Science.gov

Sample records for 3pd rapid design

  1. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool

  2. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool

  3. Rapid Network Design

    DTIC Science & Technology

    2013-09-01

    packet- switched networks are extremely prone to human design faults, which can adversely affect the reliability of the network. This thesis proposes an...network devices and create a functioning packet- switch network. network design , network topology, packet- switching networks, routing protocols, data... switched networks are extremely prone to human design faults, which can adversely affect the reliability of the network. This thesis proposes an

  4. Rapid Airplane Parametric Input Design(RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.

    2004-01-01

    An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.

  5. Rapid Prototyping in the Instructional Design Process.

    ERIC Educational Resources Information Center

    Nixon, Elizabeth Krick; Lee, Doris

    2001-01-01

    Discusses instructional design models and examines rapid prototyping, a model that combines computer design strategies, constructivist learning theory, and cognitive psychology. Highlights include limitations of linear models; instructional problems appropriate and those not appropriate for rapid prototyping; and rapid prototyping as a paradigm…

  6. Rapid Prototyping in Instructional Design: Creating Competencies

    ERIC Educational Resources Information Center

    Fulton, Carolyn D.

    2010-01-01

    Instructional designers working in rapid prototyping environments currently do not have a list of competencies that help to identify the knowledge, skills, and attitudes (KSAs) required in these workplaces. This qualitative case study used multiple cases in an attempt to identify rapid prototyping competencies required in a rapid prototyping…

  7. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  8. Computationally designed libraries for rapid enzyme stabilization

    PubMed Central

    Wijma, Hein J.; Floor, Robert J.; Jekel, Peter A.; Baker, David; Marrink, Siewert J.; Janssen, Dick B.

    2014-01-01

    The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants of the mesostable enzyme limonene epoxide hydrolase. First, point mutations were selected if they significantly improved the predicted free energy of protein folding. Disulfide bonds were designed using sampling of backbone conformational space, which tripled the number of experimentally stabilizing disulfide bridges. Next, orthogonal in silico screening steps were used to remove chemically unreasonable mutations and mutations that are predicted to increase protein flexibility. The resulting library of 64 variants was experimentally screened, which revealed 21 (pairs of) stabilizing mutations located both in relatively rigid and in flexible areas of the enzyme. Finally, combining 10–12 of these confirmed mutations resulted in multi-site mutants with an increase in apparent melting temperature from 50 to 85°C, enhanced catalytic activity, preserved regioselectivity and a >250-fold longer half-life. The developed Framework for Rapid Enzyme Stabilization by Computational libraries (FRESCO) requires far less screening than conventional directed evolution. PMID:24402331

  9. Enabling Rapid Naval Architecture Design Space Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  10. Rapid Design of Gravity Assist Trajectories

    NASA Technical Reports Server (NTRS)

    Carrico, J.; Hooper, H. L.; Roszman, L.; Gramling, C.

    1991-01-01

    Several International Solar Terrestrial Physics (ISTP) missions require the design of complex gravity assisted trajectories in order to investigate the interaction of the solar wind with the Earth's magnetic field. These trajectories present a formidable trajectory design and optimization problem. The philosophy and methodology that enable an analyst to design and analyse such trajectories are discussed. The so called 'floating end point' targeting, which allows the inherently nonlinear multiple body problem to be solved with simple linear techniques, is described. The combination of floating end point targeting with analytic approximations with a Newton method targeter to achieve trajectory design goals quickly, even for the very sensitive double lunar swingby trajectories used by the ISTP missions, is demonstrated. A multiconic orbit integration scheme allows fast and accurate orbit propagation. A prototype software tool, Swingby, built for trajectory design and launch window analysis, is described.

  11. Rapid Modeling, Assembly and Simulation in Design Optimization

    NASA Technical Reports Server (NTRS)

    Housner, Jerry

    1997-01-01

    A new capability for design is reviewed. This capability provides for rapid assembly of detail finite element models early in the design process where costs are most effectively impacted. This creates an engineering environment which enables comprehensive analysis and design optimization early in the design process. Graphical interactive computing makes it possible for the engineer to interact with the design while performing comprehensive design studies. This rapid assembly capability is enabled by the use of Interface Technology, to couple independently created models which can be archived and made accessible to the designer. Results are presented to demonstrate the capability.

  12. Mars rapid round trip mission design

    NASA Astrophysics Data System (ADS)

    Sarzi Amade', Nicola

    The present research is divided in two parts. The first part is a well defined mathematical problem, with exact rules and results, in which the basic constraints for interplanetary round trip travels are used to calculate an interplanetary train schedule (ITS) of missions to Mars, in the general case of orbits with non-zero eccentricity and non-zero inclination. Several possible options for round trip travels to Mars are considered. In particular, options at high energy, which allow rapid round trip missions, are discussed. These options have important applications for human travels to Mars. The second part of the research is about systems engineering aspects, which are intrinsically less exact, since they can change with time due, for example, to technology development or economic and political factors. For the case of a selected human rapid round trip mission to Mars, the development of a mission architecture, an assessment of the masses involved in the mission (such as the initial masses required in LEO), an estimate of the necessary number of launches, and a preliminary analysis of the radiation protection requirements, are performed. The main problem that justifies the existence of basic constraints for round trip missions is that by increasing the DeltaV of a mission, in general the total round trip time does not vary much, because a higher DeltaV can only reduce the transfer time and it simply increases the stay-time on the target planet. However, if the DeltaV is increased beyond a well-defined level, the total round trip time has a sudden drop in duration that makes fast round trips possible. This is due to the fact that the traveler can go back before the home planet makes one extra revolution around the Sun. For a sufficiently high DeltaV, a round trip to Mars can change in duration from 2.7 years to about 5 months. For Mars missions, the round trip times are calculated for different DeltaV's and for different transfer trajectories (T1, T2, etc.). An

  13. Participatory Design in Grand Rapids: Second Generation Planning.

    ERIC Educational Resources Information Center

    Eriksen, Aase

    1979-01-01

    The Central Park Project, in Grand Rapids, Michigan, illustrates the importance of participation in the design process and the impact of school sites on children as well as on the surrounding neighborhood. (Author/MLF)

  14. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth

    PubMed Central

    Martin-Gayo, Enrique; Cronin, Jacqueline; Hickman, Taylor; Ouyang, Zhengyu; Lindqvist, Madelene; Kolb, Kellie E.; Schulze zur Wiesch, Julian; Cubas, Rafael; Porichis, Filippos; Shalek, Alex K.; van Lunzen, Jan; Haddad, Elias K.; Walker, Bruce D.; Kaufmann, Daniel E.; Lichterfeld, Mathias; Yu, Xu G.

    2017-01-01

    HIV-1–specific broadly neutralizing antibodies (bnAbs) typically develop in individuals with continuous high-level viral replication and increased immune activation, conditions that cannot be reproduced during prophylactic immunization. Understanding mechanisms supporting bnAb development in the absence of high-level viremia may be important for designing bnAb-inducing immunogens. Here, we show that the breadth of neutralizing antibody responses in HIV-1 controllers was associated with a relative enrichment of circulating CXCR5+CXCR3+PD-1lo CD4+ T cells. These CXCR3+PD-1lo Tfh-like cells were preferentially induced in vitro by functionally superior dendritic cells from controller neutralizers, and able to secrete IL-21 and support B cells. In addition, these CXCR3+PD-1lo Tfh-like cells contained higher proportions of stem cell–like memory T cells, and upon antigenic stimulation differentiated into PD-1hi Tfh-like cells in a Notch-dependent manner. Together, these data suggest that CXCR5+CXCR3+PD-1lo cells represent a dendritic cell–primed precursor cell population for PD-1hi Tfh-like cells that may contribute to the generation of bnAbs in the absence of high-level viremia. PMID:28138558

  15. Rapid Prototyping Instructional Design: Revisiting the ISD Model

    ERIC Educational Resources Information Center

    Daugherty, Jenny; Teng, Ya-Ting; Cornachione, Edgard

    2007-01-01

    An exploratory investigation, utilizing mixed methods, was used to examine the quality and usability of the product and the client's role within a rapid prototyping instructional design approach. Forty engineering and business undergraduates participating in a leadership training session and an instructional design team comprised the sample for…

  16. Design Concept for a Rapid Automatic Sync Acquisition System

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.; Gallo, A. J.

    1968-01-01

    A design has been conceived for a system intended to provide rapid command sync acquisition between widely separated transmitter-receivers, such as between a spacecraft telemetry transmitter, and a ground-based receiver. Use of the system in commercial satellite communications would facilitate rapid sync acquisition between stations and regaining of data lock after interruption or equipment failure. The system is based on a rapid, automatic range-adjustment approach rather than the time-consuming cycle slipping or stepping techniques of conventional phase-locked loops.

  17. Structure Design and Realization of Rapid Medicine Dispensing System

    NASA Astrophysics Data System (ADS)

    Liu, Xiangquan

    In this paper, the main components and function of rapid medicine dispensing system is analyzed, structure design of automatic feeding device, sloping storeroom, automatic dispensing device and automatic sorting device is completed. The system adopts medicine conveyer working in with manipulator to realize automatic batch supply of the boxed medicine, adopts sloping storeroom as warehouse of medicine to realize dense depositing, adopts dispensing mechanism which includes elevator, turning panel and electric magnet to realize rapid medicine dispensing, adopts sorting conveyor belt and sorting device to send medicine to designated outlet.

  18. Design review report for the SY-101 RAPID mitigation system

    SciTech Connect

    SCHLOSSER, R.L.

    1999-05-24

    This report documents design reviews conducted of the SY-101 Respond And Pump In Days (RAPID) Mitigation System. As part of the SY-101 Surface-Level-Rise Remediation Project, the SY-101 WID Mitigation System will reduce the potential unacceptable consequences of crust growth in Tank 241-SY-101 (SY-101). Projections of the crust growth rate indicate that the waste level in the tank may reach the juncture of the primary and secondary confinement structures of the tank late in 1999. Because of this time constraint, many design activities are being conducted in parallel and design reviews were conducted for system adequacy as well as design implementation throughout the process. Design implementation, as used in this design review report, is the final component selection (e.g., which circuit breaker, valve, or thermocouple) that meets the approved design requirements, system design, and design and procurement specifications. Design implementation includes the necessary analysis, testing, verification, and qualification to demonstrate compliance with the system design and design requirements. Design implementation is outside the scope of this design review. The design activities performed prior to detailed design implementation (i.e., system mission requirements, functional design requirements, technical criteria, system conceptual design, and where design and build contracts were placed, the procurement specification) have been reviewed and are within the scope of this design review report. Detailed design implementation will be controlled, reviewed, and where appropriate, approved in accordance with Tank Waste Remediation System (TWRS) engineering procedures. Review of detailed design implementation will continue until all components necessary to perform the transfer function are installed and tested.

  19. Extensibility of a linear rapid robust design methodology

    NASA Astrophysics Data System (ADS)

    Steinfeldt, Bradley A.; Braun, Robert D.

    2016-05-01

    The extensibility of a linear rapid robust design methodology is examined. This analysis is approached from a computational cost and accuracy perspective. The sensitivity of the solution's computational cost is examined by analysing effects such as the number of design variables, nonlinearity of the CAs, and nonlinearity of the response in addition to several potential complexity metrics. Relative to traditional robust design methods, the linear rapid robust design methodology scaled better with the size of the problem and had performance that exceeded the traditional techniques examined. The accuracy of applying a method with linear fundamentals to nonlinear problems was examined. It is observed that if the magnitude of nonlinearity is less than 1000 times that of the nominal linear response, the error associated with applying successive linearization will result in ? errors in the response less than 10% compared to the full nonlinear error.

  20. Research and Development of Rapid Design Systems for Aerospace Structure

    NASA Technical Reports Server (NTRS)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  1. Statistical Methods for Rapid Aerothermal Analysis and Design Technology

    NASA Technical Reports Server (NTRS)

    Morgan, Carolyn; DePriest, Douglas; Thompson, Richard (Technical Monitor)

    2002-01-01

    The cost and safety goals for NASA's next generation of reusable launch vehicle (RLV) will require that rapid high-fidelity aerothermodynamic design tools be used early in the design cycle. To meet these requirements, it is desirable to establish statistical models that quantify and improve the accuracy, extend the applicability, and enable combined analyses using existing prediction tools. The research work was focused on establishing the suitable mathematical/statistical models for these purposes. It is anticipated that the resulting models can be incorporated into a software tool to provide rapid, variable-fidelity, aerothermal environments to predict heating along an arbitrary trajectory. This work will support development of an integrated design tool to perform automated thermal protection system (TPS) sizing and material selection.

  2. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  3. Design and Development of a Proactive Rapid Response System.

    PubMed

    Heal, Michelle; Silvest-Guerrero, Sarah; Kohtz, Cindy

    2017-02-01

    Timely identification of patient deterioration can prompt intervention and prevent the escalation of care and unplanned intensive care admissions. However, both personal experience and professional literature reveals that staff nurses in the acute care setting may not notice subtle signs of patient deterioration or may be reluctant to activate the rapid response system. To overcome these barriers, a proactive rapid response system with early warning signs was created and studied. Using a quasi-experimental design, data were collected from two medical-surgical nursing units at one large tertiary medical center over a 6-month period. One unit used the new rapid response system and early warning sign criteria with real-time data entry and trigger activation. A second unit served as the control and relied on the nurse for rapid response system activation. Findings revealed that the use of the newly developed rapid response system demonstrated significantly greater sensitivity to subtle signs of patient deterioration and prompted early evaluation and intervention.

  4. Rapid Euler CFD for High-Performance Aircraft Design

    NASA Technical Reports Server (NTRS)

    Charlton, Eric F.

    2004-01-01

    The goal here was to present one approach to rapid CFD for S&C using an unstructured inviscid method, in order to eventually assess S&C properties as early in the design process as possible. Specific results are presented regarding time, accuracy (as compared to a baseline wind tunnel database) and simplicity for the user. For COMSAC, it s more important to talk about the "specifications" required by Advanced Design and S&C, as well as how the CFD results can be combined for envelope evaluation.

  5. Design principles for rapid folding of knotted DNA nanostructures.

    PubMed

    Kočar, Vid; Schreck, John S; Čeru, Slavko; Gradišar, Helena; Bašić, Nino; Pisanski, Tomaž; Doye, Jonathan P K; Jerala, Roman

    2016-02-18

    Knots are some of the most remarkable topological features in nature. Self-assembly of knotted polymers without breaking or forming covalent bonds is challenging, as the chain needs to be threaded through previously formed loops in an exactly defined order. Here we describe principles to guide the folding of highly knotted single-chain DNA nanostructures as demonstrated on a nano-sized square pyramid. Folding of knots is encoded by the arrangement of modules of different stability based on derived topological and kinetic rules. Among DNA designs composed of the same modules and encoding the same topology, only the one with the folding pathway designed according to the 'free-end' rule folds efficiently into the target structure. Besides high folding yield on slow annealing, this design also folds rapidly on temperature quenching and dilution from chemical denaturant. This strategy could be used to design folding of other knotted programmable polymers such as RNA or proteins.

  6. Al-Al2O3-Pd junction hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Okuyama, K.; Takinami, N.; Chiba, Y.; Ohshima, S.; Kambe, S.

    1994-07-01

    Al-Al2O3-Pd MIM (metal insulator metal) junctions fabricated on a glass substrate were tested as hydrogen sensors. The I-V (current versus voltage) characteristics of the junctions were measured at room temperature in a vacuum of 10-5 Torr and in H2 gas of 10-2-100 Torr. A significant increase in the current was observed upon introduction of H2 gas. This phenomenon is believed to occur due to the work function lowering of the hydrogen-absorbed Pd top electrode. The rise time was on the order of minutes, while the recovery time when hydrogen was purged was more than 20 h. However, when the junction was placed in an oxidizing ambient such as air, the recovery time was drastically reduced to the order of minutes, indicating that the device is operative as a hydrogen sensor in the atmospheric ambient. Hydrogen adsorption and desorption behavior of the Pd film was also investigated using a Pd coated quartz microbalance, and the results explained the current response of the Pd MIM junction to hydrogen in the presence of oxygen.

  7. Integration of rapid prototyping into design and manufacturing

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.

    1993-04-01

    The introduction of rapid prototyping machines into the market place promises to revolutionize the process of producing prototype parts with production-like quality. In the age of concurrent engineering and agile manufacturing, it is necessary to exploit applicable new technologies as soon as they become available. The driving force behind integrating these evolutionary processes into the design and manufacture of prototype parts is the need to reduce lead times and fabrication costs improve efficiency, and increase flexibility without sacrificing quality. Sandia Utilizes stereolithography and selective laser sintering capabilities to support internal design and manufacturing efforts. Stereolithography (SLA) is used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit check models, visual aids for manufacturing, and functional parts in assemblies. Selective laser sintering (SLS) is used to produce wax patterns for the lost wax process of investment casting in support of an internal Sandia National Laboratories program called FASTCAST which integrates experimental and computational technologies into the investment casting process. This presentation will provide a brief overview of the SLA and SLS processes and address our experiences with these technologies from the standpoints of application, accuracy, surface finish, and feature definition. Also presented will be several examples of prototype parts manufactured by the stereolithography and selective laser sintering rapid prototyping machines.

  8. Integration of rapid prototyping into design and manufacturing

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-10-01

    The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with production-like quality. In the age of concurrent engineering and agile manufacturing, it is necessary to exploit applicable new technologies as soon as they become available. The driving force behind integrating these evolutionary processes into the design and manufacture of prototype parts is the need to reduce lead times and fabrication costs, improve efficiency, and increase flexibility without sacrificing quality. Sandia utilizes Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal design and manufacturing efforts. SL is used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. SLS is used to produce wax patterns for the lost wax process of investment casting in support of an internal Sandia National Laboratories program called FASTCAST which integrates experimental and computational technologies into the investment casting process. This presentation will provide a brief overview of the SL and SLS processes and address our experiences with these technologies from the standpoints of application, accuracy, surface finish, and feature definition. Also presented will be several examples of prototype parts manufactured by the Stereolithography and Selective Laser Sintering rapid prototyping machines.

  9. Rapid Risk-Based Evaluation of Competing Conceptual Designs

    SciTech Connect

    Bott, T.F.; Butner, J.M.

    1999-08-22

    In this paper, the authors have shown how a qualitative analysis can provide good input to a risk reduction design problem. Traditionally qualitative analyses such as the FMEA can be supplemented by qualitative fault trees and event trees to produce logic models of the accident sequences for the different design options. These models can be compared using rule-based manipulations of qualitative branch point probabilities. A qualitative evaluation of other considerations such as collateral safety effects, operational impacts and worker-safety impacts can provide a more complete picture of the trade-off between options. The authors believe that their risk-reduction analysis approach that combines logic models with qualitative and possibility metrics provides an excellent tool for incorporating safety concerns rapidly and effectively into a conceptual design evaluation.

  10. Design infrastructure for Rapid Single Flux Quantum circuits

    NASA Astrophysics Data System (ADS)

    Toepfer, Hannes; Ortlepp, Thomas

    2009-11-01

    Cryoelectronic integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology are promising candidates for realizing systems exhibiting very high performance in combination with very low-power consumption. Like other superconductive logic circuits, they are characterized by a high switching speed. Their unique feature consists in the particular representation of binary information by means of short transient voltage pulses. The development of RSFQ circuits and systems requires a comprehensive design approach, supported by appropriate tools. Within the recent years, a dedicated design infrastructure has been developed in Europe in close association with a foundry for digital RSFQ integrated circuits. As a result, RSFQ technology has matured to such a level that engineering efforts enable the development of integrated circuits. In the contribution, the basic features of the RSFQ circuit design are addressed within the context of technical and infrastructural issues of implementation from a European perspective.

  11. Statistical Methods for Rapid Aerothermal Analysis and Design Technology: Validation

    NASA Technical Reports Server (NTRS)

    DePriest, Douglas; Morgan, Carolyn

    2003-01-01

    The cost and safety goals for NASA s next generation of reusable launch vehicle (RLV) will require that rapid high-fidelity aerothermodynamic design tools be used early in the design cycle. To meet these requirements, it is desirable to identify adequate statistical models that quantify and improve the accuracy, extend the applicability, and enable combined analyses using existing prediction tools. The initial research work focused on establishing suitable candidate models for these purposes. The second phase is focused on assessing the performance of these models to accurately predict the heat rate for a given candidate data set. This validation work compared models and methods that may be useful in predicting the heat rate.

  12. Custom Multiwell Plate Design for Rapid Assembly of Photopatterned Hydrogels.

    PubMed

    Ahmed, Naveed; Schober, Joseph; Hill, Lindsay; Zustiak, Silviya P

    2016-06-01

    The extracellular matrix provides both mechanical support and biochemical cues that influence cellular behavior. Matrix stiffness, in particular, has been found to regulate cellular morphology, motility, proliferation, differentiation, and drug responses among other behaviors. Thus, biomaterial platforms that exhibit wide range of stiffness and are available in a semi high-throughput format such as a multiwell plate would be useful for elucidating cell-substrate relationships. Polyacrylamide (PA) gels have been widely used as cell platforms since they span a range of stiffness between 0.3 and 300 kPa in Young's modulus, which encompasses all soft tissues. However, PA gels are time consuming and labor intensive to prepare, and are not amenable to a multiwell plate format. In this study, we present a novel custom multiwell plate design that allows for a one-step stiffness assay assembly that reduces preparation time and labor intensity by several fold. Gel stiffness is controlled by ultraviolet light intensity and exposure time to achieve a wide stiffness range from a single gel precursor solution. The geometry of the gels is defined by a custom photomask and gel thickness is controlled by spacers. A multiwell plate upper structure is designed similar to a regular multiwell plate such that a gel fits in each well and cells and media are added on top. The upper structure design allows for adequate gas exchange and minimum evaporation. Comparison between cell behaviors seeded in the custom and a standard multiwell plate demonstrated the suitability of the design as a cell culture platform. In summary, we describe and validate a novel custom design for an easy and rapid assembly of photopolymerizable PA-based stiffness assay.

  13. The design of rapid MicroRNA detection system

    NASA Astrophysics Data System (ADS)

    Wang, Yanfei; Yu, Dongsheng; Chen, Haiyan; Zhang, Zhanying; Fang, Weikai; Lu, Zeyuan; Li, Yanlei; Ji, Yufeng; Guan, Yifu; Xu, Chidong; Jiang, Haihe

    2016-01-01

    In order to detect miRNA quickly, we designed a new portable device for the rapid detection of miRNA, using Opto-electronic detection technology, marking miRNA and isothermal rolling circle amplification and detecting markers which excite fluorescence intensity, the recognition system of characteristic fluorescence analysis was established. By changing the excitation light intensity, miRNA reagent concentration and other parameters, we arrive at the conclusion that there is the linear relationship (R2=0.9947) between miRNA concentration and fluorescence intensity when the miRNA concentration range the instrument can measure is in the range of 0.01-0.1mol and the lowest values measured by the instrument in theory is 7 copies.

  14. Rapid SOA Frontend Design and Prototyping for LINC-NIRVANA

    NASA Astrophysics Data System (ADS)

    Berwein, J.; Briegel, F.; Kittmann, F.; Pavlov, A.; Gaessler, W.; Kittmann, F.

    2010-12-01

    LINC-NIRVANA is a German-Italian Fizeau (imaging) interferometer for the Large Binocular Telescope (LBT) on Mt. Graham in Arizona, USA. For laboratory testing and integration, a large number of engineering applications are needed. The process of engineering, testing and integration has to go hand in hand with an agile software development for data display and configuration frontends. Therefore we implemented software packages, which enable a rapid design and prototyping of engineering applications within an SOA oriented environment. Due to the usage of only pre-compiled software and the easy to handle workflow neither compilation nor programming knowledge is require. We will present the current development status, usage and advantages of our software, which was realized at the Max Planck Institute for Astronomy in Heidelberg, Germany.

  15. Lessons Learned from Applying Design Thinking in a NASA Rapid Design Study in Aeronautics

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria; Bakula, Casey; Castner, Raymond

    2017-01-01

    In late 2015, NASA's Aeronautics Research Mission Directorate (ARMD) funded an experiment in rapid design and rapid teaming to explore new approaches to solving challenging design problems in aeronautics in an effort to cultivate and foster innovation. This report summarizes several lessons learned from the rapid design portion of the study. This effort entailed learning and applying design thinking, a human-centered design approach, to complete the conceptual design for an open-ended design challenge within six months. The design challenge focused on creating a capability to advance experimental testing of autonomous aeronautics systems, an area of great interest to NASA, the US government as a whole, and an entire ecosystem of users and developers around the globe. A team of nine civil servant researchers from three of NASA's aeronautics field centers with backgrounds in several disciplines was assembled and rapidly trained in design thinking under the guidance of the innovation and design firm IDEO. The design thinking process, while used extensively outside the aerospace industry, is less common and even counter to many practices within the aerospace industry. In this report, several contrasts between common aerospace research and development practices and design thinking are discussed, drawing upon the lessons learned from the NASA rapid design study. The lessons discussed included working towards a design solution without a set of detailed design requirements, which may not be practical or even feasible for management to ascertain for complex, challenging problems. This approach allowed for the possibility of redesigning the original problem statement to better meet the needs of the users. Another lesson learned was to approach problems holistically from the perspective of the needs of individuals that may be affected by advances in topic area instead of purely from a technological feasibility viewpoint. The interdisciplinary nature of the design team also

  16. Lunar Reconnaissance Orbiter (LRO) Rapid Thermal Design Development

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Cottingham, Christine; Garrison, Matthew; Melak, Tony; Peabody, Sharon; Powers, Dan

    2009-01-01

    The Lunar Reconnaissance Orbiter (LRO) project had a rapid development schedule starting with project conception in spring of 2004, instrument and launch vehicle selection late in 2005 and then launch in early 2009. The lunar thermal environment is one of the harshest in our solar system with the heavy infrared loading of the moon due to low albedo, lack of lunar atmosphere, and low effective regolith conduction. This set of constraints required a thermal design which maximized performance (minimized radiator area and cold control heater power) and minimized thermal hardware build at the orbiter level (blanketing, and heater service). The orbiter design located most of the avionics on an isothermalized heat pipe panel called the IsoThermal Panel (ITP). The ITP was coupled by dual bore heat pipes to an Optical Solar Reflector (OSR) covered heat pipe radiator. By coupling all of the avionics to one system, the hardware was simplified. The seven instruments were mainly heritage instruments which resulted in their desired radiators being located by their heritage design. This minimized instrument redesigns and therefore allowed them to be delivered earlier, though it resulted in a more complex orbiter level blanket and heater service design. Three of the instruments were mounted on a tight pointing M55J optical bench that needed to be covered in heaters to maintain pointing. Two were mounted to spacecraft controlled radiators. One was mounted to the ITP Dual Bores. The last was mounted directly to the bus structure on the moon facing panel. The propulsion system utilized four-20 pound insertion thrusters and eight-5 pound attitude control thrusters (ACS) in addition to 1000 kg of fuel in two large tanks. The propulsion system had a heater cylinder and a heated mounting deck for the insertion thrusters which coupled most of the propulsion design together simplifying the heater design. The High Gain Antenna System (HGAS) and Solar Array System (SAS) used dual axis

  17. Heparan Sulfates and Coxsackievirus-Adenovirus Receptor: Each One Mediates Coxsackievirus B3 PD Infection

    PubMed Central

    Zautner, A. E.; Körner, U.; Henke, A.; Badorff, C.; Schmidtke, M.

