Science.gov

Sample records for 3m vacuum ultraviolet

  1. Vacuum ultraviolet holography

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.; Harris, S. E.; Young, J. F.

    1974-01-01

    The authors report the first demonstration of holographic techniques in the vacuum ultraviolet spectral region. Holograms were produced with coherent 1182 A radiation. The holograms were recorded in polymethyl methacrylate and read out with an electron microscope. A holographic grating with a fringe spacing of 836 A was produced and far-field Fraunhofer holograms of sub-micron particles were recorded.

  2. A vacuum ultraviolet spectrophotometric system

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Keffer, Charles E.; Zukic, Muamer

    1993-01-01

    The development of a vacuum ultraviolet spectrophotometric system for measuring transmittance and reflectance at variable angles is presented. Using various detectors and sources, the spectrophotometric system has been used for wavelengths from 80 nm to 300 nm with optical components up to 80 mm in diameter. The capability exists to make measurements through the visible range.

  3. Z-DNA: vacuum ultraviolet circular dichroism

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.; Keck, P.C.; Takacs, P.Z.

    1981-08-01

    In concentrated salt or ethanolic solutions, the self-complementary copolymer poly(dG-dC)-poly(dG-dC) forms a left-handed double-helical structure that has been termed Z-DNA. The first evidence for this structure came from changes observed in the circular dichroism (CD) spectrum between 230 and 300 nm for low- and high-salt solutions. In 3 M NaCl, the CD spectrum is approximately inverted compared to the B-form spectrum observed in low salt solution. We measured the vacuum ultraviolet CD spectrum of poly(dG-dC)-poly(dG-dC) down to 180 nm under conditions in which the 230- to 300-nm spectrum is inverted. Below 200 nm, where the B form exhibits the large positive peak at 187 nm that is characteristic of right-handed double-helical DNAs, the Z form exhibits a large negative peak at 194 nm and a positive band below 186 nm. Therefore, the Z-form vacuum ultraviolet CD spectrum resembles an inverted and red-shifted B-form spectrum. The magnitudes of the differences observed between the B and Z forms in the CD spectrum below 200 nm are about 10 times greater than those observed between 230 and 300 nm. The vacuum ultraviolet CD spectrum of poly(dG-dC)-poly(dG-dC) is 3 M C/sub 2/O/sub 4/ also is inverted compared to the B-form spectrum; however, between 230 and 300 nm, it is nonconservative with a negative maximum at 290 nm and a weak positive CD signal above 300 nm, presumably reflecting differential light scattering and indicating the existence of molecular aggregates. Our results suggest that the vacuum ultraviolet CD spectrum is sensitive to the handedness of doublehelical DNA structures.

  4. Z-DNA Vacuum ultraviolet circular dichroism

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.; Keck, P.C.; Takacs, P.Z.

    1981-08-01

    In concentrated salt or ethanolic solutions, the self-complementary copolymer poly(dG-dC).poly(dG-dC) forms a left-handed double-helical structure that has been termed ZDNA. The first evidence for this structure came from changes observed in the circular dichroism (CD) spectrum between 230 and 300 nm for low- and high-salt solutions (Pohl, F.M. and Jovin, T.M. (1972) J. Mol. Biol. 67, 675-696). In 3 M NaCl, the CD spectrum is approximately inverted compared to the B-form spectrum observed in low-salt solution. We measured the vacuum ultraviolet CD spectrum of poly(dG-dC).poly(dG-dC) down to 180 nm under conditions in which the 230 to 300 nm spectrum is inverted. Below 200 nm, where the B form exhibits the large positive peak at 187 nm that is characteristic of right-handed double-helical DNAs, the Z form exhibits a large negative peak at 194 nm and a positive band below 186 nm. Therefore, the Z-form vacuum ultraviolet CD spectrum resembles an inverted and red-shifted B-form spectrum. The magnitudes of the differences observed between the Band Z forms in the CD spectrum below 200 nm are about 10 times greater than those observed between 230 and 300 nm. The vacuum ultraviolet CD spectrum of poly(dG-dC).poly(dG-dC) in 3 M Cs/sub 2/SO/sub 4/ also is inverted compared to the B-form spectrum; however, between 230 and 300 nm, it is nonconservative with a negative maximum at 290 nm and a weak positive CD signal above 300 nm, presumably reflecting differential light scattering and indicating the existence of molecular aggregates. Our results suggest that the vacuum ultraviolet CD spectrum is sensitive to the handedness of double-helical DNA structures.

  5. Vacuum-Ultraviolet Intensity-Calibration Standard

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; Franklin, B. O.

    1986-01-01

    Portable light source enables calibration of spectrometers. Vacuum Ultraviolet Light (40 to 200 nm) produced in electron-impact emission chamber by leading beam of gas across electron beam. Photons observed at right angles to electron-beam axis. Previously, there were blackbody standards in visible and near ultraviolet, but no intensity-calibration standards in VUV.

  6. Vacuum Ultraviolet Studies of Molecular Dynamics

    DTIC Science & Technology

    1992-01-15

    the Journal of Chemical Physics . Vacuum Ultraviolet Studies of Molecular Dynamics Page 4 B. Quenching of S(’D) by N2...An article on this work has been published in the Journal of Chemical Physics . E. The 157 am Photodissoclation of OCS The photodissociation of OCS...angular momentum vectors are perpendicular to one another. A report of this work has been published in the Journal of Chemical Physics . Vacuum

  7. Large-Area Vacuum Ultraviolet Sensors

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Franz, David

    2012-01-01

    Pt/(n-doped GaN) Schottky-barrier diodes having active areas as large as 1 cm square have been designed and fabricated as prototypes of photodetectors for the vacuum ultraviolet portion (wavelengths approximately equal 200 nm) of the solar spectrum. In addition to having adequate sensitivity to photons in this wavelength range, these photodetectors are required to be insensitive to visible and infrared components of sunlight and to have relatively low levels of dark current.

  8. Spectrophotometric Attachment for the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Axelrod, Norman N.

    1961-01-01

    An absorption spectrophotometric attachment to a vacuum ultraviolet monochromator has been built and tested. With an empty sample chamber, the ratio of the radiant flux through the sample chamber to the radiant flux through the reference chamber was measured. By optimizing conditions at the entrance slit, the ratio was constant within experimental error over the region 1000-1600 A. The transmittance of thin celluloid films was measured with the attachment.

  9. Vacuum ultraviolet absorption in a hydrogen arcjet

    NASA Technical Reports Server (NTRS)

    Manzella, David H.; Cappelli, Mark A.

    1992-01-01

    Atomic absorption spectroscopy was utilized to measure the ground state atomic hydrogen number density in the plasma produced in a low power hydrogen arcjet. A microwave driven hydrogen plasma was used as the source of radiation resonant with the vacuum ultraviolet Lyman alpha transition. The suitability of this radiation source is discussed. The optical depth of this transition prevented measurements at locations where the ground state atomic hydrogen number density was larger than 3 x 10 exp 19/cu m. These results indicate that other single-photon optical diagnostic techniques are equally ineffective in locations of higher hydrogen number density unless the spectral line shape of the atomic hydrogen absorbers is known.

  10. Vacuum Ultraviolet Action Spectroscopy of Polysaccharides

    NASA Astrophysics Data System (ADS)

    Enjalbert, Quentin; Brunet, Claire; Vernier, Arnaud; Allouche, Abdul-Rahman; Antoine, Rodolphe; Dugourd, Philippe; Lemoine, Jérôme; Giuliani, Alexandre; Nahon, Laurent

    2013-08-01

    We studied the optical properties of gas-phase polysaccharides (maltose, maltotetraose, and maltohexaose) ions by action spectroscopy using the coupling between a quadrupole ion trap and a vacuum ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility (France) in the 7 to 18 eV range. The spectra provide unique benchmarks for evaluation of theoretical data on electronic transitions of model carbohydrates in the VUV range. The effects of the nature of the charge held by polysaccharide ions on the relaxation processes were also explored. Finally the effect of isomerization of polysaccharides (with melezitose and raffinose) on their photofragmentation with VUV photons is presented.

  11. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    PubMed

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  12. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  13. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  14. Vacuum ultraviolet detector for gas chromatography.

    PubMed

    Schug, Kevin A; Sawicki, Ian; Carlton, Doug D; Fan, Hui; McNair, Harold M; Nimmo, John P; Kroll, Peter; Smuts, Jonathan; Walsh, Phillip; Harrison, Dale

    2014-08-19

    Analytical performance characteristics of a new vacuum ultraviolet (VUV) detector for gas chromatography (GC) are reported. GC-VUV was applied to hydrocarbons, fixed gases, polyaromatic hydrocarbons, fatty acids, pesticides, drugs, and estrogens. Applications were chosen to feature the sensitivity and universal detection capabilities of the VUV detector, especially for cases where mass spectrometry performance has been limited. Virtually all chemical species absorb and have unique gas phase absorption cross sections in the approximately 120-240 nm wavelength range monitored. Spectra are presented, along with the ability to use software for deconvolution of overlapping signals. Some comparisons with experimental synchrotron data and computed theoretical spectra show good agreement, although more work is needed on appropriate computational methods to match the simultaneous broadband electronic and vibronic excitation initiated by the deuterium lamp. Quantitative analysis is governed by Beer-Lambert Law relationships. Mass on-column detection limits reported for representatives of different classes of analytes ranged from 15 (benzene) to 246 pg (water). Linear range measured at peak absorption for benzene was 3-4 orders of magnitude. Importantly, where absorption cross sections are known for analytes, the VUV detector is capable of absolute determination (without calibration) of the number of molecules present in the flow cell in the absence of chemical interferences. This study sets the stage for application of GC-VUV technology across a wide breadth of research areas.

  15. Vacuum ultraviolet negative photoion spectroscopy of chloroform.

    PubMed

    Chen, Liu-Li; Xu, Yun-Feng; Feng, Qiang; Tian, Shan Xi; Liu, Fu-Yi; Shan, Xiao-Bin; Sheng, Liu-Si

    2011-05-05

    Negative ions Cl(-), Cl(2)(-), CCl(-), CHCl(-), and CCl(2)(-) are observed in vacuum-ultraviolet ion-pair photodissociations of chloroform (CCl(3)H) using the Hefei synchrotron radiation facility, and their ion production efficiency curves are recorded in the photon energy range of 10.00-21.50 eV. Two similar spectra of the isotope anions (35)Cl(-) and (37)Cl(-) indicate the following: Besides the strong bands corresponding to the electron transitions from valence to Rydberg orbitals converging to the ionic states, some additional peaks can be assigned with the energetically accessible multibody fragmentations; a distinct peak at photon energy 14.55 eV may be due to a cascade process (namely, the Cl(2) neutral fragment at the highly excited state D'2(3)Π(g) may be produced in the photodissociation of CCl(3)H, and then the Cl(-) anions are produced in the pulsed-field induced ion-pair dissociations of Cl(2) (D'2(3)Π(g))); two vibrational excitation progressions, nν(2)(+) and nν(2)(+) + ν(3)(+), and nν(4)(+) and nν(4)(+) + ν(2)(+), are observed around C̃ (2)E and D̃ (2)E ionic states, respectively. The enthalpies of the multibody fragmentations to Cl(2)(-), CCl(-), CHCl(-), and CCl(2)(-) are calculated with the thermochemistry data available in the literature, and these multibody ion-pair dissociation pathways are tentatively assigned in the respective anion production spectra.

  16. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5'-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  17. Steady State Vacuum Ultraviolet Exposure Facility With Automated Calibration Capability

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Sechkar, Edward A.; Dever, Joyce A.; Banks, Bruce A.

    2000-01-01

    NASA Glenn Research Center at Lewis Field designed and developed a steady state vacuum ultraviolet automated (SSVUVa) facility with in situ VUV intensity calibration capability. The automated feature enables a constant accelerated VUV radiation exposure over long periods of testing without breaking vacuum. This test facility is designed to simultaneously accommodate four isolated radiation exposure tests within the SSVUVa vacuum chamber. Computer-control of the facility for long, term continuous operation also provides control and recording of thermocouple temperatures, periodic recording of VUV lamp intensity, and monitoring of vacuum facility status. This paper discusses the design and capabilities of the SSVUVa facility.

  18. Cleaning of inner vacuum surfaces in the Uragan-3M facility by radio-frequency discharges

    SciTech Connect

    Lozin, A. V. Moiseenko, V. E.; Grigor’eva, L. I.; Kozulya, M. M.; Kulaga, A. E.; Lysoivan, A. I.; Mironov, Yu. K.; Pavlichenko, R. O.; Romanov, V. S.; Chernyshenko, V. Ya.; Chechkin, V. V.; Collaboration: Uragan-3M Team

    2013-08-15

    A method for cleaning vacuum surfaces by a low-temperature (T{sub e} ∼ 10 eV) relatively dense (n{sub e} ≈ 10{sup 12} cm{sup −3}) plasma of an RF discharge was developed and successfully applied at the Uragan-3M torsatron. The convenience of the method is that it can be implemented with the same antenna system and RF generators that are used to produce and heat the plasma in the operating mode and does not require retuning the frequencies of the antennas and RF generators. The RF discharge has a high efficiency from the standpoint of cleaning vacuum surfaces. After performing a series of cleanings by the low-temperature RF discharge plasma (about 20000 pulses), (i) the intensity of the CIII impurity line was substantially reduced, (ii) a quasi-steady operating mode with a duration of up to 50 ms, a plasma density of n{sub e} ≈ 10{sup 12} cm{sup −3}, and an electron temperature of up to T{sub e} ∼ 1 keV was achieved, and (iii) mass spectrometric analysis of the residual gas in the chamber indicated a significant reduction in the impurity content.

  19. High temperature furnace system for vacuum ultraviolet spectroscopic studies.

    PubMed

    Brown, C M; Naber, R H; Tilford, S G; Ginter, M L

    1973-08-01

    An improved furnace system for use in vacuum ultraviolet spectroscopic studies of atomic and molecular species stable at high temperatures (800-2500 degrees C) is described in detail. A new and improved high resolution spectrum of Mg I and several impurity spectra produced in the furnace are presented.

  20. Broadband reflectance coatings for vacuum ultraviolet application

    NASA Technical Reports Server (NTRS)

    Herzig, Howard; Fleetwood, C. M., Jr.; Flint, B. K.

    1987-01-01

    An experimental investigation has obtained results indicating that neither LaF3 nor LiYF4 are acceptable alternatives to MgF2 as coatings for vacuum-deposited aluminum mirrors from which high UV reflectance down to 1150 A is required. Nevertheless, LaF3 may prove useful in those specialized applications in which the suppression of lower wavelength emissions, such as the 1216-A hydrogen line, is desirable.

  1. Communication: Vacuum ultraviolet photoabsorption of interstellar icy thiols

    NASA Astrophysics Data System (ADS)

    Bhuin, Radha Gobinda; Sivaraman, Bhalamurugan; Lo, Jen-Iu; Sekhar, B. N. Raja; Cheng, Bing-Ming; Pradeep, Thalappil; Mason, Nigel John

    2014-12-01

    Following the recent identification of ethanethiol in the interstellar medium (ISM) we have carried out Vacuum UltraViolet (VUV) spectroscopy studies of ethanethiol (CH3CH2SH) from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. These results are compared with those of methanethiol (CH3SH), the lower order thiol also reported to be present in the ISM. VUV spectra recorded at higher temperature reveal conformational changes in the ice and phase transitions whilst evidence for dimer production is also presented.

  2. Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy.

    PubMed

    Santos, Inês C; Schug, Kevin A

    2017-01-01

    The vacuum ultraviolet spectrophotometer was developed recently as an alternative to existing gas chromatography detectors. This detector measures the absorption of gas-phase chemical species in the range of 120-240 nm, where all chemical compounds present unique absorption spectra. Therefore, qualitative analysis can be performed and quantification follows standard Beer-Lambert law principles. Different fields of application, such as petrochemical, food, and environmental analysis have been explored. Commonly demonstrated is the capability for facile deconvolution of co-eluting analytes. The concept of additive absorption for co-eluting analytes has also been advanced for classification and speciation of complex mixtures using a data treatment procedure termed time interval deconvolution. Furthermore, pseudo-absolute quantitation can be performed for system diagnosis, as well as potentially calibrationless quantitation. In this manuscript an overview of these features, the vacuum ultraviolet spectrophotometer instrumentation, and performance capabilities are given. A discussion of the applications of the vacuum ultraviolet detector is provided by describing and discussing the papers published thus far since 2014. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tunable vacuum ultraviolet photofragment excitation spectroscopy of OCS

    NASA Astrophysics Data System (ADS)

    Pibel, Charles D.; Ohde, Kyoko; Yamanouchi, Kaoru

    1994-07-01

    Photofragment excitation (PHOFEX) spectroscopy of OCS in the vacuum ultraviolet (VUV) has been carried out using tunable VUV excitation of jet-cooled OCS, followed by ultraviolet laser induced fluorescence (LIF) detection of the S (1S) photofragment via the S (3D°1-1S) transition. The PHOFEX spectrum near 154 nm is better resolved than previous absorption spectra, and new features are visible. The LIF spectrum of the S (1S) photofragment may be successfully modeled using the product recoil anisotropy (β=1.8±0.2) and CO (v,J) product state distribution previously measured for photodissociation of OCS at 157 nm [Strauss et al., J. Chem. Phys. 90, 5364 (1989)].

  4. The photoemissive cell of a vacuum ultraviolet radiation detector array

    NASA Astrophysics Data System (ADS)

    Il'ichev, E. A.; Kuleshov, A. E.; Nabiev, R. M.; Petrukhin, G. N.; Rychkov, G. S.; Teverovskaya, E. G.

    2017-04-01

    A photoemissive "solar-blind" cell of a vacuum ultraviolet detector array for the 50-225 nm wavelength range is described. The cell is a cavity in the shape of frustum of a pyramid in a silicon wafer, the walls of which are coated by polycrystalline diamond film acting the part of a photosensitive cathode. The design of the cell allows one to manage the work of the detector in the "pass through" mode; i.e., photons fall to one side of the wafer, and photoelectrons release from its opposite side. Estimation of photosensitivity of the cell gives a value of about ten photons.

  5. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  6. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  7. CIV Polarization Measurements Using a Vacuum Ultraviolet Fabry Perot

    NASA Technical Reports Server (NTRS)

    West, Edward A.

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry Perot that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry Perot.

  8. High-intensity subpicosecond vacuum ultraviolet laser system

    NASA Astrophysics Data System (ADS)

    Kubodera, Shoichi; Kaku, Masanori; Taniguchi, Yuta; Katto, Masahito; Yokotani, Atsushi; Miyanaga, Noriaki; Mima, Kunioki

    2008-02-01

    We have been developing an ultrashort-pulse high-intensity vacuum ultraviolet (VUV) laser. Ultrashort VUV pulses at 126 nm have been produced in rare-gases by nonlinear wavelength conversion of an infrared Ti:sapphire laser at 882 nm. This pulse will be amplified inside an Ar II* amplifier excited by optical-field-induced ionization electrons. The amplification characteristics of the Ar II* amplifier has been improved by plasma channeling induced by a high-intensity plasma-initiating laser.

  9. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  10. Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics

    SciTech Connect

    Zheng, H.; Guo, X.; Pei, D.; Li, W.; Blatz, J.; Hsu, K.; Benjamin, D.; Shohet, J. L.; Lin, Y.-H.; Fung, H.-S.; Chen, C.-C.; Nishi, Y.

    2016-06-13

    Porous SiCOH films are of great interest in semiconductor fabrication due to their low-dielectric constant properties. Post-deposition treatments using ultraviolet (UV) light on organosilicate thin films are required to decompose labile pore generators (porogens) and to ensure optimum network formation to improve the electrical and mechanical properties of low-k dielectrics. The goal of this work is to choose the best vacuum-ultraviolet photon energy in conjunction with vacuum ultraviolet (VUV) photons without the need for heating the dielectric to identify those wavelengths that will have the most beneficial effect on improving the dielectric properties and minimizing damage. VUV irradiation between 8.3 and 8.9 eV was found to increase the hardness and elastic modulus of low-k dielectrics at room temperature. Combined with UV exposures of 6.2 eV, it was found that this “UV/VUV curing” process is improved compared with current UV curing. We show that UV/VUV curing can overcome drawbacks of UV curing and improve the properties of dielectrics more efficiently without the need for high-temperature heating of the dielectric.

  11. Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Guo, X.; Pei, D.; Li, W.; Blatz, J.; Hsu, K.; Benjamin, D.; Lin, Y.-H.; Fung, H.-S.; Chen, C.-C.; Nishi, Y.; Shohet, J. L.

    2016-06-01

    Porous SiCOH films are of great interest in semiconductor fabrication due to their low-dielectric constant properties. Post-deposition treatments using ultraviolet (UV) light on organosilicate thin films are required to decompose labile pore generators (porogens) and to ensure optimum network formation to improve the electrical and mechanical properties of low-k dielectrics. The goal of this work is to choose the best vacuum-ultraviolet photon energy in conjunction with vacuum ultraviolet (VUV) photons without the need for heating the dielectric to identify those wavelengths that will have the most beneficial effect on improving the dielectric properties and minimizing damage. VUV irradiation between 8.3 and 8.9 eV was found to increase the hardness and elastic modulus of low-k dielectrics at room temperature. Combined with UV exposures of 6.2 eV, it was found that this "UV/VUV curing" process is improved compared with current UV curing. We show that UV/VUV curing can overcome drawbacks of UV curing and improve the properties of dielectrics more efficiently without the need for high-temperature heating of the dielectric.

  12. Vacuum ultraviolet spectra of uranium hexafluoride/argon mixtures

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    The transmission properties of room temperature helium at pressures up to 20 atmospheres were determined in the wavelength range from 80 to 300 nm. Similarly, the transmission properties of uranium hexafluoride at 393 K (pressures less than 1.0 mm) were determined in the wavelength range from 80 to about 120 nm. The results show that high pressure helium is sufficiently transparent in the vacuum ultraviolet region (provided trace contaminants are removed) to be utilized as a transparent purge gas in future fissioning gaseous uranium plasma reactor experiments. Absorption cross sections for uranium hexafluoride were calculated from the data between 80 and 120 nm and were of the order of 10 to the -17 power sq cm.

  13. Absolute calibration of vacuum ultraviolet spectrograph system for plasma diagnostics

    SciTech Connect

    Yoshikawa, M.; Kubota, Y.; Kobayashi, T.; Saito, M.; Numada, N.; Nakashima, Y.; Cho, T.; Koguchi, H.; Yagi, Y.; Yamaguchi, N.

    2004-10-01

    A space- and time-resolving vacuum ultraviolet (VUV) spectrograph system has been applied to diagnose impurity ions behavior in plasmas produced in the tandem mirror GAMMA 10 and the reversed field pinch TPE-RX. We have carried out ray tracing calculations for obtaining the characteristics of the VUV spectrograph and calibration experiments to measure the absolute sensitivities of the VUV spectrograph system for the wavelength range from 100 to 1100 A. By changing the incident angle, 50.6 deg. -51.4 deg., to the spectrograph whose nominal incident angle is 51 deg., we can change the observing spectral range of the VUV spectrograph. In this article, we show the ray tracing calculation results and absolute sensitivities when the angle of incidence into the VUV spectrograph is changed, and the results of VUV spectroscopic measurement in both GAMMA 10 and TPE-RX plasmas.

  14. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    SciTech Connect

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-15

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9–14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  15. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    NASA Astrophysics Data System (ADS)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  16. Ultrafast Molecular Dynamics probed by Vacuum Ultraviolet Pulses

    NASA Astrophysics Data System (ADS)

    Cryan, James; Champenois, Elio; Shivaram, Niranjan; Wright, Travis; Yang, Chan-Shan; Falcone, Roger; Belkacem, Ali

    2014-05-01

    We present time-resolved measurements of the relaxation dynamics in small molecular systems (CO2 and C2H4) following ultraviolet (UV) photo-excitation. We probe these excitations through photoionization and velocity map imaging (VMI) spectroscopy. Vacuum and extreme ultraviolet (VUV/XUV) pump and probe pulses are created by exploiting strong-field high harmonic generation (HHG) from our state-of-the-art 30 mJ, 1 kHz laser system. Three dimensional photoelectron and photoion momentum images recorded with our VMI spectrometer reveal non-Born Oppenheimer dynamics in the vicinity of a conical intersection, and allow us track the state of the system as a function of time. We also present initial experiments with the goal of controlling the dynamics near a conical intersection using a strong-field IR pulse. Finally, we will show progress towards measurements of time-resolved molecular frame photoelectron angular distributions (TRMFPADs) by applying our VUV/XUV pulse sequence to an aligned molecular ensemble. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  17. Frequency Combs for Spectroscopy in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Carlson, David R.

    This dissertation explores frequency comb spectroscopy and, in particular, its extension to the vacuum-ultraviolet (VUV) and extreme-ultraviolet (XUV) wavelength regimes through a technique called intracavity high harmonic generation (IHHG). By combining the techniques of passive pulse amplification in an enhancement cavity with high harmonic generation, IHHG enables the direct conversion of near-infrared radiation to the VUV/XUV while still maintaining the underlying comb structure. As part of this work, a series of numerical simulations was performed to investigate the plasma that is formed in the IHHG process and its implications for the resulting VUV comb. It was demonstrated that a fundamental limitation to the performance of IHHG experiments is due to the single-pass ionization phase shift acquired by the pulse circulating in the enhancement cavity. Furthermore, we showed that a static background plasma accumulates between pulses and complicates cavity stabilization. Insights gained from the simulations led to the development of a novel pump-probe technique using the enhancement cavity that allowed a direct measurement of the intracavity plasma and its decay dynamics in real-time. Because the plasma lifetime plays such a crucial role in the operation of these cavities, it was important to have a method to test ways of reducing it. To build on our initial IHHG results showing record-level powers in the XUV, we implemented a fully phase-coherent dual comb spectrometer consisting of two identical IHHG systems operating in parallel. The system is designed for precision spectroscopy in the VUV and is based on a pair of homemade ytterbium fiber lasers that use a parabolic amplification scheme to achieve 80 fs pulses after amplification to 50 W of average power. Initial dual comb data showing system performance at the fundamental frequency and third harmonic are presented.

  18. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum

    NASA Astrophysics Data System (ADS)

    Sarantopoulou, E.; Stefi, A.; Kollia, Z.; Palles, D.; Petrou, P. S.; Bourkoula, A.; Koukouvinos, G.; Velentzas, A. D.; Kakabakos, S.; Cefalas, A. C.

    2014-09-01

    Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm-2) or vacuum-ultraviolet irradiation (110-180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, μ-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance in spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.

  19. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum

    SciTech Connect

    Sarantopoulou, E. Stefi, A.; Kollia, Z.; Palles, D.; Cefalas, A. C.; Petrou, P. S.; Bourkoula, A.; Koukouvinos, G.; Kakabakos, S.; Velentzas, A. D.

    2014-09-14

    Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm⁻²) or vacuum-ultraviolet irradiation (110–180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, μ-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance in spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.

  20. Vacuum ultraviolet photo-physical chemistry of hydrocarbon polymers

    NASA Astrophysics Data System (ADS)

    Truica-Marasescu, Florina-Elena

    The purpose of this study has been to investigate fundamental processes involved in the vacuum ultraviolet (VUV, lambda < 200 nm)-induced modification of polymer surfaces and their physico-chemical properties. It is well known that VUV photons provide an important photochemical contribution during plasma treatments of polymers, for example: ablation of material; crosslinking and chemical modification of the near-surface region can also be performed by VUV irradiation. During the last 30 years, VUV treatments have received increasing attention, due to a few key advantages over their plasma counterparts. These include the possibility of treating commercial polymer films at atmospheric pressure, thereby alleviating the need for expensive vacuum pumps and other auxiliary equipment necessary for continuous low-pressure plasma roll-to-roll treatment of flexible substrates. Another important advantage of VUV photochemistry over plasma is that more specific surface chemistries can be achieved with monochromatic VUV radiation, due to selective (photo-) chemistries both on the solid surface and in the gas phase. The hydrocarbon polymers used for this study were well-characterized low-density polyethylene, LDPE; biaxially-oriented polypropylene, BOPP; polystyrene, PS; and poly(methylmethacrylate), PMMA. Due to the complexity of interactions between VUV photons and polymers, especially when the latter are in a reactive gas, VUV-wavelength-dependent effects on the physico-chemical properties of irradiated polymer surfaces have been investigated under two different set of conditions, namely: VUV exposure in vacuum, and in a reactive atmosphere of low-pressure ammonia, VUV/NH3. In the former case, we investigated wavelength (lambda)-dependent material ablation ("etching") by in-situ quartz crystal microbalance (QCM) measurements, as a function of the irradiation dose, D. Near-surface structural changes (the creation of unsaturation, cross-linking, etc.) and radical

  1. Design of vacuum ultraviolet spectroscopy system on J-TEXT

    NASA Astrophysics Data System (ADS)

    Li, Y.; Cheng, Z. F.; Zhang, X. L.; Wang, J. R.; Zhuang, G.

    2017-06-01

    A Vacuum Ultraviolet (VUV) spectroscopy system is designed on J-TEXT tokamak in order to study the transport of the light impurities including carbon and oxygen in edge region with the effect of RMP or ECRH. It covers the wavelength ranging from 30 to 300nm. The normal incidence monochromator with concave grating with the focal length of 1 meter is chosen for light dispersion. A 1024*1024 pixels back illuminated charge-coupled device (CCD) is chosen as the detector for the profile measurement. The observing region is from 1.1a (minor radius) at the lower part of the plasma to 0.6a at the upper part with an adjusting spatial resolution slit. In order to prove the potential for the expected signal intensity, spectra are simulated using the impurity transport code STRAHL. The photons numbers of C II 133.45nm, C III 97.7nm and C IV 154.9nm in J-TEXT plasma are estimated to evaluate the practicability of the system. The wavelength calibration will be achieved using the light from plasma in tokamak at different discharge conditions. The branching ratio technique and bremsstrahlung are combined for the absolute intensity calibration.

  2. Simulated Space Vacuum Ultraviolet (VUV) Exposure Testing for Polymer Films

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Pietromica, Anthony J.; Stueber, Thomas J.; Sechkar, Edward A.; Messer, Russell K.

    2002-01-01

    Vacuum ultraviolet (VUV) radiation of wavelengths between 115 and 200 nm produced by the sun in the space environment can cause degradation to polymer films producing changes in optical, mechanical, and chemical properties. These effects are particularly important for thin polymer films being considered for ultra-lightweight space structures, because, for most polymers, VUV radiation is absorbed in a thin surface layer. NASA Glenn Research Center has developed facilities and methods for long-term ground testing of polymer films to evaluate space environmental VUV radiation effects. VUV exposure can also be used as part of sequential simulated space environmental exposures to determine combined damaging effects. This paper will describe the effects of VUV on polymer films and the necessity for ground testing. Testing practices used at Glenn Research Center for VUV exposure testing will be described including characterization of the VUV radiation source used, calibration procedures traceable to the National Institute of Standards and Technology (NIST), and testing techniques for VUV exposure of polymer surfaces.

  3. High-Reflectivity Coatings for a Vacuum Ultraviolet Spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Narukage, Noriyuki; Kubo, Masahito; Ishikawa, Ryohko; Ishikawa, Shin-nosuke; Katsukawa, Yukio; Kobiki, Toshihiko; Giono, Gabriel; Kano, Ryouhei; Bando, Takamasa; Tsuneta, Saku; Auchère, Frédéric; Kobayashi, Ken; Winebarger, Amy; McCandless, Jim; Chen, Jianrong; Choi, Joanne

    2017-03-01

    Precise polarization measurements in the vacuum ultraviolet (VUV) region are expected to be a new tool for inferring the magnetic fields in the upper atmosphere of the Sun. High-reflectivity coatings are key elements to achieving high-throughput optics for precise polarization measurements. We fabricated three types of high-reflectivity coatings for a solar spectropolarimeter in the hydrogen Lyman-α (Lyα; 121.567 nm) region and evaluated their performance. The first high-reflectivity mirror coating offers a reflectivity of more than 80 % in Lyα optics. The second is a reflective narrow-band filter coating that has a peak reflectivity of 57 % in Lyα, whereas its reflectivity in the visible light range is lower than 1/10 of the peak reflectivity (˜ 5 % on average). This coating can be used to easily realize a visible light rejection system, which is indispensable for a solar telescope, while maintaining high throughput in the Lyα line. The third is a high-efficiency reflective polarizing coating that almost exclusively reflects an s-polarized beam at its Brewster angle of 68° with a reflectivity of 55 %. This coating achieves both high polarizing power and high throughput. These coatings contributed to the high-throughput solar VUV spectropolarimeter called the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP), which was launched on 3 September, 2015.

  4. Permanent gas analysis using gas chromatography with vacuum ultraviolet detection.

    PubMed

    Bai, Ling; Smuts, Jonathan; Walsh, Phillip; Fan, Hui; Hildenbrand, Zacariah; Wong, Derek; Wetz, David; Schug, Kevin A

    2015-04-03

    The analysis of complex mixtures of permanent gases consisting of low molecular weight hydrocarbons, inert gases, and toxic species plays an increasingly important role in today's economy. A new gas chromatography detector based on vacuum ultraviolet (VUV) spectroscopy (GC-VUV), which simultaneously collects full scan (115-240 nm) VUV and UV absorption of eluting analytes, was applied to analyze mixtures of permanent gases. Sample mixtures ranged from off-gassing of decomposing Li-ion and Li-metal batteries to natural gas samples and water samples taken from private wells in close proximity to unconventional natural gas extraction. Gas chromatography separations were performed with a porous layer open tubular column. Components such as C1-C5 linear and branched hydrocarbons, water, oxygen, and nitrogen were separated and detected in natural gas and the headspace of natural gas-contaminated water samples. Of interest for the transport of lithium batteries were the detection of flammable and toxic gases, such as methane, ethylene, chloromethane, dimethyl ether, 1,3-butadiene, CS2, and methylproprionate, among others. Featured is the capability for deconvolution of co-eluting signals from different analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Vacuum ultraviolet (VUV) photoionization of small water clusters.

    PubMed

    Belau, Leonid; Wilson, Kevin R; Leone, Stephen R; Ahmed, Musahid

    2007-10-11

    Tunable vacuum ultraviolet (VUV) photoionization studies of water clusters are performed using 10-14 eV synchrotron radiation and analyzed by reflectron time-of-flight (TOF) mass spectrometry. Photoionization efficiency (PIE) curves for protonated water clusters (H2O)(n)H+ are measured with 50 meV energy resolution. The appearance energies of a series of protonated water clusters are determined from the photoionization threshold for clusters composed of up to 79 molecules. These appearance energies represent an upper limit of the adiabatic ionization energy of the corresponding parent neutral water cluster in the supersonic molecular beam. The experimental results show a sharp drop in the appearance energy for the small neutral water clusters (from 12.62 +/- 0.05 to 10.94 +/- 0.06 eV, for H2O and (H2O)4, respectively), followed by a gradual decrease for clusters up to (H2O)23 converging to a value of 10.6 eV (+/-0.2 eV). The dissociation energy to remove a water molecule from the corresponding neutral water cluster is derived through thermodynamic cycles utilizing the dissociation energies of protonated water clusters reported previously in the literature. The experimental results show a gradual decrease of the dissociation energy for removal of one water molecule for small neutral water clusters (3

  6. A synchrotron beamline for delivering high purity vacuum ultraviolet photons

    SciTech Connect

    Cavasso Filho, R. L.; Homen, M. G. P.; Fonseca, P. T.; Naves de Brito, A.

    2007-11-15

    We report on the current status and performance of the toroidal grating monochromator beamline at the Brazilian Synchrotron Light Laboratory (Laboratorio Nacional de Luz Sincrotron). This beamline provides photons in the vacuum ultraviolet and soft x-ray regions from 12 to 330 eV with three interchangeable gratings. We report on the improvement, which allows the possibility of choosing the light polarization degree from linear to almost circular. Here, we also describe the development of a new apparatus, namely, the mirror-inserted harmonic attenuator and calibrating-device with a long length (MIRHACLLE). All beamlines based on diffraction gratings suffer from the problem of high harmonics contaminations to some extent. The MIRHACLLE provides a way to efficiently suppress high harmonics from 25% to 1 ppm in a grazing incidence bending magnet beamline. Its principle of operation relays on the absorption of the high energy photons in a gas phase region. It allows negligible high harmonics contamination for photon energies ranging from 12 eV to the gas first ionization threshold, 21.6 eV, in the case of neon. We also demonstrate the possibility to use this device for energy calibration and resolution evaluation together with any experiment needing its filtering capabilities. The device is also very cost effective compared to other filters presented previously in the literature.

  7. Vacuum ultraviolet radiation emitted by microwave driven argon plasmas

    NASA Astrophysics Data System (ADS)

    Espinho, S.; Felizardo, E.; Henriques, J.; Tatarova, E.

    2017-04-01

    Vacuum ultraviolet (VUV) radiation emitted by microwave driven argon plasmas has been investigated at low-pressure conditions (0.36 mbar). A classical surface-wave sustained discharge at 2.45 GHz has been used as plasma source. VUV radiation has been detected by emission spectroscopy in the 30-125 nm spectral range. The spectrum exhibits atomic and ionic argon emissions with the most intense spectral lines corresponding to the atomic resonance lines, at 104.8 nm and 106.7 nm, and to the ion lines, at 92.0 nm and 93.2 nm. Emissions at lower wavelengths were also detected, including lines with no information concerning level transitions in the well-known NIST database (e.g., the atomic line at 89.4 nm). The dependence of the lines' intensity on the microwave power delivered to the launcher was investigated. The electron density was estimated to be around 1012 cm-3 using the Stark broadening of the hydrogen Hβ line at 486.1 nm. The main population and loss mechanisms considered in the model for the excited argon atom and ion states emitting in the VUV range are discussed. The experimental results were compared to self-consistent model predictions, and a good agreement was obtained.

  8. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging

  9. Vacuum ultraviolet photoionization mass spectrometric study of cyclohexene.

    PubMed

    Chen, Jun; Cao, Maoqi; Wei, Bin; Ding, Mengmeng; Shan, Xiaobin; Liu, Fuyi; Sheng, Liusi

    2016-02-01

    In this work, photoionization and dissociation of cyclohexene have been studied by means of coupling a reflectron time-of-flight mass spectrometer with the tunable vacuum ultraviolet (VUV) synchrotron radiation. The adiabatic ionization energy of cyclohexene as well as the appearance energies of its fragment ions C6 H9 (+) , C6 H7 (+) , C5 H7 (+) , C5 H5 (+) , C4 H6 (+) , C4 H5 (+) , C3 H5 (+) and C3 H3 (+) were derived from the onset of the photoionization efficiency (PIE) curves. The optimized structures for the transition states and intermediates on the ground state potential energy surfaces related to photodissociation of cyclohexene were characterized at the ωB97X-D/6-31+g(d,p) level. The coupled cluster method, CCSD(T)/cc-pVTZ, was employed to calculate the corresponding energies with the zero-point energy corrections by the ωB97X-D/6-31+g(d,p) approach. Combining experimental and theoretical results, possible formation pathways of the fragment ions were proposed and discussed in detail. The retro-Cope rearrangement was found to play a crucial role in the formation of C4 H6 (+) , C4 H5 (+) and C3 H5 (+) . Intramolecular hydrogen migrations were observed as dominant processes in most of the fragmentation pathways of cyclohexene. The present research provides a clear picture of the photoionization and dissociation processes of cyclohexene in the 8- to 15.5-eV photon energy region. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Ultrafast electronic dynamics in polyatomic molecules studied using femtosecond vacuum ultraviolet and x-ray pulses

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshinori

    2014-06-01

    Time-resolved velocity map photoelectron imaging is performed using sub-20 fs deep ultraviolet and vacuum ultraviolet pulses to study electronic dynamics of isolated polyatomic molecules. The non-adiabatic dynamics of pyrazine, furan and carbon disulfide (CS2) are described as examples. Also described is sub-picosecond time-resolved x-ray direct absorption spectroscopy using a hard x-ray free electron laser (SACLA) and a synchronous near ultraviolet laser to study ultrafast electronic dynamics in solutions.

  11. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    NASA Astrophysics Data System (ADS)

    Sloan Roberts, F.; Anderson, Scott L.

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  12. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    PubMed

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  13. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    SciTech Connect

    Sloan Roberts, F.; Anderson, Scott L.

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  14. Vacuum ultraviolet photoabsorption spectroscopy of crystalline and amorphous benzene.

    PubMed

    Dawes, Anita; Pascual, Natalia; Hoffmann, Søren V; Jones, Nykola C; Mason, Nigel J

    2017-10-05

    We present the first high resolution vacuum ultraviolet photoabsorption study of amorphous benzene with comparisons to annealed crystalline benzene and the gas phase. Vapour deposited benzene layers were grown at 25 K and annealed to 90 K under conditions pertinent to interstellar icy dust grains and icy planetary bodies in our solar system. Three singlet-singlet electronic transitions in solid benzene correspond to the (1)B2u, (1)B1u and (1)E1u states, redshifted by 0.05, 0.25 and 0.51 eV respectively with respect to the gas phase. The symmetry forbidden (1)B2u ← (1)A1g and (1)B1u ← (1)A1g transitions exhibit vibronic structure due to vibronic coupling and intensity borrowing from the allowed (1)E1u ← (1)A1g transition. Additionally the (1)B2u ← (1)A1g structure shows evidence of coupling between intramolecular vibrational and intermolecular lattice modes in crystalline benzene with Davydov crystal field splitting observed. The optically forbidden 0-0 electronic origin is clearly visible as a doublet at 4.69/4.70 eV in the crystalline solid and as a weak broadened feature at 4.67 eV in amorphous benzene. In the case of the (1)B1u ← (1)A1g transition the forbidden 0-0 electronic origin is only observed in crystalline benzene as an exciton peak at 5.77 eV. Thicker amorphous benzene samples show diffuse bands around 4.3, 5.0 and 5.4 eV that we tentatively assign to spin forbidden singlet-triplet (3)B2u ← (1)A1g, (3)E1u ← (1)A1g and (3)B1u ← (1)A1g transitions respectively, not previously reported in photoabsorption spectra of amorphous benzene. Furthermore, our results show clear evidence of non-wetting or 'islanding' of amorphous benzene, characterised by thickness-dependent Rayleigh scattering tails at wavelengths greater than 220 nm. These results have significant implications for our understanding of the physical and chemical properties and processes in astrochemical ices and highlight the importance of VUV spectroscopy.

  15. Effect of vacuum ultraviolet and ultraviolet Irradiation on capacitance-voltage characteristics of low-k-porous organosilicate dielectrics

    SciTech Connect

    Sinha, H.; Lauer, J. L.; Nichols, M. T.; Shohet, J. L.; Antonelli, G. A.; Nishi, Y.

    2010-02-01

    High frequency capacitance-voltage (C-V) measurements are used to determine the effects of vacuum ultraviolet (VUV) and ultraviolet (UV) irradiation on defect states in porous low-k organosilicate (SiCOH) dielectrics. The characteristics show that VUV photons depopulate trapped electrons from defect states within the dielectric creating trapped positive charge. This is evidenced by a negative shift in the flat-band voltage of the C-V characteristic. UV irradiation reverses this effect by repopulating the defect states with electrons photoinjected from the silicon substrate. Thus, UV reduces the number of trapped positive charges in the dielectric and can effectively repair processing-induced damage.

  16. Experiments on the effect of ultraviolet on contamination in vacuum systems

    NASA Technical Reports Server (NTRS)

    Kruger, R.; Shapiro, H.

    1980-01-01

    A series of experiments designed to investigate the effect of irradiating a portion of a vacuum system with ultraviolet (UV) light are discussed. Data obtained with the quartz crystal microbalance show that, under ultraviolet irradiation, clean and contaminated mean different things than in situations that do not involve irradiation. The history of the chamber appears to be of paramount importance, not the pumping mechanism. UV irradiation check for contamination is recommended in critical experiments.

  17. Tunable thin film polarizer for the vacuum ultraviolet and soft x-ray spectral regions

    SciTech Connect

    Yang, Minghong; Cobet, Christoph; Esser, Norbert

    2007-03-01

    A low pass polarizer that suppresses higher-order diffraction light from vacuum ultraviolet and soft x-ray monochromators is presented in this paper. This vacuum ultraviolet and soft x-ray polarizer is based on a concept of sandwiched metal-dielectric-metal triple reflection configuration. By appropriate optimization of material and angle of incidence, the proposed Au-SiC-Au polarizer demonstrates the capability of matching to desired cutoff edge of photon energy. Furthermore, the optimized soft x-ray polarizer shows the possibility to tune cutoff photon energy in a broadband spectral region ranging from 80 down to down to 20 eV.

  18. Abiogenic synthesis of pyrimidine nucleotides in solid state by vacuum ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.; Kuzicheva, E. A.; Malko, I. L.

    1997-05-01

    The abiogenic synthesis of pyrimidine nucleotides in solid state has been investigated. Our experiment indicates that natural nucleotides are produced in thin films prepared from nucleoside and inorganic phosphate by irradiating with vacuum ultraviolet light (VUV, lambda=100-200 nm). We have investigated the influence of the type of nucleic acids base (thymidine, cytosine, uracil) and the structure of sugar moiety (ribose or deoxyribose) on the course and yield of reaction. We compared the action of vacuum ultraviolet light with action of gamma-radiation, heat and biology significant UV (254 nm) which have been investigated earlier. The occurence of these reaction in open space is discussed.

  19. Vacuum ultraviolet radiometry with a stabilized hydrogen arc.

    NASA Technical Reports Server (NTRS)

    Ott, W. R.; Wiese, W. L.; Fieffe-Prevost, P.; Nakai, Y.

    1971-01-01

    Use of the spectral radiation emitted from a dense hydrogen plasma of at least 12,000 K, which is in local thermodynamic equilibrium (LTE), as a light source for vacuum UV radiometry. Its spectroscopic qualities are exactly known, and except for a few strongly Stark-broadened Lyman lines, its spectrum in the vacuum UV is essentially continuous. The calculated continuum output of this source for typical operating conditions is compared with the UV output of the tungsten strip lamp and the carbon arc.

  20. A continuously operating source of vacuum ultraviolet below 500 angstrom

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Duo plasmatron type source of ultraviolet radiation operates in the wavelength region below 500 angstrom. Since the spectra produced are determined almost completely by the gas injected, and because the source operates continuously, this arrangement is beneficial in the development and calibration of filters and detectors within discrete wavelength ranges.

  1. Photon-counting array detectors for space and ground-based studies at ultraviolet and vacuum ultraviolet /VUV/ wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric photon-counting array detectors, with formats as large as (256 x 1024)-pixels that can be operated in a windowless configuration at vacuum ultraviolet (VUV) and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. This paper describes the construction and modes of operation of (1 x 1024)-pixel and (24 x 1024)-pixel MAMA detector systems that are being built and qualified for use in sounding-rocket spectrometers for solar and stellar observations at wavelengths below 1300 A. The performance characteristics of the MAMA detectors at ultraviolet and VUV wavelengths are also described.

  2. An Undergraduate Vacuum Ultraviolet Spectroscopy Laboratory at Georgia Tech.

    ERIC Educational Resources Information Center

    Stevenson, James R.; Bartlett, Roger J.

    Experimental techniques are taught in a laboratory course designed with some student options available. Eight experiments which use vacuum systems, radiation sources, dispersion and detection systems are outlined. A course outline and time table are given. The final examination is described as 30 minutes of individual practical work and dialogue…

  3. Comparing Vacuum and Extreme Ultraviolet Radiation for Postionization of Laser Desorbed Neutrals from Bacterial Biofilms and Organic Fullerene

    SciTech Connect

    Gaspera, Gerald L.; Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid; Moored, Jerry F.; Hanley, Luke

    2010-12-08

    Vacuum and extreme ultraviolet radiation from 8 - 24 eV generated at a synchrotron was used to postionize laser desorbed neutrals of antibiotic-treated biofilms and a modified fullerene using laser desorption postionization mass spectrometry (LDPI-MS). Results show detection of the parent ion, various fragments, and extracellular material from biofilms using LDPI-MS with both vacuum and extreme ultraviolet photons. Parent ions were observed for both cases, but extreme ultraviolet photons (16-24 eV) induced more fragmentation than vacuum ultraviolet (8-14 eV) photons.

  4. Resonance ionization spectroscopy of argon, krypton, and xenon using vacuum ultraviolet light

    SciTech Connect

    Kramer, S.D.

    1984-04-01

    Resonant, single-photon excitation of ground state inert gases requires light in the vacuum ultraviolet spectral region. This paper discusses methods for generating this light. Efficient schemes for ionizing argon, krypton, and xenon using resonant, stepwise single-photon excitation are presented.

  5. The molecular branching ratio method for calibration of optical systems in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1972-01-01

    The intensity distribution of bands belonging to six molecular band systems is discussed with special emphasis on their usefulness for intensity calibration of optical systems in the vacuum ultraviolet (1000A Lambda 3000A). The theory of molecular band intensities is outlined and the technique of measuring the spectral response curve is described. Several methods for establishing an absolute intensity calibration are discussed.

  6. Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity

    NASA Technical Reports Server (NTRS)

    Koontz, Steven; Leger, Lubert; Albyn, Keith; Cross, Jon

    1990-01-01

    Experimental results are presented which indicate that low fluxes of vacuum UV (VUV) radiation exert a pronounced influence on the atomic oxygen reactivity of such fluorocarbon and fluorocarbon spacecraft materials as the FEP Teflon and PCTFE that are under consideration for the Space Station Freedom. With simultaneous exposure to VUV fluxes comparable to those experienced in LEO, the reactivity of these materials becomes comparable to that of Kapton; VUV radiation has also been shown to increase the reactivity of Kapton with thermal-energy oxygen atoms.

  7. Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity

    NASA Technical Reports Server (NTRS)

    Koontz, Steven; Leger, Lubert; Albyn, Keith; Cross, Jon

    1990-01-01

    Experimental results are presented which indicate that low fluxes of vacuum UV (VUV) radiation exert a pronounced influence on the atomic oxygen reactivity of such fluorocarbon and fluorocarbon spacecraft materials as the FEP Teflon and PCTFE that are under consideration for the Space Station Freedom. With simultaneous exposure to VUV fluxes comparable to those experienced in LEO, the reactivity of these materials becomes comparable to that of Kapton; VUV radiation has also been shown to increase the reactivity of Kapton with thermal-energy oxygen atoms.

  8. Vacuum-ultraviolet instrumentation for solar irradiance and thermospheric airglow

    SciTech Connect

    Woods, T.N.; Rottman, G.J. . High Altitude Observatory); Bailey, S.M.; Solomon, S.C. . Lab. for Atmospheric and Space Physics)

    1994-02-01

    A NASA sounding rocket experiment was developed to study the solar extreme-ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far-ultraviolet (FUV) region were measured remotely from a sounding rocket on October 27, 1992. The rocket experiments also includes EUV instruments from Boston University, but only the National Center for Atmospheric Research's (NCAR)/University of Colorado's (CU) four solar instruments and one airglow instrument are discussed. The primary solar EUV instrument is a 0.25-m Rowland circle EUV spectrograph that has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2-nm resolution. Another solar irradiance instrument is an array of six silicon soft x-ray (XUV) photodiodes, each having different metallic filters coated directly on the photodiodes. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. The fourth solar instrument is a XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc sec. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2-nm spectral resolution.

  9. Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.

    1993-01-01

    A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet

  10. Resolution of isomeric new designer stimulants using gas chromatography - Vacuum ultraviolet spectroscopy and theoretical computations.

    PubMed

    Skultety, Ludovit; Frycak, Petr; Qiu, Changling; Smuts, Jonathan; Shear-Laude, Lindsey; Lemr, Karel; Mao, James X; Kroll, Peter; Schug, Kevin A; Szewczak, Angelica; Vaught, Cory; Lurie, Ira; Havlicek, Vladimir

    2017-06-08

    Distinguishing isomeric representatives of "bath salts", "plant food", "spice", or "legal high" remains a challenge for analytical chemistry. In this work, we used vacuum ultraviolet spectroscopy combined with gas chromatography to address this issue on a set of forty-three designer drugs. All compounds, including many isomers, returned differentiable vacuum ultraviolet/ultraviolet spectra. The pair of 3- and 4-fluoromethcathinones (m/z 181.0903), as well as the methoxetamine/meperidine/ethylphenidate (m/z 247.1572) triad, provided very distinctive vacuum ultraviolet spectral features. On the contrary, spectra of 4-methylethcathinone, 4-ethylmethcathinone, 3,4-dimethylmethcathinone triad (m/z 191.1310) displayed much higher similarities. Their resolution was possible only if pure standards were probed. A similar situation occurred with the ethylone and butylone pair (m/z 221.1052). On the other hand, majority of forty-three drugs was successfully separated by gas chromatography. The detection limits for all the drug standards were in the 2-4 ng range (on-column amount), which is sufficient for determinations of seized drugs during forensics analysis. Further, state-of-the-art time-dependent density functional theory was evaluated for computation of theoretical absorption spectra in the 125-240 nm range as a complementary tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Side-viewing detector for a vacuum ultraviolet reflectometer.

    NASA Technical Reports Server (NTRS)

    Osantowski, J. F.; Toft, A. R.

    1972-01-01

    The problem of detector response, which arises in the application of the reflectance vs angle of incidence method to the determination of optical constants in the vacuum UV spectral region is discussed. The analysis is performed for the side-viewing 1P21 detector sensitized with sodium salycilate. To take advantage of the wide selection photomultipliers available in the end-on configuration, a scheme for converting the end-on types to a side viewing geometry with a response uniform over several degrees of detector rotation is developed. It consists of a 32-mm diam spherical collector, located at the end of a cylindrical photomultiplier holder, with 12-mm entrance and viewing ports and a position for the sensitized screen also 12-mm in diameter.-

  12. Development of a facility and testing procedures for vacuum ultraviolet exposure of spacecraft materials

    SciTech Connect

    Smith, C.A.; Jones, C.A.; Babel, H.W.

    1995-10-01

    This report describes the development of laboratory facilities to reproducibly deposit and polymerize contaminants on sample surfaces, and to expose samples to near ultraviolet (NUV) or vacuum ultraviolet (VUV) radiation. Contamination effects on Z-93-P, a thermal control paint made with zinc oxide and Kasil 2130 potassium silicate binder, were investigated because of concern that the Space Station radiators and other thermal control surfaces which use Z-93-P could become contaminated, and their optical properties could be degraded, during their long service life.

  13. Vacuum Ultraviolet and Infrared Spectra of Condensed Methyl Acetate on Cold Astrochemical Dust Analogs

    NASA Astrophysics Data System (ADS)

    Sivaraman, B.; Nair, B. G.; Lo, J.-I.; Kundu, S.; Davis, D.; Prabhudesai, V.; Raja Sekhar, B. N.; Mason, N. J.; Cheng, B.-M.; Krishnakumar, E.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH3COOCH3) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  14. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    SciTech Connect

    Sivaraman, B.; Nair, B. G.; Mason, N. J.; Lo, J.-I.; Cheng, B.-M.; Kundu, S.; Davis, D.; Prabhudesai, V.; Krishnakumar, E.; Raja Sekhar, B. N.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  15. Generation of a vacuum ultraviolet to visible Raman frequency comb in H_2-filled kagomé photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Mridha, M. K.; Novoa, D.; Bauerschmidt, S. T.; Abdolvand, A.; St. J. Russell, P.

    2016-06-01

    We report the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagom\\'e-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the fiber-gas system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way towards tunable fiber-based sources of deep- and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

  16. [Development of soft X-ray and vacuum ultraviolet spectrum sources].

    PubMed

    Chen, Bo; Ni, Qi-liang; Cao, Jian-lin; Li, Fu-tian; Chen, Xing-dan

    2005-03-01

    The soft X-ray and vacuum ultraviolet sources developed in CIOMP are presented. The wall-stabilized argon arc source with spectrum stability and repeatability of +/-0.3% is applied to the calibration of spectrum intensity distribution of the vacuum ultraviolet instruments as an absolute standard source. The Penning source, duobplasma source and hollow cathode source are able to produce atomic and ionic line spectra as a wavelength standard source, which covers a few nanometers to several tens nanometers with spectrum radiation stability and repeatability of +/-1.0%. In particular, the low debris laser produced plasma source with liquid aerosol spray target recently developed can emit stronger soft X-ray for soft X-ray lithography and metrology, which has a transfer efficiency as high as 0.75%/2pi x sr/2% bandwidth.

  17. Laser-induced two-photon blackbody radiation in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Zych, L. J.; Young, J. F.; Harris, S. E.; Lukasik, J.

    1978-01-01

    Experimental measurements of a new type of vacuum-ultraviolet radiation source are reported. It is shown that the maximum source brightness, within its narrow linewidth, is that of a blackbody at the temperature of a metastable storage level. The laser-induced emission at 569 A from a He glow discharge corresponded to a metastable temperature of 22,700 K and was over 100 times brighter than the 584-A He resonance line.

  18. Laser-induced two-photon blackbody radiation in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Zych, L. J.; Young, J. F.; Harris, S. E.; Lukasik, J.

    1978-01-01

    Experimental measurements of a new type of vacuum-ultraviolet radiation source are reported. It is shown that the maximum source brightness, within its narrow linewidth, is that of a blackbody at the temperature of a metastable storage level. The laser-induced emission at 569 A from a He glow discharge corresponded to a metastable temperature of 22,700 K and was over 100 times brighter than the 584-A He resonance line.

