments and in turn the DNA fragments on the silica particle surfaces, which exhibits a clear dependence on the DNA fragment sizes. By carefully adjusting the environmental pH and salt concentration, therefore, the use of the lysine-functionalized silica particles allows effective separation of binary and ternary DNA mixtures, for example, two different DNA fragments with sizes of 101 and 1073 bp, 101 and 745 bp, 101 and 408 bp, respectively, and three different DNA fragments with sizes of 101, 408 and 1073 bp. PMID:26911527

  6. Size-selective separation of DNA fragments by using lysine-functionalized silica particles

    NASA Astrophysics Data System (ADS)

    Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng

    2016-02-01

    In this work, a facile and efficient approach has been demonstrated for size-selective separation of DNA fragments by using lysine-functionalized silica particles. At a given pH, the environmental ionic strength can be utilized to alter the electrostatic interactions of lysine-functionalized silica particles with DNA fragments and in turn the DNA fragments on the silica particle surfaces, which exhibits a clear dependence on the DNA fragment sizes. By carefully adjusting the environmental pH and salt concentration, therefore, the use of the lysine-functionalized silica particles allows effective separation of binary and ternary DNA mixtures, for example, two different DNA fragments with sizes of 101 and 1073 bp, 101 and 745 bp, 101 and 408 bp, respectively, and three different DNA fragments with sizes of 101, 408 and 1073 bp.

  7. Imprint-coating synthesis of selective functionalized ordered mesoporous sorbents for separation and sensors

    DOEpatents

    Dai, Sheng; Burleigh, Mark C.; Shin, Yongsoon

    2001-01-01

    The present invention relates generally to mesoporous sorbent materials having high capacity, high selectivity, fast kinetics, and molecular recognition capability. The invention also relates to a process for preparing these mesoporous substrates through molecular imprinting techniques which differ from convention techniques in that a template molecule is bound to one end of bifunctional ligands to form a complex prior to binding of the bifunctional ligands to the substrate. The present invention also relates to methods of using the mesoporous sorbent materials, for example, in the separation of toxic metals from process effluents, paints, and other samples; detection of target molecules, such as amino acids, drugs, herbicides, fertilizers, and TNT, in samples; separation and/or detection of substances using chromatography; imaging agents; sensors; coatings; and composites.

  8. Size-selective separation of DNA fragments by using lysine-functionalized silica particles.

    PubMed

    Liu, Lingling; Guo, Zilong; Huang, Zhenzhen; Zhuang, Jiaqi; Yang, Wensheng

    2016-02-25

    In this work, a facile and efficient approach has been demonstrated for size-selective separation of DNA fragments by using lysine-functionalized silica particles. At a given pH, the environmental ionic strength can be utilized to alter the electrostatic interactions of lysine-functionalized silica particles with DNA fragments and in turn the DNA fragments on the silica particle surfaces, which exhibits a clear dependence on the DNA fragment sizes. By carefully adjusting the environmental pH and salt concentration, therefore, the use of the lysine-functionalized silica particles allows effective separation of binary and ternary DNA mixtures, for example, two different DNA fragments with sizes of 101 and 1073 bp, 101 and 745 bp, 101 and 408 bp, respectively, and three different DNA fragments with sizes of 101, 408 and 1073 bp.

  9. Selective Fluorination and Separation of Metals with NF3 for Mass Spectrometry

    SciTech Connect

    Clark, Richard A.; Barinaga, Charles J.; McNamara, Bruce K.; Schwantes, Jon M.; Ballou, Nathan E.

    2016-03-01

    We report recent progress on the development of a new methodology based on the generation of volatile metal fluorides through the use of nitrogen trifluoride (NF3), and the separation and measurement of these metal fluorides by electron ionization mass spectrometry. Though unreactive under ambient conditions, NF3 reacts selectively at specified temperatures with various metal-containing species to form volatile metal fluorides. Utilizing these species-dependent traits, elements of a sample may be sequentially produced and thus separated on-line. Metals were reacted inside a thermogravimetric analyzer, the gas outlet of which was directly coupled to a quadrupole mass spectrometer with an electron impact ionization source via a molecular leak valve. We present results of this project including the electron ionization mass spectrum of gaseous tellurium hexafluoride.

  10. Preparation of diclofenac-imprinted polymer beads for selective molecular separation in water.

    PubMed

    Zhou, Tongchang; Kamra, Tripta; Ye, Lei

    2017-01-13

    Molecular imprinting technique is an attractive strategy to prepare materials for target recognition and rapid separation. In this work, a new type of diclofenac (DFC)-imprinted polymer beads was synthesized by Pickering emulsion polymerization using 2-(dimethylamino)ethyl methacrylate as the functional monomer. The selectivity and capacity of the molecularly imprinted polymers (MIPs) were investigated in aqueous solution. Equilibrium binding results show that the MIPs have a high selectivity to bind DFC in a wide range of pH values. Moreover, in liquid chromatography experiment, the imprinted polymer beads were packed into column to investigate the binding selectivity under nonequilibrium conditions. The retention time of DFC on the MIP column is significantly longer than its structural analogues. Also, retention of DFC on the MIP column was significantly longer than on the nonimprinted polymer column under aqueous condition. As the new MIP beads can be used to achieve direct separation of DFC from water, the synthetic method and the affinity beads developed in this work opened new possibilities for removing toxic chemicals from environmental and drinking water.

  11. Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves.

    PubMed

    Destgeer, Ghulam; Ha, Byung Hang; Park, Jinsoo; Jung, Jin Ho; Alazzam, Anas; Sung, Hyung Jin

    2015-05-05

    We demonstrate a miniaturized acoustofluidic device composed of a pair of slanted interdigitated transducers (SIDTs) and a polydimethylsiloxane microchannel for achieving size-selective separation and exchange of medium around polystyrene particles in a continuous, label-free, and contactless fashion. The SIDTs, deposited parallel to each other, produce tunable traveling surface acoustic waves (TSAWs) at desired locations, which, in turn, yield an anechoic corner inside the microchannel that is used to selectively deflect particles of choice from their streamlines. The TSAWs with frequency fR originating from the right SIDT and propagating left toward the microchannel normal to the fluid flow direction, laterally deflect larger particles with diameter d1 from the hydrodynamically focused sample fluid that carries other particles as well with diameters d2 and d3, such that d1 > d2 > d3. The deflected particles (d1) are pushed into the top-left corner of the microchannel. Downstream, the TSAWs with frequency fL, such that fL > fR, disseminating from the left SIDT, deflect the medium-sized particles (d2) rightward, leaving behind the larger particles (d1) unaffected in the top-left anechoic corner and the smaller particles (d3) in the middle of the microchannel, thereby achieving particle separation. A particle not present in the anechoic corner could be deflected rightward to realize twice the medium exchange. In this work, the three-way separation of polystyrene particles with diameters of 3, 4.2, and 5 μm and 3, 5, and 7 μm is achieved using two separate devices. Moreover, these devices are used to demonstrate multimedium exchange around polystyrene particles ∼5 μm and 7 μm in diameter.

  12. Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation

    SciTech Connect

    Mohamed, Mona H.; Elsaidi, Sameh K.; Pham, Tony; Forrest, Katherine A.; Schaef, Herbert T.; Hogan, Adam; Wojtas, Lukasz; Xu, Wenqian; Space, Brian; Zaworotko, Michael J.; Thallapally, Praveen K.

    2016-05-30

    The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, there is a need to develop less energy intensive alternatives such as physisorptive separation using porous materials. Here we show that an underexplored class of porous materials called hybrid ultramicroporous materials (HUMs) based upon inorganic and organic building blocks affords new benchmark selectivity for Xe separation from Xe/Kr mixtures. The isostructural materials, CROFOUR-1-Ni and CROFOUR-2-Ni, are coordination networks that exhibit coordinatively saturated metal centres and two distinct types of micropores, one of which is lined by CrO42- (CROFOUR) anions and the other is decorated by the functionalized organic linker. These nets offer unprecedented selectivity towards Xe, and also address processing and stability limitations of existing porous materials. Modelling experiments indicate that the extraordinary selectivity of these nets is tailored by synergy between the pore size, which is just above the kinetic diameter of Xe, and the strong electrostatics afforded by the CrO42- anions. Column breakthrough experiments demonstrate the potential of the practical use of these materials in Xe/Kr separation at low concentrations at the levels relevant to Xe capture from air and in nuclear fuel reprocessing. B.S. acknowledges the National Science Foundation (Award No. CHE-1152362), including support from the Major Research Instrumentation Program (Award No CHE-1531590), the computational resources that were made available by a XSEDE Grant (No. TG-DMR090028), and the use of the services provided by Research Computing at the University of South Florida. We (P.K.T) thank the US Department of Energy (DOE), Office of Nuclear Energy for adsorption and breakthrough measurements. We (P.K.T) particularly thank J. Bresee, Kimberly

  13. Selective excitation for spectral editing and assignment in separated local field experiments of oriented membrane proteins

    NASA Astrophysics Data System (ADS)

    Koroloff, Sophie N.; Nevzorov, Alexander A.

    2017-01-01

    Spectroscopic assignment of NMR spectra for oriented uniformly labeled membrane proteins embedded in their native-like bilayer environment is essential for their structure determination. However, sequence-specific assignment in oriented-sample (OS) NMR is often complicated by insufficient resolution and spectral crowding. Therefore, the assignment process is usually done by a laborious and expensive "shotgun" method involving multiple selective labeling of amino acid residues. Presented here is a strategy to overcome poor spectral resolution in crowded regions of 2D spectra by selecting resolved "seed" residues via soft Gaussian pulses inserted into spin-exchange separated local-field experiments. The Gaussian pulse places the selected polarization along the z-axis while dephasing the other signals before the evolution of the 1H-15N dipolar couplings. The transfer of magnetization is accomplished via mismatched Hartmann-Hahn conditions to the nearest-neighbor peaks via the proton bath. By optimizing the length and amplitude of the Gaussian pulse, one can also achieve a phase inversion of the closest peaks, thus providing an additional phase contrast. From the superposition of the selective spin-exchanged SAMPI4 onto the fully excited SAMPI4 spectrum, the 15N sites that are directly adjacent to the selectively excited residues can be easily identified, thereby providing a straightforward method for initiating the assignment process in oriented membrane proteins.

  14. Selective excitation for spectral editing and assignment in separated local field experiments of oriented membrane proteins.

    PubMed

    Koroloff, Sophie N; Nevzorov, Alexander A

    2017-01-01

    Spectroscopic assignment of NMR spectra for oriented uniformly labeled membrane proteins embedded in their native-like bilayer environment is essential for their structure determination. However, sequence-specific assignment in oriented-sample (OS) NMR is often complicated by insufficient resolution and spectral crowding. Therefore, the assignment process is usually done by a laborious and expensive "shotgun" method involving multiple selective labeling of amino acid residues. Presented here is a strategy to overcome poor spectral resolution in crowded regions of 2D spectra by selecting resolved "seed" residues via soft Gaussian pulses inserted into spin-exchange separated local-field experiments. The Gaussian pulse places the selected polarization along the z-axis while dephasing the other signals before the evolution of the (1)H-(15)N dipolar couplings. The transfer of magnetization is accomplished via mismatched Hartmann-Hahn conditions to the nearest-neighbor peaks via the proton bath. By optimizing the length and amplitude of the Gaussian pulse, one can also achieve a phase inversion of the closest peaks, thus providing an additional phase contrast. From the superposition of the selective spin-exchanged SAMPI4 onto the fully excited SAMPI4 spectrum, the (15)N sites that are directly adjacent to the selectively excited residues can be easily identified, thereby providing a straightforward method for initiating the assignment process in oriented membrane proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A simple and selective method for the separation of Cu radioisotopes from nickel.

    PubMed

    Fan, Xianfeng; Parker, David J; Smith, Mike D; Ingram, Andy; Yang, Zhufang; Seville, Jonathan P K

    2006-10-01

    Separation of copper radioisotopes from a nickel target is normally performed using solvent extraction or anion exchange rather than using cationic exchange. A commonly held opinion is that cationic exchangers have very similar thermodynamic complexation constants for metallic ions with identical charges, therefore making the separation very difficult or impossible. The results presented in this article indicate that the selectivity of Chelex-100 (a cationic ion exchanger) for Cu radioisotope and Ni ions not only depends on the thermodynamic complexation constant in the resin but also markedly varies with the concentration of mobile H+. In our developed method, separation of copper radioisotopes from a nickel target was fulfilled in a column filled with Chelex-100 via controlling the HNO3 concentration of the eluent, and the separation is much more effective, simple and economical in comparison with the common method of anion exchange. For an irradiated nickel target with 650 mg Ni, after separation, the loss of Cu radioisotopes in the nickel portion was reduced from 30% to 0.33% of the total initial radioactivity and the nickel mixed into the radioactive products was reduced from 9.5 to 0.5 mg. This significant improvement will make subsequent labeling much easier and reduce consumption of chelating agents and other chemicals during labeling. If the labeled agent is used in human medical applications, the developed method will significantly decrease the uptake of Ni and chelating agents by patients, therefore reducing both the stress on human body associated with clearing the chemicals from blood and tissue and the risk of various types of acute and chronic disorder due to exposure to Ni.

  16. Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules

    SciTech Connect

    Rajbanshi, Arbin; Moyer, Bruce A; Custelcean, Radu

    2011-01-01

    Self-assembly of a tris(urea) anion receptor with Na{sub 2}SO{sub 4} or K{sub 2}SO{sub 4} yields crystalline capsules held together by coordinating Na{sup +} or K{sup +} cations and hydrogen-bonding water bridges, with the sulfate anions encapsulated inside urea-lined cavities. The sodium-based capsules can be selectively crystallized in excellent yield from highly competitive aqueous alkaline solutions ({approx}6 M Na{sup +}, pH 14), thereby providing for the first time a viable approach to sulfate separation from nuclear wastes.

  17. Separating Metallic Beryllium from Plutonium by Selective Dissolution with Ammonium Fluoride

    SciTech Connect

    Torres, R A

    2006-11-29

    Plutonium metal is stabilized for long-term storage by calcining to produce PuO{sub 2}. However, if beryllium is present, the calcined product may have a high neutron dose rate because of the {sup 9}Be({alpha},n){sup 12}C reaction in the finely divided oxide mixture. (At LLNL, inadvertent calcining of a mixture of {approx}500 g Pu/50 g Be produced a neutron source of {approx}5 R/hr.) Therefore, for health physics reasons, we would like a convenient procedure to remove beryllium from plutonium with high selectivity. Two reagents, sodium hydroxide and ammonium fluoride, were considered for aqueous processing. Each reagent selectively dissolves beryllium, which can be separated from the insoluble plutonium by decanting/filtering operations followed by water washes to remove the excess reagent. The washed plutonium is calcined for storage; the beryllium and wash fractions are solidified for disposal.

  18. Selective separation of the major whey proteins using ion exchange membranes.

    PubMed

    Goodall, S; Grandison, A S; Jauregi, P J; Price, J

    2008-01-01

    Synthetic microporous membranes with functional groups covalently attached were used to selectively separate beta-lactoglobulin, BSA, and alpha-lactalbumin from rennet whey. The selectivity and membrane performance of strong (quaternary ammonium) and weak (diethylamine) ion-exchange membranes were studied using breakthrough curves, measurement of binding capacity, and protein composition of the elution fraction to determine the binding behavior of each membrane. When the weak and strong anion exchange membranes were saturated with whey, they were both selective primarily for beta-lactoglobulin with less than 1% of the eluate consisting of alpha-lactalbumin or BSA. The binding capacity of a pure beta-lactoglobulin solution was in excess of 1.5 mg/cm2 of membrane. This binding capacity was reduced to approximately 1.2 mg/cm2 when using a rennet whey solution (pH 6.4). This reduction in protein binding capacity can be explained by both the competitive effects of other whey proteins and the effect of ions present in whey. Using binary solution breakthrough curves and rennet whey breakthrough curves, it was shown that alpha-lactalbumin and BSA were displaced from the strong and weak anion exchange membranes by beta-lactoglobulin. Finally, the effect of ionic strength on the binding capacity of individual proteins for each membrane was determined by comparing model protein solutions in milk permeate (pH 6.4) and a 10 mM sodium phosphate buffer (pH 6.4). Binding capacities of beta-lactoglobulin, alpha-lactalbumin, and BSA in milk permeate were reduced by as much as 50%. This reduction in capacity coupled with the low binding capacity of current ion exchange membranes are 2 serious considerations for selectively separating complex and concentrated protein solutions.

  19. Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.

    PubMed

    George, Brandon; Aban, Inmaculada

    2015-01-15

    Longitudinal imaging studies allow great insight into how the structure and function of a subject's internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures and the spatial from the outcomes of interest being observed at multiple points in a patient's body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on types I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be performed in practice, as well as how covariance structure choice can change inferences about fixed effects. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Upgrading of Low-Grade Manganese Ore by Selective Reduction of Iron Oxide and Magnetic Separation

    NASA Astrophysics Data System (ADS)

    Gao, Yubo; Olivas-Martinez, M.; Sohn, H. Y.; Kim, Hang Goo; Kim, Chan Wook

    2012-12-01

    The utilization of low-grade manganese ores has become necessary due to the intensive mining of high-grade ores for a long time. In this study, calcined ferruginous low-grade manganese ore was selectively reduced by CO, which converted hematite to magnetite, while manganese oxide was reduced to MnO. The iron-rich component was then separated by magnetic separation. The effects of the various reduction parameters such as particle size, reduction time, temperature, and CO content on the efficiency of magnetic separation were studied by single-factor experiments and by a comprehensive full factorial experiment. Under the best experimental conditions tested, the manganese content in the ore increased from around 36 wt pct to more than 44 wt pct, and almost 50 wt pct of iron was removed at a Mn loss of around 5 pct. The results of the full factorial experiments allowed the identification of the significant effects and yielded regression equations for pct Fe removed, Mn/Fe, and pct Mn loss that characterize the efficiency of the upgrading process.

  1. Fluorescent, Magnetic Multifunctional Carbon Dots for Selective Separation, Identification, and Eradication of Drug-Resistant Superbugs.

    PubMed

    Pramanik, Avijit; Jones, Stacy; Pedraza, Francisco; Vangara, Aruna; Sweet, Carrie; Williams, Mariah S; Ruppa-Kasani, Vikram; Risher, Sean Edward; Sardar, Dhiraj; Ray, Paresh Chandra

    2017-02-28

    The emergence of drug-resistant superbugs remains a major burden to society. As the mortality rate caused by sepsis due to superbugs is more than 40%, accurate identification of blood infections during the early stage will have a huge significance in the clinical setting. Here, we report the synthesis of red/blue fluorescent carbon dot (CD)-attached magnetic nanoparticle-based multicolor multifunctional CD-based nanosystems, which can be used for selective separation and identification of superbugs from infected blood samples. The reported data show that multifunctional fluorescent magneto-CD nanoparticles are capable of isolating Methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella DT104 superbug from whole blood samples, followed by accurate identification via multicolor fluorescence imaging. As multidrug-resistant (MDR) superbugs are resistant to antibiotics available in the market, this article also reports the design of antimicrobial peptide-conjugated multicolor fluorescent magneto-CDs for effective separation, accurate identification, and complete disinfection of MDR superbugs from infected blood. The reported data demonstrate that by combining pardaxin antimicrobial peptides, magnetic nanoparticles, and multicolor fluorescent CDs into a single system, multifunctional CDs represent a novel material for efficient separation, differentiation, and eradication of superbugs. This material shows great promise for use in clinical settings.

  2. Fluorescent, Magnetic Multifunctional Carbon Dots for Selective Separation, Identification, and Eradication of Drug-Resistant Superbugs

    PubMed Central

    2017-01-01

    The emergence of drug-resistant superbugs remains a major burden to society. As the mortality rate caused by sepsis due to superbugs is more than 40%, accurate identification of blood infections during the early stage will have a huge significance in the clinical setting. Here, we report the synthesis of red/blue fluorescent carbon dot (CD)-attached magnetic nanoparticle-based multicolor multifunctional CD-based nanosystems, which can be used for selective separation and identification of superbugs from infected blood samples. The reported data show that multifunctional fluorescent magneto-CD nanoparticles are capable of isolating Methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella DT104 superbug from whole blood samples, followed by accurate identification via multicolor fluorescence imaging. As multidrug-resistant (MDR) superbugs are resistant to antibiotics available in the market, this article also reports the design of antimicrobial peptide-conjugated multicolor fluorescent magneto-CDs for effective separation, accurate identification, and complete disinfection of MDR superbugs from infected blood. The reported data demonstrate that by combining pardaxin antimicrobial peptides, magnetic nanoparticles, and multicolor fluorescent CDs into a single system, multifunctional CDs represent a novel material for efficient separation, differentiation, and eradication of superbugs. This material shows great promise for use in clinical settings. PMID:28261690

  3. Selective separation of copper over solder alloy from waste printed circuit boards leach solution.

    PubMed

    Kavousi, Maryam; Sattari, Anahita; Alamdari, Eskandar Keshavarz; Firozi, Sadegh

    2017-02-01

    The printed circuit boards (PCBs) from electronic waste are important resource, since the PCBs contain precious metals such as gold, copper, tin, silver, platinum and so forth. In addition to the economic point of view, the presence of lead turns this scrap into dangerous to environment. This study was conducted as part of the development of a novel process for selective recovery of copper over tin and lead from printed circuit boards by HBF4 leaching. In previous study, Copper with solder alloy was associated, simultaneously were leached in HBF4 solution using hydrogen peroxide as an oxidant at room temperature. The objective of this study is the separation of copper from tin and lead from Fluoroborate media using CP-150 as an extractant. The influence of organic solvent's concentration, pH, temperature and A/O phase ratio was investigated. The possible extraction mechanism and the composition of the extracted species have been determined. The separation factors for these metals using this agent are reported, while efficient methods for separation of Cu (II) from other metal ions are proposed. The treatment of leach liquor for solvent extraction of copper with CP-150 revealed that 20% CP-150 in kerosene, a 30min period of contact time, and a pH of 3 were sufficient for the extraction of Cu(II) and 99.99% copper was recovered from the leached solution. Copyright © 2016. Published by Elsevier Ltd.

  4. Bioinspired Diatomite Membrane with Selective Superwettability for Oil/Water Separation.

    PubMed

    Lo, Yu-Hsiang; Yang, Ching-Yu; Chang, Haw-Kai; Hung, Wei-Chen; Chen, Po-Yu

    2017-05-03

    Membranes with selective superwettability for oil/water separation have received significant attention during the past decades. Hierarchical structures and surface roughness are believed to improve the oil repellency and the stability of Cassie-Baxter state. Diatoms, unicellular photosynthetic algae, possess sophisticated skeletal shells (called frustules) which are made of hydrated silica. Motivated by the hierarchical micro- and nanoscale features of diatom, we fabricate a hierarchical diatomite membrane which consists of aligned micro-sized channels by the freeze casting process. The fine nano-porous structures of frustules are well preserved after the post sintering process. The bioinspired diatomite membrane performs both underwater superoleophobicity and superhydrophobicity under various oils. Additionally, we demonstrate the highly efficient oil/water separation capabililty of the membranes in various harsh environments. The water flux can be further adjusted by tuning the cooling rates. The eco-friendly and robust bioinspired membranes produced by the simple, cost-effective freeze casting method can be potentially applied for large scale and efficient oil/water separation.

  5. Selecting a Separable Parametric Spatiotemporal Covariance Structure for Longitudinal Imaging Data

    PubMed Central

    George, Brandon; Aban, Inmaculada

    2014-01-01

    Longitudinal imaging studies allow great insight into how the structure and function of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures, and the spatial from the outcomes of interest being observed at multiple points in a patients body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on Type I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the Type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be done in practice, as well as how covariance structure choice can change inferences about fixed effects. PMID:25293361

  6. Redox-Active Metal-Organic Composites for Highly Selective Oxygen Separation Applications

    SciTech Connect

    Zhang, Wen; Banerjee, Debasis; Liu, Jian; Schaef, Herbert T.; Crum, Jarrod V.; Fernandez, Carlos A.; Kukkadapu, Ravi K.; Nie, Zimin; Nune, Satish K.; Motkuri, Radha K.; Chapman, Karena W.; Engelhard, Mark H.; Hayes, James C.; Silvers, Kurt L.; Krishna, Rajamani; McGrail, B. Peter; Liu, Jun; Thallapally, Praveen K.

    2016-03-08

    Incorporating, a redox active organometallic molIncorporating, a redox active organometallic molecule within a porous matrix is a useful strategy to form redox active composite materials for emerging applications such as energy storage, electro-catalysis and electro-magnetic separation. Herein we report a new class of stable, redox active metal organic composites for oxygen/air separation with exceptional efficiency. In particular, Ferrocene impregnated in a thermally stable hierarchical porous framework showed a saturation uptake capacity of >51 mg/g for oxygen at a very low relative saturation pressure (P/Po) of 0.06. The material shows excellent O2 selectivity from air as evident from experimental and simulated breakthrough experiments. In detail structural analysis using 57Fe-Mössbauer, X-ray photoelectron spectroscopy (XPS) and pair distribution function (PDF) analysis show that of O2 adsorption affinity and selectivity originates by the formation Fe3+-O oxide due to the highly reactive nature of the organometallics imbedded in the porous matrix.

  7. Selection and Separation of Viable Cells Based on a Cell-Lethal Assay

    PubMed Central

    Xu, Wei; Herman, Annadele; Phillips, Colleen; Pai, Jeng-Hao; Sims, Christopher E.; Allbritton, Nancy L.

    2010-01-01

    A method to select and separate viable cells based on the results of a cell-lethal assay was developed. Cells were plated on an array of culture sites with each site composed of closely spaced, releasable micropallets. Clonal colonies spanning multiple micropallets on individual culture sites were established within 72 h of plating. Adjacent sites were widely spaced with 100% of the colonies remaining sequestered on a single culture site during expansion. A laser-based method mechanically released a micropallet underlying a colony to segment the colony into two genetically identical colonies. One portion of the segmented colony was collected with 90% efficiency while viability of both fractions was 100%. The segmented colonies released from the array were fixed and subjected to immunofluorescence staining of intracellular phospho-ERK kinase to identify colonies that were highly resistant or sensitive to phorbol ester-induced activation of ERK. These resistant and sensitive cells were then matched to the corresponding viable colonies on the array. Sensitive and resistant colonies on the array were released and cultured. When these cultured cells were reanalyzed for phorbol ester-induced ERK activity, the cells retained the sensitive or resistant phenotype of the originally screened subcolony. Thus cells were separated and collected based using the result of a cell-lethal assay as selection criteria. These microarrays enabling clonal colony segmentation permitted sampling and manipulation of the colonies at very early times and at small cell numbers to reduce reagent, time and manpower requirements. PMID:21142138

  8. Impact of xylanases with different substrate selectivity on gluten-starch separation of wheat flour.

    PubMed

    Frederix, Sofie A; Courtin, Christophe M; Delcour, Jan A

    2003-12-03

    The influence on wheat flour gluten-starch separation of a xylanase from Aspergillus aculeatus (XAA) with hydrolysis selectivity toward water extractable arabinoxylan (WE-AX) and that is not inhibited by wheat flour xylanase inhibitors was compared to that of a xylanase from Bacillus subtilis (XBS) with hydrolysis selectivity toward water unextractable arabinoxylan (WU-AX) and that is inhibited by such inhibitors. XAA improved gluten agglomeration through degradation of WE-AX and concomitant reduction in viscosity, which in the laboratory scale batter procedure with a set of vibrating sieves (400, 250, and 125 microm), increased protein recoveries on the 400 microm sieve. In contrast, XBS had a negative effect as it decreased gluten protein recovery on this sieve, probably as a result of the viscosity increase that accompanied WU-AX solubilization. Hence, it was active even if most likely a considerable part of its activity was prevented by xylanase inhibitors. A combination of XAA and XBS at a low dosage yielded a distribution of gluten proteins on the different sieves comparable to that of the control. At a high combined dosage, the gluten agglomeration was better than that with XAA alone, indicating that both WE-AX and WU-AX have a negative impact on gluten agglomeration. Finally, experiments with endoxylanase addition at different moments during the separation process suggest that the status of the arabinoxylan population during dough mixing is far less critical for its impact on gluten agglomeration than that during the batter phase.

  9. Calix[4]pyrroles: highly selective stationary phases for gas chromatographic separations.

    PubMed

    Fan, Jing; Wang, Zhenzhong; Li, Qian; Qi, Meiling; Shao, Shijun; Fu, Ruonong

    2014-10-03

    Calix[4]pyrroles offer a great potential as stationary phases for gas chromatography (GC) due to their unique structures and physicochemical properties. Herein we present the first report of using two calix[4]pyrroles, namely meso-tetra-cyclohexylcalix[4]pyrrole (THCP) and meso-octamethylcalix[4]pyrrole (OMCP). These stationary phases were statically coated onto capillary columns and investigated in terms of column efficiency, polarity, separation performance, thermal stability and repeatability. The columns achieved column efficiencies of 2200-3000plates/m and exhibited nonpolar nature with an average polarity of 67 for THCP and 64 for OMCP, respectively. THCP stationary phase shows high selectivity for analytes of different polarity and exhibits nice peak shapes, especially for aldehydes, alcohols and anilines that are prone to severe peak tailing in GC analysis. Interestingly, THCP stationary phase possesses superior resolving ability for aniline and benzenediol positional isomers while OMCP shows preferential selectivity for nonpolar analytes such as hexane isomers. Moreover, calix[4]pyrrole columns also have good thermal stability up to 260°C and repeatability with a relative standard deviation (RSD%) of less than 0.10% for run-to-run and less than 5.2% for column-to-column. This work demonstrates the unique separation performance of calix[4]pyrroles and their promising future as a new class of GC stationary phases. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques.

    PubMed

    Provazi, Kellie; Campos, Beatriz Amaral; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2011-01-01

    The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted.

  11. Selective separation of rare earth metals by solvent extraction in the presence of new hyrophilic chelating polymers functionalized with ethylenediaminetetraacetic acid. II. Separation properties by solvent extraction

    SciTech Connect

    Matsuyama, Hideto; Miyamoto, Yoshikazu; Teramoto, Masaaki

    1996-03-01

    The selective separation of rare earth metals by solvent extraction including chelating polymers in the aqueous phase was investigated. The chelating polymers were synthesized in this laboratory by introducing ethylenediaminetetraacetic acid (EDTA) onto water-soluble polyallylamine. The highest selectivity obtained for the Y/Er separation system was 14.7, which was much higher than that in extraction including EDTA (about 5.0). This means that the number of extraction stages required can be considerably reduced by the addition of chelating polymers. The effects of several experimental conditions such as pH, extractant concentrations, chelating polymer concentrations, and initial total rare earth metal concentrations, chelating polymer concentrations, and initial total rare earth metal concentrations on the separation factors and the distribution ratios for the Y/Er system were studied in detail. Furthermore, this extraction method was applied to other separation systems (Y/Dy, Y/Ho, Y/Tm). A remarkably high separation factor (12.6) was obtained for the Y/Tm system and the Y/Er system, although the separation factors were comparable to those in the presence of EDTA in the Y/Dy and Y/Ho systems.

  12. [Hyperspectral Band Selection Based on Spectral Clustering and Inter-Class Separability Factor].

    PubMed

    Qin, Fang-pu; Zhang, Ai-wu; Wang, Shu-min; Meng, Xian-gang; Hu, Shao-xing; Sun, Wei-dong

    2015-05-01

    With the development of remote sensing technology and imaging spectrometer, the resolution of hyperspectral remote sensing image has been continually improved, its vast amount of data not only improves the ability of the remote sensing detection but also brings great difficulties for analyzing and processing at the same time. Band selection of hyperspectral imagery can effectively reduce data redundancy and improve classification accuracy and efficiency. So how to select the optimum band combination from hundreds of bands of hyperspectral images is a key issue. In order to solve these problems, we use spectral clustering algorithm based on graph theory. Firstly, taking of the original hyperspectral image bands as data points to be clustered , mutual information between every two bands is calculated to generate the similarity matrix. Then according to the graph partition theory, spectral decomposition of the non-normalized Laplacian matrix generated by the similarity matrix is used to get the clusters, which the similarity between is small and the similarity within is large. In order to achieve the purpose of dimensionality reduction, the inter-class separability factor of feature types on each band is calculated, which is as the reference index to choose the representative bands in the clusters furthermore. Finally, the support vector machine and minimum distance classification methods are employed to classify the hyperspectral image after band selection. The method in this paper is different from the traditional unsupervised clustering method, we employ spectral clustering algorithm based on graph theory and compute the interclass separability factor based on a priori knowledge to select bands. Comparing with traditional adaptive band selection algorithm and band index based on automatically subspace divided algorithm, the two sets of experiments results show that the overall accuracy of SVM is about 94. 08% and 94. 24% and the overall accuracy of MDC is about 87

  13. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations

    SciTech Connect

    Oleksiak, Matthew D.; Ghorbanpour, Arian; Conato, Marlon T.; McGrail, B. Peter; Grabow, Lars C.; Motkuri, Radha Kishan; Rimer, Jeffrey D.

    2016-10-05

    Designing nanoporous zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications spanning diverse areas such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires the use of an organic structure-directing agent to facilitate the formation of crystals with specific pore size and topology. Attempts to remove organics from syntheses to achieve commercially-viable methods of preparing zeolites often lead to the formation of unwanted crystal polymorphs (i.e., impurities). Here, we present an organic-free synthesis of the small-pore zeolite P (GIS framework topology) that can be selectively tailored to produce two pure polymorphs: P1 and P2. To this end, we developed kinetic phase diagrams that identify synthesis compositions leading to the formation of GIS (P1 and P2), as well as their structural analogues MER and PHI. Using a combination of adsorption measurements and density functional theory (DFT) calculations, we also show that both GIS polymorphs are highly selective adsorbents for H2O relative to other light gases (e.g,, H2, N2, CO2). These studies highlight the potential application of GIS materials for dehydration processes, while our findings also refute prior theoretical studies postulating that GIS-type zeolites are excellent materials for CO2 separation/sequestration. Moreover, there is an impetus for discovering novel small-pore zeolites that are shape-selective catalysts for the production of value-added chemicals (e.g., light olefins); thus, our discovery of more thermally-stable P2 opens new avenues for exploring the potential role of this material as a high-performance catalyst.

  14. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene.

    PubMed

    Xiang, Sheng-Chang; Zhang, Zhangjing; Zhao, Cong-Gui; Hong, Kunlun; Zhao, Xuebo; Ding, De-Rong; Xie, Ming-Hua; Wu, Chuan-De; Das, Madhab C; Gill, Rachel; Thomas, K Mark; Chen, Banglin

    2011-02-22

    Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C(2)H(2)/C(2)H(4) have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C(2)H(2) and C(2)H(4). The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C(2)H(2)/C(2)H(4).

  15. Evaluation of polymer inclusion membranes containing crown ethers for selective cesium separation from nuclear waste solution.

    PubMed

    Mohapatra, P K; Lakshmi, D S; Bhattacharyya, A; Manchanda, V K

    2009-09-30

    Transport behaviour of (137)Cs from nitric acid feed was investigated using cellulose triacetate plasticized polymer inclusion membrane (PIM) containing several crown ether carriers viz. di-benzo-18-crown-6 (DB18C6), di-benzo-21-crown-7 (DB21C7) and di-tert-butylbenzo-18-crown-6 (DTBB18C6). The PIM was prepared from cellulose triacetate (CTA) with various crown ethers and plasticizers. DTBB18C6 and tri-n-butyl phosphate (TBP) were found to give higher transport rate for (137)Cs as compared to other carriers and plasticizers. Effect of crown ether concentration, nitric acid concentration, plasticizer and CTA concentration on the transport rate of Cs was also studied. The Cs selectivity with respect to various fission products obtained from an irradiated natural uranium target was found to be heavily dependent on the nature of the plasticizer. The present work shows that by choosing a proper plasticizer, one can get either good transport efficiency or selectivity. Though TBP plasticized membranes showed good transport efficiency, it displayed poor selectivities. On the other hand, an entirely opposite separation behaviour was observed with 2-nitrophenyloctylether (NPOE) plasticized membranes suggesting the possible application of the later membranes for the removal of bulk (137)Cs from the nuclear waste. The stability of the membrane was tested by carrying out transport runs for nearly 25 days.

  16. Just in time-selection: A rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing.

    PubMed

    Hünniger, Tim; Wessels, Hauke; Fischer, Christin; Paschke-Kratzin, Angelika; Fischer, Markus

    2014-11-04

    A semiautomated two-step method for in vitro selection of DNA aptamers using magnetic separation and solid-phase emulsion polymerase chain reaction has been developed. The application of a magnetic separator allows the simultaneous processing of up to 12 SELEXs (systematic evolution of ligands by exponential enrichment) with different targets or buffer conditions. Using a magnetic separator and covalent target immobilization on magnetic beads, the selection process was simplified and the substeps of aptamer/target incubation, washing, and elution of the aptamers were merged into one automated procedure called "FISHing". Without further processing the resulting FISHing eluates are suitable for BEAMing (beads, emulsion, amplification, and magnetics), which includes the amplification by emPCR (emulsion polymerase chain reaction) and strand separation by the implementation of covalently immobilized reverse primers on magnetic beads. The novel selection process has been proved and validated by selecting and characterization of aptamers to the wine fining agent lysozyme.

  17. From an equilibrium based MOF adsorbent to a kinetic selective carbon molecular sieve for paraffin/iso-paraffin separation.

    PubMed

    Li, Baiyan; Belmabkhout, Youssef; Zhang, Yiming; Bhatt, Prashant M; He, Hongming; Zhang, Daliang; Han, Yu; Eddaoudi, Mohamed; Perman, Jason A; Ma, Shengqian

    2016-11-24

    We unveil a unique kinetic driven separation material for selectively removing linear paraffins from iso-paraffins via a molecular sieving mechanism. Subsequent carbonization and thermal treatment of CD-MOF-2, the cyclodextrin metal-organic framework, afforded a carbon molecular sieve with a uniform and reduced pore size of ca. 5.0 Å, and it exhibited highly selective kinetic separation of n-butane and n-pentane from iso-butane and iso-pentane, respectively.

  18. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations

    SciTech Connect

    Oleksiak, Matthew D.; Ghorbanpour, Arian; Conato, Marlon T.; McGrail, B. Peter; Grabow, Lars C.; Motkuri, Radha Kishan; Rimer, Jeffrey D.

    2016-09-02

    Designing zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires an organic structure-directing agent to obtain crystals with specific pore topology. Attempts to remove organics from syntheses to achieve commercially-viable methods of preparing zeolites often lead to the formation of impurities. Here, we present organic-free syntheses of two polymorphs of the small-pore zeolite P (GIS), P1 and P2. Using a combination of adsorption measurements and density functional theory calculations, we show that GIS polymorphs are selective adsorbents for H2O relative to other light gases (e.g., H2, N2, CO2).

  19. Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Soo Youn; Ahn, Chi Young; Lee, Jiho; Lee, Jin Hyung; Chang, Jeong Ho

    2012-05-01

    Thiol group functionalized silica-coated magnetic nanoparticles (Si-MNPs@SH) were synthesized for rapid and selective magnetic field-based separation of mixed proteins. The highest adsorption efficiencies of binary proteins, bovine serum albumin (BSA; 66 kDa; p I = 4.65) and lysozyme (LYZ; 14.3 kDa; p I = 11) were shown at the pH values corresponding to their own p I in the single-component protein. In the mixed protein, however, the adsorption performance of BSA and LYZ by Si-MNPs@SH was governed not only by pH but also by the molecular weight of each protein in the mixed protein.

  20. Highly Selective and Considerable Subcritical Butane Extraction to Separate Abamectin in Green Tea.

    PubMed

    Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Pang, Huili; Qin, Guangyong

    2017-06-01

    We specially carried out the subcritical butane extraction to separate abamectin from tea leaves. Four parameters, such as extraction temperature, extraction time, number of extraction cycles, and solid-liquid ratio were studied and optimized through the response surface methodology with design matrix developed by Box-Behnken. Seventeen experiments with three various factors and three variable levels were employed to investigate the effect of these parameters on the extraction of abamectin. Besides, catechins, theanine, caffeine, and aroma components were determined by both high-performance liquid chromatography and gas chromatography-mass spectrometry to evaluate the tea quality before and after the extraction. The results showed that the extraction temperature was the uppermost parameter compared with others. The optimal extraction conditions selected as follows: extraction temperature, 42°C; number of extraction cycles and extraction time, 1 and 30 min, respectively; and solid-liquid ratio, 1:10. Based on the above study, the separation efficiency of abamectin was up to 93.95%. It is notable that there has a quite low loss rate, including the negligible damage of aroma components, the bits reduce of catechins within the range of 0.7%-13.1%, and a handful lessen of caffeine and theanine of 1.81% and 2.6%, respectively. The proposed method suggested subcritical butane possesses solubility for lipid-soluble pesticides, and since most of the pesticides are attached to the surfaces of tea, thus the as-applied method was successfully effective to separate abamectin because of the so practical and promising method.

  1. Separability of stimulus parameter encoding by on-off directionally selective rabbit retinal ganglion cells

    PubMed Central

    Nowak, Przemyslaw; Dobbins, Allan C.; Gawne, Timothy J.; Grzywacz, Norberto M.

    2011-01-01

    The ganglion cell output of the retina constitutes a bottleneck in sensory processing in that ganglion cells must encode multiple stimulus parameters in their responses. Here we investigate encoding strategies of On-Off directionally selective retinal ganglion cells (On-Off DS RGCs) in rabbits, a class of cells dedicated to representing motion. The exquisite axial discrimination of these cells to preferred vs. null direction motion is well documented: it is invariant with respect to speed, contrast, spatial configuration, spatial frequency, and motion extent. However, these cells have broad direction tuning curves and their responses also vary as a function of other parameters such as speed and contrast. In this study, we examined whether the variation in responses across multiple stimulus parameters is systematic, that is the same for all cells, and separable, such that the response to a stimulus is a product of the effects of each stimulus parameter alone. We extracellularly recorded single On-Off DS RGCs in a superfused eyecup preparation while stimulating them with moving bars. We found that spike count responses of these cells scaled as independent functions of direction, speed, and luminance. Moreover, the speed and luminance functions were common across the whole sample of cells. Based on these findings, we developed a model that accurately predicted responses of On-Off DS RGCs as products of separable functions of direction, speed, and luminance (r = 0.98; P < 0.0001). Such a multiplicatively separable encoding strategy may simplify the decoding of these cells' outputs by the higher visual centers. PMID:21325684

  2. Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) for highly selective separations

    SciTech Connect

    Yaghi, Omar M

    2012-09-17

    Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) have been investigated for the realization as separation media with high selectivity. These structures are held together with strong bonds, making them architecturally, chemically, and thermally stable. Therefore, employing well designed building units, it is possible to discover promising materials for gas and vapor separation. This grant was focused on the study of MOFs and ZIFs with these specific objectives: (i) to develop a strategy for producing MOFs and ZIFs that combine high surface areas with active sites for their use in gas adsorption and separation of small organic compounds, (ii) to introduce active sites in the framework by a post-synthetic modification and metalation of MOFs and ZIFs, and (iii) to design and synthesize MOFs with extremely high surface areas and large pore volumes to accommodate large amounts of guest molecules. By the systematic study, this effort demonstrated how to introduce active functional groups in the frameworks, and this is also the origin of a new strategy, which is termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. One of the solutions to overcome this challenge is an isoreticular expansion of a MOF's structure. With triangular organic linker and square building units, we demonstrated that MOF-399 has a unit cell volume 17 times larger than that of the first reported material isoreticular to it, and it has the highest porosity (94%) and lowest density (0.126 g cm-3) of any MOF reported to date. MOFs are not just low density materials; the guest-free form of MOF-210 demonstrates an ultrahigh porosity, whose BET surface area was estimated to be 6240 m2 g-1 by N2 adsorption measurements.

  3. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations.

    PubMed

    Oleksiak, Matthew D; Ghorbanpour, Arian; Conato, Marlon T; McGrail, B Peter; Grabow, Lars C; Motkuri, Radha Kishan; Rimer, Jeffrey D

    2016-11-02

    Designing zeolites with tunable physicochemical properties can substantially impact their performance in commercial applications, such as adsorption, separations, catalysis, and drug delivery. Zeolite synthesis typically requires an organic structure-directing agent to produce crystals with specific pore topology. Attempts to remove organics from syntheses to achieve commercially viable methods of preparing zeolites often lead to the formation of impurities. Herein, we present organic-free syntheses of two polymorphs of the small-pore zeolite P (GIS), P1 and P2. Using a combination of adsorption measurements and density functional theory calculations, we show that GIS polymorphs are selective adsorbents for H2 O relative to other light gases (e.g., H2 , N2 , CO2 ). Our findings refute prior theoretical studies postulating that GIS-type zeolites are excellent materials for CO2 separation/sequestration. We also show that P2 is significantly more thermally stable than P1, which broadens the operating conditions for GIS-type zeolites in commercial applications and opens new avenues for exploring their potential use in processes such as catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Separation of PS-PMMA block copolymers from PS precursors via selective adsorption on nanoprous silica

    NASA Astrophysics Data System (ADS)

    Ryu, Chang Yeol

    2005-03-01

    We report a simple adsorption-based separation method using nanoporous silica in solution via controlling solvent quality to remove polystyrene (PS) homopolymers from polystyrene-poly(methyl methacrylate) (PS-PMMA) diblock copolymers. In particular, the solvent quality is controlled by employing binary mixed solvents of THF (good solvent) and isooctane (nonsolvent for both PS and PMMA). The aim of this work is to qualitatively study the competitive adsorption between PS and PS-PMMA and to provide a correlative understanding of polymer adsorption in nanopores with interaction chromatography techniques. In addition, the quantitative understanding of polymer adsorption is further employed to develop a simple polymer separation scheme for manipulating polymer adsorption via solvent quality. In particular, concentration changes of PS and PS-PMMA in the supernatant solution have been quantitatively measured for the adsorption studies using solvent gradient interaction chromatography techniques. We found that the PS-PMMA (43k-32k) selectively adsorb over PS (43k) precursors at the THF composition window between 42 % and 55% in THF/IO (v/v) mixed solvents. For THF/IO solvents with composition higher than 60 % THF, polymers did not adsorb to the nanoporous silica due to the good solvent quality.

  5. DNA aptamers for selective identification and separation of flame retardant chemicals.

    PubMed

    Kim, Un-Jung; Kim, Byoung Chan

    2016-09-14

    Polybrominated diphenyl ethers (PBDEs) are group of chemicals which are representative persistent organic pollutants (POPs) and used as brominated flame retardants for many consumer products. PBDEs were phased out since 2009 but are still frequently observed in various environmental matrices and human body. Here, we report ssDNA aptamers which bind to BDE47, one of the PBDE congeners commonly found in various environmental matrices, and show affinity to other major tri-to hepta- BDE congeners. The PBDE specific aptamers were isolated from random library of ssDNA using Mag-SELEX. Two out of 15 sequences, based on their alignment and hairpin loop structures, were chosen to determine dissociation constant with BDE47 and showed from picomolar to nanomolar affinities (200 pM and 1.53 nM). The aptamers displayed high selectivity to the original target, BDE47, and implying general specificity to PBDE backbone with varying affinities to other congeners. Further, we showed that the use of two aptamers together could enhance the separation efficiency of BDE47 and other BDE congeners when dissolved in a solvent compared to use of single aptamer. These aptamers are expected to provide a tool for preliminary screening or quick separation of PBDEs in environmental samples prior to trace quantitative analysis.

  6. Selective Separation of Similar Metals in Chloride Solution by Sulfide Precipitation Under Controlled Potential

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Sun, Baiqi; Zhang, Duchao; Chen, Lin; Yang, Tianzu

    2017-08-01

    A new process of sulfide precipitation under controlled potential was proposed to separate selectively similar metals in a Bis(2-ethylhexyl) phosphoric acid (P204) stripping solution of the Co extraction system. Theoretical calculations revealed that Cu2+, Co2+, Zn2+, and Mn2+ could be separated by fractional precipitation with sulfide by controlling the solution potential and pH value simultaneously. The results demonstrated a Cu precipitation ratio reaching 99.9% during sulfide precipitation of Cu at the potential of 330 mV; the Cu/Co mass ratio in the Cu precipitate was 224. The Co precipitation ratio in the xanthate precipitation of Co, at a potential of 170 mV, was 99.9%, and the Co/Zn mass ratio in the Co precipitate was 28.0. The Zn precipitation ratio reached 99.9% for sulfide precipitation of Zn at the potential of 30 mV, and the Zn/Mn mass ratio in the Zn precipitate was 1.41. The Mn precipitation ratio reached 99.9% after neutralization.