    2003-01-01

    Amino acid exchanges in the virus capsid protein VP1 allow the coxsackievirus B3 variant PD (CVB3 PD) to replicate in decay accelerating factor (DAF)-negative and coxsackievirus-adenovirus receptor (CAR)-negative cells. This suggests that molecules other than DAF and CAR are involved in attachment of this CVB3 variant to cell surfaces. The observation that productive infection associated with cytopathic effect occurred in Chinese hamster ovary (CHO-K1) cells, whereas heparinase-treated CHO-K1 cells, glucosaminoglycan-negative pgsA-745, heparan sulfate (HS)-negative pgsD-677, and pgsE-606 cells with significantly reduced N-sulfate expression resist CVB3 PD infection, indicates a critical role of highly sulfated HS. 2-O-sulfate-lacking pgsF-17 cells represented the cell line with minimum HS modifications susceptible for CVB3 PD. Inhibition of virus replication in CHO-K1 cells by polycationic compounds, pentosan polysulfate, lung heparin, and several intestinal but not kidney HS supported the hypothesis that CVB3 PD uses specific modified HS for entry. In addition, recombinant human hepatocyte growth factor blocked CVB3 PD infection. However, CAR also mediates CVB3 PD infection, because this CVB3 variant replicates in HS-lacking but CAR-bearing Raji cells, infection could be prevented by pretreatment of cells with CAR antibody, and HS-negative pgsD-677 cells transfected with CAR became susceptible for CVB3 PD. These results demonstrate that the amino acid substitutions in the viral capsid protein VP1 enable CVB3 PD to use specific modified HS as an entry receptor in addition to CAR. PMID:12941917

  18. Design for a Rapid Automatic Sync Acquisition System

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.; Gallo, A. J.

    1969-01-01

    System provides rapid command sync acquisition between widely separated transmitter-receivers. It is based on a rapid, automatic range-adjustment approach rather than the time-consuming cycle slipping or stepping techniques of conventional phase-locked loops.

  19. Superior metallic alloys through rapid solidification processing (RSP) by design

    SciTech Connect

    Flinn, J.E.

    1995-05-01

    Rapid solidification processing using powder atomization methods and the control of minor elements such as oxygen, nitrogen, and carbon can provide metallic alloys with superior properties and performance compared to conventionally processing alloys. Previous studies on nickel- and iron-base superalloys have provided the baseline information to properly couple RSP with alloy composition, and, therefore, enable alloys to be designed for performance improvements. The RSP approach produces powders, which need to be consolidated into suitable monolithic forms. This normally involves canning, consolidation, and decanning of the powders. Canning/decanning is expensive and raises the fabrication cost significantly above that of conventional, ingot metallurgy production methods. The cost differential can be offset by the superior performance of the RSP metallic alloys. However, without the performance database, it is difficult to convince potential users to adopt the RSP approach. Spray casting of the atomized molten droplets into suitable preforms for subsequent fabrication can be cost competitive with conventional processing. If the fine and stable microstructural features observed for the RSP approach are preserved during spray casing, a cost competitive product can be obtained that has superior properties and performance that cannot be obtained by conventional methods.

  20. Designing light responsive bistable arches for rapid, remotely triggered actuation

    NASA Astrophysics Data System (ADS)

    Smith, Matthew L.; Shankar, M. Ravi; Backman, Ryan; Tondiglia, Vincent P.; Lee, Kyung Min; McConney, Michael E.; Wang, David H.; Tan, Loon-Seng; White, Timothy J.

    2014-03-01

    Light responsive azobenzene functionalized polymer networks enjoy several advantages as actuator candidates including the ability to be remotely triggered and the capacity for highly tunable control via light intensity, polarization, wavelength and material alignments. One signi cant challenge hindering these materials from being employed in applications is their often relatively slow actuation rates and low power densities, especially in the absence of photo-thermal e ects. One well known strategy employed in nature for increasing actuation rate and power output is the storage and quick release of elastic energy (e.g., the Venus ytrap). Using nature as inspiration we have conducted a series of experiments and developed an equilibrium mechanics model for investigating remotely triggered snap-through of bistable light responsive arches made from glassy azobenzene functionalized polymers. After brie y discussing experimental observations we consider in detail a geometrically exact, planar rod model of photomechanical snap-through. Theoretical energy release characteristics and unique strain eld pro les provide insight toward design strategies for improved actuator performance. The bistable light responsive arches presented here are potentially a powerful option for remotely triggered, rapid motion from apparently passive structures in applications such as binary optical switches and positioners, surfaces with morphing topologies, and impulse locomotion in micro or millimeter scale robotics.

  1. Epitaxial thin films of Dirac semimetal antiperovskite Cu3PdN

    NASA Astrophysics Data System (ADS)

    Quintela, C. X.; Campbell, N.; Shao, D. F.; Irwin, J.; Harris, D. T.; Xie, L.; Anderson, T. J.; Reiser, N.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.

    2017-09-01

    The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001)-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in NH3 atmosphere. The structural properties of the films, investigated by x-ray diffraction and scanning transmission electron microscopy, establish single phase Cu3PdN exhibiting cube-on-cube epitaxy (001)[100]Cu3PdN||(001)[100]SrTiO3. Electrical transport measurements of as-grown samples show metallic conduction with a small temperature coefficient of the resistivity of 1.5 × 10-4 K-1 and a positive Hall coefficient. Post-annealing in NH3 results in the reduction of the electrical resistivity accompanied by the Hall coefficient sign reversal. Using a combination of chemical composition analyses and ab initio band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic band structure of Cu3PdN. Our successful growth of thin films of antiperovskite Cu3PdN opens the path to further investigate its physical properties and their dependence on dimensionality, strain engineering, and doping.

  2. The Requirements and Design of the Rapid Prototyping Capabilities System

    NASA Astrophysics Data System (ADS)

    Haupt, T. A.; Moorhead, R.; O'Hara, C.; Anantharaj, V.

    2006-12-01

    cyberinfrastructure must support organizing computations (or "data transformations" in general) into complex workflows with resource discovery, automatic resource allocation, monitoring, preserving provenance as well as to aggregate heterogeneous, distributed data into knowledge databases. Such service orchestration is the responsibility of the "collective services" layer. For RPC, this layer will be based on Java Business Integration (JBI, [JSR-208]) specification which is a standards-based integration platform that combines messaging, web services, data transformation, and intelligent routing to reliably connect and coordinate the interaction of significant numbers of diverse applications (plug-in components) across organizational boundaries. JBI concept is a new approach to integration that can provide the underpinnings for loosely coupled, highly distributed integration network that can scale beyond the limits of currently used hub-and-spoke brokers. This presentation discusses the requirements, design and early prototype of the NASA-sponsored RPC system under development at Mississippi State University, demonstrating the integration of data provisioning mechanisms, data transformation tools and computational models into a single interoperable system enabling rapid execution of RPC experiments.

  3. Microstructure evolution of Ag–8Au–3Pd alloy wire during electromigration

    SciTech Connect

    Guo, Rui; Gao, Liming; Li, Ming; Mao, Dali; Qian, Kaiyou; Chiu, Hope

    2015-12-15

    As the continuous shrinkage of the interconnect line width in microelectronics devices, there is a growing concern about the electromigration (EM) failure of bonding wire. In addition, an innovative Ag–8Au–3Pd alloy wire has shown promise as an economical substitute for gold wire interconnects due to the cost pressure of gold in the last decade. In present study of the Ag–8Au–3Pd alloy wire, the surface diffusion occupied the dominant position during EM failure, and the activation energy was found to be 0.61 eV. In order to reveal the failure mechanism, the cross-sections of the Ag–8Au–3Pd alloy wire during EM were prepared by focused ion beam (FIB) micro-machining for electron backscatter diffraction (EBSD) analysis. The microstructure evolution of the Ag–8Au–3Pd alloy wire was characterized by the grain size and grain boundary. As a result, the EM failure originates in the atom transportation, which causes grain size increasing and atom diffusion on the wire surface. - Highlights: • The activation energy of Ag–8Au–3Pd alloy wire was obtained as 0.61 eV. • During EM, the silver atoms diffused from negative to the positive terminal on the wire surface. • The microstructure (grain size and grain boundary) was characterized by FIB-EBSD. • During EM, the atom transportation was found to cause grain size growth and atom diffusion on the wire surface.

  4. Effect of Annealing Twins on Electromigration in Ag-8Au-3Pd Bonding Wires

    NASA Astrophysics Data System (ADS)

    Chuang, Tung-Han; Wang, Hsi-Ching; Chuang, Chien-Hsun; Lee, Jun-Der; Tsai, Hsing-Hua

    2013-03-01

    An innovative Ag-8Au-3Pd bonding wire with a high twin density has been produced. The grain size of this annealing-twinned wire changes moderately during electrical stressing, unlike that of the conventional grained wire, which increases drastically and even leads to a bamboo structure. In addition, the durability against electromigration of the annealing-twinned Ag-8Au-3Pd alloy wire is higher than that of the conventional grained wire. This higher durability can be ascribed to the surface reconstruction of a stepwise morphology and slow grain growth resulting from the abundance of annealing twins in this wire.

  5. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  6. Design Review Closure Report for the SY-101 Rapid Transfer System

    SciTech Connect

    POWELL, W.J.

    1999-11-29

    The purpose of this report, is to document closure of design review open items, resulting from design reviews conducted for the SY-101 Respond And Pump In Days (RAPID) Transfer System. Results of the various design reviews were documented in the Design Review Report for The SY-101 Rapid Mitigation System, HNF-4519. In that report, twenty-three open items were identified. In this report the 23 items are reviewed and statused.

  7. A computational design system for rapid CFD analysis

    NASA Technical Reports Server (NTRS)

    Ascoli, E. P.; Barson, S. L.; Decroix, M. E.; Sindir, Munir M.

    1992-01-01

    A computation design system (CDS) is described in which these tools are integrated in a modular fashion. This CDS ties together four key areas of computational analysis: description of geometry; grid generation; computational codes; and postprocessing. Integration of improved computational fluid dynamics (CFD) analysis tools through integration with the CDS has made a significant positive impact in the use of CFD for engineering design problems. Complex geometries are now analyzed on a frequent basis and with greater ease.

  8. Rapid E-learning Development Strategies and a Multimedia Project Design Model

    ERIC Educational Resources Information Center

    Sözcü, Ömer Faruk; Ipek, Ismail

    2014-01-01

    The purpose of the study is to discuss e-learning design strategies which can be used for multimedia projects as a design model. Recent advances in instructional technologies have been found to be very important in the design of training courses by using rapid instructional design (ID) approaches. The approaches were developed to use in training…

  9. An Intelligent Automation Platform for Rapid Bioprocess Design

    PubMed Central

    Wu, Tianyi

    2014-01-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579

  10. An Intelligent Automation Platform for Rapid Bioprocess Design.

    PubMed

    Wu, Tianyi; Zhou, Yuhong

    2014-08-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.

  11. Rapid and simple method of qPCR primer design.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2015-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is a powerful tool for analysis and quantification of gene expression. It is advantageous compared to traditional gel-based method of PCR, as gene expression can be visualized "real-time" using a computer. In qPCR, a reporter dye system is used which intercalates with DNA's region of interest and detects DNA amplification. Some of the popular reporter systems used in qPCR are the following: Molecular Beacon(®), SYBR Green(®), and Taqman(®). However, success of qPCR depends on the optimal primers used. Some of the considerations for primer design are the following: GC content, primer self-dimer, or secondary structure formation. Freely available software could be used for ideal qPCR primer design. Here we have shown how to use some freely available web-based software programs (such as Primerquest(®), Unafold(®), and Beacon designer(®)) to design qPCR primers.

  12. Rapid Turnaround of Costing/Designing of Space Missions Operations

    NASA Technical Reports Server (NTRS)

    Kudrle, Paul D.; Welz, Gregory A.; Basilio, Eleanor

    2008-01-01

    The Ground Segment Team (GST), at NASA's Jet Propulsion Laboratory in Pasadena, California, provides high-level mission operations concepts and cost estimates for projects that are in the formulation phase. GST has developed a tool to track costs, assumptions, and mission requirements, and to rapidly turnaround estimates for mission operations, ground data systems, and tracking for deep space and near Earth missions. Estimates that would often take several weeks to generate are now generated in minutes through the use of an integrated suite of cost models. The models were developed through interviews with domain experts in areas of Mission Operations, including but not limited to: systems engineering, payload operations, tracking resources, mission planning, navigation, telemetry and command, and ground network infrastructure. Data collected during interviews were converted into parametric cost models and integrated into one tool suite. The tool has been used on a wide range of missions from small Earth orbiters, to flagship missions like Cassini. The tool is an aid to project managers and mission planners as they consider different scenarios during the proposal and early development stages of their missions. The tool is also used for gathering cost related requirements and assumptions and for conducting integrated analysis of multiple missions.

  13. Rapid Assessment of Agility for Conceptual Design Synthesis

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.

    1996-01-01

    This project consists of designing and implementing a real-time graphical interface for a workstation-based flight simulator. It is capable of creating a three-dimensional out-the-window scene of the aircraft's flying environment, with extensive information about the aircraft's state displayed in the form of a heads-up-display (HUD) overlay. The code, written in the C programming language, makes calls to Silicon Graphics' Graphics Library (GL) to draw the graphics primitives. Included in this report is a detailed description of the capabilities of the code, including graphical examples, as well as a printout of the code itself

  14. Low-temperature physical properties of U 3Pd 20Si 6

    NASA Astrophysics Data System (ADS)

    Tateiwa, N.; Kimura, N.; Sakon, T.; Motokawa, M.; Aoki, H.; Komatsubara, T.

    2000-06-01

    We report on the magnetic properties of single crystals of U 3Pd 20Si 6 which crystallizes in the cubic C 6Cr 23-type structure with U being located on two different crystallographic sites. The electrical resistivity shows a metallic behavior at higher temperatures and two successive magnetic phase transitions are found in the specific heat and the magnetic susceptibility at 19 and 2 K. The temperature dependence of susceptibility obeys the Curie-Weiss law above about 50 K with an effective moment 3.30 μ B/U. Magnetic entropy reaches Rln3 per uranium ion at 19 K. These results suggests that U 3Pd 20Si 6 is a typical localized 5f electron system and a rare metallic uranium compound.

  15. [The application of the reverse engineering and rapid prototyping technology in the design of respiratory masks].

    PubMed

    Hu, Ming-xi; Gao, Wang-yu; Du, Zheng-jie; Zhang, Yan-jun

    2006-05-01

    The application of the reverse engineering and rapid prototyping technologies in the design of respiratory masks is introduced in this paper. Practice indicates that the technologies can reduce the cost and save the time in product developments.

  16. Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye.

    PubMed

    He, Shijiang; Li, Di; Zhu, Changfeng; Song, Shiping; Wang, Lihua; Long, Yitao; Fan, Chunhai

    2008-10-28

    A gold nanoprobe that can respond colorimetrically to Hg(2+) is designed and coupled with a power-free PDMS device; the system can be used for rapid and visual detection of low micromolar Hg(2+) in real environmental samples.

  17. Using Rapid Prototyping to Design a Smoking Cessation Website with End-Users.

    PubMed

    Ronquillo, Charlene; Currie, Leanne; Rowsell, Derek; Phillips, J Craig

    2016-01-01

    Rapid prototyping is an iterative approach to design involving cycles of prototype building, review by end-users and refinement, and can be a valuable tool in user-centered website design. Informed by various user-centered approaches, we used rapid prototyping as a tool to collaborate with users in building a peer-support focused smoking-cessation website for gay men living with HIV. Rapid prototyping was effective in eliciting feedback on the needs of this group of potential end-users from a smoking cessation website.

  18. 77 FR 33388 - Designation for the Topeka, KS; Cedar Rapids, IA; Minot, ND; and Cincinnati, OH Areas; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ...; ] DEPARTMENT OF AGRICULTURE Designation for the Topeka, KS; Cedar Rapids, IA; Minot, ND; and Cincinnati, OH... Designation for the Topeka, KS; Cedar Rapids, IA; Minot, ND; and Cincinnati, OH Areas. The document...

  19. PROCESS DESIGN MANUAL: LAND TREATMENT OF MUNICIPAL WASTEWATER. SUPPLEMENT ON RAPID INFILTRATION AND OVERLAND FLOW

    EPA Science Inventory

    The document is intended as a supplement to the 1981 Process Design Manual for Land Treatment of Municipal Wastewater (EPA/625/1-81/013). Throughout the document, the 1981 Manual will be referred to as the Manual. Part I in the text covers design of rapid infiltration systems and...

  20. PROCESS DESIGN MANUAL: LAND TREATMENT OF MUNICIPAL WASTEWATER. SUPPLEMENT ON RAPID INFILTRATION AND OVERLAND FLOW

    EPA Science Inventory

    The document is intended as a supplement to the 1981 Process Design Manual for Land Treatment of Municipal Wastewater (EPA/625/1-81/013). Throughout the document, the 1981 Manual will be referred to as the Manual. Part I in the text covers design of rapid infiltration systems and...

  1. RETRACTED: Auricular prosthesis fabrication using computer-aided design and rapid prototyping technologies.

    PubMed

    Shah, Mayank

    2016-06-01

    At the request of the editorMayank Shah 'Auricular prosthesis fabrication using computer-aided design and rapid prototyping technologies' Prosthetics and Orthotics International, published online before print on October 8, 2013 as doi:10.1177/0309364613504779has been retracted. This is because it contains unattributed overlap withK. Subburaj, C. Nair, S. Rajesh, S. M. Meshram, B. Ravi 'Rapid development of auricular prosthesis using CAD and rapid prototyping technologies' International Journal of Oral & Maxillofacial Surgery 2007; 36: 938-943 doi:10.1016/j.ijom.2007.07.013. © The International Society for Prosthetics and Orthotics 2014.

  2. Developing a workstation-based, real-time simulation for rapid handling qualities evaluations during design

    NASA Technical Reports Server (NTRS)

    Anderson, Frederick; Biezad, Daniel J.

    1994-01-01

    This paper describes the Rapid Aircraft DynamIcs AssessmeNt (RADIAN) project - an integration of the Aircraft SYNThesis (ACSTNT) design code with the USAD DATCOM code that estimates stability derivatives. Both of these codes are available to universities. These programs are then linked to flight simulation and flight controller synthesis tools and resulting design is evaluated on a graphics workstation. The entire process reduces the preliminary design time by an order of magnitude and provides an initial handling qualities evaluation of the design coupled to a control law. The integrated design process is applicable to both conventional aircraft taken from current textbooks and to unconventional designs emphasizing agility and propulsive control of attitude. The interactive and concurrent nature of the design process has been well received by industry and by design engineers at NASA. The process is being implemented into the design curriculum and is being used by students who view it as a significant advance over prior methods.

  3. Coexistence of Antiferromagnetism and Superconductivity in Heavy Fermion Cerium Compound Ce3PdIn11

    PubMed Central

    Kratochvílová, M.; Prokleška, J.; Uhlířová, K.; Tkáč, V.; Dušek, M.; Sechovský, V.; Custers, J.

    2015-01-01

    Many current research efforts in strongly correlated systems focus on the interplay between magnetism and superconductivity. Here we report on coexistence of both cooperative ordered states in recently discovered stoichiometric and fully inversion symmetric heavy fermion compound Ce3PdIn11 at ambient pressure. Thermodynamic and transport measurements reveal two successive magnetic transitions at T1 = 1.67 K and TN = 1.53 K into antiferromagnetic type of ordered states. Below Tc = 0.42 K the compound enters a superconducting state. The large initial slope of dBc2/dT ≈ – 8.6 T/K indicates that heavy quasiparticles form the Cooper pairs. The origin of the two magnetic transitions and the coexistence of magnetism and superconductivity is briefly discussed in the context of the coexistence of the two inequivalent Ce-sublattices in the unit cell of Ce3PdIn11 with different Kondo couplings to the conduction electrons. PMID:26514364

  4. Coexistence of Antiferromagnetism and Superconductivity in Heavy Fermion Cerium Compound Ce3PdIn11.

    PubMed

    Kratochvílová, M; Prokleška, J; Uhlířová, K; Tkáč, V; Dušek, M; Sechovský, V; Custers, J

    2015-10-30

    Many current research efforts in strongly correlated systems focus on the interplay between magnetism and superconductivity. Here we report on coexistence of both cooperative ordered states in recently discovered stoichiometric and fully inversion symmetric heavy fermion compound Ce3PdIn11 at ambient pressure. Thermodynamic and transport measurements reveal two successive magnetic transitions at T1 = 1.67 K and TN = 1.53 K into antiferromagnetic type of ordered states. Below Tc = 0.42 K the compound enters a superconducting state. The large initial slope of dBc2/dT ≈ - 8.6 T/K indicates that heavy quasiparticles form the Cooper pairs. The origin of the two magnetic transitions and the coexistence of magnetism and superconductivity is briefly discussed in the context of the coexistence of the two inequivalent Ce-sublattices in the unit cell of Ce3PdIn11 with different Kondo couplings to the conduction electrons.

  5. Design and manufacturing of ear prosthesis by means of rapid prototyping technology.

    PubMed

    De Crescenzio, F; Fantini, M; Ciocca, L; Persiani, F; Scotti, R

    2011-03-01

    In this paper, the complete procedure to design and construct reusable moulds for implant-based ear prosthesis and manufacture substructures by means of a computer aided design-computer aided manufacturing (CAD-CAM) procedure and rapid prototyping (RP) technology is presented. The scan of the healthy ear, the virtual superimposition of its mirrored image on to the defective side, and the rapid manufacturing of the substructure and of the mould eliminate several steps of traditional procedures (wax, stone, try-in). Moreover, the precise design and customization of the substructure is presented, with the original and engineered shape for the retention of the silicone. The time and cost saving results of this protocol are presented together with a discussion of the main design features that make the prosthesis a stable and reproducible system to improve rehabilitation of patients with auricular defects or absence.

  6. A vaccine study design selection framework for the postlicensure rapid immunization safety monitoring program.

    PubMed

    Baker, Meghan A; Lieu, Tracy A; Li, Lingling; Hua, Wei; Qiang, Yandong; Kawai, Alison Tse; Fireman, Bruce H; Martin, David B; Nguyen, Michael D

    2015-04-15

    The Postlicensure Rapid Immunization Safety Monitoring Program, the vaccination safety monitoring component of the US Food and Drug Administration's Mini-Sentinel project, is currently the largest cohort in the US general population for vaccine safety surveillance. We developed a study design selection framework to provide a roadmap and description of methods that may be utilized to evaluate potential associations between vaccines and health outcomes of interest in the Postlicensure Rapid Immunization Safety Monitoring Program and other systems using administrative data. The strengths and weaknesses of designs for vaccine safety monitoring, including the cohort design, the case-centered design, the risk interval design, the case-control design, the self-controlled risk interval design, the self-controlled case series method, and the case-crossover design, are described and summarized in tabular form. A structured decision table is provided to aid in planning of future vaccine safety monitoring activities, and the data components comprising the structured decision table are delineated. The study design selection framework provides a starting point for planning vaccine safety evaluations using claims-based data sources.

  7. Modular Exhaust Design and Manufacturing Techniques for Low Cost Mid Volume Rapid Buidl to Order Systems

    DTIC Science & Technology

    2014-08-06

    technical data package will contain the following pieces of information: • Manufacturing Drawings • Code for running CNC machinery • Documentation...MODULAR EXHAUST DESIGN AND MANUFACTURING TECHNIQUES FOR LOW COST MID VOLUME RAPID BUILD TO ORDER SYSTEMS Kevin Nelson Project Engineer...customizable mufflers, as well as modular manufacturing techniques targeted at mid volume manufacturing quantities. A successful solution would reduce

  8. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing

    PubMed Central

    Kesner, Samuel B.; Howe, Robert D.

    2011-01-01

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range. PMID:21874102

  9. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

    PubMed

    Kesner, Samuel B; Howe, Robert D

    2011-07-21

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.

  10. Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN.

    PubMed

    Yu, Rui; Weng, Hongming; Fang, Zhong; Dai, Xi; Hu, Xiao

    2015-07-17

    Based on first-principles calculation and effective model analysis, we propose that the cubic antiperovskite material Cu3PdN can host a three-dimensional (3D) topological node-line semimetal state when spin-orbit coupling (SOC) is ignored, which is protected by the coexistence of time-reversal and inversion symmetry. There are three node-line circles in total due to the cubic symmetry. Drumheadlike surface flat bands are also derived. When SOC is included, each node line evolves into a pair of stable 3D Dirac points as protected by C4 crystal symmetry. This is remarkably distinguished from the Dirac semimetals known so far, such as Na3Bi and Cd3As2, both having only one pair of Dirac points. Once C4 symmetry is broken, the Dirac points are gapped and the system becomes a strong topological insulator with (1;111) Z2 indices.

  11. Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN

    NASA Astrophysics Data System (ADS)

    Yu, Rui; Weng, Hongming; Fang, Zhong; Dai, Xi; Hu, Xiao

    2015-07-01

    Based on first-principles calculation and effective model analysis, we propose that the cubic antiperovskite material Cu3PdN can host a three-dimensional (3D) topological node-line semimetal state when spin-orbit coupling (SOC) is ignored, which is protected by the coexistence of time-reversal and inversion symmetry. There are three node-line circles in total due to the cubic symmetry. Drumheadlike surface flat bands are also derived. When SOC is included, each node line evolves into a pair of stable 3D Dirac points as protected by C4 crystal symmetry. This is remarkably distinguished from the Dirac semimetals known so far, such as Na3Bi and Cd3As2 , both having only one pair of Dirac points. Once C4 symmetry is broken, the Dirac points are gapped and the system becomes a strong topological insulator with (1;111) Z2 indices.

  12. Superconductivity in Ta3Pd3Te14 with quasi-one-dimensional PdTe2 chains

    PubMed Central

    Jiao, Wen-He; He, Lan-Po; Liu, Yi; Xu, Xiao-Feng; Li, Yu-Ke; Zhang, Chu-Hang; Zhou, Nan; Xu, Zhu-An; Li, Shi-Yan; Cao, Guang-Han

    2016-01-01

    We report bulk superconductivity at 1.0 K in a low-dimensional ternary telluride Ta3Pd3Te14 containing edge-sharing PdTe2 chains along crystallographic b axis, similar to the recently discovered superconductor Ta4Pd3Te16. The electronic heat capacity data show an obvious anomaly at the transition temperature, which indicates bulk superconductivity. The specific-heat jump is ΔC/(γnTc) ≈ 1.35, suggesting a weak coupling scenario. By measuring the low-temperature thermal conductivity, we conclude that Ta3Pd3Te14 is very likely a dirty s-wave superconductor. The emergence of superconductivity in Ta3Pd3Te14 with a lower Tc, compared to that of Ta4Pd3Te16, may be attributed to the lower density of states. PMID:26876362

  13. Superconductivity in Ta3Pd3Te14 with quasi-one-dimensional PdTe2 chains.

    PubMed

    Jiao, Wen-He; He, Lan-Po; Liu, Yi; Xu, Xiao-Feng; Li, Yu-Ke; Zhang, Chu-Hang; Zhou, Nan; Xu, Zhu-An; Li, Shi-Yan; Cao, Guang-Han

    2016-02-15

    We report bulk superconductivity at 1.0 K in a low-dimensional ternary telluride Ta3Pd3Te14 containing edge-sharing PdTe2 chains along crystallographic b axis, similar to the recently discovered superconductor Ta4Pd3Te16. The electronic heat capacity data show an obvious anomaly at the transition temperature, which indicates bulk superconductivity. The specific-heat jump is ΔC/(γ(n)T(c)) ≈ 1.35, suggesting a weak coupling scenario. By measuring the low-temperature thermal conductivity, we conclude that Ta3Pd3Te14 is very likely a dirty s-wave superconductor. The emergence of superconductivity in Ta3Pd3Te14 with a lower T(c), compared to that of Ta4Pd3Te16, may be attributed to the lower density of states.