  19. Pump-probe photoelectron spectroscopy by a high-power 90 nm vacuum-ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Sato, Motoki; Suzuki, Yoshi-ichi; Suzuki, Toshinori; Adachi, Shunsuke

    2016-02-01

    We present pump-probe photoelectron spectroscopy of Kr and NO using a high-power vacuum-ultraviolet (VUV) laser at a wavelength of 90 nm. Clear quantum beats are observed in the photoelectron angular distributions as well as in the photoelectron yields, resulting from the coherent excitation of two Kr Rydberg states by the VUV pump. The entire Franck-Condon envelope of the NO A(2Σ+) excited state is also successfully captured by the VUV probe.

  20. Ionization energy of acetone by vacuum ultraviolet mass-analyzed threshold ionization spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Jae Han; Kang, Do Won; Hong, Yong Jun; Hwang, Hyonseok; Kim, Hong Lae; Kwon, Chan Ho

    2013-04-01

    Mass-analyzed threshold ionization (MATI) time-of-flight mass spectrometer using coherent vacuum ultraviolet (VUV) laser generated by four-wave difference frequency mixing (FWDFM) in Kr has been constructed and utilized to obtain the accurate ionization energy of acetone. From the MATI onsets measured from various applied pulsed fields, the ionization energy to the ionic ground state of acetone has been determined to be 9.7074 ± 0.0019 eV.

  1. Bidirectional Reflectance Function Measurement of Molecular Contaminant Scattering in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2006-01-01

    Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.

  2. Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet.

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    A spontaneous patterning technique via parallel vacuum ultraviolet is developed for fabricating large-scale, complex electronic circuits with 1 μm resolution. The prepared organic thin-film transistors exhibit a low contact resistance of 1.5 kΩ cm, and high mobilities of 0.3 and 1.5 cm(2) V(-1) s(-1) in the devices with channel lengths of 1 and 5 μm, respectively.

  3. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  4. Analysis of terpenes and turpentines using gas chromatography with vacuum ultraviolet detection.

    PubMed

    Qiu, Changling; Smuts, Jonathan; Schug, Kevin A

    2017-02-01

    The separation and identification of natural mixtures of terpenes is challenging and laborious. A gas chromatographic method based on vacuum ultraviolet spectroscopic detection, which is characterized by full-scan absorption in the range of 125-240 nm, was developed and applied to analyze terpenes. In this study, the vacuum ultraviolet absorption spectra of 41 different standard terpenes were investigated and compared. The spectra were found to be highly featured and easily differentiated. Several commercial turpentine samples were analyzed and the vacuum ultraviolet detector demonstrated good specificity for qualitative identification of constituent terpenes. A total of 31 terpenes were detected in the four turpentine samples. α-Pinene was the predominant terpene ranging from 744.2 ± 9.7 to 917 ± 21 mg/mL. The other major constituents in the turpentines included β-pinene, δ-3-carene, camphene, and p-isopropyltoluene. Deconvolution of co-eluting signals of terpenes was achieved utilizing the data analysis software. The technique has been demonstrated to be a powerful tool for reliable and accurate qualitative and quantitative analysis of terpenes from complex natural mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Intensity and Energy Level Analysis of the Vacuum Ultraviolet Spectrum of Four Times Ionize Nickel (Ni V)

    NASA Astrophysics Data System (ADS)

    Ward, Jacob Wolfgang; Nave, Gillian

    2016-01-01

    Recent measurements of four times ionized iron and nickel (Fe V & Ni V) wavelengths in the vacuum ultraviolet (VUV) have been taken using the National Institute for Standards and Technology (NIST) Normal Incidence Vacuum Spectrograph (NIVS) with a sliding spark light source with invar electrodes. The wavelengths observed in those measurements make use of high resolution photographic plates with the majority of observed lines having uncertainties of approximately 3mÅ. In addition to observations made with photographic plates, the same wavelength region was observed with phosphor image plates, which have been demonstrated to be accurate as a method of intensity calibration when used with a deuterium light source. This work will evaluate the use of phosphor image plates and deuterium lamps as an intensity calibration method for the Ni V spectrum in the 1200-1600Å region of the VUV. Additionally, by pairing the observed wavelengths of Ni V with accurate line intensities, it is possible to create an energy level optimization for Ni V providing high accuracy Ritz wavelengths. This process has previously been applied to Fe V and produced Ritz wavelengths that agreed with the above experimental observations.

  6. Effects of ultraviolet (UV) irradiation in air and under vacuum on low-k dielectrics

    SciTech Connect

    Choudhury, F. A.; Nguyen, H. M.; Shohet, J. L.; Ryan, E. T.; Nishi, Y.

    2016-07-15

    This work addresses the effect of ultraviolet radiation of wavelengths longer than 250 nm on Si-CH{sub 3} bonds in porous low-k dielectrics. Porous low-k films (k = 2.3) were exposed to 4.9 eV (254 nm) ultraviolet (UV) radiation in both air and vacuum for one hour. Using Fourier Transform Infrared (FTIR) spectroscopy, the chemical structures of the dielectric films were analyzed before and after the UV exposure. UV irradiation in air led to Si-CH{sub 3} bond depletion in the low-k material and made the films hydrophilic. However, no change in Si-CH{sub 3} bond concentration was observed when the same samples were exposed to UV under vacuum with a similar fluence. These results indicate that UV exposures in vacuum with wavelengths longer than ∼250 nm do not result in Si-CH{sub 3} depletion in low-k films. However, if the irradiation takes place in air, the UV irradiation removes Si-CH{sub 3} although direct photolysis of air species does not occur above ∼242 nm. We propose that photons along with molecular oxygen and, water, synergistically demethylate the low-k films.

  7. Analysis of Fe V and Ni V Wavelength Standards in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Ward, Jacob Wolfgang; Nave, Gillian

    2015-01-01

    The recent publication[1] by J.C. Berengut et al. tests for a potential variation in the fine-structure constant in the presence of high gravitational potentials through spectral analysis of white-dwarf stars.The spectrum of the white-dwarf star studied in the paper, G191-B2B, has prominent Fe V and Ni V lines, which were used to determine any variation in the fine-structure constant via observed shifts in the wavelengths of Fe V and Ni V in the vacuum ultraviolet region. The results of the paper indicate no such variation, but suggest that refined laboratory values for the observed wavelengths could greatly reduce the uncertainty associated with the paper's findings.An investigation of Fe V and Ni V spectra in the vacuum ultraviolet region has been conducted to reduce wavelength uncertainties currently limiting modern astrophysical studies of this nature. The analyzed spectra were produced by a sliding spark light source with electrodes made of invar, an iron nickel alloy, at peak currents of 750-2000 A. The use of invar ensures that systematic errors in the calibration are common to both species. The spectra were recorded with the NIST Normal Incidence Vacuum Spectrograph on phosphor image plate and photographic plate detectors. Calibration was done with a Pt II spectrum produced by a Platinum Neon Hollow Cathode lamp.[1] J. C. Berengut, V. V. Flambaum, A. Ong, et al Phys. Rev. Lett. 111, 010801 (2013)

  8. Vacuum Ultraviolet and Ultraviolet Radiation-Induced Effect of Hydrogenated Silicon Nitride Etching: Surface Reaction Enhancement and Damage Generation

    NASA Astrophysics Data System (ADS)

    Fukasawa, Masanaga; Miyawaki, Yudai; Kondo, Yusuke; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Matsugai, Hiroyasu; Honda, Takayoshi; Minami, Masaki; Uesawa, Fumikatsu; Hori, Masaru; Tatsumi, Tetsuya

    2012-02-01

    Photon-enhanced etching of SiNx:H films caused by the interaction between vacuum ultraviolet (VUV)/ultraviolet (UV) radiation and radicals in the fluorocarbon plasma was investigated by a technique with a novel sample setup of the pallet for plasma evaluation. The simultaneous injection of UV radiation and radicals causes a dramatic etch rate enhancement of SiNx:H films. Only UV radiation causes the film shrinkage of SiNx:H films owing to hydrogen desorption from the film. Capacitance-voltage characteristics of SiNx:H/Si substrates were studied before and after UV radiation. The interface trap density increased monotonically upon irradiating the UV photons with a wavelength of 248 nm. The estimated effective interface trap generation probability is 4.74 ×10-7 eV-1·photon-1. Therefore, the monitoring of the VUV/UV spectra during plasma processing and the understanding of its impact on the surface reaction, film damage and electrical performance of underlying devices are indispensable to fabricate advanced devices.

  9. Pseudo-absolute quantitative analysis using gas chromatography - Vacuum ultraviolet spectroscopy - A tutorial.

    PubMed

    Bai, Ling; Smuts, Jonathan; Walsh, Phillip; Qiu, Changling; McNair, Harold M; Schug, Kevin A

    2017-02-08

    The vacuum ultraviolet detector (VUV) is a new non-destructive mass sensitive detector for gas chromatography that continuously and rapidly collects full wavelength range absorption between 120 and 240 nm. In addition to conventional methods of quantification (internal and external standard), gas chromatography - vacuum ultraviolet spectroscopy has the potential for pseudo-absolute quantification of analytes based on pre-recorded cross sections (well-defined absorptivity across the 120-240 nm wavelength range recorded by the detector) without the need for traditional calibration. The pseudo-absolute method was used in this research to experimentally evaluate the sources of sample loss and gain associated with sample introduction into a typical gas chromatograph. Standard samples of benzene and natural gas were used to assess precision and accuracy for the analysis of liquid and gaseous samples, respectively, based on the amount of analyte loaded on-column. Results indicate that injection volume, split ratio, and sampling times for splitless analysis can all contribute to inaccurate, yet precise sample introduction. For instance, an autosampler can very reproducibly inject a designated volume, but there are significant systematic errors (here, a consistently larger volume than that designated) in the actual volume introduced. The pseudo-absolute quantification capability of the vacuum ultraviolet detector provides a new means for carrying out system performance checks and potentially for solving challenging quantitative analytical problems. For practical purposes, an internal standardized approach to normalize systematic errors can be used to perform quantitative analysis with the pseudo-absolute method. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; McMillen, Colin D.; Kolis, Joseph; Giesber, Henry G.; Egan, John J.; Kaminski, Adam

    2014-03-01

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 1014 photon/s. We demonstrate that this energy range is sufficient to measure the kz dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  11. Possibility of using sources of vacuum ultraviolet irradiation to solve problems of space material science

    NASA Technical Reports Server (NTRS)

    Verkhoutseva, E. T.; Yaremenko, E. I.

    1974-01-01

    An urgent problem in space materials science is simulating the interaction of vacuum ultraviolet (VUV) of solar emission with solids in space conditions, that is, producing a light source with a distribution that approximates the distribution of solar energy. Information is presented on the distribution of the energy flux of VUV of solar radiation. Requirements that must be satisfied by the VUV source used for space materials science are formulated, and a critical evaluation is given of the possibilities of using existing sources for space materials science. From this evaluation it was established that none of the sources of VUV satisfies the specific requirements imposed on the simulator of solar radiation. A solution to the problem was found to be in the development of a new type of source based on exciting a supersonic gas jet flowing into vacuum with a sense electron beam. A description of this gas-jet source, along with its spectral and operation characteristics, is presented.

  12. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    SciTech Connect

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam; McMillen, Colin D.; Kolis, Joseph; Giesber, Henry G.; Egan, John J.

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  13. Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation

    SciTech Connect

    Dong Yongjun; Zhou Guoqing; Jun Xu . E-mail: xujun@mail.shcnc.ac.cn; Zhao Guangjun; Su Fenglian; Su Liangbi; Zhang Guobin; Zhang Danhong; Li Hongjun; Si JiLiang

    2006-10-12

    Photoluminescence spectrum of Ce:YAG single crystal was studied employing vacuum ultraviolet (VUV) synchrotron radiation. Intrinsic absorption edge at about 52,000 cm{sup -1} was observed in the absorption spectrum. From the VUV excitation spectrum, the energy of the highest d-component of 53,191 cm{sup -1} (188 nm) for the Ce{sup 3+} ions in YAG was obtained at 300 K. The disappearance of the third 5d level at 37,735 cm{sup -1} (265 nm) in absorption and excitation spectra in our samples may be due to the impurity Fe{sup 3+} ions absorption.

  14. Vacuum ultraviolet fluorine laser formation of corrosion-resistant iron thin films

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Awaihara, Yuta; Yamashita, Tsugito; Inoue, Narumi

    2015-06-01

    Corrosion-, chemical-resistant pure iron thin films were formed by the vacuum ultraviolet fluorine laser of 157 nm wavelength induced surface modification of 30- to 50-nm-thick iron thin films. Transmission electron microscope and electron energy-loss spectroscopy were conducted to analyze structure and oxidation state of the thin modified layer of iron thin films. No rust was observed on the surface of the fluorine laser-irradiated iron thin films in air for 2 years. The samples also showed high chemical resistance to a HNO3 aqueous solution to fabricate a micropattern of pure iron thin films.

  15. Proton transfer in acetaldehyde and acetaldehyde-water clusters: Vacuum ultraviolet photoionization experiment and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Troy, Tyler P.; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2015-03-01

    Acetaldehyde, a probable human carcinogen and of environmental importance, upon solvation provides a test bed for understanding proton transfer pathways and catalytic mechanisms. In this study, we report on single photon vacuum ultraviolet photoionization of small acetaldehyde and acetaldehyde-water clusters. Appearance energies of protonated clusters are extracted from the experimental photoionization efficiency curves and compared to electronic structure calculations. The comparison of experimental data to computational results provides mechanistic insight into the fragmentation mechanisms of the observed mass spectra. Using deuterated water for isotopic tagging, we observe that proton transfer is mediated via acetaldehyde and not water in protonated acetaldehyde-water clusters.

  16. Quantum efficiency measurements for several waveshifter coatings in the extreme vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Butner, C. L.; Viehmann, W.

    1984-01-01

    Quantum efficiency measurements are given for coronene and liumogen coatings designed to enhance UV sensitivity for silicon charge coupled device imaging detectors. Coatings on quartz and on UDT PIN 10DP photodiodes were tested. The wavelength range extended from 153.7 to 50.0 nm in the vacuum ultraviolet. Similar measurements were made for coronene, liumogen, and stilbene-3 laser dye films on quartz disks relative to sodium salicylate. Sodium salicylate and coronene are the most efficient waveshifters down to 50 nm so far observed. Coronene's fairly constant quantum efficiency over such a wide wavelength range into the far VUV makes it a useful waveshifter for UV and VUV applications.

  17. Vacuum ultraviolet light source utilizing rare gas scintillation amplification sustained by photon positive feedback

    NASA Technical Reports Server (NTRS)

    Aprile, Elena (Inventor); Chen, Danli (Inventor)

    1995-01-01

    A source of light in the vacuum ultraviolet (VUV) spectral region includes a reflective UV-sensitive photocathode supported in spaced parallel relationship with a mesh electrode within a rare gas at low pressure. A high positive potential applied to the mesh electrode creates an electric field which causes drifting of free electrons occurring between the electrodes and producing continuous VUV light output by electric field-driven scintillation amplification sustained by positive photon feedback mediated by photoemission from the photocathode. In one embodiment the lamp emits a narrow-band continuum peaked at 175 nm.

  18. Evaluation of a hydrogen laser vacuum ultraviolet source for photoionization mass spectrometry of pharmaceuticals.

    PubMed

    Finch, Jeffrey W; Toerne, Kevin A; Schram, Karl H; Denton, M Bonner

    2005-01-01

    A photoionization hydrogen laser time-of-flight mass spectrometer system (H2-TOFMS) has been evaluated for the rapid analysis of drugs of abuse and pharmaceutical agents extracted from prescription tablets and spiked urine samples. The spectra obtained using the H2-TOFMS showed primarily intact molecular ions (M+*) after introduction by a heated probe and irradiation with vacuum ultraviolet (VUV) photons from the laser. Samples analyzed by this technique required only a simple solid-phase extraction step; no chromatographic separation or derivatization was necessary to identify the drugs of abuse or pharmaceutical agents.

  19. Variability in the vacuum-ultraviolet transmittance of magnesium fluoride windows.

    PubMed

    Herzig, H; Fleetwood, C M; Toft, A R

    1992-01-01

    In the course of the development of a domed magnesium fluoride detector window for the Space Telescope Imaging Spectrograph, slated to be a second-generation instrument aboard the Hubble Space Telescope, sample window materials from various commercial sources displayed a wide variability in vacuum ultraviolet transmittance. As a result a test program was undertaken in cooperation with the supplier of a prototype domed window to maximize transmittance. Results of the program have provided clues to the causes of the variations experienced, and they point to careful selection of raw materials and strict process control to achieve optimization.

  20. Vacuum Ultraviolet Radiation Desorption of Molecular Contaminants Deposited on Quartz Crystal Microbalances

    NASA Technical Reports Server (NTRS)

    Albyn, Keith; Burns, Dewitt

    2006-01-01

    Recent quartz crystal microbalance measurements made in the Marshall Space Flight Center, Photo-Deposition Facility, for several materials, recorded a significant loss of deposited contaminants when the deposition surface of the microbalance was illuminated by a deuterium lamp. These measurements differ from observations made by other investigators in which the rate of deposition increased significantly when the deposition surface was illuminated with vacuum ultraviolet radiation. These observations suggest that the accelerated deposition of molecular contaminants on optically sensitive surfaces is dependant upon the contaminant being deposited and must be addressed during the materials selection process by common material screening techniques.

  1. Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. 3: CO2

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Borst, W. L.; Zipf, E. C.

    1972-01-01

    Vacuum ultraviolet multiplets of C I, C II, and O I were produced by electron impact of CO2. Absolute emission cross sections for these multiplets were measured from threshold to 350 eV. The electrostatically focussed electron gun used in this series of experiments is described in detail. The atomic multiplets which were produced by dissociative excitation of CO2 and the cross sections at 100 eV are given. The dependence of the excitation functions on electron energy shows that these multiplets are produced by electric-dipole-allowed transitions in CO2.

  2. Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. 3: CO2

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Borst, W. L.; Zipf, E. C.

    1972-01-01

    Vacuum ultraviolet multiplets of C I, C II, and O I were produced by electron impact on CO2. Absolute emission cross sections for these multiplets were measured from threshold to 350 eV. The electrostatically focused electron gun used is described in detail. The atomic multiplets which were produced by dissociative excitation of CO2 and the cross sections at 100 eV are presented. The dependence of the excitation functions on electron energy shows that these multiplets are produced by electric-dipole-allowed transitions in CO2.

  3. Absolute vacuum ultraviolet flux in inductively coupled plasmas and chemical modifications of 193 nm photoresist

    NASA Astrophysics Data System (ADS)

    Titus, M. J.; Nest, D.; Graves, D. B.

    2009-04-01

    Vacuum ultraviolet (VUV) photons in plasma processing systems are known to alter surface chemistry and may damage gate dielectrics and photoresist. We characterize absolute VUV fluxes to surfaces exposed in an inductively coupled argon plasma, 1-50 mTorr, 25-400 W, using a calibrated VUV spectrometer. We also demonstrate an alternative method to estimate VUV fluence in an inductively coupled plasma (ICP) reactor using a chemical dosimeter-type monitor. We illustrate the technique with argon ICP and xenon lamp exposure experiments, comparing direct VUV measurements with measured chemical changes in 193 nm photoresist-covered Si wafers following VUV exposure.

  4. CIV Polarization Measurements using a Vacuum Ultraviolet Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    West, Edward; Gary, G. Allen; Cirtain, Jonathan; David, John; Kobayashi, Ken; Pietraszewski, Chris

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry-P rot Interferometer that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry P rot.

  5. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of methylcyclohexane in the supersonic jet

    NASA Astrophysics Data System (ADS)

    Han, Songhee; Yoo, Hyun Sik; Ahn, Doo-Sik; Choi, Young S.; Kim, Sang Kyu

    2011-12-01

    Vacuum ultraviolet (VUV) mass-analyzed threshold ionization (MATI) spectrum of supersonically cooled methylcyclohexane has been obtained to give the precise adiabatic ionization energy of 9.6958 ± 0.0025 eV for the chair equatorial conformer. Vibrationally resolved MATI spectrum has been analyzed with the aid of density functional theory and Franck-Condon calculations. The MATI spectrum reflects the structural change upon ionization and its origin is discussed by inspecting the shapes of the valence orbitals involved in the ionization process. The spectroscopic implication of the structural interconversion above the certain energy level is discussed with theoretical calculations of molecular structures and energetics.

  6. Facility and Methods Developed for Simulated Space Vacuum Ultraviolet Exposure Testing of Polymer Films

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Pietromica, Anthony J.; Stueber, Thomas J.; Sechkar, Edward A.; Messer, Russell K.

    2002-01-01

    Vacuum ultraviolet (VUV) radiation of wavelengths between 115 and 200 nm produced by the Sun in the space environment can degrade polymer films, producing changes in their optical, mechanical, and chemical properties. These effects are particularly important for thin polymer films being considered for ultralightweight space structures, because, for most polymers, VUV radiation is absorbed in a thin surface layer. The NASA Glenn Research Center has developed facilities and methods for long-term ground testing of polymer films to evaluate space environmental VUV radiation effects. VUV exposure can also be used as part of combined or sequential simulated space environmental exposures to determine combined damaging effects with other aspects of the space environment, which include solar ultraviolet radiation, solar flare x-rays, electron and proton radiation, atomic oxygen (for low-Earth-orbit missions), and temperature effects. Because the wavelength sensitivity of VUV damage is not well known for most materials, Glenn's VUV facility uses a broad-spectrum deuterium lamp with a magnesium fluoride window that provides output between 115 and 200 nm. Deuterium lamps of this type were characterized by the National Institute of Standards and Technology and through measurements at Glenn. Spectral irradiance measurements show that from approximately 115 to 160 nm, deuterium lamp irradiance can be many times that of air mass zero solar irradiance, and as wavelength increases above approximately 160 nm, deuterium lamp irradiance decreases in comparison to the Sun. The facility is a cryopumped vacuum chamber that achieves a system pressure of approximately 5310(exp -6) torr. It contains four individual VUV-exposure compartments in vacuum, separated by water-cooled copper walls to minimize VUV radiation and any sample contamination cross interactions between compartments. Each VUV-exposure compartment contains a VUV deuterium lamp, a motor-controlled sample stage coupled with a

  7. Laser desorption postionization mass spectrometry of antibiotic-treated bacterial biofilms using tunable vacuum ultraviolet radiation.

    PubMed

    Gasper, Gerald L; Takahashi, Lynelle K; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F; Hanley, Luke

    2010-09-01

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0-12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics and extracellular neutrals that are laser desorbed both from neat and intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  8. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    SciTech Connect

    Gasper, Gerald L; Takahashi, Lynelle K; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  9. Analysis and deconvolution of dimethylnaphthalene isomers using gas chromatography vacuum ultraviolet spectroscopy and theoretical computations.

    PubMed

    Schenk, Jamie; Mao, James X; Smuts, Jonathan; Walsh, Phillip; Kroll, Peter; Schug, Kevin A

    2016-11-16

    An issue with most gas chromatographic detectors is their inability to deconvolve coeluting isomers. Dimethylnaphthalenes are a class of compounds that can be particularly difficult to speciate by gas chromatography - mass spectrometry analysis, because of their significant coelution and similar mass spectra. As an alternative, a vacuum ultraviolet spectroscopic detector paired with gas chromatography was used to study the systematic deconvolution of mixtures of coeluting isomers of dimethylnaphthalenes. Various ratio combinations of 75:25; 50:50; 25:75; 20:80; 10:90; 5:95; and 1:99 were prepared to test the accuracy, precision, and sensitivity of the detector for distinguishing overlapping isomers that had distinct, but very similar absorption spectra. It was found that, under reasonable injection conditions, all of the pairwise overlapping isomers tested could be deconvoluted up to nearly two orders of magnitude (up to 99:1) in relative abundance. These experimental deconvolution values were in agreement with theoretical covariance calculations performed for two of the dimethylnaphthalene isomers. Covariance calculations estimated high picogram detection limits for a minor isomer coeluting with low to mid-nanogram quantity of a more abundant isomer. Further characterization of the analytes was performed using density functional theory computations to compare theory with experimental measurements. Additionally, gas chromatography - vacuum ultraviolet spectroscopy was shown to be able to speciate dimethylnaphthalenes in jet and diesel fuel samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. CIV Vacuum Ultraviolet Fabry-Perot Interferometers for Transition-Region Magnetography

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; Zukic, Maumer; Herman, Peter; Li, Jianzhao

    2006-01-01

    The vacuum ultraviolet region allows remote sensing of the upper levels of the solar atmosphere where the magnetic field dominates the physics. Obtaining an imaging interferometer that observes the transition region is the goal of this program. This paper gives a summary of our instrument development program (1998-2005) for a high-spectral-resolution, piezoelectric tunable Vacuum Ultraviolet Fabry-Perot Interferometer (VUV FPI) for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CN (155nm). A VUV interferometer will allow us to observe the magnetic field, flows, and heating events in the mid-transition region. The MSFC VUV FPI has measured values of FWHM approx. 9pm, FSR approx. 62pm, finesse approx. 5.3 and transmittance approx. 50% at 157nm. For the measurements, the University of Toronto's F2 eximer laser was used as an appropriate proxy for CIV 155nm. This has provided the first tunable interferometer with a FWHM compatible to VUV filter magnetograph.

  11. [Design and study of a high resolution vacuum ultraviolet imaging spectrometer carried by satellite].

    PubMed

    Yu, Lei; Lin, Guan-yu; Qu, Yi; Wang, Shu-rong; Wang, Long-qi

    2011-12-01

    A high resolution vacuum ultraviolet imaging spectrometer prototype carried by satellite applied to the atmosphere detection of particles distribution in 115-300 nm was developed for remote sensing. First, based on the analysis of advanced loads, the optical system including an off-axis parabolic mirror as the telescope and Czerny-Turner structure as the imaging spectrometer was chosen Secondly, the 2-D photon counting detector with MCP was adopted for the characteristic that the radiation is weak in vacuum ultraviolet waveband. Then the geometric method and 1st order differential calculation were introduced to improve the disadvantages that aberrations in the traditional structure can not be corrected homogeneously to achieve perfect broadband imaging based on the aberration theory. At last, an advanced example was designed. The simulation and calculation of results demonstrate that the modulation transfer function (MTF) of total field of view is more than 0.6 in the broadband, and the spectral resolution is 1.23 nm. The structure is convenient and predominant. It proves that the design is feasible.

  12. Vacuum Ultraviolet Radiation Effects on DC93-500 Silicone Film Studied

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Yan, Li

    2005-01-01

    A space-qualified silicone polymer, DC93-500 (Dow Corning, Midland, MI), has been used as a spacecraft solar cell adhesive and has been proposed for use in a Fresnel lens solar concentrator for space power applications. Applications of DC93-500 for exterior space system surfaces require an understanding of its overall space environmental durability. Vacuum ultraviolet (VUV) radiation is among the space environment elements that can be hazardous to the properties of DC93-500, causing degradation in optical and mechanical properties. For materials or components that have not been tested previously for long-duration performance in space, such as DC93-500 in freestanding film form, ground laboratory testing is an important tool for assuring durability. However, differences between the space environment and ground laboratory testing environments lead to complexities in interpreting the ground test results. Two important differences between space and laboratory vacuum ultraviolet exposure conditions are irradiance spectra and light intensity. These important differences were the basis for laboratory experiments conducted to examine VUV wavelength dependence and VUV intensity dependence of DC93-500 degradation. Testing conducted at the NASA Glenn Research Center along with additional data provided through a grant with the University of Nebraska-Lincoln, has advanced the understanding of VUV effects on DC93-500 and has provided important conclusions regarding the use of ground laboratory VUV testing to predict the space environment performance of DC93-500.

  13. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    PubMed Central

    Gasper, Gerald L.; Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F.; Hanley, Luke

    2010-01-01

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 – 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics and extracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms. PMID:20712373

  14. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    SciTech Connect

    Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

    2008-04-24

    In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  15. Effects of space vacuum and solar ultraviolet irradiation (254 nanometers) on the colony forming ability of Bacillus subtilis spores

    NASA Technical Reports Server (NTRS)

    Buecker, H.; Horneck, G.; Wollenhaupt, H.

    1973-01-01

    Bacillus subtilis spores are highly resistant to harsh environments. Therefore, in the Apollo 16 Microbial Response to Space Environment Experiment (M191), these spores were exposed to space vacuum or solar ultraviolet irradiation, or both, to estimate the change of survival for terrestrial organisms in space. The survival of the spores was determined in terms of colony-forming ability. Comparison of the flight results with results of simulation experiments on earth applying high vacuum or ultraviolet irradiation, or both, revealed no remarkable difference. Simultaneous exposure to both these space factors resulted in a synergistic effect (that is, an ultraviolet supersensitivity). Therefore, the change of survival in space is assumed to depend on the degree of protection against solar ultraviolet irradiation.

  16. Vacuum ultraviolet photon fluxes in argon-containing inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Radovanov, S. B.; Persing, H. M.; Wang, S.; Culver, C. L.; Boffard, J. B.; Lin, C. C.; Wendt, A. E.

    2013-09-01

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. Damage of materials is induced by energy transfer from the VUV photons to the surface, causing disorder in the surface region, surface reactions, and affecting bonds in the material bulk. Monitoring of the surface flux of VUV photons from inductively coupled plasmas (ICP) and its dependence on discharge parameters is thus highly desirable. Results of non-invasive, direct windowless VUV detection using a photosensitive diode will be presented. Relative VUV fluxes were also obtained using a sodium salicylate coating on the inside of a vacuum window, converting VUV into visible light detected through the vacuum window. The coating is sensitive to wavelengths in the range 80-300 nm, while the photodiode is only sensitive to wavelengths below 120 nm. In argon the VUV emissions are primarily produced by spontaneous decay from 3p5 4 s resonance levels (1s2,1s4) and may be reabsorbed by ground state atoms. Real-time resonance level concentrations were measured and used to predict the VUV photon flux at the detector for a range of different ICP pressures, powers, and for various admixtures of Ar with N2, and H2. This work was supported in part by NSF grant PHY-1068670.

  17. Photochemical abiotic synthesis of amino-acid precursors from simulated planetary atmospheres by vacuum ultraviolet light

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun-Ichi; Masuda, Hitomi; Kaneko, Takeo; Kobayashi, Kensei; Saito, Takeshi; Hosokawa, Teruo

    2005-07-01

    For the purpose of investigating the photon energy dependence of the photoinduced abiotic synthesis of organic molecules, gas mixtures that simulate typical planetary atmospheres, including a carbon source (CO or CH4), a nitrogen source (N2 or NH3), and H2O, were irradiated with synchrotron radiation through a vacuum-ultraviolet transmitting window. Three kinds of window material, fused silica, synthetic quartz, and MgF2, were used as a high-energy-cutting filter, whose absorption-edge energies are 6.4, 8.1, and 10.5 eV, respectively. Three types of gas mixture, Titan-type (CH4-N2-H2O), comet-type (CO-NH3-H2O), and primitive-Earth-type (CO-N2-H2O), were irradiated with vacuum-ultraviolet photons in the three energy ranges. After the irradiation, amino-acid formation yields in the acid-hydrolyzed solution of the product were measured with a high-performance liquid chromatograph method. From the Titan- and comet-type mixtures, amino acids were detected by irradiation with photons lower than 8.1 eV. For both mixtures, the averaged quantum yields of glycine generation in the photon energy region of 7-10.5 eV were of the order of 10-5, which was larger by about one order than that in the region 5-8 eV. On the other hand, from the primitive-Earth-type mixture, amino-acid formation was difficult to detect even with irradiation as high as 10.5 eV, even though amino acids were generated in comparable yields from the Titan- and comet-type mixtures by irradiation with soft x rays or proton beam, whose energies are much higher. These results suggest that the vacuum ultraviolet light is a more effective energy source for the generation of the precursors of bioorganic compounds in extraterrestrial environments than in primitive-Earth atmosphere.

  18. Modification of organosilicate glasses low-k films under extreme and vacuum ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Rakhimova, T. V.; Rakhimov, A. T.; Mankelevich, Yu. A.; Lopaev, D. V.; Kovalev, A. S.; Vasil'eva, A. N.; Proshina, O. V.; Braginsky, O. V.; Zyryanov, S. M.; Kurchikov, K.; Novikova, N. N.; Baklanov, M. R.

    2013-03-01

    Degradation of chemical composition of porous low-k films under extreme and various vacuum ultraviolet emissions is studied using specially developed sources. It is shown that the most significant damage is induced by Xe line emission (147 nm) in comparison with Ar (106 nm), He (58 nm), and Sn (13.5 nm) emissions. No direct damage was detected for 193 nm emission. Photoabsorption cross-sections and photodissociation quantum yields were derived for four films under study. 147 nm photons penetrate deeply into low-k films due to smaller photoabsorption cross-section and still have sufficient energy to excite Si-O-Si matrix and break Si-CH3 bonds.

  19. Detection of chlorobenzene derivatives using vacuum ultraviolet ionization time-of-flight mass spectrometry.

    PubMed

    Tonokura, Kenichi; Nakamura, Tomohisa; Koshi, Mitsuo

    2003-08-01

    Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) has been applied for the detection of chlorobenzene, o-dichlorobenzene, and o-chlorophenol as surrogates for polychlorinated dibenzo-p-dioxine/furans (PCDD/F). The photoionization mass spectra of these compounds appear to be fragmentation free in the ionization processes by the VUV-SPI at 10.2 eV (121.6 nm). Quantum chemical calculations support no fragmentation in the photoionization of chlorobenzene derivatives at around 10 eV. The absolute photoionization cross-sections of chlorobenzene, o-dichlorobenzene, and o-chlorophenol were estimated at 10.2 eV. The photoionization cross-section is an important parameter in the detection of chlorobenzene derivatives by the single-photon ionization technique. The detection limit for chlorobenzene is on the order of tenth parts-per-billion volume (ppbv) in the present experimental setup.

  20. Vacuum-ultraviolet circular dichroism reveals DNA duplex formation between short strands of adenine and thymine.

    PubMed

    Nielsen, Lisbeth Munksgaard; Hoffmann, Søren Vrønning; Brøndsted Nielsen, Steen

    2012-11-21

    Absorbance spectroscopy is used extensively to tell when two DNA single strands come together and form a double strand. Here we show that circular dichroism in the vacuum ultraviolet region provides an even stronger indication for duplex formation in the case of short strands of adenine and thymine (4 to 16 bases in each strand). Indeed, our results show that a strong positive CD band appears at 179 nm when double strands are formed. Melting experiments were done in aqueous solution with and without added Na(+) counter ions. With additional salt present a huge increase in the 179 nm CD band was observed when lowering the temperature. A 179 nm CD marker band for duplex formation can be used to measure the kinetics for the association of two single strands. Such experiments rely on large changes at one particular wavelength since it is too time-consuming to record a full-wavelength spectrum.

  1. Vacuum ultraviolet photoabsorption of prime ice analogues of Pluto and Charon.

    PubMed

    Pavithraa, S; Lo, J-I; Rahul, K; Raja Sekhar, B N; Cheng, B-M; Mason, N J; Sivaraman, B

    2017-08-26

    Here we present the first Vacuum UltraViolet (VUV) photoabsorption spectra of ice analogues of Pluto and Charon ice mixtures. For Pluto the ice analogue is an icy mixture containing nitrogen (N2), carbon monoxide (CO), methane (CH4) and water (H2O) prepared with a 100:1:1:3 ratio, respectively. Photoabsorption of icy mixtures with and without H2O were recorded and no significant changes in the spectra due to presence of H2O were observed. For Charon a VUV photoabsorption spectra of an ice analogue containing ammonia (NH3) and H2O prepared with a 1:1 ratio was recorded, a spectrum of ammonium hydroxide (NH4OH) was also recorded. These spectra may help to interpret the P-Alice data from New Horizons. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The effects of plasma exposure and vacuum ultraviolet irradiation on photopatternable low-k dielectric materials

    SciTech Connect

    Nichols, M. T.; Mavrakakis, K.; Shohet, J. L.; Lin, Q.

    2013-09-14

    The effects of plasma exposure and vacuum-ultraviolet (VUV) irradiation on photopatternable low-k (PPLK) dielectric materials are investigated. In order to examine these effects, current-voltage measurements were made on PPLK materials before and after exposure to a variety of inert plasma-exposure conditions. In order to examine the effects of photon irradiation alone, PPLK samples were also exposed to monochromatic synchrotron radiation with 10 eV photon energy. It was found that plasma exposure causes significant degradation in electrical characteristics, resulting in increased leakage-currents and decreased breakdown voltage. X-ray photoelectron spectroscopy measurements also show appreciable carbon loss near the sample surface after plasma exposure. Conversely, VUV exposure was found to increase breakdown voltage and reduce leakage-current magnitudes.

  3. Vacuum ultraviolet field emission lamp consisting of neodymium ion doped lutetium fluoride thin film as phosphor.

    PubMed

    Yanagihara, Masahiro; Tsuji, Takayuki; Yusop, Mohd Zamri; Tanemura, Masaki; Ono, Shingo; Nagami, Tomohito; Fukuda, Kentaro; Suyama, Toshihisa; Yokota, Yuui; Yanagida, Takayuki; Yoshikawa, Akira

    2014-01-01

    A vacuum ultraviolet (VUV) field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd(3+) : LuF3) thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180, 225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd(3+) : LuF3 crystal. Moreover, application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance enhancement of the lamp operating in the VUV region.

  4. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  5. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  6. Infrared Spectra of Acetylene Diluted in Solid Nitrogen upon Irradiation with Vacuum Ultraviolet Light and Electrons

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Jong; Chuang, Shiang-Jiun; Chen, Sian-Cong; Huang, Tzu-Ping

    2014-05-01

    Infrared spectra and chemical reactions of acetylene diluted in solid nitrogen at 10 K upon irradiation with vacuum ultraviolet (VUV) light and energetic electrons were investigated in separate experiments. Irradiation of the matrix sample with VUV light peaking at 160 and 121.6 nm yielded simple products, including C2H, CN, and isomers of C2N2. In contrast, electron irradiation of a similar sample generated N3, C2H, and various nitriles. The reaction mechanisms for photolysis and radiolysis of the matrix samples are discussed. Our results may help explain the distribution of trace species detected in the atmosphere of Titan. In addition, the UV absorption spectrum of the electron-bombarded icy sample was obtained and might be useful for future spectral investigations of Pluto by New Horizons.

  7. Amplification properties of vacuum ultraviolet Ar2* produced by infrared high-intensity laser

    NASA Astrophysics Data System (ADS)

    Kaku, Masanori; Harano, Shinya; Matsumoto, Ryota; Katto, Masahito; Kubodera, Shoichi

    2011-07-01

    We report optical amplification of Ar2* at 126nm, pumped by optical-field-induced ionization (OFI) created by an infrared high-intensity laser. A gain--length product of 0.84 was obtained by using multipass amplification with a vacuum ultraviolet (VUV) cavity. The gain--length product was increased up to 4.3 through the use of single-pass amplification with a VUV reflector and a hollow 5.0cm-long fiber. Similar small signal gain coefficients of 0.84 and 0.86cm-1 were obtained in two different experiments, in which OFI Ar plasma gain media were produced in free space filled with Ar and inside an Ar-filled hollow fiber.

  8. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  9. Bandgap measurements of low-k porous organosilicate dielectrics using vacuum ultraviolet irradiation

    SciTech Connect

    Zheng, H.; Shohet, J. L.; King, S. W.; Ryan, V.; Nishi, Y.

    2014-02-10

    Vacuum ultraviolet (VUV) photoemission spectroscopy is used to investigate the effect of VUV radiation on porous organosilicate (SiCOH) dielectrics during plasma processing. By comparing photoemission spectroscopic results before and after VUV exposure, VUV irradiation with photon energies less than 9.0 eV was found to be beneficial in depleting accumulated charge in SiCOH films while VUV photons with higher energies did not have this effect. Moreover, VUV irradiation with 8.9 eV photons depletes the most charge. From this result, it can be concluded that 8.9 eV is the bandgap plus the electron affinity energy of SiCOH dielectrics.

  10. Development of an imaging vacuum-ultraviolet monochromator in the normal incidence region

    NASA Astrophysics Data System (ADS)

    Koog, J.; Iwasaki, K.; Sato, K.; Hamada, Y.; Toi, K.; JIPP T-IIU Group

    1996-11-01

    An imaging vacuum-ultraviolet monochromator has been developed to provide the space-resolved impurity line emissions from magnetically confined plasmas. With minor modifications of a commercial normal incidence monochromator, a pinhole entrance slit and a microchannel plate detector displaced away from the exit slit, the instrument performs two-dimensional spectroscopic observations in the wavelength range from 400 to 2000 Å. Ray tracing has been performed to understand the spatial imaging properties in the practical geometric configuration. The measured spatial resolution is about 0.5 and 1 mrad in dispersion and vertical plane, respectively, with the entrance slit of 0.1 mm width and height. The results of the testing experiments and the measurements carried out on the JIPP T-IIU tokamak plasma are presented and discussed.

  11. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-01-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  12. Vacuum ultraviolet excitation luminescence spectroscopy of few-layered MoS2

    NASA Astrophysics Data System (ADS)

    Pankratov, V.; Hoszowska, J.; Dousse, J.-Cl; Huttula, M.; Kis, A.; Krasnozhon, D.; Zhang, M.; Cao, W.

    2016-01-01

    We report on vacuum ultraviolet (VUV) excited photoluminescence (PL) spectra emitted from a chemical vapor deposited MoS2 few-layered film. The excitation spectrum was recorded by monitoring intensities of PL spectra at ~1.9 eV. A strong wide excitation band peaking at 7 eV was found in the excitation. The PL excitation band is most intensive at liquid helium temperature and completely quenched at 100 K. Through first-principles calculations of photoabsorption in MoS2, the excitation was explicated and attributed to transitions of electrons from p- and d- type states in the valence band to the d- and p-type states in the conduction band. The obtained photon-in/photon-out results clarify the excitation and emission behavior of the low dimensional MoS2 when interacting with the VUV light sources.

  13. Selective irradiation of radicals for biomedical treatment using vacuum ultraviolet light from an excimer lamp

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Tokumitsu, Yusuke; Zen, Shungo; Yonemori, Seiya

    2014-10-01

    In plasma medicine, radicals are considered to play important roles. However, the medical effect of each radical, such as OH and O, is unknown. To examine the effect of each radical, selective production of radicals is needed. We developed selective production of radicals for biomedical treatment using a vacuum ultraviolet (VUV) light emitted from an excimer lamp. Selective irradiation of OH radicals can be achieved by irradiating the 172-nm VUV light from a Xe2 excimer lamp to a humid helium flow in a quartz tube. The water molecules are strongly photodissociated by the VUV light to produce OH radicals. A photochemical simulation for the selective OH production is developed to calculate the OH density. The calculated OH density is compared with OH density measured using laser-induced fluorescence (LIF). Selective production of other radicals than OH is also discussed.

  14. Vacuum ultraviolet argon excimer laser at 126 nm excited by a high intensity laser

    NASA Astrophysics Data System (ADS)

    Kaku, Masanori; Harano, Shinya; Katto, Masahito; Kubodera, Shoichi

    2010-09-01

    We have observed the optical amplification of the Ar2* excimer at 126 nm pumped by optical-field-induced ionization (OFI) caused by an infrared high-intensity laser. We have evaluated similar small signal gain coefficients of approximately 1.0 cm-1 in two different experiments, where OFI Ar plasmas as gain media were produced in free space filled with Ar and inside an Ar-filled hollow fiber. This indicates that the function of a hollow fiber was to guide the infrared excitation laser and VUV Ar2* emissions, and not to regulate the OFI plasma. Despite the gain coefficient value at 126 nm, the laser oscillation has not been observed. This was limited by the optical quality of available state-of-the-art vacuum ultraviolet optics.

  15. A synchrotron-radiation-based variable angle ellipsometer for the visible to vacuum ultraviolet spectral range

    SciTech Connect

    Neumann, M. D. Cobet, C.; Esser, N.; Kaser, H.; Kolbe, M.; Gottwald, A.; Richter, M.

    2014-05-15

    A rotating analyzer spectroscopic polarimeter and ellipsometer with a wide-range θ-2θ goniometer installed at the Insertion Device Beamline of the Metrology Light Source in Berlin is presented. With a combination of transmission- and reflection-based polarizing elements and the inherent degree of polarization of the undulator radiation, this ellipsometer is able to cover photon energies from about 2 eV up to 40 eV. Additionally, a new compensator design based on a CaF{sub 2} Fresnel rhomb is presented. This compensator allows ellipsometric measurements with circular polarization in the vacuum ultraviolet spectral range and thus, for example, the characterization of depolarizing samples. The new instrument was initially used for the characterization of the polarization of the beamline. The technical capabilities of the ellipsometer are demonstrated by a cohesive wide-range measurement of the dielectric function of epitaxially grown ZnO.

  16. Luminescence from Vacuum-Ultraviolet-Irradiated Cosmic Ice Analogs and Residue

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Dworkin, Jason P.; Chillier, Xavier D. F.; Allamandola, Louis J.

    2003-01-01

    Here we report a study of the optical luminescent properties for a variety of vacuum-ultraviolet (VUV)-irradiated cosmic ice analogs and the complex organic residues produced. Detailed results are presented for the irradiated, mixed molecular ice: H2O: CH3OH:NH3:CO(100:50:1:1), a realistic representation for an interstellar/precometary ice that reproduces all the salient infrared spectral features associated with interstellar ices. The irradiated ices and the room-temperature residues resulting from this energetic processing have remarkable photoluminescent properties in the visible (520-570 nm). The luminescence dependence on temperature, thermal cycling, and VUV exposure is described. It is suggested that this type of luminescent behavior might be applicable to solar system and interstellar observations and processes for various astronomical objects with an ice heritage. Some examples include grain temperature determination and vaporization rates, nebula radiation balance, albedo values, color analysis, and biomarker identification.

  17. Luminescence from Vacuum-Ultraviolet-Irradiated Cosmic Ice Analogs and Residues

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Dworkin, Jason P.; Chillier, Xavier D. F.; Allamandola, Louis J.

    2003-01-01

    Here we report a study of the optical luminescent properties for a variety of vacuum-ultraviolet (VUV)- irradiated cosmic ice analogs and the complex organic residues produced. Detailed results are presented for the irradiated, mixed molecular ice: H2O:CH3OH:NH3:CO (100:50:1:1), a realistic representation for an interstellar/precometary ice that reproduces all the salient infrared spectral features associated with interstellar ices. The irradiated ices and the room-temperature residues resulting from this energetic processing have remarkable photoluminescent properties in the visible (520-570 nm). The luminescence dependence on temperature, thermal cycling, and VUV exposure is described. It is suggested that this type of luminescent behavior might be applicable to solar system and interstellar observations and processes for various astronomical objects with an ice heritage. Some examples include grain temperature determination and vaporization rates, nebula radiation balance, albedo values, color analysis, and biomarker identification.

  18. Vacuum ultraviolet photodissociation dynamics of methanol at 121.6 nm

    NASA Astrophysics Data System (ADS)

    Lucas, Michael; Liu, Yanlin; Bryant, Raquel; Minor, Jasmine; Zhang, Jingsong

    2015-01-01

    Vacuum ultraviolet (VUV) photodissociation of CH3OH and CH3OD at 121.6 nm was studied using high-n Rydberg atom time-of-flight (HRTOF) technique. The H-atom product TOF spectrum of CH3OH and D-atom spectrum of CH3OD have bimodal distributions. O-H (CH3O + H(D)) and C-H (CH2OH(D) + H) dissociations contribute to the fast component. The slow component corresponds to CH2O + H + H(D) production, mainly from three-body photodissociation, plus small contributions from secondary dissociation of CH3O and CH2OH(D). The CH2O + H + H formation is the major photodissociation pathway, with a branching ratio of (CH2O + H + H):(CH3O + H):(CH2OH + H) ≈ 1:0.25:0.15.

  19. Development of vacuum-ultraviolet circular dichroism measurement system using a polarizing undulator.

    PubMed

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Yamada, Toru; Kaneko, Fusae; Nakagawa, Kazumichi

    2006-02-01

    We have developed an improved circular dichroism (CD) and linear dichroism (LD) simultaneous measurement system for the vacuum ultraviolet (VUV) region by polarization modulation techniques using a four-period Onuki-type crossed undulator as a polarized light source. The system has been constructed at the VUV beamline BL-5 in the electron storage ring TERAS, at AIST. Our improvements, in particular the adoption of an optical chopper as the detection method of incident light, have resulted in a flat baseline and a consequent simplification of the Mueller matrix calculation for our optical system. Based on the Mueller matrix calculation, we have successfully measured real VUV-CD and LD spectra of leucine films for wavelengths down to 160 nm with absolute optical constants. The obtained spectra show good consistency with spectra measured by conventional methods. Copyright 2006 Wiley-Liss, Inc.

  20. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  1. Photochemical/Microchannel Plasma Reactors Driven By High Power Vacuum Ultraviolet Lamps

    NASA Astrophysics Data System (ADS)

    Shin, Chul; Park, Sung-Jin; Eden, Gary

    2016-09-01

    Experiments are being conducted in which molecular dissociation or other chemical reactions in microchannel plasmas are accelerated by the introduction of vacuum ultraviolet photons. Initial emphasis is being placed on recently-developed Xe2 lamps that are efficient sources of 172 nm (h ν 7.2 eV) photons. Thin, flat lamps, fabricated from fused silica and having microcavity arrays internal to the lamp, have been developed by the University of Illinois and Eden Park Illumination and produce intensities above 200 mW/cm2. Integrating such lamps into a microcavity plasma reactor yields a hybrid photochemical/plasma system in which product yield and power consumption can be optimized. The selectivity of photodissociation in generating radicals and atomic fragments offers new synergies in plasma processing. Data concerning CO2 dissociation in arrays of microchannel plasmas, and the modification of this process by external 172 nm radiation, will be presented.

  2. Determination of precise pyrimidine cationic structure by vacuum ultraviolet mass-analyzed threshold ionization spectroscopy.

    PubMed

    Kim, Jae Han; Lee, Ji Hye; Hwang, Hyonseok; Kim, Hong Lae; Kwon, Chan Ho

    2014-01-28

    The vibrational spectrum of a pyrimidine cation in the ground electronic state was obtained using vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy. Accurate ionization energy of pyrimidine was determined from the 0-0 band position in the VUV-MATI spectrum and was measured by varying the PFI field to the zero field limit, which is 75,258 ± 7 cm(-1) (9.3308 eV). The spectrum displayed a large number of vibrational peaks, which could be nearly completely assigned through Franck-Condon analysis performed with variations of geometrical parameters at the B3LYP/cc-pVTZ level. Based on the excellent agreement between experimental and calculated results, the definite geometry of the pyrimidine cation in the ground electronic state was determined to be a planar structure with C2v symmetry with a decreased N-N distance in the ring.

  3. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  4. Luminescence from Vacuum-Ultraviolet-Irradiated Cosmic Ice Analogs and Residue

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Dworkin, Jason P.; Chillier, Xavier D. F.; Allamandola, Louis J.

    2003-01-01

    Here we report a study of the optical luminescent properties for a variety of vacuum-ultraviolet (VUV)-irradiated cosmic ice analogs and the complex organic residues produced. Detailed results are presented for the irradiated, mixed molecular ice: H2O: CH3OH:NH3:CO(100:50:1:1), a realistic representation for an interstellar/precometary ice that reproduces all the salient infrared spectral features associated with interstellar ices. The irradiated ices and the room-temperature residues resulting from this energetic processing have remarkable photoluminescent properties in the visible (520-570 nm). The luminescence dependence on temperature, thermal cycling, and VUV exposure is described. It is suggested that this type of luminescent behavior might be applicable to solar system and interstellar observations and processes for various astronomical objects with an ice heritage. Some examples include grain temperature determination and vaporization rates, nebula radiation balance, albedo values, color analysis, and biomarker identification.

  5. Vacuum Ultraviolet Field Emission Lamp Consisting of Neodymium Ion Doped Lutetium Fluoride Thin Film as Phosphor

    PubMed Central

    Yanagihara, Masahiro; Tsuji, Takayuki; Yusop, Mohd Zamri; Tanemura, Masaki; Nagami, Tomohito; Fukuda, Kentaro; Suyama, Toshihisa; Yokota, Yuui; Yanagida, Takayuki; Yoshikawa, Akira

    2014-01-01

    A vacuum ultraviolet (VUV) field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd3+ : LuF3) thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180, 225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd3+ : LuF3 crystal. Moreover, application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance enhancement of the lamp operating in the VUV region. PMID:25302320

  6. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  7. Effects of plasma and vacuum-ultraviolet exposure on the mechanical properties of low-k porous organosilicate glass

    Treesearch

    X. Guo; J.E. Jakes; S. Banna; Y. Nishi; J.L. Shohet

    2014-01-01

    The effects of plasma exposure and vacuum-ultraviolet (VUV) irradiation on the mechanical properties of low-k porous organosilicate glass (SiCOH) dielectric films were investigated. Nanoindentation measurements were made on SiCOH films before and after exposure to an electron-cyclotron-resonance plasma or a monochromatic synchrotron VUV beam, to determine the changes...

  8. A new optical scheme for large-extraction small-aberration vacuum-ultraviolet synchrotron radiation beamlines.

    PubMed

    Moreno, Thierry

    2016-09-01

    Vacuum-ultraviolet radiation delivered by bending-magnet sources is used at numerous synchrotron radiation facilities worldwide. As bending-magnet radiation is inherently much less collimated compared with undulator sources, the generation of high-quality intense bending-magnet vacuum-ultraviolet photon beams is extremely demanding in terms of the optical layout due to the necessary larger collection apertures. In this article, an optimized optical layout which takes into account both the optical and electron beam properties is proposed. This layout delivers an improved beam emittance of over one order of magnitude compared with existing vacuum-ultraviolet bending-magnet beamlines that, up to now, do not take into account electron beam effects. The arrangement is made of two dedicated mirrors, a cylindrical and a cone-shaped one, that focus independently both the horizontal and the vertical emission of a bending-magnet source, respectively, and has been already successfully applied in the construction of the infrared beamline at the Brazilian synchrotron. Using this scheme, two vacuum-ultraviolet beamline designs based on a SOLEIL synchrotron bending-magnet source are proposed and analysed. They would be useful for future upgrades to the DISCO beamline at SOLEIL and could be readily implemented at other synchrotron radiation facilities.

  9. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    DOEpatents

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  10. Effect of vacuum-ultraviolet irradiation on the dielectric constant of low-k organosilicate dielectrics

    SciTech Connect

    Zheng, H.; Shohet, J. L.; Ryan, E. T.; Nishi, Y.

    2014-11-17

    Vacuum ultraviolet (VUV) irradiation is generated during plasma processing in semiconductor fabrications, while the effect of VUV irradiation on the dielectric constant (k value) of low-k materials is still an open question. To clarify this problem, VUV photons with a range of energies were exposed on low-k organosilicate dielectrics (SiCOH) samples at room temperature. Photon energies equal to or larger than 6.0 eV were found to decrease the k value of SiCOH films. VUV photons with lower energies do not have this effect. This shows the need for thermal heating in traditional ultraviolet (UV) curing since UV light sources do not have sufficient energy to change the dielectric constant of SiCOH and additional energy is required from thermal heating. In addition, 6.2 eV photon irradiation was found to be the most effective in decreasing the dielectric constant of low-k organosilicate films. Fourier Transform Infra-red Spectroscopy shows that these 6.2 eV VUV exposures removed organic porogens. This contributes to the decrease of the dielectric constant. This information provides the range of VUV photon energies that could decrease the dielectric constant of low-k materials most effectively.

  11. Photoionization capable, extreme and vacuum ultraviolet emission in developing low temperature plasmas in air

    NASA Astrophysics Data System (ADS)

    Stephens, J.; Fierro, A.; Beeson, S.; Laity, G.; Trienekens, D.; Joshi, R. P.; Dickens, J.; Neuber, A.

    2016-04-01

    Experimental observation of photoionization capable extreme ultraviolet and vacuum ultraviolet emission from nanosecond timescale, developing low temperature plasmas (i.e. streamer discharges) in atmospheric air is presented. Applying short high voltage pulses enabled the observation of the onset of plasma formation exclusively by removing the external excitation before spark development was achieved. Contrary to the common assumption that radiative transitions from the b{{}1}{{\\Pi}u} (Birge-Hopfield I) and b{{}\\prime 1}Σu+ (Birge-Hopfield II) singlet states of N2 are the primary contributors to photoionization events, these results indicate that radiative transitions from the c{{4\\prime}1}Σu+ (Carroll-Yoshino) singlet state of N2 are dominant in developing low temperature plasmas in air. In addition to c{}4\\prime transitions, photoionization capable transitions from atomic and singly ionized atomic oxygen were also observed. The inclusion of c{{4\\prime}1}Σu+ transitions into a statistical photoionization model coupled with a fluid model enabled streamer growth in the simulation of positive streamers.

  12. Photodegradation of haloacetonitriles in water by vacuum ultraviolet irradiation: Mechanisms and intermediate formation.