  7. Determination of SCFAs in water using GC-FID. Selection of the separation system.

    PubMed

    Banel, Anna; Jakimska, Anna; Wasielewska, Marta; Wolska, Lidia; Zygmunt, Bogdan

    2012-02-24

    In the present study, an analytical procedure was developed for the determination of short-chain fatty acids (SCFAs) in landfill leachate and municipal wastewater employing injection of aqueous samples to gas chromatograph with flame ionization detector (GC-FID). Chromatographic conditions such as a separation system, injection volume, oven temperature program were investigated and selected. With two columns, one with a polar (polyethylene glycol) and one with a non-polar (dimethylpolisiloxane) stationary phase, good separation of SCFAs, containing from 2 to 8 carbon atoms, was achieved. The sample volume was 2 μL and the temperature program 80°C (30 s) then 7 °C min(-1) to 220 °C (2 min). LOQs values were below 0.25 mg L(-1). The concentrations of the acids in the landfill leachate studied ranged from 0.45±0,059 (average ± extended uncertainty) mg L(-1) for pentanoic acid to 15.2±0.73 mg L(-1) for ethanoic acid. Concentrations of SCFAs in the municipal wastewater were lower than LOQs.

  8. Gel electrophoresis using a selective radical for the separation of single-walled carbon nanotubes.

    PubMed

    Mesgari, Sara; Sundramoorthy, Ashok Kumar; Loo, Leslie S; Chan-Park, Mary B

    2014-01-01

    We have applied agarose gel electrophoresis (AGE) to single-walled carbon nanotubes (SWNTs) that have been pre-reacted with metallic-selective ionic radicals and then re-suspended with sodium cholate (SC) surfactant to obtain highly purified (up to 98%) semiconducting single-walled carbon nanotubes (s-SWNTs). The proposed combination method exploits the preferential reactivity with the metallic nanotube of the radicals generated from an azo naphthalene compound (Direct Blue 71(I)) to preferentially increase the surface charge, and therefore the electrophoretic mobilities, of the metallic nanotube population under the influence of the electric field in AGE. The excellent separation achieved was verified by UV-vis-NIR and Raman spectroscopy as well as by the performance of field effect transistors fabricated with semiconducting-enriched SWNTs. FETs fabricated with -assisted AGE-separated semiconducting nanotubes exhibited mobilities of ∼3.6 to 11.7 cm(2) V(-1) s(-1) and on/off ratios from 10(2) to 10(6).

  9. FAHP ranking and selection of pretreatment module for membrane separation processes in textile cluster.

    PubMed

    Manekar, Pravin; Nandy, Tapas; Sargaonkar, Abha; Rathi, Barkha; Karthik, Manikavasagam

    2011-01-01

    Recent development in membrane manufacturing and extensive application of membranes in effluent treatment has opened up a new water resource. The effluent pretreatment module plays a critical role in membrane performance. Appropriate selection of conventional and advanced pretreatment modules in membrane separation processes (MSP) is significant to the success of zero effluent discharge (ZED). This study addresses performance assessment of eight conventional and advanced pretreatment modules implemented for wastewater management in a textile cluster in South India. The comparative pollutant reduction, capital, operation and maintenance (OM) cost of pretreatment modules are discussed. The ranking and interdependence of the pretreatment modules were analyzed through fuzzy analytical hierarchy process (FAHP) with MATLAB software. The pretreatment module IV ranked third with a composite weight of 15.46%. The integrated study of performance assessment and FAHP resulted in an optimum pretreatment module IV comprising the sequence of chemical precipitation, bio-oxidation processes (activated sludge processes) followed by chemical precipitation, to achieve the ZED. This study provides a techno-economically feasible solution for selection of an effective pretreatment module for MSP in the textile cluster.

  10. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  11. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOEpatents

    Ghate, Madhav R.; Yang, Ralph T.

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  12. Flotation selectivity of novel alkyl dicarboxylate reagents for apatite-calcite separation.

    PubMed

    Karlkvist, Tommy; Patra, Anuttam; Rao, Kota Hanumantha; Bordes, Romain; Holmberg, Krister

    2015-05-01

    The investigation aims to demonstrate the conceptual thoughts behind developing mineral specific reagents for use in flotation of calcium containing ores. For this purpose, a series of dicarboxylate-based surfactants with varying distance between the carboxylate groups (one, two or three methylene groups) was synthesized. A surfactant with the same alkyl chain length but with only one carboxylate group was also synthesized and evaluated. The adsorption behavior of these new reagents on pure apatite and pure calcite surfaces was studied using Hallimond tube flotation, FTIR and ζ potential measurements. The relation between the adsorption behavior of a given surfactant at a specific mineral surface and its molecular structure over a range of concentrations and pH values, as well as the region of maximum recovery, was established. It was found that one of the reagents, with a specific distance between the carboxylate groups, was much more selective for a particular mineral surface than the other homologues. For example, out of the four compounds synthesized, only the one where the carboxylate groups were separated by a single methylene group floated apatite but not calcite, whereas calcite was efficiently floated with the monocarboxylic reagent, but not with the other reagents synthesized. This selective adsorption of a given surfactant to a particular mineral surface relative to other mineral surfaces as evidenced in the flotation studies was substantiated by ζ potential and infra-red spectroscopy data.

  13. Partition Coefficients of Selected Compounds Using Ion Exchange Separation of Cesium From High Level Waste

    SciTech Connect

    Toth, James J.; Blanchard, David L.; Arm, Stuart T.; Urie, Michael W.

    2004-04-24

    The removal of cesium radioisotope (137Cs) from the High Level Waste stored in underground storage tanks at the Hanford site is a formidable chemical separations challenge for the Waste Treatment Plant. An eluatable organic-based ion exchange resin was selected as the baseline technology (1). The baseline technology design employs a proprietary macrocyclic weak-acid ion exchange resin to adsorb the cesium (137Cs) during the process loading cycle in a fixed bed column design. Following loading, the cesium is eluted from the resin using a nitric acid eluant. Previous work provided limited understanding of the performance of the resin, processed with actual wastes, and under multiple load and elute conditions, which are required for the ion exchange technology to be underpinned sufficiently for resolution of all process-related design issues before flowsheet and construction drawings can be released. By performing multiple ion exchange column tests with waste feeds, and measuring the chemical and radionuclide compositions of the waste feeds, column effluents and column eluants, ion exchange stream composition information can be provided for supporting resolution of selected design issues.

  14. Selectivity differences of water-soluble vitamins separated on hydrophilic interaction stationary phases.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Hearn, Milton T W

    2013-06-01

    In this study, the retention behavior and selectivity differences of water-soluble vitamins were evaluated with three types of polar stationary phases (i.e. an underivatized silica phase, an amide phase, and an amino phase) operated in the hydrophilic interaction chromatographic mode with ESI mass spectrometric detection. The effects of mobile phase composition, including buffer pH and concentration, on the retention and selectivity of the vitamins were investigated. In all stationary phases, the neutral or weakly charged vitamins exhibited very weak retention under each of the pH conditions, while the acidic and more basic vitamins showed diverse retention behaviors. With the underivatized silica phase, increasing the salt concentration of the mobile phase resulted in enhanced retention of the acidic vitamins, but decreased retention of the basic vitamins. These observations thus signify the involvement of secondary mechanisms, such as electrostatic interaction in the retention of these analytes. Under optimized conditions, a baseline separation of all vitamins was achieved with excellent peak efficiency. In addition, the effects of water content in the sample on retention and peak efficiency were examined, with sample stacking effects observed when the injected sample contained a high amount of water.

  15. Selective separation and recovery of silver and copper from mixtures by photocatalysis

    NASA Astrophysics Data System (ADS)

    Ding, Mali; Zhang, Weijun; Xie, Zhaofeng; Lei, Rihua; Wang, Jianfang; Gao, Wei

    2017-07-01

    Separation and recovery of valuable metals including silver (Ag) and copper (Cu) from electronic waste mixtures are of great economic and environmental importance. Recent years, semiconductor photocatalysts have been investigated intensively for the removal of Ag from wastewater. Few studies have been carried out on the effect of pH and co-exist metal ions such as Cu on Ag. In this study, ZnO and TiO2 were applied as photocatalysts to target on the selective recovery Ag and Cu from its mixtures under UV light. The effects of pH, catalyst, ethylene-diamine tetraacetic acid (EDTA) on the Ag and Cu photo-reduction were studied. Modeling of Ag+ and Cu2+ with and without EDTA distribution together with metal precipitations was plotted against pH to understand the chemistry involved in photocatalysis. Experimental results showed that Ag+ photo-reduction was nearly completed by ZnO and TiO2 to Ag metal, while Cu2+ photo-reduction to Cu2O only occurs by ZnO in the presence of EDTA. This work illustrates that semiconductor photocatalysts are suitable for selective recovery of Ag and Cu from wastewaters.

  16. Separable sustained and selective attention factors are apparent in 5-year-old children.

    PubMed

    Underbjerg, Mette; George, Melanie S; Thorsen, Poul; Kesmodel, Ulrik S; Mortensen, Erik L; Manly, Tom

    2013-01-01

    In adults and older children, evidence consistent with relative separation between selective and sustained attention, superimposed upon generally positive inter-test correlations, has been reported. Here we examine whether this pattern is detectable in 5-year-old children from the healthy population. A new test battery (TEA-Ch(J)) was adapted from measures previously used with adults and older children and administered to 172 5-year-olds. Test-retest reliability was assessed in 60 children. Ninety-eight percent of the children managed to complete all measures. Discrimination of visual and auditory stimuli were good. In a factor analysis, the two TEA-Ch(J) selective attention tasks (one visual, one auditory) loaded onto a common factor and diverged from the two sustained attention tasks (one auditory, one motor), which shared a common loading on the second factor. This pattern, which suggests that the tests are indeed sensitive to underlying attentional capacities, was supported by the relationships between the TEA-Ch(J) factors and Test of Everyday Attention for Children subtests in the older children in the sample. It is possible to gain convincing performance-based estimates of attention at the age of 5 with the results reflecting a similar factor structure to that obtained in older children and adults. The results are discussed in light of contemporary models of attention function. Given the potential advantages of early intervention for attention difficulties, the findings are of clinical as well as theoretical interest.

  17. Separable Sustained and Selective Attention Factors Are Apparent in 5-Year-Old Children

    PubMed Central

    Underbjerg, Mette; George, Melanie S.; Thorsen, Poul; Kesmodel, Ulrik S.; Mortensen, Erik L.; Manly, Tom

    2013-01-01

    In adults and older children, evidence consistent with relative separation between selective and sustained attention, superimposed upon generally positive inter-test correlations, has been reported. Here we examine whether this pattern is detectable in 5-year-old children from the healthy population. A new test battery (TEA-ChJ) was adapted from measures previously used with adults and older children and administered to 172 5-year-olds. Test-retest reliability was assessed in 60 children. Ninety-eight percent of the children managed to complete all measures. Discrimination of visual and auditory stimuli were good. In a factor analysis, the two TEA-ChJ selective attention tasks (one visual, one auditory) loaded onto a common factor and diverged from the two sustained attention tasks (one auditory, one motor), which shared a common loading on the second factor. This pattern, which suggests that the tests are indeed sensitive to underlying attentional capacities, was supported by the relationships between the TEA-ChJ factors and Test of Everyday Attention for Children subtests in the older children in the sample. It is possible to gain convincing performance-based estimates of attention at the age of 5 with the results reflecting a similar factor structure to that obtained in older children and adults. The results are discussed in light of contemporary models of attention function. Given the potential advantages of early intervention for attention difficulties, the findings are of clinical as well as theoretical interest. PMID:24376591

  18. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    SciTech Connect

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu; Spontak, Richard J.

    2016-01-01

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, we examine the unique structure−property behavior of TPEGs composed of olefinic block copolymers (OBCs) in this study. Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. Here, we prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swells the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure−property relationships.

  19. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    DOE PAGES

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu; ...

    2016-11-01

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less

  20. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    SciTech Connect

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu; Spontak, Richard J.

    2016-11-01

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swells the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.

  1. Immunomagnetic separation combined with colony immunoblotting for selective enrichment and detection of piliated Lactobacillus rhamnosus strains.

    PubMed

    Yang, Z Q; Wei, Y F; Rao, S Q; Gao, L; Yin, Y Q; Xue, F; Fang, W M; Gu, R X; Jiao, X A

    2016-11-01

    Piliated Lactobacillus rhamnosus (pLR) strains have attracted much attention owing to their excellent mucus adhering capacity and immunomodulatory effects. Here, we aimed to develop a rapid, sensitive method for isolating pLR strains in complex ecosystems using immunomagnetic separation (IMS) with colony immunoblotting (CIB). Magnetic nanobeads (diameter: 180 nm) conjugated with anti-pLR SpaA pilin antibodies (anti-SpaA) were prepared and used to preconcentrate pLR strains in samples, followed by confirmation with anti-SpaA-based CIB analysis. Under optimized experimental conditions, IMS-CIB selectively recovered pLR strains from 10(7)  CFU ml(-1) of faecal microbiota samples spiked with 2·9 × 10(1) to 2·4 × 10(6)  CFU ml(-1) of pLR strains. No positive colonies were detected in samples without addition of pLR strains. The detection limit of IMS-CIB was 29 CFU pLR ml(-1) of faecal microbiota, which is much lower than that of CIB without IMS preconcentration (2·0 × 10(4 ) CFU ml(-1) ). IMS-CIB allowed selective preconcentration of pLR strains in highly heterogeneous bacterial suspensions and direct detection of pLR colonies, which remained readily available for subsequent isolation. Our findings established an effective method for selective enrichment and detection of pLR strains. © 2016 The Society for Applied Microbiology.

  2. Synthesis of homoveratric acid-imprinted polymers and their evaluation as selective separation materials.

    PubMed

    Dana, Mariusz; Luliński, Piotr; Maciejewska, Dorota

    2011-05-05

    A bulk polymerization method was used to easily and efficiently prepare homoveratric acid (3,4-dimethoxyphenylacetic acid)-imprinted polymers from eight basic monomers: 2-vinylpyridine, 4-vinylpyridine, 1-vinylimidazole, N-allylaniline, N-allylpiperazine, allylurea, allylthiourea, and allylamine, in the presence of homoveratric acid as a template in N,N-dimethylformamide as a porogen. The imprinted polymer prepared from allylamine had the highest affinity to the template, showing an imprinting factor of 3.43, and allylamine polymers MIP8/NIP8 were selected for further studies. Their binding properties were analyzed using the Scatchard method. The results showed that the imprinted polymers have two classes of heterogeneous binding sites characterized by two pairs of K(d), B(max) values: K(d)(1) = 0.060 μmol/mL, B(max)(1) = 0.093 μmol/mg for the higher affinity binding sites, and K(d)(2) = 0.455 μmol/mL, B(max)(2) = 0.248 μmol/mg for the lower affinity binding sites. Non-imprinted polymer has only one class of binding site, with K(d) = 0.417 μmol/mL and B(max) = 0.184 μmol/mg. A computational analysis of the energies of the prepolymerization complexes was in agreement with the experimental results. It showed that the selective binding interactions arose from cooperative three point interactions between the carboxylic acid and the two methoxy groups in the template and amino groups in the polymer cavities. Those results were confirmed by the recognition studies performed with the set of structurally related compounds. Allylamine polymer MIP8 had no affinity towards biogenic amines. The obtained imprinted polymer could be used for selective separation of homoveratric acid.

  3. ICN/3M scholars: tomorrow's nursing leaders.

    PubMed

    1992-01-01

    For over 20 years ICN and the Minnesota Mining and Manufacturing Company (3M) have sponsored a scholarship programme directed toward helping nurses further their education in nursing. Since then 48 nurses have been provided the needed funds to reach their professional goals and subsequently to help answer their country's healthcare needs. Their degrees and expertise have opened up professional doors but most of all have given them the confidence to become driving forces in initiating research and other programmes that aim to provide quality care to all their countries' citizens.

  4. Tuning the gate opening pressure of Metal-Organic Frameworks (MOFs) for the selective separation of hydrocarbons.

    PubMed

    Nijem, Nour; Wu, Haohan; Canepa, Pieremanuele; Marti, Anne; Balkus, Kenneth J; Thonhauser, Timo; Li, Jing; Chabal, Yves J

    2012-09-19

    Separation of hydrocarbons is one of the most energy demanding processes. The need to develop materials for the selective adsorption of hydrocarbons, under reasonable conditions, is therefore of paramount importance. This work unveils unexpected hydrocarbon selectivity in a flexible Metal-Organic Framework (MOF), based on differences in their gate opening pressure. We show selectivity dependence on both chain length and specific framework-gas interaction. By combining Raman spectroscopy and theoretical van der Waals Density Functional (vdW-DF) calculations, the separation mechanisms governing this unexpected gate-opening behavior are revealed.

  5. Dinosaur extinction: closing the '3 m gap'.

    PubMed

    Lyson, Tyler R; Bercovici, Antoine; Chester, Stephen G B; Sargis, Eric J; Pearson, Dean; Joyce, Walter G

    2011-12-23

    Modern debate regarding the extinction of non-avian dinosaurs was ignited by the publication of the Cretaceous-Tertiary (K-T) asteroid impact theory and has seen 30 years of dispute over the position of the stratigraphically youngest in situ dinosaur. A zone devoid of dinosaur fossils reported from the last 3 m of the Upper Cretaceous, coined the '3 m gap', has helped drive controversy. Here, we report the discovery of the stratigraphically youngest in situ dinosaur specimen: a ceratopsian brow horn found in a poorly rooted, silty, mudstone floodplain deposit located no more than 13 cm below the palynologically defined boundary. The K-T boundary is identified using three criteria: (i) decrease in Cretaceous palynomorphs without subsequent recovery, (ii) the existence of a 'fern spike', and (iii) correlation to a nearby stratigraphic section where primary extraterrestrial impact markers are present (e.g. iridium anomaly, spherules, shocked quartz). The in situ specimen demonstrates that a gap devoid of non-avian dinosaur fossils does not exist and is inconsistent with the hypothesis that non-avian dinosaurs were extinct prior to the K-T boundary impact event.

  6. Separation and determination of arsenic species in water by selective exchange and hybrid resins.

    PubMed

    Ben Issa, Nureddin; Rajaković-Ognjanović, Vladana N; Marinković, Aleksandar D; Rajaković, Ljubinka V

    2011-11-07

    A simple and efficient method for separation and determination of inorganic arsenic (iAs) and organic arsenic (oAs) in drinking, natural and wastewater was developed. If arsenic is present in water prevailing forms are inorganic acids of As(III) and As(V). oAs can be found in traces as monomethylarsenic acid, MMA(V), and dimethylarsenic acid, DMAs(V). Three types of resins: a strong base anion exchange (SBAE) and two hybrid (HY) resins: HY-Fe and HY-AgCl, based on the activity of hydrated iron oxides and a silver chloride were investigated. It was found that the sorption processes (ion exchange, adsorption and chemisorptions) of arsenic species on SBAE (ion exchange) and HY resins depend on pH values of water. The quantitative separation of molecular and ionic forms of iAs and oAs was achieved by SBAE and pH adjustment, the molecular form of As(III) that exists in the water at pH <8.0 was not bonded with SBAE, which was convenient for direct determination of As(III) concentration in the effluent. HY-Fe resin retained all arsenic species except DMAs(V), which makes possible direct measurements of this specie in the effluent. HY-AgCl resin retained all iAs which was convenient for direct determination of oAs species concentration in the effluent. The selective bonding of arsenic species on three types of resins makes possible the development of the procedure for measuring and calculation of all arsenic species in water. In order to determine capacity of resins the preliminary investigations were performed in batch system and fixed bed flow system. Resin capacities were calculated according to breakthrough points in a fixed bed flow system which is the first step in designing of solid phase extraction (SPE) module for arsenic speciation separation and determination. Arsenic adsorption behavior in the presence of impurities showed tolerance with the respect to potential interference of anionic compounds commonly found in natural water. Proposed method was established

  7. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III.

  8. A multi-functional oil-water separator from a selectively pre-wetted superamphiphobic paper.

    PubMed

    Ge, Dengteng; Yang, Lili; Wang, Chenbo; Lee, Elaine; Zhang, Yongquan; Yang, Shu

    2015-04-11

    A multi-functional oil-water separator is prepared from a paper towel spray coated with superamphiphobic (i.e., superhydrophobic and superoleophobic) nanoparticles. After the separator is pre-wetted with ethanol, followed by water, water can be removed from the light oil-water mixture and emulsions by gravity with high separation efficiency (99.9%) and separation flux. Vice versa, heavy oil can be removed by gravity on an ethanol-oil pre-wetted SA-paper.

  9. High resolution capillary column development for selective separations in gas chromatography

    SciTech Connect

    Przybyciel, M.

    1985-01-01

    A review of techniques for the preparation of high resolution capillary columns for gas chromatography is presented. Surface roughing, surface deactivation, stationary phase coating, and stationary phase crosslinking are discussed. Criteria for the selection of GC stationary phases and procedures for column evaluation are presented. A method is proposed for the isolation and determination of crude oil contamination in tropical plants and sediments. The method uses Florisil (TM) chromatography for the simultaneous clean-up and fractionation of aliphatic and aromatic hydrocarbons. Crosslinked SE-54 fused silica capillary columns prepared in our laboratory were employed for all GC separations. Mass spectrometry was used to help locate and identify specific oil components despite the intense background of the chromatogram. Crude oil components were identified in extracts of mangrove plant samples collected from the Peck Slip oil spill site at Media Munda, Puerto Rico. Crude oil components were also identified in sediment samples from controlled oil spill of Prudhoe Bay oil at Laguna de Chiriqui, Panama.

  10. Pre-selection of flocculants by the LUMiFuge separation analyser 114.

    PubMed

    Sobisch, T; Lerche, D

    2002-01-01

    This paper reports on lab-scale investigations in relation to pre-selection of flocculants for sludge dewatering with decanter centrifuges. Results obtained were compared with CST-measurements and discussed in relation to findings under field conditions. Experiments were carried out with sewage sludges of different origin and characteristics and a number of commercial flocculants. Kinetics of sedimentation and clarification were measured as well as the compression behaviour and shear sensitivity of sludge sediments. To measure flocculant performance stability against intensive shearing, total solids in the sludge cake obtained and dewaterability of the sludge cake during the first 20-50 s of centrifugation were compared. A screening test procedure was developed. Efficient flocculants should produce high residual total solids and good initial compressibility. Lab-scale investigations deliver more reliable results if the dynamic behaviour of the sludge under centrifugal acceleration is also investigated. The separation analyser LUMiFuge 114 can provide results about the compression behaviour of sludges in the range between 10 and 100 s. So far no other method or device is known which can deliver such results.

  11. Fluorous microgel star polymers: selective recognition and separation of polyfluorinated surfactants and compounds in water.

    PubMed

    Koda, Yuta; Terashima, Takaya; Sawamoto, Mitsuo

    2014-11-05

    Immiscible with either hydrophobic or hydrophilic solvents, polyfluorinated compounds (PFCs) are generally "fluorous", some of which have widely been employed as surfactants and water/oil repellents. Given the prevailing concern about the environmental pollution and the biocontamination by PFCs, their efficient removal and recycle from industrial wastewater and products are critically required. This paper demonstrates that fluorous-core star polymers consisting of a polyfluorinated microgel core and hydrophilic PEG-functionalized arms efficiently and selectively capture PFCs in water into the cores by fluorous interaction. For example, with over 10 000 fluorine atoms in the core and approximately 100 hydrophilic arms, the fluorous stars remove perfluorooctanoic acid (PFOA) and related PFCs in water from 10 ppm to as low as a parts per billion (ppb) level, or an over 98% removal. Dually functionalized microgel-core star polymers with perfluorinated alkanes and additional amino (or ammonium) groups cooperatively recognize PFOA or its ammonium salt and, in addition, release the guests upon external stimuli. The "smart" performance shows that the fluorous-core star polymers are promising PFC separation, recovery, and recycle materials for water purification toward sustainable society.

  12. Charge- and Size-Selective Molecular Separation using Ultrathin Cellulose Membranes.

    PubMed

    Puspasari, Tiara; Yu, Haizhou; Peinemann, Klaus-Viktor

    2016-10-20

    To date, it is still a challenge to prepare high-flux and highselectivity microporous membranes thinner than 20 nm without introducing defects. In this work, we report for the first time the application of cellulose membranes for selective separation of small molecules. A freestanding cellulose membrane as thin as 10 nm has been prepared through regeneration of trimethylsilyl cellulose (TMSC). The freestanding membrane can be transferred to any desired substrate and shows a normalized flux as high as 700 L m(-2)  h(-1)  bar(-1) when supported by a porous alumina disc. According to filtration experiments, the membrane exhibits precise size-sieving performances with an estimated pore size between 1.5-3.5 nm depending on the regeneration period and initial TMSC concentration. A perfect discrimination of anionic molecules over neutral species is demonstrated. Moreover, the membrane demonstrates high reproducibility, high scale-up potential, and excellent stability over two months. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Feature Selection and Blind Source Separation in an EEG-Based Brain-Computer Interface

    NASA Astrophysics Data System (ADS)

    Peterson, David A.; Knight, James N.; Kirby, Michael J.; Anderson, Charles W.; Thaut, Michael H.

    2005-12-01

    Most EEG-based BCI systems make use of well-studied patterns of brain activity. However, those systems involve tasks that indirectly map to simple binary commands such as "yes" or "no" or require many weeks of biofeedback training. We hypothesized that signal processing and machine learning methods can be used to discriminate EEG in a direct "yes"/"no" BCI from a single session. Blind source separation (BSS) and spectral transformations of the EEG produced a 180-dimensional feature space. We used a modified genetic algorithm (GA) wrapped around a support vector machine (SVM) classifier to search the space of feature subsets. The GA-based search found feature subsets that outperform full feature sets and random feature subsets. Also, BSS transformations of the EEG outperformed the original time series, particularly in conjunction with a subset search of both spaces. The results suggest that BSS and feature selection can be used to improve the performance of even a "direct," single-session BCI.

  14. Ultrafast separation of fluorinated and desfluorinated pharmaceuticals using highly efficient and selective chiral selectors bonded to superficially porous particles.

    PubMed

    Barhate, Chandan L; Breitbach, Zachary S; Pinto, Eduardo Costa; Regalado, Erik L; Welch, Christopher J; Armstrong, Daniel W

    2015-12-24

    The separation of fluorinated active pharmaceutical ingredients (APIs) from their desfluoro analogs is a challenging analytical task due to their structural similarity. In this work, fluorine containing APIs and their corresponding desfluorinated impurities were separated on five new 2.7μm superficially porous particles (SPPs) functionalized with bonded chiral selectors. The unique shape selectivity of bonded macrocyclic glycopeptides and oligosaccharides was utilized to separate seven pairs of fluoro/desfluoro APIs resulting in some unprecedented selectivity values. For example, SPP bonded isopropyl cyclofructan 6 yielded a selectivity of 2.73 for voriconazole and desfluoro voriconazole. Further, the SPP based columns allowed for rapid separations ranging from 9 to 55s with very high efficiencies ranging from 45,000 to 70,000plates/m (at high flow rates) in both reversed phase and polar organic modes. Chromatographic separation and detection by HPLC-ESI-MS was demonstrated using ezetimibe and voriconazole and their desfluorinated impurities. Among the tested phases, SPP hydroxypropyl-β-cyclodextrin separated the most fluorinated and desfluorinated analogs with baseline resolution.

  15. Sequential quantification of methyl mercury in biological materials by selective reduction in the presence of mercury(II), using two gas liquid separators

    NASA Astrophysics Data System (ADS)

    Monteiro, Alcicléa da Conceição Pereira; de Andrade, Ly Santabaia N.; Luna, Aderval S.; de Campos, Reinaldo Calixto

    2002-12-01

    The present procedure is based on the sequential selective reduction of mercury(II) and methyl mercury using two gas-liquid separators in series. Cold vapor atomic absorption spectrometry was used for detection. Mercury(II) is reduced by a 0.01% m/v sodium tetrahydroborate solution and driven to the absorption cell in the first separator. The methyl mercury species is reduced by the same reductant but at a 0.3% m/v concentration, and in the presence of iron(III) chloride. Parameters such as argon flow rate, and the NaBH 4 and dithiophosphoric acid diacyl ester concentrations were optimized. At the optimized conditions, and using aqueous standards for calibration, the corresponding limits of detection (3σ b, n=10) were 400 and 600 ng l -1 for mercury(II) and methyl mercury, respectively. The sample throughput was 12 h -1. The procedure was used for the determination of methyl mercury in dogfish liver and dogfish muscle certified reference materials, and good concordance between found and certified values was observed.

  16. Size-selective separation of submicron particles in suspensions with ultrasonic atomization.

    PubMed

    Nii, Susumu; Oka, Naoyoshi

    2014-11-01

    Aqueous suspensions containing silica or polystyrene latex were ultrasonically atomized for separating particles of a specific size. With the help of a fog involving fine liquid droplets with a narrow size distribution, submicron particles in a limited size-range were successfully separated from suspensions. Performance of the separation was characterized by analyzing the size and the concentration of collected particles with a high resolution method. Irradiation of 2.4MHz ultrasound to sample suspensions allowed the separation of particles of specific size from 90 to 320nm without regarding the type of material. Addition of a small amount of nonionic surfactant, PONPE20 to SiO2 suspensions enhanced the collection of finer particles, and achieved a remarkable increase in the number of collected particles. Degassing of the sample suspension resulted in eliminating the separation performance. Dissolved air in suspensions plays an important role in this separation.

  17. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection.

    PubMed

    Stock, Alexandra; Edgcomb, Virginia; Orsi, William; Filker, Sabine; Breiner, Hans-Werner; Yakimov, Michail M; Stoeck, Thorsten

    2013-07-08

    Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines

  18. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection

    PubMed Central

    2013-01-01

    Background Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Results Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Conclusions Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The “isolated island

  19. Highly selective separation and purification of anthocyanins from bilberry based on a macroporous polymeric adsorbent.

    PubMed

    Yao, Lijuan; Zhang, Na; Wang, Chenbiao; Wang, Chunhong

    2015-04-08

    Powdered bilberry extract (United States Pharmacopoeia, USP35-NF30), which is prepared from ripe bilberry fruits (Vaccinium myrtillus L.), is the main ingredient of drugs alleviating visual fatigue and diabetic retinopathy because of the rich anthocyanins (purity of 36%). In this study, a method based on a macroporous polymeric adsorbent was established to obtain anthocyanin compounds from bilberry, in which the purity of the anthocyanins was improved to 96%, conducive to further pharmacological research and improvement of the efficiency of the drug. On the basis of the structure of anthocyanins, we designed a series of macroporous polymeric adsorbents based on the copolymerization of divinylbenzene (DVB) and ethylene glycol dimethyl acrylate (EGDMA). In this situation, EGDMA not only regulated the polarity of the adsorbent but also acted as the cross-linking agent to ensure the matrix structure of the adsorbent, which had a high specific surface area and could provide more interaction sites during adsorption with anthocyanins. Among the synthesized polymeric adsorbents with different contents of EGDMA, the one with 20% EGDMA content (DE-20) was demonstrated to exhibit optimal adsorption capacity and selectivity to anthocyanins compared to various commercial adsorbents through static adsorption and desorption experiments. In addition, the optimum condition of the dynamic adsorption-desorption experiment was further explored. The results indicated that the purity of anthocyanins after rinsing with 20% ethanol was determined to be approximately 96% at a desorption ratio of 83%, which was clearly higher than that in powdered bilberry extract. The established separation and purification method of anthocyanins with high purity is expected to be applied in industrial production.

  20. Novel biphasic separations utilising highly selective molecularly imprinted polymers as biorecognition solvent extraction agents.

    PubMed

    Castell, Oliver K; Allender, Christopher J; Barrow, David A

    2006-10-15

    Molecularly imprinted polymers (MIPs) represent a class of artificial receptors that promise an environmentally robust alternative to naturally occurring biorecognition elements of biosensing devices and systems. However, in general, the performance of conventional MIPs in aqueous environments is poor. In the study reported here, this limitation has been addressed by the novel application of MIPs as a solvent extraction solid phase in a biphasic solvent system. This paper describes a previously unreported use of MIPs as solvent extraction reagents, their successful application to aqueous sample media and the opportunities for utilisation of this unique system in novel biosensing and separation procedures. This study demonstrates the development of a novel biphasic solvent system utilising MIP in the extracting phase to enhance both efficiency and selectivity of a simple two phase liquid extraction. Monodisperse propranolol imprinted polymer microspheres [p(divinylbenzene-co-methacrylic acid)] were prepared by precipitation polymerisation. Initially, the affinity of the polymers for (R,S)-propranolol was assessed by established techniques whereby the MIP demonstrated greater affinity for the template than did the non-imprinted control polymer (NIP). Importantly, MIP performance was also assessed using the novel dual solvent system. The depletion of (R,S)-propranolol from the aqueous phase into the polymer containing organic phase was determined. When compared to control extractions containing no polymer the presence of MIP in the extracting solvent phase resulted in an increased extraction of (R,S)-propranolol from the aqueous phase. Importantly, this extraction was significantly greater in the presence of MIP when compared to NIP. This unique principle generates opportunities for MIP based extractions and chemical enrichments in industrial applications, offering commercial, ecological and practical advantages to traditional solvent extraction techniques. The

  1. Selective separation of trivalent f-ions using 1,10-phenanthroline-2,9-dicarboxamide ligands in ionic liquids

    DOE PAGES

    Dehaudt, Jeremy; Williams, Neil J.; Shkrob, Ilya A.; ...

    2016-06-13

    1,10-Phenanthroline-2,9-dicarboxamide complexants decorated with alkyl chains and imidazolium cations have been studied for extraction of trivalent f-ions into imidazolium ionic liquids. The dicationic complexants are shown to extract Am over Eu with separation factors > 50 and high extraction efficiencies. Lastly, the different size selectivities for lanthanide ions were observed for these two types of the complexants, highlighting the importance of the positive charge in controlling both extraction efficiencies and extraction selectivities.

  2. Selective separation of trivalent f-ions using 1,10-phenanthroline-2,9-dicarboxamide ligands in ionic liquids

    SciTech Connect

    Dehaudt, Jeremy; Williams, Neil J.; Shkrob, Ilya A.; Luo, Huimin; Dai, Sheng

    2016-06-13

    1,10-Phenanthroline-2,9-dicarboxamide complexants decorated with alkyl chains and imidazolium cations have been studied for extraction of trivalent f-ions into imidazolium ionic liquids. The dicationic complexants are shown to extract Am over Eu with separation factors > 50 and high extraction efficiencies. Lastly, the different size selectivities for lanthanide ions were observed for these two types of the complexants, highlighting the importance of the positive charge in controlling both extraction efficiencies and extraction selectivities.

  3. Positive selection of human blood cells using improved high gradient magnetic separation filters.

    PubMed

    Thomas, T E; Richards, A J; Roath, O S; Watson, J H; Smith, R J; Lansdorp, P M

    1993-01-01

    High gradient magnetic separators (HGMS) create magnetic field gradients that can be used to attract much smaller and less magnetic particles than those required for conventional magnetic separation techniques. As a result cells can be labeled with submicron magnetic particles and still be separated using an HGMS filter. Typically, HGMS filters consist of random arrays of wire such as stainless steel wool. Wire elements arranged regularly in a filter should allow more efficient separation of cells. Filters were constructed containing ordered wire arrays composed of 430 series stainless steel wire mesh with wire diameters of 50, 100, or 150 microns. The ability of these filters to separate T cells from peripheral blood mononuclear cell suspensions was tested and found superior to random arrays of 302 series stainless steel wire (Thomas et al, 1992). Target cells recognized by OKT5 monoclonal antibody were cross-linked to dextran-iron particles of approximately 20 nm in diameter. Separation conditions were optimized and after one passage through the filter 88% of the OKT5+ cells were recovered in the enriched fraction with 85% purity (%OKT5+). Multiple passages (3 times) could achieve 99% purity with 68% recovery. Variations in separation flow rate had a large effect on the balance between purity and recovery. Optimum separation efficiencies were achieved only when > 10(8) cells were processed. The primarily cause of nonspecific entrapment of CD8- cells was not nonspecific magnetic labeling of cells but the physical (nonmagnetic) characteristics of the filter/filter chamber.

  4. Self-Report Measures of Parent-Adolescent Attachment and Separation-Individuation: A Selective Review.

    ERIC Educational Resources Information Center

    Lopez, Frederick G.; Gover, Mark R.

    1993-01-01

    Reviews and critiques three self-report measures of parent-adolescent attachment (Parental Bonding Instrument, Parental Attachment Questionnaire, Inventory of Parent and Peer Attachment) and three self-report measures of parent-adolescent separation-individuation (Psychological Separation Inventory, Personal Authority in the Family System…

  5. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene

    SciTech Connect

    Xiang, Sheng-Chang; Zhang, Zhangjing; Zhao, Cong-Gui; Hong, Kunlun; Zhao, Xuebo; Ding, De-Rong; Xie, Ming-Hua; Wu, Chuan-De; Madhab, Das; Gill, Rachel; Thomas, K Mark; Chen, Banglin

    2011-01-01

    Separation of acetylene and ethylene is an important industrial process because both compounds are essential reagents for a range of chemical products and materials. Current separation approaches include the partial hydrogenation of acetylene into ethylene over a supported Pd catalyst, and the extraction of cracked olefins using an organic solvent; both routes are costly and energy consuming. Adsorption technologies may allow separation, but microporous materials exhibiting highly selective adsorption of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} have not been realized to date. Here, we report the development of tunable microporous enantiopure mixed-metal-organic framework (M'MOF) materials for highly selective separation of C{sub 2}H{sub 2} and C{sub 2}H{sub 4}. The high selectivities achieved suggest the potential application of microporous M'MOFs for practical adsorption-based separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4}.

  6. Fort St. Vrain graphite site mechanical separation concept selection. Final report

    SciTech Connect

    Berry, S.M.

    1993-09-01

    One of the alternatives to the disposal of the Fort St. Vrain (FSV) reactor spent nuclear fuel involves the separation of the fuel rods composed of compacts from the graphite fuel block assembly. After the separation of these two components, the empty graphite fuel blocks would be disposed of as a low level waste (provided the appropriate requirements are met) and the fuel compacts would be treated as high level waste material. This report deals with the mechanical separation aspects concerning physical disassembly of the FSV graphite fuel element into the empty graphite fuel blocks and fuel compacts. This report recommends that a drilling technique is the preferred choice for accessing the, fuel channel holes and that each hole is drilled separately. This report does not cover any techniques or methods to separate the triso fuel particles from the graphite matrix of the fuel compacts.

  7. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping

    NASA Astrophysics Data System (ADS)

    Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph

    2017-03-01

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry.

  8. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping

    NASA Astrophysics Data System (ADS)

    Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph

    2017-06-01

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.

  9. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping.

    PubMed

    Dickel, Timo; Plaß, Wolfgang R; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I; Geissel, Hans; Scheidenberger, Christoph

    2017-03-15

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. Graphical Abstract ᅟ.

  10. Selective separation of sodium ions from a mixture with phenylalanine by Donnan dialysis with a profiled sulfogroup cation exchange membrane

    NASA Astrophysics Data System (ADS)

    Vasil'eva, V. I.; Goleva, E. A.

    2013-11-01

    The possibility of separating ions of metal from a mixture with ampholyte (an amino acid) by Donnan dialysis with an MK-40 sulfogroup cation exchange membrane is demonstrated. Conditions ensuring the selectivity and intensity of the mass transfer of sodium ions from a mixture with bipolar phenylalanine ions into a diffusate containing hydrochloric acid through a cation exchange membrane are found.

  11. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules

    EPA Science Inventory

    Novel magnetically separable TiO2-guanidine-(Ni,Co)Fe2O4 nanomaterials were prepared and characterised by a series of techniques including XRD, SEM, TEM, N2 physisorption as well as XPS and subsequently tested for their photocatalytic activities in the selective transformation of...

  12. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules

    EPA Science Inventory

    Novel magnetically separable TiO2-guanidine-(Ni,Co)Fe2O4 nanomaterials were prepared and characterised by a series of techniques including XRD, SEM, TEM, N2 physisorption as well as XPS and subsequently tested for their photocatalytic activities in the selective transformation of...

  13. Selective separation of samarium(III) by synergistic extraction with β-diketone and methylphenylphenanthroline carboxamide.

    PubMed

    Hasegawa, Yuko; Tamaki, Sayaka; Yajima, Hirofumi; Hashimoto, Bunji; Yaita, Tsuyoshi

    2011-09-15

    Synergistic extraction of trivalent lanthanides (Lns(III)) with pivaloyltrifluoroacetone (HA) and N-methyl-N-phenyl-1,10-phenanthroline-2-carboxamide (MePhPTA) was evaluated across the Ln series. The distribution ratio (D) of Sm(III) under an identical condition was the largest among all Lns(III). The separation factor (SF) between Sm(III) and Nd(III) (SF=D(Sm)/D(Nd)) was 2.0 and SF between Sm(III) and Eu(III), (D(Sm)/D(Eu)) was 1.4. Upon analyzing the extraction data in detail on the basis of mass balance, it was found that the dominant extracted species of light Lns(III) was a stable ternary complex consisting of Ln(III), HA, and MePhPTA (B), namely, LnA(3)B, while the dominant extracted species of heavy Lns(III) was the ion pair, [LnA(2)B](+)ClO(4)(-). The complex for Pr(III) was very stable (the stability constant, β¯, denoted as [LnA(3)B](o)[LnA(3)](o)(-1)[B](o)(-1), was 10(8.3)). It suggests that LnA(3) can form two 5-membered rings with MePhPTA, and the size of Pr(III) matches to the distance between the donor atoms in MePhPTA. Although the stability constant decreased with increasing Ln atomic number, the synergistic extraction constant (K(ex31)=[LnA(3)B](o)[H(+)](3)[Ln(3+)](-1)[HA](o)(-3)[B](o)(-1)) was the largest for Sm(III). Since the constant, K(ex31,) is given by K(ex31)=K(ex30)×β¯ where K(ex30)=[LnA(3)](o)[H(+)](3)[Ln(3+)](-1)[HA](o)(-3), the largest K(ex31) of Sm(III) is attributable to the difference of the degree of the variation of K(ex30) between the light and the heavy Lns(III); the increment of extraction constant of LnA(3) (logK(ex30)) for light Lns is larger than the decrement of the stability constant of LnA(3)B (logβ¯), while the increment of logK(ex30) of post-Sm lessens than the decrement of logβ¯. From these results, it is concluded that selective separation of a particular Ln(III) among all Lns(III) is possible using synergistic extraction with a suitable combination of a multidentate β-diketone and a Lewis base. Copyright

  14. Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2.

    PubMed

    Fu, Jingru; Das, Saikat; Xing, Guolong; Ben, Teng; Valtchev, Valentin; Qiu, Shilun

    2016-06-22

    The search for new types of membrane materials has been of continuous interest in both academia and industry, given their importance in a plethora of applications, particularly for energy-efficient separation technology. In this contribution, we demonstrate for the first time that a metal-organic framework (MOF) can be grown on the covalent-organic framework (COF) membrane to fabricate COF-MOF composite membranes. The resultant COF-MOF composite membranes demonstrate higher separation selectivity of H2/CO2 gas mixtures than the individual COF and MOF membranes. A sound proof for the synergy between two porous materials is the fact that the COF-MOF composite membranes surpass the Robeson upper bound of polymer membranes for mixture separation of a H2/CO2 gas pair and are among the best gas separation MOF membranes reported thus far.

  15. Temperature-/pressure-dependent selective separation of CO(2) or benzene in a chiral metal-organic framework material.

    PubMed

    Tan, Yan-Xi; He, Yan-Ping; Zhang, Jian

    2012-08-01

    Presented here is a chiral microporous metal-organic framework material with a three-fold interpenetrating diamond-type structural topology and interesting properties for selective separation. The material has a high storage capacity for CO(2) gas (4.23 mmol g(-1) at 273 K and 1 bar) and shows fantastic temperature-dependent selectivity for CO(2) over N(2). Moreover, this multifunctional material, which has a rich π system, can selectively adsorb benzene over cyclohexane at low pressure (0.05 bar) at 298 K.

  16. Pervaporation and Vapor Permeation Tutorial: Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from fermentation broths, solvent/biofuel dehydration to meet ...

  17. Pervaporation & Vapor Permeation Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes which have been proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from dilute fermentation broths, solvent/biofu...

  18. Pervaporation and Vapor Permeation Tutorial: Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from fermentation broths, solvent/biofuel dehydration to meet ...

  19. Pervaporation & Vapor Permeation Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes which have been proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from dilute fermentation broths, solvent/biofu...

  20. Separation of selected stable isotopes by liquid-phase thermal diffusion and by chemical exchange

    NASA Astrophysics Data System (ADS)

    Rutherford, W. M.; Jepson, B. E.; Michaels, E. D.

    Useful applications of enriched stable nuclides are unduly restricted by high cost and limited availability. Recent research on liquid phase thermal diffusion (LTD) has resulted in practical processes for separating S34, CL35, and CL37 in significant quantities (100 to 500 g/yr) at costs much lower than those associated with the electromagnetic (Calutron) process. The separation of the isotopes of bromine by LTD is now in progress and BR79 is being produced in relatively simple equivalent at a rate on the order of 0.5 g/day. The results of recent measurements show that the isotopes of Zn can be separated by LTD of zinc alkyls. The isotopes of calcium can be separated by LTD and by chemical exchange. The LTD process is based on the use of aqueous Ca(NO3)2 as a working fluid.

  1. A Highly Stable Nanotubular MOF Rotator for Selective Adsorption of Benzene and Separation of Xylene Isomers.

    PubMed

    Huang, Wei; Jiang, Jun; Wu, Dayu; Xu, Jun; Xue, Bing; Kirillov, Alexander M

    2015-11-16

    A remarkably stable tubular 3D Zn-MOF with hexagonal channels and a rare ptr topology was prepared under solvothermal conditions for liquid and vapor phase adsorption and separation of the C6-8 aromatic compounds. The material showed preferential affinity for benzene and can effectively separate benzene from its organic analogues under ambient conditions in both vapor and liquid phases. Furthermore, it exhibited preferable uptake of p-xylene over other C8 xylenes.

  2. Dislocation/separation injuries among US high school athletes in 9 selected sports: 2005-2009.

    PubMed

    Kerr, Zachary Y; Collins, Christy L; Pommering, Thomas L; Fields, Sarah K; Comstock, R Dawn

    2011-03-01

    To investigate the epidemiology of dislocations/separations in a nationally representative sample of high school student-athletes participating in 9 sports. Descriptive epidemiologic study. Sports injury data for the 2005-2009 academic years were collected using an Internet-based injury surveillance system, Reporting Information Online (RIO). A nationally representative sample of 100 US high schools. Injuries sustained as a function of sport and gender. Dislocation/separation rates, body site, outcome, surgery, and mechanism. Dislocations/separations represented 3.6% (n = 755) of all injuries. The most commonly injured body sites were the shoulder (54.9%), wrist/hand (16.5%), and knee (16.0%); 18.4% of dislocations/separations were recurrences of previous injuries at the same body site; 32.3% of injuries were severe (ie, student-athletes unable to return to play within 3 weeks of the injury date), and 11.8% required surgical repair. The most common mechanisms of injury were contact with another player (52.4%) and contact with the playing surface (26.4%). Injury rates varied by sport. In gender-comparable sports, few variations in patterns of injury existed. Rates were highest in football (2.10 per 10 000 athletic exposures) and wrestling (1.99) and lowest in baseball (0.24) and girls' soccer (0.27). Although dislocation/separation injuries represent a relatively small proportion of all injuries sustained by high school student-athletes, the severity of these injuries indicates a need for enhanced injury prevention efforts. Developing effective targeted preventive measures depends on increasing our knowledge of dislocation/separation rates, patterns, and risk factors among high school athletes.

  3. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    SciTech Connect

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the

  4. Separating selection by diurnal and nocturnal pollinators on floral display and spur length in Gymnadenia conopsea.

    PubMed

    Sletvold, Nina; Trunschke, Judith; Wimmergren, Carolina; Agren, Jon

    2012-08-01

    Most plants attract multiple flower visitors that may vary widely in their effectiveness as pollinators. Floral evolution is expected to reflect interactions with the most important pollinators, but few studies have quantified the contribution of different pollinators to current selection on floral traits. To compare selection mediated by diurnal and nocturnal pollinators on floral display and spur length in the rewarding orchid Gymnadenia conopsea, we manipulated the environment by conducting supplemental hand-pollinations and selective pollinator exclusions in two populations in central Norway. In both populations, the exclusion of diurnal pollinators significantly reduced seed production compared to open pollination, whereas the exclusion of nocturnal pollinators did not. There was significant selection on traits expected to influence pollinator attraction and pollination efficiency in both the diurnal and nocturnal pollination treatment. The relative strength of selection among plants exposed to diurnal and nocturnal visitors varied among traits and populations, but the direction of selection was consistent. The results suggest that diurnal pollinators are more important than nocturnal pollinators for seed production in the study populations, but that both categories contribute to selection on floral morphology. The study illustrates how experimental manipulations can link specific categories of pollinators to observed selection on floral traits, and thus improve our understanding of how species interactions shape patterns of selection.