  14. Superconductivity in Ta3Pd3Te14 with quasi-one-dimensional PdTe2 chains

    NASA Astrophysics Data System (ADS)

    Jiao, Wen-He; He, Lan-Po; Liu, Yi; Xu, Xiao-Feng; Li, Yu-Ke; Zhang, Chu-Hang; Zhou, Nan; Xu, Zhu-An; Li, Shi-Yan; Cao, Guang-Han

    2016-02-01

    We report bulk superconductivity at 1.0 K in a low-dimensional ternary telluride Ta3Pd3Te14 containing edge-sharing PdTe2 chains along crystallographic b axis, similar to the recently discovered superconductor Ta4Pd3Te16. The electronic heat capacity data show an obvious anomaly at the transition temperature, which indicates bulk superconductivity. The specific-heat jump is ΔC/(γnTc) ≈ 1.35, suggesting a weak coupling scenario. By measuring the low-temperature thermal conductivity, we conclude that Ta3Pd3Te14 is very likely a dirty s-wave superconductor. The emergence of superconductivity in Ta3Pd3Te14 with a lower Tc, compared to that of Ta4Pd3Te16, may be attributed to the lower density of states.

  15. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  16. Computer-aided design and manufacture and rapid prototyped polymethylmethacrylate reconstruction.

    PubMed

    Turgut, Gürsel; Özkaya, Özay; Kayali, Mahmut Ulvi

    2012-05-01

    This article discusses the application of computer-aided design and rapid prototyping techniques in polymethylmethacrylate reconstruction of craniofacial bone defects. This method avoids the probability of tissue damage due to exothermic reaction during the polymerization process and provides precise implants that exactly fit the defects. A total of 11 patients who have various-sized craniofacial defects underwent polymethylmethacrylate reconstruction. We performed three-dimensional reconstruction and operative design using computer software. According to the design, we determined the shape and size of the implants and made individualized implants for craniofacial bone defects with the rapid prototyping technique. With the application of computer-aided design and a rapid prototyping technique, we could accurately determine the shape, size, and embedding location. Prefabricating the individual implant models is useful in improving the accuracy of treatment. No cases of infection, seroma, extrusion, or contour irregularity occurred as a complication, and all patients were satisfied with the results. During the follow-up period, ranging from 1 to 6 years, all patients remained satisfied, and no complications were sustained. In cases of various-sized cranial defects and complex maxillofacial defects that have enough soft tissue coverage and that do not have contact with a third space, prefabricated methyl methacrylate implants can be used safely. Patients will feel more comfortable if the postoperative shape resembles the original appearance, so the proposed algorithm effectively creates a customized implant.

  17. Rapid Prototyping and Evaluation of Control System Designs for Manned and Unmanned Applications

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein; Frye, Michael; Montegut, Michael; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    The development and optimization of flight control systems for modem fixed- and rotary- wing aircraft consume significant time and cost during aircraft development. Similarly, as unmanned aerial vehicles perform more complex tasks, sometimes autonomously, the control system design requirements for this class of vehicles, and the corresponding time and cost requirements, are also becoming significant. Therefore, for both manned and unmanned vehicles, substantial program savings can be achieved if integrated design and optimization tools are employed to shorten the design and flight-test cycle for new or upgraded,pontrol systems. To bring about this reduction in the length of the design-cycle, and therefore its cost, Madab and Simulink are being used to implement block diagrams and to rapidly evaluate the expected responses of the completed systems. In conjunction, CONDUIT (CONtrol Designer's Unified InTerface) is being used to enable the controls engineers to optimize their control laws and ensure that all the relevant quantitative criteria are satisfied.

  18. Using Rapid Ethnography to Support the Design and Implementation of Health Information Technologies.

    PubMed

    Ackerman, Sara; Gleason, Nathaniel; Gonzales, Ralph

    2015-01-01

    Ethnography is the defining practice - and art - of anthropology. Among health information technology (IT) developers, however, ethnography remains a little used and undervalued mode of inquiry and representation. In this chapter we demonstrate that ethnography can make important contributions to the design and implementation of more user-oriented health IT devices and systems. In particular, we propose 'rapid ethnography' as a pragmatic strategy that draws on classic ethnographic methods, but emphasizes shorter periods of fieldwork and quick turnaround of findings to inform (re)design, programming and implementation efforts. Rapid ethnography is theoretically and empirically situated in science and technology studies' explorations of a) the entanglement of social and technical dimensions of technology use; b) how getting tools to 'work' requires aligning interests across a wide range of human and non-human actors; and c) the ways in which humans and technology transform each other as they interact. We provide two detailed case studies to illustrate the evolution and uses of rapid ethnography at a U.S. academic medical center. By providing deeper insights into the experiences of users, and the contexts and communities in which new tools are introduced, rapid ethnography can serve as a valuable component of Techno-Anthropology and health IT innovation.

  19. Design Considerations for Miniaturized Control Moment Gyroscopes for Rapid Retargeting and Precision Pointing of Small Satellites

    NASA Technical Reports Server (NTRS)

    Patankar, Kunal; Fitz-Coy, Norman; Roithmayr, Carlos M.

    2014-01-01

    This paper presents the design as well as characterization of a practical control moment gyroscope (CMG) based attitude control system (ACS) for small satellites in the 15-20 kilogram mass range performing rapid retargeting and precision pointing maneuvers. The paper focuses on the approach taken in the design of miniaturized CMGs while considering the constraints imposed by the use of commercial off-the-shelf (COTS) components as well as the size of the satellite. It is shown that a hybrid mode is more suitable for COTS based moment exchange actuators; a mode that uses the torque amplification of CMGs for rapid retargeting and direct torque capabilities of the flywheel motors for precision pointing. A simulation is provided to demonstrate on-orbit slew and pointing performance.

  20. Rapid model-based inter-disciplinary design of a CubeSat mission

    NASA Astrophysics Data System (ADS)

    Lowe, C. J.; Macdonald, M.

    2014-12-01

    With an increase in the use of small, modular, resource-limited satellites for Earth orbiting applications, the benefit to be had from a model-based architecture that rapidly searches the mission trade-space and identifies near-optimal designs is greater than ever. This work presents an architecture that identifies trends between conflicting objectives (e.g. lifecycle cost and performance) and decision variables (e.g. orbit altitude and inclination) such that informed assessment can be made as to which design/s to take on for further analysis. The models within the architecture exploit analytic methods where possible, in order avoid computationally expensive numerical propagation, and achieve rapid convergence. Two mission cases are studied; the first is an Earth observation satellite and presents a trade-off between ground sample distance and revisit time over a ground target, given altitude as the decision variable. The second is a satellite with a generic scientific payload and shows a more involved trade-off, between data return to a ground station and cost of the mission, given variations in the orbit altitude, inclination and ground station latitude. Results of each case are presented graphically and it is clear that non-intuitive results are captured that would typically be missed using traditional, point-design methods, where only discrete scenarios are examined.

  1. Design and fabrication of custom mandible titanium tray based on rapid prototyping.

    PubMed

    Singare, Sekou; Dichen, Li; Bingheng, Lu; Yanpu, Liu; Zhenyu, Gong; Yaxiong, Liu

    2004-10-01

    During the past few years, the combination of medical imaging and rapid manufacturing technique has proven to be a very important development. On the other hand, the conventional method has some drawbacks. For example, it takes longer time to complete an operation and it also presents some difficulty in matching the repaired contours. With advanced software and hardware, an image of an undamaged bone similar to that of the patient can be made from computerised tomography (CT); and a physical object constructed by the mirror-processed image data can be quickly fabricated with a high degree of fitting with the patient's bone. This paper presents a methodology for the design and fabrication of an individual titanium tray for the repair of mandible defects. Methods for the tray modeling using CAD system are presented: A 3D model of the bony defect is generated after the acquisition of helical CT data. An individual tray is designed using freeform surfaces geometries and fabricated by rapid prototyping (RP) technology. The results of tray filling with bone-grafting materials are then presented. the tray is inserted into the patient mandible segment. The symmetry and reconstruction quality contour of the repaired mandible was satisfactory. Thus, the patient is able to eat normally. The bone-grafting material harvested from the anterior ilium was low. The clinical experience showed that rapid prototyping and reverse engineering software are effective methods of fabricating custom trays for mandibular reconstruction after bone loss due to a tumor.

  2. Agile High-Fidelity Mcnp Model Development Techniques for Rapid Mechanical Design Iteration

    NASA Astrophysics Data System (ADS)

    Kulesza, Joel A.

    2009-08-01

    In order to finalize mechanical design details and perform the associated radiological analyses for the AP1000 pressurized water reactor integrated head package (IHP) in time to meet industrial obligations, a process was developed that allowed a radiological analyst to rapidly respond to changing design criteria. This process used several tools together, most of which were freely available, that enabled the analyst to rapidly re-model both geometrical and radiological details, perform a three-dimensional dose field analysis with MCNP5, examine the results, and present the results in an informative and easily understandable manner to other technical working groups. Thus far the author has used this process to study the radiological impacts of different sources due to various incore instrumentation thimble assembly (IITA) materials, different IITA shield alloys and geometrical configurations, different MP shroud thicknesses, and parameterized air duct wall thicknesses and complementary shielding. Model processing before execution will be discussed in detail. Techniques will also be described which allow for rapid spatial redistribution based on the modified source term. Post processing tools and methods will also be described that yield both qualitative and quantitative results.

  3. Momentum-space structure of quasielastic spin fluctuations in Ce3Pd20Si6

    DOE PAGES

    Portnichenko, P. Y.; Cameron, A. S.; Surmach, M. A.; ...

    2015-03-13

    Surrounded by heavy-fermion metals, Ce3Pd20Si6 is one of the heaviest-electron systems known to date. Here we used high-resolution neutron spectroscopy to observe low-energy magnetic scattering from a single crystal of this compound in the paramagnetic state. We investigated its temperature dependence and distribution in momentum space, which was not accessible in earlier measurements on polycrystalline samples. At low temperatures, a quasielastic magnetic response with a half-width Γ ≈ 0.1 meV persists with varying intensity all over the Brillouin zone. It forms a broad hump centered at the (111) scattering vector, surrounded by minima of intensity at (002), (220), and equivalentmore » wave vectors. The momentum-space structure distinguishes this signal from a simple crystal-field excitation at 0.31 meV, suggested previously, and rather lets us ascribe it to short-range dynamical correlations between the neighboring Ce ions, mediated by the itinerant heavy f electrons via the Ruderman-Kittel-Kasuya-Yosida mechanism. With increasing temperature, the energy width of the signal follows the conventional T1/2 law, Γ(T)=Γ0+A√T. Lastly, the momentum-space symmetry of the quasielastic response suggests that it stems from the simple-cubic Ce sublattice occupying the 8c Wyckoff site, whereas the crystallographically inequivalent 4a site remains magnetically silent in this material.« less

  4. Momentum-space structure of quasielastic spin fluctuations in Ce3Pd20Si6

    NASA Astrophysics Data System (ADS)

    Portnichenko, P. Y.; Cameron, A. S.; Surmach, M. A.; Deen, P. P.; Paschen, S.; Prokofiev, A.; Mignot, J.-M.; Strydom, A. M.; Telling, M. Â. T. F.; Podlesnyak, A.; Inosov, D. S.

    2015-03-01

    Among heavy-fermion metals, Ce3Pd20Si6 is one of the heaviest-electron systems known to date. Here we used high-resolution neutron spectroscopy to observe low-energy magnetic scattering from a single crystal of this compound in the paramagnetic state. We investigated its temperature dependence and distribution in momentum space, which was not accessible in earlier measurements on polycrystalline samples. At low temperatures, a quasielastic magnetic response with a half-width Γ ≈0.1 meV persists with varying intensity all over the Brillouin zone. It forms a broad hump centered at the (111) scattering vector, surrounded by minima of intensity at (002), (220), and equivalent wave vectors. The momentum-space structure distinguishes this signal from a simple crystal-field excitation at 0.31 meV, suggested previously, and rather lets us ascribe it to short-range dynamical correlations between the neighboring Ce ions, mediated by the itinerant heavy f electrons via the Ruderman-Kittel-Kasuya-Yosida mechanism. With increasing temperature, the energy width of the signal follows the conventional T1 /2 law, Γ (T ) =Γ0+A √{T } . The momentum-space symmetry of the quasielastic response suggests that it stems from the simple-cubic Ce sublattice occupying the 8 c Wyckoff site, whereas the crystallographically inequivalent 4 a site remains magnetically silent in this material.

  5. DESIGN AND PRELIMINARY VALIDATION OF A RAPID AUTOMATED BIODOSIMETRY TOOL FOR HIGH THROUGPUT RADIOLOGICAL TRIAGE

    PubMed Central

    Chen, Youhua; Zhang, Jian; Wang, Hongliang; Garty, Guy; Xu, Yanping; Lyulko, Oleksandra V.; Turner, Helen C.; Randers-Pehrson, Gerhard; Simaan, Nabil; Yao, Y. Lawrence; Brenner, D. J.

    2010-01-01

    This paper presents design, hardware, software, and parameter optimization for a novel robotic automation system. RABiT is a Rapid Automated Biodosimetry Tool for high throughput radiological triage. The design considerations guiding the hardware and software architecture are presented with focus on methods of communication, ease of implementation, and need for real-time control versus soft time control cycles. The design and parameter determination for a non-contact PVC capillary laser cutting system is presented. A novel approach for lymphocyte concentration estimation based on computer vision is reported. Experimental evaluations of the system components validate the success of our prototype system in achieving a throughput of 6,000 samples in a period of 18 hours. PMID:21258614

  6. Design of an extreme ultraviolet spectrometer suite to characterize rapidly heated solid matter

    NASA Astrophysics Data System (ADS)

    Ivancic, S. T.; Stillman, C. R.; Nelson, D.; Begishev, I. A.; Mileham, C.; Nilson, P. M.; Froula, D. H.

    2016-11-01

    An ultrafast streaked extreme-ultraviolet (XUV) spectrometer (5-20 nm) was developed to measure the temperature dynamics in rapidly heated samples. Rapid heating makes it possible to create exotic states of matter that can be probed during their inertial confinement time—tens of picoseconds in the case of micron-sized targets. In contrast to other forms of pyrometry, where the temperature is inferred from bulk x-ray emission, XUV emission is restricted to the sample surface, allowing for a temperature measurement at the material-vacuum interface. The surface-temperature measurement constrains models for the release of high-energy-density material. Coupling the XUV spectrometer to an ultrafast (<2-ps) streak camera provided picosecond-time scale evolution of the surface-layer emission. Two high-throughput XUV spectrometers were designed to simultaneously measure the time-resolved and absolute XUV emission.

  7. Design of an extreme ultraviolet spectrometer suite to characterize rapidly heated solid matter.

    PubMed

    Ivancic, S T; Stillman, C R; Nelson, D; Begishev, I A; Mileham, C; Nilson, P M; Froula, D H

    2016-11-01

    An ultrafast streaked extreme-ultraviolet (XUV) spectrometer (5-20 nm) was developed to measure the temperature dynamics in rapidly heated samples. Rapid heating makes it possible to create exotic states of matter that can be probed during their inertial confinement time-tens of picoseconds in the case of micron-sized targets. In contrast to other forms of pyrometry, where the temperature is inferred from bulk x-ray emission, XUV emission is restricted to the sample surface, allowing for a temperature measurement at the material-vacuum interface. The surface-temperature measurement constrains models for the release of high-energy-density material. Coupling the XUV spectrometer to an ultrafast (<2-ps) streak camera provided picosecond-time scale evolution of the surface-layer emission. Two high-throughput XUV spectrometers were designed to simultaneously measure the time-resolved and absolute XUV emission.

  8. A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta.

    PubMed

    Johnson, Ross A; Gurevich, Vyacheslav; Levy, Avraham A

    2013-06-01

    Custom-designed nucleases are a promising technology for genome editing through the catalysis of double-strand DNA breaks within target loci and subsequent repair by the host cell, which can result in targeted mutagenesis or gene replacement. Implementing this new technology requires a rapid means to determine the cleavage efficiency of these custom-designed proteins in planta. Here we present such an assay that is based on cleavage-dependent luciferase gene correction as part of a transient dual-luciferase(®) reporter (Promega) expression system. This assay consists of co-infiltrating Nicotiana benthamiana leaves with two Agrobacterium tumefaciens strains: one contains the target sequence embedded within a luciferase reporter gene and the second strain contains the custom-designed nuclease gene(s). We compared repair following site-specific nuclease digestion through non-homologous DNA end-joining, as opposed to single strand DNA annealing, as a means to restore an out-of-frame luciferase gene cleavage-reporter construct. We show, using luminometer measurements and bioluminescence imaging, that the assay for non-homologous end-joining is sensitive, quantitative, reproducible and rapid in estimating custom-designed nucleases' cleavage efficiency. We detected cleavage by two out of three transcription activator-like effector nucleases that we custom-designed for targets in the Arabidopsis CRUCIFERIN3 gene, and we compared with the well-established 'QQR' zinc-finger nuclease. The assay we report requires only standard equipment and basic plant molecular biology techniques, and it can be carried out within a few days. Different types of custom-designed nucleases can be preliminarily tested in our assay system before their downstream application in plant genome editing.

  9. A user-centered model for web site design: needs assessment, user interface design, and rapid prototyping.

    PubMed

    Kinzie, Mable B; Cohn, Wendy F; Julian, Marti F; Knaus, William A

    2002-01-01

    As the Internet continues to grow as a delivery medium for health information, the design of effective Web sites becomes increasingly important. In this paper, the authors provide an overview of one effective model for Web site design, a user-centered process that includes techniques for needs assessment, goal/task analysis, user interface design, and rapid prototyping. They detail how this approach was employed to design a family health history Web site, Health Heritage . This Web site helps patients record and maintain their family health histories in a secure, confidential manner. It also supports primary care physicians through analysis of health histories, identification of potential risks, and provision of health care recommendations. Visual examples of the design process are provided to show how the use of this model resulted in an easy-to-use Web site that is likely to meet user needs. The model is effective across diverse content arenas and is appropriate for applications in varied media.

  10. A model for the rapid evaluation of active magnetic shielding designs

    NASA Astrophysics Data System (ADS)

    Washburn, Scott Allen

    The use of active magnetic radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs that utilize only passive shielding. One of the common techniques for assessing the effectiveness of active or passive shielding designs is the use of Monte Carlo analysis to determine crew radiation exposure. Unfortunately, Monte Carlo analysis is a lengthy and computationally intensive process, and the associated time requirements to generate results make a broad analysis of the active magnetic shield design trade space impractical using this method. The ability to conduct a broad analysis of system design variables would allow the selection of configurations suited to specific mission goals, including mission radiation exposure limits, duration, and destination. Therefore, a rapid analysis method is required in order to effectively assess active shielding design parameters, and this body of work was developed in order to address this need. Any shielding analysis should also use complete representations of the radiation environment and detailed transport analyses to account for secondary particle production mechanisms. This body of work addresses both of these issues by utilizing the full Galactic Cosmic Radiation GCR flux spectrum and a detailed transport analysis to account for secondary particle effects due to mass interactions. Additionally, there is a complex relationship between the size and strength of an active shielding design and the amount and type of mass required to create it. This mass can significantly impact the resulting flux and radiation exposures inside the active shield, and any shielding analysis should not only include passive mass, but should attempt to provide a reasonable estimate of the actual mass associated with a given design. Therefore, a survey of active shielding systems is presented so that reasonable mass quantity and composition

  11. Design Challenges of a Rapid Cycling Synchrotron for Carbon/Proton Therapy

    NASA Astrophysics Data System (ADS)

    Cook, Nathan

    2012-03-01

    The growing interest in radiation therapy with protons and light ions has driven demand for new methods of ion acceleration and the delivery of ion beams. One exciting new platform for ion beam acceleration and delivery is the rapid cycling synchrotron. Operating at 15Hz, rapid cycling achieves faster treatment times by making beam extraction possible at any energy during the cycle. Moreover, risk to the patient is reduced by requiring fewer particles in the beam line at a given time, thus eliminating the need for passive filtering and reducing the consequences of a malfunction. Lastly, the ability to switch between carbon ion and proton beam therapy provides the machine with an unmatched flexibility. However, these features do stipulate challenges in accelerator design. Maintaining a compact lattice requires careful tuning of lattice functions, tight focusing combined function magnets, and fast injection and extraction systems. Providing the necessary acceleration over a short cycle time also necessitates a five-fold frequency swing for carbon ions, further burdening the design requirements of ferrite-driven radiofrequency cavities. We will consider these challenges as well as some solutions selected for our current design.

  12. Response Surface Method for the Rapid Design of Process Parameters in Tube Hydroforming

    SciTech Connect

    Chebbah, M. S.; Hecini, M.; Naceur, H.; Belouettar, S.

    2007-05-17

    This paper deals with the optimization of tube hydroforming parameters in order reduce defects which may occur at the end of forming process such as necking and wrinkling. We propose a specific methodology based on the coupling between an inverse method for the rapid simulation of tube hydroforming process, and a Response Surface Method based on diffuse approximation. The response surfaces are built using Moving Least Squares approximations and constructed within a moving region of interest which moves across a predefined discrete grid of authorized experimental designs. An application of hydroforming of a bulge from aluminium alloy 6061-T6 tubing has been utilized to validate our methodology. The final design is validated with ABAQUS Explicit Dynamic commercial code.

  13. Design and cost analysis of rapid aquifer restoration systems using flow simulation and quadratic programming.

    USGS Publications Warehouse

    Lefkoff, L.J.; Gorelick, S.M.

    1986-01-01

    Detailed two-dimensional flow simulation of a complex ground-water system is combined with quadratic and linear programming to evaluate design alternatives for rapid aquifer restoration. Results show how treatment and pumping costs depend dynamically on the type of treatment process, and capacity of pumping and injection wells, and the number of wells. The design for an inexpensive treatment process minimizes pumping costs, while an expensive process results in the minimization of treatment costs. Substantial reductions in pumping costs occur with increases in injection capacity or in the number of wells. Treatment costs are reduced by expansions in pumping capacity or injecion capacity. The analysis identifies maximum pumping and injection capacities.-from Authors

  14. Novel design for a wearable, rapidly deployable, wireless noninvasive triage sensor.

    PubMed

    Shaltis, Phillip; Wood, Levi; Reisner, Andrew; Asada, Harry

    2005-01-01

    This paper presents a unique design for a low-power, continuous non-invasive sensor capable of remotely monitoring the five major vital signs of a patient. In particular, the sensor is designed for rapid attachment to the fingerbase of a patient by utilizing a clip-type mechanism and is comprised of a photoplethysmograph (PPG), a MEMS accelerometer, a temperature sensor, and a wireless node. Although hastily placed by a medic, the finger sensor will automatically find the location of a digital artery and acquire a clear, pulse signal: a micro-sensor array accommodates the location of the sensor attachment. Additionally, the PPG signal, although corrupted with the patient's motion in chaotic environment, will be recovered by using the MEMS accelerometer and an Active Noise Cancellation algorithm.

  15. Anomalous metallic state and anisotropic multiband superconductivity in Nb3Pd0.7Se7

    NASA Astrophysics Data System (ADS)

    Zhang, Q. R.; Rhodes, D.; Zeng, B.; Besara, T.; Siegrist, T.; Johannes, M. D.; Balicas, L.

    2013-07-01

    We report the discovery of superconductivity in Nb3PdxSe7 with an x-dependent superconducting transition temperature as high as Tc≃2.1 K for x≃0.7 (middle point of the resistive transition). Needlelike single crystals display anisotropic upper-critical fields with an anisotropy γ=Hc2b/Hc2a as large as 6 between fields applied along their needle axis (or b axis) or along the a axis. As for the Fe based superconductors γ is temperature-dependent, suggesting that Nb3Pd0.7Se7 is a multiband superconductor. This is supported by band structure calculations which reveal a Fermi surface composed of quasi-one-dimensional and quasi-two-dimensional sheets of hole character, as well as three-dimensional sheets of both hole and electron character. Remarkably, Hc2b is observed to saturate at Hc2b(T→0K)≃14.1 T which is 4.26×Hp where Hp is the Pauli-limiting field in the weak-coupling regime. The synthesis procedure yields additional crystals belonging to the Nb2PdxSe5 phase which also becomes superconducting when the fraction of Pd is varied. For both phases we find that superconductivity condenses out of an anomalous metallic state, i.e., displaying ∂ρ/∂T<0 above Tc similarly to what is observed in the pseudogap phase of the underdoped cuprates. An anomalous metallic state, low-dimensionality, multiband character, extremely high and anisotropic Hc2's are all ingredients for unconventional superconductivity.

  16. Golden Spirals and Scalp Whorls: Nature's Own Design for Rapid Expansion.

    PubMed

    Paul, Sharad P

    2016-01-01

    This paper documents what began as an exercise in curiosity-logarithmic spiral designs abound in nature-in galaxies, flowers, even pinecones, and on human scalps as whorls. Why are humans the only primates to have whorls on the scalp? Is the formation of scalp whorls mechanical or genetic? A mechanical theory has long been postulated- the mechanical theory suggests that hair whorl patterning is determined by the tension on the epidermis during rapid expansion of the cranium while the hair follicle is growing downwards-however, this has never before, to the author's knowledge, been experimentally proven conclusively. We found, that under certain conditions, we were able to experimentally recreate spirals on the scalp to demonstrate that the basis of scalp whorls is indeed mechanical-and that logarithmic spirals may be nature's own design for rapid expansion of organic tissues. Given our experiments only created whorls when certain conditions were satisfied (and not in others), they have given us great insight into the mechanical formation of skin whorls and the physiology of skin stretch. We believe that these findings will lead to many more advances in understanding skin dynamics and indeed the changes that occur in tissue when confronted by stretch.

  17. Golden Spirals and Scalp Whorls: Nature’s Own Design for Rapid Expansion

    PubMed Central

    2016-01-01

    This paper documents what began as an exercise in curiosity—logarithmic spiral designs abound in nature—in galaxies, flowers, even pinecones, and on human scalps as whorls. Why are humans the only primates to have whorls on the scalp? Is the formation of scalp whorls mechanical or genetic? A mechanical theory has long been postulated– the mechanical theory suggests that hair whorl patterning is determined by the tension on the epidermis during rapid expansion of the cranium while the hair follicle is growing downwards—however, this has never before, to the author's knowledge, been experimentally proven conclusively. We found, that under certain conditions, we were able to experimentally recreate spirals on the scalp to demonstrate that the basis of scalp whorls is indeed mechanical—and that logarithmic spirals may be nature’s own design for rapid expansion of organic tissues. Given our experiments only created whorls when certain conditions were satisfied (and not in others), they have given us great insight into the mechanical formation of skin whorls and the physiology of skin stretch. We believe that these findings will lead to many more advances in understanding skin dynamics and indeed the changes that occur in tissue when confronted by stretch. PMID:27583520

  18. Science Partnerships Enabling Rapid Response: Designing a Strategy for Improving Scientific Collaboration during Crisis Response

    NASA Astrophysics Data System (ADS)

    Mease, L.; Gibbs, T.; Adiseshan, T.