    PubMed

    Kiattisaksiri, Pradabduang; Khan, Eakalak; Punyapalakul, Patiparn; Ratpukdi, Thunyalux

    2016-07-01

    Photodegradation of haloacetonitriles (HANs), highly carcinogenic nitrogenous disinfection by-products, in water using vacuum ultraviolet (VUV, 185 + 254 nm) in comparison with ultraviolet (UV, only 254 nm) was investigated. Monochloroacetonitrile (MCAN), dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), and dibromoacetonitrile (DBAN) were species of HANs studied. The effect of gas purging and intermediate formation under VUV were examined. The results show that the pseudo first order rate constants for the reduction of HANs under VUV were approximately 2-7 times better than UV. The order of degradation efficiency under VUV and UV was MCAN < DCAN < TCAN < DBAN. The degradation efficiencies of individual HANs under VUV were higher than those of mixed HANs, suggesting competitive effects among HANs. Under nitrogen purging, the removal rate constants of mixed HANs was much higher than that of the aerated condition by 34.4, 34.9, 10.1, and 3.8 times for MCAN, DCAN, TCAN, and DBAN, respectively. The major degradation mechanism for HANs was different depending on HANs species. Degradation intermediates of HANs such as 2-chloropropionitrile, 2,2-dimethylpropanenitrile, and fumaronitrile were produced from the substitution, addition, and polymerization reactions. In addition, chlorinated HANs with lower number of chlorine atom including MCAN and DCAN were found as intermediates of DCAN and TCAN degradation, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of Various Wavelength Ranges of Vacuum Ultraviolet Radiation on Teflon FEP Film Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; McCracken, Cara A.

    2004-01-01

    Teflon Fluorinated Ethylene Propylene (FTP) films (DuPont) have been widely used for spacecraft thermal control and have been observed to become embrittled and cracked upon exposure to the space environment. This degradation has been attributed to a synergistic combination of radiation and thermal effects. A research study was undertaken at the NASA Glenn Research Center to examine the effects of different wavelength ranges of vacuum ultraviolet (VUV) radiation on the degradation of the mechanical properties of FEP. This will contribute to an overall understanding of space radiation effects on Teflon FEP, and will provide information necessary to determine appropriate techniques for using laboratory tests to estimate space VUV degradation. Research was conducted using inhouse facilities at Glenn and was carried out, in part, through a grant with the Cleveland State University. Samples of Teflon FEP film of 50.8 microns thickness were exposed to radiation from a VUV lamp from beneath different cover windows to provide different exposure wavelength ranges: MgF2 (115 to 400 nm), crystalline quartz (140 to 400 nm), and fused silica (FS, 155 to 400 nm). Following exposure, FEP film specimens were tensile tested to determine the ultimate tensile strength and elongation at failure as a function of the exposure duration for each wavelength range. The graphs show the effect of ultraviolet exposure on the mechanical properties of the FEP samples.

  14. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations.

    PubMed

    Palmer, Michael H; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Zhang, Teng; Biczysko, Malgorzata; Baiardi, Alberto; Peterson, Kirk

    2015-10-28

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of (1)A1 (higher oscillator strength) and (1)B2 (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2(2)B1 ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b13s and 6b23s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.

  15. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations

    SciTech Connect

    Palmer, Michael H. Ridley, Trevor E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Hoffmann, Søren Vrønning E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it Jones, Nykola C. E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Coreno, Marcello E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Grazioli, Cesare; Zhang, Teng; and others

    2015-10-28

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.

  16. Wettability control of a polymer surface through 126 nm vacuum ultraviolet light irradiation

    NASA Astrophysics Data System (ADS)

    Hozumi, Atsushi; Shirahata, Naoto; Nakanishi, Youichiro; Asakura, Shuuichi; Fuwa, Akio

    2004-07-01

    The control of the surface wettability of poly (methyl methacrylate) (PMMA) substrates has been successfully demonstrated using an Ar2* excimer lamp radiating 126 nm vacuum ultraviolet (VUV) light. Each of the samples was exposed to 126 nm VUV light in air over the pressure range of 2×10-4-105 Pa. Although at the process pressures of 10, 103, and 105 Pa, the PMMA surfaces became relatively hydrophilic, the degree of hydrophilicity depended markedly on the pressure. The minimum water contact angles of the samples treated at 10, 103, and 105 Pa were about 50°, 33°, and 64°, respectively. These values were larger than those of PMMA substrates hydrophilized through 172 nm VUV irradiation conducted under the same conditions. On the other hand, after 126 nm VUV irradiation conducted under the high vacuum condition of 2×10-4 Pa, the PMMA substrate surface became carbon-rich, probably due to preferential cross-linking reactions, as evidenced by x-ray photoelectron spectroscopy. This surface was hydrophobic, showing a water contact angle of about 101°. Although the 126 nm VUV-irradiated surfaces appeared relatively smooth when observed by atomic force microscope, very small particles with diameters of 30-60 nm, which probably originated from the readhesion of photodecomposed products, existed on all of the sample surfaces. .

  17. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air.

    PubMed

    Ryberg, D; Fierro, A; Dickens, J; Neuber, A

    2014-10-01

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF6, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization.

  18. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air

    SciTech Connect

    Ryberg, D.; Fierro, A.; Dickens, J.; Neuber, A.

    2014-10-15

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF{sub 6}, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization.

  19. Flash vacuum-ultraviolet source utilizing a surface-discharge substrate

    NASA Astrophysics Data System (ADS)

    Sagae, Michiaki; Sato, Eiichi; Shikoda, Arimitsu; Oizumi, Teiji; Hayasi, Yasuomi; Shoji, Tetsuo; Shishido, Koro; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1993-01-01

    The fundamental studies for the flash vacuum-ultraviolet (VUV) source utilizing a surface- discharge substrate are described. This flash VUV source consists of the following essential components: a high-voltage power supply, a polarity-inversion-type high-voltage pulser with a condenser capacity of 14.3 nF, an oil diffusion pump, and a flash VUV chamber with a glass body. The VUV chamber employed a surface-discharge ferrite substrate that's pattern was formed by means of the copper vacuum evaporation and was connected to an oil diffusion pump with a pressure of 1.3 X 10-3 Pa. The combined ceramic condenser in the pulser was charged from 10 to 30 kV by a power supply, and the electric charges in the condenser were discharged to the radiation chamber after closing a gap switch. Then the flash VUV rays were generated. The maximum values of the cathode voltage and the tube current were about -21 kV and 1.7 kA, respectively. The VUV outputs were measured by a combination of a plastic scintillator and a photomultiplier. The pulse durations of the VUV rays were nearly equivalent to the durations of the damped oscillations of the voltage and current, and their values were about 10 microsecond(s) .

  20. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air

    NASA Astrophysics Data System (ADS)

    Ryberg, D.; Fierro, A.; Dickens, J.; Neuber, A.

    2014-10-01

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF6, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization.

  1. Photooxidation of plasma polymerized polydimethylsiloxane film by 172 nm vacuum ultraviolet light irradiation in dilute oxygen

    SciTech Connect

    Ichikawa, S.

    2006-08-01

    Plasma polymerized polydimethylsiloxane films irradiated under different partial pressures of oxygen with a 172 nm vacuum ultraviolet light were investigated in order to clarify the roles of molecular oxygen and photons in photooxidation. The thickness, densities, surface roughness, elemental compositions, and molecular structures of the irradiated and unirradiated films were examined by using glazing incidence x-ray reflectivity, Rutherford backscattering, infrared, and x-ray absorption (XAS) spectroscopies. Photooxidation is hardly promoted by irradiation in a high vacuum of 1x10{sup -4} Pa, though photodesorption of the methyl group and formation of Si-H bonds were observed. Silica films thicker than 140 nm were formed at room temperature by irradiating them in low pressure oxygen gases. The degree of oxidation was smaller for the oxygen pressure of 10 kPa than for 83 Pa. Si K-edge XAS was performed to clarify the change of coordination environment of silicon by photooxidation in dilute oxygen flow containing less than 5 ppm of molecular oxygen.

  2. Vacuum Ultraviolet Radiation and Atomic Oxygen Durability Evaluation of HST Bi-Stem Thermal Shield Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; deGroh, Kim K.

    2002-01-01

    Bellows-type thermal shields were used on the bi-stems of replacement solar arrays installed on the Hubble Space Telescope (HST) during the first HST servicing mission (SMI) in December 1993. These thermal shields helped reduce the problem of thermal gradient- induced jitter observed with the original HST solar arrays during orbital thermal cycling and have been in use on HST for eight years. This paper describes ground testing of the candidate solar array bi-stem thermal shield materials including backside aluminized Teflon(R)FEP (fluorinated ethylene propylene) with and without atomic oxygen (AO) and ultraviolet radiation protective surface coatings for durability to AO and combined AO and vacuum ultraviolet (VOV) radiation. NASA Glenn Research Center (GRC) conducted VUV and AO exposures of samples of candidate thermal shield materials at HST operational temperatures and pre- and post-exposure analyses as part of an overall program coordinated by NASA Goddard Space Flight Center (GSFC) to determine the on-orbit durability of these materials. Coating adhesion problems were observed for samples having the AO- and combined AO/UV-protective coatings. Coating lamination occurred with rapid thermal cycling testing which simulated orbital thermal cycling. This lack of adhesion caused production of coating flakes from the material that would have posed a serious risk to HST optics if the coated materials were used for the bi-stem thermal shields. No serious degradation was observed for the uncoated aluminized Teflon(R) as evaluated by optical microscopy, although atomic force microscopy (AFM) microhardness testing revealed that an embrittled surface layer formed on the uncoated Teflon(R) surface due to vacuum ultraviolet radiation exposure. This embrittled layer was not completely removed by AO erosion, No cracks or particle flakes were produced for the embrittled uncoated material upon exposure to VUV and AO at operational temperatures to an equivalent exposure of

  3. Interpretation of the vacuum ultraviolet photoabsorption spectrum of iodobenzene by ab initio computations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Biczysko, Malgorzata; Baiardi, Alberto; Limão-Vieira, Paulo

    2015-04-01

    Identification of many Rydberg states in iodobenzene, especially from the first and fourth ionization energies (IE1 and IE4, X2B1 and C2B1), has become possible using a new ultraviolet (UV) and vacuum-ultraviolet (VUV) absorption spectrum, in the region 29 000-87 000 cm-1 (3.60-10.79 eV), measured at room temperature with synchrotron radiation. A few Rydberg states based on IE2 (A2A2) were found, but those based on IE3 (B2B2) are undetectable. The almost complete absence of observable Rydberg states relating to IE2 and IE3 (A2A2 and B2B2, respectively) is attributed to them being coupled to the near-continuum, high-energy region of Rydberg series converging on IE1. Theoretical studies of the UV and VUV spectra used both time-dependent density functional (TDDFT) and multi-reference multi-root doubles and singles-configuration interaction methods. The theoretical adiabatic excitation energies, and their corresponding vibrational profiles, gave a satisfactory interpretation of the experimental results. The calculations indicate that the UV onset contains both 11B1 and 11B2 states with very low oscillator strength, while the 21B1 state was found to lie under the lowest ππ∗ 11A1 state. All three of these 1B1 and 1B2 states are excitations into low-lying σ∗ orbitals. The strongest VUV band near 7 eV contains two very strong ππ∗ valence states, together with other weak contributors. The lowest Rydberg 4b16s state (31B1) is very evident as a sharp multiplet near 6 eV; its position and vibrational structure are well reproduced by the TDDFT results.

  4. Interpretation of the vacuum ultraviolet photoabsorption spectrum of iodobenzene by ab initio computations.

    PubMed

    Palmer, Michael H; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Biczysko, Malgorzata; Baiardi, Alberto; Limão-Vieira, Paulo

    2015-04-07

    Identification of many Rydberg states in iodobenzene, especially from the first and fourth ionization energies (IE1 and IE4, X(2)B1 and C(2)B1), has become possible using a new ultraviolet (UV) and vacuum-ultraviolet (VUV) absorption spectrum, in the region 29 000-87 000 cm(-1) (3.60-10.79 eV), measured at room temperature with synchrotron radiation. A few Rydberg states based on IE2 (A(2)A2) were found, but those based on IE3 (B(2)B2) are undetectable. The almost complete absence of observable Rydberg states relating to IE2 and IE3 (A(2)A2 and B(2)B2, respectively) is attributed to them being coupled to the near-continuum, high-energy region of Rydberg series converging on IE1. Theoretical studies of the UV and VUV spectra used both time-dependent density functional (TDDFT) and multi-reference multi-root doubles and singles-configuration interaction methods. The theoretical adiabatic excitation energies, and their corresponding vibrational profiles, gave a satisfactory interpretation of the experimental results. The calculations indicate that the UV onset contains both 1(1)B1 and 1(1)B2 states with very low oscillator strength, while the 2(1)B1 state was found to lie under the lowest ππ(∗) 1(1)A1 state. All three of these (1)B1 and (1)B2 states are excitations into low-lying σ(∗) orbitals. The strongest VUV band near 7 eV contains two very strong ππ(∗) valence states, together with other weak contributors. The lowest Rydberg 4b16s state (3(1)B1) is very evident as a sharp multiplet near 6 eV; its position and vibrational structure are well reproduced by the TDDFT results.

  5. Vacuum ultraviolet spectral emission properties of Ga, In and Sn droplet-based laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Gambino, Nadia; Rollinger, Bob; Brandstätter, Markus; Abhari, Reza S.

    2016-08-01

    The Emission Spectra of gallium, indium and tin droplet-based laser produced plasmas are presented in the Vacuum Ultraviolet (VUV) emission range from 30 nm to 160 nm. The Ga ion transitions are investigated in detail as a function of background pressure level and laser irradiance. Different wavelength emission regions were detected according to the level of background gas. At short wavelengths (i.e. 30-50 nm) the line emission from the higher charge states is reduced with increasing pressure, while at longer wavelengths (i.e. 100-160 nm) the trend is inverted, as the plasma emission intensity of the lower charge states increases with higher background gas pressure level. The emitted lines are fitted with Voigt profiles to determine the electron density. The electron temperature is obtained from a fit based on the Planck distribution. These estimations are then used to identify the relevant processes that lead to the different charge state emissions as a function of background gas. Langmuir Probe measurements are also reported for evaluating the ion kinetic energy as a function of background gas. The gallium spectra are calibrated in units of spectral radiance, together with spectra from indium and tin. This calibration allows absolute power estimations from the light source in the VUV region. The presented experimental results are relevant as fundamental plasma emission spectroscopic measurements in an almost unexplored wavelength region as well as for applications such as Extreme Ultraviolet Lithography to determine the so-called Out-of-Band (OoB) radiation emission and for metrology applications for future inspection tools.

  6. Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber.

    PubMed

    Mridha, M K; Novoa, D; Bauerschmidt, S T; Abdolvand, A; St J Russell, P

    2016-06-15

    We report on the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagomé-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the "fiber + gas" system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way toward tunable fiber-based sources of deep and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

  7. Intermolecular proton-transfer in acetic acid clusters induced by vacuum-ultraviolet photoionization

    NASA Astrophysics Data System (ADS)

    Ohta, Keisuke; Matsuda, Yoshiyuki; Mikami, Naohiko; Fujii, Asuka

    2009-11-01

    Infrared (IR) spectroscopy based on vacuum-ultraviolet one-photon ionization detection was carried out to investigate geometric structures of neutral and cationic clusters of acetic acid: (CH3COOH)2, CH3COOH-CH3OH, and CH3COOH-H2O. All the neutral clusters have cyclic-type intermolecular structures, in which acetic acid and solvent molecules act as both hydrogen donors and acceptors, and two hydrogen-bonds are formed. On the other hand, (CH3COOH)2+ and (CH3COOH-CH3OH)+ form proton-transferred structures, where the acetic acid moiety donates the proton to the counter molecule. (CH3COOH-H2O)+ has a non-proton-transferred structure, where CH3COOH+ and H2O are hydrogen-bonded. The origin of these structural differences among the cluster cations is discussed with the relative sizes of the proton affinities of the cluster components and the potential energy curves along the proton-transfer coordinate.

  8. Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation

    DOEpatents

    Glownia, James H.; Sander, Robert K.

    1985-01-01

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  9. Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation

    DOEpatents

    Glownia, J.H.; Sander, R.K.

    1982-06-29

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  10. Novel Wavelength Shifting Collection Systems for Vacuum Ultraviolet Scintillation Photons in in Noble Gas Detectors

    NASA Astrophysics Data System (ADS)

    Gehman, Victor

    2013-04-01

    Detection of vacuum ultraviolet (VUV) photons presents a challenge because this band of the electromagnetic spectrum has a short enough wavelength to scatter off of most (though not all) materials, but is not energetic enough to penetrate into the bulk of a detector (so cannot be treated calorimetrically like x rays or γ rays). This is exactly the band in which noble gasses (which make excellent media for radiation detectors) scintillate. VUV photon detection usually involves shifting them to visible wavelengths with a fluorescent molecule deposited on an optically clear surface viewed by a photosensor. Such techniques, while comparatively efficient and simple to fabricate, have high cost and complexity per unit coverage area making them prohibitively expensive and complicated to scale up to the very large sizes necessary for the next generation of neutrino, dark matter, and other rare event search experiments. We present several lines of inquiry attempting to address this problem, focusing on solutions that are directly applicable to a variety of current or next generation noble gas detectors. This line of R&D is a potentially fruitful avenue capable of furthering the goals of many experiments with a broad portfolio of fundamental and applied research.

  11. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    SciTech Connect

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  12. High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne.

    PubMed

    Jacovella, U; Holland, D M P; Boyé-Péronne, S; Gans, B; de Oliveira, N; Joyeux, D; Archer, L E; Lucchese, R R; Xu, H; Pratt, S T

    2015-07-21

    The absolute photoabsorption cross sections of 1- and 2-butyne have been recorded at high resolution by using the vacuum-ultraviolet Fourier-Transform spectrometer at the SOLEIL Synchrotron. Both spectra show more resolved structure than previously observed, especially in the case of 2-butyne. In this work, we assess the potential importance of Rydberg states with higher values of orbital angular momentum, l, than are typically observed in photoabsorption experiments from ground state molecules. We show how the character of the highest occupied molecular orbitals in 1- and 2-butyne suggests the potential importance of transitions to such high-l (l = 3 and 4) Rydberg states. Furthermore, we use theoretical calculations of the partial wave composition of the absorption cross section just above the ionization threshold and the principle of continuity of oscillator strength through an ionization threshold to support this conclusion. The new absolute photoabsorption cross sections are discussed in light of these arguments, and the results are consistent with the expectations. This type of argument should be valuable for assessing the potential importance of different Rydberg series when sufficiently accurate direct quantum chemical calculations are difficult, for example, in the n ≥ 5 manifolds of excited states of larger molecules.

  13. High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne

    SciTech Connect

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.; Gans, B.; Oliveira, N. de; Joyeux, D.; Archer, L. E.; Lucchese, R. R.; Xu, H.; Pratt, S. T.

    2015-07-21

    The absolute photoabsorption cross sections of 1- and 2-butyne have been recorded at high resolution by using the vacuum-ultraviolet Fourier-Transform spectrometer at the SOLEIL Synchrotron. Both spectra show more resolved structure than previously observed, especially in the case of 2-butyne. In this work, we assess the potential importance of Rydberg states with higher values of orbital angular momentum, l, than are typically observed in photoabsorption experiments from ground state molecules. We show how the character of the highest occupied molecular orbitals in 1- and 2-butyne suggests the potential importance of transitions to such high-l (l = 3 and 4) Rydberg states. Furthermore, we use theoretical calculations of the partial wave composition of the absorption cross section just above the ionization threshold and the principle of continuity of oscillator strength through an ionization threshold to support this conclusion. The new absolute photoabsorption cross sections are discussed in light of these arguments, and the results are consistent with the expectations. This type of argument should be valuable for assessing the potential importance of different Rydberg series when sufficiently accurate direct quantum chemical calculations are difficult, for example, in the n ≥ 5 manifolds of excited states of larger molecules.

  14. Vacuum ultraviolet spectroscopy of the lowest-lying electronic state in subcritical and supercritical water

    DOE PAGES

    Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; ...

    2017-05-17

    The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381°C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as themore » water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. As a result, using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching.« less

  15. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Belmonte, Guilherme Kretzmann; Charles, German; Strumia, Miriam Cristina; Weibel, Daniel Eduardo

    2016-09-01

    Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35-40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, Cdbnd O, Csbnd O and Cdbnd C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  16. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    DOE PAGES

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; ...

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  17. VACUUM ULTRAVIOLET PHOTON-STIMULATED OXIDATION OF BURIED ICE: GRAPHITE GRAIN INTERFACES

    SciTech Connect

    Shi, J.; Grieves, G. A.; Orlando, T. M.

    2015-05-01

    The vacuum ultraviolet (VUV) synthesis of CO and CO{sub 2} on ice-coated graphite and isotopic labeled {sup 13}C graphite has been examined for temperatures between 40 and 120 K. The results show that CO and CO{sub 2} can be formed at the buried ice:graphite interface with Lyα photon irradiation via the reaction of radicals (O and OH) produced by direct photodissociation and the dissociative electron attachment of the interfacial water molecules. The synthesized CO and CO{sub 2} molecules can desorb in hot photon-dominated regions and are lost to space when ice coated carbonaceous dust grains cycle within the protoplanetary disks. Thus, the nonthermal formation of CO and CO{sub 2} at the buried ice:grain interface by VUV photons may help regulate the carbon inventory during the early stage of planet formation. This may contribute to the carbon deficits in our solar system and suggests that a universal carbon deficit gradient may be expected within astrophysical bodies surrounding center stars.

  18. Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors

    NASA Astrophysics Data System (ADS)

    McMorrow, Julian J.; Cress, Cory D.; Arnold, Heather N.; Sangwan, Vinod K.; Jariwala, Deep; Schmucker, Scott W.; Marks, Tobin J.; Hersam, Mark C.

    2017-02-01

    Atomically thin MoS2 has generated intense interest for emerging electronics applications. Its two-dimensional nature and potential for low-power electronics are particularly appealing for space-bound electronics, motivating the need for a fundamental understanding of MoS2 electronic device response to the space radiation environment. In this letter, we quantify the response of MoS2 field-effect transistors (FETs) to vacuum ultraviolet (VUV) total ionizing dose radiation. Single-layer (SL) and multilayer (ML) MoS2 FETs are compared to identify differences that arise from thickness and band structure variations. The measured evolution of the FET transport properties is leveraged to identify the nature of VUV-induced trapped charge, isolating the effects of the interface and bulk oxide dielectric. In both the SL and ML cases, oxide trapped holes compete with interface trapped electrons, exhibiting an overall shift toward negative gate bias. Raman spectroscopy shows no variation in the MoS2 signatures as a result of VUV exposure, eliminating significant crystalline damage or oxidation as possible radiation degradation mechanisms. Overall, this work presents avenues for achieving radiation-hard MoS2 devices through dielectric engineering that reduces oxide and interface trapped charge.

  19. Airborne vacuum ultraviolet resonance fluorescence instrument for in situ measurement of CO

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kita, K.; Kondo, Y.; Matsumi, Y.; Parrish, D. D.; Holloway, J. S.; Koike, M.; Miyazaki, Y.; Toriyama, N.; Kawakami, S.; Ogawa, T.

    2001-10-01

    An airborne instrument for fast-response, high-precision measurement of tropospheric carbon monoxide (CO) was developed using a vacuum ultraviolet (VUV) resonance fluorescence technique. The excitation radiation is obtained by a DC discharge CO resonance lamp combined with an optical filter for the CO fourth positive band emission around 150 nm. The optical filter consists of a VUV monochromator and a crystalline quartz window (<147-nm cutoff). The crystalline quartz window ensures a sharp discrimination against wavelengths below 135.7 nm that yield a positive interference from water vapor. Laboratory tests showed that the optical system achieved a precision of 1.1 parts per billion by volume (ppbv) at a CO concentration of 100 ppbv for a 1-s integration period, and the flow system provided a response time (1/e time constant) of ˜2 s. The aircraft measurement campaign Biomass Burning and Lightning Experiment-phase B (BIBLE-B) was conducted between August and September 1999 over the western Pacific and Australia. The flight data obtained during this campaign were used to demonstrate the high precision and fast response of the instrument. An intercomparison of the VUV CO measurement and a gas chromatographic CO measurement was conducted during BIBLE-B. Overall, these two independent measurements showed good agreement, within the experimental uncertainties.

  20. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    PubMed

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The effect of vacuum ultraviolet irradiation on the time-dependent dielectric breakdown of organosilicate dielectrics

    NASA Astrophysics Data System (ADS)

    Pei, D.; Xue, P.; Li, W.; Guo, X.; Lin, Y. H.; Fung, H. S.; Chen, C. C.; Nishi, Y.; Shohet, J. L.

    2016-09-01

    In this work, the effect of vacuum ultraviolet (VUV) exposure on the time-dependent dielectric breakdown (TDDB) properties of porous low-k films was investigated. Synchrotron irradiation was used to simulate the VUV photon irradiation from processing plasmas without any particle flux. The synchrotron flux varies with the wavelength, so the irradiation time was chosen to produce the same fluence at various photon energies. The deterioration of TDDB and generation of negative mobile charge were observed in the film after exposure to the VUV photons with 9 eV or higher energy. These effects were not observed in the films exposed with 7-eV photon energies or less. The creation of paramagnetic defects was observed with the ESR measurement and believed to be the reason for TDDB degradation. Depletion of carbon and breakage and rearrangement of the Si-O-Si structure were observed and believed to be the reason for mobile charge generation and the change in TDDB, chemical, and mechanical properties.

  2. Secondary-structure analysis of denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy.

    PubMed

    Matsuo, Koichi; Sakurada, Yoshie; Yonehara, Ryuta; Kataoka, Mikio; Gekko, Kunihiko

    2007-06-01

    To elucidate the structure of denatured proteins, we measured the vacuum-ultraviolet circular dichroism (VUVCD) spectra from 260 to 172 nm of three proteins (metmyoglobin, staphylococcal nuclease, and thioredoxin) in the native and the acid-, cold-, and heat-denatured states, using a synchrotron-radiation VUVCD spectrophotometer. The circular dichroism spectra of proteins fully unfolded by guanidine hydrochloride (GdnHCl) were also measured down to 197 nm for comparison. These denatured proteins exhibited characteristic VUVCD spectra that reflected a considerable amount of residual secondary structures. The contents of alpha-helices, beta-strands, turns, poly-L-proline type II (PPII), and unordered structures were estimated for each denatured state of the three proteins using the SELCON3 program with Protein Data Bank data and the VUVCD spectra of 31 reference proteins reported in our previous study. Based on these contents, the characteristics of the four types of denaturation were discussed for each protein. In all types of denaturation, a decrease in alpha-helices was accompanied by increases in beta-strands, PPII, and unordered structures. About 20% beta-strands were present even in the proteins fully unfolded by GdnHCl in which beta-sheets should be broken. From these results, we propose that denatured proteins constitute an ensemble of residual alpha-helices and beta-sheets, partly unfolded (or distorted) alpha-helices and beta-strands, PPII, and unordered structures.

  3. Secondary Structure Prediction of Protein Constructs Using Random Incremental Truncation and Vacuum-Ultraviolet CD Spectroscopy

    PubMed Central

    Pukáncsik, Mária; Orbán, Ágnes; Nagy, Kinga; Matsuo, Koichi; Gekko, Kunihiko; Maurin, Damien; Hart, Darren; Kézsmárki, István; Vertessy, Beata G.

    2016-01-01

    A novel uracil-DNA degrading protein factor (termed UDE) was identified in Drosophila melanogaster with no significant structural and functional homology to other uracil-DNA binding or processing factors. Determination of the 3D structure of UDE is excepted to provide key information on the description of the molecular mechanism of action of UDE catalysis, as well as in general uracil-recognition and nuclease action. Towards this long-term aim, the random library ESPRIT technology was applied to the novel protein UDE to overcome problems in identifying soluble expressing constructs given the absence of precise information on domain content and arrangement. Nine constructs of UDE were chosen to decipher structural and functional relationships. Vacuum ultraviolet circular dichroism (VUVCD) spectroscopy was performed to define the secondary structure content and location within UDE and its truncated variants. The quantitative analysis demonstrated exclusive α-helical content for the full-length protein, which is preserved in the truncated constructs. Arrangement of α-helical bundles within the truncated protein segments suggested new domain boundaries which differ from the conserved motifs determined by sequence-based alignment of UDE homologues. Here we demonstrate that the combination of ESPRIT and VUVCD spectroscopy provides a new structural description of UDE and confirms that the truncated constructs are useful for further detailed functional studies. PMID:27273007

  4. International Test Program for Synergistic Atomic Oxygen and Vacuum Ultraviolet Radiation Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K.

    2001-01-01

    The components and materials of spacecraft in low Earth orbit can degrade in thermal and optical performance through interaction with atomic oxygen and vacuum ultraviolet (VUV) radiation, which are predominant in low Earth orbit. Because of the importance of low Earth orbit durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests at the NASA Glenn Research Center consisted of exposure of samples representing a variety of thermal control paints, multilayer insulation materials, and Sun sensors that have been used in space. Materials donated from various international sources were tested alongside materials whose performance is well known, such as Teflon FEP, Kapton H, or Z-93-P white paint. The optical, thermal, or mass loss data generated during the tests were then provided to the participating material suppliers. Data were not published unless the participant donating the material consented to publication. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects so that they can improve their predictions of spacecraft performance.

  5. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering

    NASA Astrophysics Data System (ADS)

    Beyene, Girum A.; Tobin, Isaac; Juschkin, Larissa; Hayden, Patrick; O'Sullivan, Gerry; Sokell, Emma; Zakharov, Vassily S.; Zakharov, Sergey V.; O'Reilly, Fergal

    2016-06-01

    Extreme ultraviolet (EUV) light generation by hybrid laser-assisted vacuum arc discharge plasmas, utilizing Sn-coated rotating-disc-electrodes, was investigated. The discharge was initiated by localized ablation of the liquid tin coating of the cathode disc by a laser pulse. The laser pulse, at 1064 nm, was generated by Nd:YAG lasers with variable energy from 1 to 100 mJ per pulse. The impact of shortening the laser pulse from 7 ns to 170 ps on the EUV generation has been investigated in detail. The use of ps pulses resulted in an increase in emission of EUV radiation. With a fixed discharge energy of ~4 J, the EUV conversion efficiency tends to plateau at ~2.4  ±  0.25% for the ps laser pulses, while for the ns pulses, it saturates at ~1.7  ±  0.3%. Under similar discharge and laser energy conditions, operating the EUV source with the ps-triggering resulted also in narrower spectral profiles of the emission in comparison to ns-triggering. The results indicate an advantage in using ps-triggering in laser-assisted discharges to produce brighter plasmas required for applications such as metrology.

  6. Determination of ionization energies of small silicon clusters with vacuum?ultraviolet (VUV) radiation

    SciTech Connect

    Kostko, Oleg; Leone, Stephen R.; Duncan, Michael A.; Ahmed, Musahid

    2009-09-23

    In this work we report on single photon vacuum ultraviolet photoionization of small silicon clusters (n=1-7) produced via laser ablation of Si. The adiabatic ionization energies (AIE) are extracted from experimental photoionization efficiency (PIE) curves with the help of Frank?Condon simulations, used to interpret the shape and onset of the PIE curves. The obtained AIEs are (all energies are in eV): Si (8.13+-0.05), Si2 (7.92+-0.05), Si3 (8.12+-0.05), Si4 (8.2+-0.1), Si5 (7.96+-0.07), Si6 (7.8+-0.1), and Si7 (7.8+-0.1). Most of the experimental AIE values are in good agreement with ab initio electronic structure calculations. To explain observed deviations between the experimental and theoretical AIEs for Si4 and Si6, a theoretical search of different isomers of these species is performed. Electronic structure calculations aid in the interpretation of the a2PIu state of Si2+ dimer in the PIE spectrum. Time dependent density functional theory (TD-DFT) calculations are performed to reveal the energies of electronically excited states in the cations for a number of Si clusters.

  7. Outgassing Measurements for Three Materials, Combined with Vacuum Ultraviolet Radiation Illumination of the Volatile Condensable Materials

    NASA Technical Reports Server (NTRS)

    Albyn, Keith

    2005-01-01

    The photolysis of three organic materials, by vacuum ultraviolet (VUV) radiation, has been quantified using 15-MHz temperature-controlled quartz microbalances (TQCM's). The rate at which molecular species, released from the individual samples, condensed on two TQCM s was measured for periods of up to 139.9-hours. The individual samples were heated in an effusion cell and the emitted molecular species collected on a pair of TQCM's which were maintained at -40 degrees Celsius. At several points during the deposition measurement, the deposition surface of one TQCM was illuminated by a 30 Watt deuterium lamp, and the loss of material from that surface was observed. V W illumination of the TQCM, concurrent with condensation, reduced the rate that material was lost from the deposition surface. These measurements present a contrasting picture of molecular deposition, in the presence of VUV, to that presented by other investigators who observed an enhanced rate of molecular deposition, when the deposition surface was illuminated by VUV.

  8. Real-Time Optical Spectroscopy of Vacuum Ultraviolet Irradiated Pyrene:H2O Interstellar Ice

    NASA Astrophysics Data System (ADS)

    Bouwman, J.; Paardekooper, D. M.; Cuppen, H. M.; Linnartz, H.; Allamandola, L. J.

    2009-07-01

    This paper describes a near-UV/VIS study of a pyrene:H2O interstellar ice analogue at 10 K using optical absorption spectroscopy. A new experimental approach makes it possible to irradiate the sample with vacuum ultraviolet (VUV) light (7-10.5 eV) while simultaneously recording spectra in the 240-1000 nm range with subsecond time resolution. Both spectroscopic and dynamic information on VUV processed ices are obtained in this way. This provides a powerful tool to follow, in situ and in real time, the photophysical and photochemical processes induced by VUV irradiation of a polycyclic aromatic hydrocarbon containing inter- and circumstellar ice analogue. Results on the VUV photolysis of a prototype sample—strongly diluted pyrene in H2O ice—are presented. In addition to the pyrene cation (Py+), other products—hydroxypyrene (PyOH), possibly hydroxypyrene cation (PyOH+), and pyrene/pyrenolate anion (Py-/PyO-)—are observed. It is found that the charge remains localized in the ice, also after the VUV irradiation is stopped. The astrochemical implications and observational constraints are discussed.

  9. The effects of vacuum ultraviolet radiation on low-k dielectric films

    SciTech Connect

    Sinha, H.; Ren, H.; Nichols, M. T.; Lauer, J. L.; Shohet, J. L.; Tomoyasu, M.; Russell, N. M.; Jiang, G.; Antonelli, G. A.; Fuller, N. C.; Engelmann, S. U.; Lin, Q.; Ryan, V.; Nishi, Y.

    2012-12-01

    Plasmas, known to emit high levels of vacuum ultraviolet (VUV) radiation, are used in the semiconductor industry for processing of low-k organosilicate glass (SiCOH) dielectric device structures. VUV irradiation induces photoconduction, photoemission, and photoinjection. These effects generate trapped charges within the dielectric film, which can degrade electrical properties of the dielectric. The amount of charge accumulation in low-k dielectrics depends on factors that affect photoconduction, photoemission, and photoinjection. Changes in the photo and intrinsic conductivities of SiCOH are also ascribed to the changes in the numbers of charged traps generated during VUV irradiation. The dielectric-substrate interface controls charge trapping by affecting photoinjection of charged carriers into the dielectric from the substrate. The number of trapped charges increases with increasing porosity of SiCOH because of charge trapping sites in the nanopores. Modifications to these three parameters, i.e., (1) VUV induced charge generation, (2) dielectric-substrate interface, and (3) porosity of dielectrics, can be used to reduce trapped-charge accumulation during processing of low-{kappa} SiCOH dielectrics. Photons from the plasma are responsible for trapped-charge accumulation within the dielectric, while ions stick primarily to the surface of the dielectrics. In addition, as the dielectric constant was decreased by adding porosity, the defect concentrations increased.

  10. Photoinduced decomposition of alkyl monolayers using 172 nm vacuum ultraviolet light

    NASA Astrophysics Data System (ADS)

    Shirahata, Naoto; Oda, Kotaro; Asakura, Shuuichi; Fuwa, Akio; Yokogawa, Yoshiyuki; Kameyama, Tetsuya; Hozumi, Atsushi

    2004-07-01

    The photoinduced stability of two alkyl monolayers on Si has been investigated using a Xe2 excimer lamp radiating 172 nm vacuum ultraviolet (VUV) light. The photoinduced stability of 1-octadecene monolayer (ODM) was compared with that of alkylsilane monolayer. 1-octadecene was employed as a starting precursor of alkyl monolayer on Si. The alkylsilane monolayer was formed from otadecyltrimethoxysilane monoalyer (OTSM) onto the SiO2/Si substrate. The decomposition of ODM was investigated under VUV irradiation conducted at 10 and 105 Pa. The VUV light decomposed ODM at both 10 and 105 Pa. The photodecomposition rate at 105 Pa was smaller than that at 10 Pa. The decomposed methyl and ethyl groups from the alkyl chain formed carboxyl groups. The carboxyl coverage on the surface of Si increased with increasing VUV irradiation time ranging from 0 to 60 s at 10 Pa, and decreased after 60 s. In contrast, the Si-O component in x-ray photoelectron Si 2p spectrum drastically increased after the VUV irradiation time of 60 s. The Si-O component indicated complete covering of Si surface. Similar decomposition rates between ODM and OTSM were observed for the VUV irradiation time ranging from 0 to 45 s conducted at 10 Pa. After 45 s, the photodecomposition rate of ODM was smaller than that of OTSM. The effectiveness of VUV light for the micropatterning of ODM was also investigated. .

  11. Design of an ultrashort optical transmission cell for vacuum ultraviolet spectroscopy of supercritical fluids.

    PubMed

    Janik, Ireneusz; Marin, Timothy W

    2015-01-01

    We present the design and characteristics of an ultrathin flow cell optimized for vacuum ultraviolet transmission spectroscopy experiments on supercritical fluids. The cell operates satisfactorily at pressures up to 300 bar and temperatures up to 390 °C. The variable path length concept of the cell allows for optical transmission studies of analytes ranging from dense condensed-phase systems to gas-phase systems. The path length of the cell can be adjusted from hundreds of nanometers to hundreds of micrometers by an exchange of a variable thickness spacer sandwiched between two sapphire windows. In the path length range from nanometers to single micrometers, metal vapor deposited on one or both of the two sandwiched optical windows constitute the spacer. Spacers with thicknesses of 2 μm and greater can be constructed from simple commercially available metal foils. The cell has been used to measure the lowest-lying absorption band of water in both the vapor and condensed phases from room temperature up to and above the critical point. It has also found application in the studies of aqueous ions and nonaqueous liquids including various common organic solvents and carbon dioxide.

  12. Solid state direct bonding of polymers by vacuum ultraviolet light below 160 nm

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuki; Yamamoto, Takatoki

    2017-10-01

    This work investigated the application of vacuum ultraviolet (VUV) irradiation to the bonding of various substrates, including glass, polycarbonate (PC), cyclic olefin polymer (COP), polydimethylsiloxane (PDMS) and polymethyl methacrylate (PMMA). This method has the advantage of being able to bond various substrates without the application of heat or adhesives, and therefore may be very useful in the fabrication of micro/nanoscale structures composed of polymers. In contrast to previous applications of this technique, the present study used VUV radiation at wavelengths at and below 160 nm so as to take advantage of the higher energy in this range. Bonding was assessed based on measuring the shear stress of various test specimens subjected to VUV irradiation and then pressed together, and a number of analytical methods were also employed to examine the irradiated surfaces in order to elucidate the morphological and chemical changes following VUV treatment. These analyses included water contact angle measurements, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), time of flight secondary ion mass spectrometry (TOF-SIMS) and atomic force microscopy (AFM). Poor bonding was identified between combinations consisting of PMMA/PC, PMMA/COP, PMMA/PMMA, PMMA/glass, and PC/COP, whereas all other combinations resulted in successful bonding with the bonding stress values such as PC/PC = 2.0 MPa, PC/glass = 10.7 MPa and COP/COP = 1.7 MPa, respectively.

  13. International Test Program for Synergistic Atomic Oxygen and Vacuum Ultraviolet Radiation Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K.

    2001-01-01

    The components and materials of spacecraft in low Earth orbit can degrade in thermal and optical performance through interaction with atomic oxygen and vacuum ultraviolet (VUV) radiation, which are predominant in low Earth orbit. Because of the importance of low Earth orbit durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests at the NASA Glenn Research Center consisted of exposure of samples representing a variety of thermal control paints, multilayer insulation materials, and Sun sensors that have been used in space. Materials donated from various international sources were tested alongside materials whose performance is well known, such as Teflon FEP, Kapton H, or Z-93-P white paint. The optical, thermal, or mass loss data generated during the tests were then provided to the participating material suppliers. Data were not published unless the participant donating the material consented to publication. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects so that they can improve their predictions of spacecraft performance.

  14. The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research.

    PubMed

    Zhou, Zhongyue; Du, Xuewei; Yang, Jiuzhong; Wang, Yizun; Li, Chaoyang; Wei, Shen; Du, Liangliang; Li, Yuyang; Qi, Fei; Wang, Qiuping

    2016-07-01

    An undulator-based vacuum ultraviolet (VUV) beamline (BL03U), intended for combustion chemistry studies, has been constructed at the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. The beamline is connected to the newly upgraded Hefei Light Source (HLS II), and could deliver photons in the 5-21 eV range, with a photon flux of 10(13) photons s(-1) at 10 eV when the beam current is 300 mA. The monochromator of the beamline is equipped with two gratings (200 lines mm(-1) and 400 lines mm(-1)) and its resolving power is 3900 at 7.3 eV for the 200 lines mm(-1) grating and 4200 at 14.6 eV for the 400 lines mm(-1) grating. The beamline serves three endstations which are designed for respective studies of premixed flame, fuel pyrolysis in flow reactor, and oxidation in jet-stirred reactor. Each endstation contains a reactor chamber, an ionization chamber where the molecular beam intersects with the VUV light, and a home-made reflectron time-of-flight mass spectrometer. The performance of the beamline and endstations with some preliminary results is presented here. The ability to detect reactive intermediates (e.g. H, O, OH and hydroperoxides) is advantageous in combustion chemistry research.

  15. Microplasma discharge vacuum ultraviolet photoionization source for atmospheric pressure ionization mass spectrometry.

    PubMed

    Symonds, Joshua M; Gann, Reuben N; Fernández, Facundo M; Orlando, Thomas M

    2014-09-01

    In this paper, we demonstrate the first use of an atmospheric pressure microplasma-based vacuum ultraviolet (VUV) photoionization source in atmospheric pressure mass spectrometry applications. The device is a robust, easy-to-operate microhollow cathode discharge (MHCD) that enables generation of VUV photons from Ne and Ne/H(2) gas mixtures. Photons were detected by excitation of a microchannel plate detector and by analysis of diagnostic sample ions using a mass spectrometer. Reactive ions, charged particles, and metastables produced in the discharge were blocked from entering the ionization region by means of a lithium fluoride window, and photoionization was performed in a nitrogen-purged environment. By reducing the output pressure of the MHCD, we observed heightened production of higher-energy photons, making the photoionization source more effective. The initial performance of the MHCD VUV source has been evaluated by ionizing model analytes such as acetone, azulene, benzene, dimethylaniline, and glycine, which were introduced in solid or liquid phase. These molecules represent species with both high and low proton affinities, and ionization energies ranging from 7.12 to 9.7 eV.

  16. High-intensity coherent vacuum ultraviolet source using unfocussed commercial dye lasers.

    PubMed

    Albert, Daniel R; Proctor, David L; Davis, H Floyd

    2013-06-01

    Using two or three commercial pulsed nanosecond dye lasers pumped by a single 30 Hz Nd:YAG laser, generation of 0.10 mJ pulses at 125 nm (6 × 10(13) photons∕pulse) has been demonstrated by resonance enhanced four-wave mixing of collimated (unfocussed) laser beams in mercury (Hg) vapor. Phase matching at various vacuum ultraviolet (VUV) wavelengths is achieved by tuning one laser in the vicinity of the 6 (1)S0 → 6 (3)P1 resonance near 253.1 nm. A number of different mixing schemes are characterized. Our observations using broadband lasers (~0.15 cm(-1) bandwidths) are compared to previous calculations pertaining to four-wave mixing of low intensity narrowband laser beams. Prospects for further increases in pulse energies are discussed. We find that VUV tuning curves and intensities are in good agreement with theoretical predictions. The utility of the VUV light source is demonstrated by "soft universal" single-photon VUV ionization in crossed molecular beam studies and for generation of light at 130.2 nm for oxygen atom Rydberg time-of-flight experiments.

  17. Vacuum ultraviolet spectroscopy of the lowest-lying electronic state in subcritical and supercritical water

    PubMed Central

    Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; Chipman, Daniel M.

    2017-01-01

    The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381 °C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as the water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. Using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching. PMID:28513601

  18. Sterilization of Bacillus atrophaeus using OH radicals supplied by vacuum ultraviolet method

    NASA Astrophysics Data System (ADS)

    Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Ono, Ryo; Yasuda, Hachiro; Mizuno, Akira

    2015-09-01

    Sterilization by cold plasma has widely been performed. It is well known that reactive oxygen species (ROS) has a potential of sterilization. However, it is not clear which ROS is effective on sterilization because a lot of types of ROS are produced in plasma. In this study, sterilization effect of OH radicals by vacuum ultraviolet (VUV) method was investigated. This method utilizes photodissociation reaction to produce ROS so it can produce ROS selectively. Wet and dry helium with and without 1% O2 gas was used to demonstrate sterilization effect of OH radicals. Gases were flowed in a quartz tube (inner diameter 2 mm, outer diameter 4 mm) at a flow rate of 1.5 L/min. The produced ROS flowed out of the quartz tube nozzle. A Xe2 excimer lamp emitting 172 +/- 7 nm VUV light was placed parallel to the quartz tube with a distance of 8 mm. The distance between the lower end of the lamp and the nozzle of quartz tube was changed from 3 to 15 cm. As a target of sterilization, Bacillus atrophaeus (ATCC 9372) was used. The density of OH radicals was measured using laser-induced fluorescence (LIF). As a result, sterilization using VUV method was verified. This result showed that OH radicals sterilized the bacteria.

  19. Vacuum ultraviolet spectroscopic analysis of AC excited non-equilibrium atmospheric pressure Ar plasma jet

    NASA Astrophysics Data System (ADS)

    Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2014-10-01

    Plasma biomedical treatments with atmospheric pressure plasma jets (APPJ) have attracted very much. In the treatments, reactive species and high energy photons emitted from APPJ are important factors to realize the performance. Vacuum ultraviolet (VUV) spectroscopy is one of useful techniques to measure quantitative behaviors of atomic radicals and high energy photons. In this study, an AC excited APPJ with Ar gas has been investigated by using the spectroscopy. The Ar APPJ was generated under open air condition, and VUV emission spectra was measured by using a VUV monochromator. The spectra of atomic species such as O (130.4 nm), N (120.0, 174.3 nm), and H (121.6 nm) were observed. The emission intensity of N atom (174.3 nm) in the plasma remote region exponentially decreased with increasing the distance from the plasma jet. The absorption coefficient was estimated to be 1.8 cm-1, over 20 mm distance from the plasma jet, the coefficient increase to 4.2 cm-1 which is almost same with value due to atmosphere. We will discuss behaviors of reactive species and high energy photons emitted from the AC excited Ar APPJ on the basis of the results measured by VUV spectroscopy.

  20. Vacuum ultraviolet circular dichroism spectroscopy using an ac-modulated polarizing undulator

    SciTech Connect

    Yamada, Toru; Yagi-Watanabe, Kazutoshi; Tanaka, Masahito; Kaneko, Fusae; Kitada, Tomo; Ohta, Yoshimi; Nakagawa, Kazumichi

    2005-09-15

    To obtain vacuum ultraviolet (VUV) circular dichroism (CD) measurements, an Onuki-type crossed undulator in an electron storage ring (TERAS) at the National Institute of Advanced Industrial Science and Technology (AIST) was used as a light source and a polarization modulator was used instead of a photoelastic modulator (PEM). Polarization modification through the beam-line optics was theoretically considered and experimentally examined by polarization analysis. The modulation frequency of 2 Hz was chosen to optimize the signal-to-noise ratio. On this basis, VUV-CD spectra of alanine films were measured and calibrated. The resulting CD spectra were consistent with other data obtained that was measured by a conventional CD spectropolarimeter (JASCO, J720WI) at a wavelength range of 190-210 nm. The spectra of L- and D-alanine films showed an obvious symmetry with respect to the baseline at a wavelength range of 120-210 nm. These results proved that the true CD of the samples was measured. The present technique successfully extended the wavelength coverage of CD measurements to a shorter range than the practical limit of PEMs.

  1. Identification and deconvolution of carbohydrates with gas chromatography-vacuum ultraviolet spectroscopy.

    PubMed

    Schenk, Jamie; Nagy, Gabe; Pohl, Nicola L B; Leghissa, Allegra; Smuts, Jonathan; Schug, Kevin A

    2017-09-01

    Methodology for qualitative and quantitative determination of carbohydrates with gas chromatography coupled to vacuum ultraviolet detection (GC-VUV) is presented. Saccharides have been intently studied and are commonly analyzed by gas chromatography-mass spectrometry (GC-MS), but not always effectively. This can be attributed to their high degree of structural complexity: α/β anomers from their axial/equatorial hydroxyl group positioning at the C1-OH and flexible ring structures that lead to the open chain, five-membered ring furanose, and six-membered ring pyranose configurations. This complexity can result in convoluted chromatograms, ambiguous fragmentation patterns and, ultimately, analyte misidentification. In this study, mono-, di, and tri-saccharides were derivatized by two different methods-permethylation and oximation/pertrimethylsilylation-and analyzed by GC-VUV. These two derivatization methods were then compared for their efficiency, ease of use, and robustness. Permethylation proved to be a useful technique for the analysis of ketopentoses and pharmaceuticals soluble in dimethyl sulfoxide (DMSO), while the oximation/pertrimethylsilylation method prevailed as the more promising, overall, derivatization method. VUV spectra have been shown to be distinct and allow for efficient differentiation of isomeric species such as ketopentoses and reducing versus non-reducing sugars. In addition to identification, pharmaceutical samples containing several compounds were derivatized and analyzed for their sugar content with the GC-VUV technique to provide data for qualitative analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization

    SciTech Connect

    Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2010-03-11

    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

  3. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    SciTech Connect

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; Buck, Jens; Ilchen, Markus; Vodungbo, Boris; Mahne, Nicola; Svetina, Cristian; Spezzani, Carlo; Di Mitri, Simone; Penco, Giuseppe; Trovó, Mauro; Fawley, William M.; Rebernik, Primoz R.; Gauthier, David; Grazioli, Cesare; Coreno, Marcello; Ressel, Barbara; Kivimäki, Antti; Mazza, Tommaso; Glaser, Leif; Scholz, Frank; Seltmann, Joern; Gessler, Patrick; Grünert, Jan; De Fanis, Alberto; Meyer, Michael; Knie, André; Moeller, Stefan P.; Raimondi, Lorenzo; Capotondi, Flavio; Pedersoli, Emanuele; Plekan, Oksana; Danailov, Miltcho B.; Demidovich, Alexander; Nikolov, Ivaylo; Abrami, Alessandro; Gautier, Julien; Lüning, Jan; Zeitoun, Philippe; Giannessi, Luca

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independent instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.

  4. Vacuum ultraviolet spectroscopy of the lowest-lying electronic state in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; Chipman, Daniel M.

    2017-05-01

    The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381 °C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as the water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. Using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching.

  5. Photoionization study of L-valine in the gas phase by vacuum ultraviolet synchrotron radiation.

    PubMed

    Zhou, Shaohui; Chu, Genbai; Cao, Lanlan; Shan, Xiaobin; Liu, Fuyi; Han, Ju-Guang; Sheng, Liusi

    2011-01-01

    The photoionization and photodissociation of L-valine are studied by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry at the photon energy of 13 eV. The ionization energy of L-valine and the appearance energies of major fragments are measured by the photoionization efficiency spectrum in the photon energy range of 8-11 eV. Possible formation pathways of the major fragments, NH(2)CHC(OH)(2)(+) (m/z=75), NH(2)(CH(3))(2)(CH)(2)(+) (m/z=72) and NH(2)CHCO(+) (m/z=57), are discussed in detail with the theoretical calculations at the B3LYP/6-31++G (d, p) level. Hydrogen migration is considered as the key way for the formation of NH(2)CHC(OH)(2)(+) (m/z=75) and NH(2)CHCO(+) (m/z=57). Furthermore, other fragments, NH(2)CHCOOH(+) (m/z=74), (CH(3))(2)(CH)(2)(+) (m/z=56), C(4)H(7)(+) (m/z=55), NH(2)CHOH(+) (m/z=46), NH(2)CH(2)(+) (m/z=30) and m/z=18, species are also briefly described.

  6. Photoluminescence excitation spectra of lanthanide doped YAlO3 in vacuum ultraviolet region

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuhei; Ueda, Kazushige; Inaguma, Yoshiyuki

    2017-04-01

    To understand luminescent mechanisms of lanthanide (Ln) doped phosphors, it is important to know the energy positions of unoccupied Ln2+ 4f and Ln3+ 5d states, as well as occupied Ln3+ 4f states, relative to the energy bands of host materials. Photoluminescence excitation (PLE) spectra of Ln doped YAlO3 were measured in a vacuum ultraviolet (VUV) region and the energy positions of Ln2+ 4f and Ln3+ 5d states in the wide-gap YAlO3 were elucidated. Peaks assignable to host lattice excitation were observed in all samples at approximately 8 eV in the PLE spectra. PLE peaks derived from charge transfer (CT) and 4f-5d transitions were observed at lower energy than the bandgap energy. Ln2+ 4f energy levels were obtained from the PLE peak energies for the CT transitions along with the valence band maximum. In contrast, Ln3+ 5d energy levels were evaluated from those for the 4f-5d transitions along with the Ln3+ 4f energy levels, which were obtained previously from X-ray photoelectron spectroscopy measurements. The elucidated Ln2+ 4f and Ln3+ 5d energy levels were exhibited in an energy diagram together with Ln3+ 4f energy levels and host energy bands. The experimental Ln2+ 4f and Ln3+ 5d energy levels were in good agreement with the reported theoretical data.

  7. Photoabsorption and photoionization cross sections for formaldehyde in the vacuum-ultraviolet energy range

    NASA Astrophysics Data System (ADS)

    Tanaka, H. K.; Prudente, F. V.; Medina, A.; Marinho, R. R. T.; Homem, M. G. P.; Machado, L. E.; Fujimoto, M. M.

    2017-03-01

    We report a theoretical-experimental investigation on the interaction of vacuum-ultraviolet radiation with formaldehyde (H2CO) in the gas phase. Experimentally, the absolute photoabsorption cross sections and the photoionization quantum yields were measured in the (11.0-21.5) eV range using the double-ion chamber technique. Also, the absolute photoionization and neutral-decay cross sections were derived from these data. In addition, in the same energy region, the dissociation pattern was obtained with a time-of-flight mass spectrometer using the photoelectron-photoion coincidence technique, and the absolute photoionization cross sections were derived for each ionic fragment observed. Moreover, theoretical photoionization cross sections were calculated for the ionization of the four outermost molecular valence orbitals (2b2, 1b1, 5a1, and 1b2) from the threshold to 35 eV. The calculations were performed using the iterative Schwinger variational method to solve the Lippmann-Schwinger equation in the exact static-exchange level of approximation. In general, there is a good agreement between our experimental and previous data reported in the literature. Our theoretical results show a fair qualitative agreement with the experimental data and with previous theoretical results. Above 20 eV, a better quantitative agreement with the experimental data is also observed.

  8. Vacuum-ultraviolet photochemically initiated modification of polystyrene surfaces: chemical changes.

    PubMed

    López-Gejo, Juan; Gliemann, Hartmut; Schimmel, Thomas; Braun, André M

    2005-01-01

    Fourier-Transform infrared (FTIR) spectroscopy and surface energy analysis (contact angle measurements) have been performed as a means of identification and quantification of the functionalization of polystyrene surfaces upon vacuum ultraviolet- (VUV-) photochemically initiated oxidation. Photochemical oxidation was performed in the presence of water vapor and molecular oxygen using a pulsed Xe2-excimer radiation source (lambda(exc): 172 nm). Surface oxidation was studied as a function of two parameters: irradiation time and distance between sample and radiation source. During the first 1-2 min of irradiation, an increase of the concentrations of hydroxyl (OH) and carbonyl (C=O) groups on the surface was observed, both reaching limiting values. As expected, the rate of oxidation diminished exponentially with increasing distance between the radiation source and the surface of the polystyrene film. Changes in the surface energy due to the introduction of these polar (i.e. OH and C=O) groups were also determined. The densities of the functional groups decreased upon washing with acetonitrile, and analysis of the washing solution by means of gas chromatography-mass spectrometry (GC-MS) revealed the presence of a large number of products. The application of pulsed Xe2-excimer radiation sources as a valuable alternative to conventional means (i.e. laser and plasma) for the photochemical oxidation and surface modification of polystyrene is discussed.

  9. Interfacial chemistry of poly(methyl methacrylate) arising from exposure to vacuum-ultraviolet light and atomic oxygen.