  5. Separation of synaptic and spike activity in intracellular recordings for selective analysis.

    PubMed

    Hedwig, B; Knepper, M

    1992-04-01

    A software spike filter has been developed which allows the separation of synaptic activity and action potentials in intracellular recordings. The algorithm uses the different velocities of the membrane potential during synaptic and spike activity and a time window to identify action potentials. When spikes are recognized, they are removed and the membrane potential is substituted by interpolated values. The spike filter makes possible a separate quantitative evaluation of postsynaptic potentials and spike activity. Thus a comprehensive characterization of neuron activity can be obtained. The spike filter is part of a modular software package designed for the evaluation of neurobiological data.

  6. Transfer and the Part-Time Student: The Gulf Separating Community Colleges and Selective Universities

    ERIC Educational Resources Information Center

    Handel, Stephen J.

    2009-01-01

    When representatives from community colleges and selective four-year institutions gather, there is no greater flashpoint than the topic of part-time enrollment. This issue--that students coming from an institution comprising mostly part-time students should be enabled to transfer to selective four-year institutions in which full-time enrollment is…

  7. Transfer and the Part-Time Student: The Gulf Separating Community Colleges and Selective Universities

    ERIC Educational Resources Information Center

    Handel, Stephen J.

    2009-01-01

    When representatives from community colleges and selective four-year institutions gather, there is no greater flashpoint than the topic of part-time enrollment. This issue--that students coming from an institution comprising mostly part-time students should be enabled to transfer to selective four-year institutions in which full-time enrollment is…

  8. Neuroproteomic profiling of human brain tissue using multidimensional separation techniques and selective enrichment of membrane proteins.

    PubMed

    Musunuri, Sravani; Shevchenko, Ganna; Bergquist, Jonas

    2012-12-01

    Hydrophobic membrane proteins (MPs) occupy a unique niche in the brain proteome research due to their important physiological roles. Therefore, the extraction, separation, and identification of MPs are of great interest in proteomic analysis. We applied various proteomic techniques to enrich, separate, and analyze the human brain proteome, including membrane proteome. Temperature-induced phase fractionation with the nonionic surfactant Triton X-114 was used to simultaneously extract, separate, and concentrate low abundant hydrophobic and high abundant hydrophilic proteins from human brain tissue. The extracted and delipidated proteins were analyzed by two-dimensional gel electrophoresis (2DE). Approximately 600 spots were detected in the gels. In-solution digestion was performed on 3 kDa spin filters. Tryptic peptides were separated using RP nano-LC and analyzed using two different high performance mass spectrometers, linear ion trap-Fourier transform and a linear ion trap-Orbitrap to reveal the low abundant MPs. In total, 837 and 780 unique proteins were identified by using linear ion trap-Fourier transform and linear ion trap-Orbitrap mass spectrometers, respectively. More than 29% of the identified proteins were classified as MPs with significant biological functions such as ion channels and transporters. Our study establishes a simple and rapid shotgun approach for the characterization of the brain proteome, and allows comprehensive analysis of brain membrane proteomes.

  9. Solvent selection for cyclohexane-cyclohexene-benzene separation by extractive distillation using non-steady-state gas chromatography

    SciTech Connect

    Vega, A.; Diez, F.; Esteban, R.; Coca, J.

    1997-03-01

    The infinite-dilution activity coefficients of cyclohexane, cyclohexene, and benzene in N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, phenyl acetate, and dimethyl malonate have been determined at temperatures ranging from 40 to 80 C, by non-steady-state gas chromatography. From these data, the limiting selectivity-solvency properties for cyclohexane-benzene, cyclohexene-benzene, and cyclohexane-cyclohexene, in the presence of the aforementioned solvents, are studied, and the solvents tested are considered for the cyclohexane-cyclohexene-benzene separation by extractive distillation. According to the results, N,N-dimethylacetamide seems to be an adequate solvent for the cyclohexane-benzene and cyclohexene-benzene separations. The separation of cyclohexane-cyclohexene is the most difficult, in spite of the difference of boiling points, much higher than for cyclohexane-benzene.

  10. Selection of Genetic and Phenotypic Features Associated with Inflammatory Status of Patients on Dialysis Using Relaxed Linear Separability Method

    PubMed Central

    Bobrowski, Leon; Łukaszuk, Tomasz; Lindholm, Bengt; Stenvinkel, Peter; Heimburger, Olof; Axelsson, Jonas; Bárány, Peter; Carrero, Juan Jesus; Qureshi, Abdul Rashid; Luttropp, Karin; Debowska, Malgorzata; Nordfors, Louise; Schalling, Martin; Waniewski, Jacek

    2014-01-01

    Identification of risk factors in patients with a particular disease can be analyzed in clinical data sets by using feature selection procedures of pattern recognition and data mining methods. The applicability of the relaxed linear separability (RLS) method of feature subset selection was checked for high-dimensional and mixed type (genetic and phenotypic) clinical data of patients with end-stage renal disease. The RLS method allowed for substantial reduction of the dimensionality through omitting redundant features while maintaining the linear separability of data sets of patients with high and low levels of an inflammatory biomarker. The synergy between genetic and phenotypic features in differentiation between these two subgroups was demonstrated. PMID:24489753

  11. Theoretical Prediction of Am(III)/Eu(III) Selectivity to Aid the Design of Actinide-Lanthanide Separation Agents

    DOE PAGES

    Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2015-03-20

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. Furthermore, first-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. We examine the ability of several density functional theory methods to predict selectivity of Am(III) and Eu(III) with oxygen, mixed oxygen–nitrogen, and sulfur donor ligands. The results establish a computational method capablemore » of predicting the correct order of selectivities obtained from liquid–liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands.« less

  12. Feasibility of ionic liquids as extractants for selective separation of vitamin D₃ and tachysterol₃ by solvent extraction.

    PubMed

    Liang, Ruisi; Bao, Zongbi; Su, Baogen; Xing, Huabin; Yang, Qiwei; Yang, Yiwen; Ren, Qilong

    2013-04-10

    A selective separation of vitamin D₃ and tachysterol₃ by solvent extraction with 7 organic solvents and 11 ionic liquids (ILs) has been reported. Among organic solvents sulfolane showed optimal extraction performance, giving only a selectivity of 1.44 for tachysterol₃ over vitamin D₃. ILs with unsaturated bonds demonstrated high selectivity probably due to their different π-π interactions with the two compounds. A pyrrolidinium-based ionic liquid, for example, [BMPr][NTf2], provided the highest selectivity up to 1.77. Acceptable selectivity and distribution coefficients were observed by a combination of organic solvents and ILs as extracting agents. In this work, the effects of concentrations, anions, cations, and substituent of ILs were investigated, which may provide a rational strategy for the design of novel ILs for extractive separation of structural analogues. The purification and recovery of vitamin D₃3 via continuous multistage extractions were simulated, indicating that IL-based liquid-liquid extraction might be superior to traditional organic solvents in practical production.

  13. Theoretical Prediction of Am(III)/Eu(III) Selectivity to Aid the Design of Actinide-Lanthanide Separation Agents

    SciTech Connect

    Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2015-03-20

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. Furthermore, first-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. We examine the ability of several density functional theory methods to predict selectivity of Am(III) and Eu(III) with oxygen, mixed oxygen–nitrogen, and sulfur donor ligands. The results establish a computational method capable of predicting the correct order of selectivities obtained from liquid–liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands.

  14. Facile fabrication of hydrophilic nanofibrous membranes with an immobilized metal-chelate affinity complex for selective protein separation.

    PubMed

    Zhu, Jing; Sun, Gang

    2014-01-22

    In this study, we report a facile approach to fabricate functionalized poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membranes as immobilized metal affinity membranes for selective protein separation. Hydrophilic PVA-co-PE nanofibrous membranes with controlled fiber sizes were prepared via a melt extrusion process. A chelating group, iminodiacetic acid (IDA), was covalently attached to cyanuric acid activated membrane surfaces to form coordinative complexes with metal ions. The prepared membranes were applied to recover a model protein, lysozyme, under various conditions, and a high lysozyme adsorption capacity of 199 mg/g membrane was found under the defined optimum conditions. Smaller fiber size with a higher immobilized metal ion density on membrane surfaces showed greater lysozyme adsorption capacity. The lysozyme adsorption capacity remained consistent during five repeated cycles of adsorption-elution operations, and up to 95% of adsorbed lysozyme was efficiently eluted by using a phosphate buffer containing 0.5 M NaCl and 0.5 M imidazole as an elution media. The successful separation of lysozyme with high purity from fresh chicken egg white was achieved by using the present affinity membrane. These remarkable features, such as high capacity and selectivity, easy regeneration, as well as reliable reusability, demonstrated the great potential of the metal-chelate affinity complex immobilized nanofibrous membranes for selective protein separation.

  15. Use of ligand-modified micellar-enhanced ultrafiltration to selectively separate copper ions from wastewater streams

    SciTech Connect

    Shadizadeh, S.B.

    1992-12-31

    The selective removal of target ions from an aqueous solution containing ions of like charge by ligand-modified micellar-enhanced ultrafiltration (LM-MEUF), is presented. In LM-MEUF, surfactant and specially tailored ligand are added to the contaminated stream. The surfactant forms aggregates called micelles, the hydrocarbon core of which the ligand complexed with the target species will solubilize. The surfactant is chosen to have the same charge type as the target ion; therefore, other ions (with similar charge) will not associate with the micelle, which makes the separation of the target ion selective. The solution is then processed by ultrafiltration, using a membrane with pore size small enough to block the passage of the micelles. In this study the divalent copper is the target ion in the solution containing divalent calcium. The surfactant is cetylpyridinium chloride (CPC) and the ligand is 4-hexadecyloxybenzyliminodiacetic acid (C{sub 16}BIDA). Experiments were conducted with batch stirred cells and the results have been compared to separation that take place under a variety of conditions in the LM-MEUF process. Rejections of copper of up to 99.8% are observed, with almost no rejection of calcium, showing that LM-MEUF has excellent selectivity and separation efficiency.

  16. Selectivity evaluation and separation of human immunoglobulin G, Fab and Fc fragments with mixed-mode resins.

    PubMed

    Luo, Ying-Di; Zhang, Qi-Lei; Yuan, Xiao-Ming; Shi, Wei; Yao, Shan-Jing; Lin, Dong-Qiang

    2017-01-01

    Adsorption selectivity is critical important for mixed-mode chromatography with specially-designed ligands. Human immunoglobulin G (hIgG), Fc and Fab fragments were used in the present work to evaluate adsorption behavior and binding selectivity of four mixed-mode resins with the ligands of 4-mercatoethyl-pyridine (MEP), 2-mercapto-1-methylimidazole (MMI), 5-aminobenzimidazole (ABI) and tryptophan-5-aminobenzimidazole (W-ABI), respectively. The resins showed an obvious pH-dependent adsorption behavior. High adsorption capacities were found at neutral pH for hIgG, Fc and Fab, and almost no adsorption happened under acidic conditions. An adsorption selectivity index was proposed to evaluate separation efficiency. High specificity of hIgG/Fc was found at pH 8.9 for MEP resin, and for W-ABI resin at pH 8.0 and 8.9. In addition, isothermal titration calorimetry was used to evaluate ligand-protein interactions. Finally, the separation of hIgG and Fc (1:1) was optimized with mixed-mode resins, and the best separation performance was obtained with W-ABI-based resin. Loading at pH 8.0 resulted in the flow through of Fc with purity of 90.4% and recovery of 98.8%, while elution at pH 3.6 provided hIgG with purity of 99.7% and recovery of 86.5%.

  17. The method of event selection for nuclei separation with the calorimeter in the PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Karelin, A. V.; Likhacheva, V. L.; Voronov, S. A.

    2016-02-01

    Here we discuss a method for a study of the heavy nuclei cosmic ray composition. The method is based on a charge separation with the PAMELA calorimeter. The work is in progress now. The ability is presented to carry out measurements up to Fe and Ni. As a result we expect to get important data about the abundance of the chemical elements in the cosmic rays.

  18. Selected Hanford reactor and separations operating data for 1960--1964

    SciTech Connect

    Gydesen, S.P.

    1992-09-01

    The purpose of this letter report is to reconstruct from available information that data which can be used to develop daily reactor operating history for 1960--1964. The information needed for source team calculations (as determined by the Source Terms Task Leader) were extracted and included in this report. The data on the amount of uranium dissolved by the separations plants (expressed both as tons and as MW) is also included in this compilation.

  19. SEPARATION OF PLUTONIUM VALUES FROM OTHER METAL VALUES IN AQUEOUS SOLUTIONS BY SELECTIVE COMPLEXING AND ADSORPTION

    DOEpatents

    Beaton, R.H.

    1960-06-28

    A process is given for separating tri- or tetravalent plutonium from fission products in an aqueous solution by complexing the fission products with oxalate, tannate, citrate, or tartrate anions at a pH value of at least 2.4 (preferably between 2.4 and 4), and contacting a cation exchange resin with the solution whereby the plutonium is adsorbed while the complexed fission products remain in solution.

  20. Separation of neutral compounds by microemulsion electrokinetic chromatography: fundamental studies on selectivity.

    PubMed

    Gabel-Jensen, C; Honoré Hansen, S; Pedersen-Bjergaard, S

    2001-04-01

    The selectivity of microemulsion electrokinetic chromatography (MEEKC) was studied utilizing some uncharged model compounds like aromatic amides, steroids, and esters of nicotinic acid. The cosurfactant of the microemulsion was found to be the most important factor affecting the selectivity, and alteration between 6.6% of 1-propanol, 1-butanol, tetrahydrofuran, and 2-ethoxyethanol caused several substantial changes in the migration order. In addition, the nature of the surfactant was found to significantly affect the selectivity. In this case, changes in order of migration was observed by replacement of half the content of sodium dodecyl sulfate (SDS) with either sodium dioctyl sulfosuccinate (SDOSS), 3-(N,N-dimethylmyristylammonio) propanesulfonate (MAPS), polyoxyethylene sorbitan monolaurate (Tween 21), and polyoxyethylene 23 lauryl ether (Brij 35). MEEKC was also accomplished with 3.3% of the anionic surfactant sodium cholate and with the cationic surfactant N-cetyl-N,N,N-trimethylammonium bromide (CTMA). Both provided substantial differences in selectivity as compared to the SDS-based systems. With SDS as surfacant, the concentration was varied within 1.0-4.5%. Minor selectivity changes were observed as the concentration of the surfacant was reduced, but the major effect was a reduction in the total migration time. The organic solvent of the microemulsion droplets was found only to have minor impact on the selectivity.

  1. Selective Separation of Fe-Concentrates in EAF Slags Using Mechanical Dissimilarity of Solid Phases

    NASA Astrophysics Data System (ADS)

    Jung, Sung Suk; Jung, Keeyoung; Sohn, Il

    2017-02-01

    We sought to develop an optimized particle size-dependent separation method to lower the Fe content of pulverized glass-ceramic electric arc furnace (EAF) slag for its improved reclamation as construction materials by considering the structures and the mechanical behavior of the discrete solid phases. After an isothermal crystallization process to enhance the spinel growth, the Vickers hardness and fracture toughness were measured on the spinel and amorphous phases separately from the solidified slag using indentation methods. The characteristic differences in the hardness of the phases were magnified when this glass-ceramic composite was isothermally crystallized. The hardness of the spinel was observed to be lower in slags with higher FetO/Al2O3 mass ratios due to the triclinic unit cell expansion of the spinel, whereas the hardness of the amorphous phase decreased with increasing isothermal period because of the structural transformation into a silicate-dominant network. Fracture toughness could be calculated based on the hardness and crack length, where the Young's modulus was determined using nanoindentation. The amorphous phase with a lower Fe content and lower fracture toughness resulted in finer powder distribution after pulverization, allowing better separation of the primary crystalline spinel containing higher Fe content from the Fe-deficient amorphous phase according to the particle size.

  2. Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation.

    PubMed

    Guney, Ali; Poyraz, M Ibrahim; Kangal, Olgac; Burat, Firat

    2013-09-01

    Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each other by flotation method which is useful mineral processing technique with its low cost and simplicity. The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Selective Adsorption and Separation of Organic Dyes with Spherical Polyelectrolyte Brushes and Compressed Carbon Dioxide.

    PubMed

    Zhang, Rui; Yu, Zhenchuan; Wang, Lei; Shen, Qizhe; Hou, Xiaoyan; Guo, Xuhong; Wang, Junwei; Zhu, Xuedong; Yao, Yuan

    2017-10-04

    Dye-containing wastewater has caused serious environmental pollution. Herein, rationally designed spherical polyelectrolyte brushes (SPBs) with cationic charges, polystyrene-poly(2-aminoethylmethacrylate hydrochloride) (PS-PAEMH) as the absorbent, and compressed carbon dioxide as the antisolvent are proposed for the separation of the anionic dye eosin Y (EY) from a solution of mixed dyes. The adsorption behavior of EY onto PS-PAEMH was highly dependent on CO2 pressure, contact time, and initial concentration. The maximum adsorption capacity of PS-PAEMH was 335.20 mg g(-1) . FTIR and UV/Vis measurements proved that the electrostatic interactions between EY and PS-PAEMH played an important role in the absorbance process. The adsorption process fitted the pseudo-second-order kinetic model and Freundlich isotherm model very well. The combined dye and polymer brush could be easily separated through ion exchange by adding an aqueous solution of NaCl. Recovered PS-PAEMH retained a high adsorption capacity even after ten cycles of regeneration. This method provides a simple and effective way to separate ionic materials for environmental engineering. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Size-selective separations of biological macromolecules on mesocylinder silica arrays.

    PubMed

    El-Safty, Sherif; Shenashen, M A

    2011-05-23

    In order to control the design functionality of mesocylinder filters for molecular sieving of proteins, we fabricated tight mesocylinder silica nanotube (NT) arrays as promising filter candidates for size-exclusion separation of high-concentration macromolecules, such as insulin (INS), α-amylase (AMY), β-lactoglobulin (β-LG), and myosin (MYO) proteins. In this study, hexagonal mesocylinder structures were fabricated successfully inside anodic alumina membrane (AAM) nanochannels using a variety of cationic and nonionic surfactants as templates. The systematic design of the nanofilters was based on densely patterned polar silane coupling agents ("linkers") onto the AAM nanochannels, leading to the fabrication of mesocylinder silica arrays with vertical alignment and open surfaces of top-bottom ends inside AAM. Further surface coating of silica NTs hybrid AAM with hydrophobic agents facilitated the production of extremely robust constructed sequences of membranes without the formation of air gaps among NT arrays. The fabricated membranes with impermeable coated layers, robust surfaces, and uniformly multidirectional cylinder pores in nanoscale sizes rapidly separate large quantities of proteins within seconds. Meanwhile, comprehensive factors that affect the performance of the molecular transport, diffusivity, and filtration rate through nanofilter membranes were discussed. The mesocylinder filters of macromolecules show promise for the efficient separation and molecular transport of large molecular weight and size as well as concentrations of proteins.

  5. Signatures of natural selection between life cycle stages separated by metamorphosis in European eel.

    PubMed

    Pujolar, J M; Jacobsen, M W; Bekkevold, D; Lobón-Cervià, J; Jónsson, B; Bernatchez, L; Hansen, M M

    2015-08-13

    Species showing complex life cycles provide excellent opportunities to study the genetic associations between life cycle stages, as selective pressures may differ before and after metamorphosis. The European eel presents a complex life cycle with two metamorphoses, a first metamorphosis from larvae into glass eels (juvenile stage) and a second metamorphosis into silver eels (adult stage). We tested the hypothesis that different genes and gene pathways will be under selection at different life stages when comparing the genetic associations between glass eels and silver eels. We used two sets of markers to test for selection: first, we genotyped individuals using a panel of 80 coding-gene single nucleotide polymorphisms (SNPs) developed in American eel; second, we investigated selection at the genome level using a total of 153,423 RAD-sequencing generated SNPs widely distributed across the genome. Using the RAD approach, outlier tests identified a total of 2413 (1.57%) potentially selected SNPs. Functional annotation analysis identified signal transduction pathways as the most over-represented group of genes, including MAPK/Erk signalling, calcium signalling and GnRH (gonadotropin-releasing hormone) signalling. Many of the over-represented pathways were related to growth, while others could result from the different conditions that eels inhabit during their life cycle. The observation of different genes and gene pathways under selection when comparing glass eels vs. silver eels supports the adaptive decoupling hypothesis for the benefits of metamorphosis. Partitioning the life cycle into discrete morphological phases may be overall beneficial since it allows the different life stages to respond independently to their unique selection pressures. This might translate into a more effective use of food and niche resources and/or performance of phase-specific tasks (e.g. feeding in the case of glass eels, migrating and reproducing in the case of silver eels).

  6. Selective separation of ferric and non-ferric forms of human transferrin by capillary micellar electrokinetic chromatography.

    PubMed

    Nowak, Paweł; Śpiewak, Klaudyna; Nowak, Julia; Brindell, Małgorzata; Woźniakiewicz, Michał; Stochel, Grażyna; Kościelniak, Paweł

    2014-05-09

    The previously published method allowing the separation of non-ferric (iron-free) and ferric (iron-saturated) forms of human serum transferrin via capillary electrophoresis has been further developed. Using a surface response methodology and a three-factorial Doehlert design we have established a new optimized running buffer composition: 50mM Tris-HCl, pH 8.5, 22.5% (v/v) methanol, 17.5mM SDS. As a result, two previously unobserved monoferric forms of protein have been separated and identified, moreover, the loss of ferric ions from transferrin during electrophoretic separation has been considerably reduced by methanol, and the method selectivity has been yet increased resulting in a total separation of proteins exerting only subtle or none difference in mass-to-charge ratio. The new method has allowed us to monitor the gradual iron saturation of transferrin by mixing the iron-free form of protein with the buffers with different concentrations of ferric ions. It revealed continuously changing contribution of monoferric forms, characterized by different affinities of two existing iron binding sites on N- and C-lobes of protein, respectively. Afterwards, the similar experiment has been conducted on-line, i.e. inside the capillary, comparing the effectiveness of two possible modes of the reactant zones mixing: diffusion mediated and electrophoretically mediated ones. Finally, the total time of separation has been decreased down to 4min, taking the advantage from a short-end injection strategy and maintaining excellent selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Natural Gamma Emitters after a Selective Chemical Separation of a TENORM residue: Preliminary Results

    SciTech Connect

    Alves de Freitas, Antonio; Abrao, Alcidio; Godoy dos Santos, Adir Janete; Pecequilo, Brigitte Roxana Soreanu

    2008-08-07

    An analytical procedure was established in order to obtain selective fractions containing radium isotopes ({sup 228}Ra), thorium ({sup 232}Th), and rare earths from RETOTER (REsiduo de TOrio e TErras Raras), a solid residue rich in rare earth elements, thorium isotopes and small amount of natural uranium generated from the operation of a thorium pilot plant for purification and production of pure thorium nitrate at IPEN -CNEN/SP. The paper presents preliminary results of {sup 228}Ra, {sup 226}Ra, {sup 238}U, {sup 210}Pb, and {sup 40}K concentrations in the selective fractions and total residue determined by high-resolution gamma spectroscopy, considering radioactive equilibrium of the samples.

  8. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation.

    PubMed

    Meng, Qing Bo; Weber, Jens

    2014-12-01

    Suitable solid adsorbents are demanded for carbon capture and storage (CCS) processes. In this work, a novel microporous polymer is developed by hypercrosslinking of organosolv lignin, which is a renewable resource. Reaction with formaldehyde dimethyl acetal (FDA) via Friedel-Crafts reaction gives microporous networks, with moderate capacity of carbon dioxide but excellent selectivity towards CO2 /N2 mixture as predicted on the basis of ideal adsorption-solution theory (IAST). Pyrolysis of pure organosolv lignin results in microporous carbon powders, while pyrolysis of hypercrosslinked organosolv lignin yields shape-persistent materials with increased CO2 capacity while maintaining very good selectivity.

  9. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms

    SciTech Connect

    Kenneth L. Nash

    2009-09-22

    Implementation of a closed loop nuclear fuel cycle requires the utilization of Pu-containing MOX fuels with the important side effect of increased production of the transplutonium actinides, most importantly isotopes of Am and Cm. Because the presence of these isotopes significantly impacts the long-term radiotoxicity of high level waste, it is important that effective methods for their isolation and/or transmutation be developed. Furthermore, since transmutation is most efficiently done in the absence of lanthanide fission products (high yield species with large thermal neutron absorption cross sections) it is important to have efficient procedures for the mutual separation of Am and Cm from the lanthanides. The chemistries of these elements are nearly identical, differing only in the slightly stronger strength of interaction of trivalent actinides with ligand donor atoms softer than O (N, Cl-, S). Research being conducted around the world has led to the development of new reagents and processes with considerable potential for this task. However, pilot scale testing of these reagents and processes has demonstrated the susceptibility of the new classes of reagents to radiolytic and hydrolytic degradation. In this project, separations of trivalent actinides from fission product lanthanides have been investigated in studies of 1) the extraction and chemical stability properties of a class of soft-donor extractants that are adapted from water-soluble analogs, 2) the application of water soluble soft-donor complexing agents in tandem with conventional extractant molecules emphasizing fundamental studies of the TALSPEAK Process. This research was conducted principally in radiochemistry laboratories at Washington State University. Collaborators at the Radiological Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) have contributed their unique facilities and capabilities, and have supported student internships at PNNL to broaden their

  10. Redox-Active Metal-Organic Composites for Highly Selective Oxygen Separation Applications

    SciTech Connect

    Zhang, Wen; Banerjee, Debasis; Liu, Jian; Schaef, Herbert T.; Crum, Jarrod V.; Fernandez, Carlos A.; Kukkadapu, Ravi K.; Nie, Zimin; Nune, Satish K.; Motkuri, Radha K.; Chapman, Karena W.; Engelhard, Mark H.; Hayes, James C.; Silvers, Kurt L.; Krishna, Rajamani; McGrail, B. Peter; Liu, Jun; Thallapally, Praveen K.

    2016-03-08

    A redox-active metal-organic composite material shows improved and selective O-2 adsorption over N-2 with respect to individual components (MIL-101 and ferrocene). The O-2 sensitivity of the composite material arises due to the formation of maghemite nanoparticles with the pore of the metal-organic framework material.

  11. Ion Selective Ceramics for Waste Separations. Input for Annual Accomplishments Report

    SciTech Connect

    Spoerke, Erik David

    2015-10-01

    This report discusses“Ion-Selective Ceramics for Waste Separations” which aims to develop an electrochemical approach to remove fission product waste (e.g., Cs+ ) from the LiCl-KCl molten salts used in the pyroprocessing of spent nuclear fuel.

  12. Metal–organic framework with optimally selective xenon adsorption and separation

    SciTech Connect

    Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; Motkuri, Radha K.; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B.; Haranczyk, Maciej; Thallapally, Praveen K.

    2016-06-13

    Nuclear energy is considered among the most viable alternatives to our current fossil fuel based energy economy.1 The mass-deployment of nuclear energy as an emissions-free source requires the reprocessing of used nuclear fuel to mitigate the waste.2 One of the major concerns with reprocessing used nuclear fuel is the release of volatile radionuclides such as Xe and Kr. The most mature process for removing these radionuclides is energy- and capital-intensive cryogenic distillation. Alternatively, porous materials such as metal-organic frameworks (MOFs) have demonstrated the ability to selectively adsorb Xe and Kr at ambient conditions.3-8 High-throughput computational screening of large databases of porous materials has identified a calcium-based nanoporous MOF, SBMOF-1, as the most selective for Xe over Kr.9,10 Here, we affirm this prediction and report that SBMOF-1 exhibits by far the highest Xe adsorption capacity and a remarkable Xe/Kr selectivity under relevant nuclear reprocessing conditions. The exceptional selectivity of SBMOF-1 is attributed to its pore size tailored to Xe and its dense wall of atoms that constructs a binding site with a high affinity for Xe, as evident by single crystal X-ray diffraction and molecular simulation.

  13. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples.

    PubMed

    Uzuriaga-Sánchez, Rosario Josefina; Khan, Sabir; Wong, Ademar; Picasso, Gino; Pividori, Maria Isabel; Sotomayor, Maria Del Pilar Taboada

    2016-01-01

    This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery.

  14. Sustained Selective Attention Skills of Preschool Children with Specific Language Impairment: Evidence for Separate Attentional Capacities

    ERIC Educational Resources Information Center

    Spaulding, Tammie J.; Plante, Elena; Vance, Rebecca

    2008-01-01

    Purpose: The present study was designed to investigate the performance of preschool children with specific language impairment (SLI) and their typically developing (TD) peers on sustained selective attention tasks. Method: This study included 23 children diagnosed with SLI and 23 TD children matched for age, gender, and maternal education level.…

  15. Control of selectivity via nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides.

    PubMed

    Krenkova, Jana; Lacher, Nathan A; Svec, Frantisek

    2010-10-01

    New monolithic capillary columns with embedded commercial hydroxyapatite nanoparticles have been developed and used for protein separation and selective enrichment of phosphopeptides. The rod-shaped hydroxyapatite nanoparticles were incorporated into the poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) monolith by simply admixing them in the polymerization mixture followed by in situ polymerization. The effect of percentages of monomers and hydroxyapatite nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. We found that the loading capacity of the monolith is on par with other hydroxyapatite separation media. However, the speed at which these columns can be used is higher due to the fast mass transport. The function of the monolithic columns was demonstrated with the separations of a model mixture of proteins including ovalbumin, myoglobin, lysozyme, and cytochrome c as well as a monoclonal antibody and its aggregates with protein A. Selective enrichment and MALDI/MS characterization of phosphopeptides fished-out from complex peptide mixtures of ovalbumin, α-casein, and β-casein digests were also achieved using the hydroxyapatite monolith.

  16. Selective separation of Hg(II) and Cd(II) from aqueous solutions by complexation-ultrafiltration process.

    PubMed

    Zeng, Jian Xian; Ye, Hong Qi; Huang, Nian Dong; Liu, Jun Feng; Zheng, Li Feng

    2009-07-01

    Complexation-ultrafiltration process was investigated to separate selectively Hg(II) and Cd(II) from binary metal solutions by using poly (acrylic acid) sodium salt as a complexing agent. Effects of operating parameters on selective separation factors (beta(Cd/Hg)) of the both metals have been examined in detail. Results indicated that loading rate, pH, concentration of salt added and low-molecular competitive complexing agent affect significantly beta(Cd/Hg) value. Further, a concentration experiment was carried out according to the previous optimum parameters. Rejection coefficient of mercury is close to 1, while that of cadmium is about 0.1. The experiment was characterized by good effectiveness, and enabled the rapid linear increase of mercury concentration and very slow increase of cadmium concentration in the retentate. Then, a diafiltration technique was applied to separate further the both metals. Cadmium concentration in the retentate declines sharply with the diafiltration volume, whereas for mercury it is the contrary.

  17. Toxaphene chemistry: separation and characterisation of selected enantiomers of the Polychloropinene mixtures.

    PubMed

    Trukhin, Alexey; Kruchkov, Fedor; Hansen, Lars Kr; Kallenborn, Roland; Kiprianova, Anastasia; Nikiforov, Vladimir

    2007-04-01

    The primary goal for the study presented here was the preparation and characterisation of enantiomeric pure chlorobornane standards (Toxaphene). In this context, we partially modeled the procedure for Polychloropinene production in the former USSR. The initial reaction was ionic addition of hydrogen chloride to (1S)-alpha-pinene resulting predominantly in (1S)-2-endo-chlorobornane. Further photochlorination gave mixtures of chlorinated terpenes with different average content of Cl per molecule. The resulting mixtures were separated on a silica-gel column and a number of known hepta to decachlorobornanes were identified in fractions with the help of NMR and GC (using electron capture and mass spectrometric detection)--but in very unusual ratios as compared to the technical Toxaphene mixture formerly produced by Hercules (USA). Also several previously unknown congeners were isolated or detected. Three of the isolated congeners were obtained in crystalline state and X-ray crystallography showed their enantiomeric purity.

  18. Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10.

    PubMed

    Ellenrieder, Lars; Opaliński, Łukasz; Becker, Lars; Krüger, Vivien; Mirus, Oliver; Straub, Sebastian P; Ebell, Katharina; Flinner, Nadine; Stiller, Sebastian B; Guiard, Bernard; Meisinger, Chris; Wiedemann, Nils; Schleiff, Enrico; Wagner, Richard; Pfanner, Nikolaus; Becker, Thomas

    2016-10-10

    The endoplasmic reticulum-mitochondria encounter structure (ERMES) connects the mitochondrial outer membrane with the ER. Multiple functions have been linked to ERMES, including maintenance of mitochondrial morphology, protein assembly and phospholipid homeostasis. Since the mitochondrial distribution and morphology protein Mdm10 is present in both ERMES and the mitochondrial sorting and assembly machinery (SAM), it is unknown how the ERMES functions are connected on a molecular level. Here we report that conserved surface areas on opposite sides of the Mdm10 β-barrel interact with SAM and ERMES, respectively. We generated point mutants to separate protein assembly (SAM) from morphology and phospholipid homeostasis (ERMES). Our study reveals that the β-barrel channel of Mdm10 serves different functions. Mdm10 promotes the biogenesis of α-helical and β-barrel proteins at SAM and functions as integral membrane anchor of ERMES, demonstrating that SAM-mediated protein assembly is distinct from ER-mitochondria contact sites.

  19. Metal-organic framework with optimally selective xenon adsorption and separation.

    PubMed

    Banerjee, Debasis; Simon, Cory M; Plonka, Anna M; Motkuri, Radha K; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B; Haranczyk, Maciej; Thallapally, Praveen K

    2016-06-13

    Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal-organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal-organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.

  20. Selective enrichment and separation of phosphotyrosine peptides by thermosensitive molecularly imprinted polymers.

    PubMed

    Yang, Xiaoqing; Xia, Yan

    2016-01-01

    Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid-Ti(4+) , the temperature-sensitive monomer N-isopropylacrylamide and the crosslinker N,N'-methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor-made peptides were measured by high-performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β-casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained.

  1. Metal-organic framework with optimally selective xenon adsorption and separation

    NASA Astrophysics Data System (ADS)

    Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; Motkuri, Radha K.; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B.; Haranczyk, Maciej; Thallapally, Praveen K.

    2016-06-01

    Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal-organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal-organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.

  2. Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices.

    PubMed

    Shamsipur, Mojtaba; Rajabi, Hamid Reza; Pourmortazavi, Seied Mahdi; Roushani, Mahmoud

    2014-01-03

    Preparation of Zn(2+) ion-imprinted polymer (Zn-IIP) nanoparticles is presented in this report. The Zn-IIP nanoparticles are prepared by dissolving stoichiometric amounts of zinc nitrate and selected chelating ligand, 3,5,7,20,40-pentahydroxyflavone, in 15 mL ethanol-acetonitrile (2:1; v/v) mixture as a porogen solvent in the presence of ethylene glycol-dimethacrylate (EGDMA) as cross-linking, methacrylic acid (MAA) as functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as initiator. After polymerization, Cavities in the polymer particles corresponding to the Zn(2+) ions were created by leaching the polymer in HCl aqueous solution. The synthesized IIPs were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal analysis techniques. Also, the pH range for rebinding of Zn(2+) ion on the IIP and equilibrium binding time were optimized, using flame atomic absorption spectrometry. In selectivity study, it was found that imprinting results increased affinity of the material toward Zn(2+) ion over other competitor metal ions with the same charge and close ionic radius. The prepared IIPs were repeatedly used and regenerated for six times without any significant decrease in polymer binding affinities. Finally, the prepared sorbent was successfully applied to the selective recognition and determination of zinc ion in different real samples.

  3. What "works" in working memory? Separate systems for selection and updating of critical information.

    PubMed

    Bledowski, Christoph; Rahm, Benjamin; Rowe, James B

    2009-10-28

    Cognition depends critically on working memory, the active representation of a limited number of items over short periods of time. In addition to the maintenance of information during the course of cognitive processing, many tasks require that some of the items in working memory become transiently more important than others. Based on cognitive models of working memory, we hypothesized two complementary essential cognitive operations to achieve this: a selection operation that retrieves the most relevant item, and an updating operation that changes the focus of attention onto it. Using functional magnetic resonance imaging, high-resolution oculometry, and behavioral analysis, we demonstrate that these two operations are functionally and neuroanatomically dissociated. Updating the attentional focus elicited transient activation in the caudal superior frontal sulcus and posterior parietal cortex. In contrast, increasing demands on selection selectively modulated activation in rostral superior frontal sulcus and posterior cingulate/precuneus. We conclude that prioritizing one memory item over others invokes independent mechanisms of mnemonic retrieval and attentional focusing, each with its distinct neuroanatomical basis within frontal and parietal regions. These support the developing understanding of working memory as emerging from the interaction between memory and attentional systems.

  4. Metal–organic framework with optimally selective xenon adsorption and separation

    SciTech Connect

    Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; Motkuri, Radha K.; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B.; Haranczyk, Maciej

    2016-06-13

    Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. In addition, the existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal–organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal–organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.

  5. Metal–organic framework with optimally selective xenon adsorption and separation

    DOE PAGES

    Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; ...

    2016-06-13

    Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. In addition, the existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal–organic frameworks have demonstrated the ability to selectively adsorbmore » xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal–organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.« less

  6. Metal–organic framework with optimally selective xenon adsorption and separation

    PubMed Central

    Banerjee, Debasis; Simon, Cory M.; Plonka, Anna M.; Motkuri, Radha K.; Liu, Jian; Chen, Xianyin; Smit, Berend; Parise, John B.; Haranczyk, Maciej; Thallapally, Praveen K.

    2016-01-01

    Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal–organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal–organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing. PMID:27291101

  7. Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks.

    PubMed

    First, Eric L; Gounaris, Chrysanthos E; Floudas, Christodoulos A

    2013-05-07

    With the growing number of zeolites and metal-organic frameworks (MOFs) available, computational methods are needed to screen databases of structures to identify those most suitable for applications of interest. We have developed novel methods based on mathematical optimization to predict the shape selectivity of zeolites and MOFs in three dimensions by considering the energy costs of transport through possible pathways. Our approach is applied to databases of over 1800 microporous materials including zeolites, MOFs, zeolitic imidazolate frameworks, and hypothetical MOFs. New materials are identified for applications in gas separations (CO2/N2, CO2/CH4, and CO2/H2), air separation (O2/N2), and chemicals (propane/propylene, ethane/ethylene, styrene/ethylbenzene, and xylenes).

  8. Selective interfacial synthesis of metal-organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation

    NASA Astrophysics Data System (ADS)

    Biswal, Bishnu P.; Bhaskar, Anand; Banerjee, Rahul; Kharul, Ulhas K.

    2015-04-01

    Metal-organic frameworks (MOFs) have gained immense attention as new age materials due to their tuneable properties and diverse applicability. However, efforts on developing promising materials for membrane based gas separation, and control over the crystal growth positions on polymeric hollow fiber membranes still remain key challenges. In this investigation, a new, convenient and scalable room temperature interfacial method for growing MOFs (ZIF-8 and CuBTC) on either the outer or inner side of a polybenzimidazole based hollow fiber (PBI-BuI-HF) membrane surface has been achieved in a controlled manner. This was made possible by the appropriate selection of an immiscible solvent pair and the synthetic conditions. The growth of MOFs on the PBI-BuI-HF membrane by the interfacial method was continuous and showed an appreciable gas separation performance, conveying promise for their applicability.Metal-organic frameworks (MOFs) have gained immense attention as new age materials due to their tuneable properties and diverse applicability. However, efforts on developing promising materials for membrane based gas separation, and control over the crystal growth positions on polymeric hollow fiber membranes still remain key challenges. In this investigation, a new, convenient and scalable room temperature interfacial method for growing MOFs (ZIF-8 and CuBTC) on either the outer or inner side of a polybenzimidazole based hollow fiber (PBI-BuI-HF) membrane surface has been achieved in a controlled manner. This was made possible by the appropriate selection of an immiscible solvent pair and the synthetic conditions. The growth of MOFs on the PBI-BuI-HF membrane by the interfacial method was continuous and showed an appreciable gas separation performance, conveying promise for their applicability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00299k

  9. Preparation and characterization of superparamagnetic molecularly imprinted polymers for selective adsorption and separation of vanillin in food samples.

    PubMed

    Ning, Fangjian; Peng, Hailong; Dong, Liling; Zhang, Zhong; Li, Jinhua; Chen, Lingxin; Xiong, Hua

    2014-11-19

    Novel water-compatible superparamagnetic molecularly imprinted polymers (M-MIPs) were prepared by coating superparamagnetic Fe3O4 nanoparticles with MIPs in a methanol-water reaction system. The M-MIPs were used for the selective adsorption and separation of vanillin from aqueous solution. The M-MIPs were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM). Results indicated that a core-shell structure of M-MIPs was obtained by coating a layer of silica and MIPs on the surface of the Fe3O4 nanoparticles. The obtained M-MIPs possess a loose and porous structure and can be rapidly separated from the solution using a magnet. The adsorption experiments showed that the binding capacity of the M-MIPs was significantly higher than that of the superparamagnetic non-molecularly imprinted polymers (M-NIPs). Meanwhile, the adsorption of M-MIPs reached equilibrium within 100 min, and the apparent maximum adsorption quantity (Qmax) and dissociation constant (Kd) were 64.12 μmol g(-1) and 58.82 μmol L(-1), respectively. The Scatchard analysis showed that homogeneous binding sites were formed on the M-MIP surface. The recoveries of 83.39-95.58% were achieved when M-MIPs were used for the pre-concentration and selective separation of vanillin in spiked food samples. These results provided the possibility for the separation and enrichment of vanillin from complicated food matrices by M-MIPs.

  10. Phenylamine-Functionalized rGO/TiO2 Photocatalysts: Spatially Separated Adsorption Sites and Tunable Photocatalytic Selectivity.

    PubMed

    Yu, Huogen; Xiao, Pian; Tian, Jing; Wang, Fazhou; Yu, Jiaguo

    2016-11-02

    The preferential adsorption of targeted contaminants on a photocatalyst surface is highly required to realize its photocatalytic selective decomposition in a complex system. To realize the tunable preferential adsorption, altering the surface charge or polarity property of photocatalysts has widely been reported. However, it is quite difficult for a modified photocatalyst to realize the simultaneously preferential adsorption for both cationic and anionic dyes. In this study, to realize the selective adsorption for both cationic and anionic dyes on a photocatalyst surface, the negative reduced graphene oxide (rGO) nanosheets and positive phenylamine (PhNH2) molecules are successfully loaded on the TiO2 surface (PhNH2/rGO-TiO2) with spatially separated adsorption sites, where the negative rGO and positive PhNH2 molecules work as the preferential adsorption sites for cationic and anionic dyes, respectively. It was interesting to find that although all the TiO2 samples (including the naked TiO2, PhNH2/TiO2, rGO-TiO2, and PhNH2/rGO-TiO2) clearly showed a better adsorption performance for cationic dyes than anionic dyes, only the PhNH2/rGO-TiO2 with spatially separated adsorption-active sites exhibited an opposite photocatalytic selectivity, namely, the naked TiO2, PhNH2/TiO2, and rGO-TiO2 showed a preferential decomposition for cationic dyes, while the resultant PhNH2/rGO-TiO2 exhibited an excellently selective decomposition for anionic dyes. In addition, the resultant PhNH2/rGO-TiO2 photocatalyst not only realizes the tunable photocatalytic selectivity but also can completely and sequentially decompose the opposite cationic and anionic dyes.

  11. Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils.

    PubMed

    Turiel, Esther; Martín-Esteban, Antonio; Tadeo, José Luis

    2007-11-23

    Molecularly imprinted polymers (MIPs) for fluoroquinolone antibiotics (FQs) have been synthesised in one single preparative step by precipitation polymerisation using ciprofloxacin (CIP) as template. Combinations of methacrylic acid (MAA) or 4-vinylpyridine (VP) as functional monomers, ethylene glycol dimethacrylate as crosslinker and dichloromethane, methanol, acetonitrile or toluene as porogens were tested. The experiments carried out by molecularly imprinted solid-phase extraction (MISPE) in cartridges did not allow to detect any imprint effect in the VP-based polymers whereas it was clearly observed in the MAA-based polymers. Among them, the MIP prepared in methanol using MAA as monomer showed the best performance and was chosen for further experiments. The ability of the selected MIP for the selective recognition of other widely used FQs (enoxacin, norfloxacin, danofloxacin and enrofloxacin) and quinolones (Qs) (cinoxacin, flumequine, nalidixic acid and oxolinic acid) was evaluated. The obtained results revealed the high selectivity of the obtained polymer, which was able to distinguish between FQs, that were recognised and retained onto the MIP cartridge, and Qs, which were washed out during loading and washing steps. The MIP was then packed into a stainless steel column (50mmx4.6mm i.d.) and evaluated as chromatography column for screening of FQs in soil samples. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve peak shape without sacrifying imprinting factor. Finally, under optimised conditions, soil samples spiked with CIP or with a mixture of fluoroquinolones in concentration of 0.5microgg(-1) were successfully analysed by the developed MIP-based procedures.

  12. How to compare separation selectivity of high-performance liquid chromatographic columns properly?

    PubMed

    Andrić, Filip; Héberger, Károly

    2017-03-10

    Comparison and selection of chromatographic columns is an important part of development as well as validation of analytical methods. Presently there is abundant number of methods for selection of the most similar and orthogonal columns, based on the application of limited number of test compounds as well as quantitative structure retention relationship models (QSRR), from among Snyder's hydrophobic-subtraction model (HSM) have been most extensively used. Chromatographic data of 67 compounds were evaluated using principal component analysis (PCA), hierarchical cluster analysis (HCA), non-parametric ranking methods as sum of ranking differences (SRD) and generalized pairwise correlation method (GPCM), both applied as a consensus driven comparison, and complemented by the comparison with one variable at a time (COVAT) approach. The aim was to compare the ability of the HSM approach and the approach based on primary retention data of test solutes (logk values) to differentiate among ten highly similar C18 columns. The ranking (clustering) pattern of chromatographic columns based on primary retention data and HSM parameters gave different results in all instances. Patterns based on retention coefficients were in accordance with expectations based on columns' physicochemical parameters, while HSM parameters provided a different clustering. Similarity indices calculated from the following dissimilarity measures: SRD, GPCM Fisher's conditional exact probability weighted (CEPW) scores; Euclidian, Manhattan, Chebyshev, and cosine distances; Pearson's, Spearman's, and Kendall's, correlation coefficients have been ranked by the consensus based SRD. Analysis of variance confirmed that the HSM model produced statistically significant increases of SRD values for the majority of similarity indices, i.e. HS transformation of original retention data yields significant loss of information, and finally results in lower performance of HSM methodology. The best similarity measures were

  13. Separation of alcohol-water mixtures by selective adsorption. Semi-annual technical progress report

    SciTech Connect

    Dearborn, R.J.

    1982-03-23

    The intent is to chemically modify polyvinyl chloride so as to convert it to a material capable of selectively adsorbing ethyl alcohol from alcohol-water mixtures. This concept differs from the more conventional technique in which water is absorbed from the mixture by, for example, molecular sieves. The approach is to attempt to remove alcohol from mixtures containing a low percentage of alcohol. Such a solution might originate directly from the fermentation process and contain approximately 10% alcohol, or it might consist of distillation residues containing low alcohol concentrations that are uneconomical to handle by further distillation.

  14. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    SciTech Connect

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  15. Preparation of a surface-grafted imprinted ceramic membrane for selective separation of molybdate anion from water solutions.