    2014-12-01

    The 2010 Deepwater Horizon disaster required unprecedented engagement and collaboration with scientists from multiple disciplines across government, academia, and industry. Although this spurred the rapid advancement of valuable new scientific knowledge and tools, it also exposed weaknesses in the system of information dissemination and exchange among the scientists from those three sectors. Limited government communication with the broader scientific community complicated the rapid mobilization of the scientific community to assist with spill response, evaluation of impact, and public perceptions of the crisis. The lessons and new laws produced from prior spills such as Exxon Valdez were helpful, but ultimately did not lead to the actions necessary to prepare a suitable infrastructure that would support collaboration with non-governmental scientists. As oil demand pushes drilling into increasingly extreme environments, addressing the challenge of effective, science-based disaster response is an imperative. Our study employs a user-centered design process to 1) understand the obstacles to and opportunity spaces for effective scientific collaboration during environmental crises such as large oil spills, 2) identify possible tools and strategies to enable rapid information exchange between government responders and non-governmental scientists from multiple relevant disciplines, and 3) build a network of key influencers to secure sufficient buy-in for scaled implementation of appropriate tools and strategies. Our methods include user ethnography, complex system mapping, individual and system behavioral analysis, and large-scale system design to identify and prototype a solution to this crisis collaboration challenge. In this talk, we will present out insights gleaned from existing analogs of successful scientific collaboration during crises and our initial findings from the 60 targeted interviews we conducted that highlight key collaboration challenges that government

  19. [Research and development of computer aided design and rapid prototyping technology for complete denture].

    PubMed

    Sun, Yu-chun; Lü, Pei-jun; Wang, Yong; Han, Jing-yun; Zhao, Jian-jiang

    2007-06-01

    To explore a computer aided design (CAD) and rapid prototyping (RP) approach for fabrication of complete denture and to develop relevant programs for implementing it. Automatic crossing section scanner was used to scan artificial teeth and 3D graphic database of artificial teeth that could be aligned with parameters was established. A 3D laser scanner was used to scan upper and lower edentulous jaw casts and rims made in clinic. The vertical and horizontal relations were recorded before scanning with a patient instrument. Based on Imageware 11, tooth-arrangement curves, coordinate system, and landmark points for positioning were created, and construction cure and shape-controlling curve for base plate were constructed as well. Three-dimensional integrated design of complete denture, including artificial tooth automatic arrangement, aesthetic and individualized design of base plate, and artificial gingival, were finished. The programs were developed following the approach and the CAD platform was established. The virtual molds of complete dentures were constructed according to the above data in design and RP technology was used to make the plaster molds. Finally, the teeth were inserted and the complete denture was finished by dental technician. The approach for the complete denture CAD/RP was confirmed and the CAD software platform was developed. A complete denture was manufactured. The rules for complete denture in textbooks were expressed in design process with the CAD program developed by researcher. The 3D data of rims were utilized in design so that the digital, intelligentized and individualized design and manufacture process for complete denture was implemented.

  20. The design evaluation of inductive power-transformer for personal rapid transit by measuring impedance

    SciTech Connect

    Han, Kyung-Hee; Lee, Byung-Song; Baek, Soo-Hyun

    2008-04-01

    The contact-less inductive power transformer (IPT) uses the principle of electromagnetic induction. The concept of the IPT for vehicles such as the personal rapid transit (PRT) system is proposed and some suggestions for power collector design of IPT to improve power transfer performance are presented in this paper. The aim of this paper is to recommend the concept of IPT for vehicles such as the PRT system and also to present some propositions for the power collector design of the IPT, which is to improve the power transfer performance. Generally, there are diverse methods to evaluate transfer performance of the traditional transformers. Although the principle of IPT is similar to that of the general transformer, it is impossible to apply the methods directly because of large air gap. The system must be compensated by resonant circuit due to the large air gap. Consequently, it is difficult to apply numerical formulas to the magnetic design of IPT systems. This paper investigates the magnetic design of a PRT system using three-dimensional magnetic modeling and measurements of the pick-up coupling coefficient and its impedances. In addition, how the use of Litz wire and leakage inductance is related will be observed through experiment and simulation.

  1. Digital evaluation of nasal changes induced by rapid maxillary expansion with different anchorage and appliance design.

    PubMed

    Fastuca, Rosamaria; Lorusso, Paola; Lagravère, Manuel O; Michelotti, Ambra; Portelli, Marco; Zecca, Piero Antonio; D' Antò, Vincenzo; Militi, Angela; Nucera, Riccardo; Caprioglio, Alberto

    2017-07-14

    Scientific evidence showed that rapid maxillary expansion (RME) affects naso-maxillary complex, increasing nasal width and volume. This study aimed to evaluate nasal changes induced by rapid maxillary expansion with different anchorage and appliance design by using low dose and cone beam computed tomography. A total of 44 patients (20 males, mean age 8y 8 m ± 1y 2 m; 24 females mean age 8y 2 m ± 1y 4 m) were included in the investigation and divided into three groups according to the appliance: Hyrax-type expander anchored to permanent teeth, modified Hyrax-type expander anchored to deciduous teeth, modified Haas-type expander anchored to deciduous teeth. Maxillary expansion was performed until overcorrection and the expander was passively kept in situ for 7 months at least. All patients had three-dimensional imaging before expansion (T0) and after the retention period (T1). Nasal floor width, nasal wall width, maxillary inter-molar width were measured by means of Mimics software. The paired sample t-test was employed to assess the significance of the differences between the time points; the analysis of variance test (ANOVA) was used to compare differences between groups. The statistical analysis revealed significant differences between T0 and T1 for each recorded measurement in each group; no significant differences were found by comparing groups. Rapid maxillary expansion produces a significant skeletal transverse expansion of nasal region in growing patients. No significant differences in nasal effects are expected when the appliance is anchored onto deciduous teeth, with or without the palatal acrylic coverage.

  2. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    SciTech Connect

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2013-06-25

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  3. Overweight, obesity, and inactivity and urban design in rapidly growing Chinese cities.

    PubMed

    Day, Kristen; Alfonzo, Mariela; Chen, Yufei; Guo, Zhan; Lee, Karen K

    2013-05-01

    China faces rising rates of overweight, obesity, and physical inactivity among its citizens. Risk is highest in China's rapidly growing cities and urban populations. Current urban development practices and policies in China heighten this risk. These include policies that support decentralization in land use planning; practices of neighborhood gating; and policies and practices tied to motor vehicle travel, transit planning, and bicycle and pedestrian infrastructure. In this paper, we review cultural, political, and economic issues that influence overweight, obesity, and inactivity in China. We examine key urban planning features and policies that shape urban environments that may compromise physical activity as part of everyday life, including walking and bicycling. We review the empirical research to identify planning and design strategies that support physical activity in other high-density cities in developing and developed countries. Finally, we identify successful strategies to increase physical activity in another growing, high-density city - New York City - to suggest strategies that may have relevance for rapidly urbanizing Chinese cities.

  4. Indirect Rapid Prototyping: Opening Up Unprecedented Opportunities in Scaffold Design and Applications.

    PubMed

    Houben, Annemie; Van Hoorick, Jasper; Van Erps, Jürgen; Thienpont, Hugo; Van Vlierberghe, Sandra; Dubruel, Peter

    2017-01-01

    Over the past decades, solid freeform fabrication (SFF) has emerged as the main technology for the production of scaffolds for tissue engineering applications as a result of the architectural versatility. However, certain limitations have also arisen, primarily associated with the available, rather limited range of materials suitable for processing. To overcome these limitations, several research groups have been exploring novel methodologies through which a construct, generated via SFF, is applied as a sacrificial mould for production of the final construct. The technique combines the benefits of SFF techniques in terms of controlled, patient-specific design with a large freedom in material selection associated with conventional scaffold production techniques. Consequently, well-defined 3D scaffolds can be generated in a straightforward manner from previously difficult to print and even "unprintable" materials due to thermomechanical properties that do not match the often strict temperature and pressure requirements for direct rapid prototyping. These include several biomaterials, thermally degradable materials, ceramics and composites. Since it can be combined with conventional pore forming techniques, indirect rapid prototyping (iRP) enables the creation of a hierarchical porosity in the final scaffold with micropores inside the struts. Consequently, scaffolds and implants for applications in both soft and hard tissue regeneration have been reported. In this review, an overview of different iRP strategies and materials are presented from the first reports of the approach at the turn of the century until now.

  5. Workstation-Based Simulation for Rapid Prototyping and Piloted Evaluation of Control System Designs

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein; Colbourne, Jason D.; Chang, Yu-Kuang; Aiken, Edwin W. (Technical Monitor)

    1998-01-01

    The development and optimization of flight control systems for modem fixed- and rotary-. wing aircraft consume a significant portion of the overall time and cost of aircraft development. Substantial savings can be achieved if the time required to develop and flight test the control system, and the cost, is reduced. To bring about such reductions, software tools such as Matlab/Simulink are being used to readily implement block diagrams and rapidly evaluate the expected responses of the completed system. Moreover, tools such as CONDUIT (CONtrol Designer's Unified InTerface) have been developed that enable the controls engineers to optimize their control laws and ensure that all the relevant quantitative criteria are satisfied, all within a fully interactive, user friendly, unified software environment.

  6. Development and Validation of the Design Organization Test (DOT): a rapid screening instrument for assessing visuospatial ability.

    PubMed

    Killgore, William D S; Glahn, David C; Casasanto, Daniel J

    2005-05-01

    A brief paper-and-pencil instrument was developed to rapidly assess visuospatial ability and serve as an alterative to the WAIS Block Design subtests during screening or when assessment time is limited. The Design Organization Test (DOT) consists of square black-and-white grids with visual patterns similar to those of the Block Design subtests. Administration is straightforward and requires examinees to reproduce as many designs as possible in 2 minutes using a numerical code key. For 411 college students, alternate forms of the DOT yielded reliability estimates comparable to that of the test-retest reliability of WAIS-III Block Design subtest. In a clinical sample, the DOT was significantly correlated (r = .92) with WAIS-III Block Design scores and was successfully substituted in place of Block Design raw scores without significant change in Performance IQ or Full Scale IQ. The results suggest that the DOT provides a useful and rapid screening measure of visuospatial ability.

  7. A Rapid Python-Based Methodology for Target-Focused Combinatorial Library Design.

    PubMed

    Li, Shiliang; Song, Yuwei; Liu, Xiaofeng; Li, Honglin

    2016-01-01

    The chemical space is so vast that only a small portion of it has been examined. As a complementary approach to systematically probe the chemical space, virtual combinatorial library design has extended enormous impacts on generating novel and diverse structures for drug discovery. Despite the favorable contributions, high attrition rates in drug development that mainly resulted from lack of efficacy and side effects make it increasingly challenging to discover good chemical starting points. In most cases, focused libraries, which are restricted to particular regions of the chemical space, are deftly exploited to maximize hit rate and improve efficiency at the beginning of the drug discovery and drug development pipeline. This paper presented a valid methodology for fast target-focused combinatorial library design in both reaction-based and production-based ways with the library creating rates of approximately 70,000 molecules per second. Simple, quick and convenient operating procedures are the specific features of the method. SHAFTS, a hybrid 3D similarity calculation software, was embedded to help refine the size of the libraries and improve hit rates. Two target-focused (p38-focused and COX2-focused) libraries were constructed efficiently in this study. This rapid library enumeration method is portable and applicable to any other targets for good chemical starting points identification collaborated with either structure-based or ligand-based virtual screening.

  8. Design, implementation and flight verification of a versatile and rapidly reconfigurable UAV GNC research platform

    NASA Astrophysics Data System (ADS)

    Lizarraga Fernandez, Mariano I.

    This work presents the design, development, and flight test results of a rapidly reconfigurable autopilot for small Unmanned Aerial Vehicles, along with the ground station software, and hardware-in-the-loop simulator. The autopilot presented differs from current commercial and open source autopilots mainly as it has been specifically designed to: (i) Enable easy modification of all the algorithms supporting the autopilot tasks, including both position and attitude estimation, inner and outer loop control and high-level navigation. This is done by using the advanced capabilities of The Mathwork's Simulink; models are directly transferred to the autopilot through the Real-Time Workshop's code-generation capability. (ii) Decouple the traditional tasks of position and attitude estimation, navigation, and flight control by using two Digital Signal Controllers (one for each task) interconnected via a Serial Peripheral Interface; and (iii) Interact directly with Simulink as a fully capable and versatile Hardware-in-the-Loop simulation engine. These new capabilities are achieved by offering a seamless workflow of redesign, software simulation, hardware-in-the-loop simulation, and actual flight tests. The autopilot capabilities are demonstrated by implementing an L1 output feedback adaptive controller, adopted from the newly developed theory of fast and robust adaptation. Flight test results show significant resilience to severe UAV rudder failures that are consistent with the theoretical claims of the L1 methodology.

  9. Mirror-image anterior crown fabrication with computer-aided design and rapid prototyping technology: a clinical report.

    PubMed

    Cho, Seok-Hwan; Chang, Won-Gun

    2013-02-01

    This clinical report describes the fabrication of a maxillary central incisor single crown with rapid prototyping (RP) technology. A patient with a recently replaced metal ceramic crown had discomfort due to the nonanatomic lingual contour of the crown. With computer-aided design (CAD) software and rapid prototyping (RP) technology, the shape of the contralateral central incisor was duplicated and reproduced to make a mirror-image for a new crown. The prosthodontic planning and treatment approach are discussed.

  10. Optic fiber hydrogen sensor based on high-low reflectivity Bragg gratings and WO3-Pd-Pt multilayer films

    NASA Astrophysics Data System (ADS)

    Dai, Jixiang; Yang, Minghong; Li, Zhi; Wang, Gaopeng; Huang, Chujia; Qi, Chongjie; Dai, Yutang; Wen, Xiaoyan; Cheng, Cheng; Guo, Huiyong

    2015-09-01

    A novel optic fiber hydrogen sensor is proposed in this paper. Two Bragg gratings with different reflectivity were written in single mode fiber with phase mask method by 248 nm excimer laser. The end-face of singe mode fiber was deposited with WO3-Pd-Pt multilayer films as sensing element. The peak intensity of low reflectivity FBG is employed for hydrogen characterization, while that of high reflectivity FBG is used as reference. The experimental results show the hydrogen sensor still has good repeatability when the optic intensity in the fiber is only 1/3 of its initial value. The hydrogen sensor has great potential in measurement of hydrogen concentration.

  11. Design of anthropomorphic flow phantoms based on rapid prototyping of compliant vessel geometries.

    PubMed

    Lai, Simon S M; Yiu, Billy Y S; Poon, Alexander K K; Yu, Alfred C H

    2013-09-01

    Anatomically realistic flow phantoms are essential experimental tools for vascular ultrasound. Here we describe how these flow phantoms can be efficiently developed via a rapid prototyping (RP) framework that involves direct fabrication of compliant vessel geometries. In this framework, anthropomorphic vessel models were drafted in computer-aided design software, and they were fabricated using stereolithography (one type of RP). To produce elastic vessels, a compliant photopolymer was used for stereolithography. We fabricated a series of compliant, diseased carotid bifurcation models with eccentric stenosis (50%) and plaque ulceration (types I and III), and they were used to form thin-walled flow phantoms by coupling the vessels to an agar-based tissue-mimicking material. These phantoms were found to yield Doppler spectrograms with significant spectral broadening and color flow images with mosaic patterns, as typical of disturbed flow under stenosed and ulcerated disease conditions. Also, their wall distension behavior was found to be similar to that observed in vivo, and this corresponded with the vessel wall's average elastic modulus (391 kPa), which was within the nominal range for human arteries. The vessel material's acoustic properties were found to be sub-optimal: the estimated average acoustic speed was 1801 m/s, and the attenuation coefficient was 1.58 dB/(mm·MHz(n)) with a power-law coefficient of 0.97. Such an acoustic mismatch nevertheless did not notably affect our Doppler spectrograms and color flow image results. These findings suggest that phantoms produced from our design framework have the potential to serve as ultrasound-compatible test beds that can simulate complex flow dynamics similar to those observed in real vasculature. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations

    PubMed Central

    Romero, Luis; Jiménez, Mariano; Espinosa, María del Mar; Domínguez, Manuel

    2015-01-01

    Aim This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. Method From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Results Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants. PMID:26696528

  13. SIS Mixer Design for a Broadband Millimeter Spectrometer Suitable for Rapid Line Surveys and Redshift Determinations

    NASA Technical Reports Server (NTRS)

    Rice, F.; Sumner, M.; Zmuidzinas, J.; Hu, R.; LeDuc, H.; Harris, A.; Miller, D.

    2004-01-01

    We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double- sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receiver's single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low- noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP 11). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter application's goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.

  14. Reverse engineering and rapid prototyping techniques to innovate prosthesis socket design

    NASA Astrophysics Data System (ADS)

    Colombo, Giorgio; Bertetti, Massimiliano; Bonacini, Daniele; Magrassi, Grazia

    2006-02-01

    The paper presents an innovative approach totally based on digital data to optimize lower limb socket prosthesis design. This approach is based on a stump's detailed geometric model and provides a substitute to plaster cast obtained through the traditional manual methodology with a physical model, realized with Rapid Prototyping technologies; this physical model will be used for the socket lamination. The paper discusses a methodology to reconstruct a 3D geometric model of the stump able to describe with high accuracy and detail the complete structure subdivided into bones, soft tissues, muscular masses and dermis. Some different technologies are used for stump acquisition: non contact laser technique for external geometry, CT and MRI imaging technologies for the internal structure, the first one dedicated to bones geometrical model, the last for soft tissues and muscles. We discuss problems related to 3D geometric reconstruction: the patient and stump positioning for the different acquisitions, markers' definition on the stump to identify landmarks, alignment's strategies for the different digital models, in order to define a protocol procedure with a requested accuracy for socket's realization. Some case-studies illustrate the methodology and the results obtained.

  15. [Application of computer aided design and rapid prototyping technology for defected maxilla restoration].

    PubMed

    Tong, Dai; Feng, Hai-lan; Li, Yan-sheng; Zhou, Zhi-bo

    2007-06-01

    To test a new cast-making method based on computer aided design (CAD) and rapid prototyping (RP) technology for defected maxilla. Head CT data of 12 patients with defected maxilla were transmitted into a computer. Three-dimensional digital image of the patient's defected maxilla was then obtained based on Mimics 8.11 and Geomagic 7.0 and the plastic cast of the defected region was manufactured by prototyping. The obturator was made on this plastic cast that duplicated the undercut tissue of defected area. The prominent part of the obturator was made of elastic heat-curing resin and it was helpful to gain the retention through the engagement between the obturator and the tissue undercut. After the obturator was finished, the upper removable partial denture was fabricated in conventional method. The combination of these two parts was achieved using magnetic attachment. Clinical effects of obturator and removable partial denture were evaluated and the nasalance value of 5 patients before and after insertion of the obturator was measured using nanometer. The obturator and removable partial denture could be seated into place separately. They all had good retention and stability. After the obturator was seated in place, the nasalance of non-nasal and vowel text decreased from (46.53 +/- 13.86)% to (22.60 +/- 8.52)% (P < 0.001). The cast-making method based on CAD and RP technology for cast-making of defected maxilla is feasible and practical.

  16. SIS Mixer Design for a Broadband Millimeter Spectrometer Suitable for Rapid Line Surveys and Redshift Determinations

    NASA Technical Reports Server (NTRS)

    Rice, F.; Sumner, M.; Zmuidzinas, J.; Hu, R.; LeDuc, H.; Harris, A.; Miller, D.

    2004-01-01

    We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double- sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receiver's single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low- noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP 11). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter application's goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.

  17. New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations.

    PubMed

    Romero, Luis; Jiménez, Mariano; Espinosa, María Del Mar; Domínguez, Manuel

    2015-01-01

    This study proposes the replacement of all the physical devices used in the manufacturing of conventional prostheses through the use of digital tools, such as 3D scanners, CAD design software, 3D implants files, rapid prototyping machines or reverse engineering software, in order to develop laboratory work models from which to finish coatings for dental prostheses. Different types of dental prosthetic structures are used, which were adjusted by a non-rotatory threaded fixing system. From a digital process, the relative positions of dental implants, soft tissue and adjacent teeth of edentulous or partially edentulous patients has been captured, and a maser working model which accurately replicates data relating to the patients oral cavity has been through treatment of three-dimensional digital data. Compared with the conventional master cast, the results show a significant cost savings in attachments, as well as an increase in the quality of reproduction and accuracy of the master cast, with the consequent reduction in the number of patient consultation visits. The combination of software and hardware three-dimensional tools allows the optimization of the planning of dental implant-supported rehabilitations protocol, improving the predictability of clinical treatments and the production cost savings of master casts for restorations upon implants.

  18. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  19. Incommensurate short-range multipolar order parameter of phase II in Ce3Pd20Si6

    NASA Astrophysics Data System (ADS)

    Portnichenko, P. Y.; Paschen, S.; Prokofiev, A.; Vojta, M.; Cameron, A. S.; Mignot, J.-M.; Ivanov, A.; Inosov, D. S.

    2016-12-01

    The clathrate compound Ce3Pd20Si6 is a heavy-fermion metal that exhibits magnetically hidden order at low temperatures. Reputedly, this exotic type of magnetic ground state, known as "phase II", could be associated with the ordering of Ce 4 f quadrupolar moments. In contrast to conventional (dipolar) order, it has vanishing Bragg intensity in zero magnetic field and, as a result, has escaped direct observation by neutron scattering until now. Here we report the observation of diffuse magnetic neutron scattering induced by an application of magnetic field along either the [1 1 ¯0 ] or the [001 ] direction within phase II. The broad elastic magnetic signal that surrounds the (111) structural Bragg peak can be attributed to a short-range G -type antiferromagnetic arrangement of field-induced dipoles modulated by the underlying multipolar order on the simple-cubic sublattice of Ce ions occupying the 8 c Wyckoff site. In addition, for magnetic fields applied along the [001 ] direction, the diffuse magnetic peaks in Ce3Pd20Si6 become incommensurate, suggesting a more complex modulated structure of the underlying multipolar order that can be continuously tuned by a magnetic field.

  20. Rapid application design of an electronic clinical skills portfolio for undergraduate medical students.

    PubMed

    Dornan, Tim; Lee, Catherine; Stopford, Adam; Hosie, Liam; Maredia, Neil; Rector, Alan

    2005-04-01

    The aim was to find how to use information and communication technology to present the clinical skills content of an undergraduate medical curriculum. Rapid application design was used to develop the product, and technical action research was used to evaluate the development process. A clinician-educator, two medical students, two computing science masters students, two other project workers, and a hospital education informatics lead, formed a design team. A sample of stakeholders took part in requirements planning workshops and continued to advise the team throughout the project. A university hospital had many features that favoured fast, inexpensive, and successful system development: a clearly defined and readily accessible user group; location of the development process close to end-users; fast, informal communication; leadership by highly motivated and senior end-users; devolved authority and lack of any rigidly imposed management structure; cooperation of clinicians because the project drew on their clinical expertise to achieve scholastic goals; a culture of learning and involvement of highly motivated students. A detailed specification was developed through storyboarding, use case diagramming, and evolutionary prototyping. A very usable working product was developed within weeks. "SkillsBase" is a database web application using Microsoft Active Server Pages, served from a Microsoft Windows 2000 Server operating system running Internet Information Server 5.0. Graphing functionality is provided by the KavaChart applet. It presents the skills curriculum, provides a password-protected portfolio function, and offers training materials. The curriculum can be presented in several different ways to help students reflect on their objectives and progress towards achieving them. The reflective portfolio function is entirely private to each student user and allows them to document their progress in attaining skills, as judged by self, peer and tutor assessment, and

  1. QXP: powerful, rapid computer algorithms for structure-based drug design.

    PubMed

    McMartin, C; Bohacek, R S

    1997-07-01

    chemical complementarity to all four molecules. The QXP program is reliable, easy to use and sufficiently rapid for routine application in structure-based drug design.

  2. HCV-specific T cells in HCV/HIV co-infection show elevated frequencies of dual Tim-3/PD-1 expression that correlate with liver disease progression.

    PubMed

    Vali, Bahareh; Jones, R Brad; Sakhdari, Ali; Sheth, Prameet M; Clayton, Kiera; Yue, Feng-Yun; Gyenes, Gabor; Wong, David; Klein, Marina B; Saeed, Sahar; Benko, Erika; Kovacs, Colin; Kaul, Rupert; Ostrowski, Mario A

    2010-09-01

    Co-infection of HCV with HIV has been associated with more rapid progression of HCV-related disease. HCV-specific T-cell immune responses, which are essential for disease control, are attenuated in co-infection with HIV. T-cell exhaustion has recently been implicated in the deficient control of chronic viral infections. In the current study, we investigated the role of programmed death-1 (PD-1) and T-cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) expression in T-cell exhaustion during HCV/HIV co-infection. We show that in HCV/HIV co-infection, both total and HCV-specific T cells co-express Tim-3 and PD-1 in significantly higher frequencies, compared with HCV mono-infection. Co-expression of these two markers on HCV-specific CD8(+) T cells positively correlated with a clinical parameter of liver disease progression. HCV-specific CD8(+) T cells showed greater frequencies of Tim-3/PD-1 co-expression than HIV-specific CD8(+) T cells, which may indicate a greater degree of exhaustion in the former. Blocking Tim-3 or PD-1 pathways restored both HIV- and HCV-specific CD8(+) T-cell expansion in the blood of co-infected individuals. These data demonstrate that co-expression of Tim-3 and PD-1 may play a significant role in HCV-specific T-cell dysfunction, especially in the setting of HIV co-infection.

  3. Alloying effect via comparative studies of ethanol dehydrogenation on Cu(1 1 1), Cu3Pd(1 1 1), and Cu3Pt(1 1 1)

    NASA Astrophysics Data System (ADS)

    Wu, Ruitao; Wang, Lichang

    2017-06-01

    Ethanol dehydrogenations on Cu(1 1 1), Cu3Pd(1 1 1), and Cu3Pt(1 1 1) were studied using density functional theory with a PBE functional. The α-C-H and β-C-H scissions are endothermic on all surfaces while the O-H scission is exothermic on Cu(1 1 1) and Cu3Pt(1 1 1) but endothermic on Cu3Pd(1 1 1). The ethanol dehydrogenation occurs on Cu(1 1 1) through both α-C-H and O-H scissions but on Cu3Pd(1 1 1) and Cu3Pt(1 1 1) through only α-C-H scission. Furthermore, alloying Pt or Pd with Cu shows an increase in reaction rate at 493 K by more than 3 orders of magnitude, thus illustrating the promise of alloying Pt or Pd in Cu catalysts for ethanol dehydrogenation.