    PubMed

    Yuan, Hanqiu; Killelea, Daniel R; Tepavcevic, Sanja; Kelber, Scott I; Sibener, S J

    2011-04-28

    We herein report on the chemical and physical changes that occur in thin films of poly(methyl methacrylate), PMMA, induced by exposure to high-energy vacuum ultraviolet radiation and a supersonic beam of neutral, ground electronic state O((3)P) atomic oxygen. A combination of in situ quartz crystal microbalance and in situ Fourier-transform infrared reflection-absorption spectroscopy were used to determine the photochemical reaction kinetics and mechanisms during irradiation. The surface morphological changes were measured with atomic force microscopy. The results showed there was no enhancement in the mass loss rate during simultaneous exposure of vacuum ultraviolet (VUV) radiation and atomic oxygen. Rather, the rate of mass loss was impeded when the polymer film was exposed to both reagents. This study elucidates the kinetics of photochemical and oxidative reaction for PMMA, and shows that the synergistic effect involving VUV irradiation and exposure to ground state atomic oxygen depends substantially on the relative fluxes of these reagents.

  10. Recent progress in vacuum-ultraviolet polarization modulation spectroscopy using polarizing undulator at the TERAS BL5 beamline.

    PubMed

    Yagi-Watanabe, Kazutoshi; Tanaka, Masahito; Kaneko, Fusae; Nakagawa, Kazumichi

    2007-12-01

    Polarization modulation spectroscopy using an Onuki-type undulator is a useful technique for circular dichroism study in the vacuum-ultraviolet region. We have been developing the vacuum-ultraviolet circular dichroism (vuv-CD) spectroscopy in TERAS BL5 beamline at AIST. This paper describes recent improvements in our instrumentation and methods of analysis to achieve precise and absolute measurements. The CD signal is usually accompanied by experimental artifacts, and elimination of all possible artifacts is the key issue for making reliable measurements. After improving beamline optical system, light flux monitor, and undulator operation method, the base line shift of the CD spectrum is suppressed less than 3x10(-4). Sample manipulation and data processing procedures are also described and absolute CD spectrum can be obtained even for linear anisotropic sample. These progresses lead to more quantitative comparison of experimental with calculation on vuv-CD spectrum.

  11. Steady-State Vacuum Ultraviolet Exposure Facility With Automated Lamp Calibration and Sample Positioning Fabricated

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Steuber, Thomas J.; Banks, Bruce A.; Dever, Joyce A.

    2000-01-01

    The Next Generation Space Telescope (NGST) will be placed in an orbit that will subject it to constant solar radiation during its planned 10-year mission. A sunshield will be necessary to passively cool the telescope, protecting it from the Sun s energy and assuring proper operating temperatures for the telescope s instruments. This sunshield will be composed of metalized polymer multilayer insulation with an outer polymer membrane (12 to 25 mm in thickness) that will be metalized on the back to assure maximum reflectance of sunlight. The sunshield must maintain mechanical integrity and optical properties for the full 10 years. This durability requirement is most challenging for the outermost, constantly solar-facing polymer membrane of the sunshield. One of the potential threats to the membrane material s durability is from vacuum ultraviolet (VUV) radiation in wavelengths below 200 nm. Such radiation can be absorbed in the bulk of these thin polymer membrane materials and degrade the polymer s optical and mechanical properties. So that a suitable membrane material can be selected that demonstrates durability to solar VUV radiation, ground-based testing of candidate materials must be conducted to simulate the total 10- year VUV exposure expected during the Next Generation Space Telescope mission. The Steady State Vacuum Ultraviolet exposure facility was designed and fabricated at the NASA Glenn Research Center at Lewis Field to provide unattended 24-hr exposure of candidate materials to VUV radiation of 3 to 5 times the Sun s intensity in the wavelength range of 115 to 200 nm. The facility s chamber, which maintains a pressure of approximately 5 10(exp -6) torr, is divided into three individual exposure cells, each with a separate VUV source and sample-positioning mechanism. The three test cells are separated by a water-cooled copper shield plate assembly to minimize thermal effects from adjacent test cells. Part of the interior sample positioning mechanism of one

  12. Microscopic and macroscopic material property effects on ultraviolet-laser-induced flashover of angled insulators in vacuum

    SciTech Connect

    Enloe, C.L.; Gilgenbach, R.M.

    1988-06-01

    Flashover of electrically stressed polymeric insulators in vacuum has been induced by ultraviolet radiation from an excimer laser (KrF). Flashover behavior is a relatively strong function of integrated fluence up to the time of flashover initiation, and virtually independent of applied power or pulse time. Flashover is induced by moderate fluence (10 - 150 mJ/cm/sup 2/) of intense (0.4 - 6 MW/cm/sup 2/) ultraviolet at 248 nm at electric field stress considerably below the static breakdown stress. The critical fluence required to initiate flashover is a function of the electric field stress, the insulating material, and the geometry of the dielectric/vacuum interface. The unconventional insulator geometry (in which electrons are accelerated toward the insulator surface) is more tolerant than the conventional geometry by nearly a factor of 2 in fluence. Insulator materials tested were polyethylene, polystyrene, acrylic, nylon-6, acetal, PVC, and teflon. The critical fluence is correlated to the microscopic and macroscopic material properties; results show that insulating materials with high dielectric constants and low secondary electron emission coefficients exhibit superior tolerance to ultraviolet radiation. Of the materials tested, nylon exhibited the highest critical fluence in both the conventional and the unconventional geometries. A theory of ultraviolet-induced insulator flashover is developed.

  13. Low-Dimensional Structure Vacuum-Ultraviolet-Sensitive (λ < 200 nm) Photodetector with Fast-Response Speed Based on High-Quality AlN Micro/Nanowire.

    PubMed

    Zheng, Wei; Huang, Feng; Zheng, Ruisheng; Wu, Honglei

    2015-07-08

    A low-dimensional-structure vacuum-ultraviolet-sensitive photodetector based on high-quality aluminum nitride (AlN) micro-/nanowires is reported. This work, for the first time, demonstrates that a semiconductor nanostructure can be applied in vacuum-ultraviolet (VUV) photon detection and opens a way for developing diminutive, power-saving, and low-cost VUV materials and sensors that can be potentially applied in geospace sciences and solar-terrestrial physics.

  14. A new facility for the synchrotron radiation-based calibration of transfer radiation sources in the ultraviolet and vacuum ultraviolet spectral range

    SciTech Connect

    Thornagel, Reiner; Fliegauf, Rolf; Klein, Roman Kroth, Simone; Paustian, Wolfgang; Richter, Mathias

    2015-01-15

    The Physikalisch-Technische Bundesanstalt (PTB) has a long tradition in the calibration of radiation sources in the ultraviolet and vacuum ultraviolet spectral range, with traceability to calculable synchrotron radiation. Within this context, new instrumentation in the PTB laboratory at the Metrology Light Source (MLS) has been put into operation that opens up extended and improved calibration possibilities. A new facility for radiation source calibrations has been set up in the spectral range from 7 nm to 400 nm based on a combined normal incidence-grazing incidence monochromator. The facility can be used for the calibration of transfer sources in terms of spectral radiant intensity or mean spectral radiance, with traceability to the MLS primary source standard. We describe the design and performance of the experimental station and give examples of some commissioning results.

  15. Interpretation of the vacuum ultraviolet photoabsorption spectrum of iodobenzene by ab initio computations

    SciTech Connect

    Palmer, Michael H. Ridley, Trevor E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Hoffmann, Søren Vrønning E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it Jones, Nykola C. E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Coreno, Marcello E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Grazioli, Cesare; and others

    2015-04-07

    Identification of many Rydberg states in iodobenzene, especially from the first and fourth ionization energies (IE{sub 1} and IE{sub 4}, X{sup 2}B{sub 1} and C{sup 2}B{sub 1}), has become possible using a new ultraviolet (UV) and vacuum-ultraviolet (VUV) absorption spectrum, in the region 29 000-87 000 cm{sup −1} (3.60-10.79 eV), measured at room temperature with synchrotron radiation. A few Rydberg states based on IE{sub 2} (A{sup 2}A{sub 2}) were found, but those based on IE{sub 3} (B{sup 2}B{sub 2}) are undetectable. The almost complete absence of observable Rydberg states relating to IE{sub 2} and IE{sub 3} (A{sup 2}A{sub 2} and B{sup 2}B{sub 2}, respectively) is attributed to them being coupled to the near-continuum, high-energy region of Rydberg series converging on IE{sub 1}. Theoretical studies of the UV and VUV spectra used both time-dependent density functional (TDDFT) and multi-reference multi-root doubles and singles-configuration interaction methods. The theoretical adiabatic excitation energies, and their corresponding vibrational profiles, gave a satisfactory interpretation of the experimental results. The calculations indicate that the UV onset contains both 1{sup 1}B{sub 1} and 1{sup 1}B{sub 2} states with very low oscillator strength, while the 2{sup 1}B{sub 1} state was found to lie under the lowest ππ{sup ∗} 1{sup 1}A{sub 1} state. All three of these {sup 1}B{sub 1} and {sup 1}B{sub 2} states are excitations into low-lying σ{sup ∗} orbitals. The strongest VUV band near 7 eV contains two very strong ππ{sup ∗} valence states, together with other weak contributors. The lowest Rydberg 4b{sub 1}6s state (3{sup 1}B{sub 1}) is very evident as a sharp multiplet near 6 eV; its position and vibrational structure are well reproduced by the TDDFT results.

  16. Photoluminescence performance of thulium doped Li{sub 4}SrCa(SiO{sub 4}){sub 2} under irradiation of ultraviolet and vacuum ultraviolet lights

    SciTech Connect

    Wang, Zhaofeng; Li, Yezhou; Liu, Xiong; Wei, Xingmin; Chen, Yueling; Zhou, Fei; Wang, Yuhua

    2014-11-15

    Highlights: • A novel blue-emitting phosphor Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} was reported. • Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} exhibited excellent thermal and irradiation stability. • Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} was found to possess high color purity. - Abstract: In this work, we synthesized Tm{sup 3+} doped Li{sub 4}SrCa(SiO{sub 4}){sub 2} phosphors and investigated their photoluminescence properties under the excitation of ultraviolet and vacuum ultraviolet lights. The crystal structure analysis and variation of cell parameters confirm that Tm{sup 3+} ions have been successfully doped in the structure of Li{sub 4}SrCa(SiO{sub 4}){sub 2} host by occupying the sites of Ca{sup 2+} with the coordination number of 6. The luminescence results suggest that Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} is a good blue-emitting phosphor when excited by ultraviolet and vacuum ultraviolet irradiations. In addition, it is observed that there is nearly no degradation for Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} after undergoing thermal and irradiation treatments. Possible mechanisms for the luminescence processes are proposed on the basis of the discussion of excitation and emission spectra. In particular, the emission color of Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} by excitation of 147 and 172 nm irradiations is very close to the standard blue color, suggesting that it could be potentially applied in plasma display panels and mercury-free fluorescence lamps.

  17. Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols

    SciTech Connect

    Takahashi, Lynelle K.; Zhou, Jia; Kostko, Oleg; Golan, Amir; Leone, Stephen R.; Ahmed, Musahid

    2011-02-09

    The fragmentation mechanisms of monolignols under various energetic processes are studied with jet-cooled thermal desorption molecular beam (TDMB) mass spectrometry (MS), 25 keV Bi3+ secondary ion MS (SIMS), synchrotron vacuum-ultraviolet secondary neutral MS (VUV-SNMS) and theoretical methods. Experimental and calculated appearance energies of fragments observed in TDMB MS indicate that the coniferyl alcohol photoionization mass spectra contain the molecular parent and several dissociative photoionization products. Similar results obtained for sinapyl alcohol are also discussed briefly. Ionization energies of 7.60 eV ? 0.05 eV for coniferyl alcohol and<7.4 eV for both sinapyl and dihydrosinapyl alcohols are determined. The positive ion SIMS spectrum of coniferyl alcohol shares few characteristic peaks (m/z = 137 and 151) with the TDMB mass spectra, shows extensive fragmentation, and does not exhibit clear molecular parent signals. VUV-SNMS spectra, on the other hand, are dominated by the parent ion and main fragments also present in the TDMB spectra. Molecular fragmentation in VUV-SNMS spectra can be reduced by increasing the extraction delay time. Some features resembling the SIMS spectra are also observed in the desorbed neutral products. The monolignol VUV-SNMS peaks shared with the TDMB mass spectra suggest that dissociative photoionization of ion-sputtered neutral molecules predominate in the VUV-SNMS mass spectra, despite the extra internal energy imparted in the initial ion impact. The potential applications of these results to imaging mass spectrometry of bio-molecules are discussed.

  18. Vacuum ultraviolet of hydrogenated amorphous carbons. II. Small hydrocarbons production in Photon Dominated Regions

    NASA Astrophysics Data System (ADS)

    Alata, I.; Jallat, A.; Gavilan, L.; Chabot, M.; Cruz-Diaz, G. A.; Munoz Caro, G. M.; Béroff, K.; Dartois, E.

    2015-12-01

    Context. Hydrogenated amorphous carbons (a-C:H) are a major component of the carbonaceous solids present in the interstellar medium. The production and existence of these grains is connected in particular with the balance between their photolysis, radiolysis, and hydrogenation. During grain processing, H2 and other small organic molecules, radicals, and fragments are released into the gas phase. Aims: We perform photolytic experiments on laboratory produced interstellar a-C:H analogues to monitor and quantify the release of species and compare to relevant observations in the interstellar medium. Methods: Hydrogenated amorphous carbon analogues at low temperature are exposed to ultraviolet (UV) photons, under ultra-high vacuum conditions. The species produced are monitored using mass spectrometry and post irradiation temperature-programmed desorption. Additional experiments are performed using deuterated analogues and the species produced are unambiguously separated from background contributions. We implement the laboratory measured yields for the released species in a time dependent model to investigate the effect of the UV photon irradiation of hydrogenated amorphous carbons in a photon dominated region, and estimate the associated time scale. Results: The UV photolysis of hydrogenated amorphous carbons leads to the production of H2 molecules and small hydrocarbons. The model shows that the photolytic evolution of a-C:Hs in photon dominated regions, such as the Horsehead Nebula, can raise the abundance of carbonaceous molecules by several orders of magnitude at intermediate visual extinctions, i.e., after the C+ maximum and before the dense cloud conditions prevail where models generally show a minimum abundance for such carbonaceous species. The injection time peak ranges from a thousand to ten thousand years in the models, considering only the destruction of such grains and no re-hydrogenation. This time scale is consistent with the estimated advection front of

  19. Vacuum ultraviolet photon-mediated production of [(18) F]F2.

    PubMed

    Krzyczmonik, Anna; Keller, Thomas; Kirjavainen, Anna K; Forsback, Sarita; Solin, Olof

    2017-04-01

    The chemistry of F2 and its derivatives are amenable to facile aliphatic or aromatic substitution, as well as electrophilic addition. The main limitation in the use of [(18) F]F2 for radiopharmaceutical synthesis is the low specific activity achieved by the traditional methods of production. The highest specific activities, 55 GBq/μmol, for [(18) F]F2 have been achieved so far by using electrical discharge in the post-target production of [(18) F]F2 gas from [(18) F]CH3 F. We demonstrate that [(18) F]F2 is produced by illuminating a gas mixture of neon/F2 /[(18) F]CH3 F with vacuum ultraviolet photons generated by an excimer laser. We tested several illumination chambers and production conditions. The effects of the initial amount of [(18) F]F(-) , amount of carrier F2 , and number of 193-nm laser pulses at constant power were evaluated regarding radiochemical yield and specific activity. The specific activity attained for [(18) F]F2 -derived [(18) F]NFSi was 10.3 ± 0.9 GBq/μmol, and the average radiochemical yield over a wide range of conditions was 6.7% from [(18) F]F(-) . The production can be improved by optimization of the synthesis device and procedures. The use of a commercially available excimer laser and the simplicity of the process can make this method relatively easy for adaptation in radiochemistry laboratories.

  20. Photoionization of epichlorohydrin enantiomers and clusters studied with circularly polarized vacuum ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Daly, Steven; Powis, Ivan; Garcia, Gustavo A.; Soldi-Lose, Héloïse; Nahon, Laurent

    2011-02-01

    The photoionization of enantiomerically pure epichlorohydrin (C3H5OCl) has been studied using linearly and circularly polarized vacuum ultraviolet synchrotron radiation. The threshold photoelectron spectrum was recorded and the first three bands assigned using molecular orbital calculations for the expected conformers, although uncertain experimental conformer populations and an anticipated breakdown in Koopmans' theorem leave some ambiguity. Measurements of the photoelectron circular dichroism (PECD) were obtained across a range of photon energies for each of these bands, using electron velocity map imaging to record the angular distributions, during which a record PECD chiral asymmetry factor of 32% was observed. A comparison with calculated PECD curves clarifies the assignment achieved using ionization energies alone and further suggests a likely relative population of the conformers. Threshold photoelectron-photoion coincidence methods were used to study the ionic fragmentation of epichlorohydrin. Fragment ion appearance energies show nonstatistical behavior with clear indications that the cationic epoxide ring is unstable and lower energy decay channels proceeding via ring breaking are generally open. Extensive neutral homochiral clusters of epichlorohydrin may be formed in supersonic molecular beam expansions seeded in Ar. Electron angular distribution measurements made in coincidence with dimer and trimer ions are used to effect an examination of the PECD associated with ionization of size-selected neutral cluster species, and these results differ clearly from PECD of the neutral monomer. The shifted ionization thresholds of the n-mers (n = 2, …, 7) are shown to follow a simple linear relationship, but under intense beam expansion conditions the monomer deviates from this relationship, and the monomer electron spectra tail to below the expected monomer adiabatic ionization potential (IP). PECD measurements made in coincidence with monomer ions obtained

  1. Photoionization of epichlorohydrin enantiomers and clusters studied with circularly polarized vacuum ultraviolet radiation.

    PubMed

    Daly, Steven; Powis, Ivan; Garcia, Gustavo A; Soldi-Lose, Héloïse; Nahon, Laurent

    2011-02-14

    The photoionization of enantiomerically pure epichlorohydrin (C(3)H(5)OCl) has been studied using linearly and circularly polarized vacuum ultraviolet synchrotron radiation. The threshold photoelectron spectrum was recorded and the first three bands assigned using molecular orbital calculations for the expected conformers, although uncertain experimental conformer populations and an anticipated breakdown in Koopmans' theorem leave some ambiguity. Measurements of the photoelectron circular dichroism (PECD) were obtained across a range of photon energies for each of these bands, using electron velocity map imaging to record the angular distributions, during which a record PECD chiral asymmetry factor of 32% was observed. A comparison with calculated PECD curves clarifies the assignment achieved using ionization energies alone and further suggests a likely relative population of the conformers. Threshold photoelectron-photoion coincidence methods were used to study the ionic fragmentation of epichlorohydrin. Fragment ion appearance energies show nonstatistical behavior with clear indications that the cationic epoxide ring is unstable and lower energy decay channels proceeding via ring breaking are generally open. Extensive neutral homochiral clusters of epichlorohydrin may be formed in supersonic molecular beam expansions seeded in Ar. Electron angular distribution measurements made in coincidence with dimer and trimer ions are used to effect an examination of the PECD associated with ionization of size-selected neutral cluster species, and these results differ clearly from PECD of the neutral monomer. The shifted ionization thresholds of the n-mers (n = 2, ..., 7) are shown to follow a simple linear relationship, but under intense beam expansion conditions the monomer deviates from this relationship, and the monomer electron spectra tail to below the expected monomer adiabatic ionization potential (IP). PECD measurements made in coincidence with monomer ions obtained

  2. Investigating the effective range of vacuum ultraviolet-mediated breakdown in high-power microwave metamaterials

    SciTech Connect

    Liu, Chien-Hao Neher, Joel D. Booske, John H. Behdad, Nader

    2014-10-14

    Metamaterials and periodic structures operating under high-power excitations are susceptible to breakdown. It was recently demonstrated that a localized breakdown created in a given region of a periodic structure can facilitate breakdown in other regions of the structure where the intensity of the incident electromagnetic fields may not be high enough to cause breakdown under normal circumstances. It was also demonstrated that this phenomenon is due to the generation of vacuum ultraviolet radiation at the location of the initial discharge, which propagates to the neighboring regions (e.g., other unit cells in a periodic structure) and facilitates the generation of a discharge at a lower incident power level. In this paper, we present the results of an experimental study conducted to determine the effective range of this physical phenomenon for periodic structures that operate in air and in pure nitrogen gas at atmospheric pressure levels. It is demonstrated that when breakdown is induced in a periodic structure using a high-power pulse with a frequency of 9.382 GHz, duration of 0.8 μs, and peak power level of 25 kW, this phenomenon is highly likely to happen in radii of approximately 16–17 mm from the location of the initial discharge under these test conditions. The results of this study are significant in designing metamaterials and periodic structures for high-power microwave applications as they suggest that a localized discharge created in such a periodic structure with a periodicity less than 16–17 mm can spread over a large surface and result in a distributed discharge.

  3. Gas chromatography-vacuum ultraviolet detection for classification and speciation of polychlorinated biphenyls in industrial mixtures.

    PubMed

    Qiu, Changling; Cochran, Jack; Smuts, Jonathan; Walsh, Phillip; Schug, Kevin A

    2017-03-24

    Polychlorinated biphenyls (PCBs) are a group of synthetic chlorinated compounds that have been widely used as dielectric fluids in capacitors and transformers. Due to their toxicity, persistence, and bioaccumulation in the food chain, PCBs are an environmental concern and among the most analyzed compounds in environmental analysis. The most common analytical methods for analysis of PCBs are based on gas chromatography-electron capture detection (GC-ECD) and gas chromatography-mass spectrometry (GC-MS). However, the number of possible congeners (209), similarities of physical and chemical properties, and complexity of sample matrices make it difficult to distinguish and accurately speciate PCB congeners using existing methods. This study presents a new method using gas chromatography with vacuum ultraviolet detection (GC-VUV), which offers absorption detection in the range of 120-240nm, where all chemical species have absorption. The VUV absorption spectra for all 209 PCB congeners were collected and shown to be differentiable. The capability of VUV data analysis software for deconvolution of co-eluting signals was also demonstrated. An automated time interval deconvolution (TID) procedure was applied to rapidly speciate individual PCBs, as well as classify commercial Aroclor mixtures based on their degree of chlorination. The data showed excellent agreement between the stated nominal and determined degrees of chlorination (less than 1% deviation for highly chlorinated mixtures). GC-VUV was verified to provide excellent specificity, high sensitivity (100-150pg limit of detection), and fast data acquisition for this application. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Vacuum ultraviolet photolysis of hydrogenated amorphous carbons . I. Interstellar H2 and CH4 formation rates

    NASA Astrophysics Data System (ADS)

    Alata, I.; Cruz-Diaz, G. A.; Muñoz Caro, G. M.; Dartois, E.

    2014-09-01

    Context. The interstellar hydrogenated amorphous carbons (HAC or a-C:H) observed in the diffuse medium are expected to disappear in a few million years, according to the destruction time scale from laboratory measurements. The existence of a-C:H results from the equilibrium between photodesorption, radiolysis, hydrogenation and resilience of the carbonaceous network. During this processing, many species are therefore injected into the gas phase, in particular H2, but also small organic molecules, radicals or fragments. Aims: We perform experiments on interstellar a-C:H analogs to quantify the release of these species in the interstellar medium. Methods: The vacuum ultraviolet (VUV) photolysis of interstellar hydrogenated amorphous carbon analogs was performed at low (10 K) to ambient temperature, coupled to mass-spectrometry detection and temperature-programed desorption. Using deuterium isotopic substitution, the species produced were unambiguously separated from background contributions. Results: The VUV photolysis of hydrogenated amorphous carbons leads to the efficient production of H2 molecules, but also to small hydrocarbons. Conclusions: These species are formed predominantly in the bulk of the a-C:H analog carbonaceous network, in addition to the surface formation. Compared with species made by the recombination of H atoms and physisorbed on surfaces, they diffuse out at higher temperatures. In addition to the efficient production rate, it provides a significant formation route in environments where the short residence time scale for H atoms inhibits H2 formation on the surface, such as PDRs. The photolytic bulk production of H2 with carbonaceous hydrogenated amorphous carbon dust grains can provide a very large portion of the contribution to the H2 molecule formation. These dust grains also release small hydrocarbons (such as CH4) into the diffuse interstellar medium, which contribute to the formation of small carbonaceous radicals after being dissociated

  5. Vacuum ultraviolet photon–mediated production of [18F]F2

    PubMed Central

    Krzyczmonik, Anna; Keller, Thomas; Kirjavainen, Anna K.; Forsback, Sarita

    2017-01-01

    The chemistry of F2 and its derivatives are amenable to facile aliphatic or aromatic substitution, as well as electrophilic addition. The main limitation in the use of [18F]F2 for radiopharmaceutical synthesis is the low specific activity achieved by the traditional methods of production. The highest specific activities, 55 GBq/μmol, for [18F]F2 have been achieved so far by using electrical discharge in the post‐target production of [18F]F2 gas from [18F]CH3F. We demonstrate that [18F]F2 is produced by illuminating a gas mixture of neon/F2/[18F]CH3F with vacuum ultraviolet photons generated by an excimer laser. We tested several illumination chambers and production conditions. The effects of the initial amount of [18F]F‐, amount of carrier F2, and number of 193‐nm laser pulses at constant power were evaluated regarding radiochemical yield and specific activity. The specific activity attained for [18F]F2‐derived [18F]NFSi was 10.3 ± 0.9 GBq/μmol, and the average radiochemical yield over a wide range of conditions was 6.7% from [18F]F‐. The production can be improved by optimization of the synthesis device and procedures. The use of a commercially available excimer laser and the simplicity of the process can make this method relatively easy for adaptation in radiochemistry laboratories. PMID:28124404

  6. Vacuum-Ultraviolet photoionization studies of the microhydrationof DNA bases (Guanine, Cytosine, Adenine and Thymine)

    SciTech Connect

    Belau, L.; Wilson, K.R.; Leone, S.R.; Musahid, Ahmed

    2007-01-22

    In this work, we report on a photoionization study of the microhydration of the four DNA bases. Gas-phase clusters of water with DNA bases [guanine (G), cytosine (C), adenine (A), and thymine (T)] are generated via thermal vaporization of the bases and expansion of the resultant vapor in a continuous supersonic jet expansion of water seeded in Ar. The resulting clusters are investigated by single-photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for the DNA bases and the following water (W) clusters: G, GW{sub n} (n = 1-3); C, CW{sub n} (n = 1-3); A, AW{sub n} (n = 1,2); and T, TW{sub n} (n = 1-3). Appearance energies (AE) are derived from the onset of these PIE curves (all energies in eV): G (8.1 {+-} 0.1), GW (8.0 {+-} 0.1), GW{sub 2} (8.0 {+-} 0.1), and GW{sub 3} (8.0); C (8.65 {+-} 0.05), CW (8.45 {+-} 0.05), CW{sub 2} (8.4 {+-} 0.1), and CW{sub 3} (8.3 {+-} 0.1); A (8.30 {+-} 0.05), AW (8.20 {+-} 0.05), and AW{sub 2} (8.1 {+-} 0.1); T (8.90 {+-} 0.05); and TW (8.75 {+-} 0.05), TW{sub 2} (8.6 {+-} 0.1), and TW{sub 3} (8.6 {+-} 0.1). The AEs of the DNA bases decrease slightly with the addition of water molecules (up to three) but do not converge to values found for photoinduced electron removal from DNA bases in solution.

  7. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    PubMed

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-07

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society

  8. Using the longitudinal space charge instability for generation of vacuum ultraviolet and x-ray radiation

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2010-11-01

    Longitudinal space charge (LSC) driven microbunching instability in electron beam formation systems of x-ray free-electron lasers (FELs) is a recently discovered effect hampering beam instrumentation and FEL operation. The instability was observed in different facilities in infrared and visible wavelength ranges. In this paper we propose to use such an instability for generation of vacuum ultraviolet (VUV) and x-ray radiation. A typical longitudinal space charge amplifier (LSCA) consists of few amplification cascades (drift space plus chicane) with a short undulator behind the last cascade. If the amplifier starts up from the shot noise, the amplified density modulation has a wide band, on the order of unity. The bandwidth of the radiation within the central cone is given by an inverse number of undulator periods. A wavelength compression could be an attractive option for LSCA since the process is broadband, and a high compression stability is not required. LSCA can be used as a cheap addition to the existing or planned short-wavelength FELs. In particular, it can produce the second color for a pump-probe experiment. It is also possible to generate attosecond pulses in the VUV and x-ray regimes. Some user experiments can profit from a relatively large bandwidth of the radiation, and this is easy to obtain in the LSCA scheme. Finally, since the amplification mechanism is broadband and robust, LSCA can be an interesting alternative to the self-amplified spontaneous emission free-electron laser (SASE FEL) in the case of using laser-plasma accelerators as drivers of light sources.

  9. Line spectrum and ion temperature measurements from tungsten ions at low ionization stages in large helical device based on vacuum ultraviolet spectroscopy in wavelength range of 500–2200 Å

    SciTech Connect

    Oishi, T. Morita, S.; Goto, M.; Huang, X. L.; Zhang, H. M.

    2014-11-15

    Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500–2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.

  10. A High-resolution Vacuum Ultraviolet Laser Photoionization and Photoelectron Study of the Co Atom

    NASA Astrophysics Data System (ADS)

    Huang, Huang; Wang, Hailing; Luo, Zhihong; Shi, Xiaoyu; Chang, Yih-Chung; Ng, C. Y.

    2016-12-01

    We have measured the vacuum ultraviolet-photoionization efficiency (VUV-PIE) spectrum of Co in the energy range of 63,500-67,000 cm-1, which covers the photoionization transitions of Co(3d74s2 4F9/2) \\to Co+(3d8 3F4), Co(3d74s2 4F7/2) \\to Co+(3d8 3F3), Co(3d74s2 4F9/2) \\to Co+(3d8 3F3), Co(3d74s2 4F9/2) \\to Co+(3d8 3F2), and Co(3d74s2 4F9/2) \\to Co+(3d74s1 5F5). We have also recorded the pulsed field ionization photoelectron spectrum of Co in the same energy range, allowing accurate determinations of ionization energies (IEs) for the photoionization transitions from the Co(3d74s2 4F9/2) ground neutral state to the Co+(3F J ) (J = 4 and 3) and Co+(5F5) ionic states, as well as from the Co(3d74s2 4F7/2) excited neural state to the Co+(3d8 3F3) ionic state. The high-resolution nature of the VUV laser used has allowed the observation of many well-resolved autoionizing resonances in the VUV-PIE spectrum, among which an autoionizing Rydberg series, 3d74s1(5F5)np (n = 19-38), converging to the Co+(3d74s1 5F5) ionic state from the Co(3d74s2 4F9/2) ground neutral state is identified. The fact that no discernible step-like structures are present at these ionization thresholds in the VUV-PIE spectrum indicates that direct photoionization of Co is minor compared to autoionization in this energy range. The IE values, the autoionizing Rydberg series, and the photoionization cross sections obtained in this experiment are valuable for understanding the VUV opacity and abundance measurement of the Co atom in stars and solar atmospheres, as well as for benchmarking the theoretical results calculated in the Opacity Project and the IRON Project, and thus are of relevance to astrophysics.

  11. Direct identification of propargyl radical in combustion flames by vacuum ultraviolet photoionization mass spectrometry.

    PubMed

    Zhang, T; Tang, X N; Lau, K-C; Ng, C Y; Nicolas, C; Peterka, D S; Ahmed, M; Morton, Melita L; Ruscic, Branko; Yang, R; Wei, L X; Huang, C Q; Yang, B; Wang, J; Sheng, L S; Zhang, Y W; Qi, F

    2006-02-21

    We have developed an effusive laser photodissociation radical source, aiming for the production of vibrationally relaxed radicals. Employing this radical source, we have measured the vacuum ultraviolet (VUV) photoionization efficiency (PIE) spectrum of the propargyl radical (C(3)H(3)) formed by the 193 nm excimer laser photodissociation of propargyl chloride in the energy range of 8.5-9.9 eV using high-resolution (energy bandwidth = 1 meV) multibunch synchrotron radiation. The VUV-PIE spectrum of C(3)H(3) thus obtained is found to exhibit pronounced autoionization features, which are tentatively assigned as members of two vibrational progressions of C(3)H(3) in excited autoionizing Rydberg states. The ionization energy (IE = 8.674 +/- 0.001 eV) of C(3)H(3) determined by a small steplike feature resolved at the photoionization onset of the VUV-PIE spectrum is in excellent agreement with the IE value reported in a previous pulsed field ionization-photoelectron study. We have also calculated the Franck-Condon factors (FCFs) for the photoionization transitions C(3)H(3) (+)(X;nu(i),i = 1-12)<--C(3)H(3)(X). The comparison between the pattern of FCFs and the autoionization peaks resolved in the VUV-PIE spectrum of C(3)H(3) points to the conclusion that the resonance-enhanced autoionization mechanism is most likely responsible for the observation of pronounced autoionization features. We also present here the VUV-PIE spectra for the mass 39 ions observed in the VUV synchrotron-based photoionization mass spectrometric sampling of several premixed flames. The excellent agreement of the IE value and the pattern of autoionizing features of the VUV-PIE spectra observed in the photodissociation and flames studies has provided an unambiguous identification of the propargyl radical as an important intermediate in the premixed combustion flames. The discrepancy found between the PIE spectra obtained in flames and photodissociation at energies above the IE(C(3)H(3)) suggests that

  12. Sulfur Isotopic Fractionation During Vacuum Ultraviolet Photolysis of SO2: Implication for Meteorites and Early Earth

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Jackson, T. L.; Rude, B.; Ahmed, M.; Thiemens, M. H.

    2016-12-01

    Several sulfur bearing gas phase species existed in the solar nebula, including H2S, SO2, SiS, OCS, CS2, CS, NS and SO as a consequence of multiple available chemical valence states (S2- to S6+). Sulfur directly condensed into refractory phases in the solar nebula under reducing conditions. Mass independent (MI) sulfur isotopic compositions have been measured in chondrules and organics from chondritic meteorites. Large 33S excesses in sulfides from achondrite meteoritic groups have also been found suggesting that refractory sulfide minerals condensed from a nebular gas with an enhanced carbon to oxygen ratio. Photochemical reactions in the early solar nebula have been inferred to be a leading process in generating MI sulfur compositions. Previously, we have reported wavelength dependent mass-independent sulfur isotopic compositions (with a varying degree in D33S and D36S) in the product elemental sulfur during vacuum ultraviolet (VUV) photodissociation of H2S. Recently we performed photodissociation of SO2 experiments in the wavelength region 98 to 200 nm at low pressures (0.5 torr) using the VUV photons from the Advanced Light Source Synchrotron in a differentially pumped reaction chamber. To our knowledge, this is the first ever experiment to determine the isotopic fractionation in VUV photodissociation of SO2. At VUV energy region, SO2 is mostly predissociative. The measured sulfur isotopic compositions in the product elemental sulfur are MI and dependent on the wavelength. These new results support the previous finding from photodissociation of other di- and tri-atomic molecules (CO, N2, H2S) that predissociative photodissociation produces MI isotopic products and is a quantum mechanically driven selective phenomenon. These new results are useful because (i) they are important in interpreting meteoritic data and decipher sulfur chemistry in the early nebula which is indicative of the redox condition of the nebula (ii) SO2 photolysis in the atmosphere of early

  13. Combined vacuum ultraviolet laser and synchrotron pulsed field ionization study of CH2BrCl.

    PubMed

    Li, Juan; Yang, Jie; Mo, Yuxiang; Lau, K C; Qian, X M; Song, Y; Liu, Jianbo; Ng, C Y

    2007-05-14

    The pulsed field ionization-photoelectron (PFI-PE) spectrum of bromochloromethane (CH2BrCl) in the region of 85,320-88,200 cm-1 has been measured using vacuum ultraviolet laser. The vibrational structure resolved in the PFI-PE spectrum was assigned based on ab initio quantum chemical calculations and Franck-Condon factor predictions. At energies 0-1400 cm-1 above the adiabatic ionization energy (IE) of CH2BrCl, the Br-C-Cl bending vibration progression (nu1+=0-8) of CH2BrCl+ is well resolved and constitutes the major structure in the PFI-PE spectrum, whereas the spectrum at energies 1400-2600 cm-1 above the IE(CH2BrCl) is found to exhibit complex vibrational features, suggesting perturbation by the low lying excited CH2BrCl+(A 2A") state. The assignment of the PFI-PE vibrational bands gives the IE(CH2BrCl)=85,612.4+/-2.0 cm-1 (10.6146+/-0.0003 eV) and the bending frequencies nu1+(a1')=209.7+/-2.0 cm-1 for CH2BrCl+(X2A'). We have also examined the dissociative photoionization process, CH2BrCl+hnu-->CH2Cl++Br+e-, in the energy range of 11.36-11.57 eV using the synchrotron based PFI-PE-photoion coincidence method, yielding the 0 K threshold or appearance energy AE(CH2Cl+)=11.509+/-0.002 eV. Combining the 0 K AE(CH2Cl+) and IE(CH2BrCl) values obtained in this study, together with the known IE(CH2Cl), we have determined the 0 K bond dissociation energies (D0) for CH2Cl+-Br (0.894+/-0.002 eV) and CH2Cl-Br (2.76+/-0.01 eV). We have also performed CCSD(T, full)/complete basis set (CBS) calculations with high-level corrections for the predictions of the IE(CH2BrCl), AE(CH2Cl+), IE(CH2Cl), D0(CH2Cl+-Br), and D0(CH2Cl-Br). The comparison between the theoretical predictions and experimental determinations indicates that the CCSD(T, full)/CBS calculations with high-level corrections are highly reliable with estimated error limits of <17 meV.

  14. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    NASA Technical Reports Server (NTRS)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  15. Synergistic effects of vacuum ultraviolet radiation, ion bombardment, and heating in 193 nm photoresist roughening and degradation

    NASA Astrophysics Data System (ADS)

    Nest, D.; Graves, D. B.; Engelmann, S.; Bruce, R. L.; Weilnboeck, F.; Oehrlein, G. S.; Andes, C.; Hudson, E. A.

    2008-04-01

    The roles of ultraviolet/vacuum ultraviolet (UV/VUV) photons, Ar+ ion bombardment and heating in the roughening of 193nm photoresist have been investigated. Atomic force microscopy measurements show minimal surface roughness after UV/VUV-only or ion-only exposures at any temperature. Simultaneous UV/VUV, ion bombardment, and heating to surface temperatures of 60-100°C result in increased surface roughness, and is comparable to argon plasma-exposed samples. Ion bombardment creates a modified near-surface layer while UV/VUV radiation results in loss of carbon-oxygen bonds up to a depth of ˜100nm. Enhanced roughness is only observed in the presence of all three effects.

  16. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    NASA Technical Reports Server (NTRS)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  17. Ultraviolet-Induced Flashover of Highly-Angled Polymeric Insulators in Vacuum

    DTIC Science & Technology

    1988-01-01

    holdoff performance of alumina insulators in vacuum ," J. Appi. Phys. 49 (11), 5416 (1978). Mil80 H. C. Miller, " Improving the Voltage Holdoff Performance ...on the Voltage Holdoff T erformance of Alumina Insulators in Vacuum ," IEEE Trans. Electi. Ir:’.L. EI-20 (3), 505 (1985). Nas79 V. Nassisi and A...of Alumina Insulators in Vacuum Through Quasimetallizing ," IEEE Trans.

  18. Fluorescence yields from photodissociative excitation of HCOOH, HCOOCH3, and CH3COOH in the vacuum-ultraviolet region

    NASA Technical Reports Server (NTRS)

    Suto, Masako; Wang, Xiuyan; Lee, L. C.

    1988-01-01

    The photoexcitation processes of HCOOH, HCOOCH3, and CH3COOH were studied in the vacuum-ultraviolet region by using synchroton radiation and a pulsed discharge lamp as light sources. The absorption and fluorescence cross sections of these molecules were measured in the 106-250-nm region. Fluorescences were detected from photoexcitation of HCOOH and HCOOCH3, but not from CH3COOH. Fluorescence produced at 123.9 nm was dispersed and identified as the excited OH and HCOO radicals. Fluorescence quantum yields of HCOOH and HCOOCH3 increase with decreasing excitation wavelengths with maxima of 5 and 0.3 percent at 106 nm, respectively.

  19. Creation of storage centers in CsBr:Eu{sup 2+} needle image plates by vacuum ultraviolet radiation

    SciTech Connect

    Weidner, M.; Batentschuk, M.; Osvet, A.; Winnacker, A.; Tahon, J. P.; Leblans, P.

    2009-09-15

    In this study, the photostimulated luminescence of the CsBr:Eu{sup 2+} needle image plates (NIPS) after vacuum ultraviolet (VUV) irradiation and their photoluminescence under VUV and UV excitation were investigated. It was shown that the photostimulable storage centers arise almost exclusively due to irradiation of the CsBr:Eu NIPs in the spectral lines of creation of the 4p{sup 5}5s anion excitons, and not in the region of interband transitions of CsBr. The explanation of the results is based mainly on the radiative and nonradiative decay of the self-localized e+Br{sub 2}{sup -} excitons.

  20. Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment

    SciTech Connect

    Teraji, T.; Garino, Y.; Koide, Y.; Ito, T.

    2009-06-15

    Room-temperature fabrication of Schottky diodes was demonstrated for p-type boron-doped diamond. This fabrication method's key technique is selective modification of surface termination from monohydride into oxygen groups using vacuum ultraviolet light irradiation in oxygen. The Au contacts, formed on the hydrogen-terminated surface, maintained Ohmic properties after this selective surface oxidation. The Au contacts then deposited on the oxidized surface, imparting Schottky properties. The lateral-type diodes comprising Au Schottky contacts and Au Ohmic contacts showed blocking voltage higher than 1 kV without electrode guarding. The leakage current at 1 kV was as low as 30 pA.

  1. Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions

    NASA Astrophysics Data System (ADS)

    Wakui, Kentaro; Hayasaka, Kazuhiro; Ido, Tetsuya

    2014-12-01

    Vacuum ultraviolet (VUV) radiation around 159 nm is obtained toward direct excitation of a single trapped ion. An efficient fluoride-based VUV output coupler is employed for intracavity high-harmonic generation of a Ti:S oscillator. Using this coupler, where we measured its reflectance to be about 90 %, an average power reaching 6.4 W is coupled out from a modest fundamental power of 650 mW. When a single comb component out of 1.9 10 teeth is resonant to the atomic transition, 100s of fluorescence photons per second will be detectable under a realistic condition.

  2. Characterization of a vacuum-arc discharge in tin vapor using time-resolved plasma imaging and extreme ultraviolet spectrometry.

    PubMed

    Kieft, E R; van der Mullen, J J A M; Kroesen, G M W; Banine, V; Koshelev, K N

    2005-02-01

    Discharge sources in tin vapor have recently been receiving increased attention as candidate extreme ultraviolet (EUV) light sources for application in semiconductor lithography, because of their favorable spectrum near 13.5 nm. In the ASML EUV laboratory, time-resolved pinhole imaging in the EUV and two-dimensional imaging in visible light have been applied for qualitative characterization of the evolution of a vacuum-arc tin vapor discharge. An EUV spectrometer has been used to find the dominant ionization stages of tin as a function of time during the plasma evolution of the discharge.

  3. Exciton-exciton interactions in CdWO{sub 4} irradiated by intense femtosecond vacuum ultraviolet pulses

    SciTech Connect

    Kirm, M.; Nagirnyi, V.; Feldbach, E.; De Grazia, M.; Carre, B.; Merdji, H.; Guizard, S.; Geoffroy, G.; Gaudin, J.; Fedorov, N.; Martin, P.; Vasil'ev, A.; Belsky, A.

    2009-06-15

    Exciton-exciton interaction is experimentally revealed and quantitatively analyzed in a wide band-gap scintillator material CdWO{sub 4}. Under high-intensity femtosecond vacuum ultraviolet excitation, the CdWO{sub 4} luminescence is quenched, while its decay becomes essentially nonexponential. We propose an analytical model, which successfully reproduces the decay kinetics recorded in a wide range of excitation densities. The dipole-dipole interaction between excitons leading to their nonradiative decay is shown to be the main cause of a nonproportional response common for many scintillators.

  4. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Polarization selection rules and optical transitions in terbium activated yttrium tantalate phosphor under x-ray, vacuum-ultraviolet, and ultraviolet excitations

    SciTech Connect

    Nazarov, Mihail; Tsukerblat, Boris; Byeon, Clare Chisu; Arellano, Ivan; Popovici, Elisabeth-Jeanne; Noh, Do Young

    2009-01-01

    The terbium-activated yttrium tantalite (YTaO4:Tb{sup 3{sup +}}) phosphor is of great interest due to the interesting spectroscopic properties of rare earth ions in crystals and also practical use in x-ray imaging. Using the group-theoretical approach, we analyze the selection rules for the transition between Stark components of Tb{sup 3{sup +}} in symmetry of the actual crystal field and the polarization for the allowed transitions. The luminescence upon UV, vacuum-ultraviolet (VUV), and x-ray excitation is presented and discussed. The YTaO4:Tb{sup 3{sup +}} phosphors are found to be efficient VUV-excited luminescent materials that could be used not only in x-ray intensifying screens, but also in mercury-free fluorescent lamps or plasma display panels.

  6. Vacuum and ultraviolet radiation effects on binders and pigments for spacecraft thermal control coatings

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Wade, W. R.

    1971-01-01

    An evaluation of several silicone resin binders and powdered inorganic pigments for potential use in spacecraft thermal-control paint formulations is presented. The pigments were selected on the basis of a hypothesis relating the heat of formation of a compound to the compound's resistance to ultra-radiation-induced degradation. Reflectance measurements were made in situ to determine degradation rates due to ultraviolet radiation. The tested polydimethylsiloxane resins were not significantly affected by long exposures to ultraviolet radiation. All the pigments, which were dispersed in a polydimethylsiloxane resin, were degraded by ultraviolet radiation as determined by an increase of solar absorptance. For the materials evaluated in this study, no evidence was found to indicate that pigments with high heats of formation were resistant to ultraviolet degradation.

  7. A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

    SciTech Connect

    Laity, George; Fierro, Andrew; Dickens, James; Neuber, Andreas; Frank, Klaus

    2014-03-28

    We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0 mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5 × 10{sup 17} cm{sup −3} and peak N atom densities of 9.9 × 10{sup 17} cm{sup −3} are observed within the first ∼1.0 mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0 nm band of the vacuum ultraviolet spectrum.

  8. Effects of Irradiation with Ions and Photons in Ultraviolet-Vacuum Ultraviolet Regions on Nano-Surface Properties of Polymers Exposed to Plasmas

    NASA Astrophysics Data System (ADS)

    Cho, Ken; Takenaka, Kosuke; Setsuhara, Yuichi; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2012-01-01

    The interactions of ions and photons in ultraviolet (UV) and vacuum ultraviolet (VUV) regions from argon plasmas with polymer surfaces were investigated by of depth analysis of chemical bonding states in the nano-surface layer of poly(ethylene terephthalate) (PET) films via conventional X-ray photoelectron spectroscopy (XPS) and hard X-ray photoelectron spectroscopy (HXPES). The PET films were exposed to argon plasmas by covering the PET films with MgF2 and quartz windows as optical filters to compare the irradiation effects with ions and photons. The conventional XPS results indicated that oxygen functionalities (the C-O bond and the O=C-O bond) were degraded by ion bombardment in the shallower region up to about 10 nm from the surface, whereas the effect of photoirradiation in the UV and VUV regions was insignificant. The HXPES analysis showed that irradiation with ions and photons did not cause serious damage in chemical bonding states in the deeper region up to about 50 nm from the surface.

  9. Evaluation of miniature vacuum ultraviolet lamps for stability and operating characteristics, Lyman-Alpha task

    NASA Technical Reports Server (NTRS)

    Hurd, W. A.

    1985-01-01

    Modifications required to change the near ultraviolet source in the Optical Contamination Monitor to a source with output at or near the Lyman-Alpha hydrogen line are discussed. The effort consisted of selecting, acquiring and testing candidate miniature ultraviolet lamps with significant output in or near 121.6 nm. The effort also included selection of a miniature dc high-voltage power supply capable of operating the lamp. The power supply was required to operate from available primary power supplied by the Optical Effect Module (DEM) and it should be flight qualified or have the ability to be qualified by the user.

  10. Testing to determine the vacuum-ultraviolet degradation rate of thermal control coatings

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.

    1972-01-01

    Samples of S-13G that had been exposed to the salt air environment of Cape Kennedy, Florida were irradiated with simulated solar ultraviolet radiation after various cleaning treatments. In both of the the tests conducted two of the salt air exposed samples were not cleaned, two were lightly cleaned with water and detergent (i.e. rinsed), and two were vigorously scrubbed. Several other white thermal control coatings were also irradiated. The solar absorptance values of these coatings before and as a result of the ultraviolet irradiation are reported for exposure levels up to approximately 2000 ESH.

  11. Generation of ultrashort coherent vacuum ultraviolet pulses using electron storage rings: a new bright light source for experiments.

    PubMed

    De Ninno, G; Allaria, E; Coreno, M; Curbis, F; Danailov, M B; Karantzoulis, E; Locatelli, A; Menteş, T O; Nino, M A; Spezzani, C; Trovò, M

    2008-08-01

    We demonstrate for the first time that seeded harmonic generation on electron storage rings can produce coherent optical pulses in the vacuum ultraviolet spectral range. The experiment is performed at Elettra, where coherent pulses are generated at 132 nm, with a duration of about 100 fs. The light source has a repetition rate of 1 kHz and adjustable polarization; it is very bright, with a peak power several orders of magnitude above that of spontaneous synchrotron radiation. Owing to high stability, the source is used in a test photoemission electron microscopy experiment. We anticipate that seeded harmonic generation on storage rings can lead to unprecedented developments in time-resolved femtosecond spectroscopy and microscopy.

  12. Ultraviolet irradiation at elevated temperatures and thermal cycling in vacuum of FEP-A covered silicon solar cells

    NASA Technical Reports Server (NTRS)

    Broder, J. D.; Marsik, S. J.

    1978-01-01

    Silicon solar cells covered with FEP-A were irradiated in vacuum with ultraviolet light and then subjected to thermal cycling. These accelerated laboratory conditions are believed to be equivalent to those experienced by FEP-A covered cells on the ATS-6 spacecraft and the results indicate a probable mechanism for the faster degradation of the FEP-A covered cells. Heat-bonded FEP-A covers apparently embrittle when exposed to four months of space UV radiation at elevated temperatures, and crack when subjected to thermal cycling during the eclipse period. Low energy proton radiation can then penetrate to the junction of the cell causing degradation of the open circuit voltage and maximum power to occur. An alternate method of application of FEP-A, such as with adhesives, may prevent such cracking.

  13. Plasma and vacuum ultraviolet induced charging of SiO{sub 2} and HfO{sub 2} patterned structures

    SciTech Connect

    Lauer, J. L.; Upadhyaya, G. S.; Sinha, H.; Kruger, J. B.; Nishi, Y.; Shohet, J. L.

    2012-01-15

    The authors compare the effects of plasma charging and vacuum ultraviolet (VUV) irradiation on oxidized patterned Si structures with and without atomic-layer-deposited HfO{sub 2}. It was found that, unlike planar oxidized Si wafers, oxidized patterned Si wafers charge up significantly after exposure in an electron-cyclotron resonance plasma. The charging is dependent on the aspect ratio of the patterned structures. This is attributed to electron and/or ion shading during plasma exposure. The addition of a 10 nm thick HfO{sub 2} layer deposited on top of the oxidized silicon structures increases the photoemission yield during VUV irradiation, resulting in more trapped positive charge compared to patterns without the HfO{sub 2} dielectric.

  14. Upgrade of the tangentially viewing vacuum ultraviolet (VUV) telescope system for 2D fluctuation measurement in the large helical device

    NASA Astrophysics Data System (ADS)

    Wang, Z. J.; Ming, T. F.; Gao, X.; Du, X. D.; Ohdachi, S.

    2016-11-01

    A high-speed tangentially viewing vacuum ultraviolet (VUV) telescope system, using an inverse Schwarzschild-type optic system was developed to study fluctuations in the Large Helical Device (LHD). However, for the original system, the sampling rate was restricted to below 2000 Hz due to the low signal to noise (S/N) ratio in the experiment. In order to improve the S/N ratio, upgrade of the system was made. With this upgraded optical system, the maximum framing rate is improved to 6000 fps with a similar spatial resolution. Rotation of the m = 2 structure caused by the magnetohydrodynamic (MHD) instability is measured by the upgraded system. The spatial structure of the image is consistent with the synthetic image assuming the interchange mode type displacement of the flux surfaces.

  15. Ultraviolet irradiation at elevated temperatures and thermal cycling in vacuum of FEP-A covered silicon solar cells

    NASA Technical Reports Server (NTRS)

    Broder, J. D.; Marsik, S. J.

    1978-01-01

    Experiments were designed and performed on silicon solar cells covered with heat-bonded FEP-A in an effort to explain the rapid degeneration of open-circuit voltage and maximum power observered on cells of this type included in an experiment on the ATS-6 spacecraft. Solar cells were exposed to ultraviolet light in vacuum at temperatures ranging from 30 to 105 C. The samples were then subjected to thermal cycling from 130 to -130 C. Inspection following irradiation indicated that all the covers remained physically intact. However, during the temperature cycling heat-bonded covers showed cracking. The test showed that heat-bonded FEP-A covers embrittle during UV exposure and the embrittlement is dependent upon sample temperature during irradiation. The results of the experiment suggest a probable mechanism for the degradation of the FEP-A cells on ATS-6.

  16. Vacuum Ultraviolet (VUV) radiation-induced degradation of Fluorinated Ethylene Propylene (FEP) Teflon aboard the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Stiegman, A. E.; Staszak, Paul R.; Laue, Eric G.; Liang, Ranty H.

    1992-01-01

    Examination of fluorinated ethylene propylene (FEP) copolymer specimens recovered from the Long Duration Exposure Facility (LDEF) provides evidence for degradation attributed to extended solar vacuum ultraviolet (VUV) irradiation. Scanning electron microscope (SEM) images of sheared FEP film edges reveal the presence of a highly embrittled layer on the exposed surface of specimens obtained from the trailing edge of the LDEF. Similar images obtained for leading edge and control FEP films do not exhibit evidence for such an embrittled layer. Laboratory VUV irradiation of FEP films is found to produce a damage layer similar to that witnessed in the LDEF trailing edge films. Spectroscopic analyses of irradiated films provide data to advance a photochemical mechanism for degradation.

  17. Vacuum ultraviolet photoionization mass spectra and cross-sections for volatile organic compounds at 10.5 eV.

    PubMed

    Kanno, Nozomu; Tonokura, Kenichi

    2007-08-01

    Vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) has been applied to the detection of volatile organic compounds (VOCs), including aromatic, chlorinated, and oxygenated compounds. Photoionization mass spectra of 23 VOCs were measured using SPI-TOFMS at 10.5 eV (118 nm). The limits of detection of VOCs using SPI-TOFMS at 10.5 eV were estimated to be a few ppbv. The mass spectra of 20 VOCs exhibit only the parent ion and its isotopes' signals. The ionization processes of the VOCs were discussed on the basis of the reaction enthalpies predicted by the quantum chemical calculations. Absolute photoionization cross-sections for 23 VOCs, including 12 newly measured VOCs, at 10.5 eV were determined in comparison to the reported absolute photoionization cross-section of NO.

  18. Reflection polarizers for the vacuum ultraviolet using Al + MgF2 mirrors and an MgF2 plate

    NASA Technical Reports Server (NTRS)

    Hass, G.; Hunter, W. R.

    1978-01-01

    Consideration is given to the design and operation of a three-mirror reflecting polarizer where one of the reflecting surfaces is an MgF2 plate, the other surfaces are Al + MgF2 coatings, and one reflection occurs at or near the true Brewster angle. It is found that the polarizer is most efficient in the 1200-2000 A wavelength region, and that by optimum selection of the angle of incidence on the MgF2 plate, polarization values of 100 and over are yielded from 900 to 3000 A. The polarizer may be used at wavelengths as short as 500 A, although it is observed that at such wavelengths the polarization value decreases to about 10. It is noted that all reflecting polarizers operating in the vacuum ultraviolet wavelength may manifest changing characteristics as their mirrors become contaminated, and that polarization must therefore be occasionally remeasured.

  19. Size control and vacuum-ultraviolet fluorescence of nanosized KMgF3 single crystals prepared using femtosecond laser pulses.

    PubMed

    Muramatsu, Sotaro; Yanagihara, Masahiro; Asaka, Toru; Ono, Shingo; Nagami, Tomohito; Fukuda, Kentaro; Suyama, Toshihisa; Yokota, Yuui; Yanagida, Takayuki; Yoshikawa, Akira

    2016-01-01

    We fabricated nanosized KMgF3 single crystals via a dry pulsed laser ablation process using femtosecond laser pulses. The sizes, shapes, and crystallographic properties of the crystals were evaluated by transmission electron microscopy (TEM). Almost all of the particles were spherical with diameters of less than 100 nm, and they were not highly agglomerated. Selected-area electron diffraction and high-resolution TEM analyses showed that the particles were single crystals. Particle diameter was controlled within a wide range by adjusting the Ar ambient gas pressure. Under low gas pressures (1 and 10 Pa), relatively small particles (primarily 10 nm or less) were observed with a high number density. With increasing pressure, the mean diameter increased and the number density drastically decreased. Vacuum-ultraviolet cathodoluminescence was observed at 140-230 nm with blue shift and broadening of spectrum.