    PubMed

    Zeng, Jianxian; Dong, Zhihui; Zhang, Zhe; Liu, Yuan

    2017-07-05

    A surface-grafted imprinted ceramic membrane (IIP-PVI/CM) for recognizing molybdate (Mo(VI)) anion was prepared by surface-initiated graft-polymerization. Firstly, raw alumina ceramic membrane (CM) was deposited with SiO2 active layer by situ hydrolysis deposition method. Subsequently, γ-methacryloxy propyl trimethoxyl silane (MPS) was used as a coupling agent to introduce double bonds onto the SiO2 layer (MPS-CM). Then, 1-vinylimidazole (VI) was employed as a functional monomer to graft-polymerization onto the MPS-CM (PVI-CM). During the graft-polymerization, the influence factors of grafting degree of PVI were investigated in detail. Under optimum conditions (monomer concentration 20wt%, temperature 70°C, initiator amount 1.1wt% and reaction time 8h), the grafting degree of 20.39g/100g was obtained. Further, Mo(VI) anion was used as a template to imprint in the PVI-CM by employing 1,6-dibromohexane as a cross-linking agent, and then Mo(VI) was removed, obtaining the IIP-PVI/CM with many imprinted cavities for Mo(VI). Thereafter, static adsorption and dynamic separation properties of IIP-PVI/CM for Mo(VI) were studied. Results indicate that IIP-PVI/CM shows a specific selectivity for Mo(VI) with the adsorption capacity of 0.69mmol/100g, and the selectivity coefficient of IIP-PVI/CM is 7.48 for molybdate to tungstate anions. During the dynamic separation, IIP-PVI/CM has also good selectivity for separation of Mo(VI) and W(VI) anions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Separation, real-time migration monitoring and selective zone retrieval using a computer controlled system for automated analysis.

    PubMed

    Gombocz, E; Cortez, E

    1995-01-01

    High throughput routine analysis of dsDNA fragments or molecular weight determination of proteins via electrophoresis still require significant efforts to obtain results of high reproducibility and accuracy. This paper analyses the use of a fully automated multi-purpose real-time gel electrophoresis system in these applications and evaluates the benefits of this new concept for routine and research. By comparing currently used systems with this new approach, it also addresses the analytical use of information resulting from real-time dynamic migration monitoring via fluorescence photometry over commonly obtained results from post-run fixation, visualization and evaluation at a single time of the separation. The simultaneous separation of components in multi-gel systems, pre-concentration of sample components, and the ability to perform in-gel assays for biological activity are discussed on basis of routine gel separations of restriction enzyme digested DNA fragments, native and denaturing protein separations and enzyme activity determination. Interactive, selective retrieval of separated components in the nano- to microgram range is carried out for real-time isolation of proteins or dsDNA fragments. Results are compared to blotting in respect to ease of use and transfer efficiency and for immediate availability of macromolecules for sequencing or mass spectroscopy. The Windows-based operating software is critically reviewed for functionality, user-friendliness, graphical data representation and GLP compliance for LIMS oriented forensic or certified laboratories. A statistical evaluation of lane-to-lane and gel-to-gel reproducibility of mobility data, quantification and molecular weight determination concludes the paper.

  17. Costs of antibiotic resistance – separating trait effects and selective effects

    PubMed Central

    Hall, Alex R; Angst, Daniel C; Schiessl, Konstanze T; Ackermann, Martin

    2015-01-01

    Antibiotic resistance can impair bacterial growth or competitive ability in the absence of antibiotics, frequently referred to as a ‘cost’ of resistance. Theory and experiments emphasize the importance of such effects for the distribution of resistance in pathogenic populations. However, recent work shows that costs of resistance are highly variable depending on environmental factors such as nutrient supply and population structure, as well as genetic factors including the mechanism of resistance and genetic background. Here, we suggest that such variation can be better understood by distinguishing between the effects of resistance mechanisms on individual traits such as growth rate or yield (‘trait effects’) and effects on genotype frequencies over time (‘selective effects’). We first give a brief overview of the biological basis of costs of resistance and how trait effects may translate to selective effects in different environmental conditions. We then review empirical evidence of genetic and environmental variation of both types of effects and how such variation may be understood by combining molecular microbiological information with concepts from evolution and ecology. Ultimately, disentangling different types of costs may permit the identification of interventions that maximize the cost of resistance and therefore accelerate its decline. PMID:25861384

  18. Developing imprinted polymer nanoparticles for the selective separation of antidiabetic drugs.

    PubMed

    Haq, Isma; Mujahid, Adnan; Afzal, Adeel; Iqbal, Naseer; Bajwa, Sadia Zafar; Hussain, Tajamal; Shehzad, Khurram; Ashraf, Hadia

    2015-10-01

    In this study, new molecularly imprinted polymer (MIP) nanoparticles are designed for selective recognition of different drugs used for the treatment of type 2 diabetes mellitus, i.e. sitagliptin (SG) and metformin (MF). The SG- and MF-imprinted polymer nanoparticles are synthesized by free-radical initiated polymerization of the functional monomers: methacrylic acid and methyl methacrylate; and the crosslinker: ethylene glycol dimethacrylate. The surface morphology of resultant MIP nanoparticles is studied by atomic force microscopy. Fourier transform infrared spectra of MIP nanoparticles suggest the presence of reversible, non-covalent interactions between the template and the polymer. The effect of pH on the rebinding of antidiabetic drugs with SG- and MF-imprinted polymers is investigated to determine the optimal experimental conditions. The molecular recognition characteristics of SG- and MF-imprinted polymers for the respective drug targets are determined at low concentrations of SG (50-150 ppm) and MF (5-100 ppm). In both cases, the MIP nanoparticles exhibit higher binding response compared to non-imprinted polymers. Furthermore, the MIPs demonstrate high selectivity with four fold higher responses toward imprinted drugs targets, respectively. Recycled MIP nanoparticles retain 90% of their drug-binding efficiency, which makes them suitable for successive analyses with significantly preserved recognition features.

  19. Selective separation of flavonoid glycosides in Dalbergia odorifera by matrix solid-phase dispersion using titania.

    PubMed

    Xu, Lingyan; Shi, Hui; Liang, Tu; Feng, Jiatao; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao

    2011-06-01

    Dalbergia odorifera contains high concentrations of flavonoid aglycones and trace flavonoid glycosides. In this study, trace flavonoid glycosides were separated from D. odorifera by titania with matrix solid-phase dispersion (MSPD). Before the MSPD experiment, four standards, including two isoflavone glycosides (genistin and formononetin-8-C-apiosyl (1-6)-glucoside) and their aglycones (genistein and formononetin), were used to compare their retention on a titania column. The effect of acetonitrile concentration and pH on their retention was investigated and a conclusion was drawn that high acetonitrile concentration and pH lead to the greatest difference in the retention of flavonoid as glycosides and aglycones. Besides hydrophilic interaction and ligand-exchange interaction may exist between sugar moiety of flavonoid glycoside and titania, so that flavonoid glycosides have stronger retention than that of aglycones. Based on the chromatographic rule of flavonoid as glycosides and aglycones on the titania column, the MSPD method was optimized to elute high concentration flavonoid aglycones first with 90% acetonitrile and 10% water containing 100 mM ammonium acetate buffer, and then to elute trace flavonoid glycosides with 20% acetonitrile and 80% water containing 1% trifluoroacetate (TFA). Isolated flavonoid glycosides were further analyzed by UPLC-MS/MS, and their fragmentation in MS(2) showed they are C-glycosyl flavonoids. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes.

    PubMed

    He, Rong; Girgih, Abraham T; Rozoy, Elodie; Bazinet, Laurent; Ju, Xing-Rong; Aluko, Rotimi E

    2016-04-15

    Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037 mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06 mg/mL, respectively. Six hours after oral administration (100 mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51 mmHg. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Assembly of multiple components in a hybrid microcapsule: designing a magnetically separable Pd catalyst for selective hydrogenation.

    PubMed

    Amali, Arlin Jose; Sharma, Bikash; Rana, Rohit Kumar

    2014-09-15

    In analogy to the role of long-chain polyamines in biosilicification, poly-L-lysine facilitates the assembly of nanocomponents to design multifunctional microcapsule structures. The method is demonstrated by the fabrication of a magnetically separable catalyst that accommodates Pd nanoparticles (NPs) as active catalyst, Fe3O4 NPs as magnetic component for easy recovery of the catalyst, and silica NPs to impart stability and selectivity to the catalyst. In addition, polyamines embedded inside the microcapsule prevent the agglomeration of Pd NPs and thus result in efficient catalytic activity in hydrogenation reactions, and the hydrophilic silica surface results in selectivity in reactions depending on the polarity of substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nickel(II)-immobilized sulfhydryl cotton fiber for selective binding and rapid separation of histidine-tagged proteins.

    PubMed

    He, Xiao-Mei; Zhu, Gang-Tian; Lu, Wei; Yuan, Bi-Feng; Wang, Hong; Feng, Yu-Qi

    2015-07-31

    In the current study, a novel nickel(II)-immobilized sulfhydryl cotton fiber (SCF-Ni(2+)) was prepared in a simple way based on the coordination effect between Ni(2+) and thiol group on the surface of SCF. The composition and element mapping of SCF-Ni(2+) fibers were demonstrated by energy-dispersive X-ray (EDX) spectroscopy. Based on the high affinity of Ni(2+) to 6×His on histidine-tagged (His-tagged) proteins, SCF-Ni(2+) fibers were then further used as an immobilized metal ion affinity chromatography (IMAC) adsorbent for selective binding and rapid separation of His-tagged proteins using an in- pipette-tip SPE format. Our results showed that SCF-Ni(2+) adsorbent can selectively capture His-tagged proteins from protein mixture and Escherichia coli cell lysates. Taken together, the developed method provides a rapid, convenient and efficient approach for the purification of His-tagged proteins.

  3. Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation.

    PubMed

    Wu, Lei; Zhang, Junping; Li, Bucheng; Wang, Aiqin

    2014-01-01

    The low stability and complicated fabrication procedures seriously hindered practical applications of superhydrophobic materials. Here we present a facile approach for preparing durable superhydrophobic polyester materials by dip-coating in a nanocomposite solution of polymerized tetraethoxysilane and n-hexadecyltriethoxysilane. The coated samples exhibit excellent superhydrophobicity, superoleophilicity, mechanical and chemical stabilities. This is attributed to the tight binding of the nanocomposite on the polyester fibers and the inherent stability of silicone. The coated samples can quickly absorb petrol, diesel and crude oil, and show very high selectivity in oil/water separation. In addition, the coated samples could maintain their superhydrophobicity, oil absorption capacity and oil/water selectivity after harsh mechanical damage, 90 days of immersion in oils and ten cycles of absorption-desorption. Moreover, this approach is simple and can be easily scaled up for producing samples on a large size, which makes it very promising for practical oil absorption.

  4. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect

    Hess, J.R

    2005-01-31

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  5. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect

    N /A

    2004-09-30

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  6. Separation of selected imidazole enantiomers using dual cyclodextrin system in micellar electrokinetic chromatography.

    PubMed

    Wan Ibrahim, Wan Aini; Abd Wahib, Siti Munirah; Hermawan, Dadan; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2013-06-01

    Cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was developed for simultaneous enantioseparation of three imidazole drugs namely tioconazole, isoconazole and fenticonazole. Three easily available and inexpensive cyclodextrins namely 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) were evaluated to discriminate the six stereoisomers of the drugs. However, none of the three CDs gave a complete enantioseparation of the drugs. Effective enantioseparation of tioconazole, isoconazole and fenticonazole was achieved using a combination of 35 mM HP-γ-CD and 10 mM DM-β-CD as chiral selectors. The best separation using both HP-γ-CD and DM-β-CD (35 mM:10 mM) as chiral selectors were accomplished in background electrolyte (BGE) containing 35 mM phosphate buffer (pH 7.0), 50 mM sodium dodecyl sulfate (SDS) and 15% (v/v) acetonitrile at 27 kV and 30 °C with all peaks resolved in less than 15 min with resolutions, Rs 1.90-27.22 and peak efficiencies, N > 180 000. The developed method was linear over the concentration range of 25-200 mg l(-1) (r(2) > 0.998) and the detection limits (S/N = 3) of the three imidazole drugs were found to be 2.7-7.7 mg l(-1). The CD-MEKC method was successfully applied to the determination of the three imidazole drugs in spiked human urine sample and commercial cream formulation of tioconazole and isoconazole with good recovery (93.6-106.2%) and good RSDs ranging from 2.30-6.8%.

  7. Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation.

    PubMed

    Guo, Jiaqi; Filpponen, Ilari; Johansson, Leena-Sisko; Mohammadi, Pezhman; Latikka, Mika; Linder, Markus B; Ras, Robin H A; Rojas, Orlando J

    2017-03-13

    We present an efficient approach to develop cellulose nanocrystal (CNC) hybrids with magnetically responsive Fe3O4 nanoparticles that were synthesized using the (Fe(3+)/Fe(2+)) coprecipitation. After 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-catalyzed oxidation of CNC, carbodiimide (EDC/NHS) was used for coupling amine-containing iron oxide nanoparticles that were achieved by dopamine ligand exchange (NH2-Fe3O4 NPs). The as-prepared hybrids (Fe3O4@CNC) were further complexed with Cu(II) ions to produce specific protein binding sites. The performance of magnetically responsive Cu-Fe3O4@CNC hybrids was assessed by selectively separating lysozyme from aqueous media. The hybrid system displayed a remarkable binding capacity with lysozyme of 860.6 ± 14.6 mg/g while near full protein recovery (∼98%) was achieved by simple elution. Moreover, the regeneration of Fe3O4@CNC hybrids and efficient reutilization for protein separation was demonstrated. Finally, lysozyme separation from matrices containing egg white was achieved, thus revealing the specificity and potential of the presented method.

  8. Separation of Arsenic from the Antimony-Bearing Dust through Selective Oxidation Using CuO

    NASA Astrophysics Data System (ADS)

    Zhong, Da-Peng; Li, Lei; Tan, Cheng

    2017-01-01

    A pyrometallurgical process of selective oxidation roasting of the antimony-bearing dust using CuO is put forward, in which the antimony component is oxidized to Sb2O4 staying in the roasted residue, and arsenic is volatilized in the form of As2O3. The addition of CuO has an active effect on the arsenic volatilization, because structures of some complicated As-Sb phases in the dust are destroyed after the "Sb" component in them is oxidized to Sb2O4, and this part of arsenic might be transformed to As2O3, which continues to volatilize. However, the arsenic volatilization rate decreases with the CuO amount in a certain range, which is attributed to the greater formation of Cu3 (AsO4)2 and Cu3As. Under the conditions of roasting temperature of 673 K (400 °C), roasting time of 100 minutes, CuO amount of 34.54 mass pct, and N2 flow rate of 30 mL/min, 91.50 pct arsenic and only 8.63 pct antimony go into the smoke.

  9. Selective flotation-separation and spectrophotometric determination of cadmium using phenanthraquinone monophenythiosemicarbazone.

    PubMed

    Akl, M A; Khalifa, M E; Ghazy, S E; Hassanien, M M

    2002-11-01

    A simple, selective and sensitive procedure is described for the preconcentration by flotation followed by spectrophotometric determination of trace amounts of Cd(II). Cadmium forms an intense red 1:2 complex with phenanthraquinone monophenylthiosemicarbazone (PPT) at pH > or = 6. The colored Cd-PPT complex was floated quantitatively with oleic acid (HOL) surfactant at pH 6.5, exhibiting maximum absorbance at 520 nm and having a molar absorptivity of 2.4 x 10(5) L mol(-1) cm(-1). The stability constant of the formed complex is 1.5 x 10(12); log K = 12.2. Beer's law was obeyed over the concentration range 0.01-0.34 mg/L. The Sandell sensitivity and relative standard deviation are 0.4 ng/cm2 and 2.6%, respectively. The results obtained spectrophotometrically were compared to those obtained by AAS analysis. The analytical parameters affecting flotation and hence determination have been thoroughly investigated. The proposed procedure was successfully applied to the determination of Cd(II) traces in certified and real human hair samples as well as in natural waters. The structure of the complex formed and the mechanism of flotation were proposed.

  10. Separation of Arsenic from the Antimony-Bearing Dust through Selective Oxidation Using CuO

    NASA Astrophysics Data System (ADS)

    Zhong, Da-Peng; Li, Lei; Tan, Cheng

    2017-04-01

    A pyrometallurgical process of selective oxidation roasting of the antimony-bearing dust using CuO is put forward, in which the antimony component is oxidized to Sb2O4 staying in the roasted residue, and arsenic is volatilized in the form of As2O3. The addition of CuO has an active effect on the arsenic volatilization, because structures of some complicated As-Sb phases in the dust are destroyed after the "Sb" component in them is oxidized to Sb2O4, and this part of arsenic might be transformed to As2O3, which continues to volatilize. However, the arsenic volatilization rate decreases with the CuO amount in a certain range, which is attributed to the greater formation of Cu3 (AsO4)2 and Cu3As. Under the conditions of roasting temperature of 673 K (400 °C), roasting time of 100 minutes, CuO amount of 34.54 mass pct, and N2 flow rate of 30 mL/min, 91.50 pct arsenic and only 8.63 pct antimony go into the smoke.

  11. Development of hydrophobicity and selective separation of hazardous chlorinated plastics by mild heat treatment after PAC coating and froth flotation.

    PubMed

    Thanh Truc, Nguyen Thi; Lee, Chi-Hyeon; Lee, Byeong-Kyu; Mallampati, Srinivasa Reddy

    2017-01-05

    Polyvinyl chloride (PVC) containing chlorine can release highly toxic materials and persistent organic pollutants if improperly disposed of. The combined technique of powder activated carbon (PAC) coating and mild heat treatment has been found to selectively change the surface hydrophobicity of PVC, enhancing its wettability and thereby promoting its separation from heavy plastic mixtures included polycarbonate (PC), polymethyl methacrylate (PMMA), polystyrene (PS) and acrylonitrile butadiene styrene (ABS) by means of froth flotation. The combined treatments helped to rearrange the surface components and make PVC more hydrophobic, while the remaining plastics became more hydrophilic. After the treatments at 150°C for 80s the contact angle of the PVC was greatly increased from 90.5 to 97.9°. The SEM and AFM reveal that the surface morphology and roughness changes on the PVC surface. XPS and FT-IR results further confirmed an increase of hydrophobic functional groups on the PVC surface. At the optimized froth flotation and subsequent mixing at 150rpm, 100% of PVC was recovered from the remaining plastic mixture with 93.8% purity. The combined technique can provide a simple and effective method for the selective separation of PVC from heavy plastics mixtures to facilitate easy industrial recycling.

  12. Using a Buffer Gas Modifier to Change Separation Selectivity in Ion Mobility Spectrometry

    PubMed Central

    Fernández-Maestre, Roberto; Wu, Ching; Hill, Herbert H.

    2010-01-01

    The mobilities of a set of common α-amino acids, four tetraalkylammonium ions, 2,4-dimethyl pyridine (2,4-lutidine), 2,6-di-tert-butyl pyridine (DTBP), and valinol were determined using electrospray ionization-ion mobility spectrometry-quadrupole mass spectrometry (ESI-IMS-QMS) while introducing 2-butanol into the buffer gas. The mobilities of the test compounds decreased by varying extents with 2-butanol concentration in the mobility spectrometer. When the concentration of 2-butanol increased from 0.0 to 6.8 mmol m−3 (2.5×102 ppmv), percentage reductions in mobilities were: 13.6% (serine), 12.2% (threonine), 10.4% (methionine), 10.3% (tyrosine), 9.8% (valinol), 9.2% (phenylalanine), 7.8% (tryptophan), 5.6% (2,4-lutidine), 2.2% (DTBP), 1.0% (tetramethylammonium ion, TMA, and tetraethylammonium ion, TEA), 0.0% (tetrapropylammonium ion, TPA), and 0.3% (tetrabutylammonium ion, TBA). These variations in mobility depended on the size and steric hindrance on the charge of the ions, and were due to formation of large ion-2-butanol clusters. This selective variation in mobilities was applied to the resolution of a mixture of compounds with similar reduced mobilities such as serine and valinol, which overlapped in N2-only buffer gas in the IMS spectrum. The relative insensitivity of tetraalkylammonium ions and DTBP to the introduction of 2-butanol into the buffer gas was explained by steric hindrance of the four alkyl substituents in tetraalkylammonium ions and the two tert-butyl groups in DTBP, which shielded the positive charge of the ion from the attachment of 2-butanol molecules. Low buffer gas temperatures (100 °C) produced the largest reductions in mobilities by increasing ion-2-butanol interactions and formation of clusters; high temperatures (250 °C) prevented the formation of clusters, and no reduction in ion mobility was obtained with the introduction of 2-butanol into the buffer gas. Low temperatures and high concentrations of 2-butanol produced a series of

  13. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  14. On the nature of the forces controlling selectivity in the high performance capillary electrochromatographic separation of peptides.

    PubMed

    Walhagen, Karin; Huber, Marion I; Hennessy, Tom P; Hearn, Milton T W

    2003-01-01

    In this minireview, the nature of the forces controlling selectivity in the high performance capillary electrochromatographic (HP-CEC) separation of peptides has been examined. For uncharged and charged peptides, a synergistic interplay occurs in HP-CEC systems between adsorptive/partitioning events and electrokinetically driven motion. Moreover, at high field strengths, both bulk electrophoretic migration and surface electrodiffusion occur. Thus, the migration behavior of peptides in different HP-CEC systems can be rationalized in terms of the combined consequences of these various processes. Moreover, in HP-CEC, the buffer electrolyte interacts with both the peptide analytes and the sorbent as bulk phenomena. These buffer-mediated processes control the solvational characteristics, ionization status and conformational behavior of the peptides as well as regulate the double-layer properties of the sorbent, and the ion flux and electro-osmotic flow characteristics of the HP-CEC system per se. These buffer electrolyte effects mediate mutual interactions between the peptide and the sorbent, irrespective of whether the interaction occurs at the surface of microparticles packed into a capillary, at the surface of a contiguous monolithic structure formed or inserted within the capillary or at the walls of the capillary as is the case with open tubular HP-CEC. Diverse molecular and submolecular forces thus coalesce to provide the basis for the different experimental modes under which HP-CEC can be carried out. As a consequence of this interplay, experimental parameters governing the separation of peptides in HP-CEC can be varied over a wide range of conditions, ensuring numerous options for enhanced selectivity, speed, and resolution of peptides. The focus of the peptide separation examples presented in this minireview has been deliberately restricted to the use of HP-CEC capillaries packed with n-alkyl-bonded silicas or mixed-mode strong ion exchange sorbents, although

  15. The analysis of various size, visually selected and density and magnetically separated fractions of Luna 16 and 20 samples

    NASA Technical Reports Server (NTRS)

    Eglinton, G.; Gowar, A. P.; Jull, A. J. T.; Pillinger, C. T.; Agrell, S. O.; Agrell, J. E.; Long, J. V. P.; Bowie, S. H. U.; Simpson, P. R.; Beckinsale, R. D.

    1977-01-01

    Samples of Luna 16 and 20 have been separated according to size, visual appearance, density, and magnetic susceptibility. Selected aliquots were examined in eight British laboratories. The studies included mineralogy and petrology, selenochronology, magnetic characteristics, Mossbauer spectroscopy, oxygen isotope ratio determinations, cosmic ray track and thermoluminescence investigations, and carbon chemistry measurements. Luna 16 and 20 are typically mare and highland soils, comparing well with their Apollo counterparts, Apollo 11 and 16, respectively. Both soils are very mature (high free iron, carbide, and methane and cosmogenic Ar), while Luna 16, but not Luna 20, is characterized by a high content of glassy materials. An aliquot of anorthosite fragments, handpicked from Luna 20, had a gas retention age of about 4.3 plus or minus 0.1 Gy.

  16. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes

    NASA Astrophysics Data System (ADS)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa

    2017-07-01

    Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).

  17. Methyl parathion imprinted polymer nanoshell coated on the magnetic nanocore for selective recognition and fast adsorption and separation in soils.

    PubMed

    Xu, Shiying; Guo, Changjuan; Li, Yongxian; Yu, Zerong; Wei, Chaohai; Tang, Youwen

    2014-01-15

    Core-shell magnetic methyl parathion (MP) imprinted polymers (Fe3O4@MPIPs) were fabricated by a layer-by-layer self-assembly process. In order to take full advantage of the synergistic effect of hydrogen-binding interactions and π-π accumulation between host and guest for molecular recognition, methacrylic acid and 4-vinyl pyridine were chosen as co-functional monomers and their optimal proportion were investigated. The core-shell and crystalline structure, morphology and magnetic properties of Fe3O4@MPIPs were characterized. The MP-imprinted nanoshell was almost uniform and about 100nm thick. Binding experiments demonstrated that Fe3O4@MPIPs possessed excellent binding properties, including high adsorption capacity and specific recognition, as well as fast adsorption kinetics and a fast phase separation rate. The equilibration adsorption capacity reached up to 9.1mg/g, which was 12 times higher than that of magnetic non-imprinted polymers, while adsorption reached equilibrium within 5min at a concentration of 0.2mmol/L. Furthermore, Fe3O4@MPIPs successfully provided selective separation and removal of MP in soils with a recovery and detection limit of 81.1-87.0% and 5.2ng/g, respectively.

  18. Mechanistic Investigation of Solvent Extraction Based on Anion-Functionalized Ionic Liquids for Selective Separation of Rare-Earth Ions

    SciTech Connect

    Sun, Xiaoqi; Luo, Huimin; Dai, Sheng

    2013-01-01

    In this study, solvation has been found to be a dominant mechanism in a comprehensive ionic liquid based extraction system for rare earth elements (REEs). Trioctylmethylammonium di(2-ethylhexyl)phosphate ([TOMA][DEHP]), an ionic-liquid extractant, was used in 1-alkyl-3-methylimidizolium bis[(trifluoromethyl)sulfonyl]imide ([Cnmim][NTf2], n = 4, 6, 8, 10) and 1-alkyl-3-methylimidizolium bis(perfluoroethanesulfonyl)imide ([Cnmim][BETI], n = 4, 6, 8, 10) for the separation of REEs. Surprisingly, a very similar extraction behavior was observed even as the carbon chain length on the ionic-liquid (IL) cation increased from butyl (C4) to hexyl (C6), to octyl (C8), to decyl (C10). This behavior is in sharp contrast to that exhibited by the conventional neutral extractants, whose extraction efficiencies are strongly dependent on the hydrophobicity of IL cations. Furthermore, the addition of IL cations ([Cnmim]+) or IL anions ([NTf2]- or [BETI]-) to the aqueous phase had little effect on the extraction behavior of the above extraction system, ruling out the strong involvement of the ion-exchange mechanism associated with traditional IL-based extraction systems. Results showed that the extractabilities and selectivities of REEs using [TOMA][DEHP] in [C10mim][NTf2]/[BETI] are several orders of magnitude better than those achieved using conventional organic solvent, diisopropylbenzene (DIPB). This study highlights the potential of developing a comprehensive IL-based extraction strategy for REEs separations.

  19. Well-defined nanostructured surface-imprinted polymers for highly selective magnetic separation of fluoroquinolones in human urine.

    PubMed

    He, Yonghuan; Huang, Yanyan; Jin, Yulong; Liu, Xiangjun; Liu, Guoquan; Zhao, Rui

    2014-06-25

    The construction of molecularly imprinted polymers on magnetic nanoparticles gives access to smart materials with dual functions of target recognition and magnetic separation. In this study, the superparamagnetic surface-molecularly imprinted nanoparticles were prepared via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization using ofloxacin (OFX) as template for the separation of fluoroquinolones (FQs). Benefiting from the living/controlled nature of RAFT reaction, distinct core-shell structure was successfully constructed. The highly uniform nanoscale MIP layer was homogeneously grafted on the surface of RAFT agent TTCA modified Fe3O4@SiO2 nanoparticles, which favors the fast mass transfer and rapid binding kinetics. The target binding assays demonstrate the desirable adsorption capacity and imprinting efficiency of Fe3O4@MIP. High selectivity of Fe3O4@MIP toward FQs (ofloxacin, pefloxacin, enrofloxacin, norfloxacin, and gatifloxacin) was exhibited by competitive binding assay. The Fe3O4@MIP nanoparticles were successfully applied for the direct enrichment of five FQs from human urine. The spiked human urine samples were determined and the recoveries ranging from 83.1 to 103.1% were obtained with RSD of 0.8-8.2% (n = 3). This work provides a versatile approach for the fabrication of well-defined MIP on nanomaterials for the analysis of complicated biosystems.

  20. Development of a fast and selective separation method to determine histamine in tuna fish samples using capillary zone electrophoresis.

    PubMed

    Vitali, Luciano; Valese, Andressa Camargo; Azevedo, Mônia Stremel; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Piovezan, Marcel; Vistuba, Jacqueline Pereira; Micke, Gustavo A

    2013-03-15

    This paper reports on the development of a fast and selective separation method by capillary zone electrophoresis (CZE) for the determination of histamine in tuna fish samples. The background electrolyte was composed of 60 mmol L(-1) hydroxyisobutyric acid and 10 mmol L(-1) sodium hydroxide at pH 3.3. The internal standard used was imidazole. Separations were performed in a fused uncoated silica capillary (32 cm total length, 8.5 cm effective length and 50 μm internal diameter) with direct UV detection at 210 nm. The samples and standards were injected hydrodynamically (50 mbar, 3s) from the outlet capillary end (nearest to the detector) and the electrophoretic system was operated under normal polarity and constant voltage conditions of 30 kV (positive polarity on the injection side). The migration time of histamine in the proposed method was only 0.34 min. The method was then validated and different tuna fish samples were analyzed. Good linearity (R(2)>0.999), a limit of detection 0.14 mg L(-1), intra-day precision better than 3.5% (peak area of sample), and recovery in the range of 94-108% were obtained. The results of the histamine concentration determined in the samples by the CZE method were compared with the LC-MS/MS method.

  1. A Tri-Band Frequency Selective Surface (FSS) to Diplex Widely Separated Bands for Millimeter Wave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha

    2016-10-01

    A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.

  2. Selective separation of copper(II) and nickel(II) from aqueous media using the complexation-ultrafiltration process.

    PubMed

    Molinari, Raffaele; Poerio, Teresa; Argurio, Pietro

    2008-01-01

    The polyethylenimine (PEI) as complexing agent was used to study the complexation-ultrafiltration (CP-UF) process in the selective removal of Cu(II) from Ni(II) contained in aqueous media. Preliminary tests showed that optimal chemical conditions for Cu(II) and Ni(II) complexation by the PEI polymer were pH>6.0 and 8.0, respectively, and polymer/metal weight ratio of 3.0 and 6.0, respectively. The effect of some important operating parameters on process selectivity was studied by performing UF tests at different parameters: pH, polymer/metal weight ratio, transmembrane pressure (TMP), and membrane cut-off in a batch experimental set-up. It was observed that process selectivity was achieved by choosing the pH value for obtaining a preferential copper complexation (pH 6.0), and the polymer/metal ratio needed to bound only the copper ion (3.0). The selective separation by UF tests was performed by using both a laboratory aqueous solution and a real aqueous effluent (water from Emoli torrent, Rende (CS)). The Iris 30 membrane at TMP of 200 kPa (2 bar) for both aqueous media gave the best results. A complete nickel recovery was reached, and copper recovery was the highest for this membrane (94% and 92%). Besides at this pressure, a lower water amount was needed to obtain total nickel recovery by diafiltration. A little higher membrane fouling was obtained by using the river effluent due to the presence of dissolved organic and inorganic matter.

  3. Aqueous size-exclusion chromatographic separations of intact proteins under native conditions: Effect of pressure on selectivity and efficiency.

    PubMed

    De Vos, Jelle; Kaal, Erwin R; Swart, Remco; Baca, Martyna; Heyden, Yvan Vander; Eeltink, Sebastiaan

    2016-02-01

    The selectivity and separation efficiency of aqueous size-exclusion chromatographic separations of intact proteins were assessed for different flow rates, using columns packed with 3 and 5 μm silica particles containing 150 and 290 Å stagnant pores. A mixture of intact proteins with molecular weights ranging between 17 000 and 670 000 Da was used to construct the calibration curves. Both the model fit and the predictive properties, using a leave-one-out strategy, of different polynomial models (up to fifth order) were evaluated for different flow rates. The best compromise between model fit and predictive properties was obtained using a third-order polynomial model. The accuracy of the predictive properties decreased with 10% with an eightfold increase in the flow rate. No changes in retention factors (hence selectivity) were observed in the flow-rate range applied. A strong correlation between molecular weight and plate height was observed. Exclusion of large-molecular-weight proteins led to a significant reduction in the stationary-phase mass-transfer contribution to the total plate-height value, and this effect was also independent of the flow rate applied. The kinetic-performance limits, in terms of plate number and time, and optimal column-length particle-size combinations were determined at the maximum recommended operating pressure of the size-exclusion chromatography columns (20 MPa). Finally, the possibilities of method speed-up using ultra-high-pressure size-exclusion chromatography in combination with columns packed with sub-2 μm particles are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Selective Breeding for Infant Rat Separation-Induced Ultrasonic Vocalizations: Developmental Precursors of Passive and Active Coping Styles

    PubMed Central

    Brunelli, Susan A.; Hofer, Myron A.

    2009-01-01

    Human depression and anxiety disorders show inherited biases across generations, as do antisocial disorders characterized by aggression. Each condition is preceded in children by behavioral inhibition or aggressive behavior, respectively, and both are characterized by separation anxiety disorders. In affected families, adults and children exhibit different forms of altered autonomic nervous system regulation and hypothalamic-pituitary-adrenal activity in response to stress. Because it is difficult to determine mechanisms accounting for these associations, animal studies are useful for studying the fundamental relationships between biological and behavioral traits. Pharmacologic and behavioral studies suggest that infant rat ultrasonic vocalizations (USV) are a measure of an early anxiety-like state related to separation anxiety. However, it was not known whether or not early ultrasound emissions in infant rats are markers for genetic risk for anxiety states later in life. To address these questions, we selectively bred two lines of rats based on high and low rates of USV to isolation at postnatal (P) 10 days of age. To our knowledge, ours is the only laboratory that has ever selectively bred on the basis of an infantile trait related to anxiety. The High and Low USV lines show two distinct sets of patterns of behavior, physiology and neurochemistry from infancy through adulthood. As adults High line rats demonstrate “anxious”/“depressed” phenotypes in behavior and autonomic nervous system (ANS) regulation to standard laboratory tests. In Lows, on the other hand, behavior and autonomic regulation are consistent with an “aggressive” phenotype. The High and Low USV lines are the first genetic animal models implicating long-term associations of contrasting “coping styles” with early attachment responses. They thus present a potentially powerful model for examining gene-environment interactions in the development of life-long affective regulation. PMID

  5. Novel core-shell cerium(IV)-immobilized magnetic polymeric microspheres for selective enrichment and rapid separation of phosphopeptides.

    PubMed

    Wang, Zhi-Gang; Cheng, Gong; Liu, Yan-Lin; Zhang, Ji-Lin; Sun, De-Hui; Ni, Jia-Zuan

    2014-03-01

    In this work, novel magnetic polymeric core-shell structured microspheres with immobilized Ce(IV), Fe3O4@SiO2@PVPA-Ce(IV), were designed rationally and synthesized successfully via a facile route for the first time. Magnetic Fe3O4@SiO2 microspheres were first prepared by directly coating a thin layer of silica onto Fe3O4 magnetic particles using a sol-gel method, a poly(vinylphosphonic acid) (PVPA) shell was then coated on the Fe3O4@SiO2 microspheres to form Fe3O4@SiO2@PVPA microspheres through a radical polymerization reaction, and finally Ce(IV) ions were robustly immobilized onto the Fe3O4@SiO2@PVPA microspheres through strong chelation between Ce(IV) ions and phosphate moieties in the PVPA. The applicability of the Fe3O4@SiO2@PVPA-Ce(IV) microspheres for selective enrichment and rapid separation of phosphopeptides from proteolytic digests of standard and real protein samples was investigated. The results demonstrated that the core-shell structured Fe3O4@SiO2@PVPA-Ce(IV) microspheres with abundant Ce(IV) affinity sites and excellent magnetic responsiveness can effectively purify phosphopeptides from complex biosamples for MS detection taking advantage of the rapid magnetic separation and the selective affinity between Ce(IV) ions and phosphate moieties of the phosphopeptides. Furthermore, they can be effectively recycled and show good reusability, and have better performance than commercial TiO2 beads and homemade Fe3O4@PMAA-Ce(IV) microspheres. Thus the Fe3O4@SiO2@PVPA-Ce(IV) microspheres can benefit greatly the mass spectrometric qualitative analysis of phosphopeptides in phosphoproteome research.

  6. Efficient 3M PBS enhancing miniature projection optics

    NASA Astrophysics Data System (ADS)

    Yun, Zhisheng; Nevitt, Timothy; Willett, Stephen; Mortenson, Dave; Le, John; McDowell, Erin; Kent, Susan; Wong, Timothy; Beniot, Gilles J.; Ouderkirk, Andrew

    2016-09-01

    Over the past decade, 3M has developed a number of mobile projectors, with a goal towards providing the world's smallest, most efficient projection systems. Compact size and efficiency are required characteristics for projection systems used in mobile devices and more lately, in augmented reality systems. In this paper we summarize the main generations of 3M light engine optical designs. We present the optical architectures of four light engines, including the rationale behind the illumination designs and the projection systems. In particular, we describe various configurations relating to the 3M polarizing beam splitter (PBS) which is key to enhanced efficiency of the miniature projection systems.

  7. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu(hfipbb)(H2hfipbb)0.5.

    PubMed

    Watanabe, Taku; Keskin, Seda; Nair, Sankar; Sholl, David S

    2009-12-28

    The identification of membrane materials with high selectivity for CO(2)/CH(4) mixtures could revolutionize this industrially important separation. We predict using computational methods that a metal organic framework (MOF), Cu(hfipbb)(H(2)hfipbb)(0.5), has unprecedented selectivity for membrane-based separation of CO(2)/CH(4) mixtures. Our calculations combine molecular dynamics, transition state theory, and plane wave DFT calculations to assess the importance of framework flexibility in the MOF during molecular diffusion. This combination of methods should also make it possible to identify other MOFs with attractive properties for kinetic separations.

  8. On-Chip Fluorescent Labeling using Reversed-phase Monoliths and Microchip Electrophoretic Separations of Selected Preterm Birth Biomarkers.

    PubMed

    Sonker, Mukul; Yang, Rui; Sahore, Vishal; Kumar, Suresh; Woolley, Adam T

    2016-11-21

    On-chip preconcentration, purification, and fluorescent labeling are desirable sample preparation steps to achieve complete automation in integrated microfluidic systems. In this work, we developed electrokinetically operated microfluidic devices for solid-phase extraction and fluorescent labeling of preterm birth (PTB) biomarkers. Reversed-phase monoliths based on different acrylate monomers were photopolymerized in cyclic olefin copolymer microdevices and studied for the selective retention and elution of a fluorescent dye and PTB biomarkers. Octyl methacrylate-based monoliths with desirable retention and elution characteristics were chosen and used for on-chip fluorescent labeling of three PTB biomarkers. Purification of on-chip labeled samples was done by selective elution of unreacted dye prior to sample. Automated and rapid on-chip fluorescent labeling was achieved with similar efficiency to that obtained for samples labeled off chip. Additionally, protocols for microchip electrophoresis of several off-chip-labeled PTB biomarkers were demonstrated in poly(methyl methacrylate) microfluidic devices. This study is an important step toward the development of integrated on-chip labeling and separation microfluidic devices for PTB biomarkers.

  9. Summarizing results on the performance of a selective set of atmospheric plasma jets for separation of photons and reactive particles

    NASA Astrophysics Data System (ADS)

    Schneider, Simon; Jarzina, Fabian; Lackmann, Jan-Wilm; Golda, Judith; Layes, Vincent; Schulz-von der Gathen, Volker; Bandow, Julia Elisabeth; Benedikt, Jan

    2015-11-01

    A microscale atmospheric-pressure plasma jet is a remote plasma jet, where plasma-generated reactive particles and photons are involved in substrate treatment. Here, we summarize our efforts to develop and characterize a particle- or photon-selective set of otherwise identical jets. In that way, the reactive species or photons can be used separately or in combination to study their isolated or combined effects to test whether the effects are additive or synergistic. The final version of the set of three jets—particle-jet, photon-jet and combined jet—is introduced. This final set realizes the highest reproducibility of the photon and particle fluxes, avoids turbulent gas flow, and the fluxes of the selected plasma-emitted components are almost identical in the case of all jets, while the other component is effectively blocked, which was verified by optical emission spectroscopy and mass spectrometry. Schlieren-imaging and a fluid dynamics simulation show the stability of the gas flow. The performance of these selective jets is demonstrated with the example of the treatment of E. coli bacteria with the different components emitted by a He-only, a He/N2 and a He/O2 plasma. Additionally, measurements of the vacuum UV photon spectra down to the wavelength of 50 nm can be made with the photon-jet and the relative comparison of spectral intensities among different gas mixtures is reported here. The results will show that the vacuum UV photons can lead to the inactivation of the E.coli bacteria.

  10. Novel microorganism for selective separation of coal from ash and pyrite. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1996-12-31

    The selective separation of pyrite and ash-forming minerals from coal can be accomplished by flotation, agglomeration and selective flocculation. The methods currently used for selective flocculation of coals include addition of natural or synthetic polymeric flocculants along with precise pH control. In some cases, these flocculants are nonselective or work imperfectly. It is known that many highly charged planktonic algae and bacteria will adhere to certain solid surfaces if the charge or hydrophobic interaction between the organism and the solids are favorable for adhesion. The resultant microorganism-mineral entities, if formed, can flocculate and can be separated. In addition, many living organisms produce extracellular biopolymers that can also cause flocculation. The microorganism, M. phlei, has the properties of being both highly charged and highly hydrophobic. The aim of the present investigation is to study the effectiveness of M. phlei and biopolymers derived from the organism for selective flocculation and separation of fine coal from pyrite and ash.

  11. Size-selective DNA separation: recovery spectra help determine the sodium chloride (NaCl) and polyethylene glycol (PEG) concentrations required.

    PubMed

    He, Zhangyong; Xu, Hong; Xiong, Min; Gu, Hongchen

    2014-10-01

    In the presence of sodium chloride (NaCl), DNA fragments can be size-selectively separated by varying the final concentration of polyethylene glycol (PEG). This separation strategy in combination with the use of paramagnetic particles provides a valuable platform for achieving the desired DNA size interval, which is important in automated library preparation for high-throughput DNA sequencing. Here, we report the establishment of recovery spectra of DNA fragments that enable the determination of suitable NaCl and PEG concentrations for size-selective separation. Firstly, at a given NaCl concentration, the recovery equation was obtained by fitting the DNA recovery ratios versus the PEG concentrations using the logistic function to determine the required parameters. Secondly, the slope function of the recovery equation was achieved by deducing its first derivative. Therefore, the recovery spectrum can be generated using the slope function based on those parameters. According to the recovery spectra of different length DNA fragments, suitable NaCl and PEG concentrations can be determined, respectively, by calculating their resolution values and recovery ratios. The strategy was effectively applied to the size-selective separation of 532-, 400-, and 307-bp fragments at the selected reagent concentrations with recoveries of 96.9, 64.7, and 85.9%, respectively. Our method enables good predictions of NaCl and PEG concentrations for size-selective DNA separation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples.

    PubMed

    Liu, Min; Li, Xiao-Yan; Li, Jun-Jie; Su, Xiao-Meng; Wu, Zong-Yuan; Li, Peng-Fei; Lei, Fu-Hou; Tan, Xue-Cai; Shi, Zhan-Wang

    2015-05-01

    In this study, novel magnetic molecularly imprinted polymers (MMIPs) were developed as a sorbent for solid-phase extraction (SPE) and used for the selective separation of metronidazole (MNZ) in cosmetics; MNZ was detected by high-performance liquid chromatography (HPLC). First, magnetic Fe3O4 nanoparticles (NPs) were prepared by the co-precipitation of Fe(2+)and Fe(3+) ions in an ammonia solution; then oleic acid (OA) was modified onto the surface of Fe3O4NPs. Finally, the MMIP was prepared by aqueous suspension polymerization, involving the copolymerization of Fe3O4NPs@OA with MNZ as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol maleic rosinate acrylate (EGMRA) as the cross-linking agent, and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The MMIP materials showed high selective adsorption capacity and fast binding kinetics for MNZ; the maximum adsorption amount of the MMIP to MNZ was 46.7 mg/g. The assay showed a linear range from 0.1 to 20.0 μg/mL for MNZ with the correlation coefficient 0.999. The relative standard deviations (RSD) of intra- and inter-day ranging from 0.71 to 2.45% and from 1.06 to 5.20% were obtained. The MMIP can be applied to the enrichment and determination of MNZ in cosmetic products with the recoveries of spiked toner, powder, and cream cosmetic samples ranging from 90.6 to 104.2, 84.1 to 91.4, and 90.3 to 100.4%, respectively, and the RSD was <3.54%.

  13. Selective separation and determination of glucocorticoids in cosmetics using dual-template magnetic molecularly imprinted polymers and HPLC.

    PubMed

    Liu, Min; Li, Xiaoyan; Li, Junjie; Wu, Zongyuan; Wang, Fang; Liu, Li; Tan, Xuecai; Lei, Fuhou

    2017-10-15

    Molecularly imprinting polymers (MIPs) are typically prepared using a single template molecule, which allows selective separation and enrichment of only one target analyte. It is not suitable for determination of complex real samples containing multiple analytes. In order to expand the practical application of imprinted polymers, novel dual-template magnetic molecularly imprinted polymers (MMIPs) were synthesized by surface polymerization using hydrocortisone and dexamethasone as the dual-template molecules in this study. The dual-template MMIPs were prepared by copolymerization on the surface of Fe3O4@ SiO2-NH2, the template molecules, the functional monomer acrylamide (AM), the cross-linking agent ethylene glycol dimethacrylate (EGDMA), and the initiator 2,2-azobisisobutyronitrile. The morphology, magnetic properties and adsorption characteristics of the obtained dual-template MMIPs were studied by field emission scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, thermal gravimetric analysis, and vibrating sample magnetometry, and re-binding experiments. The results indicated that dual-template MMIPs had uniform particle size, strong magnetic properties, high thermal stability, and good mass transfer rate. To investigate the selectivity of dual-template MMIPs, the template molecules were mixed along with their structural analogs. The dual-template MMIPs revealed a significantly higher adsorption amount for the template molecule than its structure analog. The dual-template MMIPs can be used for the enrichment and determination of hydrocortisone and dexamethasone in cosmetic products with the recoveries of spiked cosmetic samples ranging from 86.8-107.5% and 91.2-104.3%, respectively. The relative standard deviation (RSD) for hydrocortisone was <2.89%, and RSD for dexamethasone was <2.62%. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation.

    PubMed

    Ma, Yingxin; Huang, Sheng; Wang, Leyu

    2013-11-15

    Rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) in aqueous solution differentiating from other nitroaromatics and independent of complicated instruments is in high demand for public safety and environmental monitoring. Despite of many methods for TNT detection, it is hard to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their highly similar structures and properties. In this work, via a simple and versatile method, LaF3ːCe(3+)-Tb(3+)and Fe3O4 nanoparticle-codoped multifunctional nanospheres were prepared through self-assembly of the building blocks. The luminescence of these nanocomposites was dramatically quenched via adding nitroaromatics into the aqueous solution. After the magnetic separation, however, the interference of other nitroaromatics including 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB) was effectively overcome due to the removal of these coexisting nitroaromatics from the surface of nanocomposites. Due to the formation of TNT(-)-RCONH3(+), the TNT was attached to the surface of the nanocomposites and was quantitatively detected by the postexposure luminescence quenching. Meanwhile, the luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-5.0 μg/mL with the 3σ limit of detection (LOD) of 10.2 ng/mL. Therefore, the as-developed method provides a novel strategy for rapid and selective detection of TNT in the mixture solution of nitroaromatics by postexposure luminescence quenching. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The 3M complex maintains microtubule and genome integrity

    PubMed Central

    Yan, Jun; Yan, Feng; Li, Zhijun; Sinnott, Becky; Cappell, Kathryn M.; Yu, Yanbao; Mo, Jinyao; Duncan, Joseph A.; Chen, Xian; Cormier-Daire, Valerie; Whitehurst, Angelique W.; Xiong, Yue

    2014-01-01

    SUMMARY CUL7, OBSL1, and CCDC8 genes are mutated in a mutually exclusive manner in 3M and other growth retardation syndromes. The mechanism underlying the function of the three 3M genes in development is not known. We found that OBSL1 and CCDC8 form a complex with CUL7 and regulate the level and centrosomal localization of CUL7, respectively. CUL7 depletion results in altered microtubule dynamics, prometaphase arrest, tetraploidy and mitotic cell death. These defects are recaptured in CUL7 mutated 3M cells and can be rescued by wild-type, but not 3M patients-derived CUL7 mutants. Depletion of either OBSL1 or CCDC8 results in similar defects and sensitizes cells to microtubule damage as loss of CUL7 function. Microtubule damage reduces the level of CCDC8 that is required for the centrosomal localization of CUL7. We propose that CUL7, OBSL1, and CCDC8 proteins form a 3M complex that functions in maintaining microtubule and genome integrity and normal development. PMID:24793695

  16. Identification of RNase-resistant RNAs in Saccharomyces cerevisiae extracts: separation from chromosomal DNA by selective precipitation

    PubMed Central

    Rodriguez, Blanca V.; Malczewskyj, Eric T.; Cabiya, Joshua M.; Lewis, L. Kevin; Maeder, Corina

    2015-01-01

    High quality chromosomal DNA is a requirement for many biochemical and molecular biological techniques. To isolate cellular DNA, standard protocols typically lyse cells and separate nucleic acids from other biological molecules using a combination of chemical and physical methods. After using a standard chemical-based protocol to isolate chromosomal DNA from Saccharomyces cerevisiae and then treatment with RNase A to degrade RNA, two RNase-resistant bands persisted when analyzed using gel electrophoresis. Interestingly, such resistant bands did not appear in preparations of E. coli bacterial DNA after RNase treatment. Several enzymatic, chemical and physical methods were employed in an effort to remove the resistant RNAs, including use of multiple RNases and alcohol precipitation, base hydrolysis and chromatographic methods. These experiments resulted in the development of a new method to isolate S. cerevisiae chromosomal DNA. This method utilizes selective precipitation of DNA in the presence of a potassium acetate/isopropanol mixture and produces high yields of chromosomal DNA without detectable contaminating RNAs. PMID:26416692

  17. Identification of RNase-resistant RNAs in Saccharomyces cerevisiae extracts: Separation from chromosomal DNA by selective precipitation.