  4. Low Cost Rapid Response Spacecraft, (LCRRS): A Research Project in Low Cost Spacecraft Design and Fabrication in a Rapid Prototyping Environment

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Bregman, Jesse; Dallara, Christopher D.; Ghassemieh, Shakib M.; Hanratty, James; Jackson, Evan; Kitts, Christopher; Klupar, Pete; Lindsay, Michael; Ignacio, Mas; hide

    2009-01-01

    The Low Cost Rapid Response Spacecraft (LCRRS) is an ongoing research development project at NASA Ames Research Center (ARC), Moffett Field, California. The prototype spacecraft, called Cost Optimized Test for Spacecraft Avionics and Technologies (COTSAT) is the first of what could potentially be a series of rapidly produced low-cost satellites. COTSAT has a target launch date of March 2009 on a SpaceX Falcon 9 launch vehicle. The LCRRS research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing satellite. The design concept was baselined to support a 0.5 meter Ritchey-Chretien telescope payload. This telescope and camera system is expected to achieve 1.5 meter/pixel resolution. The COTSAT team is investigating the possibility of building a fully functional spacecraft for $500,000 parts and $2,000,000 labor. Cost is dramatically reduced by using a sealed container, housing the bus and payload subsystems. Some electrical and RF designs were improved/upgraded from GeneSat-1 heritage systems. The project began in January 2007 and has yielded two functional test platforms. It is expected that a flight-qualified unit will be finished in December 2008. Flight quality controls are in place on the parts and materials used in this development with the aim of using them to finish a proto-flight satellite. For LEO missions the team is targeting a mission class requiring a minimum of six months lifetime or more. The system architecture incorporates several design features required by high reliability missions. This allows for a true skunk works environment to rapidly progress toward a flight design. Engineering and fabrication is primarily done in-house at NASA Ames with flight certifications on materials. The team currently employs seven Full Time Equivalent employees. The success of COTSATs small team in this effort can be attributed to highly cross trained

  5. A Rapid Auto-Indexing Technology for Designing Readable E-Learning Content

    ERIC Educational Resources Information Center

    Yu, Pao-Ta; Liao, Yuan-Hsun; Su, Ming-Hsiang; Cheng, Po-Jen; Pai, Chun-Hsuan

    2012-01-01

    A rapid scene indexing method is proposed to improve retrieval performance for students accessing instructional videos. This indexing method is applied to anchor suitable indices to the instructional video so that students can obtain several small lesson units to gain learning mastery. The method also regulates online course progress. These…

  6. Development of Response Surface Models for Rapid Analysis and Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO.

  7. Development of Response Surface Models for Rapid Analysis and Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO.

  8. Learning Over Time: Using Rapid Prototyping Generative Analysis Experts and Reduction of Scope to Operationalize Design

    DTIC Science & Technology

    2010-05-04

    monitoring the moving processes and adherence to “guiding principles.”79 In his book Sketching User Experience, Bill Buxton emphasizes that a team...79 Lawson, 300. 80 Bill Buxton , Sketching User Experiences: Getting the Design Right and the Right Design. (San Francisco: Elsevier Inc., 2007...Columbia University Press, 2009. Brown, Tim and Barry Katz. Change by Design. New York: HarperCollins Publishers, 2009. Buxton , Bill . Sketching User

  9. Yield improvement for lost mould rapid infiltration forming process by a multistage fractional factorial split plot design.

    PubMed

    Yuangyai, Chumpol; Nembhard, Harriet Black; Hayes, Gregory; Antolino, Nicholas; Adair, James H

    2009-07-01

    Statistical design of experiments is widely used among scientists and engineers to understand influential factors in a laboratory or manufacturing process. One of the underlying principles of using the statistical design of experiments method is randomisation, each run of experimental settings will be determined completely unsystematically. In practice, especially in a complicated process that consists of multiple stages, randomisation may pose too high a burden on time and cost.In this study, the multistage fraction factorial split plot design is proposed for green yield improvement in a lost mould rapid infiltration process that has been developed to fabricate zirconia ceramic parts. This design allows a relaxation of the randomisation principle so that certain experimental runs can be carried out in convenient groups. The results indicate that the type of immersion chemical and mould coating play a role in improving process yield. Additionally, the results suggest that a mould infiltration machine should be used to improve the reproducibility of the process.

  10. Integrated Design and Rapid Development of Refractory Metal Based Alloys for Fossil Energy Applications

    SciTech Connect

    Dogan, O.N.; King, P.E.; Gao, M.C.

    2008-07-01

    One common barrier in the development of new technologies for future energy generating systems is insufficiency of existing materials at high temperatures (>1150oC) and aggressive atmospheres (e.g., steam, oxygen, CO2). To overcome this barrier, integrated design methodology will be applied to the development of refractory metal based alloys. The integrated design utilizes the multi-scale computational methods to design materials for requirements of processing and performance. This report summarizes the integrated design approach to the alloy development and project accomplishments in FY 2008.

  11. Evaluation of Design Tools for Rapid Prototyping of Parallel Signal Processing Algorithms

    DTIC Science & Technology

    1996-12-01

    components. ----- Filter Design SI!s~ wI ___ System ~Designer/BDE 2 --- 1 FSM Editor jSBlock Diagram EditorS ir tli t tNf Nl Tool Interface Hardware...blocks from the SPW libraries or blocks created using the Filter Design System (FDS) or Finite State Machine (FSM) Editor. System block diagrams are...the system ? While evaluating software, these factors and the techniques to optimize them must be kept in mind. In his book on computer interface design

  12. Rapid product development: project engineering joined to design engineering in a concurrent engineering context

    NASA Astrophysics Data System (ADS)

    Bernard, Alain; Ouazzani, A.; Chambolle, F.; Bocquet, Jean Claud

    1997-01-01

    Software tools for designers are mainly based on geometry. Today, many industrial modelers have been rebuilt with C++, or any other object oriented language. This paper proposes to locate the research topics, in order to develop a functional link between project management tools, technical data management and product models. The 'design process' aspect will also be justified through the need of capitalizing designer intent and design history. This is related to different research works of Mechanical Engineering and Logistics Laboratory of Ecole Centrale Paris, and especially two PhD topics.

  13. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  14. Principle design of a protontherapy, rapid-cycling, variable energy spiral FFAG

    NASA Astrophysics Data System (ADS)

    Antoine, S.; Autin, B.; Beeckman, W.; Collot, J.; Conjat, M.; Forest, F.; Fourrier, J.; Froidefond, E.; Lancelot, J. L.; Mandrillon, J.; Mandrillon, P.; Méot, F.; Mori, Y.; Neuvéglise, D.; Ohmori, C.; Pasternak, J.; Planche, T.

    2009-04-01

    The FFAG method is nowadays seen as a potential candidate for the acceleration of protons and light ions for hadrontherapy. This has motivated the design of a principle protontherapy installation, in the frame of the RACCAM project. This article presents the design study, a medical spiral scaling FFAG assembly, capable of producing variable energy proton beams, with potentially high repetition and dose delivery rates.

  15. Anticipating needs and designing new items rapidly - a case study for the design of postural aid equipment.

    PubMed

    Prévost, Marie-Claude; Spooner, Daniel

    2012-01-01

    In this case study, designers proactively proposed new product ideas to a client by using an ergonomic approach. This approach differs from a more traditional approach where one works within a specific, clientdefined project. The methodology used included basic ergonomic techniques such as task analysis and information gathering sessions conducted with users. It was adapted so that these enriched user sessions could be conducted within a short time period. After meeting with five users in seven days, designers identified 20 problems that could be tackled and eight design ideas that could be implemented over the short, medium and long term. The ideas encompassed a wide range of potential projects, including physical product improvements, new product lines, Web-site and software improvements and longer term research. Problems identified and ideas generated involved many disciplines including occupational therapy, mechanical engineering, graphical design, software engineering, sales and manufacturing know-how. This wide range was possible because designers were not constrained to specific project scopes and timelines. The client was involved in the idea evaluation process. As a result of this study two new projects were initiated so far.

  16. Greene SCPrimer: a rapid comprehensive tool for designing degenerate primers from multiple sequence alignments

    PubMed Central

    Jabado, Omar J.; Palacios, Gustavo; Kapoor, Vishal; Hui, Jeffrey; Renwick, Neil; Zhai, Junhui; Briese, Thomas; Lipkin, W. Ian

    2006-01-01

    Polymerase chain reaction (PCR) is widely applied in clinical and environmental microbiology. Primer design is key to the development of successful assays and is often performed manually by using multiple nucleic acid alignments. Few public software tools exist that allow comprehensive design of degenerate primers for large groups of related targets based on complex multiple sequence alignments. Here we present a method for designing such primers based on tree building followed by application of a set covering algorithm, and demonstrate its utility in compiling Multiplex PCR primer panels for detection and differentiation of viral pathogens. PMID:17135211

  17. The Design of a RapidDischarge Varistor System for the MICE Magnet Circuits

    SciTech Connect

    Green, Michael A.

    2008-07-23

    The need for a magnet circuit discharge system, in order to protect the magnet HTS leads during a power failure, has been discussed in recent MICE reports [1], [2]. In order to rapidly discharge a magnet, one has to put enough resistance across the lead. The resistance in this case is varistor that is put across the magnet in the event of a power outage. The resistance consists of several diodes, which act as constant voltage resistors and the resistance of the cables connecting the magnets in the circuit to each other and to the power supply. In order for the rapid discharge system to work without quenching the magnets, the voltage across the magnets must be low enough so that the diodes in the quench protection circuit don't fire and cause the magnet current to bypass the superconducting coils. It is proposed that six rapid discharge varistors be installed across the three magnet circuits the power the tracker solenoids, which are connected in series. The focusing magnets, which are also connected in series would have three varistors (one for each magnet). The coupling magnets would have a varistor for each magnet. The peak voltage that is allowed per varistor depends on the number of quench protection diodes that make up the quench protection circuit for each magnet coil circuit. It is proposed that the varistors be water cooled as the magnet circuits are being discharged through them. The water cooling circuit can be supplied with tap water. The tap water flows only when the varistor temperature reaches a temperature of 45 C.

  18. The application of computational simulation to design optimization of an axisymmetric rapid thermal processing system

    SciTech Connect

    Spence, P.A.; Winters, W.S.; Kee, R.J.; Kermani, A.

    1994-08-01

    We are developing and applying computational models to guide the development of a rapid-thermal-processing system. This work concentrates on scale-up and commercialization of the axisymmetric, multiple-lamp-ring approach that was pioneered by Texas Instruments in the Microelectronics Manufacturing Science and Technology program. CVC Products intends to incorporate the tool into their open-architecture MESC compatible cluster environment. Integration of modeling into the product development process can reduce time-to-market and development costs, as well as improve tool performance.

  19. A Calorimeter Design for Rapidly Estimating the Level of Foodborne Microorganisms

    DTIC Science & Technology

    1975-12-01

    nlfd) 20. Abstract (cont’d) ■^and in a growth medium known to provide rapid growth for such bacteria. These data together with additional heat...Derived from Figure 5 of Rowley et al (1974) Comparisons of Prior Work Procurement Cost Estimates for a Ten Sample Instrument Estimate of heating...2) for sample preparation is the addition of the food sample by weight into the growth medium in a Waring blender. The use of a one-to-one or two-to

  20. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  1. Computer-Aided Design and Rapid Prototyping–Assisted Contouring of Costal Cartilage Graft for Facial Reconstructive Surgery

    PubMed Central

    Lee, Shu Jin; Lee, Heow Pueh; Tse, Kwong Ming; Cheong, Ee Cherk; Lim, Siak Piang

    2012-01-01

    Complex 3-D defects of the facial skeleton are difficult to reconstruct with freehand carving of autogenous bone grafts. Onlay bone grafts are hard to carve and are associated with imprecise graft-bone interface contact and bony resorption. Autologous cartilage is well established in ear reconstruction as it is easy to carve and is associated with minimal resorption. In the present study, we aimed to reconstruct the hypoplastic orbitozygomatic region in a patient with left hemifacial microsomia using computer-aided design and rapid prototyping to facilitate costal cartilage carving and grafting. A three-step process of (1) 3-D reconstruction of the computed tomographic image, (2) mirroring the facial skeleton, and (3) modeling and rapid prototyping of the left orbitozygomaticomalar region and reconstruction template was performed. The template aided in donor site selection and extracorporeal contouring of the rib cartilage graft to allow for an accurate fit of the graft to the bony model prior to final fixation in the patient. We are able to refine the existing computer-aided design and rapid prototyping methods to allow for extracorporeal contouring of grafts and present rib cartilage as a good alternative to bone for autologous reconstruction. PMID:23730421

  2. Computer-aided design and rapid prototyping-assisted contouring of costal cartilage graft for facial reconstructive surgery.

    PubMed

    Lee, Shu Jin; Lee, Heow Pueh; Tse, Kwong Ming; Cheong, Ee Cherk; Lim, Siak Piang

    2012-06-01

    Complex 3-D defects of the facial skeleton are difficult to reconstruct with freehand carving of autogenous bone grafts. Onlay bone grafts are hard to carve and are associated with imprecise graft-bone interface contact and bony resorption. Autologous cartilage is well established in ear reconstruction as it is easy to carve and is associated with minimal resorption. In the present study, we aimed to reconstruct the hypoplastic orbitozygomatic region in a patient with left hemifacial microsomia using computer-aided design and rapid prototyping to facilitate costal cartilage carving and grafting. A three-step process of (1) 3-D reconstruction of the computed tomographic image, (2) mirroring the facial skeleton, and (3) modeling and rapid prototyping of the left orbitozygomaticomalar region and reconstruction template was performed. The template aided in donor site selection and extracorporeal contouring of the rib cartilage graft to allow for an accurate fit of the graft to the bony model prior to final fixation in the patient. We are able to refine the existing computer-aided design and rapid prototyping methods to allow for extracorporeal contouring of grafts and present rib cartilage as a good alternative to bone for autologous reconstruction.

  3. Updates on the Construction of an Eyeglass-Supported Nasal Prosthesis Using Computer-Aided Design and Rapid Prototyping Technology.

    PubMed

    Ciocca, Leonardo; Tarsitano, Achille; Marchetti, Claudio; Scotti, Roberto

    2016-01-01

    This study was undertaken to design an updated connection system for an eyeglass-supported nasal prosthesis using rapid prototyping techniques. The substructure was developed with two main endpoints in mind: the connection to the silicone and the connection to the eyeglasses. The mold design was also updated; the mold was composed of various parts, each carefully designed to allow for easy release after silicone processing and to facilitate extraction of the prosthesis without any strain. The approach used in this study enabled perfect transfer of the reciprocal position of the prosthesis with respect to the eyeglasses, from the virtual to the clinical environment. Moreover, the reduction in thickness improved the flexibility of the prosthesis and promoted adaptation to the contours of the skin, even during functional movements. The method described here is a simplified and viable alternative to standard construction techniques for nasal prostheses and offers improved esthetic and functional results when no bone is available for implant-supported prostheses.

  4. Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    In the traditional aerospace vehicle design process, each successive design phase is accompanied by an increment in the modeling fidelity of the disciplinary analyses being performed. This trend follows a corresponding shrinking of the design space as more and more design decisions are locked in. The correlated increase in knowledge about the design and decrease in design freedom occurs partly because increases in modeling fidelity are usually accompanied by significant increases in the computational expense of performing the analyses. When running high fidelity analyses, it is not usually feasible to explore a large number of variations, and so design space exploration is reserved for conceptual design, and higher fidelity analyses are run only once a specific point design has been selected to carry forward. The designs produced by this traditional process have been recognized as being limited by the uncertainty that is present early on due to the use of lower fidelity analyses. For example, uncertainty in aerodynamics predictions produces uncertainty in trajectory optimization, which can impact overall vehicle sizing. This effect can become more significant when trajectories are being shaped by active constraints. For example, if an optimal trajectory is running up against a normal load factor constraint, inaccuracies in the aerodynamic coefficient predictions can cause a feasible trajectory to be considered infeasible, or vice versa. For this reason, a trade must always be performed between the desired fidelity and the resources available. Apart from this trade between fidelity and computational expense, it is very desirable to use higher fidelity analyses earlier in the design process. A large body of work has been performed to this end, led by efforts in the area of surrogate modeling. In surrogate modeling, an up-front investment is made by running a high fidelity code over a Design of Experiments (DOE); once completed, the DOE data is used to create a

  5. Development of rapidly dissolving pellets within the Quality by Design approach.

    PubMed

    Karatzas, A A; Politis, S N; Rekkas, D M

    2017-05-01

    The purpose of this study was the development of novel, fast disintegrating, effervescent pellets by employing the direct pelletization technique as a single step process. In line with the Quality by Design (QbD) regulatory framework, statistical experimental design was extensively applied to correlate significant formulation and process variables with the critical quality attributes of the product. Pellets were studied with regards to sphericity, size and size distribution. In contrast to the existing multiparticulate platforms, this development integrated only water-soluble excipients to facilitate the multifunctional use of the final dosage form. The application of a screening fractional factorial design augmented to a full factorial design set the roadmap for the rational selection of the composition and process parameters, revealing in parallel the positive contribution of the powder feeder on the CQAs, when the critical process and formulation factors were properly adjusted. The response surface methodology was exploited for the final process optimization phase, which allowed the construction of appropriate mathematical models connecting the input variables and the CQAs under study. The implementation of the desirability function, lead to the optimum formulation and process settings for the production of pellets with narrow size distribution and geometric mean diameter of approximately 800 μm. In conclusion, using a lean approach supported by design of experiments (DoE) techniques within the QbD framework, a novel multifunctional formulation platform has been developed.

  6. Rapid exploration of curing process design space for production of controlled-release pellets.

    PubMed

    Kristan, Katja; Horvat, Matej

    2012-10-01

    Time and cost are among the most often cited hurdles limiting the rate and extent of adoption of Quality by Design (QbD) and Process Analytical Technology. In this article, we demonstrate that, with appropriate techniques, a key QbD element can be achieved with amount of resources comparable to classical development approach. To control the dissolution rate of a highly soluble drug substance from latex polymer coated pellets, we have examined the effect of key variables affecting the curing process step by an experimental design study. To explore and characterize the Design Space, we have produced and tested 62 distinct pellet samples. To achieve this in a reasonable amount of time, we have developed a scaled-down automated dissolution method that demonstrated excellent correlation to the classical method. By careful planning of experimentation, we were able to obtain all samples from just two batches of pellet cores. The curing process Design Space was explored by statistical modeling of samples obtained from the first batch. Robustness and repeatability of the Design Space at the edge of failure was preliminarily investigated by analysis of selected samples from the second batch with encouraging results.

  7. Isothermal electric field-tuning of Exchange bias training in Cr2O3/PdCo

    NASA Astrophysics Data System (ADS)

    Echtenkamp, Will; Binek, Christian

    2013-03-01

    Voltage-controlled exchange bias (EB) is investigated in a Cr2O3/PdCo EB heterosystem where a ferromagnetic and perpendicular anisotropic Pd/Co multilayer has been deposited on a (0001) Cr2O3 (chromia) single crystal. The EB of the system arises from chromia's electrically controllable boundary magnetization (BM) which is switched isothermally and at room temperature by magnetoelectric means. The BM couples to the bulk AF order parameter and follows the latter during switching. In the work reported here, we electrically and isothermally tune chromia into distinct AF multi-domain states. As a result, exchange bias training, which originates from triggered rearrangements of the AF domain state of the pinning system during consecutively cycled hysteresis loops, can be tuned in a controlled manner between zero and sizable effects. We quantify the training effect through best fits of our Landau-Khalatnikov analytic expression to the EB vs loop number. The electric field dependence of the fitting parameters is interpreted in terms of the hysteretic E-field dependence of the AF order parameter. This work is supported through the Nebraska Research Initiative (NRI) and by the MRSEC Program of the NSF.

  8. Rapid Processing of Turner Designs Model 10-Au-005 Internally Logged Fluorescence Data

    EPA Science Inventory

    Continuous recording of dye fluorescence using field fluorometers at selected sampling sites facilitates acquisition of real-time dye tracing data. The Turner Designs Model 10-AU-005 field fluorometer allows for frequent fluorescence readings, data logging, and easy downloading t...

  9. Rapid Processing of Turner Designs Model 10-Au-005 Internally Logged Fluorescence Data

    EPA Science Inventory

    Continuous recording of dye fluorescence using field fluorometers at selected sampling sites facilitates acquisition of real-time dye tracing data. The Turner Designs Model 10-AU-005 field fluorometer allows for frequent fluorescence readings, data logging, and easy downloading t...

  10. Rapid Recollection of Foresight Judgments Increases Hindsight Bias in a Memory Design

    ERIC Educational Resources Information Center

    Calvillo, Dustin P.

    2013-01-01

    One component of hindsight bias is memory distortion. This component is measured with a memory design, in which individuals answer questions, learn the correct answers, and recall their original answers. Hindsight bias occurs when participants' recollections are closer to the correct answers than their original judgments actually were. The present…

  11. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.

  12. Wiki-Based Rapid Prototyping for Teaching-Material Design in E-Learning Grids

    ERIC Educational Resources Information Center

    Shih, Wen-Chung; Tseng, Shian-Shyong; Yang, Chao-Tung

    2008-01-01

    Grid computing environments with abundant resources can support innovative e-Learning applications, and are promising platforms for e-Learning. To support individualized and adaptive learning, teachers are encouraged to develop various teaching materials according to different requirements. However, traditional methodologies for designing teaching…

  13. Wiki-Based Rapid Prototyping for Teaching-Material Design in E-Learning Grids

    ERIC Educational Resources Information Center

    Shih, Wen-Chung; Tseng, Shian-Shyong; Yang, Chao-Tung

    2008-01-01

    Grid computing environments with abundant resources can support innovative e-Learning applications, and are promising platforms for e-Learning. To support individualized and adaptive learning, teachers are encouraged to develop various teaching materials according to different requirements. However, traditional methodologies for designing teaching…

  14. Architecture and design to support rapid prototyping and multiple dynamic models for the Virtual SpacePlane project

    NASA Astrophysics Data System (ADS)

    Banks, Sheila B.; Stytz, Martin R.; Rothermel, Scott A.; Johnson, Troy D.

    1998-08-01

    The advent of requirements for rapid and economical deployment of national space assets in support of Air Force operational missions has resulted in the need for a Manned SpacePlane (MSP) that can perform military missions with minimal preflight preparation and little if any in-orbit support from a mission control center. In this new approach to space operations, successful mission accomplishment will depend almost completely upon the MSP crew and upon the on- board capabilities of the spaceplane. In recognition of the challenges that will be faced by the MSP crew and to begin to address these challenges, the USAF Air Force Research Laboratory (Phillips Laboratory) initiated the Virtual SpacePlane (VSP) project. To support the MSP, the VSP must demonstrate a broad, functional subset of the anticipated missions and capabilities of the MSP throughout its entire flight regime, from takeoff through space operations and on through landing. Additionally, the VSP must execute the anticipated MSP missions in a realistic and tactically sound manner within a distributed virtual environment. Furthermore, the VSP project must also uncover, refine and validate MSP user interface requirements, design and demonstrate an intelligent user interface for the VSP, and design and implement a prototype VSP that can be used to demonstrate Manned SpacePlane missions. To enable us to make rapid progress on the project, we employed portions of the Virtual Cockpit and Solar System Modeler distributed virtual environment applications, and the Common Object Database (CODB) architecture tools developed in our labs. The Virtual Cockpit and Solar System Modeler supplied baseline interface components and tools, 3D graphical models, vehicle motion dynamics models, and VE communication capabilities. We use the CODB architecture to facilitate our use of Rapid Evolutionary and Exploratory Prototyping to uncover application requirements and evaluate solutions. The Information Pod provides the paradigm

  15. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Trujillo, Anna; Pritchett, Amy R.

    2000-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plug-in' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  16. Rapid prototyping of an automated video surveillance system: a hardware-software co-design approach

    NASA Astrophysics Data System (ADS)

    Ngo, Hau T.; Rakvic, Ryan N.; Broussard, Randy P.; Ives, Robert W.

    2011-06-01

    FPGA devices with embedded DSP and memory blocks, and high-speed interfaces are ideal for real-time video processing applications. In this work, a hardware-software co-design approach is proposed to effectively utilize FPGA features for a prototype of an automated video surveillance system. Time-critical steps of the video surveillance algorithm are designed and implemented in the FPGAs logic elements to maximize parallel processing. Other non timecritical tasks are achieved by executing a high level language program on an embedded Nios-II processor. Pre-tested and verified video and interface functions from a standard video framework are utilized to significantly reduce development and verification time. Custom and parallel processing modules are integrated into the video processing chain by Altera's Avalon Streaming video protocol. Other data control interfaces are achieved by connecting hardware controllers to a Nios-II processor using Altera's Avalon Memory Mapped protocol.

  17. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.

    2002-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plugin' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  18. The design of rapid turbidity measurement system based on single photon detection techniques

    NASA Astrophysics Data System (ADS)

    Yang, Yixin; Wang, Huanqin; Cao, Yangyang; Gui, Huaqiao; Liu, Jianguo; Lu, Liang; Cao, Huibin; Yu, Tongzhu; You, Hui

    2015-10-01

    A new rapid turbidity measurement system has been developed to measure the turbidity of drinking water. To determinate the turbidity quantitatively, the total intensity of scattering light has been measured and quantified as number of photons by adopting the single photon detection techniques (SPDT) which has the advantage of high sensitivity. On the basis of SPDT, the measurement system has been built and series of experiments have been carried out. Combining then the 90° Mie scattering theory with the principle of SPDT, a turbidity measurement model has been proposed to explain the experimental results. The experimental results show that a turbidity, which is as low as 0.1 NTU (Nephelometric Turbidity Units), can be measured steadily within 100 ms. It also shows a good linearity and stability over the range of 0.1-400 NTU and the precision can be controlled within 5% full scale. In order to improve its precision and stability, some key parameters, including the sampling time and incident light intensity, have been discussed. It has been proved that, to guarantee an excellent system performance, a good compromise between the measurement speed and the low power consumption should be considered adequately depending on the practical applications.

  19. The Effect of Rapid Liquid-Phase Reactions on Injector Design and Combustion in Rocket Motors

    NASA Technical Reports Server (NTRS)

    Elverum, Gerard W., Jr.; Staudhammer, Peter

    1959-01-01

    Data are presented indicating the rates and magnitudes of energy released by the liquid-phase reactions of various propellant combinations. The data show that this energy release can contribute significantly to the rate of vaporization of the incoming propellants and thus aid the combustion process. Nevertheless, very low performances were obtained in rocket motors with conventional impinging-jet injectors when highly reactive systems such as N104-N2H4, were employed. A possible explanation for this low performance is that the initial reactions of such systems are so rapid that liquid-phase mixing is inhibited. Evidence for such an effect is presented in a series of color photographs of open flames using various injector elements. Based on these studies, some requirements are suggested for injector elements using highly reactive propellants. Experimental results are presented of motor tests using injector elements in which some of these requirements are met through the use of a set of concentric tubes. These tests, carried out at thrust levels of 40 to 800 lb per element, demonstrated combustion efficiencies of up to 98% based on equilibrium characteristic velocity values. Results are also presented for tests made with impinging-jet and splash-plate injectors for comparison.

  20. Design and characterization of a versatile reference instrument for rapid, reproducible specular gloss measurements

    SciTech Connect

    Liu Jian; Noel, Mario; Zwinkels, Joanne

    2005-08-01

    A reference goniospectrophotometer has been developed at the National Research Council of Canada (NRC) for providing high-accuracy traceable measurements of specular gloss at several standard geometries, including 75 deg. for paper samples, haze and absence-of-bloom gloss, and color appearance of gonioapparent materials. This is to the authors/ knowledge the first reported reference instrument that has this level of versatility for rapidly characterizing the total visual appearance properties of a wide variety of materials and applications. This instrument also replaces the NRC glossmeter that has been providing primary level specular gloss measurements in accordance with International Organization for Standardization and American Society for Testing and Materials standards for measurements of paint and ceramic materials at geometries of 20 deg. , 60 deg. , and 85 deg. . The new instrument has been fully characterized for sources of error and compared with the NRC glossmeter. Its measurement reproducibility of 0.02 gloss unit is a factor-of-5 improvement, and its overall estimated expanded (k=2) uncertainty is 0.3 gloss unit at all three standard geometries.

  1. Trial fitting of a removable partial denture framework made using computer-aided design and rapid prototyping techniques.

    PubMed

    Bibb, R J; Eggbeer, D; Williams, R J; Woodward, A

    2006-10-01

    Previous studies of CAD/CAM-produced sacrificial patterns for removable partial denture frameworks have been documented but to date, no such restorations have been test-fitted to a patient. This paper provides details of the first trial fitting to a patient of an RPD framework, the sacrificial pattern of which was produced by CAD/CAM and RP technologies. A cast of the patient was scanned and the normal procedures of dental surveying and pattern build were undertaken with reference to the scanned model using computer-aided design. A sacrificial pattern of the design was produced by rapid prototyping technology. After spruing the pattern, investment-casting and finishing techniques were carried out according to conventional principles. The framework was successfully trial-fitted to the patient and clinically judged to be acceptable for the next stage of denture fabrication, that of adding acrylic bases and artificial teeth.