  20. Vacuum Ultraviolet (VUV) radiation-induced degradation of Fluorinated Ethylene Propylene (FEP) Teflon aboard the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Stiegman, A. E.; Staszak, Paul R.; Laue, Eric G.; Liang, Ranty H.

    1992-01-01

    Examination of fluorinated ethylene propylene (FEP) copolymer specimens recovered from the Long Duration Exposure Facility (LDEF) provides evidence for degradation attributed to extended solar vacuum ultraviolet (VUV) irradiation. Scanning electron microscope (SEM) images of sheared FEP film edges reveal the presence of a highly embrittled layer on the exposed surface of specimens obtained from the trailing edge of the LDEF. Similar images obtained for leading edge and control FEP films do not exhibit evidence for such an embrittled layer. Laboratory VUV irradiation of FEP films is found to produce a damage layer similar to that witnessed in the LDEF trailing edge films. Spectroscopic analyses of irradiated films provide data to advance a photochemical mechanism for degradation.

  1. Size control and vacuum-ultraviolet fluorescence of nanosized KMgF3 single crystals prepared using femtosecond laser pulses

    PubMed Central

    Muramatsu, Sotaro; Yanagihara, Masahiro; Asaka, Toru; Ono, Shingo; Nagami, Tomohito; Fukuda, Kentaro; Suyama, Toshihisa; Yokota, Yuui; Yanagida, Takayuki; Yoshikawa, Akira

    2016-01-01

    Abstract We fabricated nanosized KMgF3 single crystals via a dry pulsed laser ablation process using femtosecond laser pulses. The sizes, shapes, and crystallographic properties of the crystals were evaluated by transmission electron microscopy (TEM). Almost all of the particles were spherical with diameters of less than 100 nm, and they were not highly agglomerated. Selected-area electron diffraction and high-resolution TEM analyses showed that the particles were single crystals. Particle diameter was controlled within a wide range by adjusting the Ar ambient gas pressure. Under low gas pressures (1 and 10 Pa), relatively small particles (primarily 10 nm or less) were observed with a high number density. With increasing pressure, the mean diameter increased and the number density drastically decreased. Vacuum-ultraviolet cathodoluminescence was observed at 140–230 nm with blue shift and broadening of spectrum. PMID:27877915

  2. Influence of porosity on electrical properties of low-k dielectrics irradiated with vacuum-ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Choudhury, F. A.; Nguyen, H. M.; Baklanov, M. R.; de Marneffe, J. F.; Li, W.; Pei, D.; Benjamin, D. I.; Zheng, H.; King, S. W.; Lin, Y.-H.; Fung, H.-S.; Chen, C.-C.; Nishi, Y.; Shohet, J. L.

    2016-09-01

    During plasma processing, low-k dielectrics are exposed to high levels of vacuum ultraviolet (VUV) radiation emitted from the plasma. The porous structure of these materials makes them more sensitive to modification because of their low density and consequently deep penetration of active species into the film. Here, we investigate the changes to electrical properties of porous low-k dielectrics as a function of porosity after VUV irradiation. Organosilicate low-k films of porosities between 30% and 50% were exposed to synchrotron VUV radiation at 8 eV with a fluence of approximately 5 × 1014 photons/cm2. Capacitance-voltage measurements showed an increase in the dielectric constant along with a flat-band voltage shift. FTIR results show methyl depletion as well as water uptake after VUV treatment. These show that deterioration of the electrical properties after VUV exposure and the degree of damage are found to be higher for the more porous films.

  3. Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity

    NASA Astrophysics Data System (ADS)

    Jones, R. Jason; Moll, Kevin D.; Thorpe, Michael J.; Ye, Jun

    2005-05-01

    We demonstrate the generation of phase-coherent frequency combs in the vacuum utraviolet spectral region. The output from a mode-locked laser is stabilized to a femtosecond enhancement cavity with a gas jet at the intracavity focus. The resulting high-peak power of the intracavity pulse enables efficient high-harmonic generation by utilizing the full repetition rate of the laser. Optical-heterodyne-based measurements reveal that the coherent frequency comb structure of the original laser is fully preserved in the high-harmonic generation process. These results open the door for precision frequency metrology at extreme ultraviolet wavelengths and permit the efficient generation of phase-coherent high-order harmonics using only a standard laser oscillator without active amplification of single pulses.

  4. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of hexafluorobenzene: The Jahn-Teller effect and vibrational analysis

    NASA Astrophysics Data System (ADS)

    Kwon, Chan Ho; Kim, Myung Soo

    2004-06-01

    One-photon mass-analyzed threshold ionization (MATI) spectrum of hexafluorobenzene was obtained by using vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The ionization energy of hexafluorobenzene determined from the position of the 0-0 band was 9.9108±0.0006 eV. To aid the spectral analysis, the Jahn-Teller coupling parameters for four e2g modes of C6F6+ in the ground electronic state were calculated from the topographical data of the potential energy surface obtained at the density functional theory (DFT) level. These were used in the initial calculation of the energies of the Jahn-Teller states and upgraded through the multimode fit to the experimental data. Excellent agreement between the experimental and calculated frequencies was achieved. The vibrations which are not linear Jahn-Teller active were observed and could be assigned by referring to the frequencies obtained at the DFT level.

  5. Vacuum ultraviolet mass-analyzed threshold ionization spectroscopy of vinyl bromide: Franck-Condon analysis and vibrational assignment

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Myung Soo

    2003-09-01

    Vibrational spectrum of vinyl bromide cation in the ground electronic state was obtained by one-photon mass-analyzed threshold ionization (MATI) spectroscopy using coherent vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. From MATI spectrum, ionization energy to the ground state of the cation was determined to be 9.8171±0.0006 eV (79 180±5 cm-1). Almost complete vibrational assignments for the peaks in the MATI spectrum were possible by utilizing vibrational frequencies and Franck-Condon factors calculated at the Becke three parameter Lee-Yang-Parr (B3LYP)/6-311++G(df,pd) level. Franck-Condon analysis for one-photon MATI spectra is especially useful because calculations of only the ground electronic states are involved while that for two-photon MATI spectra requires excited state calculations.

  6. Luminescent properties of Pr{sup 3+}-sensitized LaPO{sub 4}:Gd{sup 3+} ultraviolet-B phosphor under vacuum-ultraviolet light excitation

    SciTech Connect

    Okamoto, Shinji; Uchino, Rika; Kobayashi, Keisuke; Yamamoto, Hajime

    2009-07-01

    Luminescent properties of Pr{sup 3+}-sensitized LaPO{sub 4}:Gd{sup 3+} under vacuum-ultraviolet (vuv) light excitation have been investigated. The energy transfer probably occurs from the 5d levels in Pr{sup 3+} ions to Gd{sup 3+} ions under 172 nm light excitation. LaPO{sub 4}:Gd{sup 3+},Pr{sup 3+} shows efficient ultraviolet-B (uv-B) emission at 312 nm, whose peak intensity reaches its maximum at Gd=35 mol % and Pr=5 mol %. (La{sub 0.65}Gd{sub 0.35}){sub 0.95}Pr{sub 0.05}PO{sub 4} is about 1.6 times higher than a typical uv-B phosphor for vuv lamp, Y{sub 0.75}Gd{sub 0.25}Al{sub 3}(BO{sub 3}){sub 4}, in Gd{sup 3+}-emission intensity under 172 nm light excitation. This result implies that the Pr{sup 3+}-sensitized LaPO{sub 4}:Gd{sup 3+} is a candidate of uv-B phosphors for xenon-excimer discharge vuv lamps. In order to evaluate the effect of the narrow-band uv-B emission by LaPO{sub 4}:Gd{sup 3+},Pr{sup 3+} phosphor, irradiation test on DNA was performed. The irradiation damage of pUC 18 DNA by the narrow-band uv-B light from the LaPO{sub 4}:Gd{sup 3+},Pr{sup 3+} phosphor is in the same magnitude as that by uv-A light from a filtered Hg lamp, even though the uv-B lamp is higher than the uv-A lamp in power density and photon energy.

  7. Room temperature optically detected magnetic resonance (photoluminescence detected magnetic resonance) of radical ion pairs induced by vacuum ultraviolet in thin polymeric films

    SciTech Connect

    Verkhovlyuk, V. N. Anisimov, O. A.; Fedotov, K. Yu.

    2016-05-15

    A setup for recording optically detected electron paramagnetic resonance spectra of radical ions involved in geminate recombination and generated by vacuum ultraviolet is described. The setup allows registration of EPR spectra from short-lived radical ions in polymeric films at room temperature by recombination fluorescence modulated by a resonance microwave field.

  8. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    SciTech Connect

    Jablonowski, H.; Hammer, M. U.; Reuter, S.; Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  9. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    NASA Astrophysics Data System (ADS)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  10. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS.

    PubMed

    Tang, Xiaofeng; Garcia, Gustavo A; Gil, Jean-François; Nahon, Laurent

    2015-12-01

    We report here the recent upgrade of the SAPHIRS permanent photoionization end-station at the DESIRS vacuum ultraviolet beamline of synchrotron SOLEIL, whose performances have been enhanced by installing an additional double-skimmer differential chamber. The smaller molecular beam profile obtained at the interaction region has increased the mass resolution of the double imaging photoelectron photoion coincidence (i(2)PEPICO) spectrometer, DELICIOUS III, installed in the photoionization chamber of the SAPHIRS endstation, by a factor of two, to M/ΔM ∼ 1700 (FWHM). The electron kinetic energy resolution offered by the velocity map imaging (VMI) part of the spectrometer has been improved down to 2.8% (ΔE/E) as we show on the N2 photoionization case in the double skimmer configuration. As a representative example of the overall state-of-the-art i(2)PEPICO performances, experimental results of the dissociation of state-selected O2(+)(B(2)∑(g)(-), v(+) = 0-6) molecular ions performed at the fixed photon energy of hν = 21.1 eV are presented.

  11. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofeng; Garcia, Gustavo A.; Gil, Jean-François; Nahon, Laurent

    2015-12-01

    We report here the recent upgrade of the SAPHIRS permanent photoionization end-station at the DESIRS vacuum ultraviolet beamline of synchrotron SOLEIL, whose performances have been enhanced by installing an additional double-skimmer differential chamber. The smaller molecular beam profile obtained at the interaction region has increased the mass resolution of the double imaging photoelectron photoion coincidence (i2PEPICO) spectrometer, DELICIOUS III, installed in the photoionization chamber of the SAPHIRS endstation, by a factor of two, to M/ΔM ˜ 1700 (FWHM). The electron kinetic energy resolution offered by the velocity map imaging (VMI) part of the spectrometer has been improved down to 2.8% (ΔE/E) as we show on the N2 photoionization case in the double skimmer configuration. As a representative example of the overall state-of-the-art i2PEPICO performances, experimental results of the dissociation of state-selected O2+ (B 2 ∑ g - , v+ = 0-6) molecular ions performed at the fixed photon energy of hν = 21.1 eV are presented.

  12. Preservation of homochirality of aspartic acid films irradiated with 8.5 eV vacuum ultraviolet light

    NASA Astrophysics Data System (ADS)

    Izumi, Yudai; Matsui, Takahiro; Koketsu, Toshiyuki; Nakagawa, Kazumichi

    2008-10-01

    Enantiomeric excess was reported for amino acids detected from some meteorites. These results imply that these amino acids might escape from racemization processes in space. Here, in an attempt to examine whether non-polarized vacuum ultraviolet (VUV) light was one of racemization factors, we irradiated solid films of homochiral L- or D-aspartic acid ( L- or D-Asp) with a 146 nm excimer lamp in vacuum at 290 K. After irradiation for L-Asp films, L-alanine ( L-Ala) and β-Ala were observed, but D-Asp or D-Ala was not observed. On the contrast, for irradiation to D-Asp films, D-Ala and β-Ala were observed, but L-Asp or L-Ala was not observed. Therefore, we concluded that the chirality was preserved through the photolysis of Asp to Ala. It is of interest to carry out the similar experiments using high-energy particles and/or γ-ray irradiation.

  13. A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions.

    PubMed

    Arrell, C A; Ojeda, J; Sabbar, M; Okell, W A; Witting, T; Siegel, T; Diveki, Z; Hutchinson, S; Gallmann, L; Keller, U; van Mourik, F; Chapman, R T; Cacho, C; Rodrigues, N; Turcu, I C E; Tisch, J W G; Springate, E; Marangos, J P; Chergui, M

    2014-10-01

    We present a simple electron time of flight spectrometer for time resolved photoelectron spectroscopy of liquid samples using a vacuum ultraviolet (VUV) source produced by high-harmonic generation. The field free spectrometer coupled with the time-preserving monochromator for the VUV at the Artemis facility of the Rutherford Appleton Laboratory achieves an energy resolution of 0.65 eV at 40 eV with a sub 100 fs temporal resolution. A key feature of the design is a differentially pumped drift tube allowing a microliquid jet to be aligned and started at ambient atmosphere while preserving a pressure of 10(-1) mbar at the micro channel plate detector. The pumping requirements for photoelectron (PE) spectroscopy in vacuum are presented, while the instrument performance is demonstrated with PE spectra of salt solutions in water. The capability of the instrument for time resolved measurements is demonstrated by observing the ultrafast (50 fs) vibrational excitation of water leading to temporary proton transfer.

  14. Vacuum ultraviolet trimming of oxygenated functional groups from oxidized self-assembled hexadecyl monolayers in an evacuated environment

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed I. A.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki

    2017-09-01

    Vacuum ultraviolet light irradiation in dry air generates active oxygen species, which have powerful oxidation abilities. These active oxygen species (O) can oxidize the alkyl moieties of polymers, and generate new oxygenated groups such as OH, CHO and COOH groups. Reducing the oxygen content in the exposure environment decreases the rate of oxidation processes. In this study, we examined the influences of the 172 nm VUV irradiation in a high vacuum (HV, < 10-3 Pa) environment on the chemical constituents, surface properties and morphological structure of well-defined VUV/(O)-modified hexadecyl (HD-) self-assembled monolayer (SAM) prepared on hydrogen-terminated silicon (H-Si) substrate. After VUV light irradiation in a HV environment (HV-VUV), the chemical constituents and surface properties were changed in two distinct stages. At short irradiation time (the first stage), the Csbnd O and COO groups decreased rapidly, while the Cdbnd O groups slightly changed. The dissociation of nonderivatizable groups (such as ether (Csbnd Osbnd C) and ester (Csbnd COOsbnd C) groups) compensated the dissociated OH, CHO, Csbnd COsbnd C and COOH groups. With further irradiation (the second stage), the quantities of the oxygenated groups slightly decreased. The carbon skeleton (Csbnd C) of SAM was scarcely dissociated during the HV-VUV treatment. These chemical changes affected the surface properties, such as wettability and morphology.

  15. A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions

    SciTech Connect

    Arrell, C. A. Ojeda, J.; Mourik, F. van; Chergui, M.; Sabbar, M.; Gallmann, L.; Keller, U.; Okell, W. A.; Witting, T.; Siegel, T.; Diveki, Z.; Hutchinson, S.; Tisch, J. W.G.; Marangos, J. P.; Chapman, R. T.; Cacho, C.; Rodrigues, N.; Turcu, I. C.E.; Springate, E.

    2014-10-01

    We present a simple electron time of flight spectrometer for time resolved photoelectron spectroscopy of liquid samples using a vacuum ultraviolet (VUV) source produced by high-harmonic generation. The field free spectrometer coupled with the time-preserving monochromator for the VUV at the Artemis facility of the Rutherford Appleton Laboratory achieves an energy resolution of 0.65 eV at 40 eV with a sub 100 fs temporal resolution. A key feature of the design is a differentially pumped drift tube allowing a microliquid jet to be aligned and started at ambient atmosphere while preserving a pressure of 10⁻¹ mbar at the micro channel plate detector. The pumping requirements for photoelectron (PE) spectroscopy in vacuum are presented, while the instrument performance is demonstrated with PE spectra of salt solutions in water. The capability of the instrument for time resolved measurements is demonstrated by observing the ultrafast (50 fs) vibrational excitation of water leading to temporary proton transfer.

  16. Decontamination of unpackaged and vacuum-packaged boneless chicken breast with pulsed ultraviolet light.

    PubMed

    Keklik, N M; Demirci, A; Puri, V M

    2010-03-01

    The effectiveness of pulsed UV light on the microbial load of boneless chicken breast was investigated. Unpackaged and vacuum-packaged samples inoculated with an antibiotic-resistant strain of Salmonella Typhimurium on the top surfaces were treated with pulsed UV light for 5, 15, 30, 45, and 60 s at 5, 8, and 13 cm distance from the quartz window in the pulsed UV light chamber. The log(10) reductions of Salmonella (cfu/cm(2)) on unpackaged samples varied from 1.2 to 2.4 after a 5-s treatment at 13 cm and a 60-s treatment at 5 cm, respectively. The log(10) reductions on vacuum-packaged samples varied from 0.8 to 2.4 after the 5-s treatment at 13 cm and the 60-s treatment at 5 cm, respectively. The optimum treatment conditions were determined to be 5 cm-15 s for unpackaged samples and 5 cm-30 s for vacuum-packaged samples, both of which resulted in about 2 log(10) reduction (approximately 99%). The total energy and temperatures of samples increased with longer treatment time and shorter distance from the quartz window in the pulsed UV light chamber. The changes in chemical quality and color of samples were determined after mild (at 13 cm for 5 s), moderate (at 8 cm for 30 s), and extreme (at 5 cm for 60 s) treatments. Neither malonaldehyde contents nor color parameters changed significantly (P > 0.05) after mild and moderate treatments. Mechanical properties of the packaging material were analyzed before and after pulsed UV light treatments. The elastic modulus at both along-machine and perpendicular-to-machine direction and yield strength at perpendicular-to-machine direction changed significantly (P < 0.05) after extreme treatment. Overall, these results clearly indicate that pulsed UV light has a potential to be used for decontamination of unpackaged and vacuum-packaged poultry.

  17. Vacuum Ultraviolet Airglow and Stellar Observations on the MSMP/TEM-1 Rocket Flight.

    DTIC Science & Technology

    1980-09-15

    although availabie from Nt131. (Observations hY tih cameras have been limited owing to the unplanned rapid motion ,C the line * t sight. The goal of...still believed to have a residual uncertainty of ±50 in azimuth and elevation. The rapid and oscillatory movement of the line of sight prevented the VUV...mesospheric ozone by observations of ultraviolet airglow, J. Geophys._ Res. 73:2951. 39 ’IA- Fs kiuflo a. GoI ~c tr rv J an Ea r’th I .im b Scann Shuw

  18. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum

    NASA Astrophysics Data System (ADS)

    Nováková, Eva; Vyšín, Luděk; Burian, Tomáš; Juha, Libor; Davídková, Marie; Múčka, Viliam; Čuba, Václav; Grisham, Michael E.; Heinbuch, Scott; Rocca, Jorge J.

    2015-04-01

    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugars, and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. We have studied the nature of DNA damage induced directly by the pulsed 46.9-nm (26.5 eV) radiation provided by an extreme ultraviolet (XUV) capillary-discharge Ne-like Ar laser (CDL). Doses up to 45 kGy were delivered with a repetition rate of 3 Hz. We studied the dependence of the yield of SSBs and DSBs of a simple model of DNA molecule (pBR322) on the CDL pulse fluence. Agarose gel electrophoresis method was used for determination of both SSB and DSB yields. The action cross sections of the single- and double-strand breaks of pBR322 plasmid DNA in solid state were determined. We observed an increase in the efficiency of strand-break induction in the supercoiled DNA as a function of laser pulse fluence. Results are compared to those acquired at synchrotron radiation facilities and other sources of extreme-ultraviolet and soft x-ray radiation.

  19. Interaction of vacuum ultraviolet excimer laser radiation with fused silica: II. Neutral atom and molecule emission

    SciTech Connect

    George, Sharon R.; Langford, S. C.; Dickinson, J. T.

    2010-02-15

    We report mass-resolved time-of-flight measurements of neutral Si, O, and SiO from ultraviolet-grade fused silica during pulsed 157-nm irradiation at fluences well below the threshold for optical breakdown. Although the emission intensities are strongly affected by thermal treatments that affect the density of strained bonds in the lattice, they are not consistently affected by mechanical treatments that alter the density of point defects, such as polishing and abrasion. We propose that the absorption of single 157 nm photons cleave strained bonds to produce defects that subsequently diffuse to the surface. There they react with dangling bonds to release neutral atoms and molecules. Hartree-Fock calculations on clusters containing these defects support the contention that defect interactions can yield emission. More direct emission by the photoelectronic excitation of antibonding chemical states is also supported.

  20. Vacuum ultraviolet radiation/atomic oxygen synergism in fluorinated ethylene propylene Teflon erosion

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Brinza, David E.; Laue, Eric G.; Anderson, Mark S.; Liang, Ranty H.

    1992-01-01

    A micrographic investigation is reported of samples of the fluorinated ethylene propylene (FEP) Teflon thermal-blanketing materials recovered from the Long-Duration Exposure Facility (LDEF) satellite. The samples are taken from the trailing edge and row 8 which correspond to exposures to vacuum UV (VUV) and VUV + atomic O, respectively. Data are taken from SEM and IR-spectra observations, and the LDEF leading-edge FEP shows a high degree of erosion, roughening, and sharp peaks angled in the direction of the flow of atomic O. The trailing edge sample influenced primarily by VUV shows a hard brittle layer and some cracked mosaic patterns. Comparisons to a reference sample suggest that the brittle layer is related to exposure to VUV and is removed by atomic-O impingement. Polymers that are stable to VUV radiation appear to be more stable in terms of atomic oxygen.

  1. Vacuum ultraviolet radiation and thermal cycling effects on atomic oxygen protective photovoltaic array blanket materials

    NASA Technical Reports Server (NTRS)

    Brady, J.; Banks, B.

    1990-01-01

    The importance of synergistic environmental exposure is demonstrated through the evaluation of DuPont 93-1 in simulated LEO environment. Changes in optical properties, surface condition, and mass loss data are described. The qualitative results indicate the necessity for exposure of materials to a series of simulated LEO environments in order to properly determine synergistic effects and demonstrate the overall LEO durability of candidate materials. It is shown that synergistic effects may occur with vacuum thermal cycling combined with VUV radiation followed by atomic oxygen exposure. Testing the durability of candidate solar array blanket materials in a test sequence with necessary synergistic effects makes it possible to determine the appropriate material for providing structural support and maintaining the proper operating temperature for solar cells in the SSF Photovaltaic Power System.

  2. Vacuum ultraviolet radiation/atomic oxygen synergism in fluorinated ethylene propylene Teflon erosion

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Brinza, David E.; Laue, Eric G.; Anderson, Mark S.; Liang, Ranty H.

    1992-01-01

    A micrographic investigation is reported of samples of the fluorinated ethylene propylene (FEP) Teflon thermal-blanketing materials recovered from the Long-Duration Exposure Facility (LDEF) satellite. The samples are taken from the trailing edge and row 8 which correspond to exposures to vacuum UV (VUV) and VUV + atomic O, respectively. Data are taken from SEM and IR-spectra observations, and the LDEF leading-edge FEP shows a high degree of erosion, roughening, and sharp peaks angled in the direction of the flow of atomic O. The trailing edge sample influenced primarily by VUV shows a hard brittle layer and some cracked mosaic patterns. Comparisons to a reference sample suggest that the brittle layer is related to exposure to VUV and is removed by atomic-O impingement. Polymers that are stable to VUV radiation appear to be more stable in terms of atomic oxygen.

  3. Photoconductivity and photoelectron emission of liquid squalane and squalene induced by vacuum-ultraviolet light

    NASA Astrophysics Data System (ADS)

    Koizumi, Hitoshi; Katoh, Ryuzi; Lacmann, Klaus; Schmidt, Werner F.

    1995-08-01

    The photoconductivity of liquid squalane (2,6,10,15,19,23-hexamethyltetracosane, C 30H 62) and liquid squalene (2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, C 30H 50) was measured as a function of photon energy. The energy thresholds of photoconductivity and photoemission were determined. From the difference of these two values the energies of the electronic conduction levels V0(C 30H 60) = -0.15 eV and V0(C 30H 50) = -0.55 eV were estimated. Absolute quantum yields of free ions were measured at a field strength of 6.7 kV cm -1 in the photoconductivity experiment. The difference in yields of the photoconductivity and the photoelectron emission is discussed taking into account the escape probability from geminate recombination and the transport of photoelectrons in the liquid and through the liquid/vacuum interface.

  4. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z{sub eff} measurement based on bremsstrahlung continuum in HL-2A tokamak

    SciTech Connect

    Zhou Hangyu; Cui Zhengying; Fu Bingzhong; Sun Ping; Gao Yadong; Xu Yuan; Lu Ping; Yang Qingwei; Duan Xuru; Morita, Shigeru; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 A-500 A. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z{sub eff}. The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 A-500 A by comparing the intensity between VUV and EUV line emissions.

  5. High-resolution, vacuum-ultraviolet absorption spectrum of boron trifluoride.

    PubMed

    Hughes, Patrick P; Beasten, Amy; McComb, Jacob C; Coplan, Michael A; Al-Sheikhly, Mohamad; Thompson, Alan K; Vest, Robert E; Sprague, Matthew K; Irikura, Karl K; Clark, Charles W

    2014-11-21

    In the course of investigations of thermal neutron detection based on mixtures of (10)BF3 with other gases, knowledge was required of the photoabsorption cross sections of (10)BF3 for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10(-20) cm(2) at 135 nm to less than 10(-21) cm(2) in the region from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135-145 nm, 150-165 nm, and 190-205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.

  6. Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission

    SciTech Connect

    George, Sharon R.; Leraas, John A.; Langford, S. C.; Dickinson, J. T.

    2010-02-15

    We report time- and mass-resolved measurements of Si{sup +} and O{sup +} emission from ultraviolet-grade fused silica during exposure to pulsed 157 nm excimer laser radiation at fluences below the threshold for optical breakdown. The emission intensities are increased by treatments that increase the density of surface defects, such as abrasion, and are reduced by treatments that reduce the density of surface defects, such as annealing. Ion emission is a sensitive probe of mechanical damage on silica surfaces. The mean ion kinetic energies are typically several eV: 8-9 eV for Si{sup +} and about 4 eV for O{sup +}. Hartree-Fock studies of candidate defect sites suggest that antibonding states excited by 157 nm photons play a critical role in the release of these ions. We propose that positive ion emission from fused silica under these conditions is best explained by a hybrid mechanism involving (a) the excitation of an antibonding chemical state (Menzel-Gomer-Redhead mechanism) and (b) the acceleration of the positive ion by repulsive electrostatic forces due to the photoionization of nearby electron traps.

  7. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    SciTech Connect

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-05-12

    In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

  8. Vacuum-ultraviolet photoreduction of graphene oxide: Electrical conductivity of entirely reduced single sheets and reduced micro line patterns

    SciTech Connect

    Tu, Yudi; Ichii, Takashi; Utsunomiya, Toru; Sugimura, Hiroyuki

    2015-03-30

    We here report a scanning probe method to locally and directly research the electrical properties of vacuum-ultraviolet (VUV) reduced graphene oxide. The measured electrical conductivity of individual VUV-reduced GO (VUV-rGO) sheets by using conductive atomic force microscopy (CAFM) reached 0.20 S·m{sup −1} after 64 min irradiation, which was clearly enhanced compared with the pristine GO. According to the X-ray photoelectron spectroscopy results, the recovered conductivity of VUV-rGO could be ascribed to the partial elimination of oxygen-containing functional groups and the rapid reconstruction of the C=C bonds. Heterogeneously distributed low- and high-conductivity domains (with a diameter of tens of nanometer to ca. 500 nm) were found from current mapping of the VUV-rGO sheet. By applying photomask lithography, rGO regions were drawn into single GO sheet and were researched by CAFM. The in-plane lateral conductivity of rGO regions increased obviously compared with pristine GO regions.

  9. The efficacy of post porosity plasma protection against vacuum-ultraviolet damage in porous low-k materials

    SciTech Connect

    Lionti, K.; Volksen, W.; Darnon, M.; Magbitang, T.; Dubois, G.

    2015-03-21

    As of today, plasma damage remains as one of the main challenges to the reliable integration of porous low-k materials into microelectronic devices at the most aggressive node. One promising strategy to limit damage of porous low-k materials during plasma processing is an approach we refer to as post porosity plasma protection (P4). In this approach, the pores of the low-k material are filled with a sacrificial agent prior to any plasma treatment, greatly minimizing the total damage by limiting the physical interactions between plasma species and the low-k material. Interestingly, the contribution of the individual plasma species to the total plasma damage is not fully understood. In this study, we investigated the specific damaging effect of vacuum-ultraviolet (v-UV) photons on a highly porous, k = 2.0 low-k material and we assessed the P4 protective effect against them. It was found that the impact of the v-UV radiation varied depending upon the v-UV emission lines of the plasma. More importantly, we successfully demonstrated that the P4 process provides excellent protection against v-UV damage.

  10. Desorption Dynamics, Internal Energies and Imaging of Organic Molecules from Surfaces with Laser Desorption and Vacuum Ultraviolet (VUV) Photoionization

    SciTech Connect

    Kostko, Oleg; Takahashi, Lynelle K.; Ahmed, Musahid

    2011-04-05

    There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures, as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer, using laser desorption VUV postionization shows 5 mu m feature details while using a 30 mu m laser spot size and 7 ns duration. Applications of laser desorption postionization to the analysis of cellulose, lignin and humic acids are briefly discussed.

  11. Experimental and theoretical investigations on photoabsorption and photoionization of trimethylphosphate in the vacuum-ultraviolet energy range

    NASA Astrophysics Data System (ADS)

    Homem, M. G. P.; López-Castillo, A.; Barbatti, M.; Rosa, L. F. S.; Iza, P.; Cavasso-Filho, R. L.; Farenzena, L. S.; Lee, M. T.; Iga, I.

    2012-11-01

    In this work, we report a joint experimental-theoretical investigation on interaction of vacuum-ultraviolet radiation with trimethylphosphate (TMP) molecule (C3H9O4P) in gas phase. This species together with tetrahydrofuran (THF) are model compounds of deoxyribose nucleic acids (DNA)/ribose nucleic acids (RNA) backbone. Absolute photoabsorption cross sections (σa) and ionization yields (η) are measured using the double-ion-chamber technique in the 11.0-21.45 eV energy range. Photoionization (σi) and neutral-decay (σn) cross sections in absolute scale are also derived. Moreover, theoretical photoabsorption cross sections are calculated using the time-dependent density functional theory from the excitation threshold up to 16 eV. Good agreement between the present calculated and experimental photoabsorption cross sections in the 11.0-14.5 eV range is encouraging. Also, the present measured data of σa and σi for TMP are about 1.3 and 1.5 times of those of THF, respectively. Thus, the experimental evidences that the majority of strand breaks being located at sugar rings in the irradiated DNA/RNA backbone moiety may be induced by a possible migration of the hole, initially created at phosphate group, to the linked sugar groups. Finally, absolute partial photoionization cross sections are derived from the experimental time-of-flight mass spectra.

  12. Effects of pH on photochemical decomposition of perfluorooctanoic acid in different atmospheres by 185nm vacuum ultraviolet.

    PubMed

    Wang, Yuan; Zhang, Pengyi

    2014-11-01

    Perfluorooctanoic acid (PFOA), a persistent organic pollutant, receives increasing concerns due to its worldwide occurrence and resistance to most conventional treatment processes. The photochemical decomposition by 185nm vacuum ultraviolet (VUV) is one of the efficient methods for PFOA decomposition. The effects of pH on PFOA decomposition in nitrogen atmosphere or oxygen atmosphere were investigated. At its original pH (4.5) of PFOA aqueous solution, PFOA decomposed efficiently both in nitrogen and in oxygen atmosphere. However, when the pH increased to 12.0, PFOA decomposition was greatly inhibited in oxygen atmosphere, while it was greatly accelerated in nitrogen atmosphere with a very short half-life time (9min). Furthermore, fluorine atoms originally contained in PFOA molecules were almost completely transformed into fluoride ions. Two decomposition pathways have been proposed to explain the PFOA decomposition under different conditions. In acidic and neutral solutions, PFOA predominantly decomposes via the direct photolysis in both atmospheres; while in the alkaline solution and in the absence of oxygen, the decomposition of PFOA is mainly induced by hydrated electrons. Copyright © 2014. Published by Elsevier B.V.

  13. Compact optical cell system for vacuum ultraviolet absorption and circular dichroism spectroscopy and its application to aqueous solution sample.

    PubMed

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Kaneko, Fusae; Nakagawa, Kazumichi

    2008-09-01

    We have designed a compact optical cell for studying the absorption and circular dichroism (CD) of a solution sample in the vacuum ultraviolet (VUV) region using a temperature control unit. The cell size was 34 mm in diameter and 14 mm in length. Such compactness was obtained by coating the VUV scintillator onto the outside of the back window. Because this scintillator converts the transmitted VUV light to visible light, the outside of this cell is operated under atmospheric pressure. The temperature of the sample solution was maintained in the range of 5 degrees C to 80 degrees C using a temperature control unit with a Peltier thermoelectric element. Changes in the sample temperature were observed by monitoring the absorption intensity of water. Through the study of VUV-CD spectra of ammonium camphor-10-sulfonate aqueous solutions and the transmitted spectrum of an empty cell, it was concluded that this cell unit has sufficient performance for use in VUV spectroscopy. (c) 2008 Wiley-Liss, Inc.

  14. Evaluation of Thermal Control Coatings and Polymeric Materials Exposed to Ground Simulated Atomic Oxygen and Vacuum Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Kamenetzky, R. R.; Vaughn, J. A.; Finckenor, M. M.; Linton, R. C.

    1995-01-01

    Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5 eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon-impregnated fiberglass cloth. Aluminum anodizations tested were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glassy black paint and Z-93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar, bulk PEEK, and silverized FEP Teflon. Aluminized and nonaluminized Chemfab 250 beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectroreflectometer and like measurements made using an AZ Technology-developed laboratory portable spectroreflectometer.

  15. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    SciTech Connect

    Marneffe, J.-F. de Lukaszewicz, M.; Porter, S. B.; Vajda, F.; Rutigliani, V.; Verdonck, P.; Baklanov, M. R.; Zhang, L.; Heyne, M.; El Otell, Z.; Krishtab, M.; Goodyear, A.; Cooke, M.

    2015-10-07

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition, the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.

  16. Electronic State Spectroscopy of Halothane As Studied by ab Initio Calculations, Vacuum Ultraviolet Synchrotron Radiation, and Electron Scattering Methods.

    PubMed

    da Silva, F Ferreira; Duflot, D; Hoffmann, S V; Jones, N C; Rodrigues, F N; Ferreira-Rodrigues, A M; de Souza, G G B; Mason, N J; Eden, S; Limão-Vieira, P

    2015-08-06

    We present the first set of ab initio calculations (vertical energies and oscillator strengths) of the valence and Rydberg transitions of the anaesthetic compound halothane (CF3CHBrCl). These results are complemented by high-resolution vacuum ultraviolet photoabsorption measurements over the wavelength range 115-310 nm (10.8-4.0 eV). The spectrum reveals several new features that were not previously reported in the literature. Spin-orbit effects have been considered in the calculations for the lowest-lying states, allowing us to explain the broad nature of the 6.1 and 7.5 eV absorption bands assigned to σ*(C-Br) ← nBr and σ*(C-Cl) ← n(Cl) transitions. Novel absolute photoabsorption cross sections from electron scattering data were derived in the 4.0-40.0 eV range. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of halothane in the upper stratosphere (20-50 km).

  17. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light

    NASA Astrophysics Data System (ADS)

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7∘ angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  18. Lithium-fluoride flashover ion source cleaned with a glow discharge and irradiated with vacuum-ultraviolet radiation

    SciTech Connect

    Burns, E.J.T.; Woodworth, J.R.; Bieg, K.W.; Mehlhorn, T.A.; Stygar, W.A.; Sweeney, M.A.

    1988-01-01

    We have studied methods of varying the ion species generated by a lithium-fluoride overcoated anode in a 0.5-MV magnetically insulated ion diode. We found that cleaning the anode surface with a 13.6-MHz rf glow discharge or illuminating the anode with a pulsed soft x-ray, vacuum-ultraviolet (XUV) radiation source just before the accelerator pulse significantly altered the ion species of the ion beam produced by the diode. The glow-discharge plasma removed adsorbates (carbon, hydrogen, and oxygen) from the surface of the LiF flashover source. The ions seen were lithium and hydrogen. Unfortunately, the diode impedance with a lithium-fluoride anode was high and the ion efficiency was low; however, XUV irradiation of the surface dramatically lowered the impedance by desorbing neutrals from the ion source via photon-stimulated desorption. Current densities of ten times the Child--Langmuir space-charge limit were achieved under XUV irradiation. In particular, ion currents increased by over a factor of 3 when 12 mJ/cm/sup 2/ of XUV radiation was used. However, with XUV irradiation the largest fraction of ions were fluorine, oxygen, carbon, and hydrogen, not lithium.

  19. Effects of vacuum-ultraviolet irradiation on copper penetration into low-k dielectrics under bias-temperature stress

    SciTech Connect

    Guo, X.; Zheng, H.; Xue, P.; Shohet, J. L.; King, S. W.; Nishi, Y.

    2015-01-05

    The effects of vacuum-ultraviolet (VUV) irradiation on copper penetration into non-porous low-k dielectrics under bias-temperature stress (BTS) were investigated. By employing x-ray photoelectron spectroscopy depth-profile measurements on both as-deposited and VUV-irradiated SiCOH/Cu stacks, it was found that under the same BTS conditions, the diffusion depth of Cu into the VUV-irradiated SiCOH is higher than that of as-deposited SiCOH. On the other hand, under the same temperature-annealing stress (TS) without electric bias, the Cu distribution profiles in the VUV-irradiated SiCOH were same with that for the as-deposited SiCOH. The experiments suggest that in as-deposited SiCOH, the diffused Cu exists primarily in the atomic state, while in VUV-irradiated SiCOH, the diffused Cu is oxidized by the hydroxyl ions (OH{sup −}) generated from VUV irradiation and exists in the ionic state. The mechanisms for metal diffusion and ion injection in VUV irradiated low-k dielectrics are discussed.

  20. Measurements of Schottky barrier at the low-k SiOC:H/Cu interface using vacuum ultraviolet photoemission spectroscopy

    SciTech Connect

    Guo, X.; Pei, D.; Zheng, H.; Shohet, J. L.; King, S. W.; Lin, Y.-H.; Fung, H.-S.; Chen, C.-C.; Nishi, Y.

    2015-12-07

    The band alignment between copper interconnects and their low-k interlayer dielectrics is critical to understanding the fundamental mechanisms involved in electrical leakage in low-k/Cu interconnects. In this work, vacuum-ultraviolet (VUV) photoemission spectroscopy is utilized to determine the potential of the Schottky barrier present at low-k a-SiOC:H/Cu interfaces. By examining the photoemission spectra before and after VUV exposure of a low-k a-SiOC:H (k = 3.3) thin film fabricated by plasma-enhanced chemical-vapor deposition on a polished Cu substrate, it was found that photons with energies of 4.9 eV or greater can deplete accumulated charge in a-SiOC:H films, while VUV photons with energies of 4.7 eV or less, did not have this effect. These critical values were identified to relate the electric potential of the interface barrier between the a-SiOC:H and the Cu layers. Using this method, the Schottky barrier at the low-k a-SiOC:H (k = 3.3)/Cu interface was determined to be 4.8 ± 0.1 eV.

  1. Highly coherent vacuum ultraviolet radiation at the 15th harmonic with echo-enabled harmonic generation technique

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Dunning, M.; Hast, C.; Raubenheimer, T. O.; Weathersby, S.; Xiang, D.

    2014-07-01

    X-ray free-electron lasers are enabling access to new science by producing ultrafast and intense x rays that give researchers unparalleled power and precision in examining the fundamental nature of matter. In the quest for fully coherent x rays, the echo-enabled harmonic generation technique is one of the most promising methods. In this technique, coherent radiation at the high harmonic frequencies of two seed lasers is generated from the recoherence of electron beam phase space memory. Here we report on the generation of highly coherent and stable vacuum ultraviolet radiation at the 15th harmonic of an infrared seed laser with this technique. The experiment demonstrates two distinct advantages that are intrinsic to the highly nonlinear phase space gymnastics of echo-enabled harmonic generation in a new regime, i.e., high frequency up-conversion efficiency and insensitivity to electron beam phase space imperfections. Our results allow comparison and confirmation of predictive models and scaling laws, and mark a significant step towards fully coherent x-ray free-electron lasers that will open new scientific research.

  2. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-11-01

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature Te estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300-1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time Te-dependent signal within a characteristic divertor detachment equilibration time of ˜10-15 ms is expected.

  3. Development of a high-speed vacuum ultraviolet (VUV) imaging system for the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Zhou, Fan; Ming, Tingfeng; Wang, Yumin; Wang, Zhijun; Long, Feifei; Zhuang, Qing; Li, Guoqiang; Liang, Yunfeng; Gao, Xiang

    2017-07-01

    A high-speed vacuum ultraviolet (VUV) imaging system for edge plasma studies is being developed on the Experimental Advanced Superconducting Tokamak (EAST). Its key optics is composed of an inverse type of Schwarzschild telescope made of a set of Mo/Si multilayer mirrors, a micro-channel plate (MCP) equipped with a P47 phosphor screen and a high-speed camera with CMOS sensors. In order to remove the contribution from low-energy photons, a Zr filter is installed in front of the MCP detector. With this optics, VUV photons with a wavelength of 13.5 nm, which mainly come from the line emission from intrinsic carbon (C vi: n = 4-2 transition) or the Ly-α line emission from injected Li iii on the EAST, can be selectively measured two-dimensionally with both high temporal and spatial resolutions. At present, this system is installed to view the plasma from the low field side in a horizontal port in the EAST. It has been operated routinely during the 2016 EAST experiment campaign, and the first result is shown in this work. To roughly evaluate the system performance, synthetic images are created. And it indicates that this system mainly measures the edge localized emissions by comparing the synthetic images and experimental data.

  4. Conformation of membrane-bound proteins revealed by vacuum-ultraviolet circular-dichroism and linear-dichroism spectroscopy.

    PubMed

    Matsuo, Koichi; Maki, Yasuyuki; Namatame, Hirofumi; Taniguchi, Masaki; Gekko, Kunihiko

    2016-03-01

    Knowledge of the conformations of a water-soluble protein bound to a membrane is important for understanding the membrane-interaction mechanisms and the membrane-mediated functions of the protein. In this study we applied vacuum-ultraviolet circular-dichroism (VUVCD) and linear-dichroism (LD) spectroscopy to analyze the conformations of α-lactalbumin (LA), thioredoxin (Trx), and β-lactoglobulin (LG) bound to phosphatidylglycerol liposomes. The VUVCD analysis coupled with a neural-network analysis showed that these three proteins have characteristic helix-rich conformations involving several helical segments, of which two amphiphilic or hydrophobic segments take part in interactions with the liposome. The LD analysis predicted the average orientations of these helix segments on the liposome: two amphiphilic helices parallel to the liposome surface for LA, two hydrophobic helices perpendicular to the liposome surface for Trx, and a hydrophobic helix perpendicular to and an amphiphilic helix parallel to the liposome surface for LG. This sequence-level information about the secondary structures and orientations was used to formulate interaction models of the three proteins at the membrane surface. This study demonstrates the validity of a combination of VUVCD and LD spectroscopy in conformational analyses of membrane-binding proteins, which are difficult targets for X-ray crystallography and nuclear magnetic resonance spectroscopy. © 2016 Wiley Periodicals, Inc.

  5. REAL-TIME OPTICAL SPECTROSCOPY OF VACUUM ULTRAVIOLET IRRADIATED PYRENE:H{sub 2}O INTERSTELLAR ICE

    SciTech Connect

    Bouwman, J.; Paardekooper, D. M.; Cuppen, H. M.; Linnartz, H.; Allamandola, L. J.

    2009-07-20

    This paper describes a near-UV/VIS study of a pyrene:H{sub 2}O interstellar ice analogue at 10 K using optical absorption spectroscopy. A new experimental approach makes it possible to irradiate the sample with vacuum ultraviolet (VUV) light (7-10.5 eV) while simultaneously recording spectra in the 240-1000 nm range with subsecond time resolution. Both spectroscopic and dynamic information on VUV processed ices are obtained in this way. This provides a powerful tool to follow, in situ and in real time, the photophysical and photochemical processes induced by VUV irradiation of a polycyclic aromatic hydrocarbon containing inter- and circumstellar ice analogue. Results on the VUV photolysis of a prototype sample-strongly diluted pyrene in H{sub 2}O ice-are presented. In addition to the pyrene cation (Py{sup +}), other products-hydroxypyrene (PyOH), possibly hydroxypyrene cation (PyOH{sup +}), and pyrene/pyrenolate anion (Py{sup -}/PyO{sup -})-are observed. It is found that the charge remains localized in the ice, also after the VUV irradiation is stopped. The astrochemical implications and observational constraints are discussed.

  6. Rotationally Resolved Vacuum Ultraviolet Laser Spectra of the 37Cl 21 1Σ +u← X1Σ +gTransition

    NASA Astrophysics Data System (ADS)

    Wang, P.; Okuda, I. V.; Dimov, S. S.; Lipson, R. H.

    1998-08-01

    Rotationally and isotopically resolved single-photon excitation spectra of jet-cooled Cl2in the wavelength region between 133 and 138 nm were recorded using a tunable vacuum ultraviolet "laser" generated by two-photon resonantly enhanced four-wave difference mixing in Kr gas. The dominant transition (11Σ+u←X1Σ+g) is well known theoretically and experimentally to involve a double-well excited state potential energy curve formed by a strong homogeneous Rydberg-state/ion-pair state avoided crossing. In this work, single isotopomer spectra were obtained by dispersing and detecting ions produced by (1 + 1‧) resonance-enhanced multiphoton ionization in a time-of-flight mass spectrometer. In this way, rotational constants were deduced for the first time for many v‧ levels of the least abundant molecular isotope,37Cl2, which are both localized in the Rydberg well, and delocalized in the ion-pair portion of the 1-state potential energy curve. Our experimentally derived band origins andB‧vvalues test the practical validity of an analytical 11Σ+upotential energy function which is a modified version of the one first proposed by J. Wörmer, T. Möller, J. Stapelfeldt, G. Zimmerer, D. Haaks, S. Kampf, J. Le Calvé, and M. C. Castex (1988. Z. Phys. D,7,383-395).

  7. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    SciTech Connect

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-11-15

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T{sub e} estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T{sub e}-dependent signal within a characteristic divertor detachment equilibration time of ∼10–15 ms is expected.

  8. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE PAGES

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-08-04

    Here, a radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature Te estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Modelmore » 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time Te-dependent signal within a characteristic divertor detachment equilibration time of ~10–15 ms is expected.« less

  9. Theoretical interpretation of the vacuum ultraviolet reflectance of liquid helium and of the absorption spectra of helium microbubbles in aluminum

    NASA Astrophysics Data System (ADS)

    Lucas, A. A.; Vigneron, J. P.; Donnelly, S. E.; Rife, J. C.

    1983-09-01

    The position and width of the helium resonance line 11S0-->21P1 are calculated for a high-density helium fluid. The theory aims at understanding the reflectivity data of Surko et al. for the low-temperature liquid-vapor interface and the absorption data of Rife et al. for room-temperature, high-pressure helium bubbles in aluminum. The theoretical ingredients of the model are (i) the long-range dipole interaction of an excited 2P atom with the rest of the fluid and with the metal substrate; (ii) the short-range Pauli pseudorepulsion arising from orthogonalization of the 2p-electron wave function with the 1s ground-state orbital of neighboring atoms; (iii) a statistical treatment of the high-density fluid based either on the experimentally measured radial pair distribution function of low-T liquid He, or on the Percus-Yevick distribution function of hard spheres and the theoretical equation of state of Young et al. for the He fluid in the bubbles; (iv) the standard static line-broadening theory to calculate the effect of Pauli repulsion on the line shapes. The theory provides a reasonably accurate understanding of the observed spectra in both the liquid and high-density gas, and can serve as a sound basis for interpretation of vacuum ultraviolet spectra in other gas-metal combinations.

  10. System for time resolved spectral studies of pulsed atmospheric discharges in the visible to vacuum ultraviolet range.

    PubMed

    Laity, G; Neuber, A; Rogers, G; Frank, K

    2010-08-01

    Vacuum ultraviolet (VUV) emission is believed to play a major role in the development of plasma streamers in pulsed atmospheric discharges, but detection of VUV light is difficult in pulsed experiments at atmospheric pressures. Since VUV light is absorbed in most standard optical materials as well, careful attention must be given to the selection of the lens and mirror optics used in these studies. Of highest interest is the VUV emission during the initial stage of pulsed atmospheric discharges, which has a typical duration in the nanosecond regime. An experiment was designed to study this fast initial stage of VUV emission coupled with fast optical imaging of streamer propagation, both with temporal resolution on the order of nanoseconds. A repetitive solid-state high voltage pulser was constructed which produces triggered flashover discharges with low jitter and consistent pulse amplitude. VUV emission is captured utilizing both photomultiplier and intensified charge-coupled device detectors during the fast stage of streamer propagation. These results are discussed in context with the streamer formation photographed in the visible wavelength regime with 3 ns exposure time.

  11. System for time resolved spectral studies of pulsed atmospheric discharges in the visible to vacuum ultraviolet range

    SciTech Connect

    Laity, G.; Neuber, A.; Rogers, G.; Frank, K.

    2010-08-15

    Vacuum ultraviolet (VUV) emission is believed to play a major role in the development of plasma streamers in pulsed atmospheric discharges, but detection of VUV light is difficult in pulsed experiments at atmospheric pressures. Since VUV light is absorbed in most standard optical materials as well, careful attention must be given to the selection of the lens and mirror optics used in these studies. Of highest interest is the VUV emission during the initial stage of pulsed atmospheric discharges, which has a typical duration in the nanosecond regime. An experiment was designed to study this fast initial stage of VUV emission coupled with fast optical imaging of streamer propagation, both with temporal resolution on the order of nanoseconds. A repetitive solid-state high voltage pulser was constructed which produces triggered flashover discharges with low jitter and consistent pulse amplitude. VUV emission is captured utilizing both photomultiplier and intensified charge-coupled device detectors during the fast stage of streamer propagation. These results are discussed in context with the streamer formation photographed in the visible wavelength regime with 3 ns exposure time.

  12. Effects of vacuum ultraviolet irradiation on trapped charges and leakage currents of low-k organosilicate dielectrics

    SciTech Connect

    Zheng, H.; Guo, X.; Pei, D.; Shohet, J. L.; Ryan, E. T.; Nishi, Y.

    2015-05-11

    Vacuum ultraviolet (VUV) photoemission spectroscopy is utilized to investigate the distribution of trapped charges within the bandgap of low dielectric constant (low-k) organosilicate (SiCOH) materials. It was found that trapped charges are continuously distributed within the bandgap of porous SiCOH and the center of the trapped states is 1.3 eV above the valence band of the tested sample. By comparing photoemission spectroscopic results before and after VUV exposure, VUV irradiation with photon energies between 7.6 and 8.9 eV was found to deplete trapped charge while UV exposure with photon energies less than 6.0 eV induces more trapped charges in tested samples. Current-Voltage (IV) characteristics results show that the reliability of dielectrics is improved after VUV irradiation with photon energies between 7.6 and 8.9 eV, while UV exposure results in an increased level of leakage current and a decreased breakdown voltage, both of which are harmful to the reliability of the dielectric. This work shows that VUV irradiation holds the potential to substitute for UV curing in microelectronic processing to improve the reliability of low-k dielectrics by mitigating the leakage currents and trapped charges induced by UV irradiation.

  13. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    SciTech Connect

    Sorenson, Danny S.; Pazuchanics, Peter; Johnson, Randall P.; Malone, R. M.; Kaufman, M. I.; Tibbitts, A.; Tunnell, T.; Marks, D.; Capelle, G. A.; Grover, M.; Marshall, B.; Stevens, G. D.; Turley, W. D.; LaLone, B.

    2014-06-25

    An Ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/μsec. This report will discuss the development of the diagnostic including the high-powered laser system and high-resolution optical relay system. In addition, the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles will also be described. Finally, results from six high-explosive (HE), shock-driven Sn ejecta experiments will be presented. Particle size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double pulsed experiment will be described.

  14. Amplification of femtosecond vacuum ultraviolet laser pulses at 126 nm in an optical-field-induced ionized argon plasma

    NASA Astrophysics Data System (ADS)

    Kubodera, Shoichi; Kaku, Masanori; Katto, Masahito; Miyazaki, Kenzo

    2012-10-01

    Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have been developing the argon excimer laser at 126 nm by using an optical-field-induced ionized (OFI) argon plasma. We have observed the gain of 0.86 /cm at 126 nm in the OFI Ar plasma, which was produced inside a hollow fiber with a diameter of 250 microns and a length of 5 cm. In this paper, we have used the OFI plasma gain medium as an amplifier of the 126 nm radiation. A femtosecond 126 nm pulse was produced by the seventh-order nonlinear wavelength conversion of a femtosecond Ti:sapphire laser at 882 nm. The femtosecond wavelength-converted coherent VUV beam was then injected inside the OFI plasma that was produced by the same Ti:sapphire laser, resulting in a 2.4-fold increase of the VUV intensity with one-pass amplification. The gain-length product of 0.87 with the one-pass amplification was evaluated, which was consistent with the value we have observed in the previous measurements. The further extension of the OFI plasma by using a hollow fiber would be plausible to increase the gain-length product and the VUV amplified intensity.

  15. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  16. Photocatalytic pretreatment of oily wastewater from the restaurant by a vacuum ultraviolet/TiO2 system.

    PubMed

    Kang, Jian-xiong; Lu, Lu; Zhan, Wei; Li, Bo; Li, Dao-sheng; Ren, Yong-zheng; Liu, Dong-qi

    2011-02-15

    The present study aims at investigating the performance of a vacuum ultraviolet (VUV, 185 nm) and TiO(2) oxidation system for the pretreatment of oily wastewater from restaurant. The influence of irradiation time, pH, dissolved oxygen (DO), the dosage of TiO(2) and the initial chemical oxygen demand (COD) concentration on COD removal efficiency was ascertained and optimum process conditions for stable and effective operation were determined. Under the optimum conditions of irradiation 10 min, initial COD 3981 mg/L, TiO(2) 150 mg/L, pH 7.0 and flow rate of air 40 L/h, the process of VUV and TiO(2)/VUV achieved removal efficiencies of COD, BOD(5) and oil as 50±3%, 37±2%, 86±3%, and 63±3%, 43±2%, 70±3%, respectively. The biodegradability factor f(B) of the wastewater was determined as 1.56 which indicated that the VUV/TiO(2) process improved the biodegradability of the oily wastewater significantly. Results clearly indicate that VUV/TiO(2) photolysis tends to destruct parts of COD, BOD(5), and ammonia, as well as enhances the biodegradability of the oily wastewater simultaneously. Thus, this technique could be used as a pretreatment step for conventional biological treatment of oily wastewater. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light

    SciTech Connect

    Yaji, Koichiro Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Komori, Fumio; Shin, Shik; Watanabe, Shuntaro; Chen, Chuangtian

    2016-05-15

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7{sup ∘} angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  18. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    NASA Astrophysics Data System (ADS)

    de Marneffe, J.-F.; Zhang, L.; Heyne, M.; Lukaszewicz, M.; Porter, S. B.; Vajda, F.; Rutigliani, V.; el Otell, Z.; Krishtab, M.; Goodyear, A.; Cooke, M.; Verdonck, P.; Baklanov, M. R.

    2015-10-01

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition, the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.

  19. Desorption dynamics, internal energies, and imaging of organic molecules from surfaces with laser desorption and vacuum ultraviolet (VUV) photoionization.

    PubMed

    Kostko, Oleg; Takahashi, Lynelle K; Ahmed, Musahid

    2011-11-04

    There is enormous interest in visualizing the chemical composition of organic material that comprises our world. A convenient method to obtain molecular information with high spatial resolution is imaging mass spectrometry. However, the internal energy deposited within molecules upon transfer to the gas phase from a surface can lead to increased fragmentation and to complications in analysis of mass spectra. Here it is shown that in laser desorption with postionization by tunable vacuum ultraviolet (VUV) radiation, the internal energy gained during laser desorption leads to minimal fragmentation of DNA bases. The internal temperature of laser-desorbed triacontane molecules approaches 670 K, whereas the internal temperature of thymine is 800 K. A synchrotron-based VUV postionization technique for determining translational temperatures reveals that biomolecules have translational temperatures in the range of 216-346 K. The observed low translational temperatures as well as their decrease with increased desorption laser power is explained by collisional cooling. An example of imaging mass spectrometry on an organic polymer by using laser-desorption VUV postionization shows 5 μm feature details while using a 30 μm laser spot size and 7 ns pulse duration. Applications of laser-desorption postionization to the analysis of cellulose, lignin, and humic acids are briefly discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Flow-Tube Investigations of Hypergolic Reactions of a Dicyanamide Ionic Liquid Via Tunable Vacuum Ultraviolet Aerosol Mass Spectrometry.