    PubMed

    Rodriguez, Blanca V; Malczewskyj, Eric T; Cabiya, Joshua M; Lewis, L Kevin; Maeder, Corina

    2016-01-01

    High-quality chromosomal DNA is a requirement for many biochemical and molecular biological techniques. To isolate cellular DNA, standard protocols typically lyse cells and separate nucleic acids from other biological molecules using a combination of chemical and physical methods. After a standard chemical-based protocol to isolate chromosomal DNA from Saccharomyces cerevisiae and then treatment with RNase A to degrade RNA, two RNase-resistant bands persisted when analyzed using gel electrophoresis. Interestingly, such resistant bands did not appear in preparations of Escherichia coli bacterial DNA after RNase treatment. Several enzymatic, chemical, and physical methods were employed in an effort to remove the resistant RNAs, including use of multiple RNases and alcohol precipitation, base hydrolysis, and chromatographic methods. These experiments resulted in the development of a new method for isolation of S. cerevisiae chromosomal DNA. This method utilizes selective precipitation of DNA in the presence of a potassium acetate/isopropanol mixture and produces high yields of chromosomal DNA without detectable contaminating RNAs.

  18. Disperse fine equiaxed alpha alumina nanoparticles with narrow size distribution synthesised by selective corrosion and coagulation separation

    PubMed Central

    Pu, Sanxu; Li, Lu; Ma, Ji; Lu, Fuliang; Li, Jiangong

    2015-01-01

    Disperse fine equiaxed α-Al2O3 nanoparticles with narrow size distribution are important materials in nanotechnology and nanomaterials, but syntheses of disperse fine equiaxed α-Al2O3 nanoparticles usually result in fine γ-Al2O3 nanoparticles or large α-Al2O3 nanoparticles larger than 15 nm. α-Al2O3 has a higher surface energy than γ-Al2O3 and becomes thermodynamically not stable with respect to γ-Al2O3 at specific surface areas larger than 100 m2/g (at sizes smaller than 15 nm for spherical particles) at room temperature. So disperse fine equiaxed α-Al2O3 nanoparticles smaller than 15 nm with narrow size distribution are extremely difficult to synthesise. Here we show the successful synthesis of disperse fine equiaxed α-Al2O3 nanoparticles with average sizes below 10 nm and narrow size distribution by selective corrosion and refined fractionated coagulation separation. An almost fully dense nanocrystalline α-Al2O3 ceramic with a relative density of 99.5% and an average grain size of 60 nm can be sintered from disperse fine equiaxed α-Al2O3 nanoparticles with narrow size distribution. PMID:26166455

  19. Rapid and selective detection of E. coli O157:H7 combining phagomagnetic separation with enzymatic colorimetry.

    PubMed

    Zhang, Yun; Yan, Chenghui; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-11-01

    Mammal IgG antibodies are normally used in conventional immunoassays for E. coli O157:H7, which could lead to false positive results from the presence of protein A producing S. aureus. In this study, a natural specific bacteriophage was isolated and then conjugated with magnetic beads as a capture element in a sandwich format for the rapid and selective detection of E. coli O157:H7. To the best of our knowledge, it was the first time to utilize a natural bacteriophage to develop a phagomagnetic separation combined with colorimetric assay for E. coli O157:H7. The method has an overall time less than 2h with a detection limit of 4.9×10(4)CFU/mL. No interference from S. aureus was observed. Furthermore, the proposed method was successfully applied to detect E. coli O157:H7 in spiked skim milk. The proposed detection system provided a potential method for E. coli O157:H7 and other pathogenic bacteria in food samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Combining ZnO/microwave treatment for changing wettability of WEEE styrene plastics (ABS and HIPS) and their selective separation by froth flotation

    NASA Astrophysics Data System (ADS)

    Thanh Truc, Nguyen Thi; Lee, Byeong-Kyu

    2017-10-01

    This study reports a simple froth flotation method to separate plastic wastes of acrylonitrile-butadiene-styrene (ABS) and high impact polystyrene (HIPS) after initial hydrophilization by coating the plastics with ZnO and microwave treatment. ABS and HIPS are typical styrene-based WEEE plastics having similar density and hydrophobicity, which hinders their separation for recycling. After coating with ZnO, 2-min microwave treatment rearranged the ABS surface and thus changed its molecular mobility and increased its hydrophilicity. The combined ZnO coating/microwave treatment facilitated the selective separation of ABS and HIPS with 100% and 95.2% recovery and 95.4% and 100% purity in froth flotation, respectively. The combination of ZnO coating-microwave treatment and froth flotation can be utilized as a selective ABS/HIPS separation technique for improved recycling of WEEE plastics.

  1. Selective separation of ABS/PC containing BFRs from ABSs mixture of WEEE by developing hydrophilicity with ZnO coating under microwave treatment.

    PubMed

    Thanh Truc, Nguyen Thi; Lee, Byeong-Kyu

    2017-05-05

    This study reports a simple and facile method to separate plastic wastes of acrylonitrile-butadiene-styrene (ABS) and ABS-based plastics (blends of ABS) in waste electronic and electrical equipment (WEEE) by froth flotation after inducing hydrophilization by ZnO coating under microwave treatment. ABS-based plastics containing brominated flame retardants (BFRs) can release hazardous substances, such as hydrogen bromide and brominated dioxins, during disposal or recycling activities. ABS and ABS-based plastics are typical styrene plastics with similar properties and it is, therefore, difficult to separate them selectively for recycling. We used 2-min microwave treatment to rearrange and change the molecular mobility on the surface of the ZnO-coated ABS with increased hydrophilic surfaces, which eased the selective separation of the ABS/polycarbonate (PC) blend containing BFRs from the remaining plastics. Therefore, the combined ZnO coating and microwave treatments can facilitate the selective separation of ABS/PC blend plastics with a recovery and purity of 100% and 91.7%, respectively, in a short flotation time of 2min. Based on these findings, the combination of ZnO coating-microwave treatment and froth flotation can be applied for the selective separation of ABS-based plastics, leading to improved plastic recycling quality.

  2. Unusual trend of increasing selectivity and decreasing flux with decreasing thickness in pervaporation separation of ethanol/water mixtures using sodium alginate blend membranes.

    PubMed

    Flynn, Eoin J; Keane, Donal; Holmes, Justin D; Morris, Michael A

    2012-03-15

    Pervaporation membranes were produced comprising a 4:1 sodium-alginate:poly(vinyl-alcohol) polymer blend selective layer with a plasticizing agent (glycerol). Membranes were supported on a poly(acrylonitrile) mesoporous support layer and non-woven fabric base. Pervaporation separation of ethanol/water mixtures was carefully followed as a function of film thickness and time. It was found, contrary to what might be expected from literature, that these films showed increased selectivity and decreased flux as film thickness was reduced. It is argued that the morphology and structure of the polymer blend changes with thickness and that these structural changes define the efficiency of the separation in these conditions.

  3. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa.

    PubMed

    Patra, Partha; Natarajan, K A

    2006-06-15

    Selective separation of pyrite and galena from mixture of the two minerals was achieved through interaction with cells and metabolic products from a culture of Paenibacillus polymyxa. Adsorption of cells and metabolic products onto minerals and electrokinetic studies of minerals after interaction with cells and metabolic products were carried out to examine the resulting surface modification on the mineral surfaces. Flocculation and flotation techniques were successfully applied in the selective separation of minerals after bacterial interaction. The effect of varying conditions for production of extracellular polysaccharides and protein provided an insight into the possible mechanism involved in microbially induced flocculation and flotation of pyrite and galena.

  4. Stephen Hawking bags big new 3m physics prize

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2013-01-01

    A massive 3m in prize money has gone to the British cosmologist Stephen Hawking for his work on black holes, quantum gravity and the early universe. The award is one of two "special fundamental physics prizes" from the Fundamental Physics Prize Foundation, which was set up earlier this year by the Russian physicist-turned-entrepreneur Yuri Milner.

  5. Deployment of a Pair of 3 M telescopes in Utah

    SciTech Connect

    Finnegan, G.; Adams, B.; Butler, K.; Cardoza, J.; Colin, P.; Hui, C. M.; Kieda, D.; Kirkwood, D.; Kress, D.; Kress, M.; LeBohec, S.; McGuire, C.; Newbold, M.; Nunez, P.; Pham, K.

    2008-12-24

    Two 3 m telescopes are being installed in Grantsville Utah. They are intended for the testing of various approaches to the implementation of intensity interferometry using Cherenkov Telescopes in large arrays as receivers as well as for the testing of novel technology cameras and electronics for ground based gamma-ray astronomy.

  6. The Role of Training at 3M Company

    ERIC Educational Resources Information Center

    Training and Development Journal, 1976

    1976-01-01

    The interview with L. W. Lehr, President of the U.S. Operation of the 3M Company, presents a management view of the company's training and development activities. The activities are based on behavior modification programs and organizational development approaches. (EC)

  7. Strategic stories: how 3M is rewriting business planning.

    PubMed

    Shaw, G; Brown, R; Bromiley, P

    1998-01-01

    Virtually all business plans are written as a list of bullet points. Despite the skill or knowledge of their authors, these plans usually aren't anything more than lists of "good things to do." For example: Increase sales by 10%. Reduce distribution costs by 5%. Develop a synergistic vision for traditional products. Rarely do these lists reflect deep thought or inspire commitment. Worse, they don't specify critical relationships between the points, and they can't demonstrate how the goals will be achieved. 3M executive Gordon Shaw began looking for a more coherent and compelling way to present business plans. He found it in the form of strategic stories. Telling stories was already a habit of mind at 3M. Stories about the advent of Post-it Notes and the invention of masking tape help define 3M's identity. They're part of the way people at 3M explain themselves to their customers and to one another. Shaw and his coauthors examine how business plans can be transformed into strategic narratives. By painting a picture of the market, the competition, and the strategy needed to beat the competition, these narratives can fill in the spaces around the bullet points for those who will approve and those who will implement the strategy. When people can locate themselves in the story, their sense of commitment and involvement is enhanced. By conveying a powerful impression of the process of winning, narrative plans can mobilize an entire organization.

  8. Sustainable and Selective Separation of PVC and ABS from a WEEE Plastic Mixture Using Microwave and/or Mild-Heat Treatment with Froth Flotation.

    PubMed

    Thanh Truc, Nguyen Thi; Lee, Byeong-Kyu

    2016-10-04

    This study reports simple, selective, and sustainable separation of chlorinated plastic (polyvinyl chloride, PVC) and acrylonitrile butadiene styrene (ABS) containing brominated flame retardants (BFRs) from mixed waste electrical and electronic equipment (WEEE) plastics using microwave and/or mild-heat treatment. Microwave treatment after plastic coating with powdered activated carbon (PAC) selectively increased the hydrophilicity of the PVC surface, which facilitated PVC separation (100% recovery and purity) from the WEEE plastic mixture under the optimum flotation conditions. A further mild-heat treatment for 100 s facilitated selective separation with the highest recovery and purity (100%) of PAC-coated ABS containing BFRs from the remaining plastic mixture due to selective formation of a twisted structure with a lower density than water and the untreated ABS. Mild-heat treatment only of PAC-coated WEEE plastic mixture resulted in successful recovery of (100%) the ABS and PVC. However, the recovered PVC had slightly reduced purity (96.8%) as compared to that obtained using the combined heat and microwave treatments. The combination of both treatments with flotation facilitated selective and sustainable separation of PVC and ABS from WEEE plastics to improve their recycling quality.

  9. UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation.

    PubMed

    Luo, Feng; Yan, Changsheng; Dang, Lilong; Krishna, Rajamani; Zhou, Wei; Wu, Hui; Dong, Xinglong; Han, Yu; Hu, Tong-Liang; O'Keeffe, Michael; Wang, Lingling; Luo, Mingbiao; Lin, Rui-Biao; Chen, Banglin

    2016-05-04

    A new metal-organic framework Zn2(H2O)(dobdc)·0.5(H2O) (UTSA-74, H4dobdc = 2,5-dioxido-1,4-benzenedicarboxylic acid), Zn-MOF-74/CPO-27-Zn isomer, has been synthesized and structurally characterized. It has a novel four coordinated fgl topology with one-dimensional channels of about 8.0 Å. Unlike metal sites in the well-established MOF-74 with a rod-packing structure in which each of them is in a five coordinate square pyramidal coordination geometry, there are two different Zn(2+) sites within the binuclear secondary building units in UTSA-74 in which one of them (Zn1) is in a tetrahedral while another (Zn2) in an octahedral coordination geometry. After activation, the two axial water molecules on Zn2 sites can be removed, generating UTSA-74a with two accessible gas binding sites per Zn2 ion. Accordingly, UTSA-74a takes up a moderately high and comparable amount of acetylene (145 cm(3)/cm(3)) to Zn-MOF-74. Interestingly, the accessible Zn(2+) sites in UTSA-74a are bridged by carbon dioxide molecules instead of being terminally bound in Zn-MOF-74, so UTSA-74a adsorbs a much smaller amount of carbon dioxide (90 cm(3)/cm(3)) than Zn-MOF-74 (146 cm(3)/cm(3)) at room temperature and 1 bar, leading to a superior MOF material for highly selective C2H2/CO2 separation. X-ray crystal structures, gas sorption isotherms, molecular modeling, and simulated and experimental breakthroughs comprehensively support this result.

  10. Selective analysis of histamine in food by means of solid-phase extraction cleanup and chromatographic separation.

    PubMed

    Oguri, Shigeyuki; Enami, Mayo; Soga, Naoko

    2007-01-12

    A simple, practical technique is presented for the selective determination and measurement of histamine (HA) levels in fermented food. The method involved a solid-phase extraction cleanup using a Sep-Pak Plus C-18 cartridge and ion-paired reversed-phase high-performance liquid chromatographic (IP-RP-HPLC) separation, followed by detection of HA at its UV absorbance wavelength of 220nm. After evaporating a methanolic extract from the food sample, the resulting residue was reconstituted with 0.2M phosphate buffer (pH 3.0), and subsequently passed through the cartridge. The aliquot of the solution which came out of the cartridge was chromatographed in IP-RP mode on a C-18 column, as the stationary phase, and with a solution of 0.2M phosphate buffer (pH 3.0)-acetonitrile-water (1:24:166, v/v) containing 2mM sodium 1-octane sulfonic acid, as the mobile phase. When this method was applied to a mixture of HA, Cadaverine (Cad), Putrescine (Put), Serotonin (5HT), and Tyramine (Tyr), only HA was detected at 16.4min of retention time. The method was fully validated and validation parameters were: linearity range 2-1000ppm; correlation coefficient >0.991; mean recovery >99.5%; limit of quantification 2ppm and limit of detection 0.5ppm. The method was next applied to 12 brands of Miso (fermented soybean paste), 9 brands of Sake (rice wine), and 5 brands of Shouyu (Japanese soy sauce) to verify its ability to detect the presence of HA in a variety of fermented foods. The method proved to be both rapid and accurate and is therefore recommended for use in HA pollution surveys and in the routine practice of food-quality control.

  11. Novel microorganism for selective separation of coal from ash and pyrite. Third quarterly technical progress report, March 1, 1994--May 31, 1994

    SciTech Connect

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1994-11-01

    The selective separation of pyrite and ash-forming minerals from coal can be accomplished by flotation, agglomeration and selective flocculation. The methods currently used for selective flocculation of coals include addition of natural or synthetic polymeric flocculants along with precise pH control. In some cases, these flocculants are nonselective or work imperfectly. It is known that many highly charged planktonic algae and bacteria will adhere to certain solid surface if the charge or hydrophobic interaction between the organism and the solids are favorable for adhesion. The resultant microorganism-mineral entities if formed can flocculate and can be separated. In addition, many living organism produce extracellular biopolymers that can also cause flocculation. The microorganism, M. phlei, has the properties of being both highly charged and highly hydrophobic. The aim of the present investigation is to study the effectiveness of M. phlei and biopolymers derived from the organism for selective flocculation of fine coal from ash and pyrite.

  12. A Honeycomb-Structured Ti-6Al-4V Oil-Gas Separation Rotor Additively Manufactured by Selective Electron Beam Melting for Aero-engine Applications

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Wang, Q. B.; Yang, G. Y.; Gu, J.; Liu, N.; Jia, L.; Qian, M.

    2016-03-01

    Oil -gas separation is a key process in an aero-engine lubrication system. This study reports an innovative development in oil -gas separation. A honeycomb-structured rotor with hexagonal cone-shaped pore channels has been designed, additively manufactured from Ti-6Al-4V using selective electron beam melting (SEBM) and assessed for oil -gas separation for aero-engine application. The Ti-6Al-4V honeycomb structure showed a high compressive strength of 110 MPa compared to less than 20 MPa for metal foam structures. The oil -gas separation efficiency of the honeycomb-structured separation rotor achieved 99.8% at the rotation speed of 6000 rpm with much lower ventilation resistance (17.3 kPa) than that of the separator rotor constructed using a Ni-Cr alloy foam structure (23.5 kPa). The honeycomb-structured Ti-6Al-4V separator rotor produced by SEBM provides a promising solution to more efficient oil -gas separation in the aero-engine lubrication system.

  13. SEPARATION OF THORIUM FROM URANIUM BY EXTRACTION

    DOEpatents

    Bohlmann, E.G.

    1959-07-28

    A method is presented for the recovery and separation of uranium and thorium values contained in an aqueous nitric acid solution which is more than 3 M in nitric acid. The uranium and thorium containing solution preferable about 7 M in nitric acid is contacted with tributyl phosphatekerosene mixture. Both U and Th are extracted by the immiscible organic. After phase separation the Th is selectively back extracted by contacting with an aqueous nitric acid solution preferably between 0.1 to 1.5 M in nitric acid. The uranium which is still in the organic extractant phase may be recovered by contacting with water.

  14. Battery separators.

    PubMed

    Arora, Pankaj; Zhang, Zhengming John

    2004-10-01

    The ideal battery separator would be infinitesimally thin, offer no resistance to ionic transport in electrolytes, provide infinite resistance to electronic conductivity for isolation of electrodes, be highly tortuous to prevent dendritic growths, and be inert to chemical reactions. Unfortunately, in the real world the ideal case does not exist. Real world separators are electronically insulating membranes whose ionic resistivity is brought to the desired range by manipulating the membranes thickness and porosity. It is clear that no single separator satisfies all the needs of battery designers, and compromises have to be made. It is ultimately the application that decides which separator is most suitable. We hope that this paper will be a useful tool and will help the battery manufacturers in selecting the most appropriate separators for their batteries and respective applications. The information provided is purely technical and does not include other very important parameters, such as cost of production, availability, and long-term stability. There has been a continued demand for thinner battery separators to increase battery power and capacity. This has been especially true for lithiumion batteries used in portable electronics. However, it is very important to ensure the continued safety of batteries, and this is where the role of the separator is greatest. Thus, it is essential to optimize all the components of battery to improve the performance while maintaining the safety of these cells. Separator manufacturers should work along with the battery manufacturers to create the next generation of batteries with increased reliability and performance, but always keeping safety in mind. This paper has attempted to present a comprehensive review of literature on separators used in various batteries. It is evident that a wide variety of separators are available and that they are critical components in batteries. In many cases, the separator is one of the major factors

  15. Isotopic separation

    SciTech Connect

    Chen, C.

    1981-03-10

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential.

  16. Evidence for Natural Selection in Nucleotide Content Relationships Based on Complete Mitochondrial Genomes: Strong Effect of Guanine Content on Separation between Terrestrial and Aquatic Vertebrates.

    PubMed

    Sorimachi, Kenji; Okayasu, Teiji

    2015-01-01

    The complete vertebrate mitochondrial genome consists of 13 coding genes. We used this genome to investigate the existence of natural selection in vertebrate evolution. From the complete mitochondrial genomes, we predicted nucleotide contents and then separated these values into coding and non-coding regions. When nucleotide contents of a coding or non-coding region were plotted against the nucleotide content of the complete mitochondrial genomes, we obtained linear regression lines only between homonucleotides and their analogs. On every plot using G or A content purine, G content in aquatic vertebrates was higher than that in terrestrial vertebrates, while A content in aquatic vertebrates was lower than that in terrestrial vertebrates. Based on these relationships, vertebrates were separated into two groups, terrestrial and aquatic. However, using C or T content pyrimidine, clear separation between these two groups was not obtained. The hagfish (Eptatretus burgeri) was further separated from both terrestrial and aquatic vertebrates. Based on these results, nucleotide content relationships predicted from the complete vertebrate mitochondrial genomes reveal the existence of natural selection based on evolutionary separation between terrestrial and aquatic vertebrate groups. In addition, we propose that separation of the two groups might be linked to ammonia detoxification based on high G and low A contents, which encode Glu rich and Lys poor proteins.

  17. Selective separation of americium from europium using 2,9-bis(triazine)-1,10-phenanthrolines in ionic liquids: a new twist on an old story

    DOE PAGES

    Williams, Neil J.; Dehaudt, Jeremy; Bryantsev, Vyacheslav S.; ...

    2017-02-10

    Bis-triazine phenanthrolines have shown great promise for f-block metal separations, attributable to their highly preorganized structure, nitrogen donors, and more enhanced covalent bonding with actinides over lanthanides. However, their limited solubility in traditional solvents remains a technological bottleneck. Here in this paper we report our recent work using a simple 2,9-bis(triazine)-1,10-phenanthroline (Me-BTPhen) dissolved in an ionic liquid (IL), demonstrating the efficacy of IL extraction systems for the selective separation of americium from europium, achieving separation factors in excess of 7500 and selectively removing up to 99% of the americium. Characterization of the coordination environment was performed using a combination ofmore » X-ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations.« less

  18. Selective separation of americium from europium using 2,9-bis(triazine)-1,10-phenanthrolines in ionic liquids: a new twist on an old story.

    PubMed

    Williams, Neil J; Dehaudt, Jérémy; Bryantsev, Vyacheslav S; Luo, Huimin; Abney, Carter W; Dai, Sheng

    2017-02-28

    Bis-triazine phenanthrolines have shown great promise for f-block metal separations, attributable to their highly preorganized structure, nitrogen donors, and more enhanced covalent bonding with actinides over lanthanides. However, their limited solubility in traditional solvents remains a technological bottleneck. Herein we report our recent work using a simple 2,9-bis(triazine)-1,10-phenanthroline (Me-BTPhen) dissolved in an ionic liquid (IL), demonstrating the efficacy of IL extraction systems for the selective separation of americium from europium, achieving separation factors in excess of 7500 and selectively removing up to 99% of the americium. Characterization of the coordination environment was performed using a combination of X-ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations.

  19. Biotin-conjugated N-methylisatoic anhydride: a chemical tool for nucleic acid separation by selective 2'-hydroxyl acylation of RNA.

    PubMed

    Ursuegui, S; Chivot, N; Moutin, S; Burr, A; Fossey, C; Cailly, T; Laayoun, A; Fabis, F; Laurent, A

    2014-06-01

    An isatoic anhydride derivative conjugated to a biotin and a disulfide linker was specifically designed for the separation of nucleic acids. Starting from a DNA-RNA mixture, a selective 2'-hydroxyl acylation of RNAs followed by capture with streptavidin-coated magnetic beads and cleavage of the disulfide led to elution of RNAs.

  20. Polyoxometalates-based heterometallic organic-inorganic hybrid materials for rapid adsorption and selective separation of methylene blue from aqueous solutions.

    PubMed

    Yi, Fei-Yan; Zhu, Wei; Dang, Song; Li, Jian-Ping; Wu, Dai; Li, Yun-hui; Sun, Zhong-Ming

    2015-02-25

    A series of LnCu-polyoxometalates (POMs) were used for dye-wastewater treatment with rapid (within 1 min) and large-scale adsorption (up to 391.3 mg g(-1)) as well as excellent selective separation of cationic dyes. Furthermore, the adsorbed dyes can be easily desorbed, and the POMs still work very efficiently even after three cycles.

  1. Concerning neutral flux shielding in the U-3M torsatron

    SciTech Connect

    Dreval, N. B.

    2015-03-15

    The volume of the torsatron U-3M vacuum chamber is about 70 m{sup 3}, whereas the plasma volume is about 0.3 m{sup 3}. The large buffer volume of the chamber serves as a source of a substantial neutral flux into the U-3M plasma. A fraction of this flux falls onto the torsatron helical coils located in front of the plasma, due to which the dynamics of neutral influx into the plasma modifies. The shielding of the molecular flux from the buffer volume into the plasma is estimated using numerical calculations. Only about 10% of the incident flux reaches the plasma volume. Estimates show that about 20% of atoms escape beyond the helical coils without colliding with them. Under these conditions, the helical coils substantially affect the neutral flux. A discharge regime with a hot low-density plasma produced by a frame antenna is considered. The spatial distribution of the molecular density produced in this regime by the molecular flux from the chamber buffer volume after it has passed between the helical coils is calculated. The contributions of the fluxes emerging from the side and inner surfaces of the helical coils are considered. The calculations show that the shape of the spatial distribution of the molecular density differs substantially from the shape of the magnetic surfaces.

  2. Testing of the 3M Company Composite Conductor

    SciTech Connect

    Stovall, John P; Rizy, D Tom; Kisner, Roger A

    2010-10-01

    The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum-Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors. The objective of this work is to accelerate the commercial acceptance by electric utilities of this new conductor design by testing four representative conductor classes in controlled conditions. A unique facility called the Powerline Conductor Accelerated Testing (PCAT) Facility was built at ORNL for testing overhead conductors. The PCAT has been uniquely designed for testing overhead bare transmission line conductors at high currents and temperatures after they have been installed and tensioned to the manufacturer's specifications. The ability to operate a transmission line conductor in this manner does not exist elsewhere in the United States. Four classes of ACCR cable designed by the 3M Company have been successfully test at ORNL small, medium, large and small/compact. Based on these and other manufacturer tests, the 3M Company has successfully introduced the ACCR into the commercial market and has completed over twenty installations for utility companies.

  3. APPLICATION OF CYCLODEXTRIN-MODIFIED MICELLAR ELECTRONKINETIC CHROMATOGRAPHY TO THE SEPARATIONS OF SELECTED NEUTRAL PESTICIDES AND THEIR ENANTIOMERS

    EPA Science Inventory

    The environmental chemistry of chiral pesticides is receiving increased attention - enantiomeric ratios are being measured and enantioselective degradation processes are being reported. The requisite analysis involves separation of the various enantiomers. Mixtures of three class...

  4. APPLICATION OF CYCLODEXTRIN-MODIFIED MICELLAR ELECTRONKINETIC CHROMATOGRAPHY TO THE SEPARATIONS OF SELECTED NEUTRAL PESTICIDES AND THEIR ENANTIOMERS

    EPA Science Inventory

    The environmental chemistry of chiral pesticides is receiving increased attention - enantiomeric ratios are being measured and enantioselective degradation processes are being reported. The requisite analysis involves separation of the various enantiomers. Mixtures of three class...

  5. Combination of three-stage sink-float method and selective flotation technique for separation of mixed post-consumer plastic waste.

    PubMed

    Pongstabodee, Sangobtip; Kunachitpimol, Napatr; Damronglerd, Somsak

    2008-01-01

    The aim of this research was to separate the different plastics of a mixed post-consumer plastic waste by the combination of a three-stage sink-float method and selective flotation. By using the three-stage sink-float method, six mixed-plastic wastes, belonging to the 0.3-0.5 cm size class and including high density polyethylene (HDPE), polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), polyethylene terephthalate (PET) and acrylonitrile-butadiene-styrene copolymers (ABS) were separated into two groups, i.e., a low density plastic group (HDPE and PP) and a high density plastic group (PET, PVC, PS and ABS) by tap water. Plastic whose density is less than that of the medium solution floats to the surface, while the one whose density is greater than that of the medium solution sinks to the bottom. The experimental results elucidated that complete separation of HDPE from PP was achieved by the three-stage sink-float method with 50% v/v ethyl alcohol. To succeed in the separation of a PS/ABS mixture from a PET/PVC mixture by the three-stage sink-float method, a 30% w/v calcium chloride solution was employed. To further separate post-consumer PET/PVC and PS/ABS based on plastic type, selective flotation was carried out. In order to succeed in selective flotation separation, it is necessary to render hydrophilic the surface of one or more species while the others are kept in a hydrophobic state. In flotation studies, the effects of wetting agent, frother, pH of solution and electrolyte on separation were determined. The selective flotation results showed that when using 500 mg l(-1) calcium lignosulfonate, 0.01 ppm MIBC, and 0.1 mg l(-1) CaCl2 at pH 11, PET could be separated from PVC. To separate ABS from PS, 200 mg l(-1) calcium lignosulfonate and 0.1 mg l(-1) CaCl2 at pH 7 were used as a flotation solution. Wettability of plastic increases when adding CaCl2 and corresponds to a decrease in its contact angles and to a reduction in the recovery of plastic in

  6. Silica stationary phase functionalized by 4-carboxy-benzoboroxole with enhanced boronate affinity nature for selective capture and separation of cis-diol compounds.

    PubMed

    Li, Hengye; Zhang, Xuemeng; Zhang, Lin; Cheng, Weihua; Kong, Fenying; Fan, Dahe; Li, Lei; Wang, Wei

    2017-09-08

    4-Carboxy-benzoboroxole was designed and synthesized. It was then combined with the modification effect of polyethyleneimine (PEI) for the preparation of boronate affinity silica stationary phase. The stationary phase showed improved binding strength with dissociation constant (Kd) towards xanthosine as low as 2.48 × 10(-4) M. The column showed excellent selectivity, high binding capacities (88.3 μmol adenosine g(-1), pH 7.0) and the lowest binding pH (4.0 for cytidine and as low as 2.24 for xanthosine). These binding properties were superior to the existing boronate affinity materials, facilitating the selective extraction of trace cis-diol compounds in complex samples and greatly expanding the application scope of boronate affinity chromatography. In addition, the column showed secondary separation capability under acidic conditions and this secondary separation capability was investigated thoroughly. It was found that the separation was pH-dependent and mainly determined by binding strength with the possibility of involvement of other interaction, providing alternative strategy for the separation of cis-diol compounds. The feasibility and practicability were demonstrated through the selective enrichment of nucleosides in urine samples and the results indicated the excellent performance and great potential for the extraction of trace cis-diol compounds in complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8.

    PubMed

    Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin

    2013-07-09

    Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.

  8. Correlation and prediction of partition coefficient using nonrandom two-liquid segment activity coefficient model for solvent system selection in counter-current chromatography separation.

    PubMed

    Ren, Da-Bing; Yang, Zhao-Hui; Liang, Yi-Zeng; Ding, Qiong; Chen, Chen; Ouyang, Mei-Lan

    2013-08-02

    Selection of a suitable solvent system is the first and foremost step for a successful counter-current chromatography (CCC) separation. In this paper, a thermodynamic model, nonrandom two-liquid segment activity coefficient model (NRTL-SAC) which uses four types of conceptual segments to describe the effective surface interactions for each solvent and solute molecule, was employed to correlate and predict the partition coefficients (K) of a given compound in a specific solvent system. Then a suitable solvent system was selected according to the predicted partition coefficients. Three solvent system families, heptane/methanol/water, heptane/ethyl acetate/methanol/water (Arizona) and hexane/ethyl acetate/methanol/water, and several solutes were selected to investigate the effectiveness of the NRTL-SAC model for predicting the partition coefficients. Comparison between experimental results and predicted results showed that the NRTL-SAC model is of potential for estimating the K value of a given compound. Also a practical separation case on magnolol and honokiol suggests the NRTL-SAC model is effective, reliable and practical for the purpose of predicting partition coefficients and selecting a suitable solvent system for CCC separation.

  9. Trapping multiple dual mode centrifugal partition chromatography for the separation of intermediately-eluting components: Operating parameter selection.

    PubMed

    Goll, Johannes; Morley, Raena; Minceva, Mirjana

    2017-05-05

    The preparative separation of intermediately-eluting components in liquid-liquid chromatography is commonly performed with isocratic batch injections, a technique which often leads to low yield and/or purity as a result of peak overlap. Two-column trapping multiple dual mode centrifugal partition chromatography, an alternative discontinuous method for the separation of a mixture into three product fractions (early-, intermediately-, and late-eluting components) at full recovery, is presented in this work. A mathematical shortcut method based on equilibrium theory assumptions is derived for the determination of the key operating parameters (i.e., step durations and number of steps). The feasibility of the technique and the accompanying short-cut method is demonstrated by proof-of-concept experiments for the separation of two paraben model mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 3M corporate incinerator environmental monitoring study and risk analysis

    SciTech Connect

    Stevens, J.B.; Elnabarawy, M.T.; Pilney, J.

    1998-12-31

    A one-year multi-media environmental monitoring study was performed around the 3M Cottage Grove Facility. Particulate metals from the 3M Corporate hazardous waste incinerator were the focus of the study. Two environmental media were of primary interest: area soil sampling was conducted to investigate the impact of past incinerator emissions on the environment, and ambient air monitoring was conducted to address current impacts. Over 180 soil samples were taken from both agricultural and forested land in the vicinity of the Facility. More than 25 chemical parameters were then quantified in the samples. The potential impacts of past emissions from the incinerator were assessed by comparing chemical concentrations from locations where incinerator impacts were expected to be greatest (based on air dispersion modeling) to chemical concentrations in matched samples from sites expected to be least impacted. The ambient air monitoring network consisted of six stations. Source-receptor modeling was used to determine the most likely contribution of the incinerator and six additional major area sources for the air monitoring (i.e. filter) data at each station. The model provided a best-fit analysis regarding the likely contributions of each source to the sample results. The results of these evaluations lead to the conclusion that the current emissions from this Facility do not present an unacceptable risk to human health.

  11. Hamline/3M Project: Liaison for Curricular Change

    NASA Astrophysics Data System (ADS)

    Rundquist, Andy

    2002-03-01

    This project was designed to catalyze curricular changes to better prepare students for the workplace. Industrial managers provided a list of 16 characteristics valued in the workplace: most were NOT related to science course content. The project formed 5 teams each including 3M professionals and students. Each team developed curricular changes in one of the 16 areas. Team goals were to improve skills in communication, data analysis, business/economics, team problem solving, and culture competency. Curricular changes realized include communication skill activities embodied in science courses and faculty communication teaching skill seminars, self learning tools in data analysis, statistics and model building, a new course developed with assistance from 3M personnel focussing on topics directly related to technological industries, high performance team problem solving training/coaching for faculty and workshops for students and faculty relative to importance of cultural competencies in the workplace, and a new course focusing on culture, team problem solving and conflict resolution in the technical workplace. Process for developing and content of curricular changes will be reported.

  12. Hamline/3M Corp. Project: Liason for Curricular Change*

    NASA Astrophysics Data System (ADS)

    Artz, Jerry L.

    2002-04-01

    This project was designed to catalyze curricular changes to better prepare students for the workplace. Industrial managers provided a list of 16 characteristics valued in the workplace; most were NOT related to science course content. The project formed 5 teams each including 3M professionals and students. Each team developed curricular changes in one of the 16 areas. Team goals were to improve skills in communication, data analysis, business/economics, team problem solving, and cultural competency. Curricular changes realized include communication skill activities embodied in science courses and faculty communication teaching skill seminars; self learning tools in data analysis, statistics and model building; a new course developed with assistance from 3M personnel focusing on topics directly related to technological industries; high performance team problem solving training/coaching for faculty; workshops for students and faculty relative to importance of cultural competencies in the workplace; and a new course focusing on culture, team problem solving and conflict resolution in the technical workplace. Process for developing and content of curricular changes will be reported. *Thanks to: NSF GOALI CHE-99010782

  13. 30 years of ergonomics at 3M: a case study.

    PubMed

    Larson, N; Wick, H

    2012-01-01

    The added value of the Ergonomics Program at 3M was found to be improved employee safety, compliance with regulations and reduction of work-related illness, increases in productivity, and quality and operating efficiency. This paper describes the thirty years of existence of this program. For the first twenty years, the program objectives were to: respond to requests for assistance related to work-related musculoskeletal disorder (WMSD) concerns, raise employee awareness of MSDs and ergonomics; educate engineers in ergonomics design; and develop ergonomics teams at manufacturing locations. Since the year 2000, 3M's Ergonomics Program has been in transition from a US-centric and corporate-based technical-expertled program to a global program applying participatory ergonomics strategies within a macroergonomics framework. During that transition, the existing program requirements were revised, new methods and program tools were created, and expectations for implementation at the manufacturing locations clarified. This paper focuses on the company's manufacturing ergonomics program activities during the past ten years and includes specifics of the program's objectives, risk assessment reduction process, and ergonomics technical expertise development. The main benefit achieved throughout the company is reducing employee injury while also increasing productivity and operating efficiency.

  14. Dinosaur extinction: closing the ‘3 m gap’

    PubMed Central

    Lyson, Tyler R.; Bercovici, Antoine; Chester, Stephen G. B.; Sargis, Eric J.; Pearson, Dean; Joyce, Walter G.

    2011-01-01

    Modern debate regarding the extinction of non-avian dinosaurs was ignited by the publication of the Cretaceous–Tertiary (K–T) asteroid impact theory and has seen 30 years of dispute over the position of the stratigraphically youngest in situ dinosaur. A zone devoid of dinosaur fossils reported from the last 3 m of the Upper Cretaceous, coined the ‘3 m gap’, has helped drive controversy. Here, we report the discovery of the stratigraphically youngest in situ dinosaur specimen: a ceratopsian brow horn found in a poorly rooted, silty, mudstone floodplain deposit located no more than 13 cm below the palynologically defined boundary. The K–T boundary is identified using three criteria: (i) decrease in Cretaceous palynomorphs without subsequent recovery, (ii) the existence of a ‘fern spike’, and (iii) correlation to a nearby stratigraphic section where primary extraterrestrial impact markers are present (e.g. iridium anomaly, spherules, shocked quartz). The in situ specimen demonstrates that a gap devoid of non-avian dinosaur fossils does not exist and is inconsistent with the hypothesis that non-avian dinosaurs were extinct prior to the K–T boundary impact event. PMID:21752814

  15. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    SciTech Connect

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  16. Challenging conventional f-element separation chemistry--reversing uranyl(VI)/lanthanide(III) solvent extraction selectivity.

    PubMed

    Hawkins, C A; Bustillos, C G; Copping, R; Scott, B L; May, I; Nilsson, M

    2014-08-14

    The water soluble tetradentate Schiff base, N,N'-bis(5-sulfonatosalicylidene)-diaminoethane (H2salen-SO3), will readily coordinate to the uranyl(VI) cation, but not to the same extent to trivalent lanthanide cations. This allows for the reversal of conventional solvent extraction properties and opens the possibility for novel separation processes.

  17. Separated Families and Children Who Refuse Access to a Parent. Unit for Child Studies Selected Papers Number 33.

    ERIC Educational Resources Information Center

    Renouf, Emilia

    On the whole, professionals agree that there is an advantage in both parents having access to the child or children after separation. This paper provides (1) an overview of the controversy over the value of such access; (2) a description of various contexts of access disputes and perspectives involved in the assessment of access situations; (3) a…

  18. The influence of selected parameters on the efficiency and economic charactersistics of the oxy-type coal unit with a membrane-cryogenic oxygen separator

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Berdowska, Sylwia

    2016-03-01

    In this paper a 600 MW oxy-type coal unit with a pulverized bed boiler and a membrane-cryogenic oxygen separator and carbon capture installation was analyzed. A membrane-cryogenic oxygen separation installation consists of a membrane module and two cryogenic distillation columns. In this system oxygen is produced with the purity equal to 95%. Installation of carbon capture was based on the physical separation method and allows to reduce the CO2 emission by 90%. In this work the influence of the main parameter of the membrane process - the selectivity coefficient, on the efficiency of the coal unit was presented. The economic analysis with the use of the break-even point method was carried out. The economic calculations were realized in view of the break-even price of electricity depending on a coal unit availability.

  19. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  20. Effect of anionic ion-pairing reagent hydrophobicity on selectivity of peptide separations by reversed-phase liquid chromatography

    PubMed Central

    Shibue, M.; Mant, C.T.; Hodges, R.S.

    2009-01-01

    Despite the continuing dominance of trifluoroacetic acid (TFA) as the anionic ion-pairing reagent of choice for peptide separations by reversed-phase high-performance liquid chromatography (RP-HPLC), we believe that a step-by-step approach to re-examining the relative efficacy of TFA compared to other ion-pairing reagents is worthwhile, particularly for the design of separation protocols for complex peptide mixtures, e.g., in proteomics applications. Thus, we applied RP-HPLC in the presence of different concentrations of anionic ion-pairing reagents – phosphoric acid, TFA, pentafluoropropionic acid (PFPA) and heptafluorobutyric acid (HFBA) – to a mixture of three groups of four 10-residue peptides, these groups containing peptides of +1, +3 or +5 net charge. Overall separation of the 12-peptide mixture improved with increasing reagent hydrophobicity (phosphate− < TFA− < PFPA− < HFBA−) and/or concentration of the anion, with reagent hydrophobicity having a considerably more pronounced effect than reagent concentration. HFBA, in particular, achieved an excellent separation at a concentration of just 10 mM, whereby the peptides were separated by charged groups (+1 < +3 < +5) and hydrophobicity within these groups. There was an essentially equal effect of reagent hydrophobicity and concentration on each positive charge of the peptides, a useful observation for prediction of the effect of varying counterion concentration hydrophobicity and/or concentration during optimization of peptide purification protocols. Peak widths were greater for the more highly charged peptides, although these could be decreased significantly by raising the acid concentration; concomitantly, peptide resolution increased with increasing concentration of ion-pairing reagent. PMID:16013616

  1. High-Flux Graphene Oxide Membranes Intercalated by Metal-Organic Framework with Highly Selective Separation of Aqueous Organic Solution.

    PubMed

    Ying, Yunpan; Liu, Dahuan; Zhang, Weixin; Ma, Jing; Huang, Hongliang; Yang, Qingyuan; Zhong, Chongli

    2017-01-18

    Graphene oxide (GO) membranes assembled by single-atom thick GO nanosheets have displayed huge potential application both in gas and liquid separation processes due to its facile and large-scale preparation resulting from various functional groups, such as hydroxyl, carboxyl, and epoxide groups. Taking advantage of these characters, GO membranes intercalated by superhydrophilic metal-organic frameworks (MOFs) as strengthening separation fillers were prepared on modified polyacrylonitrile (PAN) support by a novel pressure-assisted self-assembly (PASA) filtration technique instead of traditional vacuum filtration method for the first time. The synthesized MOF@GO membranes were characterized with several spectroscopic techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), as well as scanning electron microscopy (SEM). Compared with GO membrane, these MOF@GO membranes combine the unique properties of MOF and GO and thus have significant enhancements of pervaporation (PV) permeation flux and separation factor simultaneously for ethyl acetate/water mixtures (98/2, w/w) through the PV process, which are also superior to the reported other kinds of membranes. Especially, for MOF@GO-0.3 membrane (corresponding MOF loading: 23.08 wt %), the increments are 159% and 244%, respectively, at 303 K, and the permeate water content can reach as high as 99.5 wt % (corresponding separation factor, 9751) with a high permeation flux of 2423 g m(-2) h(-1). Moreover, the procedures of both the synthesis of MOF and membranes preparation are environmentally friendly that only water was used as solvent. Such a nanosized MOF-intercalating approach may be also extended to other laminated membranes, providing valuable insights in designing and developing of advanced membranes for effective separation of aqueous organic solution through nanostructure manipulation of the nanomaterials.

  2. Selectivity of bis-triazinyl bipyridine ligands for americium(III) in Am/Eu separation by solvent extraction. Part 1. Quantum mechanical study on the structures of BTBP complexes and on the energy of the separation.

    PubMed

    Narbutt, Jerzy; Oziminski, Wojciech P

    2012-12-21

    Theoretical studies were carried out on two pairs of americium and europium complexes formed by tetra-N-dentate lipophilic BTBP ligands, neutral [ML(NO(3))(3)] and cationic [ML(2)](3+) where M = Am(III) or Eu(III), and L = 6,6'-bis-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2'-bipyridine (C2-BTBP). Molecular structures of the complexes have been optimized at the B3LYP/6-31G(d) level and total energies of the complexes in various media were estimated using single point calculations performed at the B3LYP/6-311G(d,p) and MP2/6-311G(d,p) levels of theory. In the calculations americium and europium ions were treated using pseudo-relativistic Stuttgart-Dresden effective core potentials and the accompanying basis sets. Selectivity in solvent extraction separation of two metal ions is a co-operative function of contributions from all extractable metal complexes, which depend on physico-chemical properties of each individual complex and on its relative amount in the system. Semi-quantitative analysis of BTBP selectivity in the Am/Eu separation process, based on the contributions from the two pairs of Am(III) and Eu(III) complexes, has been carried out. To calculate the energy of Am/Eu separation, a model of the extraction process was used, consisting of complex formation in water and transfer of the formed complex to the organic phase. Under the assumptions discussed in the paper, this simple two-step model results in reliable values of the calculated differences in the energy changes for each pair of the Am/Eu complexes in both steps of the process. The greater thermodynamic stability (in water) of the Am-BTBP complexes, as compared with the analogous Eu species, caused by greater covalency of the Am-N than Eu-N bonds, is most likely the main reason for BTBP selectivity in the separation of the two metal ions. The other potential reason, i.e. differences in lipophilic properties of the analogous complexes of Am and Eu, is less important with regard to this selectivity.

  3. Product separator

    DOEpatents

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  4. Immobilization of Ag(i) into a metal-organic framework with -SO3H sites for highly selective olefin-paraffin separation at room temperature.

    PubMed

    Chang, Ganggang; Huang, Minhui; Su, Ye; Xing, Huabin; Su, Baogen; Zhang, Zhiguo; Yang, Qiwei; Yang, Yiwen; Ren, Qilong; Bao, Zongbi; Chen, Banglin

    2015-02-18

    Introduction of Ag(i) ions into a sulfonic acid functionalized MOF ((Cr)-MIL-101-SO3H) significantly enhances its interactions with olefin double bonds, leading to its much higher selectivities for the separation of C2H4-C2H6 and C3H6-C3H8 at room temperature over the original (Cr)-MIL-101-SO3H and other adsorbents at room temperature.

  5. Separation of chromium(III) and chromium(VI) by ion chromatography and an inductively coupled plasma mass spectrometer as element-selective detector.

    PubMed

    Hagendorfer, Harald; Goessler, Walter

    2008-07-30

    Due to its extensive use in industrial processes, large quantities of chromium compounds are discharged into the environment. Common approaches for the speciation of Cr employ the determination of Cr(VI) and total Cr. The focus of the present work was a separation of Cr(III) and Cr(VI) species, with a minimum of sample preparation, by keeping an eye on the more relevant and toxic Cr(VI). For the successful simultaneous separation of both chromium species we implemented a RSpak NN-814 4DP (PEEK, 4 mm x 150 mm) multi-mode column using an eluent containing 90 mM ammonium sulfate and 10 mM ammonium nitrate, adjusted to pH 3.5. At a flow of 0.3 mL min(-1) the separation of both Cr species was possible within 8 min. Further the octopole reaction system of the inductively coupled plasma mass spectrometer was systematically studied and optimised to reduce the influence of polyatomic interferences. The major advantage of the developed method compared to published methods is that a derivatisation of the Cr(III) species--an invasion in the speciation--is not required. With the used multi-mode column both chromium species are retained. Furthermore the pH of the mobile phase (pH 3.5) prevents reduction of Cr(VI) as well as precipitation of Cr(III) during the analysis. A limit of determination of approximately 0.5 microg L(-1) for both chromium species with an injection volume of 25 microL was obtained. The optimised method was successfully applied to the determination of Cr(VI) in cement samples as well as chromium speciation analysis in homeopathic drugs.