  2. Enabling Smart Grid Cosimulation Studies: Rapid Design and Development of the Technologies and Controls

    SciTech Connect

    Hansen, Timothy M.; Kadavil, Rahul; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay; Chong, Edwin K. P.; Hale, Elaine

    2016-03-01

    The 21st century electric power grid is transforming with an unprecedented increase in demand and increase in new technologies. In the United States Energy Independence and Security Act of 2007, Title XIII sets the tenets for modernizing the electricity grid through what is known as the 'Smart Grid Initiative.' This initiative calls for increased design, deployment, and integration of distributed energy resources, smart technologies and appliances, and advanced storage devices. The deployment of these new technologies requires rethinking and re-engineering the traditional boundaries between different electric power system domains.

  3. Design of rapid medical evacuation system for trauma patients resulting from biological and chemical terrorist attacks.

    PubMed

    Frieder, Russell S; Kumaresan, Srirangam; Sances, Anthony; Renfroe, David; Myers, Will J; Harvey, L Williams

    2006-01-01

    In the event of a large scale, biological or chemical terrorist attack it is unlikely that local emergency response organizations will have sufficient quantities of dedicated ambulances to evacuate all of the affected victims. As a potential solution to this problem, we have developed a device that can be retrofitted to a variety of government or civilian utility vehicles in order to convert them for emergency medical transport (US Pat. 7,028,351). Each installed device allows the host vehicle to safely transport either a single patient on a stretcher or multiple ambulatory patients. Additionally, each device provides a means for temporary or permanent attachment of emergency medical equipment. When not in use, the device can be collapsed to improve ease and efficiency of storage. Preliminary analyses of certain highly loaded structures on the device were carried out using known principles of solid mechanics. The analyses were carried out assuming the highest reasonable loading condition. This condition was determined to occur when the device is configured for the transport three 95(th) percentile males and 20 kg of medical equipment. This loading condition was assumed to be more severe than any that might occur due to an attendant performing CPR, or any other medical procedures, on a single supine patient. The base sections of the load bearing stretcher supports were then modeled using 3D CAD software and run through a finite element analysis (FEA) as a means to more accurately simulate the stresses that are likely to occur in the actual parts. As the device must be highly mobile, these analyses were used to confirm that the load bearing structures can be manufactured from low cost materials and still be light enough to be easily transported. Future work will include sizing and installation studies to ensure that the production version of the device can be rapidly implemented in a wide variety of private, commercial, and government utility vehicles.

  4. Application of the rapid prototyping technique to design a customized temporomandibular joint used to treat temporomandibular ankylosis

    PubMed Central

    Chaware, Suresh M.; Bagaria, Vaibhav; Kuthe, Abhay

    2009-01-01

    Anthropometric variations in humans make it difficult to replace a temporomandibular joint (TMJ), successfully using a standard “one-size-fits-all” prosthesis. The case report presents a unique concept of total TMJ replacement with customized and modified TMJ prosthesis, which is cost-effective and provides the best fit for the patient. The process involved in designing and modifications over the existing prosthesis are also described. A 12-year- old female who presented for treatment of left unilateral TMJ ankylosis underwent the surgery for total TMJ replacement. A three-dimensional computed tomography (CT) scan suggested features of bony ankylosis of left TMJ. CT images were converted to a sterolithographic model using CAD software and a rapid prototyping machine. A process of rapid manufacturing was then used to manufacture the customized prosthesis. Postoperative recovery was uneventful, with an improvement in mouth opening of 3.5 cm and painless jaw movements. Three years postsurgery, the patient is pain-free, has a mouth opening of about 4.0 cm and enjoys a normal diet. The postoperative radiographs concur with the excellent clinical results. The use of CAD/CAM technique to design the custom-made prosthesis, using orthopaedically proven structural materials, significantly improves the predictability and success rates of TMJ replacement surgery. PMID:19881026

  5. Novel Design Integrating a Microwave Applicator into a Crystallizer for Rapid Temperature Cycling. A Direct Nucleation Control Study

    PubMed Central

    2017-01-01

    The control of nucleation in crystallization processes is a challenging task due to the often lacking knowledge on the process kinetics. Inflexible (predetermined) control strategies fail to grow the nucleated crystals to the desired quality because of the variability in the process conditions, disturbances, and the stochastic nature of crystal nucleation. Previously, the concept of microwave assisted direct nucleation control (DNC) was demonstrated in a laboratory setup to control the crystal size distribution in a batch crystallization process by manipulating the number of particles in the system. Rapid temperature cycling was used to manipulate the super(under)saturation and hence the number of crystals. The rapid heating response achieved with the microwave heating improved the DNC control efficiency, resulting in halving of the batch time. As an extension, this work presents a novel design in which the microwave applicator is integrated in the crystallizer, hence avoiding the external loop though the microwaves oven. DNC implemented in the 4 L unseeded crystallizer, at various count set points, resulted in strong efficiency enhancement of DNC, when compared to the performance with a slow responding system. The demonstrated crystallizer design is a basis for extending the enhanced process control opportunity to other applications. PMID:28729813

  6. Design of a smart, survivable sensor system for rapid transit applications

    SciTech Connect

    Hogan, J.R.; Mitchell, J.L.

    1994-08-01

    An application of smart sensor technology developed by Sandia National Laboratories has been proposed for real-time monitoring and tracking in the transportation industry. Its primary purpose is to reduce operating costs by improving preventative maintenance scheduling, reducing the number, severity and consequence of accidents and by reducing losses due to theft. The concept uses a strap-on sensor package, the Green Box, that can be attached to any vehicle. The Green Box is designed as a valued-added component, integrated into existing transportation industry systems and standards. The device, designed to provide advanced warning of component failures, would be capable of surviving most typical accidents. In an accident, the system would send a distress signal notifying authorities of the location and condition of the cargo; permitting them to respond in the most effective manner. In addition, the Green Box is adaptable for use as a notification/locator system to enhance the security of operators and passengers for various modes of public transportation. The modular architecture which facilitates system integration in a number of different applications is discussed. A test plan for evaluating performance in both normal and abnormal operating and accident conditions is described.

  7. A Design Methodology for Rapid Implementation of Active Control Systems Across Lean Direct Injection Combustor Platforms

    NASA Technical Reports Server (NTRS)

    Baumann, William T.; Saunders, William R.; Vandsburger, Uri; Saus, Joseph (Technical Monitor)

    2003-01-01

    The VACCG team is comprised of engineers at Virginia Tech who specialize in the subject areas of combustion physics, chemical kinetics, dynamics and controls, and signal processing. Currently, the team's work on this NRA research grant is designed to determine key factors that influence combustion control performance through a blend of theoretical and experimental investigations targeting design and demonstration of active control for three different combustors. To validiate the accuracy of conclusions about control effectiveness, a sequence of experimental verifications on increasingly complex lean, direct injection combustors is underway. During the work period January 1, 2002 through October 15, 2002, work has focused on two different laboratory-scale combustors that allow access for a wide variety of measurements. As the grant work proceeds, one key goal will be to obtain certain knowledge about a particular combustor process using a minimum of sophisticated measurements, due to the practical limitations of measurements on full-scale combustors. In the second year, results obtained in the first year will be validated on test combustors to be identified in the first quarter of that year. In the third year, it is proposed to validate the results at more realistic pressure and power levels by utilizing the facilities at the Glenn Research Center.

  8. New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration.

    PubMed

    Lee, M-Y; Chang, C-C; Ku, Y C

    2008-01-01

    Fixed dental restoration by conventional methods greatly relies on the skill and experience of the dental technician. The quality and accuracy of the final product depends mostly on the technician's subjective judgment. In addition, the traditional manual operation involves many complex procedures, and is a time-consuming and labour-intensive job. Most importantly, no quantitative design and manufacturing information is preserved for future retrieval. In this paper, a new device for scanning the dental profile and reconstructing 3D digital information of a dental model based on a layer-based imaging technique, called abrasive computer tomography (ACT) was designed in-house and proposed for the design of custom dental restoration. The fixed partial dental restoration was then produced by rapid prototyping (RP) and computer numerical control (CNC) machining methods based on the ACT scanned digital information. A force feedback sculptor (FreeForm system, Sensible Technologies, Inc., Cambridge MA, USA), which comprises 3D Touch technology, was applied to modify the morphology and design of the fixed dental restoration. In addition, a comparison of conventional manual operation and digital manufacture using both RP and CNC machining technologies for fixed dental restoration production is presented. Finally, a digital custom fixed restoration manufacturing protocol integrating proposed layer-based dental profile scanning, computer-aided design, 3D force feedback feature modification and advanced fixed restoration manufacturing techniques is illustrated. The proposed method provides solid evidence that computer-aided design and manufacturing technologies may become a new avenue for custom-made fixed restoration design, analysis, and production in the 21st century.

  9. Preliminary Clinical Application of Removable Partial Denture Frameworks Fabricated Using Computer-Aided Design and Rapid Prototyping Techniques.

    PubMed

    Ye, Hongqiang; Ning, Jing; Li, Man; Niu, Li; Yang, Jian; Sun, Yuchun; Zhou, Yongsheng

    The aim of this study was to explore the application of computer-aided design and rapid prototyping (CAD/RP) for removable partial denture (RPD) frameworks and evaluate the fitness of the technique for clinical application. Three-dimensional (3D) images of dentition defects were obtained using a lab scanner. The RPD frameworks were designed using commercial dental software and manufactured using selective laser melting (SLM). A total of 15 cases of RPD prostheses were selected, wherein each patient received two types of RPD frameworks, prepared by CAD/RP and investment casting. Primary evaluation of the CAD/RP framework was performed by visual inspection. The gap between the occlusal rest and the relevant rest seat was then replaced using silicone, and the specimens were observed and measured. Paired t test was used to compare the average thickness and distributed thickness between the CAD/RP and investment casting frameworks. Analysis of variance test was used to compare the difference in thickness among different zones. The RPD framework was designed and directly manufactured using the SLM technique. CAD/RP frameworks may meet the clinical requirements with satisfactory retention and stability and no undesired rotation. Although the average gap between the occlusal rest and the corresponding rest seat of the CAD/RP frameworks was slightly larger than that of the investment casting frameworks (P < .05), it was acceptable for clinical application. RPD frameworks can be designed and fabricated directly using digital techniques with acceptable results in clinical application.

  10. Behavior of Metals Under Dynamic Conditions (NS-109): The Design of a Hydro-Pneumatic Machine for Rapid Load Tensile Testing

    DTIC Science & Technology

    1945-02-19

    8217.’ . • . .. .. . .,......... . ...’ . ...... ;.....- . :! . .. . . .. . ...... .. . .. . . . . . .... ., . . . . t 4 I i# lI • I t . . . it I i t I I , Ji I I ’ ’ 2 ’ ’, . RESTRITE The Design of a dr neumatic Mlachine For Rapid

  11. A modular design for rapid-response telecoms and navigation missions

    NASA Astrophysics Data System (ADS)

    Davies, P.; Liddle, D.; Buckley, John; Sweeting, M.; Roussel-Dupre, Diane; Caffrey, Michael

    2004-11-01

    Surrey Satellite Technology Ltd and Los Alamos National Laboratory are together building the Cibola Flight Experiment (CFESat), a mission with the aim of flight-proving a reconfigurable processor payload intended for a Low Earth Orbit system. The mission will survey portions of the VHF and UHF radio spectra. The satellite will be launched by the Space Test Program in September 2006 on the USAF Evolved Expendable Launch Vehicle (EELV) using the EELV's Secondary Payload Adapter (ESPA) that allows up to six small satellites to be launched as "piggyback" passengers with larger spacecraft. The payload is based on networks of reprogrammable, Field Programmable Gate Arrays (FPGAs) to process the received signals for ionospheric and lightning studies. The objective is to validate the on-orbit use of commercial, reconfigurable FPGA technology utilizing several different single-event upset mitigation schemes. It will also detect and measure impulsive events that occur in a complex background. SSTL's satellite platform is based on a new, ESPA- compatible, structure housing subsystems and equipments with proven flight heritage from SSTL's disaster monitoring constellation (DMC) and the Topsat mission satellite due for launch in 2005. The structure is mechanically quite complex for a microsatellite having both deployed solar panels and a pair of long booms as part of the payload. The satellite design is highly constrained by the mass and volume requirements of the EELV/EPSA.

  12. Cooperative GN&C development in a rapid prototyping environment. [flight software design for space vehicles

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim

    1993-01-01

    The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.

  13. Cooperative GN&C development in a rapid prototyping environment. [flight software design for space vehicles

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim

    1993-01-01

    The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.

  14. Electronic structure of the heavy-fermion caged compound Ce3Pd20X6(X =Si,Ge) studied by density functional theory and photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaoka, Hitoshi; Schwier, Eike F.; Arita, Masashi; Shimada, Kenya; Tsujii, Naohito; Jarrige, Ignace; Jiang, Jian; Hayashi, Hirokazu; Iwasawa, Hideaki; Namatame, Hirofumi; Taniguchi, Masaki; Kitazawa, Hideaki

    2015-03-01

    The electronic structure of Ce3Pd20X6(X =Si,Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a tendency to be magnetic. Ce atoms at the (4a) site surrounded by 12 Pd and 6 X atoms, on the other hand, are more localized and paramagnetic. The 4 d -4 f resonance PES measurements clearly indicate the Ce 4 f contribution in the valence band in these compounds. The spectral weight of Ce 4 f0 is stronger than that of Ce 4 f1 , indicating the localized nature of Ce 4 f electrons. Near the Fermi level, the Ce 4 f1 weight of Ce3Pd20Si6 is stronger than that of Ce3Pd20Ge6 , suggesting stronger c -f hybridization in the former.

  15. Rapid screening test for gestational diabetes: public health need, market requirement, initial product design, and experimental results

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Zwisler, Greg; Peck, Roger; Abu-Haydar, Elizabeth

    2013-03-01

    Gestational diabetes is a global epidemic where many urban areas in Southeast Asia have found prevalence rates as high as 20%, exceeding the highest prevalence rates in the developed world. It can have serious and life-threatening consequences for mothers and babies. We are developing two variants of a new, simple, low-cost rapid test for screening for gestational diabetes mellitus for use primarily in low-resource settings. The pair of assays, both semiquantitative rapid diagnostic strip tests for glycated albumin, require neither fasting nor an oral glucose challenge test. One variant is an extremely simple strip test to estimate the level of total glycated albumin in blood. The other, which is slightly more complex and expensive, is a test that determines the ratio of glycated albumin to total albumin. The screening results can be used to refer women to receive additional care during delivery to avoid birth complications as well as counseling on diet and exercise during and after pregnancy. Results with the latter test may also be used to start treatment with glucose-lowering drugs. Both assays will be read visually. We present initial results of a preliminary cost-performance comparison model evaluating the proposed test versus existing alternatives. We also evaluated user needs and schematic paper microfluidics-based designs aimed at overcoming the challenge of visualizing relatively narrow differences between normal and elevated levels of glycated albumin in blood.

  16. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space- based observatories drive the end-to-end data analysis and distribution requirements. The Swift mission is managed by the GSFC, and includes an international team of contributors that each bring their unique perspective that have proven invaluable to the mission. The spacecraft bus, provided by Spectrum Astro, Inc. was procured through a Rapid Spacecraft Development Office (RSDO) contract by the GSFC. There are three instruments: the Burst Alert Telescope (BAT) provided by the GSFC; the X-Ray Telescope (XRT) provided by a team led by the Pennsylvania State University (PSU); and the Ultra-Violet Optical Telescope (UVOT), again managed by PSU. The Mission Operations Center (MOC) was developed by and is located at PSU. Science archiving and data analysis centers are located at the GSFC, in the UK and in Italy.

  17. Correction of a skeletal Class II malocclusion with severe crowding by a specially designed rapid maxillary expander.

    PubMed

    Wang, Honghong; Feng, Jing; Lu, Peijun; Shen, Gang

    2015-02-01

    To correct an Angle Class II malocclusion or to create spaces in the maxillary arch by nonextraction treatment, distal movement of the maxillary molars is required. Various modalities for distalizing the buccal segment have been reported. Conventional extraoral appliances can be used to obtain maximum anchorage. However, many patients reject headgear wear because of social and esthetic concerns, and the success of this treatment depends on patient compliance. Intraoral appliances, such as repelling magnets, nickel-titanium coils, pendulum appliance, Jones jig appliance, distal jet appliance, and modified Nance appliance, have been introduced to distalize the molars with little or no patient cooperation. However, intraoral appliances can result in anchorage loss of the anterior teeth and distal tipping of the maxillary molars. In this case report, we introduce a diversified rapid maxillary expansion appliance that was custom designed and fabricated for the treatment of a growing girl with a skeletal Class II malocclusion and severe crowding from a totally lingually positioned lateral incisor. The appliance concomitantly expanded the maxilla transversely and retracted the buccal segment sagittally, distalizing the maxillary molars to reach a Class I relationship and creating the spaces to displace the malpositioned lateral incisor. The uniqueness of this special diversified rapid maxillary expansion appliance was highlighted by a series of reconstructions and modifications at different stages of the treatment to reinforce the anchorage.

  18. Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer

    2016-01-01

    The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype was delivered to NASA in 2006 and was notated as RCA 1.0 and sized for the extravehicular activity (EVA). The new RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two- bed design employs a chemisorption process whereby the beds alternate between adsorbtion and desorbsion. This process provides for an efficient operation of the RCA so that while one bed is in adsorb (uptake) mode, the other is in the desorb (regeneration) mode. The RCA has now progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overreview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each.

  19. Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer

    2016-01-01

    The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype (RCA 1.0) was delivered to NASA in 2006 and sized for the extravehicular activity (EVA). The RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient RCA operation that enables one bed to be in adsorb (uptake) mode, while the other is in the desorb (regeneration) mode. The RCA has progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each. Nomenclature.

  20. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  1. Swift Gamma-ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2005-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UT, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  2. Designing a rapid response program to support evidence-informed decision-making in the Americas region: using the best available evidence and case studies.

    PubMed

    Haby, Michelle M; Chapman, Evelina; Clark, Rachel; Barreto, Jorge; Reveiz, Ludovic; Lavis, John N

    2016-08-18

    The objective of this work was to inform the design of a rapid response program to support evidence-informed decision-making in health policy and practice for the Americas region. Specifically, we focus on the following: (1) What are the best methodological approaches for rapid reviews of the research evidence? (2) What other strategies are needed to facilitate evidence-informed decision-making in health policy and practice? and (3) How best to operationalize a rapid response program? The evidence used to inform the design of a rapid response program included (i) two rapid reviews of methodological approaches for rapid reviews of the research evidence and strategies to facilitate evidence-informed decision-making, (ii) supplementary literature in relation to the "shortcuts" that could be considered to reduce the time needed to complete rapid reviews, (iii) four case studies, and (iv) supplementary literature to identify additional operational issues for the design of the program. There is no agreed definition of rapid reviews in the literature and no agreed methodology for conducting them. Better reporting of rapid review methods is needed. The literature found in relation to shortcuts will be helpful in choosing shortcuts that maximize timeliness while minimizing the impact on quality. Evidence for other strategies that can be used concurrently to facilitate the uptake of research evidence, including evidence drawn from rapid reviews, is presented. Operational issues that need to be considered in designing a rapid response program include the implications of a "user-pays" model, the importance of recruiting staff with the right mix of skills and qualifications, and ensuring that the impact of the model on research use in decision-making is formally evaluated. When designing a new rapid response program, greater attention needs to be given to specifying the rapid review methods and reporting these in sufficient detail to allow a quality assessment. It will also be

  3. Enhancement of electrochemical hydrogen storage in NiCl2-FeCl3-PdCl2-graphite intercalation compound effected by chemical exfoliation

    NASA Astrophysics Data System (ADS)

    Skowroński, J. M.; Rozmanowski, T.; Krawczyk, P.

    2013-06-01

    In the present work, a quaternary NiCl2-FeCl3-PdCl2-graphite intercalation compound (NiCl2-FeCl3-PdCl2-GIC) was successfully synthesized by molten salts method. A part of this compound was subsequently subjected to chemical exfoliation to obtain expanded compound (NiCl2-FeCl3-PdCl2-EGIC). The changes created in crystalline structure, morphology and chemical composition of GIC due to exfoliation were examined by XRD, SEM and EDS techniques and then related to electrochemical behaviour of electrodes made of the original and exfoliated compound. The results of electrochemical studies carried out by the cyclic voltammetry (CV) method in 6 M KOH solution showed that current charges of all the cathodic and anodic peaks recorded for NiCl2-FeCl3-PdCl2-EGIC are considerably higher already in the first two cycles as compared to those observed for the original NiCl2-FeCl3-PdCl2-GIC. This improvement is ascribed to chemical exfoliation leading to a tremendous development of surface area of the compound due to the splitting and wrinkling of graphite flakes followed by easier access of hydroxyl ions of the electrolyte to active species of intercalates preserved between the graphene interspaces as well as expelled from the graphite interspacing. A large anodic peak was recorded on CV curves after the potentiostatic polarization of electrodes at the potential of -1.2 V where the reaction of hydrogen sorption/evolution occurs and intercalates highly dispersed in the graphite matrix are reduced to a metal form. This peak mainly corresponding to the recovery of hydrogen stored in the electrode appeared to be over five times higher for electrode made of exfoliated compound. This significant enhancement of the hydrogen storage capacity is attributed to electrochemically active Pd nanoparticles highly dispersed in porous structure of exfoliated compound and likely functioning in synergy with Ni/Fe clusters.

  4. Linear and nonlinear studies at RHIC interaction regions and optical design of the rapid cycling medical synchrotron

    NASA Astrophysics Data System (ADS)

    Cardona, Javier Fernando

    Development and application of the action and phase technique used to evaluate and correct local errors, linear and non linear (skew quadrupole errors, gradient errors and sextupole errors), at RHIC interaction regions is presented in the first part of this thesis. The skew quadrupole errors have their origin on the roll angles of the quadrupoles. It is then possible to estimate the skew quadrupole error present in a RHIC triplet if all the roll angles of the quadrupoles of a particular triplet are known. These values were estimated with the measured roll angles during the 2002 RHIC shutdown period and compared to the measured skew quadrupole errors obtained with the action and phase technique. The agreement is fairly good validating the action and phase technique for at least skew quadrupole errors. Another way of validating the action and phase technique is by intentionally introducing known values of errors while attempting to measure the values with the technique. This was done for skew quadrupole errors and gradient errors with excellent results. Analysis of some of the experiments shows that the set errors can be reproduced by the technique with accuracies below 5 percent. Same experiments were repeated for sextupole errors an a clear correlation between the measured and the set error was found but the precision in this case is not as good as for the linear errors case. The optical design of the Rapid Cycling Medical Synchrotron and related efforts to optimize the design are presented in the second part of this thesis. An interesting outcome of this work is the development of the so called IBEFUMFO technique which allow a better understanding of the optical parameters involved in a lattice design and hence facilitate the task of the designer. The rapid repetition frequency of the RCMS has raised concerns about the sextupole components induced in the beam due to strong Eddy currents. Tracking simulations with Marylie have been done in order to evaluate the

  5. Automated design of paralogue ratio test assays for the accurate and rapid typing of copy number variation

    PubMed Central

    Veal, Colin D.; Xu, Hang; Reekie, Katherine; Free, Robert; Hardwick, Robert J.; McVey, David; Brookes, Anthony J.; Hollox, Edward J.; Talbot, Christopher J.

    2013-01-01

    Motivation: Genomic copy number variation (CNV) can influence susceptibility to common diseases. High-throughput measurement of gene copy number on large numbers of samples is a challenging, yet critical, stage in confirming observations from sequencing or array Comparative Genome Hybridization (CGH). The paralogue ratio test (PRT) is a simple, cost-effective method of accurately determining copy number by quantifying the amplification ratio between a target and reference amplicon. PRT has been successfully applied to several studies analyzing common CNV. However, its use has not been widespread because of difficulties in assay design. Results: We present PRTPrimer (www.prtprimer.org) software for automated PRT assay design. In addition to stand-alone software, the web site includes a database of pre-designed assays for the human genome at an average spacing of 6 kb and a web interface for custom assay design. Other reference genomes can also be analyzed through local installation of the software. The usefulness of PRTPrimer was tested within known CNV, and showed reproducible quantification. This software and database provide assays that can rapidly genotype CNV, cost-effectively, on a large number of samples and will enable the widespread adoption of PRT. Availability: PRTPrimer is available in two forms: a Perl script (version 5.14 and higher) that can be run from the command line on Linux systems and as a service on the PRTPrimer web site (www.prtprimer.org). Contact: cjt14@le.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23742985

  6. Application of Computer-Aided Designing and Rapid Prototyping Technologies in Reconstruction of Blowout Fractures of the Orbital Floor.

    PubMed

    Tabaković, Saša Z; Konstantinović, Vitomir S; Radosavljević, Radivoje; Movrin, Dejan; Hadžistević, Miodrag; Hatab, Nur

    2015-07-01

    Traumatology of the maxillofacial region represents a wide range of different types of facial skeletal injuries and encompasses numerous treatment methods. Application of computer-aided design (CAD) in combination with rapid prototyping (RP) technologies and three-dimensional computed tomography techniques facilitates surgical therapy planning for efficient treatment. The purpose of this study is to determine the efficiency of individually designed implants of poly-DL-lactide (PDLLA) in the reconstruction of blowout fractures of the orbital floor. In the course of a surgical treatment, individually designed implants manufactured by CAD/RP technologies were used. Preoperative analysis and postoperative monitoring were conducted to evaluate the successfulness of orbital floor reconstruction using customized PDLLA implants, based on: presence of diplopia, paresthesia of infraorbital nerve, and presence of enophthalmos. In 6 of the 10 patients, diplopia completely disappeared immediately after surgical procedure. Diplopia gradually disappeared after 1 month in 3 patients, whereas in 1, it remained even after 6 months. In 7 patients, paresthesia disappeared within a month after surgery and in 3 patients within 2 months. Postoperative average Orbital volume (OV) of the injured side (13.333 ± 3.177) was significantly reduced in comparison with preoperative OV (15.847 ± 3.361) after reconstruction of the orbital floor with customized PDLLA implant (P < 0.001). Thus, average OV of corrected orbit was not different compared with the OV of the uninjured orbit (P = 0.981). Reconstruction of blowout fractures of the orbital floor by an individually designed PDLLA implant combined with virtual preoperative modeling allows easier preoperative preparation and yields satisfactory functional and esthetic outcomes.

  7. Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution

    NASA Astrophysics Data System (ADS)

    Pitts, Jonathan D.; Mycek, Mary-Ann

    2001-07-01

    We report the design, development, and characterization of a sensitive, time-resolved fluorescence spectrometer capable of measuring fluorescence spectra and transient decays simultaneously, with data acquisition times less than 1 s. The spectrometer, a portable fluorescence lifetime spectrometer (FLS), was designed to be compatible with both laboratory and clinical research studies on biological systems, and was applied to the study of several biological fluorophores in vitro and human tissue in vivo. The instrument consisted of a nitrogen laser pumping a dye laser for excitation from 337.1 nm through the near infrared, a quartz fiber-optic probe for remote light delivery and collection, and amplified detectors for rapid spectral and temporal detection from 350 to 800 nm. The spectral resolution of the FLS was determined to be 3 nm, which is sufficient for accurately detecting the broad spectral bands associated with biological fluorophores. The FLS was able to detect 5×10-7 M fluorescein dye concentrations with spectral signal-to-noise ratios (SNRs) of 29. Time-resolved detection with the FLS had a dynamic range of approximately three decades with a SNR of 200. Using fluorescence lifetime standards, the FLS was determined to be capable of accurately resolving fluorophore lifetimes from hundreds of picoseconds to tens of nanoseconds in duration, with an ultimate temporal resolution of 360 ps.