    PubMed

    Chambreau, Steven D; Koh, Christine J; Popolan-Vaida, Denisia M; Gallegos, Christopher J; Hooper, Justin B; Bedrov, Dmitry; Vaghjiani, Ghanshyam L; Leone, Stephen R

    2016-10-07

    The unusually high heats of vaporization of room-temperature ionic liquids (RTILs) complicate the utilization of thermal evaporation to study ionic liquid reactivity. Although effusion of RTILs into a reaction flow-tube or mass spectrometer is possible, competition between vaporization and thermal decomposition of the RTIL can greatly increase the complexity of the observed reaction products. In order to investigate the reaction kinetics of a hypergolic RTIL, 1-butyl-3-methylimidazolium dicyanamide (BMIM(+)DCA(-)) was aerosolized and reacted with gaseous nitric acid, and the products were monitored via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Reaction product formation at m/z 42, 43, 44, 67, 85, 126, and higher masses was observed as a function of HNO3 exposure. The identities of the product species were assigned to the masses on the basis of their ionization energies. The observed exposure profile of the m/z 67 signal suggests that the excess gaseous HNO3 initiates rapid reactions near the surface of the RTIL aerosol. Nonreactive molecular dynamics simulations support this observation, suggesting that diffusion within the particle may be a limiting step. The mechanism is consistent with previous reports that nitric acid forms protonated dicyanamide species in the first step of the reaction.

  1. STUDENT AWARD FINALIST: Study of Self-Absorbed Vacuum Ultraviolet Radiation during Pulsed Atmospheric Breakdown in Air

    NASA Astrophysics Data System (ADS)

    Laity, George; Fierro, Andrew; Hatfield, Lynn; Neuber, Andreas

    2011-10-01

    This paper describes recent experiments to investigate the role of self-produced vacuum ultraviolet (VUV) radiation in the physics of pulsed atmospheric breakdown. A unique apparatus was constructed which enables the detailed exploration of VUV light in the range 115-135 nm, which is emitted from breakdown between two point-point electrodes in an air environment at atmospheric pressure. Time-resolved diagnostics include VUV sensitive photomultipliers, intensified CCD imaging, optically isolated high voltage probes, and fast rise-time Rogowski current monitors. Temporally resolved spectroscopy from air breakdowns revealed VUV emission is released during the initial streamer phase before voltage collapse, with the majority of the emission lines identified from various atmospheric gases or surface impurities. Imaging of VUV radiation was performed which conserved the spatial emission profile, and distinct differences between nitrogen and oxygen VUV emission during onset of breakdown have been observed. Specifically, the self-absorption of HI, OI, and NI lines is addressed which elucidates the role of radiation transport during the photon-dominated streamer breakdown process. Supported by AFOSR, NASA / TSGC, DEPS, and IEEE DEIS.

  2. PHOTOLYSIS OF ETHYNE IN SOLID NEON AND SYNTHESIS OF LONG-CHAIN CARBON CLUSTERS WITH VACUUM-ULTRAVIOLET LIGHT

    SciTech Connect

    Wu, Yu-Jong; Lin, Meng-Yeh; Chou, Sheng-Lung; Chen, Hui-Fen; Lu, Hsiao-Chi; Chen, Hong-Kai; Cheng, Bing-Ming

    2010-09-20

    The absorption spectrum of ethyne, C{sub 2}H{sub 2}, in solid Ar was measured in the wavelength region 107-220 nm with light from a synchrotron. Based on that absorption, irradiation of samples of ethyne dispersed in neon with vacuum-ultraviolet (VUV) radiation yielded various products that were identified through their infrared absorption spectra including C{sub n} (n = 3-12), C{sub 2}H, C{sub 2}H{sub 3}, C{sub 4}H, C{sub 4}H{sub 2}, C{sub 8}H{sup -}, and C{sub 8}H{sub 2}. The efficiency of photolysis of ethyne and the nature of photoproducts depend on the selected wavelength of VUV light. Information about the photodissociation of C{sub 2}H{sub 2} with various photon energies and the formation and identification of large carbon clusters and hydrides at low temperature might be useful in photochemical models to simulate the composition of the atmosphere of Titan and as a source of aerosols.

  3. Experimental and theoretical investigations on photoabsorption and photoionization of trimethylphosphate in the vacuum-ultraviolet energy range.

    PubMed

    Homem, M G P; López-Castillo, A; Barbatti, M; Rosa, L F S; Iza, P; Cavasso-Filho, R L; Farenzena, L S; Lee, M T; Iga, I

    2012-11-14

    In this work, we report a joint experimental-theoretical investigation on interaction of vacuum-ultraviolet radiation with trimethylphosphate (TMP) molecule (C(3)H(9)O(4)P) in gas phase. This species together with tetrahydrofuran (THF) are model compounds of deoxyribose nucleic acids (DNA)/ribose nucleic acids (RNA) backbone. Absolute photoabsorption cross sections (σ(a)) and ionization yields (η) are measured using the double-ion-chamber technique in the 11.0-21.45 eV energy range. Photoionization (σ(i)) and neutral-decay (σ(n)) cross sections in absolute scale are also derived. Moreover, theoretical photoabsorption cross sections are calculated using the time-dependent density functional theory from the excitation threshold up to 16 eV. Good agreement between the present calculated and experimental photoabsorption cross sections in the 11.0-14.5 eV range is encouraging. Also, the present measured data of σ(a) and σ(i) for TMP are about 1.3 and 1.5 times of those of THF, respectively. Thus, the experimental evidences that the majority of strand breaks being located at sugar rings in the irradiated DNA/RNA backbone moiety may be induced by a possible migration of the hole, initially created at phosphate group, to the linked sugar groups. Finally, absolute partial photoionization cross sections are derived from the experimental time-of-flight mass spectra.

  4. Temperature-dependent evaluation of Nd:LiCAF optical properties as potential vacuum ultraviolet laser material

    NASA Astrophysics Data System (ADS)

    Minami, Yuki; Arita, Ren; Cadatal-Raduban, Marilou; Pham, Minh Hong; Empizo, Melvin John Fernandez; Luong, Mui Viet; Hori, Tatsuhiro; Takabatake, Masahiro; Fukuda, Kazuhito; Mori, Kazuyuki; Yamanoi, Kohei; Shimizu, Toshihiko; Sarukura, Nobuhiko; Fukuda, Kentaro; Kawaguchi, Noriaki; Yokota, Yuui; Yoshikawa, Akira

    2016-08-01

    We investigate the temperature-dependent optical properties of Nd3+-doped LiCaAlF6 (Nd:LiCAF) in the vacuum ultraviolet (VUV) region. The 172-nm absorption edge does not seem to experience any significant blue shift as temperature is decreased from room temperature down to 30 K. This is confirmed by excitation spectra for the same temperature range. Several energy levels in the excited state configuration are observed. Based on these energy levels, the dominant emission peak at 177 nm is assigned to the allowed dipole transition from the 4f25d configuration of Nd3+ and the 4I11/2 level of the 4f3 ground state configuration. The position of the dominant 177-nm emission peak appears to be fixed across the temperature range considered. Our results suggest that the spectral overlap between the excitation and emission spectra should not increase as temperature is raised, possibly making Nd:LiCAF a potential VUV laser gain medium operating at room temperature.

  5. Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry

    SciTech Connect

    Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Douglas R.; Goldstein, Allen H.

    2012-01-30

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography/mass spectrometry (GC/MS) techniques. In this study, we use vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally “unresolved complex mixture” by separating components by GC retention time, tR, and mass-to-charge ratio, m/z, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved on the basis of tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. Lastly, the classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  6. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer.

    PubMed

    Soukhanovskii, V A; Kaita, R; Stratton, B

    2016-11-01

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature Te estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300-1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time Te-dependent signal within a characteristic divertor detachment equilibration time of ∼10-15 ms is expected.

  7. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    SciTech Connect

    Sorenson, D. S.; Pazuchanics, P.; Johnson, R.; Malone, R. M.; Kaufman, M. I.; Tibbitts, A.; Tunnell, T.; Marks, D.; Capelle, G. A.; Grover, M.; Marshall, B.; Stevens, G. D.; Turley, W. D.; LaLone, B.

    2014-06-01

    An ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/μsec. This report will discuss the development of the diagnostic, including the high-powered laser system and high-resolution optical relay system. In addition, we will also describe the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles. Finally, we will present results from six high-explosive (HE), shock-driven Sn-ejecta experiments. Particle-size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double-pulsed experiment will be described.

  8. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    SciTech Connect

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-08-04

    Here, a radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature Te estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time Te-dependent signal within a characteristic divertor detachment equilibration time of ~10–15 ms is expected.

  9. Dynamic photolytical actinometry of the vacuum-ultraviolet radiation produced by multichannel surface discharges of submicrosecond duration

    SciTech Connect

    Tcheremiskine, V. I.; Uteza, O. P.; Sentis, M. L.; Mikheev, L. D.

    2007-06-15

    Absolute measurements of the vacuum-ultraviolet (VUV) radiation power produced by a planar broadband optical source of submicrosecond light pulse duration are carried out in the transient regime of formation of a photodissociation (bleaching) wave in a photodecomposing absorptive medium. The source is based on a multichannel surface discharge initiated in Ar/N{sub 2} gas mixtures on the area of {approx}0.1 m{sup 2}. The energetic characteristics of the produced VUV radiation are determined on the basis of spatially and temporally resolved observations of the pulsed photolysis of XeF{sub 2} vapors. It is shown that the photon flux intensity produced by the source within the spectral range of 120-200 nm reaches 1.1x10{sup 23} photons/cm{sup 2} s corresponding to the effective brightness temperature of discharge plasma of 20 kK and to the intrinsic efficiency of the discharge VUV emission of 3.2%. Numerical simulations of the photolysis process show a rather weak sensitivity of the results to the fraction of discharge radiation emitted into the line spectrum, as well as to the angular distribution of emitted radiation. The spectral band of measurements can be selected according to the choice of parent photodecomposing particles.

  10. Vacuum Ultraviolet Spectroscopy of the Lowest-Lying Electronic State in Sub-Critical and Supercritical Water

    NASA Astrophysics Data System (ADS)

    Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; Chipman, Dan

    2016-06-01

    We report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of high-temperature and supercritical water, where spectra were measured from room temperature up to the critical temperature, and as a function of density above the critical temperature. Spectra are seen to redshift with increasing temperature, demonstrating gradual breakdown of the hydrogen bond network. Above the critical temperature, tuning the density gives direct insight into the extent of hydrogen bonding in the supercritical regime. The known gas-phase monomer spectrum can be duplicated in the low-density limit, with negligible contribution from hydrogen bonding. With increasing density, the spectrum blue shifts as small water clusters form, increasing the number of hydrogen bonds lowering the ground-state energy. The presence of vibrational structure inherent to the lowest-density gas-phase limit spectrum gradually diminishes with increasing density, giving a reasonable measure of the extent of water monomers having unperturbed electronic structure as a function of density.

  11. Carrier Conduction and Light Emission by Modification of Poly(alkylfluorene) Interface under Vacuum Ultraviolet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Ohmori, Yutaka; Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke

    2013-03-01

    Organic field effect transistors (OFETs) have been extensively studied for flexible electronics. The characteristics of poly(9,9-dioctylfluorenyl-2,7-dyl) (F8) modified by thermal or light are strongly dependent on the carrier transport and optical characteristics. We investigate all solution-processed OFETs with Ag nano-ink as gate electrodes patterned by Vacuum Ultraviolet (VUV) (172 nm). Bi-layer gate insulators of amorphous fluoro-polymer CYTOP (Asahi Glass Corp.) and poly(methylmethacrylate) (PMMA) were used. Top-gate-type OFETs with ITO source/drain electrode utilizing F8 or poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as an active layer were fabricated, and investigated the carrier conduction and emission characteristic. Without VUV irradiation, both OFETs showed the ambipolar and light-emitting characteristics. On the other hand, F8 devices with VUV exhibited only p-type conduction. The quenching centers were generated in F8 layer by VUV irradiation, which are related to the electron trap sites at the interface. OFETs with F8BT showed both p- and n-type conduction even after VUV. F8BT suffers less damage by VUV and maintain light emission. Light emitting transistors were realized utilizing F8BT patterned by VUV irradiation. This research was partially supported financially by MEXT. The authors thank Harima Chemicals Inc. for providing Ag nano-ink.

  12. Photodissociation of CS2 in the vacuum ultraviolet - Determination of bond dissociation energy from the lowest vibrational level of the ground state CS2.

    NASA Technical Reports Server (NTRS)

    Okabe, H.

    1972-01-01

    Photolysis in the vacuum ultraviolet results almost exclusively in the production of S(super-3)P atoms, which is in apparent violation of spin conservation. The threshold energy of incident photons required to produce fluorescence was used to calculate the bond dissociation energy (from the lowest vibrational level of the ground state), and the result agrees with the value previously derived from the photoionization of CS2. The fluorescence excitation spectrum shows peaks corresponding to Rydberg series I and II, indicating that the observed photodissociation of CS2 in the vacuum ultraviolet is mainly the result of predissociation from Rydberg states. The absorption coefficient of CS2 was measured in the region of 1200 to 1400 A.

  13. Absolute intensities of the vacuum ultraviolet spectra in oxide etch plasma processing discharges

    SciTech Connect

    WOODWORTH,JOSEPH R.; RILEY,MERLE E.; AMATUCCI,VINCENT A.; HAMILTON,THOMAS W.; ARAGON,BEN P.

    2000-05-01

    In this paper, the authors report the absolute intensities of ultraviolet light between 4.9 eV and 24 eV ( 250 nm to 50 mn ) striking a silicon wafer in a number of oxide-etch processing discharges. The emphasis is on photons with energies greater than 8.8 eV, which have enough energy to damage SiO{sub 2}. These discharges were in an inductively-driven Gaseous Electronics Conference reference cell which had been modified to more closely resemble commercial etching tools. Comparisons of measurements made through a side port in the cell and through a hole in the wafer indicate that the VUV light in these discharges is strongly trapped. For the pure halocarbon gases examined in these experiments (C{sub 2}F{sub 6}, CHF{sub 3}, C{sub 4}F{sub 8}), the fluxes of VUV photons to the wafer varied from 1 x 10{sup 15} to 3 x 10{sup 15} photons/cm{sup 2} sec or equivalently from 1.5 to 5 mW/cm{sup 2}. These measurements imply that 0.1% to 0.3% of the rf source power to these discharges ends up hitting the wafer as VUV photons for the typical 20 mT, 200 W rf discharges. For typical ashing discharges containing pure oxygen, the VUV intensities are slightly higher--about 8 mW/cm{sup 2} . As argon or hydrogen diluents are added to the fluorocarbon gases, the VUV intensities increase dramatically, with a 10/10/10 mixture of Ar/C{sub 2}F{sub 6}/H{sub 2} yielding VUV fluxes on the wafer 26 mW/cm{sup 2} and pure argon discharges yielding 52 mW/cm{sup 2} . Adding an rf bias to the wafer had only a small effect on the VUV observed through a side-port of the GEC cell.

  14. Thermal decomposition of methyltrichlorosilane, dimethyldichlorosilane and methyldichlorosilane by flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry.

    PubMed

    Lemieux, Jessy M; Zhang, Jingsong

    2014-01-01

    The thermal decompositions of methyltrichlorosilane (MTS) (CH3SiCl3), dimethyldichlorosilane (Si(CH3)2Cl2), and methyldichlorosilane (SiHCH3Cl2) were studied at temperatures from -1000 K to 1500 K on a short timescale of 20 μs to 100 μs using flash pyrolysis vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry. The pyrolysis of MTS proceeds primarily via Si-C bond homolysis to form the SiCl3 and methyl radicals. At elevated temperatures, SiCl2 production from secondary decomposition of SiCl3 becomes more important, and other pyrolysis pathways of MTS, including C-H bond fission and HCl elimination make minor contributions. The pyrolysis of Si(CH3)2Cl2 occurs mainly by the sequential loss of methyl radicals, ultimately forming a significant amount of SiCl2. Si(CH3)2Cl2 also has two minor decomposition channels at higher temperatures, molecular elimination of CH4 to form SiCH2Cl2 and of CH3Cl to form SiCH3Cl. The pyrolysis of SiHCH3Cl2 mainly undergoes sequential CH3 and H loss and/or molecular elimination of CH4 to form SiCl2, while molecular elimination of HCl to form SiCH3Cl also contributes. SiCl2 is produced in significant concentrations in the pyrolysis of all three molecules, suggesting that it is an important intermediate in SiC chemical vapor deposition from chloroorganosilanes.

  15. Roles of plasma-generated vacuum-ultraviolet photons and oxygen radicals in damaging nanoporous low-k films

    SciTech Connect

    Lee, Joe; Graves, David B.

    2013-07-15

    One important class of low-k materials used as interconnect dielectrics employs methyl groups added to nanoporous SiO{sub 2} matrices. These carbon-doped oxide materials are known to be susceptible to damage from plasma species during various stages of plasma processing. Two key active species generated in O{sub 2} plasma are oxygen (O) radicals and vacuum-ultraviolet (VUV) photons. These species are known to cause carbon loss, resulting in damaging increases in dielectric constant throughout the film. However, the mechanisms through which this damage is incurred are poorly understood. By capping the substrate in different ways during plasma exposure, it is possible to expose films to either photons alone or O atoms alone. The authors report measurements of damage induced by VUV photons only, O radicals only, and the combination of O radicals and photons. Through HF stripping, they note that carbon extraction from photons and from radicals yields different outcomes; the profile of carbon concentration within the modified region is different for each case. Damage from photons alone can be modeled and model predictions are in good agreement with measurements. Damage from O atoms alone can only be modeled if it is assumed that the near-surface region has a significantly reduced diffusivity compared to the bulk of the film. Experiment and model agree that both photons alone and O radicals alone damage the material by removing carbon. When radicals and photons are present simultaneously during plasma exposure, however, more C removal appears to be occurring in the model than experimentally observed. Remarkably, if only radicals are exposed to the film after short (10-30 s) plasma exposures, very little additional damage is incurred during this radical-only exposure. The most straightforward interpretation of these results appears to be that photons combine synergistically with radicals in the pores to narrow the pores, thereby reducing film diffusivity in the C

  16. High-resolution threshold photoelectron study of the propargyl radical by the vacuum ultraviolet laser velocity-map imaging method.

    PubMed

    Gao, Hong; Xu, Yuntao; Yang, Lei; Lam, Chow-Shing; Wang, Hailing; Zhou, Jingang; Ng, C Y

    2011-12-14

    By employing the vacuum ultraviolet (VUV) laser velocity-map imaging (VMI) photoelectron scheme to discriminate energetic photoelectrons, we have measured the VUV-VMI-threshold photoelectrons (VUV-VMI-TPE) spectra of propargyl radical [C(3)H(3)(X̃(2)B(1))] near its ionization threshold at photoelectron energy bandwidths of 3 and 7 cm(-1) (full-width at half-maximum, FWHM). The simulation of the VUV-VMI-TPE spectra thus obtained, along with the Stark shift correction, has allowed the determination of a precise value 70 156 ± 4 cm(-1) (8.6982 ± 0.0005 eV) for the ionization energy (IE) of C(3)H(3). In the present VMI-TPE experiment, the Stark shift correction is determined by comparing the VUV-VMI-TPE and VUV laser pulsed field ionization-photoelectron (VUV-PFI-PE) spectra for the origin band of the photoelectron spectrum of the X̃(+)-X̃ transition of chlorobenzene. The fact that the FWHMs for this origin band observed using the VUV-VMI-TPE and VUV-PFI-PE methods are nearly the same indicates that the energy resolutions achieved in the VUV-VMI-TPE and VUV-PFI-PE measurements are comparable. The IE(C(3)H(3)) value obtained based on the VUV-VMI-TPE measurement is consistent with the value determined by the VUV laser PIE spectrum of supersonically cooled C(3)H(3)(X̃(2)B(1)) radicals, which is also reported in this article. © 2011 American Institute of Physics

  17. High-resolution threshold photoelectron study of the propargyl radical by the vacuum ultraviolet laser velocity-map imaging method

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Xu, Yuntao; Yang, Lei; Lam, Chow-Shing; Wang, Hailing; Zhou, Jingang; Ng, C. Y.

    2011-12-01

    By employing the vacuum ultraviolet (VUV) laser velocity-map imaging (VMI) photoelectron scheme to discriminate energetic photoelectrons, we have measured the VUV-VMI-threshold photoelectrons (VUV-VMI-TPE) spectra of propargyl radical [C3H3({tilde X}{}^2B_1)] near its ionization threshold at photoelectron energy bandwidths of 3 and 7 cm-1 (full-width at half-maximum, FWHM). The simulation of the VUV-VMI-TPE spectra thus obtained, along with the Stark shift correction, has allowed the determination of a precise value 70 156 ± 4 cm-1 (8.6982 ± 0.0005 eV) for the ionization energy (IE) of C3H3. In the present VMI-TPE experiment, the Stark shift correction is determined by comparing the VUV-VMI-TPE and VUV laser pulsed field ionization-photoelectron (VUV-PFI-PE) spectra for the origin band of the photoelectron spectrum of the {tilde X}^ + {- tilde X} transition of chlorobenzene. The fact that the FWHMs for this origin band observed using the VUV-VMI-TPE and VUV-PFI-PE methods are nearly the same indicates that the energy resolutions achieved in the VUV-VMI-TPE and VUV-PFI-PE measurements are comparable. The IE(C3H3) value obtained based on the VUV-VMI-TPE measurement is consistent with the value determined by the VUV laser PIE spectrum of supersonically cooled C3H3({tilde X}{}^2B_1) radicals, which is also reported in this article.

  18. Communication: A vibrational study of propargyl cation using the vacuum ultraviolet laser velocity-map imaging photoelectron method

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Lu, Zhou; Yang, Lei; Zhou, Jingang; Ng, C. Y.

    2012-10-01

    By employing the vacuum ultraviolet (VUV) laser velocity-map imaging photoelectron (VUV-VMI-PE) method, we have obtained a vibrationally resolved photoelectron spectrum of gaseous propargyl radical [C3H3(X2B1)] in the energy range of 0-4600 cm-1 above its ionization energy. The cold C3H3 radicals were produced from a supersonically cooled radical beam source based on 193 nm ArF photodissociation of C3H3Cl. The VUV-VMI-PE spectrum of C3H3 thus obtained reveals a Franck-Condon factor (FCF) pattern with a highly dominant origin band along with weak vibrational progressions associated with excitations of the C-C ν5+(a1) and C≡C ν3+(a1) symmetric stretching modes and the CCH ν7+(b1) out-of-plane bending mode of C3H3+(X1A1). The ν5+(a1) vibrational frequency of 1120 cm-1 determined in the present study is lower than the value deduced from the recent Ar-tagged infrared photodissociation study by 102 cm-1, confirming the highly accurate vibrational frequency predictions obtained by the most recent state-of-the-art ab initio quantum calculations. The observation of the FCF disallowed ν7+(b1) mode is indicative of vibronic interactions. The discrepancy observed between the FCF pattern determined in the present study and that predicted by a recent high-level quantum theoretical investigation can be taken as evidence that the potential energy surfaces used in the latter theoretical study are in need of improvement in order to provide a reliable FCF prediction for the C3H3/C3H3+ photoionization system.

  19. A technique for synergistic atomic oxygen and vacuum ultraviolet radiation durability evaluation of materials for use in LEO

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.

    1996-01-01

    Material erosion data collected during flight experiments such as the Environmental Oxygen Interaction with Materials (EOIM)-3 and the Long Duration Exposure Facility (LDEF) have raised questions as to the sensitivity of material erosion to levels of atomic oxygen exposure and vacuum ultraviolet (VUV) radiation. The erosion sensitivity of some materials such as FEP Teflon used as a thermal control material on satellites in low Earth orbit (LEO), is particularly important but difficult to determine. This is in large part due to the inability to hold all but one exposure parameter constant during a flight experiment. This is also difficult to perform in a ground based facility, because often the variation of the level of atomic oxygen or VUV radiation also results in a change in the level of the other parameter. A facility has been developed which allows each parameter to be changed almost independently and offer broad area exposure. The resulting samples can be made large enough for mechanical testing. The facility uses an electron cyclotron resonance plasma source to provide the atomic oxygen. A series of glass plates is used to focus the atomic oxygen while filtering the VUV radiation from the plasma source. After filtering, atomic oxygen effective flux levels can still be measured which are as high as 7 x 10(exp 15) atoms/cm(exp 2)-sec which is adequate for accelerated testing. VUV radiation levels after filtering can be as low as 0.3 suns. Additional VUV suns can be added with the use of deuterium lamps which allow the VUV level to be changed while keeping the flux of atomic oxygen constant. This paper discusses the facility, and results from exposure of Kapton and FEP at pre-determined atomic oxygen flux and VUV sun levels.

  20. Communication: A vibrational study of propargyl cation using the vacuum ultraviolet laser velocity-map imaging photoelectron method.

    PubMed

    Gao, Hong; Lu, Zhou; Yang, Lei; Zhou, Jingang; Ng, C Y

    2012-10-28

    By employing the vacuum ultraviolet (VUV) laser velocity-map imaging photoelectron (VUV-VMI-PE) method, we have obtained a vibrationally resolved photoelectron spectrum of gaseous propargyl radical [C(3)H(3)(X(2)B(1))] in the energy range of 0-4600 cm(-1) above its ionization energy. The cold C(3)H(3) radicals were produced from a supersonically cooled radical beam source based on 193 nm ArF photodissociation of C(3)H(3)Cl. The VUV-VMI-PE spectrum of C(3)H(3) thus obtained reveals a Franck-Condon factor (FCF) pattern with a highly dominant origin band along with weak vibrational progressions associated with excitations of the C-C ν(5)(+)(a(1)) and C≡C ν(3)(+)(a(1)) symmetric stretching modes and the CCH ν(7)(+)(b(1)) out-of-plane bending mode of C(3)H(3)(+)(X(1)A(1)). The ν(5)(+)(a(1)) vibrational frequency of 1120 cm(-1) determined in the present study is lower than the value deduced from the recent Ar-tagged infrared photodissociation study by 102 cm(-1), confirming the highly accurate vibrational frequency predictions obtained by the most recent state-of-the-art ab initio quantum calculations. The observation of the FCF disallowed ν(7)(+)(b(1)) mode is indicative of vibronic interactions. The discrepancy observed between the FCF pattern determined in the present study and that predicted by a recent high-level quantum theoretical investigation can be taken as evidence that the potential energy surfaces used in the latter theoretical study are in need of improvement in order to provide a reliable FCF prediction for the C(3)H(3)/C(3)H(3)(+) photoionization system.

  1. A vacuum-ultraviolet laser pulsed field ionization-photoelectron study of sulfur monoxide (SO) and its cation (SO+).

    PubMed

    Lam, Chow-Shing; Wang, Hailing; Xu, Yuntao; Lau, Kai-Chung; Ng, C Y

    2011-04-14

    Vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) spectroscopy has been applied to the study of the sulfur monoxide radical (SO) prepared by using a supersonically cooled radical beam source based on the 193 nm excimer laser photodissociation of SO(2). The vibronic VUV-PFI-PE bands for the photoionization transitions SO(+)(X(2)Π(1∕2); v(+) = 0) ← SO(X(3)Σ(-); v = 0); and SO(+)((2)Π(3∕2); v(+) = 0) ← SO(X(3)Σ(-); v = 0) have been recorded. On the basis of the semiempirical simulation of rotational branch contours observed in these PFI-PE bands, we have obtained highly precise ionization energies (IEs) of 83,034.2 ± 1.7 cm(-1) (10.2949 ± 0.0002 eV) and 83,400.4 ± 1.7 cm(-1) (10.3403 ± 0.0002 eV) for the formation of SO(+)(X(2)Π(1∕2); v(+) = 0) and SO(+)((2)Π(3∕2); v(+) = 0), respectively. The present VUV-PFI-PE measurement has enabled the direct determination of the spin-orbit coupling constant (A(0)) for SO(+)(X(2)Π(1∕2,3∕2)) to be 365.36 ± 0.12 cm(-1). We have also performed high-level ab initio quantum chemical calculations at the coupled-cluster level up to full quadruple excitations and complete basis set (CBS) extrapolation. The zero-point vibrational energy correction, the core-valence electronic correction, the spin-orbit coupling, and the high-level correction are included in the calculation. The IE[SO(+)(X(2)Π(1∕2,3∕2))] and A(0) predictions thus obtained are found to be in remarkable agreement with the experimental determinations.

  2. Effects of plasma and vacuum-ultraviolet exposure on the mechanical properties of low-k porous organosilicate glass

    SciTech Connect

    Guo, X.; Shohet, J. L.; Jakes, J. E.; Banna, S.; Nishi, Y.

    2014-07-28

    The effects of plasma exposure and vacuum-ultraviolet (VUV) irradiation on the mechanical properties of low-k porous organosilicate glass (SiCOH) dielectric films were investigated. Nanoindentation measurements were made on SiCOH films before and after exposure to an electron-cyclotron-resonance plasma or a monochromatic synchrotron VUV beam, to determine the changes of film hardness, elastic modulus, and crack threshold due to these exposures. This permits the effects of ion bombardment and photon bombardment to be analyzed separately. The role of energetic ions was examined with a variety of inert plasma-exposure conditions. The role of VUV photons was analyzed as a function of synchrotron photon energy. It was found that both energetic ions and VUV photons with energies larger than the bond energy of the Si-O bond cause a significant increase in film hardness along with a smaller increase in elastic modulus and crack threshold. Differential Fourier transform infrared spectra and x-ray photoemission spectroscopy results show that the energetic ions affect the SiCOH properties mainly through physical bombardment, during which the ions transfer their momentum to the Si-O-Si backbone and transform them into more energetically stable Si-O-Si network structures. This results in the Si-O-Si network structures becoming densified. VUV photons assist reaction that increase the number of bridging O{sub 3}≡Si-O-Si≡O{sub 3} bonds and deplete nonbridging O{sub 3}≡Si-O and C-Si≡O{sub 3} bonds. This increased degree of cross linking in porous organosilicate dielectrics can substantially enhance their hardness and elastic modulus while showing no significant film shrinkage or densification.

  3. Vacuum ultraviolet laser

    DOEpatents

    Berkowitz, Joseph; Ruscic, Branko M.; Greene, John P.

    1986-01-01

    Transitions from the 2p.sup.4 (.sup.1 S.sub.0)3s .sup.2 S.sub.1/2 state of atomic fluorine to all allowed lower states produces laser emission at six new wavelengths: 680.7 .ANG., 682.6 .ANG., 3592.7 .ANG., 3574.1 .ANG., 6089.2 .ANG., and 6046.8 .ANG.. Coherent radiation at these new wavelengths can be generated in an atomic fluorine laser operated as an amplifier or as an oscillator.

  4. Vacuum ultraviolet laser

    DOEpatents

    Berkowitz, J.; Ruscic, B.M.; Greene, J.P.

    1984-07-06

    Transitions from the 2p/sup 4/(/sup 1/S/sub 0/)3s /sup 2/S/sub 1/2/ state of atomic fluorine to all allowed loser states produces laser emission at six new wavelengths: 680.7A, 682.6A, 3592.7A, 3574.1A, 6089.2A, and 6046.8A. Coherent radiation at these new wavelengths can be generated in an atomic fluorine laser operated as an amplifier or as an oscillator.

  5. Impact of Xe partial pressure on the production of excimer vacuum ultraviolet emission for plasma display panels

    SciTech Connect

    Zhu Di; Zhang Xiong; Kajiyama, Hiroshi

    2012-08-01

    In this work, the effect of the Xe partial pressure on the excimer vacuum ultraviolet (VUV) emission intensity of the plasma display panels is investigated, both by measuring the spectral emission directly and by two-dimensional simulations. Experimentally, we find that at the high Xe partial pressure levels, there is an supra-linear increase of excimer VUV radiation and that determines the strong increase of luminance at the high pressures and high voltage. Due to the increase of the luminance and the almost unchanged discharge current, the luminous efficacy strongly increases with the Xe partial pressure. In addition, we also investigated the dynamics of the VUV generation, by measuring the decay time of the excimer VUV light as a function of the gas pressure. It is found that the decay time decreases with the increase of gas pressure. The spatial characteristics of the excimer VUV emission are also discussed. Different from the Ne and near-infrared emission, the excimer VUV emission is generated near the surface of the electrodes and increases uniformly on both sides of the anode and cathode (i.e., the bulk plasma region). Most importantly, it is found that the VUV production occurs during the afterglow period, while it is almost zero at the moment of the discharge itself. From the simulations, it can be seen that the Xe{sub 2}*({sup 3}{Sigma}{sub u}{sup +}) excimer species, which are generated from Xe*(1s{sub 5}), play a dominant role in the excimer VUV emission output at the high Xe partial pressure. The two-dimensional simulations also show that the strong increase of Xe excimer excitation states in the case of high pressure is mainly the result of the high conversion efficiency of the Xe excimer states, especially in the afterglow period. Due to the high conversion efficiency of Xe excitation species to Xe excimer species by the high collision rate in the case of high pressure, there is a strong increase of excimer VUV production, especially from the cathode.

  6. The study of state-selected ion-molecule reactions using the vacuum ultraviolet pulsed field ionization-photoion technique.

    PubMed

    Dressler, Rainer A; Chiu, Y; Levandier, D J; Tang, X N; Hou, Y; Chang, C; Houchins, C; Xu, H; Ng, Cheuk-Yiu

    2006-10-07

    This paper presents the methodology to generate beams of ions in single quantum states for bimolecular ion-molecule reaction dynamics studies using pulsed field ionization (PFI) of atoms or molecules in high-n Rydberg states produced by vacuum ultraviolet (VUV) synchrotron or laser photoexcitation. Employing the pseudocontinuum high-resolution VUV synchrotron radiation at the Advanced Light Source as the photoionization source, PFI photoions (PFI-PIs) in selected rovibrational states have been generated for ion-molecule reaction studies using a fast-ion gate to pass the PFI-PIs at a fixed delay with respect to the detection of the PFI photoelectrons (PFI-PEs). The fast ion gate provided by a novel interleaved comb wire gate lens is the key for achieving the optimal signal-to-noise ratio in state-selected ion-molecule collision studies using the VUV synchrotron based PFI-PE secondary ion coincidence (PFI-PESICO) method. The most recent development of the VUV laser PFI-PI scheme for state-selected ion-molecule collision studies is also described. Absolute integral cross sections for state-selected H2+ ions ranging from v+ = 0 to 17 in collisions with Ar, Ne, and He at controlled translational energies have been obtained by employing the VUV synchrotron based PFI-PESICO scheme. The comparison between PFI-PESICO cross sections for the H2+(HD+)+Ne and H2+(HD+)+He proton-transfer reactions and theoretical cross sections based on quasiclassical trajectory (QCT) calculations and three-dimensional quantum scattering calculations performed on the most recently available ab initio potential energy surfaces is highlighted. In both reaction systems, quantum scattering resonances enhance the integral cross sections significantly above QCT predictions at low translational and vibrational energies. At higher energies, the agreement between experiment and quasiclassical theory is very good. The profile and magnitude of the kinetic energy dependence of the absolute integral cross

  7. Vacuum ultraviolet pulsed field ionization-photoelectron and infrared-photoinduced Rydberg ionization study of trans-1,3-butadiene.

    PubMed

    Hou, Y; Woo, H-K; Wang, P; Xing, X; Ng, C Y; Lau, K-C

    2008-09-21

    The vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) spectrum of trans-1,3-butadiene (trans-CH(2)[Double Bond]CHCH[Double Bond]CH(2)) has been measured in the region of 0-1700 cm(-1) above its ionization energy (IE) to probe the vibrational modes nu(i) (+) (i=1-18) of trans-CH(2)[Double Bond]CHCH[Double Bond]CH(2) (+). The high-frequency vibrational modes nu(i) (+) (i=19, 22, and 23) of trans-CH(2)[Double Bond]CHCH[Double Bond]CH(2) (+) have also been probed by the VUV-infrared-photoinduced Rydberg ionization (VUV-IR-PIRI) measurement. On the basis of the semiempirical simulation of the origin VUV-PFI-PE band, the IE(trans-CH(2)[Double Bond]CHCH[Double Bond]CH(2)) is determined to be 73 150.1+/-1.5 cm(-1) (9.06946+/-0.00019 eV). This value has been used to benchmark the state-of-the-art theoretical IE prediction based on the CCSD(T,Full)/CBS procedures, the calculation of which is reported in the present study. The vibrational bands observed in the VUV-PFI-PE and VUV-IR-PIRI spectra were assigned based on ab initio anharmonic vibrational frequencies and Franck-Condon factor calculations for the photoionization transitions. Combining the VUV-PFI-PE and VUV-IR-PIRI measurements, 17 fundamental vibrational frequencies of trans-CH(2)[Double Bond]CHCH[Double Bond]CH(2) (+) have been determined, including nu(1) (+)=182+/-3, nu(2) (+)=300+/-3, nu(3) (+)=428+/-3, nu(4) (+)=514+/-3, nu(5) (+)=554+/-5, nu(6) (+)=901+/-3, nu(7) (+)=928+/-5, nu(8) (+)=994+/-3, nu(9) (+)=1008+/-5, nu(10) (+)=1094+/-5, nu(13) (+)=1258+/-3, nu(14) (+)=1293+/-3, nu(16) (+)=1479+/-3, nu(18) (+)=1620+/-3, nu(19) (+)=2985+/-10, nu(22) (+)=3030+/-10, and nu(23) (+)=3105+/-10 cm(-1).

  8. Communication: A vibrational study of propargyl cation using the vacuum ultraviolet laser velocity-map imaging photoelectron method

    SciTech Connect

    Gao Hong; Lu Zhou; Yang Lei; Zhou Jingang; Ng, C. Y.

    2012-10-28

    By employing the vacuum ultraviolet (VUV) laser velocity-map imaging photoelectron (VUV-VMI-PE) method, we have obtained a vibrationally resolved photoelectron spectrum of gaseous propargyl radical [C{sub 3}H{sub 3}(X{sup 2}B{sub 1})] in the energy range of 0-4600 cm{sup -1} above its ionization energy. The cold C{sub 3}H{sub 3} radicals were produced from a supersonically cooled radical beam source based on 193 nm ArF photodissociation of C{sub 3}H{sub 3}Cl. The VUV-VMI-PE spectrum of C{sub 3}H{sub 3} thus obtained reveals a Franck-Condon factor (FCF) pattern with a highly dominant origin band along with weak vibrational progressions associated with excitations of the C-C {nu}{sub 5}{sup +}(a{sub 1}) and C{identical_to}C {nu}{sub 3}{sup +}(a{sub 1}) symmetric stretching modes and the CCH {nu}{sub 7}{sup +}(b{sub 1}) out-of-plane bending mode of C{sub 3}H{sub 3}{sup +}(X{sup 1}A{sub 1}). The {nu}{sub 5}{sup +}(a{sub 1}) vibrational frequency of 1120 cm{sup -1} determined in the present study is lower than the value deduced from the recent Ar-tagged infrared photodissociation study by 102 cm{sup -1}, confirming the highly accurate vibrational frequency predictions obtained by the most recent state-of-the-art ab initio quantum calculations. The observation of the FCF disallowed {nu}{sub 7}{sup +}(b{sub 1}) mode is indicative of vibronic interactions. The discrepancy observed between the FCF pattern determined in the present study and that predicted by a recent high-level quantum theoretical investigation can be taken as evidence that the potential energy surfaces used in the latter theoretical study are in need of improvement in order to provide a reliable FCF prediction for the C{sub 3}H{sub 3}/C{sub 3}H{sub 3}{sup +} photoionization system.

  9. Inelastic processes in Ne+ and Ar+ collisions with Mg and Y surfaces leading to scattered-ion fractions and vacuum-ultraviolet photon emission

    NASA Astrophysics Data System (ADS)

    Rabalais, J. Wayne; Chen, Jie-Nan; Kumar, Ranjit

    1985-09-01

    Collisions of kiloelectronvolt Ne+ on Mg and Ar+ on Y yield scattered-ion fractions as high as 70% and 38%, respectively, and 1,3P--> 1S resonance radiation from the excited neutral projectile atoms in the vacuum ultraviolet range 30-200 nm. These data, along with that from the oxidized and hydroxylated surfaces, show that electron promotions within the molecular orbitals of the quasidiatomic molecule formed during the close encounter are a significant, if not dominating, process in kiloelectronvolt ion-surface collisions.

  10. Vacuum ultraviolet laser spectroscopy. III - Laboratory sources of coherent radiation tunable from 105 to 175 nm using Mg, Zn, and Hg vapors

    NASA Astrophysics Data System (ADS)

    Herman, P. R.; Larocque, P. E.; Lipson, R. H.; Jamroz, W.; Stoicheff, B. P.

    1985-12-01

    Nonlinear frequency mixing of laser radiation in Mg, Zn, and Hg vapors has produced coherent radiation, tunable over the range 175-104.5 nm in the vacuum ultraviolet. The resulting radiation is pulsed, monochromatic, and of sufficient intensity for use in high-resolution spectroscopy. Detailed descriptions are given of the dye oscillator-amplifier systems along with the heat-pipe ovens for producing stable densities of the metal vapors. Measurements of intensities, linewidths, and ranges of tunability are presented for each metal vapor.

  11. Effect of the coherent cancellation of the two-photon resonance on the generation of vacuum ultraviolet light by two-photon reasonantly enhanced four-wave mixing

    SciTech Connect

    Payne, M.G.; Garrett, W.R.; Judish, J.P.; Wunderlich, R.

    1988-11-01

    Many of the most impressive demonstrations of the efficient generation of vacuum ultraviolet (VUV) light have made use of two- photon resonantly enhanced four-wave mixing to generate light at ..omega../sub VUV/ = 2..omega../sub L1/ +- ..omega../sub L2/. The two-photon resonance state is coupled to the ground state both by two photons from the first laser, or by a photon from the second laser and one from the generated VUV beam. We show here that these two coherent pathways destructively interfere once the second laser is made sufficiently intense, thereby leading to an important limiting effect on the achievable conversion efficiency. 4 refs.

  12. Upper limits for stereoselective photodissociation of free amino acids in the vacuum ultraviolet region and at the C 1s edge

    SciTech Connect

    Pruemper, Georg; Viefhaus, Jens; Cvejanovic, Slobodan; Rolles, Daniel; Gessner, Oliver; Lischke, Toralf; Hentges, Rainer; Wienberg, Christian; Mahler, Willy; Becker, Uwe; Langer, Burkhard; Prosperi, Tommaso; Zema, Nicola; Turchini, Stefano; Zada, Birgitt; Senf, Fred

    2004-06-01

    We measured the total and partial ion yields of the two chiral amino acids alanine and serine in the gas phase both in the vacuum ultraviolet region and at the C(1s) edge using circularly polarized light. We did not detect any circular dichroism asymmetry larger than 1x10{sup -3}. A similar measurement of fixed-in-space amino acids yielded an upper limit of 1x10{sup -2} for the stereoselective effect of circularly polarized light. The results obtained are relevant for quantitative models of stereoselective photodecomposition of amino acids that try to explain the homochirality of life.

  13. Effect of electron energy distribution functions on plasma generated vacuum ultraviolet in a diffusion plasma excited by a microwave surface wave

    SciTech Connect

    Zhao, J. P.; Chen, L.; Funk, M.; Sundararajan, R.; Nozawa, T.; Samukawa, S.

    2013-07-15

    Plasma generated vacuum ultraviolet (VUV) in diffusion plasma excited by a microwave surface wave has been studied by using dielectric-based VUV sensors. Evolution of plasma VUV in the diffusion plasma as a function of the distance from the power coupling surface is investigated. Experimental results have indicated that the energy and spatial distributions of plasma VUV are mainly controlled by the energy distribution functions of the plasma electrons, i.e., electron energy distribution functions (EEDFs). The study implies that by designing EEDF of plasma, one could be able to tailor plasma VUV in different applications such as in dielectric etching or photo resist smoothing.

  14. Optical emission spectroscopy system operating in the vacuum-ultraviolet spectral range λ < 100 nm—a semi-empirical determination of sensitivity

    NASA Astrophysics Data System (ADS)

    Carman, Robert J.; Little, Douglas J.; Kane, Deborah M.

    2015-08-01

    We have determined the wavelength dependent response of an optical emission spectroscopy system operating in the vacuum-ultraviolet region between λ = 30-100 nm, where broad-band light sources with calibrated spectral irradiance are generally unavailable. The system incorporates a constant-deviation VUV monochromator which utilises a single-element concave diffraction grating. An optical surface profiler is used to measure the groove geometry of the diffraction grating to provide detailed information for subsequent 2D numerical modelling of the diffraction efficiencies and the overall wavelength-dependent response curves.

  15. VUV dissociative excitation cross sections of H2O, NH3, and CH4 by electron impact. [Vacuum Ultra-Violet

    NASA Technical Reports Server (NTRS)

    Morgan, H. D.; Mentall, J. E.

    1974-01-01

    Absolute excitation functions for excited fragments resulting from electron bombardment of H2O, NH3, and CH4 by low-energy electrons (0 to 300 eV) have been measured in the vacuum ultraviolet (1100 to 1950 A). The predominant emission for each molecule was the H Lyman-alpha line, while the O I, N I, C I, and C II emissions were at least an order of magnitude weaker. Absolute cross sections at 100 eV are given along with the appearance potential of the various processes and the possible dissociative-excitation channels through which such processes proceed.

  16. VUV dissociative excitation cross sections of H2O, NH3, and CH4 by electron impact. [Vacuum Ultra-Violet

    NASA Technical Reports Server (NTRS)

    Morgan, H. D.; Mentall, J. E.

    1974-01-01

    Absolute excitation functions for excited fragments resulting from electron bombardment of H2O, NH3, and CH4 by low-energy electrons (0 to 300 eV) have been measured in the vacuum ultraviolet (1100 to 1950 A). The predominant emission for each molecule was the H Lyman-alpha line, while the O I, N I, C I, and C II emissions were at least an order of magnitude weaker. Absolute cross sections at 100 eV are given along with the appearance potential of the various processes and the possible dissociative-excitation channels through which such processes proceed.

  17. Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight.

    PubMed

    Saffary, Roya; Nandakumar, Renu; Spencer, Dennis; Robb, Frank T; Davila, Joseph M; Swartz, Marvin; Ofman, Leon; Thomas, Roger J; DiRuggiero, Jocelyne

    2002-09-24

    We have recovered new isolates from hot springs, in Yellowstone National Park and the Kamchatka Peninsula, after gamma-irradiation and exposure to high vacuum (10(-6) Pa) of the water and sediment samples. The resistance to desiccation and ionizing radiation of one of the isolates, Bacillus sp. strain PS3D, was compared to that of the mesophilic bacterium, Deinococcus radiodurans, a species well known for its extraordinary resistance to desiccation and high doses of ionizing radiation. Survival of these two microorganisms was determined in real and simulated space conditions, including exposure to extreme UV radiation (10-100 nm) during a rocket flight. We found that up to 15 days of desiccation alone had little effect on the viability of either bacterium. In contrast, exposure to space vacuum ( approximately 10(-6) Pa) decreased cell survival by two and four orders of magnitude for Bacillus sp. strain PS3D and D. radiodurans, respectively. Simultaneous exposure to space vacuum and extreme UV radiation further decreased the survival of both organisms, compared to unirradiated controls. This is the first report on the isolated effect of extreme UV at 30 nm on cell survival. Extreme UV can only be transmitted through high vacuum, therefore its penetration into the cells may only be superficial, suggesting that in contrast to near UV, membrane proteins rather than DNA were damaged by the radiation.

  18. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  19. Rapid Analysis and Time Interval Deconvolution for Comprehensive Fuel Compound Group Classification and Speciation Using Gas Chromatography-Vacuum Ultraviolet Spectroscopy.

    PubMed

    Walsh, Phillip; Garbalena, Manuel; Schug, Kevin A

    2016-11-15

    A time interval deconvolution (TID) method was devised to integrate a gas chromatography-vacuum ultraviolet (GC-VUV) data set in order to provide bulk characterization and speciation of finished gasoline samples. The method was demonstrated using a commercially available standard and tested on a series of ASTM gasoline proficiency samples. Very good correlation (R(2) ∼ 0.97-0.99) between GC-VUV and measurements using various ASTM methods was achieved. A key advantage of the TID method applied to GC-VUV data sets is that a large number of coelution events can be tolerated, resulting in significantly easier and faster separations, approximately 30 min in the case of gasoline. Methods for determining relative response factors, VUV reference libraries, and generalization to other types of complex samples are also discussed.

  20. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors

    SciTech Connect

    Seon, C. R.; Choi, S. H.; Cheon, M. S.; Pak, S.; Lee, H. G.; Biel, W.; Barnsley, R.

    2010-10-15

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  1. Valence and Rydberg Excitations of 2,4- and 2,6-Difluorotoluene as Studied by Vacuum Ultraviolet Synchrotron Radiation and ab Initio Calculations.

    PubMed

    Barbosa, A Souza; da Silva, F Ferreira; Rebelo, A; Hoffmann, S V; Bettega, M H F; Limão-Vieira, P

    2016-11-17

    Here we report novel comprehensive investigations on the electronic state spectroscopies of isolated 2,4- and 2,6-difluorotoluene in the gas phase by high-resolution vacuum ultraviolet (VUV) photoabsorption measurements in the 4.4-10.8 eV energy range, with absolute cross-section values derived. We also present the first set of ab initio calculations (vertical energies and oscillator strengths), which we have used in the assignment of valence transitions of the difluorotoluene molecules, together with calculated ionization energies to obtain the Rydberg transitions for both molecules. The measured absolute photoabsorption cross sections have been used to estimate the photolysis lifetimes of 2,4- and 2,6-difluorotoluene in the Earth's atmosphere.

  2. Practical Aspects of Molecular Spectroscopy in Plasmas 4. The Role of Molecular Spectroscopy in the Vacuum Ultraviolet Region for the Development of a Negative Ion Source

    NASA Astrophysics Data System (ADS)

    Nishiura, Masaki

    Fundamental plasma processes of negative ions in a low pressure region (a gas pressure Pg < 1.5 Pa) have been studied using the photodetachment technique and vacuum ultraviolet (VUV) spectroscopic measurements in the spectral range from 100 to 180 nm. Understanding the behavior of a plasma with negative ions, in particular, the correlation between H- density and vibrationally excited H2 density, is of great interest in the field of atomic-molecular physics and ion source developments. The volume and the surface effects of negative ions are discussed taking into account the e-V, the E-V, and the RD processes, and the measured VUV spectrum is compared with the synthetic one. The cascade transition to the B1Σ+u state by the electron excitation contributes to the production of the highly vibrationally excited levels of the X1Σ+g ground electronic state.

  3. Note: a novel vacuum ultraviolet light source assembly with aluminum-coated electrodes for enhancing the ionization efficiency of photoionization mass spectrometry.

    PubMed

    Zhu, Zhixiang; Wang, Jian; Qiu, Keqing; Liu, Chengyuan; Qi, Fei; Pan, Yang

    2014-04-01

    A novel vacuum ultraviolet (VUV) light source assembly (VUVLSA) for enhancing the ionization efficiency of photoionization mass spectrometer has been described. The VUVLSA composes of a Krypton lamp and a pair of disk electrodes with circular center cavities. The two interior surfaces that face the photoionization region were aluminum-coated. VUV light can be reflected back and forth in the photoionization region between the electrodes, thus the photoionization efficiency can be greatly enhanced. The performances of two different shaped electrodes, the coated double flat electrodes (DFE), and double conical electrodes, were studied. We showed that the signal amplification of coated DFE is around 4 times higher than that of uncoated electrodes without VUV light reflection. The relationship between the pressure of ionization chamber and mass signal enhancement has also been studied.

  4. Double-pulse laser induced breakdown spectroscopy with ambient gas in the vacuum ultraviolet: Optimization of parameters for detection of carbon and sulfur in steel

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Hayden, P.; Costello, J. T.; Kennedy, E. T.

    2014-11-01

    Laser induced breakdown spectroscopy (LIBS) in the vacuum ultraviolet (VUV) has been applied to calibrated steel samples for the low concentration level detection of the light elements, carbon and sulfur in steel. Experimental optimization parameters, aimed at enhancing the sensitivity of the technique, included short wavelength spectral detection, double-pulse (DP) operation, variable focusing conditions and different ambient environments in terms of gas type and pressure. Two lasers were employed respectively as an ablation laser (Spectron: 1.06 μm/200 mJ/15 ns) and a reheating laser (Surelite: 1.06 μm/665 mJ/6 ns) in a collinear geometry. The results include insight into the most salient experimental variables and limits of detection in the parts per million range.

  5. Morphological study into the temperature dependence of solid ammonia under astrochemical conditions using vacuum ultraviolet and Fourier-transform infrared spectroscopy.

    PubMed

    Dawes, Anita; Mukerji, Robin J; Davis, Michael P; Holtom, Philip D; Webb, Sarah M; Sivaraman, Bhalamurugan; Hoffmann, Søren V; Shaw, David A; Mason, Nigel J

    2007-06-28

    The authors present the results of a morphological study of solid ammonia using both Fourier-transform infrared and vacuum ultraviolet (VUV) spectroscopy. Dramatic changes in the VUV and infrared spectra at temperatures between 65 and 85 K provide a deeper insight into the structure of ammonia ice particularly with the observation of an exciton transition at 194 nm (6.39 eV) in the VUV spectrum, revealing a structure that is composed of crystallites. A complementary structure is observed in the IR spectrum at 1100 cm(-1) which is assigned to the symmetric deformation of ammonia molecules at the surfaces of the crystallites. Such spectral signatures may be used to identify the environment within which the ammonia ice is formed and provide a new route for obtaining information on the physical and chemical conditions occurring within the interstellar medium, on the surfaces of planetary bodies, and in Kuiper belt objects.

  6. Reflectivity measurements in the vacuum ultraviolet wavelength range on technical surfaces for the Wolter I telescope on board the X-ray astronomy satellite ROSAT

    NASA Astrophysics Data System (ADS)

    Stephan, K. H.; Braeuninger, H.; Kaase, H.; Metzdorf, J.

    1986-08-01

    The results of reflectivity measurements in the vacuum ultraviolet wavelength region (VUV) on technical surfaces are described which are used in the Wolter I-telescope on board the German X-ray astronomy satellite ROSAT. The materials investigated are the special iron-nickel alloy Invar and a carbon fibre compound (CFK). The centre connecting flange for the parabolic and hyperbolic mirror sections of the telescope is made of Invar. CFK is used for the thermal baffle in front of the telescope. It had to be checked whether the structure of the centre flange and the thermal baffle sufficiently suppress scattered ultraviolet radiation in order to avoid a substantial background level in the detectors which are located in the focal plane of the telescope. The detectors consist of two positional sensitive proportional counters (PSPC) with a spatial resolution of 0.5 arc mm and an image converter with a resolution of a few arc sec. The detectors are mounted on a carrousel platform and are intended to be positioned alternatively in the focal plane

  7. Inter-pulse delay optimization in dual-pulse laser induced breakdown vacuum ultraviolet spectroscopy of a steel sample in ambient gases at low pressure

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Hayden, P.; Laasch, R.; Costello, J. T.; Kennedy, E. T.

    2013-08-01

    Time-integrated spatially-resolved Laser Induced Breakdown Spectroscopy (LIBS) has been used to investigate spectral emissions from laser-induced plasmas generated on steel targets. Instead of detecting spectral lines in the visible/near ultraviolet (UV), as investigated in conventional LIBS, this work explored the use of spectral lines emitted by ions in the shorter wavelength vacuum ultraviolet (VUV) spectral region. Single-pulse (SP) and dual-pulse LIBS (DP-LIBS) experiments were performed on standardized steel samples. In the case of the double-pulse scheme, two synchronized lasers were used, an ablation laser (200 mJ/15 ns), and a reheating laser (665 mJ/6 ns) in a collinear beam geometry. Spatially resolved and temporally integrated laser induced plasma VUV emission in the DP scheme and its dependence on inter-pulse delay time were studied. The VUV spectral line intensities were found to be enhanced in the DP mode and were significantly affected by the inter-pulse delay time. Additionally, the influence of ambient conditions was investigated by employing low pressure nitrogen, argon or helium as buffer gases in the ablation chamber. The results clearly demonstrate the existence of a sharp ubiquitous emission intensity peak at 100 ns and a wider peak, in the multi-microsecond range of inter-pulse time delay, dependent on the ambient gas conditions.

  8. Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3

    NASA Astrophysics Data System (ADS)

    Heidrich, K.; Schäfer, W.; Schreiber, M.; Söchtig, J.; Trendel, G.; Treusch, J.; Grandke, T.; Stolz, H. J.