  6. Testing of the 3M Company ACCR Conductor

    SciTech Connect

    Stovall, J.P.; RIzy, D.T.; Kisner, R.A.; Deve, H.E.

    2010-09-15

    The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum- Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors so the core has a lower density and higher conductivity. The objective of this work is to accelerate the commercial acceptance by electric utilities of these new conductor designs by testing four representative conductor classes in controlled conditions. Overhead transmission lines use bare aluminum conductor strands wrapped around a steel core strands to transmit electricity. The typical cable is referred to as aluminum-conductor steel-reinforced (ACSR). The outer strands are aluminum, chosen for its conductivity, low weight, and low cost. The center strand is of steel for the strength required to support the weight without stretching the aluminum due to its ductility. The power density of a transmission corridor has been directly increased by increasing the voltage level. Transmission voltages have increased from 115-kV to 765- kV over the past 80 years. In the United States, further increasing the voltage level is not feasible at this point in time, so in order to further increase the power density of a transmission corridor, conductor designs that increase the current carrying capability have been examined. One of the key limiting factors in the design of a transmission line is the conductor sag which determines the clearance of the conductor above ground or underlying structures needed for electrical safety. Increasing the current carrying capability of a conductor increases the joule heating in the conductor which increases the conductor sag. A conductor designed for high-temperature and lowsag operation requires an engineered modification of the conductor materials. To make an advanced cable, the 3M Company solution has been the development of a composite conductor consisting of Nextel ceramic fibers to replace the steel core and

  7. Observations of 3-m auroral irregularities during the ERRRIS campaigns

    NASA Astrophysics Data System (ADS)

    Sahr, J. D.; Farley, D. T.; Swartz, W. E.; Providakes, J. F.; Pfaff, R. F.

    1992-06-01

    In the late winter of 1988 and 1989, three NASA sounding rockets were flown through the auroral electrojet from ESRANGE (Sweden) as part of the E-region Rocket-Radar Instability Study (ERRRIS). Many ground-based instruments supported these flights, including the EISCAT, STARE, and CUPRI radars, as well as all-sky cameras, riometers, and magnetometers. In this paper the observations of the Cornell University Portable Radar Interferometer (CUPRI), which detected coherent backscatter from 3-m irregularities in the auroral E-region are summarized. Twenty hours of power spectra and interferometry data are available, and, during the 1989 campaign, three weeks of nearly continuous Range-Time-Intensity (RTI) and first moment data were recorded.

  8. Attaining Doppler Precision of 3 M s-1

    NASA Astrophysics Data System (ADS)

    Butler, R. P.; Marcy, G. W.; Williams, E.; McCarthy, C.; Dosanjh, P.; Vogt, S. S.

    1996-06-01

    Current spectroscopic techniques yield Doppler-shift errors of 10 to 50 m s^-1, barely adequate to detect reflex velocities caused by Jupiter-like and lower-mass planets. We describe a technique which yields relative radial velocity errors of 3 m s^-1. This technique makes use of a fast echelle spectrograph at resolution of R=62,000 and a large format CCD which acquires the entire visible and near IR spectrum in each exposure. Starlight is sent through an iodine absorption cell placed at the spectrometer entrance slit. The resulting superimposed iodine lines provide a fiducial wavelength scale against which to measure radial velocity shifts. The shapes of iodine lines convey the PSF of the spectrometer to account for changes in spectrometer optics and illumination on all times scales. We construct a model of each observed spectrum by multiplying a stellar spectrum with an iodine spectrum and convolving the result with the spectrometer PSF. The free parameters of the model include the wavelength scale, spectrometer PSF, and stellar Doppler shift. All model parameters are derived anew for each exposure and the synthesis is done on a grid of CCD sub-pixels, using spline functions as interpolation predictors. We present Doppler tests of the Sun, Tau Ceti, and 107 Psc, observed with the Lick and Keck echelles. All exhibit apparent errors of about 3 m s^-1, maintained on time scales of minutes to a year. This precision agrees with the theoretically predicted errors that stem primarily from photon statistics. (SECTION: Astronomical Instrumentation)

  9. Systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient model for real-life counter-current chromatography separation.

    PubMed

    Ren, Da-Bing; Yi, Lun-Zhao; Qin, Yan-Hua; Yun, Yong-Huan; Deng, Bai-Chuan; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-05-08

    Solvent system selection is the first step toward a successful counter-current chromatography (CCC) separation. This paper introduces a systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model, which is efficient in predicting the solute partition coefficient. Firstly, the application of the NRTL-SAC method was extended to the ethyl acetate/n-butanol/water and chloroform/methanol/water solvent system families. Moreover, the versatility and predictive capability of the NRTL-SAC method were investigated. The results indicate that the solute molecular parameters identified from hexane/ethyl acetate/methanol/water solvent system family are capable of predicting a large number of partition coefficients in several other different solvent system families. The NRTL-SAC strategy was further validated by successfully separating five components from Salvia plebeian R.Br. We therefore propose that NRTL-SAC is a promising high throughput method for rapid solvent system selection and highly adaptable to screen suitable solvent system for real-life CCC separation.

  10. Identifying important structural features of ionic liquid stationary phases for the selective separation of nonpolar analytes by comprehensive two-dimensional gas chromatography.

    PubMed

    Zhang, Cheng; Ingram, Isaiah C; Hantao, Leandro W; Anderson, Jared L

    2015-03-20

    A series of dicationic ionic liquid (IL)-based stationary phases were evaluated as secondary columns in comprehensive two-dimensional gas chromatography (GC×GC) for the separation of aliphatic hydrocarbons from kerosene. In order to understand the role that structural features of ILs play on the selectivity of nonpolar analytes, the solvation parameter model was used to probe the solvation properties of the IL-based stationary phases. It was observed that room temperature ILs containing long free alkyl side chain substituents and long linker chains between the two cations possess less cohesive forces and exhibited the highest resolution of aliphatic hydrocarbons. The anion component of the IL did not contribute significantly to the overall separation, as similar selectivities toward aliphatic hydrocarbons were observed when examining ILs with identical cations and different anions. In an attempt to further examine the separation capabilities of the IL-based GC stationary phases, columns of the best performing stationary phases were prepared with higher film thickness and resulted in enhanced selectivity of aliphatic hydrocarbons. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid.

    PubMed

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-01-01

    This study highlighted the application of a two-stepped extraction method for extraction and separation of oxymatrine from Sophora flavescens Ait. extract by utilizing silica-confined ionic liquids as sorbent. The optimized silica-confined ionic liquid was firstly mixed with plant extract to adsorb oxymatrine. Simultaneously, some interference, such as matrine, was removed. The obtained suspension was then added to a cartridge for solid phase extraction. Through these two steps, target compound was adequately separated from interferences with 93.4% recovery. In comparison with traditional solid phase extraction, this method accelerates loading and reduces the use of organic solvents during washing. Moreover, the optimization of loading volume was simplified as optimization of solid/liquid ratio.

  12. Multiyear measurements of Position Angle and Separation of selected binary stars from the Washington Double Star Catalog

    NASA Astrophysics Data System (ADS)

    Muller, Rafael J.; Cersosimo, Juan C.; Lopez, Andy J.; Vergara, Nelson; Torres, Brian; Mendoza, Lizyan; Ortiz, Deliris; Del Valle, Yashira; Espinosa, Gabriela; Reyes, Marjory

    2016-01-01

    We present here the multiyear data sets on separation and position angle of binary stars obtained at the NURO telescope, located east of Flagstaff Arizona at an elevation of 7200 feet. The data was analyzed at the Humacao University Observatory of the University of Puerto Rico and will be submitted for publication at the Journal of Double Star Observations. We describe the methodology for the analysis of the images we obtained.

  13. Recent highlights in electro-driven separations- selected applications of alkylthiol gold nanoparticles in capillary electrophoresis and capillary electro-chromatography.

    PubMed

    Guihen, Elizabeth

    2017-09-01

    To date, alkylthiol gold nanoparticles (AuNPs) have been widely used in electro-chromatographic separation techniques as a viable alternative to traditional stationary phases. This is mainly due to their stability, chemical inertness, ease of functionality, increased phase ratio, ability to form self-assembled monolayers. They also yield versatile stationary phases with highly specific targeted functionalities. At the nanoscale region, the chemical and physical properties of a molecule display different attributes to that of the parent molecules or material, hence these features can be harnessed in electro-driven chromatographic separations. Application areas illustrating the use of AuNPs in separation science continue to grow and expand to cover many different kinds of analysis. The last decade has witnessed a successful trend in miniaturisation of chemical separation systems toward the micro and nanoscale ranges. Nanoparticle-based stationary phases fit well with performing chemical separations on microfluidic and capillary platforms. In this review the theory of the use of alkylthiol gold nanoparticles in electro-chromatographic driven separation methods will be discussed. This will be followed by details of recent and selected applications showing alkylthiol gold nanoparticles in capillary electrophoretic and open-tubular electro-chromatographic separations. This review will focus solely on alkylthiol based gold nanoparticles, therefore other kinds of chemical moieties bonded to gold nanoparticles are outside the scope of this review. Finally the future outlook of this exciting technology will be outlined in some detail in the final section. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Identifying phenotypes of knee osteoarthritis by separate quantitative radiographic features may improve patient selection for more targeted treatment.

    PubMed

    Kinds, Margot B; Marijnissen, Anne C A; Viergever, Max A; Emans, Pieter J; Lafeber, Floris P J G; Welsing, Paco M J

    2013-06-01

    Expression of osteoarthritis (OA) varies significantly between individuals, and over time, suggesting the existence of different phenotypes, possibly with specific etiology and targets for treatment. Our objective was to identify phenotypes of progression of radiographic knee OA using separate quantitative features. Separate radiographic features of OA were measured by Knee Images Digital Analysis (KIDA) in individuals with early knee OA (the CHECK cohort: Cohort Hip & Cohort Knee), at baseline and at 2-year and 5-year followup. Hierarchical clustering was performed to identify phenotypes of radiographic knee OA progression. The phenotypes identified were compared for changes in joint space width (JSW), varus angle, osteophyte area, eminence height, bone density, for Kellgren-Lawrence (K-L) grade, and for clinical characteristics. Logistic regression analysis evaluated whether baseline radiographic features and demographic/clinical characteristics were associated with each of the specific phenotypes. The 5 clusters identified were interpreted as "Severe" or "No," "Early" or "Late" progression of the radiographic features, or specific involvement of "Bone density." Medial JSW, varus angle, osteophyte area, eminence height, and bone density at baseline were associated with the Severe and Bone density phenotypes. Lesser eminence height and bone density were associated with Early and Late progression. Larger varus angle and smaller osteophyte area were associated with No progression. Five phenotypes of radiographic progression of early knee OA were identified using separate quantitative features, which were associated with baseline radiographic features. Such phenotypes might require specific treatment and represent relevant subgroups for clinical trials.

  15. Longitudinal selectivity in aging populations: separating mortality-associated versus experimental components in the Berlin Aging Study (BASE).

    PubMed

    Lindenberger, Ulman; Singer, Tania; Baltes, Paul B

    2002-11-01

    The authors examined 3.7-year selectivity in the Berlin Aging Study by comparing the T1 parent sample (N = 516) with the T3 sample (N = 206). Selectivity was partitioned into a mortality-associated component, reflecting the degree to which individuals still alive at T3 (T3 survivors, N = 313) differ from the T1 parent sample (N = 516) from which they originated, and an experimental component, reflecting the degree to which the T3 sample (N = 206) differed from T3 survivors (N = 313). Across 48 variables representing medical, sensorimotor, cognitive, personality-related, and socioeconomic domains, the mortality-associated component accounted for 64% of total selectivity, and the experimental component for 36% (0.18 vs 0.10 SD units; t = 7.20, p <.01). Except for age and intelligence, experimental selectivity effects regarding means and prevalence rates were generally small. Partitioning selectivity into mortality-associated and experimental components is a useful tool in the longitudinal study of aging populations.

  16. Transport and separation of Ag(+) and Zn(2+) by donnan dialysis through a monovalent cation selective membrane.

    PubMed

    Cherif, A T; Gavach, C; Molenat, J; Elmidaoui, A

    1998-08-01

    Donnan Dialysis of Ag(+) and Zn(2+) was investigated through a cation exchange membrane (CMS Neosepta) when a proton concentration difference was maintained between the two sides of the membrane. Developed for the production of brine from sea water, CMS Neosepta showed a higher permeability to monovalent than to bivalent cations. Several physico-chemical parameters have been determined (electrical resistance, membrane potential, sorption of electrolytes, Zn(2+) and Ag(+) diffusion coefficients). The flux of Ag(+) and the diffusion potential in the membrane increase with HNO(3) concentrations. Ag(+) and Zn(2+) can be separated because of the preferential membrane transfer for Ag(+).

  17. Map Separates

    USGS Publications Warehouse

    ,

    2001-01-01

    U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.

  18. Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125° C

    SciTech Connect

    Ilconich, J.B.; Myers, C.R.; Pennline, H.W.; Luebke, D.R.

    2007-07-01

    Supported liquid membranes have been prepared by impregnation of commercial porous polymer films with the ionic liquid 1-n-hexyl-3- methylimidazolium bis(trifluoromethanesulfonyl)imide. The ionic liquid has been characterized, and the membranes have been tested to determine performance in the selective separation of CO2 from He. Experiments were conducted in a constant pressure system, and pure gas permeability/selectivity data are reported. Membranes prepared with polysulfone supports have been found to be stable to 125 °C. The CO2 permeability of the membranes increases from 744 to 1200 barrer as the temperature increases from 37 to 125 °C. The CO2/He selectivity decreased from 8.7 to 3.1 over the same temperature range.

  19. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions.

    PubMed

    Rangreez, Tauseef Ahmad; Asiri, Abdullah M; Alhogbi, Basma G; Naushad, Mu

    2017-07-24

    In this study, graphene Th(IV) phosphate was prepared by sol-gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g(-1) of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible.

  20. Size-selective separation and overall-amplification of cell-free fetal DNA fragments using PCR-based enrichment.

    PubMed

    Yang, Qiwei; Du, Zhenwu; Song, Yang; Gao, Sujie; Yu, Shan; Zhu, He; Ren, Ming; Zhang, Guizhen

    2017-01-19

    This study aimed to establish a method for the selective amplification of cell-free fetal DNA (cffDNA) in maternal plasma and preserve the integrity of DNA fragments during amplification, thereby providing a sufficient amount of cffDNA to meet the requirement of routine non-invasive prenatal testing. We amplified DNA molecules in a one-reaction system without considering their particular sequences and lengths (overall amplification) by using PCR-based enrichment. We then modified PCR conditions to verify the effect of denaturation temperature on DNA amplification on various lengths of DNA (selective overall amplification). Finally, we used an optimum temperature range to amplify cffDNA selectively. Amplification results were validated by electrophoresis and real-time quantitative PCR. Our PCR-based enrichment efficiently amplified all DNA fragments with differing lengths within a single reaction system, as well as preserving the integrity of the DNA fragments. cffDNA was significantly amplified along with the selective amplification of small fragment maternal plasma DNA in an appropriate range of denaturation temperatures. We have established a PCR-based method for the simultaneous enrichment and amplification of cffDNA in order to meet the requirements of high cffDNA quantity for routine non-invasive prenatal testing.

  1. Size-selective separation and overall-amplification of cell-free fetal DNA fragments using PCR-based enrichment

    PubMed Central

    Yang, Qiwei; Du, Zhenwu; Song, Yang; Gao, Sujie; Yu, Shan; Zhu, He; Ren, Ming; Zhang, Guizhen

    2017-01-01

    This study aimed to establish a method for the selective amplification of cell-free fetal DNA (cffDNA) in maternal plasma and preserve the integrity of DNA fragments during amplification, thereby providing a sufficient amount of cffDNA to meet the requirement of routine non-invasive prenatal testing. We amplified DNA molecules in a one-reaction system without considering their particular sequences and lengths (overall amplification) by using PCR-based enrichment. We then modified PCR conditions to verify the effect of denaturation temperature on DNA amplification on various lengths of DNA (selective overall amplification). Finally, we used an optimum temperature range to amplify cffDNA selectively. Amplification results were validated by electrophoresis and real-time quantitative PCR. Our PCR-based enrichment efficiently amplified all DNA fragments with differing lengths within a single reaction system, as well as preserving the integrity of the DNA fragments. cffDNA was significantly amplified along with the selective amplification of small fragment maternal plasma DNA in an appropriate range of denaturation temperatures. We have established a PCR-based method for the simultaneous enrichment and amplification of cffDNA in order to meet the requirements of high cffDNA quantity for routine non-invasive prenatal testing. PMID:28102322

  2. A generic analysis of energy use and solvent selection for CO2 separation from post-combustion flue gases

    USGS Publications Warehouse

    Lu, Y.; Chen, S.; Rostam-Abadi, M.

    2008-01-01

    A thermodynamic calculation was performed to determine the theoretical minimum energy used to separate CO2 from a coal combustion flue gas in a typical adsorption-desorption system. Under ideal conditions, the minimum energy required to separate CO2 from post-combustion flue gas and produce pure CO2 at 1 atmospheric pressure was only about 1183 kJ/kg CO2. This amount could double with the addition of the driving forces of mass and heat transfer and the adverse impacts of absorption heat release on adsorption capacity. Thermodynamic analyses were also performed for the aqueous amine-based absorption process. Two CO2 reaction mechanisms, the carbamate formation reaction with primary/secondary amines and the CO2 hydration reaction with tertiary amines, were included in the absorption reaction. The reaction heat, sensible heat, and stripping heat were all important to the total heat requirement. The heat use of an ideal tertiary amine amounted to 2786 kJ/kg, compared to 3211 kJ/kg for an ideal primary amine. The heat usage of an ideal amine was about 20% lower than that of commercially available amines. Optimizing the absorption process configuration could further reduce energy use. This is an abstract of a paper presented at the 2008 AIChE Spring National Meeting (New Orleans, LA 4/6-10/2008).

  3. Selective intra-dinucleotide interactions and periodicities of bases separated by K sites: a new vision and tool for phylogeny analyses.

    PubMed

    Valenzuela, Carlos Y

    2017-02-13

    Direct tests of the random or non-random distribution of nucleotides on genomes have been devised to test the hypothesis of neutral, nearly-neutral or selective evolution. These tests are based on the direct base distribution and are independent of the functional (coding or non-coding) or structural (repeated or unique sequences) properties of the DNA. The first approach described the longitudinal distribution of bases in tandem repeats under the Bose-Einstein statistics. A huge deviation from randomness was found. A second approach was the study of the base distribution within dinucleotides whose bases were separated by 0, 1, 2… K nucleotides. Again an enormous difference from the random distribution was found with significances out of tables and programs. These test values were periodical and included the 16 dinucleotides. For example a high "positive" (more observed than expected dinucleotides) value, found in dinucleotides whose bases were separated by (3K + 2) sites, was preceded by two smaller "negative" (less observed than expected dinucleotides) values, whose bases were separated by (3K) or (3K + 1) sites. We examined mtDNAs, prokaryote genomes and some eukaryote chromosomes and found that the significant non-random interactions and periodicities were present up to 1000 or more sites of base separation and in human chromosome 21 until separations of more than 10 millions sites. Each nucleotide has its own significant value of its distance to neutrality; this yields 16 hierarchical significances. A three dimensional table with the number of sites of separation between the bases and the 16 significances (the third dimension is the dinucleotide, individual or taxon involved) gives directly an evolutionary state of the analyzed genome that can be used to obtain phylogenies. An example is provided.

  4. Separation of selected peptides by capillary electroendoosmotic chromatography using 3 microns reversed-phase bonded silica and mixed-mode phases.

    PubMed

    Walhagen, K; Unger, K K; Olsson, A M; Hearn, M T

    1999-08-20

    The retention behaviour and selectivity of selected basic, neutral and acidic peptides have been studied by capillary electroendoosmotic chromatography (CEC) with Hypersil C8, C18, Hypersil mixed-mode, and Spherisorb C18/SCX columns, 250 (335) mm x 100 microns, packed with 3 microns particles, and eluted with mobile phases composed of acetonitrile-triethylamine-phosphoric acid (TEAP) at pH 3.0 using a Hewlett-Packard Model HP3DCE capillary electrophoresis system. The selected peptides were desmopressin (D), two analogues (A and B) of desmopressin, oxytocin (O) and carbetocin (C). The peptides eluted either before or after the electroendoosmotic flow (EOF) marker, depending on the concentration of acetonitrile used and the buffer ionic strength. The retention and selectivity of these peptides under CEC conditions were compared to their behaviour in free zone capillary electrophoresis (CZE), where the separation mode was based on the electrophoretic migration of the analytes due to their charge and Stokes radius properties. In addition, their retention behaviour in RP-HPLC was also examined. As a result, it can be concluded that the elution process of this group of synthetic peptides in CEC with a TEAP buffer at pH 3.0 is mediated by a combination of both electrophoretic migration processes and retention mechanisms involving hydrophobic as well as silanophilic interactions. This CEC method when operated with these 3 microns reversed-phase and mixed-mode sorbents with peptides is thus a hybrid of two well-known analytical methods, namely CZE and RP-HPLC. However, the retention behaviour and selectivity of the selected peptides differs significantly in the CEC mode compared to the RP-HPLC or CZE modes. Therefore this CEC method with these peptides represents an orthogonal analytical separation procedure that is complimentary to both of these alternative techniques.

  5. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite.

    PubMed

    Mallampati, Srinivasa Reddy; Heo, Je Haeng; Park, Min Hee

    2016-04-05

    Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics.

  6. Separation scheme for selective and quantitative isolation of cobalt from neutron-irradiated biological materials by ion exchange and extraction chromatography

    SciTech Connect

    Dybczynski, R.; Danko, B.; Maleszewska, H.

    1994-01-01

    Highly reliable radiochemical separation scheme for selective and quantitative isolation of trace amounts of cobalt from neutron-irradiated biological materials was elaborated. The method consists in wet-ashing of the sample with HNO{sub 3} + HClO{sub 4} (1:1) mixture plus vanadium salt (oxidation catalyst), removal of silica by evaporation with HF and separation of cobalt from accompanying ions successively on 3 columns with Dowex 1-X8[Cl{sup -}] from 0.5 M HCl, Dowex 1-X8[Cl{sup -}] from 8 M HCl + 2 M MgCl{sub 2} and tri-n-octylphosphine oxide (TOPO) supported on styrene-divinylbenzene copolymer, from 7 M HCl solution, respectively. Cobalt of very high radiochemical purity is finally recovered in 1.2 M HCl solution with practically 100% yield. The separation scheme is universally applicable, to biological samples of both animal and plant origin and was devised to become an integral part of the very accurate ({open_quotes}definitive{close_quotes}) method of cobalt determination by neutron activation analysis (NAA). Preliminary results on Co determination by NAA in some certified reference materials confirmed high reliability of the devised separation scheme.

  7. Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation.

    PubMed

    Wu, Lei; Li, Lingxiao; Li, Bucheng; Zhang, Junping; Wang, Aiqin

    2015-03-04

    Magnetic, durable, and superhydrophobic polyurethane (PU) sponges were fabricated by chemical vapor deposition (CVD) of tetraethoxysilane (TEOS) to bind the Fe3O4 nanoparticles tightly on the sponge and then dip-coating in a fluoropolymer (FP) aqueous solution. The sponges were characterized using scanning electron microscopy and other analytical techniques. The effects of CVD time of TEOS and FP concentration on wettability, mechanical properties, oil absorbency, and oil/water selectivity of the sponges were also investigated. The sponges exhibit fast magnetic responsivity and excellent superhydrophobicity/superoleophilicity (CAwater = 157° and CAoil ≈ 0°). The sponges also show very high efficiency in oil/water separation and could, driven by a magnet, quickly absorb floating oils on the water surface and heavy oils under water. Moreover, the PU@Fe3O4@SiO2@FP sponges could be used as membranes for oil/water separation and for continuous separation of large amounts of oil pollutants from the water surface with the help of a pump. The in turn binding of Fe3O4 nanoparticles, SiO2, and FP can also improve mechanical properties of the PU sponge. The sponges maintain the superhydrophobicity even when they are stretched with 200% strain or compressed with 50% strain. The sponges also show excellent mechanical stability, oil stability, and reusability in terms of superhydrophobicity and oil absorbency. The magnetic, durable, and superhydrophobic PU sponges are very promising materials for practical oil absorption and oil/water separation.

  8. SEPARATION OF URANYL AND RUTHENIUM VALUES BY THE TRIBUTYL PHOSPHATE EXTRACTION PROCESS

    DOEpatents

    Wilson, A.S.

    1961-05-01

    A process is given for separating uranyl values from ruthenium values contained in an aqueous 3 to 4 M nitric acid solution. After the addition of hydrogen peroxide to obtain a concentration of 0.3 M, the uranium is selectively extracted with kerosene-diluted tributyl phosphate.

  9. Polymer-Metal-Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations.

    PubMed

    Zhang, Zhenjie; Nguyen, Ha Thi Hoang; Miller, Stephen A; Ploskonka, Ann M; DeCoste, Jared B; Cohen, Seth M

    2016-01-27

    Recently, polymer-metal-organic frameworks (polyMOFs) were reported as a new class of hybrid porous materials that combine advantages of both organic polymers and crystalline MOFs. Herein, we report a bridging coligand strategy to prepare new types of polyMOFs, demonstrating that polyMOFs are compatible with additional MOF architectures besides that of the earlier reported IRMOF-1 type polyMOF. Gas sorption studies revealed that these polyMOF materials exhibited relatively high CO2 sorption but very low N2 sorption, making them promising materials for CO2/N2 separations. Moreover, these polyMOFs demonstrated exceptional water stability attributed to the hydrophobicity of polymer ligands as well as the cross-linking of the polymer chains within the MOF.

  10. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    USGS Publications Warehouse

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased

  11. Preparation of zirconium oxy ion-imprinted particle for the selective separation of trace zirconium ion from water.

    PubMed

    Ren, Yueming; Liu, Pingxin; Liu, Xiaoli; Feng, Jing; Fan, Zhuangjun; Luan, Tianzhu

    2014-10-01

    Zr(IV) oxy ion-imprinted particle (Zr-IIP) was prepared using the metal ion imprinting technique in a sol-gel process on the surface of amino-silica. The dosages of zirconium ions as imprinted target, (3-aminopropyl) triethoxysilane (APTES) as a functional monomer and teraethyl orthosilicate (TEOS) as a cross-linker were optimized. The prepared Zr-IIP and Zr(IV) oxy ion non-imprinted particle (Zr-NIP) were characterized. pH effect, binding ability and the selectivity were investigated in detail. The results showed that the Zr-IIP had an excellent binding capacity and selectivity in the water. The equilibrium data fitted well to the pseudo-second-order kinetic and the Langmuir model for Zr(IV) binding onto Zr-IIP, respectively. The saturate binding capacity of Zr-IIP was found to be 196.08 μmol g(-1), which was 18 times higher than that of Zr-NIP. The sequence of binding efficiency of Zr-IIP for various ions was Zr(IV)>Cu(II)>Sb(III)>Eu(III). The coordination number has an important effect on the dimensional binding capacity. The equilibrium binding capacity of Zr-IIP for Zr(IV) decreased little under various concentrations of Pb(II) ions. The analysis of relative selectivity coefficient (Kr) indicated that the Zr-IIP had an appreciable binding specificity towards Zr(IV) although the competitive ions coexisted in the water. The Zr-IIP could serve as an efficient selective material for recovering or removing zirconium from the water environment.

  12. A fluorescence reagent for the highly selective recognition and separation of lead ion (II) from aqueous solutions.

    PubMed

    Ma, Li-Jun; Yan, Yuhua; Chen, Liping; Cao, Weiguang; Li, Hongwei; Yang, Liting; Wu, Yuqing

    2012-11-02

    A new fluorescence reagent, N,N-bi[4(1-pyrene)-butyroyl]-lysine (1) was synthesized. The new fluorescence sensor showed high sensitivity (detection limit up to 20.7 μg L(-1)) and specific selectivity for Pb(2+) over other metal ions examined in aqueous solutions. It could also be used to remove Pb(2+) from aqueous solutions by filtering the insoluble 1-Pb(2+) complex with sufficient reversibility.

  13. Selective extraction, separation, and identification of anthocyanins from Hibiscus sabdariffa L. using solid phase extraction-capillary electrophoresis-mass spectrometry (time-of-flight /ion trap).

    PubMed

    Segura-Carretero, Antonio; Puertas-Mejía, Miguel A; Cortacero-Ramírez, Sonia; Beltrán, Raúl; Alonso-Villaverde, Carlos; Joven, Jorge; Dinelli, Giovanni; Fernández-Gutiérrez, Alberto

    2008-07-01

    A method for selective extraction using SPE, electrophoretic separation at basic condition and the identification by using exact masses and fragmentation patterns has been developed in order to know the anthocyanins in dried calyces of Hibiscus sabdariffa L. A detailed and comparative study of several extraction procedures has been carried out to obtain the maximum number of anthocyanidins from the calyces and then a CE-TOF-MS method in positive mode using ESI has been developed for the separation and rapid identification of anthocyanins in H. sabdariffa L. Delphinidin-3-sambubioside, cyanidin-3-sambubioside have been detected as main components and cyanidin-3-O-rutinoside, delphinidin-3-O-glucoside and cyanidin-3,5-diglucoside, and chlorogenic acid as minor constituents. The confirmation of the anthocyanidins and chlorogenic acid was carried out using fragmentation ions with the IT-mass spectrometer (IT-MS).

  14. MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity.

    PubMed

    Zhang, Zhijuan; Zhao, Yonggang; Gong, Qihan; Li, Zhong; Li, Jing

    2013-01-25

    Microporous metal-organic frameworks (MOFs) have attracted tremendous attention because of their versatile structures and tunable porosity that allow almost unlimited ways to improve their properties and optimize their functionality, making them very promising for a variety of important applications, especially in the adsorption and separation of small gases and hydrocarbons. Numerous studies have demonstrated that MOFs with multifunctional groups, such as open metal sites (OMSs) and Lewis basic sites (LBSs), interact strongly with carbon dioxide and are particularly effective in its capture and separation from binary mixtures of CO(2) and N(2). In this feature article, we briefly review the current state of MOF development in this area, with an emphasis on the effect of multifunctional groups on the selectivity and capacity of MOFs for the CO(2) capture from flue gas mixtures.

  15. A novel molecularly imprinted polymer of the specific ionic liquid monomer for selective separation of synephrine from methanol-water media.

    PubMed

    Fan, Jie-Ping; Tian, Ze-You; Tong, Sheng; Zhang, Xue-Hong; Xie, Yan-Long; Xu, Rui; Qin, Yu; Li, Lie; Zhu, Jian-Hang; Ouyang, Xiao-Kun

    2013-12-15

    A novel molecularly imprinted polymer (MIP) using the specific ionic liquid (i.e. 1-vinyl-3-carboxymethylimidazolium bromide, 1-vinyl-3-carboxyethylimidazolium bromide, 1-viny-3-carboxybutylimidazolium bromide, or 1-vinyl-3-carboxypentylimidazolium bromide) as functional monomer was prepared via precipitation polymerization, which can be used to selectively separate synephrine (SYN) from methanol-water media. Ionic liquids are facile to be designed with varying the cation or anion, which enables the specific ionic liquid to be effectively designed to be a functional monomer for the preparation of MIP. The MIP showed a good selectivity and high adsorption capacity for SYN in methanol-water media. The adsorption process could be described by the pseudo-first-order model, which meant that the adsorption kinetics described a diffusion-controlled process. The equilibrium data fitted well to the Freundlich model, indicating multilayer adsorption. Finally, the MIP were successfully applied as sorbent to selectively enrich and separate SYN from the extracts of Aurantii Fructus Immaturus with a relatively high recovery (80-90%). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Importance of MS selectivity and chromatographic separation in LC-MS/MS-based methods when investigating pharmaceutical metabolites in water. Dipyrone as a case of study.

    PubMed

    Ibáñez, M; Gracia-Lor, E; Sancho, J V; Hernández, F

    2012-08-01

    Pharmaceuticals are emerging contaminants of increasing concern because of their presence in the aquatic environment and potential to reach drinking-water sources. After human and/or veterinary consumption, pharmaceuticals can be excreted in unchanged form, as the parent compound, and/or as free or conjugated metabolites. Determination of most pharmaceuticals and metabolites in the environment is commonly made by liquid chromatography (LC) coupled to mass spectrometry (MS). LC coupled to tandem MS is the technique of choice nowadays in this field. The acquisition of two selected reaction monitoring (SRM) transitions together with the retention time is the most widely accepted criterion for a safe quantification and confirmation assay. However, scarce attention is normally paid to the selectivity of the selected transitions as well as to the chromatographic separation. In this work, the importance of full spectrum acquisition high-resolution MS data using a hybrid quadrupole time-of-flight analyser and/or a suitable chromatographic separation (to reduce the possibility of co-eluting interferences) is highlighted when investigating pharmaceutical metabolites that share common fragment ions. For this purpose, the analytical challenge associated to the determination of metabolites of the widely used analgesic dipyrone (also known as metamizol) in urban wastewater is discussed. Examples are given on the possibilities of reporting false positives of dypirone metabolites by LC-MS/MS under SRM mode due to a wrong assignment of identity of the compounds detected.

  17. Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis

    SciTech Connect

    Shi, Tujin; Fillmore, Thomas L.; Gao, Yuqian; Zhao, Rui; He, Jintang; Schepmoes, Athena A.; Nicora, Carrie D.; Wu, Chaochao; Chambers, Justin L.; Moore, Ronald J.; Kagan, Jacob; Srivastava, Sudhir; Liu, Alvin Y.; Rodland, Karin D.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2013-10-01

    Long-gradient separations coupled to tandem MS were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional LC-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in LOQ for target proteins in human female serum. Based on at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in non-depleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or sub-ng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and ELISA measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM offers at least 3 times higher multiplexing capacity than conventional LC-SRM due to ~3-fold increase in average peak widths for a 300-min gradient compared to a 45-min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.

  18. Fouling Resistant CA/PVA/TiO2 Imprinted Membranes for Selective Recognition and Separation Salicylic Acid from Waste Water

    PubMed Central

    Yu, Xiaopeng; Mi, Xueyang; He, Zhihui; Meng, Minjia; Li, Hongji; Yan, Yongsheng

    2017-01-01

    Highly selective cellulose acetate (CA)/poly (vinyl alcohol) (PVA)/titanium dioxide (TiO2) imprinted membranes were synthesized by phase inversion and dip coating technique. The CA blend imprinted membrane was synthesized by phase inversion technique with CA as membrane matrix, polyethyleneimine (PEI) as the functional polymer, and the salicylic acid (SA) as the template molecule. The CA/PVA/TiO2 imprinted membranes were synthesized by dip coating of CA blend imprinted membrane in PVA and different concentration (0.05, 0.1, 0.2, 0.4 wt %) of TiO2 nanoparticles aqueous solution. The SEM analysis showed that the surface morphology of membrane was strongly influenced by the concentration of TiO2 nanoparticles. Compared with CA/PVA-TiO2(0.05, 0.1, 0.2%)-MIM, the CA/PVA-TiO2(0.4%)-MIM possessed higher membrane flux, kinetic equilibrium adsorption amount, binding capacity and better selectivity for SA. It was found that the pseudo-second-order kinetic model was studied to describe the kinetic of CA/PVA-TiO2(0.2%)-MIM judging by multiple regression analysis. Adsorption isotherm analysis indicated that the maximum adsorption capacity for SA were 24.43 mg g−1. Moreover, the selectivity coefficients of CA/PVA-TiO2 (0.2%)-MIM for SA relative to p-hydroxybenzoic acid (p-HB) and methyl salicylate (MS) were 3.87 and 3.55, respectively. PMID:28184369

  19. Fouling resistant CA/PVA/TiO2 imprinted membranes for selective recognition and separation salicylic acid from waste water

    NASA Astrophysics Data System (ADS)

    Yu, Xiaopeng; Mi, Xueyang; He, Zhihui; Meng, Minjia; Li, Hongji; Yan, Yongsheng

    2017-01-01

    Highly selective cellulose acetate (CA)/poly (vinyl alcohol) (PVA)/titanium dioxide (TiO2) imprinted membranes were synthesized by phase inversion and dip coating technique. The CA blend imprinted membrane was synthesized by phase inversion technique with CA as membrane matrix, polyethyleneimine (PEI) as the functional polymer, and the salicylic acid (SA) as the template molecule. The CA/PVA/TiO2 imprinted membranes were synthesized by dip coating of CA blend imprinted membrane in PVA and different concentration (0.05, 0.1, 0.2, 0.4 wt.%) of TiO2 nanoparticles aqueous solution. The SEM analysis showed that the surface morphology of membrane was strongly influenced by the concentration of TiO2 nanoparticles. Compared with CA/PVA-TiO2(0.05, 0.1, 0.2%)-MIM, the CA/PVA-TiO2(0.4%)-MIM possessed higher membrane flux, kinetic equilibrium adsorption amount, binding capacity and better selectivity for SA. It was found that the pseudo-second-order kinetic model was studied to describe the kinetic of CA/PVA-TiO2(0.2%)-MIM judging by multiple regression analysis. Adsorption isotherm analysis indicated that the maximum adsorption capacity for SA were 24.43 mg g-1. Moreover, the selectivity coefficients of CA/PVA-TiO2 (0.2%)-MIM for SA relative to p-hydroxybenzoic acid (p-HB) and methyl salicylate (MS) were 3.87 and 3.55, respectively.

  20. Comparison of two feature selection methods for the separability analysis of intertidal sediments with spectrometric datasets in the German Wadden Sea

    NASA Astrophysics Data System (ADS)

    Jung, Richard; Ehlers, Manfred

    2016-10-01

    The spectral features of intertidal sediments are all influenced by the same biophysical properties, such as water, salinity, grain size or vegetation and therefore they are hard to separate by using only multispectral sensors. This could be shown by a previous study of Jung et al. (2015). A more detailed analysis of their characteristic spectral feature has to be carried out to understand the differences and similarities. Spectrometry data (i.e., hyperspectral sensors), for instance, have the opportunity to measure the reflection of the landscape as a continuous spectral pattern for each pixel of an image built from dozen to hundreds of narrow spectral bands. This reveals a high potential to measure unique spectral responses of different ecological conditions (Hennig et al., 2007). In this context, this study uses spectrometric datasets to distinguish between 14 different sediment classes obtained from a study area in the German Wadden Sea. A new feature selection method is proposed (Jeffries-Matusita distance bases feature selection; JMDFS), which uses the Euclidean distance to eliminate the wavelengths with the most similar reflectance values in an iterative process. Subsequent to each iteration, the separation capability is estimated by the Jeffries-Matusita distance (JMD). Two classes can be separated if the JMD is greater than 1.9 and if less than four wavelengths remain, no separation can be assumed. The results of the JMDFS are compared with a state-of-the-art feature selection method called ReliefF. Both methods showed the ability to improve the separation by achieving overall accuracies greater than 82%. The accuracies are 4%-13% better than the results with all wavelengths applied. The number of remaining wavelengths is very diverse and ranges from 14 to 213 of 703. The advantage of JMDFS compared with ReliefF is clearly the processing time. ReliefF needs 30 min for one temporary result. It is necessary to repeat the process several times and to average

  1. Selective sequential separation of ABS/HIPS and PVC from automobile and electronic waste shredder residue by hybrid nano-Fe/Ca/CaO assisted ozonisation process.

    PubMed

    Mallampati, Srinivasa Reddy; Lee, Byoung Ho; Mitoma, Yoshiharu; Simion, Cristian

    2017-02-01

    The separation of plastics containing brominated flame retardants (BFR) like (acrylonitrile-butadiene-styrene (ABS), high-impact polystyrene (HIPS), and polyvinyl chloride (PVC)) from automobile and electronic waste shredder residue (ASR/ESR) are a major concern for thermal recycling. In laboratory scale tests using a hybrid nano-Fe/Ca/CaO assisted ozonation treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing ABS wettability and thereby promoting its separation from ASR/ESR by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR and about 21.2°, 20.7°, and 20.0° in ESR respectively. SEM-EDS, FT-IR, and XPS analyses demonstrated a marked decrease in [Cl] and a significant increase in the number of hydrophilic groups, such as CO, CO, and (CO)O, on the PVC or ABS surface. Under froth flotation conditions at 50rpm, about 99.1% of combined fraction of ABS/HIPS in ASR samples and 99.6% of ABS/HIPS in ESR samples were separated as settled fraction. After separation, the purity of the recovered combined ABS/HIPS fraction was 96.5% and 97.6% in ASR and ESR samples respectively. Furthermore, at 150rpm a 100% PVC separation in the settled fraction, with 98% and 99% purity in ASR and ESR plastics, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. Further, this process improved the quality of recycled ASR/ESR plastics by removing surface contaminants or impurities.

  2. Preparation of comb-type N-isopropylacrylamide hydrogel beads and their application for size-selective separation media.

    PubMed

    Annaka, Masahiko; Matsuura, Toyoaki; Kasai, Masaki; Nakahira, Takayuki; Hara, Yoshiaki; Okano, Teruo

    2003-01-01

    A series of the comb-type poly(N-isopropylacrylamide) (NIPAM) gel beads were prepared by inverse suspension polymerization techniques. The comb-type NIPAM gel beads exhibited large volume change at 30 degrees C, and their deswelling rate, defined as the time required for half-shrinking, was 10 times faster than that of the normal-type NIPAM gel beads. The gel beads were utilized to concentrate dilute aqueous solutions of albumin, gamma-globulin, and vitamin B(12). The separation efficiencies of albumin and gamma -globulin with the comb-type NIPAM gel were 80% and 85%, respectively. Whereas those with normal-type NIPAM gel were 55% and 60%, respectively. The incorporation of grafted chains into gel makes the effective mesh size smaller. Therefore it induces the additional obstruction effects between the solutes and network and excludes the high molecular weight solutes. After they have extracted water, their rapid deswelling property makes the gel regenerate effectively by warming to release the absorbed water.

  3. A biotin-conjugated pyridine-based isatoic anhydride, a selective room temperature RNA-acylating agent for the nucleic acid separation.

    PubMed

    Ursuegui, S; Yougnia, R; Moutin, S; Burr, A; Fossey, C; Cailly, T; Laayoun, A; Laurent, A; Fabis, F

    2015-03-28

    Isatoic anhydride derivatives, including a biotin and a disulfide linker were specifically designed for nucleic acid separation. 2'-OH selective RNA acylation, capture of biotinylated RNA adducts by streptavidin-coated magnetic beads and disulfide chemical cleavage led to isolation of highly enriched RNA samples from an initial 9/1 DNA-RNA mixture. Starting from the parent compound N-methylisatoic anhydride A which was used at 65 °C, we improved the extraction process by designing a new generation of isatoic anhydrides that are able to react under smoother conditions. Among them, a pyridine-based isatoic anhydride derivative 15f was found to be reactive at room temperature, leading to enhance the efficiency and selectivity of the extraction process by significantly reducing DNA side extraction. The extracted and purified RNAs can then be detected by RT-PCR.

  4. Affinity dialysis - a method of continuous, rapid metal ion separation using dialysis membranes and selective, water-soluble polymers as extractants

    SciTech Connect

    Davis, J.C.; Valus, R.J.; Lawrence, E.G.

    1988-08-01

    A membrane process utilizing dialysis and selective complexation by water-soluble polymers has been developed. This process, termed affinity dialysis, has been shown to be selectively extract and concentrate both cations and anions in a manner similar to ion exchange or solvent extraction. The selective removal of calcium from sodium with selectivity of about 30, removal of chromate ion from dilute streams, and separation of transition metal ions such as Cu/Fe and Cu/Zn have all been successfully demonstrated. Effects of different polymers, polymer concentration, temperature, and flow rates have been studied. The effect of increased polymer concentration is to increase product concentration if appropriate changes in feed, polymer solution, and strip flow rates are made. A continuous polymer solution recycle and regeneration system has been constructed and operated with Cu/Zn and chromate/chloride feed streams. Removal of over 95% of the desired ion in one pass and concentration factors of product over effluent in excess of 100 have been achieved at feed flow rates of 24 gal/d. Product concentrations of greater than 3% from as little as 400 ppm feed have been demonstrated in a continuous process. In addition, the degree of polymer loss to the effluent stream has been shown to be less than 0.01%/d for a typical system. Metal removal from typical feeds is about 0.9 g/m/sup 2/ per 1000 ppm metal in the feed. It is expected that this technique may be useful in the separation of organic and biological materials, as well as for ionic species.

  5. 3M heavy duty roto peen: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The roto peen scaler allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy duty flexible flap. The peens are coupled with a commercially available piece of equipment that is used to scabble or remove the concrete. The scabbled debris is then collected into 55 gallon drums by means of a vacuum system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  6. Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix.

    PubMed

    Guo, Pei-Lin; Tang, Man; Hong, Shao-Li; Yu, Xu; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-12-15

    Foodborne illnesses have always been a serious problem that threats public health, so it is necessary to develop a method that can detect the pathogens rapidly and sensitively. In this study, we designed a magnetic controlled microfluidic device which integrated the dynamic magnetophoretic separation and stationary magnetic trap together for sensitive and selective detection of Salmonella typhimurium (S. typhimurium). Coupled with immunomagnetic nanospheres (IMNs), this device could separate and enrich the target pathogens and realize the sensitive detection of target pathogens on chip. Based on the principle of sandwich immunoassays, the trapped target pathogens identified by streptavidin modified QDs (SA-QDs) were detected under an inverted fluorescence microscopy. A linear range was exhibited at the concentration from 1.0×10(4) to 1.0×10(6) colony-forming units/mL (CFU/mL), the limit of detection (LOD) was as low as 5.4×10(3) CFU/mL in milk (considering the sample volume, the absolute detection limit corresponded to 540C FU). Compared with the device with stationary magnetic trap alone, the integrated device enhanced anti-interference ability and increased detection sensitivity through dynamic magnetophoretic separation, and made the detection in complex samples more accurate. In addition, it had excellent specificity and good reproducibility. The developed system provides a rapid, sensitive and accurate approach to detect pathogens in practice samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Photo-ionisation mass spectrometry as detection method for gas chromatography. Optical selectivity and multidimensional comprehensive separations.

    PubMed

    Zimmermann, Ralf; Welthagen, Werner; Gröger, Thomas

    2008-03-14

    Mass spectrometry (MS) with soft ionisation techniques (i.e. ionisation without fragmentation of the analyte molecules) for gaseous samples exhibits interesting analytical properties for direct analysis applications (i.e. direct inlet mass spectrometric on-line monitoring) as well as mass spectrometric detection method for gas chromatography (GC-MS). Commonly either chemical ionisation (CI) or field ionisation (FI) is applied as soft ionisation technology for GC-MS. An interesting alternative to the CI and FI technologies methods are photo-ionisation (PI) methods. PI overcomes some of the limitations of CI and FI and furthermore add some unique analytical properties. The resonance enhanced multi-photon ionisation (REMPI) method uses intense UV-laser pulses (wavelength range approximately 350-193 nm) for highly selective, sensitive and soft ionisation of predominately aromatic compounds. The single photon ionisation (SPI) method utilises VUV light (from lamps or laser sources, wavelengths range approximately 150-110 nm) can be used for a universal soft ionisation of organic molecules. In this article the historical development as well as the current status and concepts of gas chromatography hyphenated to photo-ionisation mass spectrometry are reviewed.

  8. Selective separation of deltamethrin by molecularly imprinted polymers using a β-cyclodextrin derivative as the functional monomer.

    PubMed

    Xu, Zhi F; Wen, Ge; Kuang, Dai Z; Zhang, Fu X; Tang, Si P

    2013-01-01

    A deltamethrin-imprinted polymer (MIP(1)) was prepared using bis(-6-O-butanediacid monoester)-β-cyclodextrin (BBA-β-CD) as the functional monomer and toluene 2,4-diisocyanate (TDI) as the cross-linker. In comparison to the molecularly imprinted polymer where β-CD was applied as the functional monomer (MIP(2)), MIP(1) showed a higher specific binding capacity (ΔC(P)) and an improved imprinting factor (IF) for deltamethrin. The selective recognition experiments demonstrated that compared to MIP(2), MIP(1) could better recognize its template over other substrates that had similar chemical structures. The solid phase extraction (SPE) of deltamethrin using MIP(1) as the adsorbent was further investigated. The recoveries of the molecularly imprinted solid phase extraction (MISPE) column for deltamethrin were 83.2-93.4% with relative standard deviations (RSD) of 2.03-6.19%. The method has been successfully applied to the enrichment of trace deltamethrin from real water samples.