  8. The design of a microfluidic biochip for the rapid, multiplexed detection of foodborne pathogens by surface plasmon resonance imaging

    NASA Astrophysics Data System (ADS)

    Zordan, Michael D.; Grafton, Meggie M. G.; Park, Kinam; Leary, James F.

    2010-02-01

    The rapid detection of foodborne pathogens is increasingly important due to the rising occurrence of contaminated food supplies. We have previously demonstrated the design of a hybrid optical device that has the capability to perform realtime surface plasmon resonance (SPR) and epi-fluorescence imaging. We now present the design of a microfluidic biochip consisting of a two-dimensional array of functionalized gold spots. The spots on the array have been functionalized with capture peptides that specifically bind E. coli O157:H7 or Salmonella enterica. This array is enclosed by a PDMS microfluidic flow cell. A magnetically pre-concentrated sample is injected into the biochip, and whole pathogens will bind to the capture array. The previously constructed optical device is being used to detect the presence and identity of captured pathogens using SPR imaging. This detection occurs in a label-free manner, and does not require the culture of bacterial samples. Molecular imaging can also be performed using the epi-fluorescence capabilities of the device to determine pathogen state, or to validate the identity of the captured pathogens using fluorescently labeled antibodies. We demonstrate the real-time screening of a sample for the presence of E. coli O157:H7 and Salmonella enterica. Additionally the mechanical properties of the microfluidic flow cell will be assessed. The effect of these properties on pathogen capture will be examined.

  9. EMMA: An Extensible Mammalian Modular Assembly Toolkit for the Rapid Design and Production of Diverse Expression Vectors.

    PubMed

    Martella, Andrea; Matjusaitis, Mantas; Auxillos, Jamie; Pollard, Steven M; Cai, Yizhi

    2017-07-21

    Mammalian plasmid expression vectors are critical reagents underpinning many facets of research across biology, biomedical research, and the biotechnology industry. Traditional cloning methods often require laborious manual design and assembly of plasmids using tailored sequential cloning steps. This process can be protracted, complicated, expensive, and error-prone. New tools and strategies that facilitate the efficient design and production of bespoke vectors would help relieve a current bottleneck for researchers. To address this, we have developed an extensible mammalian modular assembly kit (EMMA). This enables rapid and efficient modular assembly of mammalian expression vectors in a one-tube, one-step golden-gate cloning reaction, using a standardized library of compatible genetic parts. The high modularity, flexibility, and extensibility of EMMA provide a simple method for the production of functionally diverse mammalian expression vectors. We demonstrate the value of this toolkit by constructing and validating a range of representative vectors, such as transient and stable expression vectors (transposon based vectors), targeting vectors, inducible systems, polycistronic expression cassettes, fusion proteins, and fluorescent reporters. The method also supports simple assembly combinatorial libraries and hierarchical assembly for production of larger multigenetic cargos. In summary, EMMA is compatible with automated production, and novel genetic parts can be easily incorporated, providing new opportunities for mammalian synthetic biology.

  10. MPC Design for Rapid Pump-Attenuation and Expedited Hyperglycemia Response to Treat T1DM with an Artificial Pancreas

    PubMed Central

    Gondhalekar, Ravi; Dassau, Eyal; Doyle, Francis J.

    2016-01-01

    The design of a Model Predictive Control (MPC) strategy for the closed-loop operation of an Artificial Pancreas (AP) for treating Type 1 Diabetes Mellitus (T1DM) is considered in this paper. The contribution of this paper is to propose two changes to the usual structure of the MPC problems typically considered for control of an AP. The first proposed change is to replace the symmetric, quadratic input cost function with an asymmetric, quadratic function, allowing negative control inputs to be penalized less than positive ones. This facilitates rapid pump-suspensions in response to predicted hypoglycemia, while simultaneously permitting the design of a conservative response to hyperglycemia. The second proposed change is to penalize the velocity of the predicted glucose level, where this velocity penalty is based on a cost function that is again asymmetric, but additionally state-dependent. This facilitates the accelerated response to acute, persistent hyperglycemic events, e.g., as induced by unannounced meals. The novel functionality is demonstrated by numerical examples, and the efficacy of the proposed MPC strategy verified using the University of Padova/Virginia metabolic simulator. PMID:28479660

  11. Rehabilitation of maxillectomy defects with obturator prostheses fabricated using computer-aided design and rapid prototyping: a pilot study.

    PubMed

    Jiao, Ting; Zhu, Chenyuan; Dong, Xian; Gu, Xiaoyu

    2014-01-01

    To establish an alternative method to design and fabricate an obturator prosthesis within the maxillectomy defect using a computer-aided design (CAD) and rapid prototyping (RP) technique and to evaluate the functional results of this technique. Eleven patients with acquired maxillary defects resulting from head and neck cancers were treated using a protocol based on three-dimensional (3D) reconstruction, CAD, and RP technologies to fabricate obturator prostheses. To evaluate the quality of the obturator prostheses and the patients' satisfaction, the Obturator Functioning Scale (OFS) of the Memorial Sloan-Kettering Cancer Center was applied. Each patient received an individualized obturator that exactly matched the static shape and fit of the defect. Clinical modifications were required to improve border contours. The patients showed good results in all fields of functional outcomes and social acceptance. The OFS scores were comparable with those reported in other studies using traditional maxillectomy impression methods. This study combined CAD with RP technology to explore an alternative and feasible method for manufacturing individualized obturators for patients after maxillary resection. It has shown significant clinical value, especially for use in developing countries.

  12. A hybrid CFD-DSMC model designed to simulate rapidly rarefying flow fields and its application to physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gott, Kevin

    This research endeavors to better understand the physical vapor deposition (PVD) vapor transport process by determining the most appropriate fluidic model to design PVD coating manufacturing. An initial analysis was completed based on the calculation of Knudsen number from titanium vapor properties. The results show a dense Navier-Stokes solver best describes flow near the evaporative source, but the material properties suggest expansion into the chamber may result in a strong drop in density and a rarefied flow close to the substrate. A hybrid CFD-DSMC solver is constructed in OpenFOAM for rapidly rarefying flow fields such as PVD vapor transport. The models are patched together combined using a new patching methodology designed to take advantage of the one-way motion of vapor from the CFD region to the DSMC region. Particles do not return to the dense CFD region, therefore the temperature and velocity can be solved independently in each domain. This novel technique allows a hybrid method to be applied to rapidly rarefying PVD flow fields in a stable manner. Parameter studies are performed on a CFD, Navier-Stokes continuum based compressible solver, a Direct Simulation Monte Carlo (DSMC) rarefied particle solver, a collisionless free molecular solver and the hybrid CFD-DSMC solver. The radial momentum at the inlet and radial diffusion characteristics in the flow field are shown to be the most important to achieve an accurate deposition profile. The hybrid model also shows sensitivity to the shape of the CFD region and rarefied regions shows sensitivity to the Knudsen number. The models are also compared to each other and appropriate experimental data to determine which model is most likely to accurately describe PVD coating deposition processes. The Navier-Stokes solvers are expected to yield backflow across the majority of realistic inlet conditions, making their physics unrealistic for PVD flow fields. A DSMC with improved collision model may yield an accurate

  13. Advanced rapid prototyping by laser beam sintering of metal prototypes: design and development of an optimized laser beam delivery system

    NASA Astrophysics Data System (ADS)

    Geiger, Manfred; Coremans, A.; Neubauer, Norbert; Niebling, F.

    1996-08-01

    Fast technological advances and steadily increasing severe worldwide competition force industry to respond all the time faster to new and chanced customer wishes. Some of the recently emerged processes, commonly referred to as 'rapid prototyping' (RP), have proved to be powerful tools for accelerating product and process development. Early approaches aimed at the automated production of plastic models. These techniques achieved industrial maturity extremely fast and are meanwhile established as standard utilities in the field of development/design processes. So far, their applicability to metal working industry was limited to design studies because the mechanical properties of the prototypes, e.g. modulus of elasticity and mechanical strength were not comparable to the final products they represented. Therefore, RP-processes aimed at the direct production of metallic prototypes gained more and more importance during recent years. A technique belonging to this group is manufacturing of prototypes by using a laser beam sintering machine capable of directly processing metal powders. This so called laser beam sintering process showed a great potential for direct manufacturing of functional tools and prototypes in early feasibility studies. Detailed examinations were performed at several research centers to determine the attainable quality of the parts concerning roughness, dimensional accuracy and mechanical strength. These examinations showed, that there still is a considerable demand for quality improvements of the previously mentioned parameters. The practical application and the potential for improvement of the geometrical accuracy of laser beam sintered parts by using a dual beam concept was proven. An innovative beam guiding and forming concept, similar to the previously mentioned patented beam guiding system, was developed and built with the goal to improve the process parameters governing mechanical properties as well as geometrical accuracy. Further reaching

  14. DNA-Based Genetic Markers for Rapid Cycling Brassica Rapa (Fast Plants Type) Designed for the Teaching Laboratory.

    PubMed

    Slankster, Eryn E; Chase, Jillian M; Jones, Lauren A; Wendell, Douglas L

    2012-01-01

    We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.

  15. Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking

    PubMed Central

    Sasse, Alexander; de Vries, Sjoerd J.; Schindler, Christina E. M.; de Beauchêne, Isaure Chauvot

    2017-01-01

    Protein-protein docking protocols aim to predict the structures of protein-protein complexes based on the structure of individual partners. Docking protocols usually include several steps of sampling, clustering, refinement and re-scoring. The scoring step is one of the bottlenecks in the performance of many state-of-the-art protocols. The performance of scoring functions depends on the quality of the generated structures and its coupling to the sampling algorithm. A tool kit, GRADSCOPT (GRid Accelerated Directly SCoring OPTimizing), was designed to allow rapid development and optimization of different knowledge-based scoring potentials for specific objectives in protein-protein docking. Different atomistic and coarse-grained potentials can be created by a grid-accelerated directly scoring dependent Monte-Carlo annealing or by a linear regression optimization. We demonstrate that the scoring functions generated by our approach are similar to or even outperform state-of-the-art scoring functions for predicting near-native solutions. Of additional importance, we find that potentials specifically trained to identify the native bound complex perform rather poorly on identifying acceptable or medium quality (near-native) solutions. In contrast, atomistic long-range contact potentials can increase the average fraction of near-native poses by up to a factor 2.5 in the best scored 1% decoys (compared to existing scoring), emphasizing the need of specific docking potentials for different steps in the docking protocol. PMID:28118389

  16. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process.

    PubMed

    Liu, Ai-Lin; He, Feng-yun; Wang, Kang; Zhou, Ting; Lu, Yu; Xia, Xing-hua

    2005-09-01

    We developed a facile and rapid one-step technique for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. A laser printing mechanism was dexterously adopted to pattern the microchannels with different gray levels using vector graphic software. With the present method, periodically ordered specific bas-relief microstructures can be easily fabricated on transparencies by a simple printing process. The size and shape of the resultant microstructures are determined by the gray level of the graphic software and the resolution of the laser printer. Patterns of specific bas-relief microstructures on the floor of a channel act as obstacles in the flow path for advection mixing, which can be used as efficient mixing elements. The mixing effect of the resultant micromixer in microfluidic devices was evaluated using CCD fluorescence spectroscopy. We found that the mixing performance depends strongly on the gray level values. Under optimal conditions, fast passive mixing with our periodic ordered patterns in microfluidic devices has been achieved at the very early stages of the laminar flow. In addition, fabrication of micromixers using the present versatile technique requires less than an hour. The present method is promising for fabrication of micromixers in microfluidic devices at low cost and without complicated devices and environment, providing a simple solution to mixing problems in the micro-total-analysis-systems field.

  17. DNA-Based Genetic Markers for Rapid Cycling Brassica Rapa (Fast Plants Type) Designed for the Teaching Laboratory

    PubMed Central

    Slankster, Eryn E.; Chase, Jillian M.; Jones, Lauren A.; Wendell, Douglas L.

    2012-01-01

    We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology. PMID:22675329

  18. Rapid Conformational Epitope Mapping of anti-gp120 Antibodies with a Designed Mutant Panel Displayed on Yeast

    PubMed Central

    Mata-Fink, Jordi; Kriegsman, Barry; Xin, Yu Hui; Zhu, Hanna; Hanson, Melissa; Irvine, Darrell J.; Wittrup, K. Dane

    2013-01-01

    gp120 is a substrate for protein engineering both for HIV immunogen design and as a bait for isolating anti-HIV antibodies from patient samples. In this work we describe the display of a stripped core gp120 on the yeast cell surface. Validation against a panel of neutralizing antibodies confirms that yeast-displayed gp120 presents the CD4 binding site in the correct conformation. We map the epitope of the broadly neutralizing anti-gp120 antibody VRC01 using both a random mutagenesis library and a defined mutant panel, and find the resultant epitope maps are consistent with one another and with the crystallographically identified contact residues. Mapping the VRC01-competitive antibodies b12 and b13 reveals energetic differences in their epitopes that are not obvious from existing crystal structures. These data suggest mutation sets that abrogate binding to broadly neutralizing antibodies with greater specificity than the canonical mutation D368R, useful in rapidly assessing the nature of a vaccine response. PMID:23159556

  19. Rapid Computer Aided Ligand Design and Screening of Precious Metal Extractants from TRUEX Raffinate with Experimental Validation

    SciTech Connect

    Clark, Aurora Sue; Wall, Nathalie; Benny, Paul

    2015-11-16

    through the design of a software program that uses state-of-the-art computational combinatorial chemistry, and is developed and validated with experimental data acquisition; the resulting tool allows for rapid design and screening of new ligands for the extraction of precious metals from SNF. This document describes the software that has been produced, ligands that have been designed, and fundamental new understandings of the extraction process of Rh(III) as a function of solution phase conditions (pH, nature of acid, etc.).

  20. On the physical properties of RPd(8)B(2-x) and R(3)Pd(25-x)B(8-y) (R = La, Ce).

    PubMed

    Salamakha, L; Bauer, E; Michor, H; Hilscher, G; Sologub, O; Rogl, P

    2010-10-27

    Physical properties (magnetization, electrical resistivity and specific heat in the temperature range from 2 to 270 K (0.3-270 K for the resistivity)) have been determined for polycrystalline samples of the ternary compounds RPd(8)B(2 - x) (CePd(8)B(2 - x) type; space group C 2/c) and R(3)Pd(25 - x)B(8 - y) (La(3)Pd(25 - x)B(8 - y) type; space group P 2(1)/c) with R = La, Ce. Rietveld refinement of x-ray powder intensity data confirmed the crystal structure and single-phase condition. LaPd(8)B(2 - x) is a novel representative of the CePd(8)B(2 - x) type (a = 1.7838(1) nm, b = 1.040 24(4) nm, c = 1.164 60(6) nm, β = 118.56(1)°). Both cerium compounds behave like Kondo lattices.

  1. Design and validation of a prehospital stroke scale to predict large arterial occlusion: the rapid arterial occlusion evaluation scale.

    PubMed

    Pérez de la Ossa, Natalia; Carrera, David; Gorchs, Montse; Querol, Marisol; Millán, Mònica; Gomis, Meritxell; Dorado, Laura; López-Cancio, Elena; Hernández-Pérez, María; Chicharro, Vicente; Escalada, Xavier; Jiménez, Xavier; Dávalos, Antoni

    2014-01-01

    We aimed to develop and validate a simple prehospital stroke scale to predict the presence of large vessel occlusion (LVO) in patients with acute stroke. The Rapid Arterial oCclusion Evaluation (RACE) scale was designed based on the National Institutes of Health Stroke Scale (NIHSS) items with a higher predictive value of LVO on a retrospective cohort of 654 patients with acute ischemic stroke: facial palsy (scored 0-2), arm motor function (0-2), leg motor function (0-2), gaze (0-1), and aphasia or agnosia (0-2). Thereafter, the RACE scale was validated prospectively in the field by trained medical emergency technicians in 357 consecutive patients transferred by Emergency Medical Services to our Comprehensive Stroke Center. Neurologists evaluated stroke severity at admission and LVO was diagnosed by transcranial duplex, computed tomography, or MR angiography. Receiver operating curve, sensitivity, specificity, and global accuracy of the RACE scale were analyzed to evaluate its predictive value for LVO. In the prospective cohort, the RACE scale showed a strong correlation with NIHSS (r=0.76; P<0.001). LVO was detected in 76 of 357 patients (21%). Receiver operating curves showed a similar capacity to predict LVO of the RACE scale compared with the NIHSS (area under the curve 0.82 and 0.85, respectively). A RACE scale≥5 had sensitivity 0.85, specificity 0.68, positive predictive value 0.42, and negative predictive value 0.94 for detecting LVO. The RACE scale is a simple tool that can accurately assess stroke severity and identify patients with acute stroke with large artery occlusion at prehospital setting by medical emergency technicians.

  2. Rapid detection of CWD PrP: comparison of tests designed for the detection of BSE or scrapie.

    PubMed

    Blasche, T; Schenck, E V; Balachandran, A; Miller, M W; Langenberg, J; Frölich, K; Steinbach, F

    2012-10-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) mainly affecting cervids in North America. The accumulation of an abnormal form of host-encoded prion protein (PrP(CWD) ) in the CNS and lymphoid tissues is characteristic of the disease and known to be caused by pathogenic prion proteins (PrP(res) ), which are thought to be transmitted mainly by contact with body fluids, such like saliva. Species known to be naturally infected by CWD include Rocky Mountain elk (Cervus elaphus nelsoni), white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus). Recently, large-scale disease eradication or control programs have been attempted to curtail the spread of disease. But reports of diseased free-ranging and farmed cervids in many locations in the USA and Canada are still continuing. The goal of this study was to find sensitive rapid test systems that are reliably able to detect CWD-associated PrP(CWD) in cervids, thereby reviewing an important control tool in case the disease spreads further and reaches Europe. Seven tests, originally developed for the detection of other TSE diseases such as Scrapie and bovine spongiform encephalopathy, including two Western blots, four enzyme-linked immunosorbent assays (ELISAs), and one lateral flow device, were included in this study. All seven tests evaluated were able to detect pathogenic prion proteins (PrP(CWD) ) in Northern American infected animals and distinguish physiologic prion protein (PrP(c) ) in brainstem (obex region) and lymph node samples from North American and European cervids, respectively. However, the specificity and sensitivity of the tests differed significantly. Highly sensitive tests for the detection of prion proteins are an important tool both for the design of effective disease surveillance and control strategies and the safety of the food chain. Thus, this study contributes to the emergency preparedness against CWD.

  3. Designing a critical care nurse-led rapid response team using only available resources: 6 years later.

    PubMed

    Mitchell, Anne; Schatz, Marilyn; Francis, Heather

    2014-06-01

    Rapid response teams have been introduced to intervene in the care of patients whose condition deteriorates unexpectedly by bringing clinical experts quickly to the patient's bedside. Evidence supporting the need to overcome failure to deliver optimal care in hospitals is robust; whether rapid response teams demonstrate benefit by improving patient safety and reducing the occurrence of adverse events remains controversial. Despite inconsistent evidence regarding the effectiveness of rapid response teams, concerns regarding care and costly consequences of unaddressed deterioration in patients' condition have prompted many hospitals to implement rapid response teams as a patient safety strategy. A cost-neutral structure for a rapid response team led by a nurse from the intensive care unit was implemented with the goal of reducing cardiopulmonary arrests occurring outside the intensive care unit. The results of 6 years' experience indicate that a sustainable and effective rapid response team response can be put into practice without increasing costs or adding positions and can decrease the percentage of cardiopulmonary arrests occurring outside the intensive care unit.

  4. Rapid, Real-time Methane Detection in Ground Water Using a New Gas-Water Equilibrator Design

    NASA Astrophysics Data System (ADS)

    Ruybal, C. J.; DiGiulio, D. C.; Wilkin, R. T.; Hargrove, K. D.; McCray, J. E.

    2014-12-01

    Recent increases in unconventional gas development have been accompanied by public concern for methane contamination in drinking water wells near production areas. Although not a regulated pollutant, methane may be a marker contaminant for others that are less mobile in groundwater and thus may be detected later, or at a location closer to the source. In addition, methane poses an explosion hazard if exsolved concentrations reach 5 - 15% volume in air. Methods for determining dissolved gases, such as methane, have evolved over 60 years. However, the response time of these methods is insufficient to monitor trends in methane concentration in real-time. To enable rapid, real-time monitoring of aqueous methane concentrations during ground water purging, a new gas-water equilibrator (GWE) was designed that increases gas-water mass exchange rates of methane for measurement. Monitoring of concentration trends allows a comparison of temporal trends between sampling events and comparison of baseline conditions with potential post-impact conditions. These trends may be a result of removal of stored casing water, pre-purge ambient borehole flow, formation physical and chemical heterogeneity, or flow outside of well casing due to inadequate seals. Real-time information in the field can help focus an investigation, aid in determining when to collect a sample, save money by limiting costs (e.g. analytical, sample transport and storage), and provide an immediate assessment of local methane concentrations. Four domestic water wells, one municipal water well, and one agricultural water well were sampled for traditional laboratory analysis and compared to the field GWE results. Aqueous concentrations measured on the GWE ranged from non-detect to 1,470 μg/L methane. Some trends in aqueous methane concentrations measured on the GWE were observed during purging. Applying a paired t-test comparing the new GWE method and traditional laboratory analysis yielded a p-value 0

  5. Rapid virtual prototyping of complex photonic integrated circuits using layout-aware schematic-driven design methodology

    NASA Astrophysics Data System (ADS)

    Mingaleev, S.; Richter, A.; Sokolov, E.; Savitzki, S.; Polatynski, A.; Farina, J.; Koltchanov, I.

    2017-02-01

    We present our versatile simulation framework for the schematic-driven and layout-aware design of photonic integrated circuits (PICs) realizing a fast and user-friendly design flow for large-scale PICs comprising passive and active building blocks (BBs). We show how the seamless interaction of circuit simulation with photonic layout design tools allows to specify and utilize directly physical locations and orientations of BBs of standardized process design kits (PDKs). We demonstrate how to combine graphical schematic capture and automated waveguide routing, and discuss by means of typical design applications how an optimized design flow can speed-up the virtual prototyping of complex PICs and optoelectronic applications.

  6. Rapid trajectory design in the Earth-Moon ephemeris system via an interactive catalog of periodic and quasi-periodic orbits

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide; Bosanac, Natasha; Haapala, Amanda; Howell, Kathleen C.; Folta, David C.

    2016-09-01

    Upcoming missions and prospective design concepts in the Earth-Moon system extensively leverage multi-body dynamics that may facilitate access to strategic locations or reduce propellant usage. To incorporate these dynamical structures into the mission design process, Purdue University and the NASA Goddard Flight Space Center have initiated the construction of a trajectory design framework to rapidly access and compare solutions from the circular restricted three-body problem. This framework, based upon a 'dynamic' catalog of periodic and quasi-periodic orbits within the Earth-Moon system, can guide an end-to-end trajectory design in an ephemeris model. In particular, the inclusion of quasi-periodic orbits further expands the design space, potentially enabling the detection of additional orbit options. To demonstrate the concept of a 'dynamic' catalog, a prototype graphical interface is developed. Strategies to characterize and represent periodic and quasi-periodic information for interactive trajectory comparison and selection are discussed. Two sample applications for formation flying near the Earth-Moon L2 point and lunar space infrastructures are explored to demonstrate the efficacy of a 'dynamic' catalog for rapid trajectory design and validity in higher-fidelity models.

  7. Design and implementation of a controlled clinical trial to evaluate the effectiveness and efficiency of routine opt-out rapid human immunodeficiency virus screening in the emergency department.

    PubMed

    Haukoos, Jason S; Hopkins, Emily; Byyny, Richard L; Conroy, Amy A; Silverman, Morgan; Eisert, Sheri; Thrun, Mark; Wilson, Michael; Boyett, Brian; Heffelfinger, James D

    2009-08-01

    In 2006, the Centers for Disease Control and Prevention (CDC) released revised recommendations for performing human immunodeficiency virus (HIV) testing in health care settings, including implementing routine rapid HIV screening, the use of an integrated opt-out consent, and limited prevention counseling. Emergency departments (EDs) have been a primary focus of these efforts. These revised CDC recommendations were primarily based on feasibility studies and have not been evaluated through the application of rigorous research methods. This article describes the design and implementation of a large prospective controlled clinical trial to evaluate the CDC's recommendations in an ED setting. From April 15, 2007, through April 15, 2009, a prospective quasi-experimental equivalent time-samples clinical trial was performed to compare the clinical effectiveness and efficiency of routine (nontargeted) opt-out rapid HIV screening (intervention) to physician-directed diagnostic rapid HIV testing (control) in a high-volume urban ED. In addition, three nested observational studies were performed to evaluate the cost-effectiveness and patient and staff acceptance of the two rapid HIV testing methods. This article describes the rationale, methodologies, and study design features of this program evaluation clinical trial. It also provides details regarding the integration of the principal clinical trial and its nested observational studies. Such ED-based trials are rare, but serve to provide valid comparisons between testing approaches. Investigators should consider similar methodology when performing future ED-based health services research.

  8. Rapid thermal processing for production of chalcopyrite thin films for solar cells: Design, analysis, and experimental implementation

    NASA Astrophysics Data System (ADS)

    Lovelett, Robert J.

    The direct conversion of solar energy to electricity, or photovoltaic energy conversion, has a number of environmental, social, and economic advantages over conventional electricity generation from fossil fuels. Currently, the most commonly-used material for photovoltaics is crystalline silicon, which is now produced at large scale and silicon-based devices have achieved power conversion efficiencies over 25% However, alternative materials, such as inorganic thin films, offer a number of advantages including the potential for lower manufacturing costs, higher theoretical efficiencies, and better performance in the field. One of these materials is the chalcopyrite Cu(InGa)(SeS) 2, which has demonstrated module efficiencies over 17% and cell efficiencies over 22%. Cu(InGa)(SeS)2 is now in the early stages of commercialization using a precursor reaction process referred to as a "selenization/sulfization" reaction. The precursor reaction process is promising because it has demonstrated high efficiency along with the large area (approximately 1 m2) uniformity that is required for modules. However, some challenges remain that limit the growth of the chalcopyrite solar cell industry including: slow reactions that limit process throughput, a limited understanding of complex reaction kinetics and transport phenomena that affect the through-film composition, and the use of highly toxic H2Se in the reaction process. In this work, I approach each of these challenges. First, to improve process throughput, I designed and implemented a rapid thermal processing (RTP) reactor, whereby the samples are heated by a 1000 W quartz-halogen lamp that is capable of fast temperature ramps and high temperature dwells. With the reactor in place, however, achieving effective temperature control in the thin film material system is complicated by two intrinsic process characteristics: (i) the temperature of the Cu(InGa)(SeS)2 film cannot be measured directly, which leaves the system without

  9. Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  10. Design, Implementation, Simulation, and Visualization of a Highly Efficient RIM Microfluidic Mixer for Rapid Freeze-Quench of Biological Samples

    PubMed Central

    Schmidt, Bryan; Mahmud, Goher; Soh, Siowling; Kim, Sun Hee; Page, Taylor; O’Halloran, Thomas V.; Grzybowski, Bartosz A.; Hoffman, Brian M.