    1981-11-01

    Optical spectra of CsPbCl3 and CsPbBr3 have been measured in the range from 2 to 10 eV and have been combined with ultraviolet-photoemission-spectroscopy (UPS)-measurements at 21.1 and 40.8 eV. A quantitative band calculation is presented, which takes into account anion-anion interaction as well as electronic states of the Cs+ ion. The prominent features of earlier band models and measurements are reestablished through our measurements and calculations, namely that the valence band consists of anionic p functions and Pb 6s functions, the lowest conduction band being Pb 6p type, and the lowest gap occuring at the R point of the Brillouin zone. Inclusion of a further (Cs 6s-type) conduction band, however, is necessary to bring the calculated joint density of states into agreement with vacuum-ultraviolet optical spectra. The calculated densities of states of the valence bands are in quantitative agreement with those deduced from our UPS measurements.

  9. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry.

    PubMed

    Hua, Lei; Wu, Qinghao; Hou, Keyong; Cui, Huapeng; Chen, Ping; Wang, Weiguo; Li, Jinghua; Li, Haiyang

    2011-07-01

    A novel combined ion source based on a vacuum ultraviolet (VUV) lamp with both single photon ionization (SPI) and chemical ionization (CI) capabilities has been developed for an orthogonal acceleration time-of-flight mass spectrometer (oaTOFMS). The SPI was accomplished using a commercial 10.6 eV krypton discharge lamp with a photon flux of about 10(11) photons s(-1), while the CI was achieved through ion-molecule reactions with O(2)(+) reactant ions generated by photoelectron ionization at medium vacuum pressure (MVP). To achieve high ionization efficiency, the ion source pressure was elevated to 0.3 mbar and the photoionization length was extended to 36 mm. As a result, limits of detection (LODs) down to 3, 4, and 6 ppbv were obtained for benzene, toluene, and p-xylene in MVP-SPI mode, and values of 8 and 10 ppbv were obtained for toluene and chloroform, respectively, in SPI-CI mode. As it is feasible to switch between MVP-SPI mode and SPI-CI mode rapidly, this system is capable of monitoring complex organic mixtures with a wide range of ionization energies (IEs). The analytical capacity of this system was demonstrated by measuring dehydrogenation products of long-chain paraffins to olefins through direct capillary sampling and drinking water disinfection byproducts from chlorine through a membrane interface.

  10. Nanograting-based compact vacuum ultraviolet spectrometer and beam profiler for in situ characterization of high-order harmonic generation light sources.

    PubMed

    Kornilov, Oleg; Wilcox, Russell; Gessner, Oliver

    2010-06-01

    A compact, versatile device for vacuum ultraviolet (VUV) beam characterization is presented. It combines the functionalities of a VUV spectrometer and a VUV beam profiler in one unit and is entirely supported by a standard DN200 CF flange. The spectrometer employs a silicon nitride transmission nanograting in combination with a microchannel plate-based imaging detector. This enables the simultaneous recording of wavelengths ranging from 10 to 80 nm with a resolution of 0.25-0.13 nm. Spatial beam profiles with diameters up to 10 mm are imaged with 0.1 mm resolution. The setup is equipped with an in-vacuum translation stage that allows for in situ switching between the spectrometer and beam profiler modes and for moving the setup out of the beam. The simple, robust design of the device is well suited for nonintrusive routine characterization of emerging laboratory- and accelerator-based VUV light sources. Operation of the device is demonstrated by characterizing the output of a femtosecond high-order harmonic generation light source.

  11. Comparative survival analysis of Deinococcus radiodurans and the haloarchaea Natrialba magadii and Haloferax volcanii exposed to vacuum ultraviolet irradiation.

    PubMed

    Abrevaya, Ximena C; Paulino-Lima, Ivan G; Galante, Douglas; Rodrigues, Fabio; Mauas, Pablo J D; Cortón, Eduardo; Lage, Claudia de Alencar Santos

    2011-12-01

    The haloarchaea Natrialba magadii and Haloferax volcanii, as well as the radiation-resistant bacterium Deinococcus radiodurans, were exposed to vacuum UV (VUV) radiation at the Brazilian Synchrotron Light Laboratory. Cell monolayers (containing 10(5) to 10(6) cells per sample) were prepared over polycarbonate filters and irradiated under high vacuum (10(-5) Pa) with polychromatic synchrotron radiation. N. magadii was remarkably resistant to high vacuum with a survival fraction of (3.77±0.76)×10(-2), which was larger than that of D. radiodurans (1.13±0.23)×10(-2). The survival fraction of the haloarchaea H. volcanii, of (3.60±1.80)×10(-4), was much smaller. Radiation resistance profiles were similar between the haloarchaea and D. radiodurans for fluences up to 150 J m(-2). For fluences larger than 150 J m(-2), there was a significant decrease in the survival of haloarchaea, and in particular H. volcanii did not survive. Survival for D. radiodurans was 1% after exposure to the higher VUV fluence (1350 J m(-2)), while N. magadii had a survival lower than 0.1%. Such survival fractions are discussed regarding the possibility of interplanetary transfer of viable microorganisms and the possible existence of microbial life in extraterrestrial salty environments such as the planet Mars and Jupiter's moon Europa. This is the first work to report survival of haloarchaea under simulated interplanetary conditions.

  12. Survivorship in micro fungi and crustacean resting stages during ultraviolet (UV) and vacuum land testing of EXPOSE unit

    NASA Astrophysics Data System (ADS)

    Alekseev, Victor; Alekseev, Victor; Novikova, Nataliya; Sychev, Vladimir; Levinskikh, Margarita; Deshevaya, Elena; Brancelj, Anton; Malyavin, Stanislav

    Dormancy protects animals and plants in harsh environmental conditions within a special resting phases of life cycle lasting from months up to hundred years. This phenomenon is perspective for space researches on interplanetary quarantine within space missions. Direct experiments in open space supported in principle the fact of survivorship of bacteria and fungi spores in open space during long time experiments (Novikova et al. 2007). The rate of survivorship in long-term mission was low but enough to conclude that biological invasion to Mars is a real danger. The possibility for resting stages to survive under UV treatment in vacuum without some protection was not clear. To test it dormant stages (spores) of primitive fungi Aspergillus versicolor, Aspergillus sydowii, Penicillium expansum, and Penicillium aurantiogriseum derived from ISS environment were used in the land EXPOSE imitation of outside space station UV and vacuum conditions. Survivorship in resting eggs of some crustaceans with dried (cladoceran Daphnia magna, fair-shrimp Streptocephalus torvicornis and ostracode Eucypris ornate from hemi desert Caspian area) and wet diapause state (copepod Mixodiaptomus tatricus from the Tatra mountains, altitude 1510 m) was tested also. The total UV dose of 9,1x10 to the 4th KJ/m2 during this imitation was accomplished with a SOL 2000 sun simulator lamp. The final vacuum value achieved during EST was 10 to the minus 6 Pa. Temperature during the experiment fluctuated in the range 19-25 o C. Micro fungi showed a high level of survivorship in samples treated with UV samples varied from 95 till 100 Supported by RFBR grant 07-04-00006.

  13. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    SciTech Connect

    Sobrado, J. M. Martín-Soler, J.; Martín-Gago, J. A.

    2015-10-15

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  14. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Sobrado, J. M.; Martín-Soler, J.; Martín-Gago, J. A.

    2015-10-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  15. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover.

    PubMed

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2015-10-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  16. Electrical conductivity of cluster-assembled carbon/titania nanocomposite films irradiated by highly focused vacuum ultraviolet photon beams

    SciTech Connect

    Amati, M.; Lenardi, C.; Agostino, R. G.; Caruso, T.; Ducati, C.; La Rosa, S.; Bongiorno, G.; Cassina, V.; Podesta, P.; Ravagnan, L.; Piseri, P.; Milani, P.

    2007-03-15

    We investigated the electrical transport properties of nanostructured carbon and carbon/titanium oxide nanocomposite films produced by supersonic cluster beam deposition and irradiated by highly focused vacuum UV photon beam. We have observed a relevant increase of the density of states at Fermi level, suggesting that the films acquire a 'metallic' character. This is confirmed by the increment of the conductivity of four orders of magnitude for pure nanostructured carbon films and at least eight orders of magnitude for films containing 9 at. % of titanium. A partial reversibility of the process is observed by exposing the modified films to molecular oxygen or directly to air. We demonstrate the capability of writing micrometric conductive strips (2-3 {mu}m width and 60 {mu}m length) and controlling the variation of the conductivity as a function of the titanium concentration.

  17. Production of reactive species using vacuum ultraviolet photodissociation as a tool for studying their effects in plasma medicine: simulations and measurements

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Tokumitsu, Yusuke; Zen, Shungo; Yonemori, Seiya

    2014-11-01

    We propose a method for producing OH, H, O, O3, and O2(a1Δg) using the vacuum ultraviolet photodissociation of H2O and O2 as a tool for studying the reaction processes of plasma medicine. For photodissociation, an H2O/He or O2/He mixture flowing in a quartz tube is irradiated by a Xe2 or Kr2 excimer lamp. The effluent can be applied to a target. Simulations show that the Xe2 lamp method can produce OH radicals within 0.1-1 ppm in the effluent at 5 mm from a quartz tube nozzle. This is comparable to those produced by a helium atmospheric-pressure plasma jet (He-APPJ) currently used in plasma medicine. The Xe2 lamp method also produces H atoms of, at most, 6 ppm. In contrast, the maximum O densities produced by the Xe2 and Kr2 lamp methods are 0.15 ppm and 2.5 ppm, respectively; these are much lower than those from He-APPJ (several tens of ppm). Both lamp methods can produce ozone at concentrations above 1000 ppm and O2(a1Δg) at tens of ppm. The validity of the simulations is verified by measuring the O3 and OH densities produced by the Xe2 lamp method using ultraviolet absorption and laser-induced fluorescence. The differences between the measured and simulated densities for O3 and OH are 20% and factors of 3-4, respectively.

  18. Vacuum ultraviolet argon excimer laser excited by optical-field-induced ionized electrons produced in an argon-filled hollow fiber

    NASA Astrophysics Data System (ADS)

    Kubodera, Shoichi; Kaku, Masanori; Katto, Masahito

    2011-10-01

    Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have demonstrated the production of argon excimers via an optical-field-induced ionization (OFI) process by using a high-intensity infrared laser. We here report optical amplification of argon excimers at the wavelength of 126 nm by producing an extended OFI plasma inside an argon-filled hollow fiber with an inner diameter of 250 microns with a length of 5.0 cm. A gain-length product of 4.3 through the use of single-pass amplification with VUV optics was observed, indicating a small signal gain coefficient of 0.86 cm-1 with an uncertainty of 0.03. It was found that the hollow fiber served to extend the OFI plasma length and to guide the excitation of the infrared laser and the produced VUV emissions at 126 nm, but did not affect the OFI plasma conditions to produce argon excimer molecules. Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have demonstrated the production of argon excimers via an optical-field-induced ionization (OFI) process by using a high-intensity infrared laser. We here report optical amplification of argon excimers at the wavelength of 126 nm by producing an extended OFI plasma inside an argon-filled hollow fiber with an inner diameter of 250 microns with a length of 5.0 cm. A gain-length product of 4.3 through the use of single-pass amplification with VUV optics was observed, indicating a small signal gain coefficient of 0.86 cm-1 with an uncertainty of 0.03. It was found that the hollow fiber served to extend the OFI plasma length and to guide the excitation of the infrared laser and the produced VUV emissions at 126 nm, but did not affect the OFI plasma conditions to produce argon excimer molecules. Part of this work has been supported by

  19. Vacuum ultraviolet photolysis of hydrogenated amorphous carbons. III. Diffusion of photo-produced H2 as a function of temperature

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Dartois, E.; Muñoz Caro, G. M.

    2016-06-01

    Context. Hydrogenated amorphous carbon (a-C:H) has been proposed as one of the carbonaceous solids detected in the interstellar medium. Energetic processing of the a-C:H particles leads to the dissociation of the C-H bonds and the formation of hydrogen molecules and small hydrocarbons. Photo-produced H2 molecules in the bulk of the dust particles can diffuse out to the gas phase and contribute to the total H2 abundance. Aims: We have simulated this process in the laboratory with plasma-produced a-C:H and a-C:D analogs under astrophysically relevant conditions to investigate the dependence of the diffusion as a function of temperature. Methods: Experimental simulations were performed in a high-vacuum chamber, with complementary experiments carried out in an ultra-high-vacuum chamber. Plasma-produced a-C:H and a-C:D analogs were UV-irradiated using a microwave-discharged hydrogen flow lamp. Molecules diffusing to the gas-phase were detected by a quadrupole mass spectrometer, providing a measurement of the outgoing H2 or D2 flux. By comparing the experimental measurements with the expected flux from a one-dimensional diffusion model, a diffusion coefficient D could be derived for experiments carried out at different temperatures. Results: Dependence on the diffusion coefficient D with the temperature followed an Arrhenius-type equation. The activation energy for the diffusion process was estimated (ED(H2) = 1660 ± 110 K, ED(D2) = 2090 ± 90 K), as well as the pre-exponential factor (D0(H2) = 0.0007 cm2 s-1, D0(D2) = 0.0045 cm2 s-1). Conclusions: The strong decrease of the diffusion coefficient at low dust particle temperatures exponentially increases the diffusion times in astrophysical environments. Therefore, transient dust heating by cosmic rays needs to be invoked for the release of the photo-produced H2 molecules in cold photon-dominated regions, where destruction of the aliphatic component in hydrogenated amorphous carbons most probably takes place.

  20. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1999-01-01

    We have studied the spectroscopy and the cross sections of the simple molecules of atmospheric interest such as oxygen, nitric oxide, carbon dioxide, and water. We have made cross section measurements on an absolute base without the effects from the limited instrumental resolution. We have used the following different instruments- the grating spectrometer (6.65-m at CfA, 3-m at Photon Factory), VUV Fourier transform spectrometer at Imperial College, and then moved the same one to the Photon Factory. Selection of the instruments depend on the appearance of molecular bands, and their wavelength region. For example, the cross section measurements of Doppler limited bands can been done with the Fourier transform spectrometer at the very high resolution (0.025/ cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  1. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1999-01-01

    We have studied the spectroscopy and the cross sections of the simple molecules of atmospheric interest such as oxygen, nitric oxide, carbon dioxide, and water. We have made cross section measurements on an absolute base without the effects from the limited instrumental resolution. We have used the following different instruments- the grating spectrometer (6.65-m at CfA, 3-m at Photon Factory), VUV Fourier transform spectrometer at Imperial College, and then moved the same one to the Photon Factory. Selection of the instruments depend on the appearance of molecular bands, and their wavelength region. For example, the cross section measurements of Doppler limited bands can been done with the Fourier transform spectrometer at the very high resolution (0.025/ cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  2. Ultraviolet-enhanced photodetection in a graphene/SiO{sub 2}/Si capacitor structure with a vacuum channel

    SciTech Connect

    Kim, Myungji; Kim, Hong Koo

    2015-09-14

    We report photodetection properties of a graphene/oxide/silicon capacitor structure with a nanoscale vacuum channel. The photogenerated two-dimensional electron gas (2DEG) inversion charges at SiO{sub 2}/Si interface are extracted out to air and transported along the void channel at low bias voltage (<5 V). A monolayer graphene, placed on top of SiO{sub 2} and suspended on the void channel, is utilized as a photon-transparent counter-electrode to the 2DEG layer and a collector electrode for the out-of-plane transported electrons, respectively. The photocurrent extracted through a void channel reveals high responsivity (1.0 A/W at 633 nm) as measured in a broad spectral range (325–1064 nm), especially demonstrating a UV-enhanced performance (0.43 A/W responsivity and 384% internal quantum efficiency at 325 nm). The mechanisms underlying photocarrier generation, emission, and transport in a suspended-graphene/SiO{sub 2}/Si structure are proposed.

  3. Vacuum ultra-violet emission of plasma discharges with high Xe partial pressure using a cathode protective layer with high secondary electron emission

    SciTech Connect

    Zhu, Di; Song, Le; Zhang, Xiong; Kajiyama, Hiroshi

    2014-02-14

    In this work, the mechanism of the vacuum ultra-violet (VUV) emission of plasma discharges, with high Xe partial pressure and high ion-induced secondary electrons emission protective layer, is studied by measuring the VUV light emission directly and comparing it with two-dimensional simulations. From the panel measurement, we find that the high intensity of excimer VUV mainly contributes to the high luminous efficacy of SrCaO-plasma display panels (PDP) at a low sustain voltage. The unchanged Xe excitation efficiency indicates that the electron temperature is not decreased by the high secondary electrons emission protective layer, even though the sustain voltage is much lower. From the two-dimensional simulations, we can find that the ratio of excimer VUV to resonant VUV, which is determined by the collision rate in the discharge, is only significantly affected by the Xe partial pressure, while it is independent of the sustain voltage and the secondary-electrons-emission capability of protective layer. The unchanged average electron energy at the moment when the electric field becomes maximum confirms that the improvement of the VUV production efficiency mainly is attributed to the increase in electron heating efficiency of a PDP with high ion-induced secondary electrons emission protective layer. Combining the experimental and the simulation results, we conclude about the mechanism by which the VUV production is improved for the plasma display panel with a high Xe partial pressure and a cold cathode with high ion-induced secondary electrons emission.

  4. A vacuum ultraviolet pulsed field ionization-photoelectron study of cyanogen cation in the energy range of 13.2-15.9 eVa)

    NASA Astrophysics Data System (ADS)

    Hochlaf, M.; Baer, Tomas; Qian, X.-M.; Ng, C. Y.

    2005-10-01

    The vacuum ultraviolet pulsed field ionization-photoelectron and photoionization efficiency spectra of NCCN have been measured in the energy region of 13.25-17.75 eV. The analyses of these spectra have provided accurate ionization energy (IE) values of 13.371±0.001, 14.529±0.001, 14.770±0.001, and 15.516±0.001eV for the formation of NCCN+ in the X˜Πg2, ÃΣg+2, B˜Σu+2, and C˜Πu2 states, respectively. The ionization energy [NCCN+(B˜Σu+2)] value determined here indicates that the origin of the NCCN+(B˜Σu+2) state lies lower in energy by 25 meV than previously reported. A set of spectroscopic parameters for NCCN+(X˜Πg2) has been calculated using high level ab initio calculations. The experimental spectra are found to consist of ionizing transitions populating the vibronic levels of NCCN+, which consist of pure vibronic progressions, combination modes involving the symmetric CN stretch, the CC stretch, and even quanta of the antisymmetric CN stretch, and bending vibrations. These bands are identified with the guidance of the present ab initio calculations.

  5. A straightforward method for Vacuum-Ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry

    SciTech Connect

    Fulvio, D. E-mail: dfu@oact.inaf.it; Brieva, A. C.; Jäger, C.; Cuylle, S. H.; Linnartz, H.; Henning, T.

    2014-07-07

    Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to most experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O{sub 2} actinometry experiments allow us to estimate the quantum yield (QY) values QY{sub 122} = 0.44 ± 0.16 and QY{sub 160} = 0.87 ± 0.30 for solid-phase O{sub 2} actinometry.

  6. On BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor degradation mechanism by vacuum-ultraviolet excitation

    SciTech Connect

    Bizarri, G.; Moine, B.

    2005-12-01

    Additional to a correct color and a high efficiency, phosphors for plasma display panels must maintain their light output for thousands of hours. Often the degradation is the restricting factor in using phosphors. In this article, the mechanism of luminance decrease in blue-emitting BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor during the operation of the PDPs has been studied. It is shown experimentally that the aging process is mainly due to the vacuum-ultraviolet excitation (VUV). It is demonstrated that the degradation mechanism can be accelerated by using a 193 nm laser excitation. Based on excitation, reflectance, thermoluminescence spectra, and aging or annealing processes by laser excitation, the main causes of the degradation are demonstrated. The aging process can be separated in two different processes according to the temperature: a first one, at low temperature, corresponding to the autoionization of luminescent centers (Eu{sup 2+}{yields}Eu{sup 3+}); and a second one, at high temperature, linked to the formation of traps in the phosphor. These traps induce a perturbation of the energy migration in the phosphor. In addition, the relevant parameters of trap formation are highlighted: density of the VUV excitation, temperature, and atmosphere/pressure surrounding the phosphor. A model of BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor degradation mechanism is proposed.

  7. Valence and Ionic Lowest-Lying Electronic States of Isobutyl Formate Studied by High-Resolution Vacuum Ultraviolet Photoabsorption, Photoelectron Spectroscopy, and Ab Initio Calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hoffmann, S V; Jones, N C; MacDonald, M A; Zuin, L; Mason, N J; Limão-Vieira, P

    2015-08-13

    The highest resolution vacuum ultraviolet photoabsorption spectrum of isobutyl formate, C5H10O2, yet reported is presented over the energy range 4.5-10.7 eV (275.5-118.0 nm) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl formate and are compared with a newly recorded photoelectron spectrum (from 9.0 to 27.0 eV). The value of the first ionization energy was determined to be 10.508 eV (adiabatic) and 10.837 eV (vertical). New vibrational structure is observed in the first photoelectron band, predominantly resulting from C-O and C═O stretches of the molecule. The photoabsorption cross sections have been used to calculate the photolysis lifetime of isobutyl formate in the upper stratosphere (20-50 km), indicating that the hydroxyl radical processes will be the main loss process for isobutyl formate.

  8. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region.

    PubMed

    Plogmaker, Stefan; Linusson, Per; Eland, John H D; Baker, Neville; Johansson, Erik M J; Rensmo, Håkan; Feifel, Raimund; Siegbahn, Hans

    2012-01-01

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of ~8 to ~120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  9. Vacuum ultraviolet absorption spectroscopy in combination with comprehensive two-dimensional gas chromatography for the monitoring of volatile organic compounds in breath gas: A feasibility study.

    PubMed

    Gruber, Beate; Groeger, Thomas; Harrison, Dale; Zimmermann, Ralf

    2016-09-16

    Vacuum ultraviolet (VUV) absorption spectroscopy was recently introduced as a new detection system for one, as well as comprehensive two-dimensional gas chromatography (GC×GC) and successfully applied to the analysis of various analytes in several matrices. In this study, its suitability for the analysis of breath metabolites was investigated and the impact of a finite volume of the absorption cell and makeup gas pressure was evaluated for volatile analytes in terms of sensitivity and chromatographic resolution. A commercial available VUV absorption spectrometer was coupled to GC×GC and applied to the analysis of highly polar volatile organic compounds (VOCs). Breath gas samples were acquired by needle trap micro extraction (NTME) during a glucose challenge and analysed by the applied technique. Regarding qualitative and quantitative information, the VGA-100 is compatible with common GC×GC detection systems like FID and even TOFMS. Average peak widths of 300ms and LODs in the lower ng range were achieved using GC×GC-VUV. Especially small oxygenated breath metabolites show intense and characteristic absorption patterns in the VUV region. Challenge responsive VOCs could be identified and monitored during a glucose challenge. The new VUV detection technology might especially be of benefit for applications in clinical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Limonene: electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, electron scattering, He(I) photoelectron spectroscopy and ab initio calculations.

    PubMed

    Śmiałek, M A; Hubin-Franskin, M-J; Delwiche, J; Duflot, D; Mason, N J; Vrønning-Hoffmann, S; de Souza, G G B; Ferreira Rodrigues, A M; Rodrigues, F N; Limão-Vieira, P

    2012-02-14

    Electronic state spectroscopy of limonene has been investigated using vacuum ultraviolet photoabsorption spectroscopy in the energy range 5.0-10.8 eV. The availability of a high resolution photon beam (~0.075 nm) enabled detailed analysis of the vibrational progressions and allowed us to propose, for the first time, new assignments for several Rydberg series. Excited states located in the 7.5-8.4 eV region have been studied for the first time. A He(I) photoelectron spectrum has also been recorded from 8.2 to 9.5 eV and compared to previous low resolution works. A new value of 8.521 ± 0.002 eV for the ground ionic state adiabatic ionisation energy is proposed. Absolute photoabsorption cross sections were derived in the 10-26 eV range from electron scattering data. All spectra presented in this paper represent the highest resolution data yet reported for limonene. These experiments are complemented by new ab initio calculations performed for the three most abundant conformational isomers of limonene, which we then used in the assignment of the spectral bands.

  11. Absorption spectroscopy of xenon and ethylene-noble gas mixtures at high pressure: towards Bose-Einstein condensation of vacuum ultraviolet photons

    NASA Astrophysics Data System (ADS)

    Wahl, Christian; Brausemann, Rudolf; Schmitt, Julian; Vewinger, Frank; Christopoulos, Stavros; Weitz, Martin

    2016-12-01

    Bose-Einstein condensation is a phenomenon well known for material particles as cold atomic gases, and this concept has in recent years been extended to photons confined in microscopic optical cavities. Essential for the operation of such a photon condensate is a thermalization mechanism that conserves the average particle number, as in the visible spectral regime can be realized by subsequent absorption re-emission processes in dye molecules. Here we report on the status of an experimental effort aiming at the extension of the concept of Bose-Einstein condensation of photons towards the vacuum ultraviolet spectral regime, with gases at high-pressure conditions serving as a thermalization medium for the photon gas. We have recorded absorption spectra of xenon gas at up to 30 bar gas pressure of the 5p^6-5p^56s transition with a wavelength close to 147 nm. Moreover, spectra of ethylene noble gas mixtures between 158 and 180 nm wavelength are reported.

  12. Perfluorocyclobutane electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, electron impact, He I photoelectron spectroscopy, and ab initio calculations

    SciTech Connect

    Limao-Vieira, P.; Vasekova, E.; Mason, N. J.; Giuliani, A.; Lourenco, J. M. C.; Santos, P. M.; Duflot, D.; Hoffmann, S. V.; Delwiche, J.; Hubin-Franskin, M.-J.

    2007-09-15

    The electronic state spectroscopy of perfluorocyclobutane (c-C{sub 4}F{sub 8}) has been investigated using high resolution vacuum ultraviolet (vuv) photoabsorption spectroscopy in the energy range 6.0-11 eV. The electron energy loss spectrum (EELS) was also recorded in the nonelectric dipolar interaction mode (100 eV incident energy, 10 deg. scattering angle) over the 8-14 eV energy-loss range and the excited states in the 11-14 eV spectral region have been observed. An He I photoelectron spectrum recorded between 11.0 and 19.8 eV is compared with earlier lower resolution results. This has allowed us to derive a more precise value of 12.291{+-}0.002 eV for the ground neutral state vertical ionization energy. All spectra presented in this paper represent the highest resolution data yet reported for perfluorocyclobutane, to the best of our knowledge. Ab initio calculations have been performed for helping in the assignment of the spectral bands for both neutral excited states and ionic states.

  13. Simultaneous measurement of nitrogen and hydrogen dissociation from vacuum ultraviolet self-absorption spectroscopy in a developing low temperature plasma at atmospheric pressure

    SciTech Connect

    Laity, George; Fierro, Andrew; Dickens, James; Neuber, Andreas; Frank, Klaus

    2013-05-06

    We demonstrate a method for determining the dissociation density of N and H atoms present in a developing low temperature plasma, based on the emission and self-absorption of vacuum ultraviolet radiation produced from the plasma. Spark plasmas are produced via pulsed discharge in N{sub 2}/H{sub 2} mixtures at atmospheric pressure, where information on the dissociated densities of the constituent gas molecules is desired without employing invasive diagnostic techniques. By analyzing the self-absorption line profile of 121.5 nm Lyman-{alpha} H radiation emitted within the first {approx}1.0 mm of plasma near the anode tip, a peak dissociated H atom concentration of 5.6 Multiplication-Sign 10{sup 17} cm{sup -3} was observed {approx}100 ns into spark formation, with an estimated electron density of 2.65 Multiplication-Sign 10{sup 18} cm{sup -3} determined from Stark broadening. Similarly, simultaneous line fitting of the N 120.0/124.3 nm emission profiles revealed a peak dissociated N atom concentration of 3.8 Multiplication-Sign 10{sup 17} cm{sup -3} during the same discharge period.

  14. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    SciTech Connect

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid

    2010-06-10

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman- region) in the interstellar medium.

  15. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    SciTech Connect

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid

    2010-03-02

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-a region) in the interstellar medium.

  16. Online investigations on ozonation products of pyrene and benz[ a]anthracene particles with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Gao, Shaokai; Zhang, Yang; Meng, Junwang; Shu, Jinian

    The reaction products of ozone with pyrene and benz[ a]anthracene absorbed on azelaic acid particles under the pseudo-first-order reaction conditions have been investigated with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The pyrene and benz[ a]anthracene particles with the initial concentrations of ˜1 mg m -3 are respectively exposed to ˜22 ppm ozone in a reaction chamber with a volume of ˜180 L. The time-of-flight mass spectra of the particulate ozonides are obtained. The assignments of the mass spectra reveal that 4-carboxy-5-phenanthrene-carboxyaldehyde (71%) and hydroxypyrene (23%) are the main solid state ozonides of pyrene, while 2-(2-formyl)phenyl-3-naphthoic acid (35%), hydroxybenz[ a]anthrone (30%), and benz[ a]anthracene-7,12-dione (18%) are the main solid state ozonides of benz[ a]anthracene. The pathways of the ozonations are proposed in the paper.

  17. Thermal vaporization of biological nanoparticles: fragment-free vacuum ultraviolet photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and beta-carotene.

    PubMed

    Wilson, Kevin R; Jimenez-Cruz, Michael; Nicolas, Christophe; Belau, Leonid; Leone, Stephen R; Ahmed, Musahid

    2006-02-16

    A simple, new way to introduce fragile biomolecules into the gas phase via thermal vaporization of nanoparticles is described. The general utility of this technique for the study of biomolecules is demonstrated by coupling this source to tunable synchrotron vacuum ultraviolet radiation. Fragment-free photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and beta-carotene are detected with signal-to-noise ratios exceeding 100. The 8.0 eV photoionization mass spectrum of tryptophan nanoparticles vaporized at 373 K is dominated by a single parent ion peak that exhibits a 20-fold enhancement over the methylene indole fragment ion. The degree of dissociative photoionization of tryptophan can be precisely controlled either by the thermal energy imparted into the neutral tryptophan molecule or by the energy of the ionizing photon. The results reveal how approximately 0.5 eV changes in internal energy affect both the photoionization mass spectrum of tryptophan and the appearance energy of the daughter ion fragments. This method allows the ionization energies of glycine (9.3 +/- 0.1 eV), tryptophan (7.3 +/- 0.2 eV), phenylalanine (8.6 +/- 0.1 eV), phenylalanine-glycine-glycine (9.1 +/- 0.1 eV), and beta-carotene (<7.0 eV) molecules to be determined directly from the photoionization efficiency spectra.

  18. Vacuum ultra-violet emission of CF4 and CF3I containing plasmas and Their effect on low-k materials

    NASA Astrophysics Data System (ADS)

    el Otell, Z.; Šamara, V.; Zotovich, A.; Hansen, T.; de Marneffe, J.-F.; Baklanov, M. R.

    2015-10-01

    CF3I was suggested as a replacement of CF4 gas to decrease the plasma-induced damage (PID) on low-k dielectrics during etching. This proposal is investigated by means of plasma emission measurements and material characterisation. The experiments were conducted in a 300 mm capacitively coupled plasma source. The vacuum ultraviolet (VUV, 30≤slant λ ≤slant 220 nm) plasma emission was measured for discharges generated in a pure or a mixture of argon, CF4 and/or CF3I, since VUV plays a major role in PID. However, CF3I containing discharges were found to have a stronger emission than CF4 in the VUV range. Nevertheless, Fourier transform infra-red spectroscopy and κ-value measurements showed that there is almost no difference between the damage caused by CF3I or CF4 containing plasmas, while etching in a capacitively coupled plasma source. It is proposed that the damage caused by CF3I with lower F*-density but higher VUV-photon flux is similar to the damage caused by CF4, with higher F*-density but lower VUV-photon flux.

  19. Vacuum ultraviolet lamp based magnetic field enhanced photoelectron ionization and single photon ionization source for online time-of-flight mass spectrometry.

    PubMed

    Wu, Qinghao; Hua, Lei; Hou, Keyong; Cui, Huapeng; Chen, Wendong; Chen, Ping; Wang, Weiguo; Li, Jinghua; Li, Haiyang

    2011-12-01

    A magnetic field enhanced photoelectron ionization (MEPEI) source combined with single photon ionization (SPI) was developed for an orthogonal acceleration time-of-flight mass spectrometer (oaTOFMS). A commercial radio frequency (rf) powered vacuum ultraviolet (VUV) lamp was used as SPI light source, and the photoelectrons generated by photoelectric effect were accelerated to induce electron ionization (EI). The MEPEI was obtained by applying a magnetic field of about 800 G with a permanent annular magnet. Compared to a nonmagnetic field photoelectron ionization source, the signal intensities for SO(2), SF(6), O(2), and N(2) in MEPEI were improved more than 2 orders with the photoelectron energy around 20 eV, while most of the characteristics of soft ionization still remained. Simulation with SIMION showed that the sensitivity enhancement in MEPEI was ascribed to the increase of the electron moving path and the improvement of the electrons transmission. The limits of detection for SO(2) and benzene were 750 and 80 ppbv within a detection time of 4 s, respectively. The advantages of the source, including broad range of ionizable compounds, reduced fragments, and good sensitivity with low energy MEPEI, were demonstrated by monitoring pyrolysis products of polyvinyl chloride (PVC) and the intermediate products in discharging of the SF(6) gas inpurity.

  20. Thermal desorption/tunable vacuum-ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments.

    PubMed

    Fang, Wenzheng; Gong, Lei; Shan, Xiaobin; Liu, Fuyi; Wang, Zhenya; Sheng, Liusi

    2011-12-01

    This paper describes thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for the real-time analysis of secondary organic aerosols (SOAs) in smog chamber experiments. SOAs are sampled directly from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. Once the particles have entered the source region, they impact on a heater and are vaporized. The nascent vapor is then softly ionized by tunable VUV synchrotron radiation. TD-VUV-TOF-PIAMS was used in conjunction with the smog chamber to study SOA formation from the photooxidation of toluene with hydroxyl radicals. The ionization energies (IEs) of these SOA products are sometimes very different with each other. As the ideal photon source is tunable, its energy can be adjusted for each molecular to be ionized. The mass spectra obtained at different photon energies are then to be useful for molecular identification. Real-time analysis of the mass spectra of SOAs is compared with previous off-line measurements. These results illustrate the potential of TD-VUV-TOF-PIAMS for direct molecular characterization of SOAs in smog chamber experiments.

  1. Measurement of H and H/sub 2/ populations in-situ in a low-temperature plasma by vacuum-ultraviolet laser-absorption spectroscopy

    SciTech Connect

    Schlachter, A.S.; Young, A.T.; Stutzin, G.C.; Stearns, J.W.; Doebele, H.G.; Leung, K.N.; Kunkel, W.B.

    1988-12-01

    A new technique, vacuum-ultraviolet laser-absorption spectroscopy, has been developed to quantitatively determine the absolute density of H and H/sub 2/ within a plasma. The technique is particularly well suited to measurement in a plasma, where high charged particle and photon background complicate other methods of detection. The high selectivity and sensitivity of the technique allows for the measurement of the rotational-vibrational state distribution of H/sub 2/ as well as the translational temperature of the atoms and molecules. The technique has been used to study both pulsed and continuous H/sup /minus// ion-source plasma discharges. H/sub 2/ state distributions in a multicusp ''volume'' H/sup /minus// ion- source plasma show a high degree of internal excitation, with levels up to v = 5 and J = 8 being observed. The method is applicable for a very wide range of plasma conditions. Emission measurements from excited states of H are also reported. 17 refs., 9 figs.

  2. Full observation of ultrafast cascaded radiationless transitions from S2(ππ(∗)) state of pyrazine using vacuum ultraviolet photoelectron imaging.

    PubMed

    Horio, Takuya; Spesyvtsev, Roman; Nagashima, Kazuki; Ingle, Rebecca A; Suzuki, Yoshi-Ichi; Suzuki, Toshinori

    2016-07-28

    A photoexcited molecule undergoes multiple deactivation and reaction processes simultaneously or sequentially, which have been observed by combinations of various experimental methods. However, a single experimental method that enables complete observation of the photo-induced dynamics would be of great assistance for such studies. Here we report a full observation of cascaded electronic dephasing from S2(ππ(*)) in pyrazine (C4N2H4) by time-resolved photoelectron imaging (TRPEI) using 9.3-eV vacuum ultraviolet pulses with a sub-20 fs time duration. While we previously demonstrated a real-time observation of the ultrafast S2(ππ(*)) → S1(nπ(*)) internal conversion in pyrazine using TRPEI with UV pulses, this study presents a complete observation of the dynamics including radiationless transitions from S1 to S0 (internal conversion) and T1(nπ(*)) (intersystem crossing). Also discussed are the role of (1)Au(nπ(*)) in the internal conversion and the configuration interaction of the S2(ππ(*)) electronic wave function.

  3. Full observation of ultrafast cascaded radiationless transitions from S2(ππ∗) state of pyrazine using vacuum ultraviolet photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Horio, Takuya; Spesyvtsev, Roman; Nagashima, Kazuki; Ingle, Rebecca A.; Suzuki, Yoshi-ichi; Suzuki, Toshinori

    2016-07-01

    A photoexcited molecule undergoes multiple deactivation and reaction processes simultaneously or sequentially, which have been observed by combinations of various experimental methods. However, a single experimental method that enables complete observation of the photo-induced dynamics would be of great assistance for such studies. Here we report a full observation of cascaded electronic dephasing from S2(ππ*) in pyrazine (C4N2H4) by time-resolved photoelectron imaging (TRPEI) using 9.3-eV vacuum ultraviolet pulses with a sub-20 fs time duration. While we previously demonstrated a real-time observation of the ultrafast S2(ππ*) → S1(nπ*) internal conversion in pyrazine using TRPEI with UV pulses, this study presents a complete observation of the dynamics including radiationless transitions from S1 to S0 (internal conversion) and T1(nπ*) (intersystem crossing). Also discussed are the role of 1Au(nπ*) in the internal conversion and the configuration interaction of the S2(ππ*) electronic wave function.

  4. In situ removal of carbon contamination from optics in a vacuum ultraviolet and soft X-ray undulator beamline using oxygen activated by zeroth-order synchrotron radiation.

    PubMed

    Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Adachi, Jun Ichi; Mase, Kazuhiko; Amemiya, Kenta

    2012-09-01

    Carbon contamination of optics is a serious issue in all soft X-ray beamlines because it decreases the quality of experimental data, such as near-edge X-ray absorption fine structure, resonant photoemission and resonant soft X-ray emission spectra in the carbon K-edge region. Here an in situ method involving the use of oxygen activated by zeroth-order synchrotron radiation was used to clean the optics in a vacuum ultraviolet and soft X-ray undulator beamline, BL-13A at the Photon Factory in Tsukuba, Japan. The carbon contamination of the optics was removed by exposing them to oxygen at a pressure of 10(-1)-10(-4) Pa for 17-20 h and simultaneously irradiating them with zeroth-order synchrotron radiation. After the cleaning, the decrease in the photon intensity in the carbon K-edge region reduced to 2-5%. The base pressure of the beamline recovered to 10(-7)-10(-8) Pa in one day without baking. The beamline can be used without additional commissioning.

  5. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    SciTech Connect

    Chen, Y.-J.; Wu, C.-Y. R.; Chuang, K.-J.; Chu, C.-C.; Yih, T.-S.; Muñoz Caro, G. M.; Nuevo, M.; Ip, W.-H.

    2014-01-20

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H{sub 2} molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H{sub 2} inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H{sub 2} versus H{sub 2} seeded in He), and the optical properties of the window used (MgF{sub 2} versus CaF{sub 2}). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H{sub 2} molecular emission ranges.

  6. A straightforward method for Vacuum-Ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry

    NASA Astrophysics Data System (ADS)

    Fulvio, D.; Brieva, A. C.; Cuylle, S. H.; Linnartz, H.; Jäger, C.; Henning, T.

    2014-07-01

    Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to most experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O2 actinometry experiments allow us to estimate the quantum yield (QY) values QY122 = 0.44 ± 0.16 and QY160 = 0.87 ± 0.30 for solid-phase O2 actinometry.

  7. Vacuum Ultraviolet Emission Spectrum Measurement of a Microwave-discharge Hydrogen-flow Lamp in Several Configurations: Application to Photodesorption of CO Ice

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Chuang, K.-J.; Muñoz Caro, G. M.; Nuevo, M.; Chu, C.-C.; Yih, T.-S.; Ip, W.-H.; Wu, C.-Y. R.

    2014-01-01

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H2 molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H2 inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H2 versus H2 seeded in He), and the optical properties of the window used (MgF2 versus CaF2). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H2 molecular emission ranges.

  8. Elucidating the thermal decomposition of dimethyl methylphosphonate by vacuum ultraviolet (VUV) photoionization: pathways to the PO radical, a key species in flame-retardant mechanisms.

    PubMed

    Liang, Shuyu; Hemberger, Patrick; Neisius, N Matthias; Bodi, Andras; Grützmacher, Hansjörg; Levalois-Grützmacher, Joelle; Gaan, Sabyasachi

    2015-01-12

    The production of phosphoryl species (PO, PO2, HOPO) is believed to be of great importance for efficient flame-retardant action in the gas phase. We present a detailed investigation of the thermal decomposition of dimethyl methylphosphonate (DMMP) probed by vacuum ultraviolet (VUV) synchrotron radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. This technique provides a snapshot of the thermolysis process and direct evidence of how the reactive phosphoryl species are generated during heat exposure. One of the key findings of this work is that only PO is formed in high concentration upon DMMP decomposition, whereas PO2 is absent. It can be concluded that the formation of PO2 needs an oxidative environment, which is typically the case in a real flame. Based on the identification of products such as methanol, formaldehyde, and PO, as well as the intermediates O=P-CH3, H2C=P-OH, and H2C=P(=O)H, supported by quantum chemical calculations, we were able to describe the predominant pathways that lead to active phosphoryl species during the thermal decomposition of DMMP. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry (GC-VUV-MS)

    SciTech Connect

    Aerosol Dynamics Inc; Aerodyne Research, Inc.,; Tofwerk AG, Thun; Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Doug R.; Goldstein, Allen H.

    2011-09-13

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography-mass spectrometry (GC-MS) techniques. This work uses vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally"unresolved complex mixture" by separating components by GC retention time, tR, and mass-to-charge ratio, m/Q, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved based on tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally-relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. The classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  10. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet (VUV) synchrotron ionization quadrupole mass spectrometry: Application to low--temperature kinetics and product detection

    SciTech Connect

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-10-12

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radicalneutralchemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has beendeveloped that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion withexcellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by theairfoil is negligible. The reaction of C2H with C2H2 is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification basedon the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic ratesclose to the collision-determined limit.

  11. Isobutyl acetate: electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Śmiałek, Malgorzata A.; Łabuda, Marta; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo

    2017-05-01

    The high-resolution vacuum ultraviolet photoabsorption spectrum of isobutyl acetate, C6H12O2, is presented here and was measured over the energy range 4.3-10.8 eV (290-115 nm). Valence and Rydberg transitions with their associated vibronic series have been observed in the photoabsorption spectrum and are assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. The measured photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the Earth's upper atmosphere (20-50 km). Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl acetate and are compared with a photoelectron spectrum (from 9.5 to 16.7 eV), recorded for the first time. Vibrational structure is observed in the first photoelectron band of this molecule. Contribution to the Topical Issue: "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  12. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Wang, Shicong; Wendt, Amy E.; Culver, Cody; Radovanov, Svetlana; Persing, Harold

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  13. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region

    SciTech Connect

    Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan; Feifel, Raimund; Siegbahn, Hans; Linusson, Per; Eland, John H. D.; Baker, Neville

    2012-01-15

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  14. Absorption Coefficients of SF{6}, SF{4}, SOF{2} and SO{2}F{2} in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Pradayrol, C.; Casanovas, A. M.; Deharo, I.; Guelfucci, J. P.; Casanovas, J.

    1996-05-01

    Absorption coefficients k0(m^{-1} 100 kPa^{-1}) of SF{6} and of its main gaseous by-products SF{4}, SOF{2} and SO{2}F{2} were measured in the VUV region. The experiments were carried out at a temperature of 298 K and a spectral resolution of 0.1 nm over the wavelength range 115 - 180 nm for SF{6}, 115 - 220 nm for SF{4}, 120 - 195 nm for SOF{2} and 120 - 210 nm for SO{2}F{2}. The highest absorption coefficient values were obtained for SF{4} and the lowest for SF{6}. Les coefficients d'absorption k0(m^{-1} 100 kPa^{-1}) du SF{6} et de ses principaux produits de décomposition gazeux, SF{4}, SOF{2} et SO{2}F{2} ont été mesurés dans le domaine de l'ultraviolet sous vide. Les expériences ont été réalisées à la température de 298 K avec une résolution de 0,1 nm dans la gamme 115 180 nm pour le SF{6}, 115 220 nm pour le SF{4}, 120 195 nm pour le SOF{2} et 120 210 nm pour le SO{2}F{2}. Les coefficients d'absorption les plus élevés ont été mesurés pour le SF{4} et les plus faibles pour le SF{6}.

  15. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    SciTech Connect

    Leplat, N.; Rossi, M. J.

    2013-11-15

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300–630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10{sup 11} and 5.0 × 10{sup 11} molecule s{sup −1} cm{sup −3} of C{sub 2}H{sub 5}{sup •} (ethyl) and t-C{sub 4}H{sub 9}{sup •} (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  16. 25 W of average power at 172 nm in the vacuum ultraviolet from flat, efficient lamps driven by interlaced arrays of microcavity plasmas

    NASA Astrophysics Data System (ADS)

    Park, S.-J.; Herring, C. M.; Mironov, A. E.; Cho, J. H.; Eden, J. G.

    2017-04-01

    More than 25 W of average power and >800 W of peak power have been generated at λ =172 nm (h ν =7.2 eV) in the vacuum ultraviolet (VUV) from the Xe2 molecule in flat, 10 × 10 cm2 lamps having an active area and volume of 80 cm2 and <60 cm3, respectively. Powered by at least two interlaced arrays of microplasmas generated within cavities fabricated into an interior surface of the <6 mm thick lamp, these lamps have an electrical-to-optical conversion efficiency >20 % . For a bipolar voltage waveform driving frequency of 137 kHz and a 54% Xe/Ne gas fill mixture at a 300 K pressure of 550 Torr, the lamp generates as much as 31.5 W of average power and intensities >350 mW cm-2 in 40-60 μJ, 70±10 ns FWHM pulses produced in a burst mode-four pulses of 600-850 W peak power in every cycle of the driving waveform. The lamp intensity is uniform to within ±2.5% at ≥10 mm from its surface and average power varies linearly with pulse repetition frequency throughout the 18-135 kHz interval. The spectral breadth of the Xe dimer emission is ˜9 nm FWHM and time-resolved, spatial intensity maps show improved utilization of the power pulse (VṡI) with two or more microcavity arrays that are interleaved. This photonic source technology is capable of generating unprecedented power levels in the VUV spectral region (e.g., ˜2.5 kW m-2) with tiled lamps.

  17. Flow-modulated comprehensive two-dimensional gas chromatography combined with a vacuum ultraviolet detector for the analysis of complex mixtures.

    PubMed

    Zoccali, Mariosimone; Schug, Kevin A; Walsh, Phillip; Smuts, Jonathan; Mondello, Luigi

    2017-05-12

    The present paper is focused on the use of a vacuum ultraviolet absorption spectrometer (VUV) for gas chromatography (GC), within the context of flow modulated comprehensive two-dimensional gas chromatography (FM GC×GC). The features of the VUV detector were evaluated through the analysis of petrochemical and fatty acids samples. Besides responding in a predictable fashion via Beer's law principles, the detector provides additional spectroscopic information for qualitative analysis. Virtually all chemical species absorb and have unique gas phase absorption features in the 120-240nm wavelength range monitored. The VUV detector can acquire up to 90 full range absorption spectra per second, allowing its coupling with comprehensive two-dimensional gas chromatography. This recent form of detection can address specific limitations related to mass spectrometry (e.g., identification of isobaric and isomeric species with very similar mass spectra or labile chemical compounds), and it is also able to deconvolute co-eluting peaks. Moreover, it is possible to exploit a pseudo-absolute quantitation of analytes based on pre-recorded absorption cross-sections for target analytes, without the need for traditional calibration. Using this and the other features of the detector, particular attention was devoted to the suitability of the FM GC×GC-VUV system toward qualitative and quantitative analysis of bio-diesel fuel and different kinds of fatty acids. Satisfactory results were obtained in terms of tailing factor (1.1), asymmetry factor (1.1), and similarity (average value 97%), for the FAMEs mixtures analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Flash pyrolysis of ethyl, n-propyl, and isopropyl iodides as monitored by supersonic expansion vacuum ultraviolet photoionization time-of-flight mass spectrometry.

    PubMed

    Weber, Kevin H; Lemieux, Jessy M; Zhang, Jingsong

    2009-01-22

    The thermal decomposition of ethyl and propyl iodides, along with select isotopomers, up to 1300 K was performed by flash pyrolysis with a 20-100 mus time scale. The pyrolysis was followed by supersonic expansion to isolate the reactive intermediates and initial products, and detection was accomplished by vacuum ultraviolet single photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS). The products monitored, such as CH(3), CH(3)I, C(2)H(5), C(2)H(4), HI, I, C(3)H(7), C(3)H(6), and I(2), provide for the simultaneous and direct observation of molecular elimination and bond fission pathways in ethyl and propyl iodides. In the pyrolysis of ethyl iodide, both C-I bond fission and HI molecular elimination pathways are competitive at the elevated temperatures, with C-I bond fission being preferred; at temperatures >or=1000 K, the ethyl radical products further dissociate to ethene + H atoms. In the pyrolysis of isopropyl iodide, both HI molecular elimination and C-I bond fission are observed and the molecular elimination channel is more important at all the elevated temperatures; the isopropyl radicals produced in the C-I fission channel undergo further decomposition to propene + H at temperatures >or=850 K. In contrast, bond fission is found to dominate the n-propyl iodide pyrolysis; at temperatures >or=950 K the n-propyl radicals produced decompose into methyl radical + ethene and propene + H atom. Isotopomer experiments characterize the extent of surface reactions and verify that the HI molecular eliminations in ethyl and propyl iodides proceed by a C1, C2 elimination mechanism (the 1,2 intramolecular elimination).

  19. High-resolution Rydberg tagging time-of-flight measurements of atomic photofragments by single-photon vacuum ultraviolet laser excitation

    SciTech Connect

    Jones, Brant; Zhou Jingang; Yang Lei; Ng, C. Y.

    2008-12-15

    By coupling a comprehensive tunable vacuum ultraviolet (VUV) laser system to a velocity-mapped ion imaging apparatus, we show that high-resolution high-n Rydberg tagging time-of-flight (TOF) measurements of nascent atomic photofragments formed by laser photodissociation can be made using single-photon VUV laser photoexcitation. To illustrate this single-photon Rydberg tagging TOF method, we present here the results of the VUV laser high-n Rydberg tagging TOF measurements of O({sup 3}P{sub 2}) and S({sup 3}P{sub 2}) formed in the photodissociation of SO{sub 2} and CS{sub 2} at 193.3 and 202.3 nm, respectively. These results are compared to those obtained by employing the VUV laser photoionization time-sliced velocity-mapped ion imaging technique. The fact that the kinetic energy resolutions achieved in the VUV laser high-n Rydberg tagging TOF measurements of O and S atoms are found to be higher than those observed in the VUV laser photoionization, time-sliced velocity-mapped ion imaging studies show that the single-photon VUV laser high-n Rydberg tagging TOF method is useful and complementary to state-of-the-art time-sliced velocity-mapped ion imaging measurements of heavier atomic photofragments, such as O and S atoms. Furthermore, the general agreement observed between the VUV laser high-n Rydberg tagging TOF and velocity-mapped ion imaging experiments supports the conclusion that the lifetimes of the tagged Rydberg states of O and S atoms are sufficiently long to allow the reliable determination of state-resolved UV photodissociation cross sections of SO{sub 2} and CS{sub 2} by using the VUV laser high-n Rydberg tagging TOF method.

  20. Femtosecond time-resolved photoelectron spectroscopy with a vacuum-ultraviolet photon source based on laser high-order harmonic generation.

    PubMed

    Wernet, Philippe; Gaudin, Jérôme; Godehusen, Kai; Schwarzkopf, Olaf; Eberhardt, Wolfgang

    2011-06-01

    A laser-based tabletop approach to femtosecond time-resolved photoelectron spectroscopy with photons in the vacuum-ultraviolet (VUV) energy range is described. The femtosecond VUV pulses are produced by high-order harmonic generation (HHG) of an amplified femtosecond Ti:sapphire laser system. Two generations of the same setup and results from photoelectron spectroscopy in the gas phase are discussed. In both generations, a toroidal grating monochromator was used to select one harmonic in the photon energy range of 20-30 eV. The first generation of the setup was used to perform photoelectron spectroscopy in the gas phase to determine the bandwidth of the source. We find that our HHG source has a bandwidth of 140 ± 40 meV. The second and current generation is optimized for femtosecond pump-probe photoelectron spectroscopy with high flux and a small spot size at the sample of the femtosecond probe pulses. The VUV radiation is focused into the interaction region with a toroidal mirror to a spot smaller than 100 × 100 μm(2) and the flux amounts to 10(10) photons/s at the sample at a repetition rate of 1 kHz. The duration of the monochromatized VUV pulses is determined to be 120 fs resulting in an overall pump-probe time resolution of 135 ± 5 fs. We show how this setup can be used to map the transient valence electronic structure in molecular dissociation. © 2011 American Institute of Physics

  1. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source.

    PubMed

    Leplat, N; Rossi, M J

    2013-11-01

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300-630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C4H10 at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10(11) and 5.0 × 10(11) molecule s(-1) cm(-3) of C2H5(●) (ethyl) and t-C4H9(●) (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  2. Effects of vacuum ultraviolet photons, ion energy and substrate temperature on line width roughness and RMS surface roughness of patterned 193 nm photoresist

    NASA Astrophysics Data System (ADS)

    Titus, M. J.; Graves, D. B.; Yamaguchi, Y.; Hudson, E. A.

    2011-03-01

    We present a comparison of patterned 193 nm photoresist (PR) line width roughness (LWR) of samples processed in a well characterized argon (Ar) inductively coupled plasma (ICP) system to RMS surface roughness and bulk chemical modification of blanket 193 nm PR samples used as control samples. In the ICP system, patterned and blanket PR samples are irradiated with Ar vacuum ultraviolet photons (VUV) and Ar ions while sample temperature, photon flux, ion flux and ion energy are controlled and measured. The resulting chemical modifications to bulk 193 nm PR (blanket) and surface roughness are analysed with Fourier transform infrared spectroscopy and atomic force microscopy (AFM). LWR of patterned samples are measured with scanning electron microscopy and blanket portions of the patterned PRs are measured with AFM. We demonstrate that with no RF-bias applied to the substrate the LWR of 193 nm PR tends to smooth and correlates with the smoothing of the RMS surface roughness. However, both LWR and RMS surface roughness increases with simultaneous high-energy (>=70 eV) ion bombardment and VUV-irradiation and is a function of exposure time. Both high- and low-frequency LWR correlate well with the RMS surface roughness of the patterned and blanket 193 nm PR samples. LWR, however, does not increase with temperatures ranging from 20 to 80 °C, in contrast to the RMS surface roughness which increases monotonically with temperature. It is unclear why LWR remains independent of temperature over this range. However, the fact that blanket roughness and LWR on patterned samples, both scale similarly with VUV fluence and ion energy suggests a similar mechanism is responsible for both types of surface morphology modifications.

  3. A polarizer for vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Steinmetz, D. L.; Phillips, W. G.; Wirick, M.; Forbes, F. F.

    1980-01-01

    An MgF2 double Rochon prism, useful as a polarizer or analyzer in wavelengths longer than 1300A is described. Measurements of MgF2 transmission and of polarizer angular beam deviation from 1150 to 2900A are presented. The prism is comprised of 2.25 mm, MgF2 depolarizers, optically contacted. At normal incidence, a 4% transmission gain was measured from 6000 to 2200A, compared with air spaced elements. One depolarizer was vibrated to 40 g from 20 to 3500 Hz without deterioration in optical contact. Transmissions below 1400A are not good. In thin samples, surface loss is twice absorption loss in the range 1150 to 1500A. Refraction indices and a computer ray trace were used in processing photographic beam divergence data. If care is taken to remedy scattering effects, the prism is an efficient on-axis polarizer in the 1300 to 3000A range.

  4. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum.

    PubMed

    de Oliveira, N; Joyeux, D; Phalippou, D; Rodier, J C; Polack, F; Vervloet, M; Nahon, L

    2009-04-01

    We describe a Fourier transform (FT) spectrometer designed to operate down to 60 nm (20 eV) on a synchrotron radiation beamline for high resolution absorption spectrometry. As far as we know, such an instrument is not available below 140 nm mainly because manufacturing accurate and efficient beam splitters remains a major problem at these wavelengths, especially if a wide bandwidth operation is desired. In order to overcome this difficulty, we developed an interferometer based on wave front division instead of amplitude division. It relies on a modified Fresnel bimirror configuration that requires only flat mirrors. The instrument provides path difference scanning through the translation of one reflector. During the scanning, the moving reflector is controlled by an optical system that keeps its direction constant within a tolerable value and provides an accurate interferometric measurement of the path difference variation. Therefore, a regular interferogram sampling is obtained, producing a nominal spectral impulse response and an accurate spectral calibration. The first results presented in this paper show a measured spectral resolution of delta(sigma)=0.33 cm-1 (interval between spectral samples). This was obtained with a sampling interval of 29 nm (path difference) and 512 K samples from a one-sided interferogram using a cosine FT. Such a sampling interval should allow the recording of large bandwidth spectra down to lambda=58 nm with an ultimate resolving power of 500,000 at this wavelength. In order to check the instrument performances, we first recorded an interferogram from a He-Ne stabilized laser. This provided the actual spectral impulse function, which was found to be fully satisfactory. The determination of the impulse response distortion and of the noise on the vacuum ultraviolet (VUV) spectral range provided accurate information in the sampling error profile over a typical scan. Finally, the instrument has been moved to the SU5 undulator

  5. Determination of the absolute photoionization cross sections of CH3 and I produced from a pyrolysis source, by combined synchrotron and vacuum ultraviolet laser studies.