  9. Layered Poly(ethylene-co-vinyl acetate)/Poly(ethylene-co-vinyl alcohol) Membranes with Enhanced Water Separation Selectivity and Performance.

    PubMed

    Soto Puente, J A; Fatyeyeva, K; Chappey, C; Marais, S; Dargent, E

    2017-02-22

    A three-layered membrane based on poly(ethylene-co-vinyl acetate) (EVA) and hydrolyzed EVA-poly(ethylene-co-vinyl alcohol) (EVOH), was elaborated by the surface hydrolysis of a dense EVA membrane. Because of the chemical modifications, the three-layered EVOH/EVA/EVOH membrane was characterized by the particular microstructure (amorphous EVA and semicrystalline EVOH) and the tunable hydrophilic/hydrophobic balance. Also, these modifications led to the membrane with the selective barrier properties compared with the pure EVA and completely hydrolyzed EVOH membranes. The water barrier behavior was related to the strong hydrogen-bond interactions of water and vinyl alcohol groups, whereas the weak chemical interactions were revealed for gases (N2 and O2). Furthermore, the influence of the polymer rubbery or glassy state on the permeation kinetics was established. In the case of the three-layered membrane, the considerably high selectivity values were obtained for H2O/O2 (∼11 900) and H2O/N2 (∼48 000) at 25 °C. In addition to these highly selective properties, the three-layered structure does not present delamination features due to its elaboration procedure. Thus, these new layered membranes are very promising as selective materials for the water and gas separation and can be potentially used in food packaging or for the gas dehydration.

  10. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples.

    PubMed

    Fasih Ramandi, Negin; Shemirani, Farzaneh

    2015-01-01

    For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively.

  11. Highly CO2-Selective Gas Separation Membranes Based on Segmented Copolymers of Poly(Ethylene oxide) Reinforced with Pentiptycene-Containing Polyimide Hard Segments.

    PubMed

    Luo, Shuangjiang; Stevens, Kevin A; Park, Jae Sung; Moon, Joshua D; Liu, Qiang; Freeman, Benny D; Guo, Ruilan

    2016-01-27

    Poly(ethylene oxide) (PEO)-containing polymer membranes are attractive for CO2-related gas separations due to their high selectivity toward CO2. However, the development of PEO-rich membranes is frequently challenged by weak mechanical properties and a high crystallization tendency of PEO that hinders gas transport. Here we report a new series of highly CO2-selective, amorphous PEO-containing segmented copolymers prepared from commercial Jeffamine polyetheramines and pentiptycene-based polyimide. The copolymers are much more mechanically robust than the nonpentiptycene containing counterparts due to the molecular reinforcement mechanism of supramolecular chain threading and interlocking interactions induced by the pentiptycene structures, which also effectively suppresses PEO crystallization leading to a completely amorphous structure even at 60% PEO weight content. Membrane transport properties are sensitively affected by both PEO weight content and PEO chain length. A nonlinear correlation between CO2 permeability with PEO weight content was observed due to the competition between solubility and diffusivity contributions, whereby the copolymers change from being size-selective to solubility-selective when PEO content reaches 40%. CO2 selectivities over H2 and N2 increase monotonically with both PEO content and chain length, indicating strong CO2-philicity of the copolymers. The copolymer film with the longest PEO sequence (PEO2000) and highest PEO weight content (60%) showed a measured CO2 pure gas permeability of 39 Barrer, and ideal CO2/H2 and CO2/N2 selectivities of 4.1 and 46, respectively, at 35 °C and 3 atm, making them attractive for hydrogen purification and carbon capture.

  12. Sample selection algorithm to improve quality of genotyping from plasma-derived DNA: to separate the wheat from the chaff.

    PubMed

    Schoenborn, Veit; Gohlke, Henning; Heid, Iris M; Illig, Thomas; Utermann, Gerd; Kronenberg, Florian

    2007-11-01

    Plasma and serum samples were often the only biological material collected for earlier epidemiological studies. These studies have a huge informative content, especially due to their long follow-up and would be an invaluable treasure for genetic investigations. However, often no banked DNA is available. To use the small amounts of DNA present in plasma, in a first step, we applied magnetic bead technology to extract this DNA, followed by a whole-genome amplification (WGA) using phi29-polymerase. We assembled 88 sample pairs, each consisting of WGA plasma DNA and the corresponding whole-blood DNA. We genotyped nine highly polymorphic short tandem repeats (STRs) and 23 SNPs in both DNA sources. The average within-pair discordance was 3.8% for SNPs and 15.9% for STR genotypes, respectively. We developed an algorithm based on one-half of the sample pairs and validated on the other one-half to identify the samples with high WGA plasma DNA quality to assure low genotyping error and to exclude plasma DNA samples with insufficient quality: excluding samples showing homozygosity at five or more of the nine STR loci yielded exclusion of 22.7% of all samples and decreased average discordance for STR and SNP markers to 3.92% and 0.63%, respectively. For SNPs, this is very close to the error observed for genomic DNA in many laboratories. Our workflow and sample selection algorithm offers new opportunities to recover reliable DNA from stored plasma material. This algorithm is superior to testing the amount of input DNA.

  13. Collision-Induced Release, Ion Mobility Separation, and Amino Acid Sequence Analysis of Subunits from Mass-Selected Noncovalent Protein Complexes

    NASA Astrophysics Data System (ADS)

    Rathore, Deepali; Dodds, Eric D.

    2014-09-01

    In recent years, mass spectrometry has become a valuable tool for detecting and characterizing protein-protein interactions and for measuring the masses and subunit stoichiometries of noncovalent protein complexes. The gas-phase dissociation of noncovalent protein assemblies via tandem mass spectrometry can be useful in confirming subunit masses and stoichiometries; however, dissociation experiments that are able to yield subunit sequence information must usually be conducted separately. Here, we furnish proof of concept for a method that allows subunit sequence information to be directly obtained from a protein aggregate in a single gas-phase analysis. The experiments were carried out using a quadrupole time-of-flight mass spectrometer equipped with a traveling-wave ion mobility separator. This instrument configuration allows for a noncovalent protein assembly to be quadrupole selected, then subjected to two successive rounds of collision-induced dissociation with an intervening stage of ion mobility separation. This approach was applied to four model proteins as their corresponding homodimers: glucagon, ubiquitin, cytochrome c, and β-lactoglobulin. In each case, b- and y-type fragment ions were obtained upon further collisional activation of the collisionally-released subunits, resulting in up to 50% sequence coverage. Owing to the incorporation of an ion mobility separation, these results also suggest the intriguing possibility of measuring complex mass, complex collisional cross section, subunit masses, subunit collisional cross sections, and sequence information for the subunits in a single gas-phase experiment. Overall, these findings represent a significant contribution towards the realization of protein interactomic analyses, which begin with native complexes and directly yield subunit identities.

  14. Collision-induced release, ion mobility separation, and amino acid sequence analysis of subunits from mass-selected noncovalent protein complexes.

    PubMed

    Rathore, Deepali; Dodds, Eric D

    2014-09-01

    In recent years, mass spectrometry has become a valuable tool for detecting and characterizing protein-protein interactions and for measuring the masses and subunit stoichiometries of noncovalent protein complexes. The gas-phase dissociation of noncovalent protein assemblies via tandem mass spectrometry can be useful in confirming subunit masses and stoichiometries; however, dissociation experiments that are able to yield subunit sequence information must usually be conducted separately. Here, we furnish proof of concept for a method that allows subunit sequence information to be directly obtained from a protein aggregate in a single gas-phase analysis. The experiments were carried out using a quadrupole time-of-flight mass spectrometer equipped with a traveling-wave ion mobility separator. This instrument configuration allows for a noncovalent protein assembly to be quadrupole selected, then subjected to two successive rounds of collision-induced dissociation with an intervening stage of ion mobility separation. This approach was applied to four model proteins as their corresponding homodimers: glucagon, ubiquitin, cytochrome c, and β-lactoglobulin. In each case, b- and y-type fragment ions were obtained upon further collisional activation of the collisionally-released subunits, resulting in up to 50% sequence coverage. Owing to the incorporation of an ion mobility separation, these results also suggest the intriguing possibility of measuring complex mass, complex collisional cross section, subunit masses, subunit collisional cross sections, and sequence information for the subunits in a single gas-phase experiment. Overall, these findings represent a significant contribution towards the realization of protein interactomic analyses, which begin with native complexes and directly yield subunit identities.

  15. M2(m-dobdc) (M = Mn, Fe, Co, Ni) Metal-Organic Frameworks as Highly-Selective, High-Capacity Adsorbents for Olefin/Paraffin Separations.

    PubMed

    Bachman, Jonathan E; Kapelewski, Matthew T; Reed, Douglas A; Gonzalez, Miguel I; Long, Jeffrey R

    2017-10-05

    The metal-organic frameworks M2(m-dobdc) (M = Mn, Fe, Co, Ni; m-dobdc4- = 4,6-dioxido-1,3-benzenedicarboxylate) were evaluated as adsorbents for separating olefins from paraffins. Using single-component and multicomponent equilibrium gas adsorption measurements, we show that the coordinatively-unsaturated M2+ sites in these materials lead to superior performance for the physisorptive separation of ethylene from ethane and propylene from propane relative to any known adsorbent, including para-functionalized structural isomers of the type M2(p-dobdc) (p-dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate). Notably, the M2(m-dobdc) frameworks all exhibit an increased affinity for olefins over paraffins relative to their corresponding structural isomers, with the Fe, Co, and Ni variants showing more than double the selectivity. Among these frameworks, Fe2(m-dobdc) displays the highest ethylene/ethane (> 25) and propylene/propane (> 55) selectivity under relevant conditions, together with olefin capacities exceeding 7 mmol/g. Differential enthalpy calculations in conjunction with structural characterization of ethylene binding in Co2(m-dobdc) and Co2(p-dobdc) via in-situ single-crystal X-ray diffraction reveal that the vast improvement in selectivity arises from enhanced metal-olefin interactions induced by increased charge density at the metal site. Moderate olefin binding enthalpies, below 55 kJ/mol and 70 kJ/mol for ethylene and propylene, respectively, indicate that these adsorbents maintain sufficient reversibility under mild regeneration conditions. Additionally, transient adsorption experiments show fast kinetics, with more than 90% of ethylene adsorption occurring within 30 s after dosing. Breakthrough measurements further indicate that Co2(m-dobdc) can produce high purity olefins without a temperature swing, an important test of process applicability. The excellent olefin/paraffin selectivity, high olefin capacity, rapid adsorption kinetics, and low raw materials

  16. Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs).

    PubMed

    Hojniak, Sandra D; Silverwood, Ian P; Khan, Asim Laeeq; Vankelecom, Ivo F J; Dehaen, Wim; Kazarian, Sergei G; Binnemans, Koen

    2014-07-03

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, the two classes of ILs benefit from the presence of a nitrile group in different ways. The difunctionalized pyrrolidinium ILs exhibit an increase in CO2 permeance, whereas the permeances of the contaminant gases rise negligibly, resulting in high gas separation selectivities. In the imidazolium ILs, the presence of a nitrile group does not always increase the CO2 permeance nor does it increase the CO2 solubility, as showed in situ by the ATR-FTIR spectroscopic method. High selectivity of these ILs is caused by the considerably reduced permeances of N2 and CH4, most likely due to the ability of the -CN group to reject the nonpolar contaminant gases. Apart from the CO2 solubility, IL-CO2 interactions and IL swelling were studied with the in situ ATR-FTIR spectroscopy. Different strengths of the IL-CO2 interactions were found to be the major difference between the two classes of ILs. The difunctionalized ILs interacted stronger with CO2 than the glycol-functionalized ILs, as manifested in the smaller bandwidths of the bending mode band of CO2 for the latter.

  17. A methodology for centrifuge selection for the separation of high solids density cell broths by visualisation of performance using windows of operation.

    PubMed

    Salte, Heidi; King, Josh M P; Baganz, Frank; Hoare, Mike; Titchener-Hooker, Nigel J

    2006-12-20

    Expression systems capable of growing to high cell densities are now readily available and are popular due to the benefits of increased product concentration. However, such high solids density cultures pose a major challenge for bioprocess engineers as choosing the right separation equipment and operating it at optimal conditions is crucial for efficient recovery. This study proposes a methodology for the rapid determination of suitable operating conditions for the centrifugal recovery of high cell density fermentation broths. An ultra scale-down (USD) approach for the prediction of clarification and dewatering levels achieved in a range of typical high-speed centrifuges is presented. Together with a visualisation tool, a Window of Operation, this provides for the rapid analysis of separation performance and evaluation of the available operating conditions, as an aid in the selection of the centrifuge equipment most appropriate for a given process duty. A case study examining centrifuge selection for the processing of a high cell density Pichia pastoris culture demonstrates the method. The study examines semi-continuous disc-stack centrifuges and batch-operated machines such as multi-chamber bowls and Carr Powerfuges. Performance is assessed based on the variables of clarification, dewatering and product yield. Inclusion of limits imposed by the centrifuge type and design, and operation itself, serve to constrain the process and to define the Windows of Operation. The insight gained from the case study provides a useful indication of the utility of the methodology presented and illustrates the challenges of centrifuge selection for the demanding case of high solids concentration feed streams. Copyright 2006 Wiley Periodicals, Inc.

  18. Meniscus membranes for separations

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  19. Meniscus Membranes For Separation

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  20. 3M heavy duty roto peen: Baseline report; Greenbook (chapter)

    SciTech Connect

    1997-07-31

    The heavy-duty roto peen technology is being evaluated at Florida International University (FIU) as a baseline technology. It is a commercially available technology and has been used for various projects at locations throughout the country. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the human factors assessment for safety and health issues. The heavy-duty roto peen allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy-duty flexible flap. The shot rivet is kept captive to the tool by mounting the roto peen in a slotted hub. The heavy-duty roto peen is designed to be used with several commercially available pieces of equipment. The equipment being used will determine the width of each pass. The equipment being used with the roto peen is then connected to a vacuum system for dust collection during scabbling. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  1. 3M heavy duty roto peen: Baseline report

    SciTech Connect

    1997-07-31

    The heavy-duty roto peen technology was being evaluated at Florida International University (FIU) as a baseline technology. It is a commercially available technology and has been used for various projects at locations throughout the country. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the human factors assessment for safety and health issues. The heavy-duty roto peen allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy-duty flexible flap. The shot rivet is kept captive to the tool by mounting the roto peen in a slotted hub. The heavy-duty roto peen is designed to be used with several commercially available pieces of equipment. The equipment being used will determine the width of each pass. The equipment being used with the roto peen is then connected to a vacuum system for dust collection during scabbling. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  2. The holistic 3M modality of drug delivery nanosystems for cancer therapy

    NASA Astrophysics Data System (ADS)

    Sun, Jin; Luo, Cong; Wang, Yongjun; He, Zhonggui

    2013-01-01

    Cancer has become the leading cause of human death worldwide. There are many challenges in the treatment of cancer and the rapidly developing area of nanotechnology has shown great potential to open a new era in cancer therapy. This article, rather than being exhaustive, focuses on the striking progress in the drug delivery nanosystems (DDNS) for cancer therapy and selects typical examples to point out the emerging mode of action of DDNS from our perspective. Among the outstanding advances in DDNS for cancer therapy is the development of ``multicomponent delivery systems'', ``multifunctional nanocarriers'' and ``multistage delivery systems''. However, these represent only one aspect of DDNS research. In addition, nature is the best teacher and natural evolution pressure has meant that virions conform to the ``multitarget, multistage and multicomponent'' (3M) mode of action. Amazingly, traditional Chinese medicine (TCM), used for over 4000 years in China, also displays the same mode of action. Integrating the previous notable progress in nanoparticle technology, learned from the building mode of natural virions and the action concept of TCM, we propose an integrity-based 3M mode DDNS for cancer therapy: multitarget, multistage and multicomponent, which are not fragmented parts but an interconnected integrity. Based on the physiological multitarget and the pharmacokinetic multistage, multicomponent DDNS are rationally designed, where different components with individual specific functions act in a synergistic manner against each target at each disposition stage to maximize the targeted delivery effectiveness. In this article, we introduce each component of 3M DDNS in detail and describe some typical cases to realize the tumor-homing purposes.

  3. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions

    PubMed Central

    Rangreez, Tauseef Ahmad; Alhogbi, Basma G.; Naushad, Mu.

    2017-01-01

    In this study, graphene Th(IV) phosphate was prepared by sol–gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g−1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible. PMID:28737717

  4. Effect of stationary phase structure on retention and selectivity tuning in the high-throughput separation of tocopherol isomers by HPLC.

    PubMed

    Buszewski, Boguslaw; Krupczynska, Katarzyna; Bazylak, Grzegorz

    2004-06-01

    Four stationary phases containing different groups such as: C18, C30, alkylamide, and cholesterolic, were presented for simultaneous HPLC analysis of structural isomers of tocopherol. Especially, the influence of stationary phase structure and properties on tuning of the highly selective HPLC separation of beta- and gamma-tocopherol pair demonstrating, respectively, para- and ortho- arrangement of methyl substituents on the 6-chromanol ring, has been elucidated. It was pointed out that selectivity of each stationary phase has been a result of modulation in the mass transfer and set of unspecific interactions in the tertiary system comprising analyte <==> stationary phase <==> mobile phase. Differences in observed retention and specific selectivity of tocopherols together with the stationary phase structure investigations indicated that a spatial organization changing of chemically bonded ligands as predominantly a solvation consequence. Additional molecular modeling studies preliminary explained some of these complicated supramolecular phenomena which caused that cholesterolic stationary phase offered beneficial performance in screening of tocopherols by HPLC and biomimetic studies of not completely recognized interactions of tocopherol isomers and biological membranes.

  5. Molecularly imprinted SPE coupled with HPLC for the selective separation and enrichment of alkyl imidazolium ionic liquids in environmental water samples.

    PubMed

    Xia, Gao; Jing, Fan; Guifen, Zhu; Xiaolong, Wang; Jianji, Wang

    2013-10-01

    A novel 1-butyl-3-methylimidazolium chloride ionic liquid surface imprinted solid-phase sorbent was synthesized. The as-prepared material was characterized by SEM, Brunauer-Emmett-Teller surface area analysis and Fourier Transform IR measurements. Then its adsorption properties for alkyl imidazolium ionic liquids, including adsorption capacities, adsorption kinetics, and properties of selective separation and enrichment were studied in detail. It was shown that the ionic liquid surface imprinted polymer exhibited high selective recognition characteristics for the imidazolium chloride ionic liquids with short alkyl chains (C(n)mimCl, n = 2, 4, 6, 8) and the adsorption equilibrium was achieved within 25 min. Various parameters were optimized for the 1-butyl-3-methylimidazolium chloride ionic liquid surface imprinted polymer SPE column, such as flow rate, eluent solvent, selectivity, and reusability of the column. Then, the SPE column coupled with HPLC was used for the determination of alkyl imidazolium ionic liquids. Experimental results showed that the existence of their structural analogs and common concomitants in environmental matrices did not affect the enrichment of 1-butyl-3-methyl imidazolium chloride ionic liquid. The average recoveries of 1-butyl-3-methylimidazolium chloride ionic liquid in spiked water samples were in the range of 92.0-102.0% with the RSD lower than 5.8%.

  6. Unique Roll-Off Roof for Housing 1.3 m Telescope at Devasthal, Nainital

    NASA Astrophysics Data System (ADS)

    Bangia, Tarun

    2016-05-01

    Aryabhatta Research Institute of Observational Sciences (ARIES) had set up a 1.3 m telescope at Devasthal, Nainital, India in the year 2010. Country's largest roll-off roof was indigenously designed, fabricated and installed on top of a building (17 × 8 m) for housing 1.3 m telescope. Telescope was supplied by M/s DFM Engineering Inc., USA to ARIES and was installed in the building with unique roll-off roof to protect it from external environment. Roll-off roof was designed and fabricated considering various parameters and available manpower and resources at ARIES. This paper presents mechanical development work, simple but distinct design approach and innovative selection of materials to economically manufacture roll-off roof of large size (8 × 8 × 4 m) at hilly remote site of Devasthal situated in Central Himalayan region. All operations in the roof viz. opening of shutters and rolling of roof were motorized to facilitate observers during night observations.

  7. Unique Roll-Off Roof for Housing 1.3 m Telescope at Devasthal, Nainital

    NASA Astrophysics Data System (ADS)

    Bangia, Tarun

    2017-06-01

    Aryabhatta Research Institute of Observational Sciences (ARIES) had set up a 1.3 m telescope at Devasthal, Nainital, India in the year 2010. Country's largest roll-off roof was indigenously designed, fabricated and installed on top of a building (17 × 8 m) for housing 1.3 m telescope. Telescope was supplied by M/s DFM Engineering Inc., USA to ARIES and was installed in the building with unique roll-off roof to protect it from external environment. Roll-off roof was designed and fabricated considering various parameters and available manpower and resources at ARIES. This paper presents mechanical development work, simple but distinct design approach and innovative selection of materials to economically manufacture roll-off roof of large size (8 × 8 × 4 m) at hilly remote site of Devasthal situated in Central Himalayan region. All operations in the roof viz. opening of shutters and rolling of roof were motorized to facilitate observers during night observations.

  8. Selective Separation and Extraction of Vanadium (V) Over Manganese (II) from Co-Leaching Solution of Roasted Stone Coal and Pyrolusite Using Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Cai, Z. L.; Feng, Y. L.; Zhou, Y. Z.; Li, H. R.; Wang, W. D.

    2013-11-01

    Based on the novel technology for selective separation and extraction of vanadium (V) over manganese (II) from co-leaching solution of roasted stone coal and pyrolusite using solvent extraction, the extraction effect of vanadium (V) and manganese (II) has been studied and many technical conditions have also been optimized. Meanwhile, countercurrent simulation experiments were conducted to verify the results of the experiments. The results indicated that with three countercurrent extraction stages, 99.21% vanadium (V) was extracted using 5% (v/v) N235 and 5% (v/v) secondary octyl alcohol at initial aqueous pH of 3.0 and O/A phase ratio of 1.0. Vanadium (V) could be completely stripped after three-stage countercurrent experiments with 20 wt.% NH4Cl at O/A phase ratio of 1.0. The process flow sheet for the recovery of vanadium (V), as well as manganese (II), was proposed.

  9. Public opinion and awareness towards MSW and separate collection programmes: a sociological procedure for selecting areas and citizens with a low level of knowledge.

    PubMed

    De Feo, Giovanni; De Gisi, Sabino

    2010-06-01

    The principal aim of this study was to define and apply a procedure based on a structured questionnaire survey useful to analyze the people's environmental knowledge in order to select the areas and age groups with a low level of knowledge in a municipality (in Southern Italy) and, therefore, suggest a specific educational campaign for each. The detailed sampling procedure made it possible to carry out a meticulous statistical analysis of the results. The youngest and oldest people showed the lowest level of awareness for each district. A high level of education did not necessarily imply a high level of environmental awareness as well as a greater acceptance of MSW facilities. The satisfaction level of the recycling program was higher amongst the oldest age group. All the citizens in the several areas were unanimous in pointing out the presence of dirt in the street as the main shortcoming of the bring separate collection program. Only the youngest age group self-criticised, considering that they revealed a low level of participation to the separate collection program. While, the oldest people retaining them less influential, claimed that the citizens were not responsible for the failure of the separate collection program. The prevailing opinion of the sample was that people protested against the construction of waste facilities because they were not well-informed, with the most significant opinion of all the age subdivisions being that incineration is a hazardous treatment. The presence of criminal organizations was indicated as the main reason why the Campania Region suffers a serious solid waste emergency. While, the percentage of people pointing their finger at politicians increases with the average age of the respondents with there being a very strong correlation (r(2)=0.9903).

  10. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.

    PubMed

    Dybczyński, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna

    2015-03-20

    Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with γ-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group.

  11. Yolk-shell nanostructured Fe3O4@NiSiO3 for selective affinity and magnetic separation of His-tagged proteins.

    PubMed

    Wang, Yang; Wang, Guangchuan; Xiao, Yun; Yang, Yuling; Tang, Ruikang

    2014-01-01

    Recent developments of nanotechnology encourage novel materials for facile separations and purifications of recombinant proteins, which are of great importance in disease diagnoses and treatments. We find that Fe3O4@NiSiO3 with yolk-shell nanostructure can be used to specifically purify histidine-tagged (His-tagged) proteins from mixtures of lysed cells with a recyclable process. Each individual nanoparticle composes by a mesoporous nickel silicate shell and a magnetic Fe3O4 core in the hollow inner, which is featured by its great loading efficiency and rapid response toward magnetic fields. The abundant Ni(2+) cations on the shell provide docking sites for selective coordination of histidine and the reversible release is induced by excess imidazole solution. Because of the Fe3O4 cores, the separation, concentration, and recycling of the nanocomposites become feasible under the controls of magnets. These characteristics would be highly beneficial in nanoparticle-based biomedical applications for targeted-drug delivery and biosensors.

  12. In-Situ Ligand Formation-Driven Preparation of a Heterometallic Metal-Organic Framework for Highly Selective Separation of Light Hydrocarbons and Efficient Mercury Adsorption.

    PubMed

    Han, Yi; Zheng, Hao; Liu, Kang; Wang, Hongli; Huang, Hongliang; Xie, Lin-Hua; Wang, Lei; Li, Jian-Rong

    2016-09-07

    By means of the in situ ligand formation strategy and hard-soft acid-base (HSAB) theory, two types of independent In(COO)4 and Cu6S6 clusters were rationally embedded into the heterometallic metal-organic framework (HMOF) {[(CH3)2NH2]InCu4L4·xS}n (BUT-52). BUT-52 exhibits a three-dimensional (3D) anionic framework structure and has sulfur decorating the dumbbell-shaped cages with the external edges of 24 and 14 Å by the internal edges. Remarkably, because of the stronger charge-induced interactions between the charged MOF skeleton and the easily polarized C2 hydrocarbons (C2s), BUT-52 was used for C2s over CH4 and shows both high adsorption heats of C2s and selective separation abilities for C2s/CH4. Furthermore, BUT-52 also displays efficient mercury adsorption resulting from the stronger-binding ability beween the sulfur and the mercury and can remove 92% mercury from methanol solution even with the initial concentration as low as 100 mg/L. The results in this work indicate the feasibility of BUT-52 for the separation of light hydrocarbons and efficient adsorption/removal of mercury.

  13. Thin layer chromatography/plasma assisted multiwavelength laser desorption ionization mass spectrometry for facile separation and selective identification of low molecular weight compounds.

    PubMed

    Zhang, Jialing; Zhou, Zhigui; Yang, Jianwang; Zhang, Wei; Bai, Yu; Liu, Huwei

    2012-02-07

    A novel plasma assisted multiwavelength (1064, 532, and 355 nm) laser desorption ionization mass spectrometry (PAMLDI-MS) system was fabricated and applied in the analysis of low molecular weight compounds through combination with thin layer chromatography (TLC). The TLC/PAMLDI-MS system successfully integrated TLC, the multiwavelength laser ablation, and the excitated state plasma from direct analysis in real time (DART) and was proved to be effective in the facile separation and selective identification of low molecular weight compounds. An automated three-dimensional platform was utilized to facilitate the analysis procedures with all the parameters of the TLC/PAMLDI-MS systematically optimized, and the desorption/ionization mechanisms were discussed. The successful combination of three-wavelength laser with DART based system extended the range of the analytes and provided broad possibilities for the compound desorption from the TLC. The experimental results clearly showed that the laser desorption was wavelength dependent. The PAMLDI-MS system was successfully applied in the detection of low molecular weight compounds from different kinds of samples separated on a normal-phase silica gel, such as dye mixtures, drug standards, and tea extract, with the detection level of 5 ng/mm(2).

  14. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex.

    PubMed

    Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B

    2016-01-01

    The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Properties near magnetic instability of heavy-electron compounds Ce3M4Sn13 and La3M4Sn13, with M=Co, Rh and Ru

    NASA Astrophysics Data System (ADS)

    Ślebarski, Andrzej

    2015-02-01

    In this review, we report the thermodynamic, magnetic and electronic transport properties of the skutterudite-related Ce3M4Sn13 and La3M4Sn13 intermetallic compounds with M = Co, Rh and Ru, which display a variety of behaviours. Ce3M4Sn13 exhibit a large increase in C/T with a maximum value of about 4 JK-2mol-1Ce due to strong electron and short-range magnetic correlations. These compounds show a crossover from a magnetically correlated heavy-fermion state to a single impurity state in applied magnetic fields. In order to study the proximity of Ce3Co4Sn13 to the possible magnetic quantum critical point (QCP), we investigated the system of Ce3-xLaxCo4Sn13 alloys. We found the critical concentration ?, which separates the magnetically correlated state (?) from a single impurity state (?), however the low-T C(T)/T and the magnetic susceptibility behaviours are not characteristic of the QCP. With increasing of the magnetic field, resistivity follows power law behaviour for the samples ?, with n strongly field dependent. The ?-anomaly is discussed on the base of spin-fluctuation theory of Moriya and Takimoto. Specific heat data show that La3M4Sn13 are typical BCS superconductors, however, La3Rh4Sn13 and La3Ru4Sn13 exhibit a second superconducting phase, characteristic of inhomogeneous superconductors.

  16. Separated Shoulder

    MedlinePlus

    Separated shoulder Overview By Mayo Clinic Staff A separated shoulder is an injury to the ligaments that hold your collarbone (clavicle) to your shoulder blade. In a mild separated shoulder, the ligaments ...

  17. Analytical and Clinical Sensitivity of the 3M Rapid Detection Influenza A+B Assay ▿

    PubMed Central

    Dale, Suzanne E.; Mayer, Christine; Mayer, Marie C.; Menegus, Marilyn A.

    2008-01-01

    The performance of the 3M rapid detection influenza A+B (3M flu) assay was compared to the performance of other immunochromatographic assays. The clinical and analytical performance of the 3M flu assay was superior to that of BinaxNOW and Directigen EZ assays and equivalent to that of the QuickVue assay. The 3M flu assay offers an objective output and direct linkage to laboratory information systems. PMID:18832133

  18. Novel microorganism for selective separation of coal from ash and pyrite; First quarterly technical progress report, September 1, 1993--November 30, 1993

    SciTech Connect

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1993-12-31

    This report summarizes the progress made during the first quarter of the research project entitled ``A Novel Microorganism for Selective Separation of Coal from Ash and Pyrite,`` DOE Grant No. DE-FG22-93PC93215. The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash-forming minerals. During the reporting period, three different coal samples: Illinois No. 6 coal, Kentucky No. 9 coal and Pittsburgh No. 8 coal, were collected to be used in the investigation. The microorganism, M. phlei, was obtained as freeze-dried cultures and the growth characteristics of the bacteria were studied. Scanning electron microphotographs revealed that M. phlei cells are coccal in shape and are approximately 1 {mu}m in diameter. Electrokinetic measurements showed that the Illinois No. 6 and Pittsburgh No. 8 coal samples had an isoelectric point (IEP) around pH 6 whereas M. phlei had an IEP around pH 1.5. Electrokinetic measurements of the ruptured microorganisms exhibited an increase in IEP. The increase in IEP of the ruputured cells was due to the release of fatty acids and polar groups from the cell membrane.

  19. Particle separation

    DOEpatents

    Moosmuller, Hans [Reno, NV; Chakrabarty, Rajan K [Reno, NV; Arnott, W Patrick [Reno, NV

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  20. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  1. Synthesis and characterization of a surface-grafted Cd(II) ion-imprinted polymer for selective separation of Cd(II) ion from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Min; Feng, Changgen; Li, Mingyu; Zeng, Qingxuan; Gan, Qiang; Yang, Haiyan

    2015-03-01

    A novel Cd(II) ion-imprinted polymer (Cd(II)-IIP) was prepared with surface imprinting technology by using cadmium chloride as a template and allyl thiourea (ATU) as a functional monomer for on-line solid-phase extraction of trace Cd(II) ion and selective separation Cd(II) ion in water samples. The Cd(II)-IIP exhibited good chemical performance and thermal stability. Kinetics studies showed that the equilibrium adsorption was achieved within 8.0 min and the adsorption process can be described by pseudo-second-order kinetic model. Compared to the Cd(II) non-imprinted polymer (Cd(II)-NIP), the Cd(II)-IIP had a higher adsorption capacity and selectivity for Cd(II) ion. The maximum adsorption capacities of the Cd(II)-IIP and Cd(II)-NIP for Cd(II) were 38.30 and 13.21 mg g-1, respectively. The relative selectivity coefficients of the adsorbent for Cd(II) in the presence of Cu2+, Ni2+, Co2+, Pb2+ and Zn2+ were 2.86, 6.42, 11.50, 9.46 and 3.73, respectively. In addition, the Cd(II) ion adsorbed was easy to remove from sorbent and the Cd(II)-IIP exhibited good stability and reusability. The adsorption capacity had no obvious decrease after being used six times. The accuracy of this method was verified by the standard reference material, it was then applied for cadmium ion determination in different types of water samples.

  2. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  3. Asymmetric gas separation membranes

    SciTech Connect

    Malon, R. F.; Zampini, A.

    1984-12-04

    Asymmetric gas separation membranes of materials having selective permeation of at least one gas of a gaseous mixture over that of one or more remaining gases of the gaseous mixture, exhibit significantly improved permeation selectivities for the at least one gas when the asymmetric membrane is contacted on one or both surfaces with an effective amount of a Lewis acid. The improved asymmetric gas separation membranes, process for producing the improved membrane, and processes utilizing such membranes for selectively separating at least one gas from a gaseous mixture by permeation are disclosed.

  4. Asymmetric gas separation membranes

    SciTech Connect

    Malon, R. F.; Zampini, A.

    1984-09-18

    Asymmetric gas separation membranes of materials having selective permeation of at least one gas of a gaseous mixture over that of one or more remaining gases of the gaseous mixture, exhibit significantly improved permeation selectivities for the at least one gas when the asymmetric membrane is contacted on one or both surfaces with an effective amount of a Br nsted-Lowry acid. The improved asymmetric gas separation membranes, process for producing the improved membrane, and processes utilizing such membranes for selectively separating at least one gas from a gaseous mixture by permeation are disclosed.

  5. Synthesis of magnetic molecularly imprinted polymers with excellent biocompatibility for the selective separation and inhibition of testosterone in prostate cancer cells

    PubMed Central

    Tang, Xiaoshuang; Li, Feng; Jia, Jing; Yang, Chao; Liu, Wei; Jin, Ben; Wang, Xinyang; Gao, Ruixia; He, Dalin; Guo, Peng

    2017-01-01

    Purpose Androgen plays an important role in the progression of prostate cancer. In the present study, novel magnetic molecularly imprinted polymers (MMIPs) with good biocompatibility were produced for the selective separation and inhibition of testosterone in prostate cancer cells. Materials and methods MMIPs were prepared by using magnetic nanospheres, gelatin, and testosterone as the supporting materials, functional monomer, and the template molecule, respectively. The characterization of the resultant products was investigated by transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry. To test whether MMIPs can remove testosterone in biologic samples, human LNCaP (androgen-dependent) and C4-2 (androgen-independent) prostate cancer cells were selected as cell models. The translocation of androgen receptor (AR) was detected by immunofluorescence assay, and the expression of PSA mRNA was detected by real-time quantitative polymerase chain reaction analysis. Cell flow cytometry analysis was performed to detect cell cycle arrest. Results The synthesized nanomaterials (MMIPs) possessed high crystallinity, satisfactory superparamagnetic properties, and uniform imprinted shell, and exhibited high adsorption capacity, fast kinetics, and high selectivity for testosterone. Moreover, the obtained imprinted nanomaterials could selectively enrich and detect testosterone in the LNCaP cell samples as a solid-phase extractant coupled with high-performance liquid chromatography. In addition, the MMIPs could freely enter prostate cancer cells and suppress the translocation of AR into the cell nucleus. We further found that MMIPs inhibited upregulation of AR downstream target genes in LNCaP and C4-2 cells; also, MMIPs inhibited cell growth and induced obvious cell cycle arrest in androgen-dependent LNCaP cells, but had no obvious effect on androgen-independent C4-2 cells. Conclusion Our results indicate that the obtained imprinted nanomaterials can

  6. Synthesis of magnetic molecularly imprinted polymers with excellent biocompatibility for the selective separation and inhibition of testosterone in prostate cancer cells.

    PubMed

    Tang, Xiaoshuang; Li, Feng; Jia, Jing; Yang, Chao; Liu, Wei; Jin, Ben; Wang, Xinyang; Gao, Ruixia; He, Dalin; Guo, Peng

    2017-01-01

    Androgen plays an important role in the progression of prostate cancer. In the present study, novel magnetic molecularly imprinted polymers (MMIPs) with good biocompatibility were produced for the selective separation and inhibition of testosterone in prostate cancer cells. MMIPs were prepared by using magnetic nanospheres, gelatin, and testosterone as the supporting materials, functional monomer, and the template molecule, respectively. The characterization of the resultant products was investigated by transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry. To test whether MMIPs can remove testosterone in biologic samples, human LNCaP (androgen-dependent) and C4-2 (androgen-independent) prostate cancer cells were selected as cell models. The translocation of androgen receptor (AR) was detected by immunofluorescence assay, and the expression of PSA mRNA was detected by real-time quantitative polymerase chain reaction analysis. Cell flow cytometry analysis was performed to detect cell cycle arrest. The synthesized nanomaterials (MMIPs) possessed high crystallinity, satisfactory superparamagnetic properties, and uniform imprinted shell, and exhibited high adsorption capacity, fast kinetics, and high selectivity for testosterone. Moreover, the obtained imprinted nanomaterials could selectively enrich and detect testosterone in the LNCaP cell samples as a solid-phase extractant coupled with high-performance liquid chromatography. In addition, the MMIPs could freely enter prostate cancer cells and suppress the translocation of AR into the cell nucleus. We further found that MMIPs inhibited upregulation of AR downstream target genes in LNCaP and C4-2 cells; also, MMIPs inhibited cell growth and induced obvious cell cycle arrest in androgen-dependent LNCaP cells, but had no obvious effect on androgen-independent C4-2 cells. Our results indicate that the obtained imprinted nanomaterials can specifically and effectively bind testosterone and

  7. Abscinazole-E3M, a practical inhibitor of abscisic acid 8′-hydroxylase for improving drought tolerance

    PubMed Central

    Takeuchi, Jun; Okamoto, Masanori; Mega, Ryosuke; Kanno, Yuri; Ohnishi, Toshiyuki; Seo, Mitsunori; Todoroki, Yasushi

    2016-01-01

    Abscisic acid (ABA) is an essential phytohormone that regulates plant water use and drought tolerance. However, agricultural applications of ABA have been limited because of its rapid inactivation in plants, which involves hydroxylation of ABA by ABA 8′-hydroxylase (CYP707A). We previously developed a selective inhibitor of CYP707A, (−)-Abz-E2B, by structurally modifying S-uniconazole, which functions as an inhibitor of CYP707A and as a gibberellin biosynthetic enzyme. However, its synthetic yield is too low for practical applications. Therefore, we designed novel CYP707A inhibitors, Abz-T compounds, that have simpler structures in which the 1,2,3-triazolyl ring of (−)-Abz-E2B has been replaced with a triple bond. They were successfully synthesised in shorter steps, resulting in greater yields than that of (−)-Abz-E2B. In the enzymatic assays, one of the Abz-T compounds, (−)-Abz-E3M, acted as a strong and selective inhibitor of CYP707A, similar to (−)-Abz-E2B. Analysis of the biological effects in Arabidopsis revealed that (−)-Abz-E3M enhanced ABA’s effects more than (−)-Abz-E2B in seed germination and in the expression of ABA-responsive genes. Treatment with (−)-Abz-E3M induced stomatal closure and improved drought tolerance in Arabidopsis. Furthermore, (−)-Abz-E3M also increased the ABA response in rice and maize. Thus, (−)-Abz-E3M is a more practical and effective inhibitor of CYP707A than (−)-Abz-E2B. PMID:27841331

  8. Experience and Challenges in Implementing Stratospheric Aerosol Gas Experiment on Meteor-3M Platform

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Newsom, Jerry; Rawls, Richard

    2001-01-01

    Implementation of Stratospheric Aerosol Gas Experiment (SAGE) is a joint science mission between the Rosavioskosmos, also called Russian Aviation and Space Agency (RASA) and the National Aeronautics and Space Administration (NASA). Under the global collaboration agreement established by President Clinton and Yeltsin in 1995 between the United States and Russia, space was one of the major areas identified for joint scientific collaboration. There were several collaborative projects identified under space, earth, human exploration of space and aeronautics. SAGE was one of the key Earth Science instruments selected common to both countries' interests in ozone research. SAGE has a long space heritage, and four earlier versions of this instrument have flown in space for the last 15-year period. It has provided a vital ozone and aerosol data in the mid latitudes and has contributed in the overall ozone depletion research. SAGE II, the fourth instrument has been flying in space on NASA's Earth Radiation Budget Satellite (ERBS) for the last 14 years. Ball Aerospace built the instrument under Langley Research Center's (LaRC) management. SAGE III for Russian Meteor-3M mission is a third generation design with more spectral bands, elaborate data gathering and storage and intelligent terrestrial software. The Russian collaboration required a complete integration of SAGE III on the Russian Meteor-3M satellite and a launch on a Zenit-2 launch vehicle manufactured in Ukraine. The whole complex is scheduled to be launched from Baikonur cosmodrome in early 2001. This cooperative mission has presented a number of management, technical and logistical challenges on both sides. This paper makes an attempt to review and document such experiences.

  9. Separation and preconcentration of chromium species by selective absorption on Lemna minor and determination by slurry atomisation electrothermal atomic absorption spectrometry.

    PubMed

    Zhu, G; Li, S

    2001-08-01

    A novel method for the separation and preconcentration of Cr(III)/Cr(VI) with Lemna minor and determination by slurry atomization electrothermal atomic absorption spectrometry (ETAAS) was developed. A sample solution was added to a polyethylene beaker containing 10 mg of 160 mesh pre-treated Lemna minor, adjusted to pH 1.0, stirred for 8 min for selective absorption of Cr(III) and then centrifuged. The upper layer of solution was transferred into another polyethylene beaker containing 10 mg of 160 mesh pre-treated Lemna minor, adjusted to pH 5.0, stirred for 12 min for adsorption of the residual Cr(VI) and centrifuged. The two residues in two centrifuge tubes were washed twice with water, 2 ml of agar solution added, stirred for 2 min, then two slurries were prepared and used for the determination of Cr(III) and Cr(VI) by ETAAS. Detection limits (3sigma) of 0.01 microg L(-1) for Cr(III) and 0.03 microg L(-1) for Cr(VI) were obtained. The relative standard deviation was 2.8% for Cr(III) and 3.3% for Cr(VI) at the 1 microg L(-1) level. The method was applied to the determination of Cr(III)/Cr(VI) in water samples. The analytical recoveries of Cr(III) and Cr(VI) added to samples were 97-102 and 96-103%, respectively.

  10. Highly selective polymer electrolyte membranes consisting of poly(2-ethyl-2-oxazoline) and Cu(NO3)2 for SF6 separation.

    PubMed

    Lee, Woong Gi; Kang, Sang Wook

    2016-02-10

    Polymer electrolyte membranes consisting of Cu(NO3)2 and poly(2-ethyl-2-oxazoline) (POZ) were prepared for SF6/N2 separation. It was anticipated that repulsive forces would be operative between the negative charge of water and the F atoms of SF6 when Cu(NO3)2 in the composite was solvated by water, and that the barrier effect of Cu(2+) ions would be activated. In fact, Cu(NO3)2 solvated by water in the POZ membrane was observed to have more higher-order ionic aggregates than free ions or ion pairs, as confirmed by FT-Raman spectroscopy. Thus, when Cu(NO3)2 solvated by water was incorporated into the POZ matrix, the N2/SF6 selectivity increased to 28.0 with a N2 permeance of 11.2 GPU at a POZ/Cu(NO3)2 mole ratio of 1:0.7. The coordinative interaction of Cu(NO3)2 with the carbonyl group in POZ was confirmed by FT-IR spectroscopy and TGA, and the film thickness of the membrane was determined from SEM analysis.

  11. Novel ion imprinted polymer magnetic mesoporous silica nano-particles for selective separation and determination of lead ions in food samples.

    PubMed

    Aboufazeli, Forouzan; Zhad, Hamid Reza Lotfi; Sadeghi, Omid; Karimi, Mohammad; Najafi, Ezzatollah

    2013-12-15

    A novel Pb(II) ion imprinted polymer coated on magnetic mesoporous silica was synthesised and characterised by scanning electron microscopy (SEM), thermal gravimetric/differential thermal analysis (TG/DTA), elemental analysis (CHN) and low angle X-ray powder diffraction (XRD). The application of this sorbent was investigated in preconcentration and determination of low concentrations of lead ions. Through this study, various effective factors on determination, such as pH of the sample solution, eluent including type, concentration and volume, adsorption and desorption time which are effective on the method efficiency, were appraised. In order to investigate the selectivity of this sorbent toward Pb(II) ions, the effect of variety of ions on preconcentration and recovery of Pb(II) ions were also investigated. The limit of detection (LOD) was found to be lower than 1.3 μg L(-1) and the recovery and relative standard deviation (RSD%) of the method were higher than 97.3% and lower than 2.9%, respectively. The application of this sorbent was investigated in separation and determination of lead-contaminated food with concentration below the detection limit of flame atomic adsorption spectroscopy. Validation of the presented method was performed by analysing several standard reference materials with certified lead concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Liquid Chromatography-Selected Reaction Monitoring (LC-SRM) Approach for the Separation and Quantitation of Sialylated N-Glycans Linkage Isomers

    PubMed Central

    2015-01-01

    The study of N-linked glycans is among the most challenging bioanalytical tasks because of their complexity and variety. The presence of glycoform families that differ only in branching and/or linkage position makes the identification and quantitation of individual glycans exceedingly difficult. Quantitation of these individual glycans is important because changes in the abundance of these isomers are often associated with significant biomedical events. For instance, previous studies have shown that the ratio of α2-3 to α2-6 linked sialic acid (SA) plays an important role in cancer biology. Consequently, quantitative methods to detect alterations in the ratios of glycans based on their SA linkages could serve as a diagnostic tool in oncology, yet traditional glycomic profiling cannot readily differentiate between these linkage isomers. Here, we present a liquid chromatography-selected reaction monitoring (LC-SRM) approach that we demonstrate is capable of quantitating the individual SA linkage isomers. The LC method is capable of separating sialylated N-glycan isomers differing in α2-3 and α2-6 linkages using a novel superficially porous particle (Fused-Core) Penta-HILIC (hydrophilic interaction liquid chromatography) column. SRM detection provides the relative quantitation of each SA linkage isomer, and minimizes interferences from coeluting glycans that are problematic for UV/Fluorescence based quantitation. With our approach, the relative quantitation of each SA linkage isomer is obtained from a straightforward liquid chromatography-mass spectrometry (LC-MS) experiment. PMID:25299151

  13. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  14. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  15. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration during Plan-Wide Energy-Efficiency Assessment

    SciTech Connect

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than $1 million during the first year.

  16. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration During Plant-Wide Energy-Efficiency Assessment

    SciTech Connect

    Not Available

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than$1 million during the first year.

  17. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    NASA Astrophysics Data System (ADS)

    Makarov, G. N.; Petin, A. N.

    2016-03-01

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF6 and CF3I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF6 molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation.

  18. Extraction of 2-Phenylethanol (PEA) from Aqueous Solution Using Ionic Liquids: Synthesis, Phase Equilibrium Investigation, Selectivity in Separation, and Thermodynamic Models.

    PubMed

    Domańska, Urszula; Okuniewska, Patrycja; Paduszyński, Kamil; Królikowska, Marta; Zawadzki, Maciej; Więckowski, Mikołaj

    2017-08-17

    This study assessed the effect of ionic liquids (ILs) on extraction of 2-phenylethanol (PEA) from aqueous phase. It consists the synthesis of four new ILs, their physicochemical properties, and experimental solubility measurements in water as well as liquid-liquid phase equilibrium in ternary systems. ILs are an important new media for imaging and sensing applications because of their solvation property, thermal stability, and negligible vapor pressure. However, complex procedures and nonmiscibility with water are often required in PEA extraction. Herein, a facile and general strategy using four ILs as extraction media including the synthesis of new bis(fluorosulfonyl)imide-based ILs, 1-hexyl-methylmorpholinium bis(fluorosulfonyl)imide, [HMMOR][FSI], N-octylisoquinolinium bis(fluorosulfonyl)imide, [OiQuin][FSI], 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide, [BMPYR][FSI], and N-triethyl-N-octylammonium bis(fluorosulfonyl)imide, [N2228][FSI], were investigated. The thermal properties, density, viscosity, and surface tension of new ILs were measured. Calorimetric measurements (DSC) were used to determine the melting point and the enthalpy of melting as well as the glass transition temperature and heat capacity at glass transition of the ILs. The phase equilibrium in binary systems (IL + PEA, or water) and in ternary systems {IL (1) + PEA (2) + water (3)} at temperature T = 308.15 K and ambient pressure are reported. All systems present liquid-liquid equilibrium with the upper critical solution temperature (UCST). All ILs revealed complete miscibility with PEA. In all ternary systems immiscibility gap was observed, which classified measured systems as Treybal's type II. The two partially miscible binaries (IL + water) and (PEA + water) exist in these systems. The discussion contains the specific selectivity and the solute distribution ratio of separation for the used ILs. The commonly used NRTL model was used for the correlation of the experimental binary and

  19. Neptunium separations

    SciTech Connect

    Wild, J.F.

    1983-05-09

    Two procedures for the separation of Np are presented; the first involves separation of /sup 239/Np from irradiated /sup 238/U, and the second involves separation of /sup 237/Np from a solution representing that from a dissolved fuel element.

  20. New Approach to Selective Stem Cell Sorting: Separation of Undifferentiated Stem Cells from Differentiated Stem Cells by Using Iron Oxide Core Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kisa, Fikrullah

    An alternative approach to stem cell enrichment in another words sorting methods without changing the microenvironment of the cells to avoid the detrimental effects of present cell sorting methods by adopting iron-oxide gold (cFeAu) core-shell nanoparticles (NPs) is the focus of this thesis. Each chapter of this thesis focuses on different preliminary research in order to engender the adoption of cFeAu NPs for the selective killing of the mouse embryonic stem cells that are immunolabeled with the nanoparticles. The first part of the research focuses on the synthesis of superparamagnetic iron-oxide nanoparticles with the co-precipitation method and coating the nanoparticles with colloidal gold (cAu) to stabilize the characteristics of the nanoparticles. Detailed information regarding the chemistry of iron-oxide nanoparticles, common synthesis methods, and some of the factors that affect nanoparticle growth and synthesis have been investigated. The heating ability of the nanoparticles under an oscillating magnetic field (OMF) and the size distribution of the particles under a transmission electron microscope (TEM) are shown. The second part of the research focuses on selectively killing the RAW 264.7 macrophages which have internalized the synthesized nanoparticles in order to prove the biocompatibility and effectiveness of the nanoparticles. The particles' effect on the cells, the mechanism of killing, and the effectiveness of nanoparticles coated with colloidal gold and bovine serum albumin are investigated. The last part of the research focuses on effectively labeling the mESCs with a specific antibody conjugated to cFeAu nanoparticles that has an affinity to stage specific embryonic antigen 1 (SSEA-1). The influence of the OMF and the effects of immunolabeling on cell growth were investigated. The successful conjugation of the nanoparticles onto the cell surface is shown under scanning electron microscope. The damage inflicted by the nanoparticles on the cells

  1. 3M's Model Rewards and Recognition Program Engages Employees and Drives Energy Savings Efforts

    SciTech Connect

    2010-06-11

    3M has implemented more than 1,900 employee-inspired projects that have realized a 22% improvement in energy efficiency and yielded $100 million in energy savings. This case study provides information about 3M's approach to energy efficiency.

  2. Perspectives on the Impact of the 3M National Teaching Fellowship Program

    ERIC Educational Resources Information Center

    Smith, R.; Stockley, D.; Ahmad, A.; Hastings, A.; Kinderman, L.; Gauthier, L.

    2017-01-01

    The 3M National Teaching Fellowship (3MNTF) is the highest award in teaching in Canada and was first awarded in 1986, yet to date there has been no research measuring its impact on individual winners and their institutions. As part of this project, two focus groups were conducted at the 3MNTF Retreat in Banff, with the 2012 cohort, 3M retreat…

  3. Optimizing Electric Motor Systems at a Corporate Campus Facility (3M)

    SciTech Connect

    2002-05-01

    3M conducted an in-house motor system study in 29 buildings at the 3M Center. The company evaluated approximately 1,000 electric motors and upgraded systems, resulting in reduced electricity use and cost savings of $77,554 per year.

  4. N,N'-Dialkyl-N,N'-diaryl-1,10-phenanthroline-2,9-dicarboxamides as donor ligands for separation of rare earth elements with a high and unusual selectivity. DFT computational and experimental studies.

    PubMed

    Ustynyuk, Yu A; Borisova, N E; Babain, V A; Gloriozov, I P; Manuilov, A Y; Kalmykov, S N; Alyapyshev, M Yu; Tkachenko, L I; Kenf, E V; Ustynyuk, N A

    2015-05-01

    N,N'-Dialkyl-N,N'-diaryl-1,10-phenanthroline-2,9-dicarboxamides (IV) were predicted (DFT simulation) and then were proved experimentally to be efficient donor ligands with high and unusual selectivity for the extraction separation of lanthanides. Distribution coefficients D of lanthanide cations in two-phase aqueous solution-polar organic solvent decrease with increasing Ln(3+) atomic number. The selectivity factors SFLn1/Ln2 for adjacent lanthanide ions were found to be about 3.

  5. Preparation and evaluation of 3 m open tubular capillary columns with a zwitterionic polymeric porous layer for liquid chromatography.

    PubMed

    Peng, Li; Zhu, Manman; Zhang, Lingyi; Liu, Haiyan; Zhang, Weibing

    2016-10-01

    A 3 m zwitterionic polymeric porous layer open tubular column (3 m × 25 μm id × 375 μm od) with a polymeric porous layer thickness of 4 μm was fabricated by the copolymerization of [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide and N,N'-methylenebis(acrylamide). The effects of the diameter of the capillary, reaction temperature, and polymerization time on the preparation of the open tubular column were investigated. Characterized by scanning electron microscopy, the zwitterionic layer was observed to be rough and throughout the fused-silica capillary homogenously, which increased the phase ratio. The separation of neutral, basic, and acidic compounds demonstrates the strong hydrophilicity of the poly[2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide coating. In addition, the poly[2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide porous layer open tubular column was applied for the analysis of flavonoids from the rootstalk of licorice, revealing the potential in separating complex samples. The relative standard deviation of retention time for run-to-run (n = 5), day-to-day (n = 3), and column-to-column (n = 3) of toluene, N,N-dimethylformamide, formamide, and thiourea were below 1.2%, exhibiting good repeatability.

  6. Phospholipase C-independent effects of 3M3FBS in murine colon.

    PubMed

    Dwyer, Laura; Kim, Hyun Jin; Koh, Byoung Ho; Koh, Sang Don

    2010-02-25

    The muscarinic receptor subtype M(3) is coupled to Gq/11 proteins. Muscarinic receptor agonists such as carbachol stimulate these receptors that result in activation of phospholipase C (PLC) which hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and Ins(1,4,5)P(3). This pathway leads to excitation and smooth muscle contraction. In this study the PLC agonist, 2, 4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benezenesulfonamide (m-3M3FBS), was used to investigate whether direct PLC activation mimics carbachol-induced excitation. We examined the effects of m-3M3FBS and 2, 4, 6-trimethyl-N-(ortho-3-trifluoromethyl-phenyl)-benzenesulfonamide (o-3M3FBS), on murine colonic smooth muscle tissue and cells by performing conventional microelectrode recordings, isometric force measurements and patch clamp experiments. Application of m-3M3FBS decreased spontaneous contractility in murine colonic smooth muscle without affecting the resting membrane potential. Patch clamp studies revealed that delayed rectifier K(+) channels were reversibly inhibited by m-3M3FBS and o-3M3FBS. The PLC inhibitor, 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), did not prevent this inhibition by m-3M3FBS. Both m-3M3FBS and o-3M3FBS decreased two components of delayed rectifier K(+) currents in the presence of tetraethylammonium chloride or 4-aminopyridine. Ca(2+) currents were significantly suppressed by m-3M3FBS and o-3M3FBS with a simultaneous increase in intracellular Ca(2+). Pretreatment with U73122 did not prevent the decrease in Ca(2+) currents upon m-3M3FBS application. In conclusion, both m-3M3FBS and o-3M3FBS inhibit inward and outward currents via mechanisms independent of PLC acting in an antagonistic manner. In contrast, both compounds also caused an increase in [Ca(2+)](i) in an agonistic manner. Therefore caution must be employed when interpreting their effects at the tissue and cellular level.

  7. Phospholipase C-independent effects of 3M3FBS in murine colon

    PubMed Central

    Dwyer, Laura; Kim, Hyunjin; Koh, Byoung Ho; Koh, Sang Don

    2009-01-01

    The muscarinic receptor subtype M3 is coupled to Gq/11 proteins. Muscarinic receptor agonists such as carbachol stimulate these receptors that result in activation of phospholipase C (PLC) which hydrolyzes phosphatidylinositol 4,5-bisphosphate into diacylglycerol and Ins(1,4,5)P3. This pathway leads to excitation and smooth muscle contraction. In this study the PLC agonist, 2, 4, 6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benezenesulfonamide (m-3M3FBS), was used to investigate whether direct PLC activation mimics carbachol-induced excitation. We examined the effects of m-3M3FBS and 2, 4, 6-trimethyl-N-(ortho-3-trifluoromethyl-phenyl)-benzenesulfonamide (o-3M3FBS), on murine colonic smooth muscle tissue and cells by performing conventional microelectrode recordings, isometric force measurements and patch clamp experiments. Application of m-3M3FBS decreased spontaneous contractility in murine colonic smooth muscle without affecting the resting membrane potential. Patch clamp studies revealed that delayed rectifier K+ channels were reversibly inhibited by m-3M3FBS and o-3M3FBS. The PLC inhibitor, 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), did not prevent this inhibition by m-3M3FBS. Both m-3M3FBS and o-3M3FBS decreased two components of delayed rectifier K+ currents in the presence of tetraethylammonium chloride or 4-aminopyridine. Ca2+ currents were significantly suppressed by m-3M3FBS and o-3M3FBS with a simultaneous increase in intracellular Ca2+. Pretreatment with U73122 did not prevent the decrease in Ca2+ currents upon m-3M3FBS application. In conclusion, both m-3M3FBS and o-3M3FBS inhibit inward and outward currents via mechanisms independent of PLC acting in an antagonistic manner. In contrast, both compounds also caused an increase in [Ca2+]i in an agonistic manner. Therefore caution must be employed when interpreting their effects at the tissue and cellular level. PMID:19931239

  8. Chiral Separations

    NASA Astrophysics Data System (ADS)

    Stalcup, A. M.

    2010-07-01

    The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.

  9. Water separator

    NASA Technical Reports Server (NTRS)

    Dunn, W. F.; Austin, I. G. (Inventor)

    1964-01-01

    An apparatus for separating liquids from gases or gaseous fluids is described. Features of the apparatus include: (1) the collection and removal of the moisture in the fluid is not dependent upon, or affected by gravity; (2) all the collected water is cyclically drained from the apparatus irrespective of the attitude of the separator; and (3) a fluid actuator is utilized to remove the collected water from the separator.

  10. Nanoscale force induced size-selective separation and self-assembly of metal nanoparticles: sharp colloidal stability thresholds and hcp ordering.

    PubMed

    Zheng, Yuanhui; Lalander, Cecilia H; Bach, Udo

    2010-11-14

    A simple and versatile nanoscale force induced precipitation approach for the separation of gold nanoparticles (AuNPs) was developed. The AuNPs show sharp size-dependent colloidal stability thresholds as a function of salt concentration. Upon separation, the AuNPs were electrostatically self-assembled onto silicon substrates by fine-tuning interparticle and particle-substrate forces, forming 2D AuNP networks with a high degree of hexagonal closest pack (hcp) superstructures.

  11. Comparing the selectivity and chiral separation of d- and l- fluorenylmethyloxycarbonyl chloride protected amino acids in analytical high performance liquid chromatography and supercritical fluid chromatography; evaluating throughput, economic and environmental impact.

    PubMed

    Vera, C M; Shock, D; Dennis, G R; Farrell, W; Shalliker, R A

    2017-04-14

    The chiral separation of d- and l- FMOC amino acids was undertaken using the Lux Cellulose-1 polysaccharide based chiral column in HPLC (normal phase and reverse phase) and SFC conditions. This was done to compare the relative selectivity and separation between the three separation modes and to evaluate the potential benefits of SFC separations with regards to resolution, throughput, economic and environmental impact. It was established that the separation of d- and l- FMOC amino acids in SFC displayed behaviours that were similar to both normal phase and reversed phase, rather than distinctly one or the other. Additionally, although reversed phase conditions yielded significantly higher resolution values between enantiomers across the range of amino acids studied, improvements in selectivity in SFC via the introduction of higher concentrations of formic acid in the mobile phase allowed for better resolution per unit of time. Moreover since the SFC mobile phase is composed mostly of recyclable CO2, there is a reduction in organic solvent consumption, which minimises the economic and environmental costs. Copyright © 2017. Published by Elsevier B.V.

  12. Measurements of Radiation Exposure on Commercial Aircraft with the LIULIN-3M Instrument

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1998-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  13. The LIULIN-3M Radiometer for Measuring Particle Doses in Space and on Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1999-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  14. The LIULIN-3M Radiometer for Measuring Particle Doses in Space and on Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Tomov, B. T.; Dimitrov, P. G.; Brucker, G. J.; Obenschain, Art (Technical Monitor)

    2002-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  15. 115. JOB NO. 1347K, SHEET 3M, 1929/1930, FORD MOTOR COMPANY; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. JOB NO. 1347-K, SHEET 3M, 1929/1930, FORD MOTOR COMPANY; BOILER HOUSE ASSEMBLY PLANT; BOILER SETTING - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  16. 101. JOB NO. 1347F, SHEET 3M, 1927, ASSEMBLY BUILDING; FORD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. JOB NO. 1347-F, SHEET 3M, 1927, ASSEMBLY BUILDING; FORD MOTOR COMPANY; ONE-EIGHTH SCALE OF OFFICES - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  17. A facile synthesis of cubic (Im3m) alumina films on glass with potential catalytic activity.

    PubMed

    Mitra, Anuradha; Jana, Debrina; De, Goutam

    2012-04-04

    Thermally stable phase pure mesoporous cubic (Im3m) alumina films were synthesized on glass substrates under ambient conditions. These cubic alumina films incorporated with Au NPs exhibited excellent catalytic property.

  18. Protection Factor Testing of the 3M Breathe Easy (BE-10) Powered Air Purifying Respirator (PAPR)

    DTIC Science & Technology

    2003-09-01

    This report describes the results of the performance testing of the 3M Breathe Easy (BE-10) Powered Air Purifying Respirator. A series of tests were performed to determine the corn -oil protection factors using human subjects.

  19. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  20. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    SciTech Connect

    Makarov, G N; Petin, A N

    2016-03-31

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF{sub 6} and CF{sub 3}I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF{sub 6} molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation. (laser separation of isotopes)

  1. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  2. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu.

  3. Prenatal and early diagnosis of Chinese 3-M syndrome patients with novel pathogenic variants.

    PubMed

    Hu, Xuyun; Li, Hongdou; Gui, Baoheng; Xu, Yufei; Wang, Jin; Li, Niu; Su, Jiasun; Zhang, Shujie; Song, Yanning; Wang, Yi; Luo, Jingsi; Fan, Xin; Wang, Jian; Chen, Shaoke; Gong, Chunxiu; Shen, Yiping

    2017-09-29

    3-M syndrome is a clinically recognizable yet under-diagnosed primordial growth retardation disorder. Molecular testing for CUL7, OBSL1 or CCDC8 genes can provide confirmed diagnosis for patients at prenatal or early age. So far, the clinical and molecular features of Chinese 3-M syndrome patients have not been reported. In this article, the authors performed prenatal and early diagnosis of Chinese patients with 3-M syndrome by Next-Generation Sequencing. The authors reported six unrelated Chinese 3-M syndrome patients. Five of the six patients were diagnosed before two years of age including one prenatal case. The authors identified six novel pathogenic variants and five previously reported pathogenic variants. The authors' clinical evaluations indicated that Chinese 3-M syndrome patients share similar recognizable features as those reported in patients of other ethnic background. The authors noticed some uncommon features in this small cohort of Chinese patients such as delayed motor development at early ages, undelayed bone age and presence of lower eyelid fat pads. The authors' study of Chinese 3-M syndrome patients revealed novel mutations and clinical phenotypes. Copyright © 2017. Published by Elsevier B.V.

  4. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  5. Mist separator

    SciTech Connect

    Moran, T.M.

    1984-04-17

    An apparatus for the removal of particulates from a flowing gas stream and a process for its use are provided. A perforated screen separator formed as a plate having parallel rows of perforations formed by pushing alternating strips of the plate material forward and backward from the plane of the plate is used. The perforated screen separator may be used alone or with a fiber bed mist eliminator for increased particulate removal.

  6. Selective Single-Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic-Liquid-Water-Ionic-Liquid Solvent Extraction System.

    PubMed

    Vander Hoogerstraete, Tom; Blockx, Jonas; De Coster, Hendrik; Binnemans, Koen

    2015-08-10

    In a conventional solvent extraction system, metal ions are distributed between two immiscible phases, typically an aqueous and an organic phase. In this paper, the proof-of-principle is given for the distribution of metal ions between three immiscible phases, two ionic liquid phases with an aqueous phase in between them. Three-liquid-phase solvent extraction allows separation of a mixture of three metal ions in a single step, whereas at least two steps are required to separate three metals in the case of two-liquid-phase solvent extraction. In the triphasic system, the lower organic phase is comprised of the ionic liquid betainium- or choline bis(trifluoromethylsulfonyl)imide, whereas the upper organic phase is comprised of the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide. The triphasic system was used for the separation of a mixture of tin(II), yttrium(III), and scandium(III) ions.

  7. Development of separation technique of sodium nitrate from low-level radioactive liquid waste using electrodialysis with selective ion-exchange membranes

    SciTech Connect

    Keita Irisawa; Akinori Nakagawa; Takashi Onizawa; Takafumi Kogawara; Keiji Hanada; Yoshihiro Meguro

    2013-07-01

    An advanced method, in which electrodialysis separation of sodium nitrate and decomposition of nitrate ion are combined, has been developed to remove nitrate ion from low-level radioactive liquid wastes including nitrate salts of high concentration. An engineering scale apparatus with two electro-dialytic devices, in which the sodium and nitrate ions were separately removed by each device, was produced on the basis of the results of fundamental investigation previously reported, and the performance of the apparatus was tested. Both the ions were successfully removed at the same time, though these ions were separately transferred using two electro-dialytic devices. And also effect of several experimental parameters such as current and temperature on current efficiency of both the ions of each device was investigated. (authors)

  8. Hydrophilic 2,9-bis-triazolyl-1,10-phenanthroline ligands enable selective Am(iii) separation: a step further towards sustainable nuclear energy.

    PubMed

    Edwards, Alyn C; Mocilac, Pavle; Geist, Andreas; Harwood, Laurence M; Sharrad, Clint A; Burton, Neil A; Whitehead, Roger C; Denecke, Melissa A

    2017-05-02

    The first hydrophilic, 1,10-phenanthroline derived ligands consisting of only C, H, O and N atoms for the selective extraction of Am(iii) from spent nuclear fuel are reported herein. One of these 2,9-bis-triazolyl-1,10-phenanthroline (BTrzPhen) ligands combined with a non-selective extracting agent, was found to exhibit process-suitable selectivity for Am(iii) over Eu(iii) and Cm(iii), providing a clear step forward.

  9. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  10. The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.

    1976-01-01

    A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.

  11. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems.

    PubMed

    Hwang, Ho Jung; Chi, Won Seok; Kwon, Ohchan; Lee, Jin Goo; Kim, Jong Hak; Shul, Yong-Gun

    2016-10-05

    Rechargeable secondary zinc-air batteries with superior cyclic stability were developed using commercial polypropylene (PP) membrane coated with polymerized ionic liquid as separators. The anionic exchange polymer was synthesized copolymerizing 1-[(4-ethenylphenyl)methyl]-3-butylimidazolium hydroxide (EBIH) and butyl methacrylate (BMA) monomers by free radical polymerization for both functionality and structural integrity. The ionic liquid induced copolymer was coated on a commercially available PP membrane (Celguard 5550). The coat allows anionic transfer through the separator and minimizes the migration of zincate ions to the cathode compartment, which reduces electrolyte conductivity and may deteriorate catalytic activity by the formation of zinc oxide on the surface of the catalyst layer. Energy dispersive X-ray spectroscopy (EDS) data revealed the copolymer-coated separator showed less zinc element in the cathode, indicating lower zinc crossover through the membrane. Ion coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed over 96% of zincate ion crossover was reduced. In our charge/discharge setup, the constructed cell with the ionic liquid induced copolymer casted separator exhibited drastically improved durability as the battery life increased more than 281% compared to the pure commercial PP membrane. Electrochemical impedance spectroscopy (EIS) during the cycle process elucidated the premature failure of cells due to the zinc crossover for the untreated cell and revealed a substantial importance must be placed in zincate control.

  12. The 1:3M geologic map of Mercury: progress and updates

    NASA Astrophysics Data System (ADS)

    Galluzzi, Valentina; Guzzetta, Laura; Mancinelli, Paolo; Giacomini, Lorenza; Malliband, Christopher C.; Mosca, Alessandro; Wright, Jack; Ferranti, Luigi; Massironi, Matteo; Pauselli, Cristina; Rothery, David A.; Palumbo, Pasquale

    2017-04-01

    After the end of Mariner 10 mission a 1:5M geologic map of seven of the fifteen quadrangles of Mercury [Spudis and Guest, 1988] was produced. The NASA MESSENGER mission filled the gap by imaging 100% of the planet with a global average resolution of 200 m/pixel and this led to the production of a global 1:15M geologic map of the planet [Prockter et al., 2016]. Despite the quality gap between Mariner 10 and MESSENGER images, no global geological mapping project with a scale larger than 1:5M has been proposed so far. Here we present the status of an ongoing project for the geologic mapping of Mercury at an average output scale of 1:3M based on the available MESSENGER data. This project will lead to a fuller grasp of the planet's stratigraphy and surface history. Completing such a product for Mercury is an important goal in preparation for the forthcoming ESA/JAXA BepiColombo mission to aid selection of scientific targets and to provide context for interpretation of new data. At the time of this writing, H02 Victoria [Galluzzi et al., 2016], H03 Shakespeare [Guzzetta et al., 2016] and H04 Raditladi [Mancinelli et al., 2016] have been completed and H05 Hokusai [Rothery et al., 2017], H06 Kuiper [Giacomini et al., 2017], H07 Beethoven and H10 Derain [Malliband et al., 2017] are being mapped. The produced geologic maps were merged using the ESRI ArcGIS software adjusting discontinuous contacts along the quadrangle boundaries. Contact discrepancies were reviewed and discussed among the mappers of adjoining quadrangles in order to match the geological interpretation and provide a unique consistent stratigraphy. At the current stage, more than 20% of Mercury has now a complete 1:3M map and more than 40% of the planet will be covered soon by the maps that are being prepared. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0). References Galluzzi V. et al. (2016). Geology of the Victoria Quadrangle (H

  13. Hydrogen separation process

    DOEpatents

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  14. Application of a beta-cyclodextrin sulfate-immobilized precolumn to selective on-line enrichment and separation of heparin-binding proteins by column-switching high-performance liquid chromatography.

    PubMed

    Ishimura, K; Fukunaga, K; Irie, T; Uekama, K; Ohta, T; Nakamura, H

    1997-05-09

    A column-switching high-performance liquid chromatography (HPLC) system which consisted of a beta-cyclodextrin (beta-CD) sulfate-immobilized hydrophilic vinyl-polymer gel precolumn and a reversed-phase analytical column was developed for the selective on-line enrichment and separation of heparin-binding proteins. Of 15 proteins investigated, 10 proteins having heparin-binding activity were retained on the beta-CD sulfate precolumn almost quantitatively, in contrast 5 proteins having no heparin-binding activity were not retained. Calibration graphs for basic fibroblast growth factor constructed at various sample volumes were nearly identical, indicating that the protein could be enriched by this system. The system was successfully used for the selective separation of lysozyme in egg white. The beta-CD sulfate-immobilized precolumn showed no loss of analytical performance over 2 years during which about 400 samples were analysed.

  15. An equilibrium model for ligand-modified micellar-enhanced ultrafiltration. Selective separation of metal ions using iminoacetic substituted polyamines and a theoretical model for the titration behavior of polyamines

    SciTech Connect

    Dharmawardana, Udeni Rajaratna

    1992-01-01

    This thesis consists of three chapters. Chapter 1, An equilibrium model for ligand-modified micellar-enhanced ultrafiltration, describes a theoretical model and experimental investigations which used the semi-equilibrium-dialysis method with N-n-dodecyl iminodiacetic acid as the ligand. In Chapter 2, Selective separation of metal ions using iminoacetic substituted polyamines, polyamines with a substituted ligand group are synthesized and used in investigating selective separation of copper ions from aqueous solution. In Chapter 3, A theoretical model for the titration behavior of polyamines, a novel approach to explain the titration behavior of polymeric amines based on the binding behavior of counterions is described. The application of this study is to the investigation of inexpensive and efficient methods of industrial waste water treatment.

  16. Manipulation of electronic structure via alteration of local orbital environment in [(SrIrO3)m,(SrTi O3)] (m =1 ,2 ,and ∞ ) superlattices

    NASA Astrophysics Data System (ADS)

    Kim, So Yeun; Kim, Choong H.; Sandilands, L. J.; Sohn, C. H.; Matsuno, J.; Takagi, H.; Kim, K. W.; Lee, Y. S.; Moon, S. J.; Noh, T. W.

    2016-12-01

    We investigated the electronic structure of [(SrIrO3)m,(SrTi O3)] (m =1 ,2 ,and ∞ ) superlattice (SL) thin films with optical spectroscopy and first principles calculations. Our optical results confirmed the existence of the Jeff= 1 /2 states in SL samples, similar to the bulk Ruddlesden-Popper series S rn+1I rnO3 n +1 iridates. Apart from this similarity, in the SL samples, we observed red shifts of the characteristic optical excitations in the Jeff= 1 /2 state and an enhancement of the low-energy spectral weight, which implies a reduction in the effective electron correlation for bands near the Fermi energy. The density functional theory plus Coulomb interactions (DFT +U ) calculations suggested that the SrTi O3 layer intervened between SrIr O3 layers in the SLs activated additional hopping channels between the Ir ions, thus increasing the bandwidth and reducing the effective strength of the correlations. This paper demonstrates that fabrication of iridium-based heterostructures can be used to finely tune electronic structures via alteration of their local orbital environments.

  17. Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules

    SciTech Connect

    Madhab, Das; He, Yabing; Kim, Jaheon; Guo, Qunsheng; Zhao, Cong-Gui; Hong, Kunlun; Xiang, Sheng-Chang; Zhang, Zhangjing; Thomas, K Mark; Krishna, Rajamani; Chen, Banglin

    2012-01-01

    Four porous isostructural mixed-metal-organic frameworks (M'MOFs) have been synthesized and structurally characterized. The pores within these M'MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly selective separation of chiral alcohols 1-phenylethanol (PEA), 2-butanol (BUT), and 2-pentanol (2-PEN) with the highest ee up to 82.4% but also to lead highly selective separation of achiral C{sub 2}H{sub 2}/C{sub 2}H{sub 4} separation. The potential application of these M'MOFs for the fixed bed pressure swing adsorption (PSA) separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} has been further examined and compared by the transient breakthrough simulations in which the purity requirement of 40 ppm in the outlet gas can be readily fulfilled by the fixed bed M'MOF-4a adsorber at ambient conditions.

  18. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  19. Separator sub

    SciTech Connect

    Hayatdavoudi, A.

    1984-10-09

    Apparatus and methods are disclosed for drilling a well. A separator sub is used to separate a stream of drilling mud into a less dense first portion and more dense second portion. The less dense first portion of the stream of drilling mud is directed downward to a drill bit so that the drilling mud adjacent the drill bit has a density less than an initial density of the stream of drilling mud. The more dense second portion of the stream of drilling mud is ejected into a well annulus with an upward component of velocity and thereby reduces a hydrostatic drilling mud pressure adjacent the drill bit.

  20. Selective separation and enrichment of glibenclamide in health foods using surface molecularly imprinted polymers prepared via dendritic grafting of magnetic nanoparticles.

    PubMed

    Wang, Ruoyu; Wang, Yang; Xue, Cheng; Wen, Tingting; Wu, Jinhua; Hong, Junli; Zhou, Xuemin

    2013-03-01

    In this paper, the novel surface molecularly imprinted polymers based on dendritic-grafting magnetic nanoparticles were developed to enrich and separate glibenclamide in health foods. The density functional theory method was used to give theoretical directions to the synthesis of molecularly imprinted polymers. The polymers were prepared by using magnetic nanoparticles as supporting materials, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. The characteristics of magnetic nanoparticles and polymers were measured by transmission electron microscope and SEM, respectively. The enriching ability of molecularly imprinted polymers was measured by Freundlich Isotherm. The molecularly imprinted polymers were used as dispersive SPE materials to enrich, separate, and detect glibenclamide in health foods by HPLC. The average recoveries of glibenclamide in spiked health foods were 81.46-93.53% with the RSD < 4.07%.

  1. Carbogenic molecular sieves for reaction and separation by design: A novel approach to shape selective super base, super acid and catalytic membranes. Final report

    SciTech Connect

    Foley, Henry C.

    2002-03-18

    This report details the findings of three years of research plus one year of a no-cost extension. Primary results are the work with supported nanoporous carbon membranes for separation and reaction as well as with cesium-nanoporous carbon catalysts. The work resulted in 17 plus 2 papers (2 are in progress) and partial or full support for five Ph.D. students. Two patents were filed based on this research.

  2. 3M Tecra Listeria Visual Immunoassay: AOAC Official Methods 995.22 and 2002.09.

    PubMed

    Benesh, Deann L; Crowley, Erin S; Bird, Patrick M

    2013-01-01

    A validation study of the 3M Tecra Listeria Visual Immunoassay (VIA; 3M Food Safety, St. Paul, MN) was conducted at Q Laboratories, Inc., Cincinnati, OH. The 3M Tecra Listeria VIA method was compared to the Health Canada MFHPB-30 reference method for the analysis of five ready-to-eat (RTE) meats: deli turkey, hot dogs, liver pate, raw fermented sausage, and deli ham, and on a stainless steel environmental surface. Twenty replicates of each of the five food matrixes were analyzed at a low and a high inoculum level. The low-level test portions were inoculated with 0.2-2 CFU/25 g, and the high-level test portions with 2-5 CFU/25 g. In addition, 20 replicates of one environmental surface were analyzed at a low and a high inoculum level. The low-level sampling area was inoculated with 0.2-2 CFU/5 cm2, and the high-level area with 2-5 CFU/5 cm2. Five control replicates were also analyzed at 0 CFU/25 g (uninoculated) for the foods and at 0 CFU/5 cm2 for the environmental sampling area. There was no significant difference in the number of positives detected by the 3M Tecra Listeria VIA and the Health Canada MFHPB-30 reference method for four of the RTE meats and the stainless steel environmental surface analyzed in this study. For the raw, fermented sausage, there was a significant difference in the number of positives detected for the high inoculum level by the 3M Tecra Listeria VIA and the Health Canada MFHPB-30 reference method, with the 3M Tecra Listeria VIA method detecting more positives.

  3. Development of selective comprehensive two-dimensional liquid chromatography with parallel first-dimension sampling and second-dimension separation--application to the quantitative analysis of furanocoumarins in apiaceous vegetables.

    PubMed

    Larson, Elliot D; Groskreutz, Stephen R; Harmes, David C; Gibbs-Hall, Ian C; Trudo, Sabrina P; Allen, Robert C; Rutan, Sarah C; Stoll, Dwight R

    2013-05-01

    Various implementations of two-dimensional high-performance liquid chromatography are increasingly being developed and applied to the analysis of complex materials, including those encountered in the analysis of foods, beverages, and nutraceuticals. Previously, we introduced the concept of selective comprehensive two-dimensional liquid chromatography (sLC × LC) as a hybrid between the more conventional, but extreme opposite sampling modes of heartcutting (LC-LC) and fully comprehensive (LC × LC) 2D separation. The sLC × LC approach breaks the link between first dimension ((1)D) sampling time and second dimension ((2)D) analysis time that is faced in LC × LC and allows very rapid (as low as 1 s) sampling of highly efficient (1)D separations, while at the same time allowing efficient (2)D separations on the timescale of tens of seconds. In this paper, we improve upon our previous sLC × LC work by demonstrating the ability to perform the processes of (1)D sampling and (2)D separation in parallel. This significantly improves the flexibility of the technique and allows targeted analysis of analytes that elute close together in time in the (1)D separation. To demonstrate the value of this added capability, we have developed a sLC × LC method using multi-wavelength ultraviolet absorbance detection for the quantitative analysis of six target furanocoumarin compounds in extracts of celery, parsley, and parsnips. We show that (2)D separations of (1)D effluent containing the target compounds of interest reveal the presence of unanticipated interferent peaks that would otherwise compromise the quantitative accuracy of the method. We also demonstrate the application of the chemometric method iterative key set factor analysis with alternating least-squares to sLC × LC to mathematically resolve target compounds that are only slightly separated chromatographically but not sufficiently resolved for accurate quantitation.

  4. Plasma separation

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    This process employs a thermal plasma for the separation and production of oxygen and metals. It is a continuous process that requires no consumables and relies entirely on space resources. The almost complete absence of waste renders it relatively clean. It can be turned on or off without any undesirable side effects or residues. The prime disadvantage is its high power consumption.

  5. SEPARATION PROCESS

    DOEpatents

    Stoughton, R.W.

    1961-10-24

    A process for separating tetravalent plutonium from aqueous solutions and from niobium and zirconium by precipitation on lanthanum oxalate is described. The oxalate ions of the precipitate may be decomposed by heating in the presence of an oxidizing agent, forming a plutonium compound readily soluble in acid. (AEC)

  6. Model experience in the Langley 0.3-m transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Kilgore, R. A.

    1981-01-01

    The model building, development, and testing experience gained during 8 years of operation of the 0.3-m Transonic Cryogenic Tunnel (TCT) is summarized. The summary is divided into four portions: (1) models tested in the 0.3-m TCT's original octagonal test section; (2) models tested in the present two dimensional test section; (3) models tested as a part of tunnel calibration and the development of advanced technology airfoils; and (4) development of a new way to construct two dimensional airfoil models. Design requirements imposed on the models by high Reynolds number testing at cryogenic temperatures are reviewed.

  7. Flux growth of MBO3 (M=Fe, Ga, In, Sc, Lu) single crystals

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, S. G.; Rudenko, V. V.

    2016-12-01

    The temperatures for saturation of the MBO3 (M=Fe, Ga, In, Sc, Lu) compounds in the M2O3-B2O3- (70 PbO-30 PbF2, wt%) solvents are determined. The growth rates of FeBO3 and GaBO3 crystal faces as functions of the flux supercooling are obtained. It is demonstrated that the bulk FeBO3 and GaBO3 crystals can be grown in a narrow flux supercooling range using a controlled seeding technique. The MBO3 (M=In, Sc, Lu) crystals in the form of (111) plates are synthesized by spontaneous crystallization.

  8. Separation of p-divinylbenzene by selective room-temperature adsorption inside Mg-CUK-1 prepared by aqueous microwave synthesis.

    PubMed

    Saccoccia, Beau; Bohnsack, Alisha M; Waggoner, Nolan W; Cho, Kyung Ho; Lee, Ji Sun; Hong, Do-Young; Lynch, Vincent M; Chang, Jong-San; Humphrey, Simon M

    2015-04-27

    A new Mg(II) -based version of the porous coordination polymer CUK-1 with one-dimensional pore structure was prepared by microwave synthesis in water. Mg-CUK-1 is moisture-stable, thermally stable up to 500 °C, and shows unusual reversible soft-crystal behavior: dehydrated single crystals of the material selectively adsorb a range of organic molecules at ambient temperature and pressure. Both polar and apolar aromatic compounds, including pyridine, benzene, p-xylene, and p-divinylbenzene (p-DVB), are all readily adsorbed, while other isomers from complex mixtures of xylenes or DVBs are selectively excluded. The solvent-loaded structures have been studied by single-crystal X-ray diffraction. Time-dependent liquid sorption experiments using commercially available DVB demonstrate a high and rapid selective adsorption of p-DVB and exclusion of m-DVB and ethylvinylbenzene isomers.

  9. METHOD OF SEPARATION

    DOEpatents

    Boyd, G.E.

    1958-08-26

    A process is presented fer separating uranium, plutonium, and fission products ions from uranyl nitrate solutions having a pH value between 1 and 3 obtained by dissolving neutron irradiated uranium. The method consists in passing such solutions through a bed of cation exchange resin, which may be a sulfonated phenol formaidehyde type. Following the adsorption step the resin is first treated with a solution of 0.2M to 0.3M sulfuric acid to desorb the uranium. Fission product ions are then desorbed by treating the resin in phosphoric acid and 1M in nitric acid. Lastly, the plutonium may be desorbed by treating the resin with a solution approximately 0.8M in phosphoric acid and 1M in nitric acid.

  10. Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics

    NASA Astrophysics Data System (ADS)

    Meng, Bin; Fang, Gang; Fu, Yingying; Xie, Zhiyuan; Wang, Lixiang

    2013-12-01

    Solution-processable polymer solar cells show great promise for providing a cost-effective route to create lightweight and flexible solar energy conversion devices. The photoactive layer comprising the conjugated polymer donor and fullerene derivative acceptor must be optimized to form bicontinuous nanoscale phase separation in order for efficient exciton dissociation and charge collection due to the short exciton diffusion length of organic semiconductors. The donor polymer poly[9-(heptadecan-9-yl)-9H-carbazole- 2,7-diyl-alt-(5,6-bis(hexyloxy)-4,7-di(thiophen-2- yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl] (PCDTBT-OR) has a deeper highest occupied molecular orbital level compared to its counterpart PCDTBT, and shows promise in increasing the open-circuit voltage and power conversion efficiency (PCE) of polymer solar cells. The phase separation evolution of the PCDTBT-OR:PC71BM blend with various weight ratios under tetrahydrofuran (THF) vapor annealing and its influence on the photovoltaic performance is investigated in detail. It is found that THF vapor annealing can promote the acceptor PC71BM aggregation from the donor PCDTBT-OR matrix to form nanoscale donor/acceptor phase separation for efficient exciton dissociation and charge collection depending on the donor/acceptor weight ratio and the annealing time. The THF vapor-annealed PCDTBT-OR:PC71BM solar cells exhibit remarkable enhancement, with a PCE of 7.01% compared to 3.25% of the as-cast solar cells with the same active layer thickness. This work provides a general methodology to construct nano-interpenetrating networks for homogeneous polymer/fullerene blends and is potentially applicable to the roll-to-roll manufacturing of polymer solar cells.

  11. Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics.

    PubMed

    Meng, Bin; Fang, Gang; Fu, Yingying; Xie, Zhiyuan; Wang, Lixiang

    2013-12-06

    Solution-processable polymer solar cells show great promise for providing a cost-effective route to create lightweight and flexible solar energy conversion devices. The photoactive layer comprising the conjugated polymer donor and fullerene derivative acceptor must be optimized to form bicontinuous nanoscale phase separation in order for efficient exciton dissociation and charge collection due to the short exciton diffusion length of organic semiconductors. The donor polymer poly[9-(heptadecan-9-yl)-9H-carbazole- 2,7-diyl-alt-(5,6-bis(hexyloxy)-4,7-di(thiophen-2- yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl] (PCDTBT-OR) has a deeper highest occupied molecular orbital level compared to its counterpart PCDTBT, and shows promise in increasing the open-circuit voltage and power conversion efficiency (PCE) of polymer solar cells. The phase separation evolution of the PCDTBT-OR:PC71BM blend with various weight ratios under tetrahydrofuran (THF) vapor annealing and its influence on the photovoltaic performance is investigated in detail. It is found that THF vapor annealing can promote the acceptor PC71BM aggregation from the donor PCDTBT-OR matrix to form nanoscale donor/acceptor phase separation for efficient exciton dissociation and charge collection depending on the donor/acceptor weight ratio and the annealing time. The THF vapor-annealed PCDTBT-OR:PC71BM solar cells exhibit remarkable enhancement, with a PCE of 7.01% compared to 3.25% of the as-cast solar cells with the same active layer thickness. This work provides a general methodology to construct nano-interpenetrating networks for homogeneous polymer/fullerene blends and is potentially applicable to the roll-to-roll manufacturing of polymer solar cells.

  12. Separation science and technology

    SciTech Connect

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-12-31

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO{sub 2} thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO{sub 2} films in reaction with chlorophenol.

  13. Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m).

    PubMed

    Yaghmur, Anan; de Campo, Liliana; Salentinig, Stefan; Sagalowicz, Laurent; Leser, Martin E; Glatter, Otto

    2006-01-17

    In our recent work, we reported on the effect of varying temperature and solubilizing tetradecane (TC) on the structural transitions observed in dispersed particles based on the monolinolein (MLO)-water-TC system. At a given temperature, the addition of TC induces a transition of the internal structure from the bicontinuous cubic phase, Pn3m, to the reversed hexagonal, H2, and to the isotropic liquid phase (water-in-oil (W/O) microemulsions). Our present study focuses on the discovery of a Fd3m phase (reversed discontinuous micellar cubic), which is formed in the MLO-water-TC system at a specific TC/MLO weight ratio. It is situated between the H2 and the isotropic liquid phase (W/O microemulsion). Remarkably, it is not found in the absence of TC by increasing the temperature. The Fd3m structure was investigated in detail by means of small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). The present work proves that the structural transformation in the dispersed particles from H2 (hexosomes) to the W/O microemulsion system (emulsified microemulsion (EME)) is indirect and it occurs gradually via an emulsified intermediate phase. Specifically, in addition to the nanostructured aqueous dispersions described above, we present new TC-loaded aqueous dispersions with a confined intermediate phase, which is a discontinuous micellar cubic phase of the symmetry Fd3m. We denoted this type of emulsified particles as "micellar cubosomes".

  14. A Study of the Rating Structure Requirements for the Aviation 3M Data Analyst.

    ERIC Educational Resources Information Center

    Heinzel, Joseph R.; May, R. V., Jr.

    The purpose of this research was to determine the optimum means of identifying personnel qualified to perform Aviation 3M Data Analysis. Resolution of this objective involved the identification of numerous problem areas contributing to the instability of the Data Analysis work force and the scarcity of personnel in that work force. The approach…

  15. CDKN3 mRNA as a Biomarker for Survival and Therapeutic Target in Cervical Cancer

    PubMed Central

    Barrón, Eira Valeria; Roman-Bassaure, Edgar; Sánchez-Sandoval, Ana Laura; Espinosa, Ana María; Guardado-Estrada, Mariano; Medina, Ingrid; Juárez, Eligia; Alfaro, Ana; Bermúdez, Miriam; Zamora, Rubén; García-Ruiz, Carlos; Gomora, Juan Carlos; Kofman, Susana; Pérez-Armendariz, E. Martha; Berumen, Jaime

    2015-01-01

    The cyclin-dependent kinase inhibitor 3 (CDKN3) gene, involved in mitosis, is upregulated in cervical cancer (CC). We investigated CDKN3 mRNA as a survival biomarker and potential therapeutic target for CC. CDKN3 mRNA was measured in 134 CC and 25 controls by quantitative PCR. A 5-year survival study was conducted in 121 of these CC patients. Furthermore, CDKN3-specific siRNAs were used to investigate whether CDKN3 is involved in proliferation, migration, and invasion in CC-derived cell lines (SiHa, CaSki, HeLa). CDKN3 mRNA was on average 6.4-fold higher in tumors than in controls (p = 8 x 10−6, Mann-Whitney). A total of 68.2% of CC patients over expressing CDKN3 gene (fold change ≥ 17) died within two years of diagnosis, independent of the clinical stage and HPV type (Hazard Ratio = 5.0, 95% CI: 2.5–10, p = 3.3 x 10−6, Cox proportional-hazards regression). In contrast, only 19.2% of the patients with lower CDKN3 expression died in the same period. In vitro inactivation of CDKN3 decreased cell proliferation on average 67%, although it had no effect on cell migration and invasion. CDKN3 mRNA may be a good survival biomarker and potential therapeutic target in CC. PMID:26372210

  16. A DS106 Thing Happened on the Way to the 3M Tech Forum

    ERIC Educational Resources Information Center

    Lockridge, Rochelle; Levine, Alan; Funes, Mariana

    2014-01-01

    This case study illustrates how DS106, a computer science course in Digital Storytelling from the University of Mary Washington (UMW) and accessible as an open course on the web, is being explored in a corporate environment at 3M, an American multinational corporation based in St. Paul, Minnesota, to build community, collaboration, and more…

  17. TEA3M: A System for Infusing Technology into Teacher Education.

    ERIC Educational Resources Information Center

    Hirumi, Atsusi; And Others

    To meet the challenges of preparing teachers for the information-based society, the University of Houston-Clear Lake (Texas) in collaboration with the Houston schools, IBM, and NASA, developed the Teacher Education Advancing Academic Achievement Model (TEA3M). This paper addresses the integration of technology and innovative instructional…

  18. Attenuation of kindling-induced decreases in NT-3 mRNA by thyroid hormone depletion.

    PubMed

    Kim, S Y; Smith, M A; Post, R M; Rosen, J B

    1998-02-01

    The expression of neurotrophins is altered by amygdala kindled seizures. Because thyroid hormone can regulate the transcription of neurotrophins, we asked whether thyroid hormone regulates neurotrophin mRNA expression following amygdala kindling. Rats with electrodes implanted in the basolateral nucleus of the amygdala were either depleted of thyroid hormone or given excess thyroid hormone. The rats were then kindled daily until they had one generalized seizure. The brains were removed 4 h after the seizure and processed for in situ hybridization of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) mRNAs. In non-kindled rats, thyroid hormone depletion increased the levels of BDNF mRNA in the paraventricular nucleus of the hypothalamus and the pituitary gland. NGF and NT-3 mRNA expression was not altered. In addition, thyroid hormone manipulations had no effect on kindling or on kindling-induced BDNF and NGF mRNA. However, the kindling-induced decrease in NT-3 mRNA expression in the dentate gyrus granule cell layer was significantly attenuated by thyroid hormone depletion. These effects were reversed by thyroid hormone replacement. The results indicate that thyroid hormone plays a modulatory role in the seizure-induced changes of NT-3 mRNA expression found in the dentate gyrus.

  19. CDKN3 mRNA as a Biomarker for Survival and Therapeutic Target in Cervical Cancer.

    PubMed

    Barrón, Eira Valeria; Roman-Bassaure, Edgar; Sánchez-Sandoval, Ana Laura; Espinosa, Ana María; Guardado-Estrada, Mariano; Medina, Ingrid; Juárez, Eligia; Alfaro, Ana; Bermúdez, Miriam; Zamora, Rubén; García-Ruiz, Carlos; Gomora, Juan Carlos; Kofman, Susana; Pérez-Armendariz, E Martha; Berumen, Jaime

    2015-01-01

    The cyclin-dependent kinase inhibitor 3 (CDKN3) gene, involved in mitosis, is upregulated in cervical cancer (CC). We investigated CDKN3 mRNA as a survival biomarker and potential therapeutic target for CC. CDKN3 mRNA was measured in 134 CC and 25 controls by quantitative PCR. A 5-year survival study was conducted in 121 of these CC patients. Furthermore, CDKN3-specific siRNAs were used to investigate whether CDKN3 is involved in proliferation, migration, and invasion in CC-derived cell lines (SiHa, CaSki, HeLa). CDKN3 mRNA was on average 6.4-fold higher in tumors than in controls (p = 8 x 10-6, Mann-Whitney). A total of 68.2% of CC patients over expressing CDKN3 gene (fold change ≥ 17) died within two years of diagnosis, independent of the clinical stage and HPV type (Hazard Ratio = 5.0, 95% CI: 2.5-10, p = 3.3 x 10-6, Cox proportional-hazards regression). In contrast, only 19.2% of the patients with lower CDKN3 expression died in the same period. In vitro inactivation of CDKN3 decreased cell proliferation on average 67%, although it had no effect on cell migration and invasion. CDKN3 mRNA may be a good survival biomarker and potential therapeutic target in CC.

  20. Gas separating

    DOEpatents

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.