    PubMed

    Gans, Bérenger; Vieira Mendes, Luiz A; Boyé-Péronne, Séverine; Douin, Stéphane; Garcia, Gustavo; Soldi-Lose, Héloïse; Cunha de Miranda, Barbara K; Alcaraz, Christian; Carrasco, Nathalie; Pernot, Pascal; Gauyacq, Dolores

    2010-03-11

    A pyrolysis source coupled to a supersonic expansion has been used to produce the CH3 radical from two precursors, iodomethane CH3I and nitromethane CH3NO2. The relative ionization yield of CH3 has been recorded at the SOLEIL Synchrotron Radiation source in the range 9.0-11.6 eV, and its ionization threshold has been modeled by taking into account the vibrational and rotational temperature of the radical in the molecular beam. The relative photoionization yield has been normalized to an absolute cross section scale at a fixed wavelength (118.2 nm, sigma(i)(CH3) = 6.7(-1.8)(+2.4) Mb, 95% confidence interval) in an independent laboratory experiment using the same pyrolysis source, a vacuum ultraviolet (VUV) laser, and a carefully calibrated detection chain. The resulting absolute cross section curve is in good agreement with the recently published measurements by Taatjes et al., although with an improved signal-to-noise ratio. The absolute photoionization cross section of CH3I at 118.2 nm has also been measured to be sigma(i)(CH3I) = (48.2 +/- 7.9) Mb, in good agreement with previous electron impact measurements. Finally, the photoionization yield of the iodine atom in its ground state 2P(3/2) has been recorded using the synchrotron source and calibrated for the first time on an absolute cross section scale from our fixed 118.2 nm laser measurement, sigma(i)(I2P(3/2)) = 74(-23)(+33) Mb (95% confidence interval). The ionization curve of atomic iodine is in good agreement, although with slight variations, with the earlier relative ionization yield measured by Berkowitz et al. and is also compared to an earlier calculation of the iodine cross section by Robicheaux and Greene. It is demonstrated that, in the range of pyrolysis temperature used in this work, all the ionization cross sections are temperature-independent. Systematic care has been taken to include all uncertainty sources contributing to the final confidence intervals for the reported results.

  6. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum

    SciTech Connect

    Oliveira, N. de; Polack, F.; Vervloet, M.; Nahon, L.; Joyeux, D.; Phalippou, D.; Rodier, J. C.

    2009-04-15

    We describe a Fourier transform (FT) spectrometer designed to operate down to 60 nm (20 eV) on a synchrotron radiation beamline for high resolution absorption spectrometry. As far as we know, such an instrument is not available below 140 nm mainly because manufacturing accurate and efficient beam splitters remains a major problem at these wavelengths, especially if a wide bandwidth operation is desired. In order to overcome this difficulty, we developed an interferometer based on wave front division instead of amplitude division. It relies on a modified Fresnel bimirror configuration that requires only flat mirrors. The instrument provides path difference scanning through the translation of one reflector. During the scanning, the moving reflector is controlled by an optical system that keeps its direction constant within a tolerable value and provides an accurate interferometric measurement of the path difference variation. Therefore, a regular interferogram sampling is obtained, producing a nominal spectral impulse response and an accurate spectral calibration. The first results presented in this paper show a measured spectral resolution of {delta}{sigma}=0.33 cm{sup -1} (interval between spectral samples). This was obtained with a sampling interval of 29 nm (path difference) and 512 K samples from a one-sided interferogram using a cosine FT. Such a sampling interval should allow the recording of large bandwidth spectra down to {lambda}=58 nm with an ultimate resolving power of 500 000 at this wavelength. In order to check the instrument performances, we first recorded an interferogram from a He-Ne stabilized laser. This provided the actual spectral impulse function, which was found to be fully satisfactory. The determination of the impulse response distortion and of the noise on the vacuum ultraviolet (VUV) spectral range provided accurate information in the sampling error profile over a typical scan. Finally, the instrument has been moved to the SU5 undulator

  7. A comparison between the vacuum ultraviolet photoionization time-of-flight mass spectra and the GC/MS total ion chromatograms of polycyclic aromatic hydrocarbons contained in coal soot and multi-component PAH particles

    NASA Astrophysics Data System (ADS)

    Gao, Shaokai; Zhang, Yang; Li, Yao; Meng, Junwang; He, Hong; Shu, Jinian

    2008-07-01

    This paper reports a comparison between the vacuum ultraviolet photoionization time-of-flight mass spectra and the gas chromatography-mass spectrometry total ion chromatograms of polycyclic aromatic hydrocarbons (PAHs) contained in soot particles and multi-component PAH particles. The soot particles are produced by burning a small amount of screened bituminous coal powder in a tubular oven under synthesized air. The soot particles generated are analyzed on-line with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-AMS) and off-line with a gas chromatography-mass spectrometer (GC/MS). 55 PAHs are observed with the GC/MS, while parent ions of 54 PAHs are observed with the VUV-AMS. The multi-component PAH particles are generated by atomizing 16 PAHs in isopropyl alcohol. The PAHs are defined as 16 primary pollutants by the Environmental Protection Agency of the United States. GC/MS identifies the 16 PAHs while VUV-AMS observes 15 PAHs with missing the mass peak of naphthalene. The relationship of the PAH sensitivity of VUV-AMS and GC/MS vs. the molecular weights of the PAHs are obtained.

  8. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Hydrothermal Synthesis and Vacuum Ultraviolet-Excited Luminescence Properties of Novel Dy3+-doped GdPO4 White Light Phosphors

    NASA Astrophysics Data System (ADS)

    Han, Guo-Cai; Wang, Yu-Hua; Wu, Chun-Fang; Zhang, Jia-Chi; Lu, Yang-Hua

    2009-06-01

    Novel Dy3+-doped GdPO4 white light phosphors with a monoclinic system are successfully synthesized by the hydrothermal method at 240°C. The strong absorption at around 147 nm in the excitation spectrum is assigned to the host absorption. It is suggested that the vacuum ultraviolet excited energy is transferred from the host to the Dy3+ ions. The f - d transition of the Dy3+ ion is observed to be located at 182 nm, which is consistent with the calculated value using Dorenbos's expression. Under 147nm excitation, Gd0.92PO4:0.08Dy3+ phosphor exhibits two emission bands located at 572 nm (yellow) and 478 nm (blue), which correspond to the hypersensitive transitions 4F9/2-6H13/2 and 4F9/2-6H15/2. The two emission bands lead to the white light. Because of the strong absorption at about 147nm, Gd0.92PO4:0.08Dy3+ under vacuum ultraviolet excitation is an effective white light phosphor, and has promising applications to mercury-free lamps.

  9. Measurements of Vacuum Ultraviolet Radiation, Neutrons, and Ions from the Interaction of an Intense Relativistic Electron Beam and a Deuterated Polyethylene Target.

    DTIC Science & Technology

    diagnostics sensitive to vacum ultraviolet and neutron radiation. Target plasmas produced by three electron accelerators were analyzed. X-ray pinhole...conversion efficiencies of approximately 0.1% from electron beam energy to X-ray radiation were measured. Neutron production was attributed to the beam

  10. Ejecta particle size measurements from the break-up of micro-jets in vacuum and helium gas using ultraviolet in-line Fraunhofer holography

    NASA Astrophysics Data System (ADS)

    Sorenson, D. S.; Pazuchanics, P. D.; Johnson, R. P.; Tunnell, T. W.; Smalley, D. D.; Malone, R. M.; Kaufman, M. I.; Marks, D. G.; Capelle, G. A.; Grover, M.; Stevens, G. D.; LaLone, B. M.; Marshall, B. F.; Turley, W. D.

    2017-01-01

    An ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/μs. The diagnostic will be described and results from high-explosive shock-driven tin ejecta experiments will be presented.

  11. Creating breakthroughs at 3M.

    PubMed

    von Hippel, E; Thomke, S; Sonnack, M

    1999-01-01

    Most senior managers want their product development teams to create break-throughs--new products that will allow their companies to grow rapidly and maintain high margins. But more often they get incremental improvements to existing products. That's partly because companies must compete in the short term. Searching for breakthroughs is expensive and time consuming; line extensions can help the bottom line immediately. In addition, developers simply don't know how to achieve breakthroughs, and there is usually no system in place to guide them. By the mid-1990s, the lack of such a system was a problem even for an innovative company like 3M. Then a project team in 3M's Medical-Surgical Markets Division became acquainted with a method for developing breakthrough products: the lead user process. The process is based on the fact that many commercially important products are initially thought of and even prototyped by "lead users"--companies, organizations, or individuals that are well ahead of market trends. Their needs are so far beyond those of the average user that lead users create innovations on their own that may later contribute to commercially attractive breakthroughs. The lead user process transforms the job of inventing breakthroughs into a systematic task of identifying lead users and learning from them. The authors explain the process and how the 3M project team successfully navigated through it. In the end, the team proposed three major new product lines and a change in the division's strategy that has led to the development of breakthrough products. And now several more divisions are using the process to break away from incrementalism.

  12. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations.

    PubMed

    Śmiałek, M A; Łabuda, M; Guthmuller, J; Hubin-Franskin, M-J; Delwiche, J; Duflot, D; Mason, N J; Hoffmann, S V; Jones, N C; Limão-Vieira, P

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C2H5OCHO, yet reported is presented over the wavelength range 115.0-275.5 nm (10.75-4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20-50 km).

  13. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    SciTech Connect

    Śmiałek, M. A.; Duflot, D.; Mason, N. J.; Hoffmann, S. V.; Jones, N. C.; Limão-Vieira, P.

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)

  14. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: A novel Dy3+-doped GdPO4 white-light phosphors under vacuum ultraviolet excitation for Hg-free lamps application

    NASA Astrophysics Data System (ADS)

    Han, Guo-Cai; Wang, Yu-Hua; Wu, Chun-Fang; Zhang, Jia-Chi

    2009-10-01

    Novel Dy3+-doped GdPO4 white light phosphors with monoclinic system were successfully synthesised by hydrothermal method at 240 °C. This paper investigates the luminescence properties of white-light Gd1-xPO4:xDy3+ under vacuum ultraviolet (VUV) excitation. The strong absorption at around 147 nm in excitation spectrum energy can be transferred to the energy levels of Dy3+ ion from the host absorption. Additionally, this white light phosphors are activated by a single Dy3+ ion and with a lower preparation temperature, which tend to decrease the consumption of rare earth resource and energy. Therefore, the luminescence of Gd1-xPO4:xDy3+ under VUV excitation is effective, and proves to be promising in application to mercury-free lamp.

  15. Mass-analyzed threshold ionization study of vinyl bromide cation in the first excited electronic state using vacuum-ultraviolet radiation generated by four-wave mixing in Hg

    NASA Astrophysics Data System (ADS)

    Lee, Mina; Kim, Myung Soo

    2005-11-01

    The vibrational spectrum of the vinyl bromide cation in the first excited electronic state ÃA'2 was obtained by one-photon mass-analyzed threshold ionization (MATI) spectroscopy. The use of an improved vacuum-ultraviolet radiation source based on four-wave sum frequency mixing in Hg resulted in excellent sensitivity for MATI signals. From the MATI spectrum, the ionization energy to the ÃA'2 state of the cation was determined to be 10.9150±0.0006eV. Nearly complete vibrational assignments for the MATI peaks were possible by utilizing the vibrational frequencies and Franck-Condon factors calculated at the density-functional theory (DFT) and time-dependent DFT/B3LYP levels with the 6-311+G(df,p) basis set.

  16. The 3-m Cologne radiotelescope

    NASA Astrophysics Data System (ADS)

    Winnewisser, G.; Vowinkel, B.

    1984-03-01

    The design and operation of the Cologne radiotelescope and its application to the spectroscopic study of interstellar molecules are surveyed. A table of technical specifications, a block diagram of the data-processing system, and sample spectra are provided. The 3-m-diameter main reflector has a surface precision of 30 microns rms, permitting observations at wavelengths as low as 0.3 mm, although atmospheric conditions at Cologne limit this to about 2.6 mm. The computer control system, 80-90-GHz heterodyne receiver, and spectrometer/continuum back ends are examined in detail. Plans call for installation of the telescope at the Gornergrat observatory (3126 m elevation) in Switzerland in fall, 1984, to expand the wavelength range. The role of the Cologne telescope as a complement to and training installation for the planned space instruments GIRL, ISO, and FIRST is indicated.

  17. Effects of a high energy particle environment on the quantum efficiency of spectrally selective photocathodes for the middle and vacuum ultraviolet.

    PubMed

    Heath, D F; McElaney, J H

    1968-10-01

    The quantum efficiences of spectrally selective photocathodes for the middle and vacuum uv (semitransparent depositions of CsI, CuI, and CsTe on Al(2)O(3) windows, a solid tungsten photocathode behind a MgF(2) window) were measured before their use as detectors in a rocket experiment, one year later, and after irradiation by high energy electrons. Only the CsI photodiode showed any change in quantum efficiency, a notable increase after irradiation. Two additional CsI diodes were then irradiated, one with high energy electrons, the other with gamma rays. However, these diodes showed no change in quantum efficiency. The quantum efficiencies of all the photodiodes appear stable with time. The CuI and CsTe diodes also remain stable under irradiation, while the CsI diode may exhibit an increase in quantum efficiency after irradiation.

  18. Observations of the vacuum ultraviolet and x-ray brightness profiles of Fe, Ni, and Ge in magnetically confined fusion plasmas.

    PubMed

    May, M J; Finkenthal, M; Moos, H W; Fournier, K B; Goldstein, W H; Mattioli, M; Pacella, D; Mazzitelli, G; Leigheb, M; Gabellieri, L

    2001-09-01

    The spatial brightness profiles of emission lines for the K-like through He-like ionization states of Fe, Ge, and Ni have been measured during a set of experiments in which Fe and Ge were introduced into FTU tokamak plasmas by using the laser blowoff technique. Nickel was an intrinsic impurity observed during these experiments that was sputtered from the inconel limiter. The brightness profiles were measured by spatially scanable, photometrically calibrated vaccum ultraviolet and x-ray spectrometers that covered the 1 to 1700 A region. Simulations of these profiles and the time evolution of the laser blowoffs were performed with the MIST transport code using several sets of atomic physics compilations [ADPAK (originally in MIST), Arnaud and Raymond (AR92), Arnaud and Rothenflug (AR85), Mazzotta et al., and Mattioli (an extension to Mazzotta)]. The goal was to determine which set of available rates could best simulate the measured spatial brightness profiles and the charge state balance in the plasma. The Mazzotta et al. (for Fe and Ni), the Mattioli (for Ge), and the AR92 (for Fe only) rates adequately simulated the He-, Li-, Be-, Na-, Mg-like ionization states. The F- to B-like charge states could not be simulated by these compilations unless the relevant dielectronic rates were multiplied by a factor of 2. The ADPAK rates could not adequately predict any of the charge states of Fe, Ge, or Ni.

  19. Development of measurement technique for carbon atoms employing vacuum ultraviolet absorption spectroscopy with a microdischarge hollow-cathode lamp and its application to diagnostics of nanographene sheet material formation plasmas

    SciTech Connect

    Takeuchi, Wakana; Sasaki, Hajime; Takashima, Seigo; Kato, Satoru; Hiramatsu, Mineo; Hori, Masaru

    2009-06-01

    This study describes the development of a compact measurement technique for absolute carbon (C) atom density in processing plasmas, using vacuum ultraviolet absorption spectroscopy (VUVAS) employing a high-pressure CO{sub 2} microdischarge hollow-cathode lamp (C-MHCL) as the light source. The characteristics of the C-MHCL as a resonance line source of C atoms at 165.7 nm for VUVAS measurements of the absolute C atom density are reported. The emission line profile of the C-MHCL under typical operating conditions was estimated to be the Voigt profile with a DELTAnu{sub L}/DELTAnu{sub D} value of 2.5, where DELTAnu{sub L} is the Lorentz width and DELTAnu{sub D} is the Doppler width. In order to investigate the behavior of C and H atoms in the processing plasma used for the fabrication of two-dimensional nanographene sheet material, measurements of the atom densities were carried out using the VUVAS technique. The H atom density increased with increasing pressure, while the C atom density was almost constant at 5x10{sup 12} cm{sup -3}. The density ratio of C to H atoms in the plasma was found to influence the morphology of carbon nanowalls (CNWs). With increasing H/C density ratio, the growth rate decreased and the space between the walls of the CNWs became wider.

  20. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    SciTech Connect

    Limão-Vieira, P.; Ferreira da Silva, F.; Almeida, D.; Hoshino, M.; Tanaka, H.; Mogi, D.; Tanioka, T.; Mason, N. J.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

  1. Real-time detection of S(1D2) photofragments produced from the 1B2(1Σu+) state of CS2 by vacuum ultraviolet photoelectron imaging using 133 nm probe pulses

    NASA Astrophysics Data System (ADS)

    Horio, Takuya; Spesyvtsev, Roman; Furumido, Yu; Suzuki, Toshinori

    2017-07-01

    Ultrafast photodissociation dynamics from the 1B2(1Σu+) state of CS2 are studied by time-resolved photoelectron imaging using the fourth (4ω, 198 nm) and sixth (6ω, 133 nm) harmonics of a femtosecond Ti:sapphire laser. The 1B2 state of CS2 was prepared with the 4ω pulses, and subsequent dynamics were probed using the 6ω vacuum ultraviolet (VUV) pulses. The VUV pulses enabled real-time detection of S(1D2) photofragments, produced via CS2*(1B2(1Σu+)) → CS(X 1Σ+) + S(1D2). The photoionization signal of dissociating CS2*(1B2(1Σu+)) molecules starts to decrease at about 100 fs, while the S(1D2) fragments appear with a finite (ca. 400 fs) delay time after the pump pulse. Also discussed is the configuration interaction of the 1B2(1Σu+) state based on relative photoionization cross-sections to different cationic states.

  2. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV.

    PubMed

    Limão-Vieira, P; Ferreira da Silva, F; Almeida, D; Hoshino, M; Tanaka, H; Mogi, D; Tanioka, T; Mason, N J; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0-10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ((1)Δ←(1)Σ(+)) transition, with a new weak transition assigned to ((1)Σ(-)←(1)Σ(+)) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to (1)Σ(+) and (1)Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ((1)Σ(+) and (1)Π) transitions of COS by electron impact, the optical oscillator strength f0 value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20-50 km).

  3. Novel Process of Simultaneous Removal of Nitric Oxide and Sulfur Dioxide Using a Vacuum Ultraviolet (VUV)-Activated O2/H2O/H2O2 System in A Wet VUV-Spraying Reactor.

    PubMed

    Liu, Yangxian; Wang, Qian; Pan, Jianfeng

    2016-12-06

    A novel process for NO and SO2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O2/H2O/H2O2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO2 removal was evaluated. Active species (O3 and ·OH) and liquid products (SO3(2-), NO2(-), SO4(2-), and NO3(-)) were analyzed. The chemistry and routes of NO and SO2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO2, and a maximum removal of 96.8% for NO and complete SO2 removal were obtained under optimized conditions. SO2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H2O2 concentration, solution pH, liquid-to-gas ratio, and O2 concentration greatly enhances NO removal. Increasing NO and SO2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO2. NO removals by oxidation of O3, O·, and ·OH are the primary routes. NO removals by H2O2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.

  4. Deciphering the structure of isomeric oligosaccharides in a complex mixture by tandem mass spectrometry: photon activation with vacuum ultra-violet brings unique information and enables definitive structure assignment.

    PubMed

    Ropartz, David; Lemoine, Jérôme; Giuliani, Alexandre; Bittebière, Yann; Enjalbert, Quentin; Antoine, Rodolphe; Dugourd, Philippe; Ralet, Marie-Christine; Rogniaux, Hélène

    2014-01-07

    Carbohydrates have a wide variety of structures whose complexity and heterogeneity challenge the field of analytical chemistry. Tandem mass spectrometry, with its remarkable sensitivity and high information content, provides key advantages to addressing the structural elucidation of polysaccharides. Yet, classical fragmentation by collision-activated dissociation (CAD) in many cases fails to reach a comprehensive structural determination, especially when isomers have to be differentiated. In this work, for the first time, vacuum ultra-violet (VUV) synchrotron radiation is used as the activation process in tandem mass spectrometry of large oligosaccharides. Compared to low energy CAD (LE-CAD), photon activated dissociation brought more straightforward and valuable structural information. The outstanding feature was that complete series of informative ions were produced, with only minor neutral losses. Moreover, systematic fragmentation rules could be drawn thus facilitating the definitive assignments of fragment identities. As a result, most of the structures present in a complex mixture of oligogalacturonans could be comprehensively resolved, including many isomers differing in the position of methyl groups along the galacturonic acid backbone. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. Communication: Rovibrationally selected study of the N{sub 2}{sup +}(X; v{sup +}= 1, N{sup +}= 0-8) + Ar charge transfer reaction using the vacuum ultraviolet laser pulsed field ionization-photoion method

    SciTech Connect

    Chang, Yih Chung; Xu Hong; Xu Yuntao; Lu Zhou; Ng, C. Y.; Chiu, Yu-Hui; Levandier, Dale J.

    2011-05-28

    By employing an electric field pulsing scheme for vacuum ultraviolet laser pulsed field ionization-photoion (PFI-PI) measurements, we have been able to prepare a rovibrationally selected PFI-PI beam of N{sub 2}{sup +}(v{sup +}= 1, N{sup +}) with not only high intensity and high quantum state purity, but also high kinetic energy resolution, allowing absolute total cross sections [{sigma}(v{sup +}= 1, N{sup +})] for the N{sub 2}{sup +}(X; v{sup +}= 1, N{sup +}) + Ar, N{sup +}= 0-8 charge transfer reaction to be measured at center-of-mass collision energies (E{sub cm}) down to thermal energies. The {sigma}(v{sup +}= 1, N{sup +}= 0-8) values determined at E{sub cm}= 0.04-10.00 eV are in good agreement with the theoretical predictions based on the Landau-Zener-Stueckelberg formulism. Taking into account the experimental uncertainties, the {sigma}(v{sup +}= 1, N{sup +}), N{sup +}= 0-8, measured at E{sub cm}= 1.56 eV are found to be independent of N{sup +}.

  6. Ultraviolet atomic emission detector

    NASA Technical Reports Server (NTRS)

    Braun, W.; Peterson, N. C.; Bass, A. M.; Kurylo, M. J., III (Inventor)

    1972-01-01

    A device and method are provided for performing qualitative and quantitative elemental analysis through the utilization of a vacuum UV chromatographic detector. The method involves the use of a carrier gas at low pressure. The gas carries a sample to a gas chromatograph column; the column output is directed to a microwave cavity. In this cavity, a low pressure microwave discharge produces fragmentation of the compounds present and generates intense atomic emissions in the vacuum ultraviolet. These emissions are isolated by a monochromator and measured by photometer to establish absolute concentration for the elements.

  7. Comparison of vacuum ultra-violet emission of Ar/CF4 and Ar/CF3I capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Zotovich, A.; Proshina, O.; el Otell, Z.; Lopaev, D.; Rakhimova, T.; Rakhimov, A.; de Marneffe, J.-F.; Baklanov, M. R.

    2016-10-01

    Spectra in the vacuum-ultra violet range (VUV, 30 nm-200 nm) as well as in the ultra-violet(UV) and visible ranges (UV+vis, 200 nm-800 nm) were measured from Ar/CF3I and Ar/CF4 discharges. The discharges were generated in an industrial 300 mm capacitively coupled plasma source with 27 MHz radio-frequency power. It was seen that the measured spectra were strongly modified. This is mainly due to absorption, especially by CF3I, and Ar self-trapping along the line of sight, towards the detector and in the plasma itself. The estimated unabsorbed VUV spectra were revealed from the spectra of mixtures with low fluorocarbon gas content by means of normalization with unabsorbed I* emission, at 206 nm, and CF2\\ast band (1B1(0,v‧,0){{\\to}1} A1(0,{{\\text{v}}\\prime \\prime} ,0)) emission between 230 nm and 430 nm. Absolute fluences of UV CF2\\ast emission were derived using hybrid 1-dimensional (1D) particle-in-cell (PIC) Monte-Carlo (MC) model calculations. Absolute calibration of the VUV emission was performed using these calculated values from the model, which has never been done previously for real etch conditions in an industrial chamber. It was seen that the argon resonant lines play a significant role in the VUV spectra. These lines are dominant in the case of etching recipes close to the standard ones. The restored unabsorbed spectra confirm that replacement of conventional CF4 etchant gas with CF3I in low-k etching recipes leads to an increase in the overall VUV emission intensity. However, emission from Ar exhibited the most intense peaks. Damage to low-k SiCOH glasses by the estimated VUV was calculated for blanket samples with pristine k-value of 2.2. The calculations were then compared with Fourier transform infrared (FTIR) data for samples exposed to the similar experimental conditions in the same reactor. It was shown that Ar emission plays the most significant role in VUV-induced damage.

  8. Time-resolved vacuum-ultraviolet emission (λ  =  60-120 nm) from a high pressure DBD-excited helium plasma: formation mechanisms of the fast component

    NASA Astrophysics Data System (ADS)

    Carman, R. J.; Ganesan, R.; Kane, D. M.

    2016-03-01

    We report time and wavelength resolved studies of the vacuum-ultraviolet (VUV) emission from a windowless dielectric barrier discharge (DBD) in helium. Short-pulse voltage excitation is utilised to clearly resolve the fast and slow temporal components of the Hopfield continuum between λ  =  60-120 nm. Experimental results and theoretical modelling of the spectral distributions indicate that the two components of the VUV emission must originate from the same radiating molecular state—\\text{He}2\\ast≤ft({{\\text{A}}1}Σ\\text{u}+\\right) , and that two distinct pumping mechanisms populate this state. The time evolution of the fast component is found to correlate with that from the (0,0) molecular transition \\text{He}2\\ast≤ft({{\\text{E}}1}{{\\Pi}\\text{g}}-~{{\\text{A}}1}Σ\\text{u}+\\right) (λ  =  513.4 nm). Thus the \\text{He}2\\ast≤ft({{\\text{A}}1}{}Σ\\text{u}+\\right) state is initially rapidly pumped via radiative cascade from higher \\text{He}2\\ast(n=3) molecular states. In addition, the observed band emissions from the molecular \\text{He}2\\ast≤ft({{\\text{E}}1}{{\\Pi}\\text{g}}\\right) v=0 and \\text{He}2\\ast≤ft({{\\text{F}}1}Σ\\text{u}+\\right) v=0 states and the line emissions from the atomic He*(n  =  3) states all exhibit similar temporal behaviour during the discharge excitation period. Our results are consistent with the recent report of Frost et al (J. Phys. B 34 1569 2001) concerning the existence of a so-called ‘neglected channel’ to fast \\text{He}2\\ast production from He*(n  =  3) atomic state precursors.

  9. Vacuum Ultraviolet Laser Photoion and Pulsed Field Ionization-Photoion Study of Rydberg Series of Chlorine Atoms Prepared in the 2PJ (J = 3/2 and 1/2) Fine-structure States

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Gao, Hong; Zhou, Jingang; Ng, C. Y.

    2015-09-01

    We have measured the high-resolution vacuum ultraviolet (VUV) photoion (VUV-PI) and VUV pulsed-field ionization-photoion (VUV-PFI-PI) spectra of chlorine atoms (Cl) in the VUV energy range 103,580-105,600 cm-1 (12.842-13.093 eV) using a tunable VUV laser as the photoexcitation and photoionization source. Here, Cl atoms are prepared in the Cl(2P3/2) and Cl(2P1/2) fine-structure states by 193.3 nm laser photodissociation of chlorobenzene. The employment of VUV-PFI-PI detection has allowed the identification of Rydberg transitions that are not observed in VUV-PI measurements. More than 180 new Rydberg transition lines with principal quantum number up to n = 61 have been identified and assigned to members of nine Rydberg series originating from the neutral Cl(2P3/2) and Cl(2P1/2) fine-structure states. Two of these Rydberg series are found to converge to the Cl+(3P2), four to the Cl+(3P1), and three to the Cl+(3P0) ionization limits. Based on the convergence limits determined by least-squares fits of the observed Rydberg transitions to the modified Ritz formula, we have obtained a more precise ionization energy (IE) for the formation of the ionic Cl+(3P2) from the ground Cl(2P3/2) state to be 104,591.01 ± 0.13 cm-1. This is consistent with previous IE measurements, but has a smaller uncertainty. The analysis of the quantum defects obtained for the Rydberg transitions reveals that many high-n Rydberg transitions are perturbed.

  10. Spatial distributions of O, N, NO, OH and vacuum ultraviolet light along gas flow direction in an AC-excited atmospheric pressure Ar plasma jet generated in open air

    NASA Astrophysics Data System (ADS)

    Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Sekine, Makoto; Hori, Masaru

    2017-05-01

    Ground-state O (3P j ) and N (4Sº) atoms, nitric oxide (NO) and hydroxyl (OH) radicals, and vacuum ultraviolet (VUV) radiation emitted from an AC-excited Ar atmospheric pressure plasma jet (APPJ) operated in open air were measured using VUV absorption spectroscopy, laser induced fluorescence spectroscopy and optical emission spectroscopy, respectively. The O (3P j ) density decreased with increasing distance from the plasma head, and the decrease rate in the edge region of the plasma jet around 8 mm distance was especially high. On the other hand, the N (4Sº) atom density was almost constant up to approximately 10 mm and increased with the distance over 12 mm. The relative NO density increased with the distance up to 10 mm and then became saturated, although the OH density was significantly reduced from the plasma jet exit of the head, and could be observed in the plasma jet only up to the distance of 5 mm. Emissions due to N, H and O atoms were observed in the VUV region and the emission intensity for N atoms (wavelength: 174.3 nm) decreased exponentially with increasing the distance. The results obtained with the Ar APPJ operated in open air conditions indicate the generation of many different reactive oxygen and nitrogen species by gas-phase reactions, and the composition of the reactive species is strongly dependent on the distance from the plasma head. These results are very useful for clarifying the kinetics of reactive species in APPJs and their application in various technological fields.

  11. Genetics Home Reference: 3-M syndrome

    MedlinePlus

    ... Kuklik M, Zemkova D, Kozlowski K. 3-M syndrome in two sisters. J Paediatr Child Health. 2002 Aug;38(4):419-22. Citation on PubMed Temtamy SA, Aglan MS, Ashour AM, Ramzy MI, Hosny LA, Mostafa MI. 3-M syndrome: a report of three Egyptian cases with review ...

  12. Ultraviolet Waves

    ERIC Educational Resources Information Center

    Molde, Trevor

    1973-01-01

    Outlines the discovery and nature of ultraviolet light, discusses some applications for these wavelengths, and describes a number of experiments with ultraviolet radiation suitable for secondary school science classes. (JR)

  13. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  14. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    From left to right: Richard Rawls, Chip Holloway, and Art Hayhurst standing next to the Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  15. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Back view of the SAGE III Bench Checkout Unit, Portable Image Generator (PIG) on tripod, and the Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  16. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Full view of the SAGE III Bench Checkout Unit, Collimated Source Bench (CSB), Portable Image Generator (PIG) on tripod, and Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  17. Concerning neutral flux shielding in the U-3M torsatron

    SciTech Connect

    Dreval, N. B.

    2015-03-15

    The volume of the torsatron U-3M vacuum chamber is about 70 m{sup 3}, whereas the plasma volume is about 0.3 m{sup 3}. The large buffer volume of the chamber serves as a source of a substantial neutral flux into the U-3M plasma. A fraction of this flux falls onto the torsatron helical coils located in front of the plasma, due to which the dynamics of neutral influx into the plasma modifies. The shielding of the molecular flux from the buffer volume into the plasma is estimated using numerical calculations. Only about 10% of the incident flux reaches the plasma volume. Estimates show that about 20% of atoms escape beyond the helical coils without colliding with them. Under these conditions, the helical coils substantially affect the neutral flux. A discharge regime with a hot low-density plasma produced by a frame antenna is considered. The spatial distribution of the molecular density produced in this regime by the molecular flux from the chamber buffer volume after it has passed between the helical coils is calculated. The contributions of the fluxes emerging from the side and inner surfaces of the helical coils are considered. The calculations show that the shape of the spatial distribution of the molecular density differs substantially from the shape of the magnetic surfaces.

  18. Femtosecond spectroscopy with vacuum ultraviolet pulse pairs

    SciTech Connect

    Allison, Tom; Wright, Travis; Stooke, Adam; Khurmi, Champak; van Tilborg, Jeroen; Liu, Yanwei; Falcone, Roger; Belkacem, Ali

    2011-06-17

    We combine different wavelengths from an intense high-order harmonics source with variable delay at the focus of a split-mirror interferometer to conduct pump-probe experiments on gas-phase molecules. We report measurements of the time resolution (< 44fs) and spatial profiles (4 {micro}m x 12 {micro}m) at the focus of the apparatus. We demonstrate the utility of this two-color, high-order-harmonic technique by time resolving molecular hydrogen elimination from C{sub 2} H{sub 4} excited into its absorption band at 161nm.

  19. Fluorescent integrating sphere for the vacuum ultraviolet.

    PubMed

    Brandenberg, W M

    1970-02-01

    An integrating sphere for absolute, hemispherical reflectance measurements on imperfectly diffuse surfaces in the wavelength range between 1250 A and 3500 A has been built. The sphere uses a double layer coating consisting of a sodium salicylate film on top of a diffuse white paint. The phosphor coating, under uv irradiation, emits fluorescent radiation in the blue, and the underlying paint layer serves as a diffuser of the fluorescent radiation. The usual problem, encountered in ordinary integrating spheres where direct irradiation of the detector by the sample can lead to erroneous signals, is easily eliminated in the fluorescent integrating sphere by proper filtering of the detector.

  20. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  1. A 3M high temperature dielectric film

    NASA Technical Reports Server (NTRS)

    Hampl, Edward, Jr.

    1994-01-01

    The performance characteristics of a dielectric film are summarized. Additionally, the film's environmental and chemical properties are listed: low shrinkage to 300 C; moisture insensitive; low outgassing under vacuum; excellent surface qualities--easy metallization of film; flame retardant; and low smoke generation. A series of graphs that display the performance characteristics of the film are also presented.

  2. Preparation and spectroscopic properties of rare-earth (RE) (RE = Sm, Eu, Tb, Dy, Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) phosphate in vacuum ultraviolet region

    SciTech Connect

    Zhang, Zhi-Jun; Lin, Xiao; Zhao, Jing-Tai; Zhang, Guo-Bin

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► We report the VUV spectroscopic properties of rare-earth ions in K{sub 2}LnZr(PO{sub 4}){sub 3}. ► The O{sup 2−}-Eu{sup 3+} charge transfer bands at about 220 nm have been observed. ► The 4f–5d spin-allowed and spin-forbidden transitions of Tb{sup 3+} have been observed. ► There is energy transfer between the host and rare-earth activators. -- Abstract: Rare earth (RE = Sm, Eu, Tb, Dy and Tm)-activated K{sub 2}LnZr(PO{sub 4}){sub 3} (Ln = Y, La, Gd and Lu) have been synthesized by solid-state reaction method, and their vacuum ultraviolet (VUV) excitation luminescent characteristics have been investigated. The band in the wavelength range of 130–157 nm and the other one range from 155 to 216 nm with the maximum at about 187 nm in the VUV excitation spectra of these compounds are attributed to the host lattice absorption and O–Zr charge transfer transition, respectively. The charge transfer bands (CTB) of O{sup 2−}-Sm{sup 3+}, O{sup 2−}-Dy{sup 3+} and O{sup 2−}-Tm{sup 3+}, in Sm{sup 3+}, Dy{sup 3+} and Tm{sup 3+}-activated samples, have not been obviously observed probably because the 2p electrons of oxygen are tightly bound to the zirconium ion in the host lattice. For Eu{sup 3+}-activated samples, the relatively weak O{sup 2−}-Eu{sup 3+} CTB at about 220 nm is observed. And for Tb{sup 3+}-activated samples, the bands at 223 and 258 nm are related to the 4f-5d spin-allowed and spin-forbidden transitions of Tb{sup 3+}, respectively. It is observed that there is energy transfer between the host lattice and the luminescent activators (e.g. Eu{sup 3+}, Tb{sup 3+}). From the standpoint of luminescent efficiency, color purity and chemical stability, K{sub 2}GdZr(PO{sub 4}){sub 3}:Sm{sup 3+}, Eu{sup 3+}, Tb{sup 3+} are attractive candidates for novel yellow, red, green-emitting PDP phosphors.

  3. Infrared absorption of methanol clusters (CH3OH)n with n = 2-6 recorded with a time-of-flight mass spectrometer using infrared depletion and vacuum-ultraviolet ionization.

    PubMed

    Han, Hui-Ling; Camacho, Cristopher; Witek, Henryk A; Lee, Yuan-Pern

    2011-04-14

    We investigated IR spectra in the CH- and OH-stretching regions of size-selected methanol clusters, (CH(3)OH)(n) with n = 2-6, in a pulsed supersonic jet by using the IR-VUV (vacuum-ultraviolet) ionization technique. VUV emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer. The tunable IR laser emission served as a source of predissociation or excitation before ionization. The variations of intensity of protonated methanol cluster ions (CH(3)OH)(n)H(+) and CH(3)OH(+) and (CH(3)OH)(2)(+) were monitored as the IR laser light was tuned across the range 2650-3750 cm(-1). Careful processing of these action spectra based on photoionization efficiencies and the production and loss of each cluster due to photodissociation yielded IR spectra of the size-selected clusters. Spectra of methanol clusters in the OH region have been extensively investigated; our results are consistent with previous reports, except that the band near 3675 cm(-1) is identified as being associated with the proton acceptor of (CH(3)OH)(2). Spectra in the CH region are new. In the region 2800-3050 cm(-1), bands near 2845, 2956, and 3007 cm(-1) for CH(3)OH split into 2823, 2849, 2934, 2955, 2984, and 3006 cm(-1) for (CH(3)OH)(2) that correspond to proton donor and proton acceptor, indicating that the methanol dimer has a preferred open-chain structure. In contrast, for (CH(3)OH)(3), the splitting diminishes and the bands near 2837, 2954, and 2987 cm(-1) become narrower, indicating a preferred cyclic structure. Anharmonic vibrational wavenumbers predicted for the methanol open-chain dimer and the cyclic trimer with the B3LYP∕VPT2∕ANO1 level of theory are consistent with experimental results. For the tetramer and pentamer, the spectral pattern similar to that of the trimer but with greater widths was observed, indicating that the most stable structures are also cyclic.

  4. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  5. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  6. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  7. Gravitational vacuum

    NASA Astrophysics Data System (ADS)

    Grigoryan, L. S.; Saakyan, G. S.

    1984-09-01

    The existence of a special gravitational vacuum is considered in this paper. A phenomenological method differing from the traditional Einsteinian formalization is utilized. Vacuum, metric and matter form a complex determined by field equations and at great distances from gravitational masses vacuum effects are small but could be large in powerful fields. Singularities and black holes justify the approach as well as the Ambartsmyan theory concerning the existence of supermassive and superdense prestallar bodies that then disintegrate. A theory for these superdense bodies is developed involving gravitational field equations that describe the vacuum by an energy momentum tensor and define the field and mass distribution. Computations based on the theory for gravitational radii with incompressible liquid models adequately reflecting real conditions indicate that a gravitational vacuum could have considerable effects on superdense stars and could have radical effects for very large masses.

  8. Ultraviolet filters.

    PubMed

    Shaath, Nadim A

    2010-04-01

    The chemistry, photostability and mechanism of action of ultraviolet filters are reviewed. The worldwide regulatory status of the 55 approved ultraviolet filters and their optical properties are documented. The photostabilty of butyl methoxydibenzoyl methane (avobenzone) is considered and methods to stabilize it in cosmetic formulations are presented.

  9. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar.

    PubMed

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C Y

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N(2)(+)(v(+), N(+)) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N(2)(+)(X (2)Σ(g)(+), v(+) = 0-2, N(+) = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N(2)(+) PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔE(lab) = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E(cm)'s) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v(+) = 0-2, N(+) = 0-9) for the N(2)(+)(X (2)Σ(g)(+); v(+) = 0-2, N(+) = 0-9) + Ar CT reaction have been measured in the E(cm) range of 0.04-10.0 eV, revealing strong vibrational enhancements and E(cm)-dependencies of σ(v(+) = 0-2, N(+) = 0-9). The thermochemical threshold at E(cm) = 0.179 eV for the formation of Ar(+) from N(2)(+)(X; v(+) = 0, N(+)) + Ar was observed by the measured σ(v(+) = 0), confirming the narrow ΔE(cm) spread achieved in the present study. The σ(v(+) = 0-2; N(+)) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions

  10. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  11. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  12. ICN/3M scholars: tomorrow's nursing leaders.

    PubMed

    1992-01-01

    For over 20 years ICN and the Minnesota Mining and Manufacturing Company (3M) have sponsored a scholarship programme directed toward helping nurses further their education in nursing. Since then 48 nurses have been provided the needed funds to reach their professional goals and subsequently to help answer their country's healthcare needs. Their degrees and expertise have opened up professional doors but most of all have given them the confidence to become driving forces in initiating research and other programmes that aim to provide quality care to all their countries' citizens.

  13. Ultraviolet Extensions

    NASA Image and Video Library

    2008-04-16

    This ultraviolet image from NASA Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

  14. Dinosaur extinction: closing the '3 m gap'.

    PubMed

    Lyson, Tyler R; Bercovici, Antoine; Chester, Stephen G B; Sargis, Eric J; Pearson, Dean; Joyce, Walter G

    2011-12-23

    Modern debate regarding the extinction of non-avian dinosaurs was ignited by the publication of the Cretaceous-Tertiary (K-T) asteroid impact theory and has seen 30 years of dispute over the position of the stratigraphically youngest in situ dinosaur. A zone devoid of dinosaur fossils reported from the last 3 m of the Upper Cretaceous, coined the '3 m gap', has helped drive controversy. Here, we report the discovery of the stratigraphically youngest in situ dinosaur specimen: a ceratopsian brow horn found in a poorly rooted, silty, mudstone floodplain deposit located no more than 13 cm below the palynologically defined boundary. The K-T boundary is identified using three criteria: (i) decrease in Cretaceous palynomorphs without subsequent recovery, (ii) the existence of a 'fern spike', and (iii) correlation to a nearby stratigraphic section where primary extraterrestrial impact markers are present (e.g. iridium anomaly, spherules, shocked quartz). The in situ specimen demonstrates that a gap devoid of non-avian dinosaur fossils does not exist and is inconsistent with the hypothesis that non-avian dinosaurs were extinct prior to the K-T boundary impact event.

  15. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Matsui, Hiroki

    2017-08-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ phi 2 > enlarge in proportion to the Hubble scale H2. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ phi 2 > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ phi 2 >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field phi determined by the effective potential V eff( phi ) in curved space-time and the renormalized vacuum fluctuations < δ phi 2 >ren via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field phi, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H< ΛI .

  16. Gas-phase actionmetry for uv and vacuum uv spectral regions (review)

    SciTech Connect

    Pravilov, A.M.

    1988-01-01

    The authors review the photochemical behavior of a wide range of candidate materials for use in ultraviolet spectrometers and photodetectors for spectral determination in the ultraviolet and vacuum ultraviolet region. Among the materials are ethylene, carbon dioxide, nitrous oxide, hexafluoroacetone, oxygen, azomethane, hydrobromic acid, phosgene, and nitrosyl chloride. Test results are tabulated and compared.

  17. Ultraviolet spectroscopy of comae

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1982-01-01

    Vacuum ultraviolet observations from sounding rockets and satellite observatories of the gaseous comae of several recent comets are reviewed. The earliest of these led to discovery of the hydrogen envelope extending for millions of km from the nucleus. Subsequent observations of H I Lyman alpha, the OH (0,0) band and the oxygen resonance triplet have provided strong evidence for the water-ice model of the cometary nucleus. Several new species were discovered in the coma, including C, C(+), CO, S and CS. High-resolution spectroscopy and the spatial variation of the observed emissions provide means to elucidate the production and excitation mechanisms of these species. The similarity of the spectra of the half-dozen comets observed to date argues for a common, homogeneous composition (with the exception of dust and CO) of the cometary ice and a minimal effect on the neutral species due to molecular collisions in the inner coma.

  18. Ultraviolet observations of comets

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Houck, T. E.; Lillie, C. F.

    1972-01-01

    The first observations of a comet in the vacuum ultraviolet were obtained on January 14, 1970, when OAO-2 recorded the spectrum of the bright comet Tago-Sato-Kosaka (1969g). The observations revealed, among other things, the predicted extensive hydrogen Lyman alpha halo. OAO-2 continued to collect spectrophotometric measurements of this comet throughout January of that year; a photograph of the nucleus in Lyman alpha revealed finer scale structures. In February of 1970, the bright comet Bennet (1969i) became favorable for space observations. On the basis of the OAO discovery, OGO-V made several measurements of comet Bennet with low spatial resolution photometers. Comet Enke was detected by OGO in January of 1971 at a large heliocentric distance from its Lyman alpha emission.

  19. Ultraviolet photofragmentation of biomolecular ions

    PubMed Central

    Reilly, James P.

    2009-01-01

    Mass spectrometric identification of all types of molecules relies on the observation and interpretation of ion fragmentation patterns. Peptides, proteins, carbohydrates and nucleic acids that are often found as components of complex biological samples represent particularly important challenges. The most common strategies for fragmenting biomolecular ions include low- and high-energy collisional activation, post-source decay, and electron capture or transfer dissociation. Each of these methods has its own idiosyncrasies and advantages but encounters problems with some types of samples. Novel fragmentation methods that can offer improvements are always desirable. One approach that has been under study for years but is not yet incorporated into a commercial instrument is ultraviolet photofragmentation. This review discusses experimental results on various biological molecules that have been generated by several research groups using different light wavelengths and mass analyzers. Work involving short-wavelength vacuum ultraviolet light is particularly emphasized. The characteristics of photofragmentation are examined and its advantages summarized. PMID:19241462

  20. Vacuum phenomenon.

    PubMed

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome.

  1. Vacuum mechatronics. Proceedings.

    NASA Astrophysics Data System (ADS)

    Belinski, S. E.; Shirazi, M.; Hackwood, S.; Beni, G.

    The discipline of vacuum mechatronics is the design and development of vacuum-compatible, computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. Vacuum mechantronics is relevant to research engineers in integrated circuit manufacturing, surface physics, food processing, biotechnology, materials handling, space sciences and manufacturing.

  2. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  3. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  4. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  5. Detailed gas and diesel vehicle emissions: PTR-MS measurements of real-time VOC profiles and comprehensive characterization of primary emissions for IVOC, SVOC, and LVOC by gas chromatography with vacuum ultra-violet ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Frodin, B.; Zhao, Y.; Franklin, J. P.; Cross, E. S.; Saleh, R.; Saliba, G.; Lambe, A. T.; Sardar, S.; Maldonado, H.; Russell, L. M.; Kroll, J. H.; Robinson, A. L.; Goldstein, A. H.

    2015-12-01

    Over the past fifteen years US vehicle emissions standards have dramatically improved, with the goal of reducing urban air pollution. Recent studies demonstrate secondary organic aerosol (SOA) to be the dominant contributor to urban organic aerosol, but controversy remains regarding the contributions of different vehicle types to SOA. Increased potency for SOA formation from non methane hydrocarbons (NMHC) from newer vehicles that meet tighter emission standards has also been observed. Both speciation and temporal resolution of vehicular emissions are critical for predicting SOA formation. The relative importance of diesel and gasoline emissions to SOA formation depends critically on speciation. Experiments were conducted at the California Air Resources Board Haagen-Smit Laboratory to better understand SOA formation for low, ultra-low, super ultra-low and partial zero emission vehicles (LEV, ULEV, SULEV, PZEV). Exhaust was sampled on filters and adsorbent tubes to measure intermediate-, semi-, and low-volatility NMHC (IVOC, SVOC, LVOC). A proton-transfer-reaction mass spectrometer (PTR-MS) measured volatile organics (VOC) emissions with high time-resolution. Analysis of filters and adsorbent tubes using gas chromatography with vacuum-ultra-violet ionization mass spectrometry provided unprecedented characterization of emissions according to degree of branching, number of cyclic rings, aromaticity, and molecular weight. ULEV vehicles show the composition distributions of primary particulate emissions peak for compounds in the SVOC range. PZEV vehicle emissions peak in the IVOC range. Diesel vehicles have up to ten times higher emissions than gasoline vehicles; their distributions have significant IVOC levels and peak in the SVOC/LVOC range. Our measurements are used to predict potential SOA formation by vehicle standard class and the relative SOA formation for diesel and gasoline vehicles. PTR-MS measurement show VOC emissions after cold start occur almost entirely

  6. Extreme ultraviolet (EUV) and FUV calibration facility for special sensor ultraviolet limb imager (SSULI)

    NASA Astrophysics Data System (ADS)

    Boyer, Craig N.; Osterman, Steven N.; Thonnard, Stefan E.; McCoy, Robert P.; Williams, J. Z.; Parker, S. E.

    1994-09-01

    A facility for calibrating far ultraviolet and extreme ultraviolet instruments has recently been completed at the Naval Research Laboratory. Our vacuum calibration vessel is 2-m in length, 1.67-m in diameter, and can accommodate optical test benches up to 1.2-m wide by 1.5-m in length. A kinematically positioned frame with four axis precision pointing capability of 10 microns for linear translation and .01 degrees for rotation is presently used during vacuum optical calibration of SSULI. The chamber was fabricated from 304 stainless steel and polished internally to reduce surface outgassing. A dust-free environment is maintained at the rear of the vacuum chamber by enclosing the 2-m hinged vacuum access door in an 8 ft. by 8 ft. class 100 clean room. Every effort was made to obtain an oil-free environment within the vacuum vessel. Outgassing products are continually monitored with a 1 - 200 amu residual gas analyzer. An oil-free claw and vane pump evacuates the chamber to 10-2 torr through 4 in. diameter stainless steel roughing lines. High vacuum is achieved and maintained with a magnetically levitated 480 l/s turbo pump and a 3000 l/s He4 cryopump. Either of two vacuum monochrometers, a 1-m f/10.4 or a 0.2-m f/4.5 are coaxially aligned with the optical axis of the chamber and are used to select single UV atomic resonance lines from a windowless capillary or penning discharge UV light source. A calibrated channeltron detector is coaxially mounted with the SSULI detector during calibration. All vacuum valves, the cooling system for the cryopump compressor, and the roughing pump are controlled through optical fibers which are interfaced to a computer through a VME board. Optical fibers were chosen to ensure that complete electrical isolation is maintained between the computer and the vacuum system valves-solenoids and relays.

  7. Engineering support for an ultraviolet imager for the ISTP mission

    NASA Technical Reports Server (NTRS)

    Torr, Douglas G.

    1991-01-01

    Design and development activities were carried out for the Ultraviolet Imager (UVI) to be flown on the Polar Spacecraft of the INternational Solar Terrestrial Physics (ISTP) Mission. The following tasks were performed: (1) design and fabrication of prototype/engineering model of the UVI imager; (2) preliminary design review; (3) vacuum ultraviolet filter design; (4) auroral energy deposition code; (5) model of LBH vehicle glow; (6) laboratory measurement program of collision cross-sections; and (7) support of ISTP meetings.

  8. Vacuum sources in obstetrics.

    PubMed

    Wiper, D W; Duchon, M A; Muise, K L

    1996-06-01

    To characterize the performance of vacuum equipment used in operative vaginal deliveries. We measured wall suction in eight Cleveland area labor-and-delivery units. Additionally, we tested samples of hand-operated and electric vacuum pumps. For each apparatus we recorded vacuum in millimeters of mercury using a calibrated, diaphragm-type gauge. We calculated mean maximal vacuum. Work required to produce 500 mm Hg of vacuum was determined for the hand-operated pumps. At increments of vacuum, we compared the vacuum displayed by the gauge head included with the device to our standard. Mean wall suction was 494 mm Hg (range, 248-655). As compared to the Mity-vac, the CMI hand-operated pump needed significantly more work to generate 500 mm Hg of vacuum. Electric pumps produced a reliable and consistent vacuum. Gauges included with the pump had an average error of 4% over 400-600 mm Hg. Wall suction was an unreliable source of vacuum. The two hand-operated pumps tested required significantly different amounts of work to achieve an adequate vacuum. Addition of a fluid trap does not affect the vacuum, and head gauges supplied with vacuum pumps are accurate.

  9. Vacuum-assisted delivery

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on ... the baby through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is ...

  10. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  11. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  12. Efficient 3M PBS enhancing miniature projection optics

    NASA Astrophysics Data System (ADS)

    Yun, Zhisheng; Nevitt, Timothy; Willett, Stephen; Mortenson, Dave; Le, John; McDowell, Erin; Kent, Susan; Wong, Timothy; Beniot, Gilles J.; Ouderkirk, Andrew

    2016-09-01

    Over the past decade, 3M has developed a number of mobile projectors, with a goal towards providing the world's smallest, most efficient projection systems. Compact size and efficiency are required characteristics for projection systems used in mobile devices and more lately, in augmented reality systems. In this paper we summarize the main generations of 3M light engine optical designs. We present the optical architectures of four light engines, including the rationale behind the illumination designs and the projection systems. In particular, we describe various configurations relating to the 3M polarizing beam splitter (PBS) which is key to enhanced efficiency of the miniature projection systems.

  13. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  14. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  15. Quantum yields of decomposition and homo-dimerization of solid L-alanine induced by 7.2 eV Vacuum ultraviolet light irradiation: an estimate of the half-life of L-alanine on the surface of space objects.

    PubMed

    Izumi, Yudai; Nakagawa, Kazumichi

    2011-08-01

    One of the leading hypotheses regarding the origin of prebiotic molecules on primitive Earth is that they formed from inorganic molecules in extraterrestrial environments and were delivered by meteorites, space dust and comets. To evaluate the availability of extraterrestrial amino acids, it is necessary to examine their decomposition and oligomerization rates as induced by extraterrestrial energy sources, such as vacuum ultraviolet (VUV) and X-ray photons and high energy particles. This paper reports the quantum yields of decomposition ((8.2 ± 0.7) × 10(-2) photon(-1)) and homo-dimerization ((1.2 ± 0.3) × 10(-3) photon(-1)) and decomposition of the dimer (0.24 ± 0.06 photon(-1)) of solid L-alanine (Ala) induced by VUV light with an energy of 7.2 eV. Using these quantum yields, the half-life of L-Ala on the surface of a space object in the present earth orbit was estimated to be about 52 days, even when only photons with an energy of 7.2 eV emitted from the present Sun were considered. The actual half-life of solid L-Ala on the surface of a space object orbit around the present day Earth would certainly be much shorter than our estimate, because of the added effect of photons and particles of other energies. Thus, we propose that L-Ala needs to be shielded from solar VUV in protected environments, such as the interior of a meteorite, within a time scale of days after synthesis to ensure its arrival on the primitive Earth.

  16. Biological applications of ultraviolet free-electron lasers

    SciTech Connect

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated.

  17. Simulation of the synergistic low Earth orbit effects of vacuum thermal cycling, vacuum UV radiation, and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.

    1992-01-01

    In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.

  18. Nanoscale Vacuum Channel Transistor.

    PubMed

    Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M

    2017-04-12

    Vacuum tubes that sparked the electronics era had given way to semiconductor transistors. Despite their faster operation and better immunity to noise and radiation compared to the transistors, the vacuum device technology became extinct due to the high power consumption, integration difficulties, and short lifetime of the vacuum tubes. We combine the best of vacuum tubes and modern silicon nanofabrication technology here. The surround gate nanoscale vacuum channel transistor consists of sharp source and drain electrodes separated by sub-50 nm vacuum channel with a source to gate distance of 10 nm. This transistor performs at a low voltage (<5 V) and provides a high drive current (>3 microamperes). The nanoscale vacuum channel transistor can be a possible alternative to semiconductor transistors beyond Moore's law.

  19. Ultraviolet divergences, repulsive forces and a spherical plasma shell

    NASA Astrophysics Data System (ADS)

    Bordag, M.

    2009-04-01

    We discuss the vacuum energy of the electromagnetic field interacting with a spherical plasma shell together with a model for the classical motion of the shell. We discuss the ultraviolet divergences in terms of the heat kernel coefficients. Using these, we carry out the renormalization by redefining the parameters of the classical model. It turns out that this is possible and that the resulting model has a vacuum energy which changes sign in dependence on the parameters of the plasma shell. In the limit of the plasma shell becoming an ideal conductor the vacuum energy found by Boyer in 1968 is reproduced.

  20. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of