    2011-01-01

    Rapid freeze-quench (RFQ) trapping of short-lived reaction intermediates for spectroscopic study plays an important role in the characterization of biological reactions. Recently there has been considerable effort to achieve submillisecond reaction deadtimes. We present here a new, robust, high-velocity microfluidic mixer that enables such rapid freeze-quenching. It is a based on the mixing method of two impinging jets commonly used in reaction injection molding (RIM) of plastics. This method achieves efficient mixing by inducing chaotic flow at relatively low Reynolds numbers (Re =140). We present the first mathematical simulation and microscopic visualization of mixing in such RFQ micromixers, the results of which show that the impinging solutions efficiently mix within the mixing chamber. These tests, along with a practical demonstration in a RFQ setup that involves copper wheels, show this new mixer can in practice provide reaction deadtimes as low as 100 microseconds. PMID:22180701

  11. Rapid Deployment Drilling System for on-site inspections under a Comprehensive Test Ban Preliminary Engineering Design

    SciTech Connect

    Maurer, W.C.; Deskins, W.G.; McDonald, W.J.; Cohen, J.H.; Heuze, F.E.; Butler, M.W.

    1996-09-01

    While not a new drilling technology, coiled-tubing (CT) drilling continues to undergo rapid development and expansion, with new equipment, tools and procedures developed almost daily. This project was undertaken to: analyze available technological options for a Rapid Deployment Drilling System (RDDS) CT drilling system: recommend specific technologies that best match the requirements for the RDDS; and highlight any areas where adequate technological solutions are not currently available. Postshot drilling is a well established technique at the Nevada Test Site (NTS). Drilling provides essential data on the results of underground tests including obtaining samples for the shot zone, information on cavity size, chimney dimensions, effects of the event on surrounding material, and distribution of radioactivity.

  12. Design, Implementation, Simulation, and Visualization of a Highly Efficient RIM Microfluidic Mixer for Rapid Freeze-Quench of Biological Samples.

    PubMed

    Schmidt, Bryan; Mahmud, Goher; Soh, Siowling; Kim, Sun Hee; Page, Taylor; O'Halloran, Thomas V; Grzybowski, Bartosz A; Hoffman, Brian M

    2011-02-11

    Rapid freeze-quench (RFQ) trapping of short-lived reaction intermediates for spectroscopic study plays an important role in the characterization of biological reactions. Recently there has been considerable effort to achieve submillisecond reaction deadtimes. We present here a new, robust, high-velocity microfluidic mixer that enables such rapid freeze-quenching. It is a based on the mixing method of two impinging jets commonly used in reaction injection molding (RIM) of plastics. This method achieves efficient mixing by inducing chaotic flow at relatively low Reynolds numbers (Re =140). We present the first mathematical simulation and microscopic visualization of mixing in such RFQ micromixers, the results of which show that the impinging solutions efficiently mix within the mixing chamber. These tests, along with a practical demonstration in a RFQ setup that involves copper wheels, show this new mixer can in practice provide reaction deadtimes as low as 100 microseconds.

  13. Design and Development of an Equipotential Voltage Reference (Grounding) System for a Low-Cost Rapid-Development Modular Spacecraft Architecture

    NASA Technical Reports Server (NTRS)

    Lukash, James A.; Daley, Earl

    2011-01-01

    This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.

  14. High rate biomethanation technology for solid waste management and rapid biogas production: An emphasis on reactor design parameters.

    PubMed

    Dahiya, Shikha; Joseph, Johny

    2015-01-01

    A high rate biomethanation digester was designed and fabricated to study its real field treatment efficiency and simultaneous biogas generation. The major design parameters like self mixing, delinking hydraulic retention time and solid retention time etc. were considered for efficient performance. It was operated with an organic loading rate (OLR) of 1.5kg/m(3)d(-1) with composite food waste for about one year. The maximum treatment efficiency achieved with respect to total solid (TS) reduction and volatile solids (VS) reduction was 94.5% and 89.7%, respectively. Annual mean biogas of about 0.16m(3)/kgVSd(-1) was observed with methane content varying from 56% to 60% (v/v). The high competence of high rate digester is attributed to its specific design features and intermittent mixing of the digester contents and also due to the hydrodynamic principles involved in its operation.

  15. Small Project Rapid Integration and Test Environment (SPRITE) An Innovation Space for Small Projects Design, Development, Integration, and Test

    NASA Technical Reports Server (NTRS)

    Lee, Ashley; Rackoczy, John; Heater, Daniel; Sanders, Devon; Tashakkor, Scott

    2013-01-01

    Over the past few years interest in the development and use of small satellites has rapidly gained momentum with universities, commercial, and government organizations. In a few years we may see networked clusters of dozens or even hundreds of small, cheap, easily replaceable satellites working together in place of the large, expensive and difficult-to-replace satellites now in orbit. Standards based satellite buses and deployment mechanisms, such as the CubeSat and Poly Pico-satellite Orbital Deployer (P-POD), have stimulated growth in this area. The use of small satellites is also proving to be a cost effective capability in many areas traditionally dominated by large satellites, though many challenges remain. Currently many of these small satellites undergo very little testing prior to flight. As these small satellites move from technology demonstration and student projects toward more complex operational assets, it is expected that the standards for verification and validation will increase.

  16. Rapid prototyping to design a customized locking plate for pancarpal arthrodesis in a giant breed dog.

    PubMed

    Petazzoni, M; Nicetto, T

    2014-01-01

    This report describes the treatment of traumatic carpal hyperextension in a giant breed dog by pancarpal arthrodesis using a custom-made Fixin locking plate, created with the aid of a three-dimensional plastic model of the bones of the antebrachium produced by rapid prototyping technology. A three-year-old 104 kg male Mastiff dog was admitted for treatment of carpal hyperextension injury. After diagnosis of carpal instability, surgery was recommended. Computed tomography images were used to create a life-size three-dimensional plastic model of the forelimb. The model was used as the basis for constructing a customized 12-hole Fixin locking plate. The plate was used to attain successful pancarpal arthrodesis in the animal. Radiographic examination after 74 and 140 days revealed signs of osseous union of the arthrodesis. Further clinical and radiographic follow-up examination three years later did not reveal any changes in implant position or complications.

  17. Design of a desipramine dosing regimen for the rapid induction and maintenance of maximal cortical beta-adrenoceptor downregulation.

    PubMed

    Argenti, D; D'Mello, A P

    1994-09-01

    Chronic administration of desipramine to rats causes a gradual reduction in cortical beta-adrenoceptor density. We examined the relationship between the duration of treatment with desipramine, and the rate and intensity of cortical beta-adrenoceptor downregulation. Male Sprague-Dawley rats were administered a 3.75 mg/kg/12 hr dose of desipramine for 4, 8 or 16 days. After 4 and 8 days of treatment, cortical beta-adrenoceptor density was reduced by 14 and 26% respectively. After 16 days of treatment, cortical beta-adrenoceptor density was maximally reduced by 36%. In our next series of experiments, we tested the hypothesis that the dose of desipramine required to rapidly induce maximal beta-adrenoceptor downregulation was higher than the dose required to maintain maximal beta-adrenoceptor downregulation. Initially, cortical beta-adrenoceptors were rapidly, and maximally downregulated with a four day, 10 mg/kg/12 hr induction regimen of desipramine. Trough, steady-state brain/cortical concentrations of desipramine plus desmethyldesipramine at the end of this regimen were approx 4000 ng/gm. Subsequently, maintenance desipramine regimens of 3.75 mg/kg/12 hr and 1.87 mg/kg/12 hr or vehicle were initiated for the next four days. Inspite of a 20-fold drop in brain/cortical concentrations of desipramine plus its metabolite, the 3.75 mg/kg maintenance regimen sustained maximal cortical beta-adrenoceptor downregulation. The 1.87 mg/kg maintenance regimen did result in a marked (25%) but non-significant recovery in the density of beta-adrenoceptors. Animals administered a vehicle maintenance regimen showed a large (50%) and statistically significant recovery of cortical beta-adrenoceptor density.

  18. Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem.

    PubMed

    Nunes, G S; Lins, J A P; Silva, F G S; Araujo, L C; Silva, F E P S; Mendonça, C D; Badea, M; Hayat, A; Marty, J-L

    2014-09-01

    The immobilization of enzymes onto transducer support is a mature technology and has been successfully implemented to improve biocatalytic processes for diverse applications. However, there exists still need to design more sophisticated and specialized strategies to enhance the functional properties of the biosensors. In this work, a biosensor platform based on innovative fabrication strategy was designed, and employed for the detection of organophosphate (OP) in natural waters. The biosensor was prepared by incorporating acetylcholinesterase enzyme (AChE) to the graphite paste modified with tetracyanoquinodimethane (TCNQ) mediator, along with the use of a macroalgae (Cladaphropsis membranous) as a functional immobilization support. The novel immobilization design resulted in a synergic effect, and led to enhanced stability and sensitivity of the biosensor. The designed biosensor was used to analyze methyl parathion OP insecticide in water samples collected from a demonstrably contaminated lake of São Luis Island, Maranhão, Northeast of Brazil. Water analysis revealed that the aquatic ecosystem was polluted by sub-ppm concentrations of the OP insecticide, and a good correlation was found between values obtained through biosensor and GC-MS techniques. Our results demonstrated that macroalgae-biosensor could be used as a low-cost and sensitive screening method to detect target analyte. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A guide for in-house design of template-switch-based 5' rapid amplification of cDNA ends systems.

    PubMed

    Pinto, Fernando Lopes; Lindblad, Peter

    2010-02-15

    Rapid amplification of cDNA ends (RACE) is an established strategy used to determine the transcription start point(s) and the 5' untranslated region(s) of mRNA. Different approaches to perform 5' RACE are available, and one particularly simple and powerful strategy is based on a phenomenon called template-switching. We investigated different aspects of template-switch-based 5' RACE, and we describe the different steps leading to the in-house development of a complete 5' RACE system-from oligonucleotide design to polymerase chain reaction (PCR) amplification. We show that the resulting system is reliable, time-efficient, and inexpensive.

  20. Rapid detection of Salmonella in pet food: design and evaluation of integrated methods based on real-time PCR detection.

    PubMed

    Balachandran, Priya; Friberg, Maria; Vanlandingham, V; Kozak, K; Manolis, Amanda; Brevnov, Maxim; Crowley, Erin; Bird, Patrick; Goins, David; Furtado, Manohar R; Petrauskene, Olga V; Tebbs, Robert S; Charbonneau, Duane

    2012-02-01

    Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results. In this study, we developed two methods for the detection of low levels of Salmonella in pet food using real-time PCR: (i) detection of Salmonella in 25 g of dried pet food in less than 14 h with an automated magnetic bead-based nucleic acid extraction method and (ii) detection of Salmonella in 375 g of composite dry pet food matrix in less than 24 h with a manual centrifugation-based nucleic acid preparation method. Both methods included a preclarification step using a novel protocol that removes food matrix-associated debris and PCR inhibitors and improves the sensitivity of detection. Validation studies revealed no significant differences between the two real-time PCR methods and the standard U.S. Food and Drug Administration Bacteriological Analytical Manual (chapter 5) culture confirmation method.

  1. A rapid application of GA-MODFLOW combined approach to optimization of well placement and operation for drought-ready groundwater reservoir design

    NASA Astrophysics Data System (ADS)

    Park, C.; Kim, Y.; Jang, H.

    2016-12-01

    Poor temporal distribution of precipitation increases winter drought risks in mountain valley areas in Korea. Since perennial streams or reservoirs for water use are rare in the areas, groundwater is usually a major water resource. Significant amount of the precipitation contributing groundwater recharge mostly occurs during the summer season. However, a volume of groundwater recharge is limited by rapid runoff because of the topographic characteristics such as steep hill and slope. A groundwater reservoir using artificial recharge method with rain water reuse can be a suitable solution to secure water resource for the mountain valley areas. Successful groundwater reservoir design depends on optimization of well placement and operation. This study introduces a combined approach using GA (Genetic Algorithm) and MODFLOW and its rapid application. The methodology is based on RAD (Rapid Application Development) concept in order to minimize the cost of implementation. DEAP (Distributed Evolutionary Algorithms in Python), a framework for prototyping and testing evolutionary algorithms, is applied for quick code development and CUDA (Compute Unified Device Architecture), a parallel computing platform using GPU (Graphics Processing Unit), is introduced to reduce runtime. The application was successfully applied to Samdeok-ri, Gosung, Korea. The site is located in a mountain valley area and unconfined aquifers are major source of water use. The results of the application produced the best location and optimized operation schedule of wells including pumping and injecting.

  2. Rapid communication: Computational simulation and analysis of a candidate for the design of a novel silk-based biopolymer.

    PubMed

    Golas, Ewa I; Czaplewski, Cezary

    2014-09-01

    This work theoretically investigates the mechanical properties of a novel silk-derived biopolymer as polymerized in silico from sericin and elastin-like monomers. Molecular Dynamics simulations and Steered Molecular Dynamics were the principal computational methods used, the latter of which applies an external force onto the system and thereby enables an observation of its response to stress. The models explored herein are single-molecule approximations, and primarily serve as tools in a rational design process for the preliminary assessment of properties in a new material candidate. © 2014 Wiley Periodicals, Inc.

  3. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy.

    PubMed

    Li, Jihua; Hsu, Yuchun; Luo, En; Khadka, Ashish; Hu, Jing

    2011-08-01

    The fracture or defect of the mandibular condyle is one of the serious complications during angle-reduction ostectomy. Reconstruction of such defects also is a daunting task. The case report describes a method based on computer-aided design/computer-aided manufacturing (CAD/CAM) and rapid prototyping nanoscale hydroxyapatite/polyamide (n-HA/PA) for individual design, fabrication, and implantation of a mandibular condyle. A 27-year-old woman with a square-shaped face who had previously undergone mandibular angle reduction reported with malocclusion, deviated mouth, collapse of the right side of the face, and masticatory problems. The reason for the problems was the unintended removal of the condyle during the ostectomy procedure. Using computed tomography (CT) data, a biomimetic n-HA/PA scaffold, and CAD/CAM for rapid prototyping by three-dimensional (3D) printing, a perfect-fitting condylar implant was fabricated. A surgical guide system also was developed to reproduce the procedures accurately so a perfect fit could be obtained during surgery. The patient ultimately regained reasonable jaw contour and appearance, as well as appreciable temporomandibular joint (TMJ) function.

  4. Engineering Transcriptional Regulator Effector Specificity Using Computational Design and In Vitro Rapid Prototyping: Developing a Vanillin Sensor.

    PubMed

    de los Santos, Emmanuel L C; Meyerowitz, Joseph T; Mayo, Stephen L; Murray, Richard M

    2016-04-15

    The pursuit of circuits and metabolic pathways of increasing complexity and robustness in synthetic biology will require engineering new regulatory tools. Feedback control based on relevant molecules, including toxic intermediates and environmental signals, would enable genetic circuits to react appropriately to changing conditions. In this work, variants of qacR, a tetR family repressor, were generated by computational protein design and screened in a cell-free transcription-translation (TX-TL) system for responsiveness to a new targeted effector. The modified repressors target vanillin, a growth-inhibiting small molecule found in lignocellulosic hydrolysates and other industrial processes. Promising candidates from the in vitro screen were further characterized in vitro and in vivo in a gene circuit. The screen yielded two qacR mutants that respond to vanillin both in vitro and in vivo. While the mutants exhibit some toxicity to cells, presumably due to off-target effects, they are prime starting points for directed evolution toward vanillin sensors with the specifications required for use in a dynamic control loop. We believe this process, a combination of the generation of variants coupled with in vitro screening, can serve as a framework for designing new sensors for other target compounds.

  5. Rapid development of entity-based data models for bioinformatics with persistence object-oriented design and structured interfaces.

    PubMed

    Ezra Tsur, Elishai

    2017-01-01

    Databases are imperative for research in bioinformatics and computational biology. Current challenges in database design include data heterogeneity and context-dependent interconnections between data entities. These challenges drove the development of unified data interfaces and specialized databases. The curation of specialized databases is an ever-growing challenge due to the introduction of new data sources and the emergence of new relational connections between established datasets. Here, an open-source framework for the curation of specialized databases is proposed. The framework supports user-designed models of data encapsulation, objects persistency and structured interfaces to local and external data sources such as MalaCards, Biomodels and the National Centre for Biotechnology Information (NCBI) databases. The proposed framework was implemented using Java as the development environment, EclipseLink as the data persistency agent and Apache Derby as the database manager. Syntactic analysis was based on J3D, jsoup, Apache Commons and w3c.dom open libraries. Finally, a construction of a specialized database for aneurysms associated vascular diseases is demonstrated. This database contains 3-dimensional geometries of aneurysms, patient's clinical information, articles, biological models, related diseases and our recently published model of aneurysms' risk of rapture. Framework is available in: http://nbel-lab.com.

  6. OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines.

    PubMed

    Schmid-Burgk, Jonathan L; Schmidt, Tobias; Gaidt, Moritz M; Pelka, Karin; Latz, Eicke; Ebert, Thomas S; Hornung, Veit

    2014-10-01

    The application of designer nucleases allows the induction of DNA double-strand breaks (DSBs) at user-defined genomic loci. Due to imperfect DNA repair mechanisms, DSBs can lead to alterations in the genomic architecture, such as the disruption of the reading frame of a critical exon. This can be exploited to generate somatic knockout cell lines. While high genome editing activities can be achieved in various cellular systems, obtaining cell clones that contain all-allelic frameshift mutations at the target locus of interest remains a laborious task. To this end, we have developed an easy-to-follow deep sequencing workflow and the evaluation tool OutKnocker (www.OutKnocker.org), which allows convenient, reliable, and cost-effective identification of knockout cell lines. © 2014 Schmid-Burgk et al.; Published by Cold Spring Harbor Laboratory Press.

  7. OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines

    PubMed Central

    Schmid-Burgk, Jonathan L.; Schmidt, Tobias; Gaidt, Moritz M.; Pelka, Karin; Latz, Eicke; Ebert, Thomas S.

    2014-01-01

    The application of designer nucleases allows the induction of DNA double-strand breaks (DSBs) at user-defined genomic loci. Due to imperfect DNA repair mechanisms, DSBs can lead to alterations in the genomic architecture, such as the disruption of the reading frame of a critical exon. This can be exploited to generate somatic knockout cell lines. While high genome editing activities can be achieved in various cellular systems, obtaining cell clones that contain all-allelic frameshift mutations at the target locus of interest remains a laborious task. To this end, we have developed an easy-to-follow deep sequencing workflow and the evaluation tool OutKnocker (www.OutKnocker.org), which allows convenient, reliable, and cost-effective identification of knockout cell lines. PMID:25186908

  8. Design and technical reference to mitigate rapid crack propagation in polyethylene pipes for gas distribution. Final report, 1989-1996

    SciTech Connect

    Kanninen, M.F.; O`Donoghue, P.E.; Grigory, S.C.; Kim, L.J.; Couque, H.

    1997-06-01

    Because of the inevitable need for procedures that could be used by gas distribution engineers to preclude the occurrence of large scale rupture in the larger diameter and higher pressure polyethylene (PE) gas piping systems anticipated in the future, research was undertaken to develop and validate an appropriate methodology. The approach that was taken coupled a European-developed test apparatus known as the S4 test with PFRAC, a computer simulation model developed by SwRI. The resulting substantially enhanced S4 procedure requires only a single pipe test to be performed, with the results being extrapolatable for predicting the potential for PE pipe rupture in a range of service conditions. User-oriented design and operating guidelines have been derived from the computer model to allow gas distribution engineers to readily apply the results of this research.

  9. Synteny analysis provides a route to design genus-specific PCR primers for rapid identification of all Saccharomyces species.

    PubMed

    Sharpe, Ben; Hulin, Michelle; Thorne-Wallis, James; Wheals, Alan

    2014-05-01

    The genus Saccharomyces comprises seven single-genome species (S. arboricola, S. cerevisiae, S. eubayanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum) and two hybrid species - S. pastorianus (S. cerevisiae plus S. eubayanus) and S. bayanus (mostly S. uvarum plus S. eubayanus). Species-specific primers have already been developed for the identification of each of the single-genome species, and these primers can usually detect both genomes in hybrids. It would be advantageous if a single reaction could detect any member of the clade. We have investigated three potentially generic approaches to design genus-specific primers. Two methods that both use sequence alignment differences for primer design were only partly successful. A third method used synteny data to identify 136 target genes that are potentially present only in all species of the Saccharomyces clade. HSP30 (YCR021C) was fully successful; different primer pairs were developed with high G+C content for use at 63 °C. In < 3 h, using a robust colony-PCR followed by gel electrophoresis, the method can reliably detect any member of the genus. This novel approach still uses conventional sequence alignment mismatches but relies principally on the presence of the target gene only within the genus Saccharomyces. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. FROM REQUIREMENTS CAPTURE TO SILICON: A MODEL-DRIVEN SYSTEMS ENGINEERING APPROACH TO RAPID DESIGN, PROTOTYPING AND DEVELOPMENT USED IN THE OAK RIDGE NATIONAL LABORATORY'S COGNITIVE RADIO PROGRAM

    SciTech Connect

    Buckner, Mark A; Kaldenbach, Brian J; Nory, Nakhaee; Moore, Michael Roy; Bouldin, Donald; Mills, Jonathan

    2008-01-01

    The performance and complexity of the signal processing hardware accessible to SDR/CR/RADAR designers has quickly out-paced the available design tools. The advances in Digital Signal Processors (DSP) both fixed- and floating-point, Field Programmable Gate Arrays (FPGA), and multicore processors have enabled rapid prototyping and deployment of platforms that can be dynamically reconfigured in the field to implement a variety of SDR/CR/RADAR waveforms. Until recently the process of creating waveforms meant starting with high-level mathematical models and simulations and then creating production quality code that can operate on this variety of specialized hardware using either hand coding or vendor specific tools, which are typically limited to single processor solutions. This paper discusses an integrated model-driven design process and tool-flow used in ORNL's Cognitive Radio Program. It describes how the process and tool-flow are used on a variety of SDR and CR projects and in the development of a software-defined RADAR environment simulator. It describes how, from a single Simulink model, a single deadlock free real-time multiprocessor application is created and executed on a network of heterogeneous processors. We also describe recent progress on extending the process/tool-flow to design digital ASICs and our plans for future extensions. We close by highlighting the benefits being realized from applying this design flow to SDR/CR/RADAR projects at ORNL: (1) a significant reduction in the time required to develop, prototype, implement and test SDR/CR/RADAR waveforms, (2) increased reusability/retargetabilty of SDR/CR/RADAR designs and signal processing library components, (3) the ability to quickly port SDR/CR/RADAR waveforms to different hardware systems and processor types, (4) improvements in documentation, and (5) traceability of system components back to original requirements.

  11. Gifted Rapid Readers.

    ERIC Educational Resources Information Center

    Schale, Florence

    A preliminary study is reported which attempted to define gifted rapid readers, authenticate the performances of three subjects who were designated as gifted rapid readers, and explore the relationship of a subject's ability to perceive print eidetically and to read and/or skim. Volunteer subjects were a 15-year-old girl from the Philippines, a…

  12. Development of a high-throughput microscale cell disruption platform for Pichia pastoris in rapid bioprocess design.

    PubMed

    Bláha, Benjamin A F; Morris, Stephen A; Ogonah, Olotu W; Crescente, Vincenzo; Rosenberg, William; Maucourant, Sophie; Mukhopadhyay, Tarit K

    2017-09-07

    The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species such as Pichia pastoris, no effective high-throughput disruption methods exist. This study describes the development of an automated, miniaturized, high-throughput, non-contact, scalable platform based on Adaptive Focused Acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pre-treatment step. Three different modes of AFA were studied and compared to the performance high pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development and whole bioprocess integration. This article is protected by copyright. All rights reserved. © 2017 American Institute of Chemical Engineers.

  13. Microstructure and transformation behavior of Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} high temperature shape-memory alloy with Sc micro-addition

    SciTech Connect

    Ramaiah, K.V.; Saikrishna, C.N.; Gouthama; Bhaumik, S.K.

    2015-08-15

    NiTiPd shape-memory alloys (SMAs) are potential functional materials for use as solid-state actuators in the temperature range 100–250 °C. The present study investigates the effect of 1.0 at.% Sc micro-addition to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy, Sc replacing either Ti or Ni. Results show that all the three alloys studied have stable transformation behavior on stress-free thermal cycling and hence, are suitable for cyclic actuation applications. However, the addition of Sc to NiTiPd alloy leads to decrease of transformation temperatures, the magnitude of decrease being greater for the alloy with Sc replacing Ni. The martensite finish (M{sub f}) temperature of 181 °C for the NiTiPd alloy decreased to 139 °C for Sc replacing Ti and 83 °C for Sc replacing Ni. Also, the indentation modulus of NiTiPdSc (Sc replacing Ni) alloy is found to be significantly low compared to the other alloys. Analysis indicates that the observed differences in the alloy properties are related to the solubility of Sc in the NiTiPd matrix. While the quaternary NiTiPdSc alloy, Sc replacing Ti, has a single phase microstructure, the alloy with Sc replacing Ni shows the presence of Sc-rich and TiPd-type second phases in the microstructure. TEM examination revealed that the TiPd-type phase has a distinct rod-like morphology (30–50 nm) arranged in a grid-like structure. The transformation and indentation behavior of the alloys is elucidated using thermodynamic calculations of frictional energy and an electronic structure based analysis. - Highlights: • TEM of Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed distinct grid of TiPd-type phase nanorods < 50 nm. • Stress-free thermal cycling of all the three alloys showed stable transformation behavior. • Ni{sub 24.7}Ti{sub 49.3}Pd{sub 25}Sc{sub 1} and Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed single and multiphase structures. • Sc micro-addition (1 at.%) to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy decreased TTs

  14. The Heliopause Electrostatic Rapid Transit System (HERTS) Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2017-01-01

    The Heliopause Electrostatic Rapid Transit System (HERTS) was one of the seven total Phase II NASA Innovative Advanced Concepts (NIAC) that was down-selected in 2015 for continued funding and research. In Phase I our team learned that a spacecraft propelled by an Electric Sail (E-Sail) can travel great astronomical distances, such as to the Heliopause region of the solar system (approx. 100 to 120 AU) in approximately one quarter of the time (10 years) versus the time it took the Voyager spacecraft launched in 1977 (36 years). The completed work within the Phase II NIAC funded effort builds upon the work that was done in the Phase I NIAC and is focused on: 1) Testing of plasma interaction with a charged wire in a MSFC simulated solar environment vacuum test chamber. 2) Development of a Particle-in-Cell (PIC) models that are validated in the plasma testing and used to extrapolate to the E-Sail propulsion system design. 3) Conceptual design of a Technology Demonstration Mission (TDM) spacecraft developed to showcase E-Sail propulsion systems. 4) Down selection of both: a) Materials for a multi km length conductor and, b) Best configuration of the proposed conductor deployment subsystem. This paper will document the findings to date (June, 2017) of the above focused areas.

  15. Rapid and semi-analytical design and simulation of a toroidal magnet made with YBCO and MgB2 superconductors

    DOE PAGES

    Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; ...

    2015-07-07

    Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate andmore » optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.« less

  16. Rapid and semi-analytical design and simulation of a toroidal magnet made with YBCO and MgB2 superconductors

    SciTech Connect

    Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; Chubar, O.; Li, Qiang

    2015-07-07

    Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate and optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.

  17. Design of Soil Salinity Policies with Tinamit, a Flexible and Rapid Tool to Couple Stakeholder-Built System Dynamics Models with Physically-Based Models

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Baig, A. I.; Hassanzadeh, E.; Adamowski, J. F.; Tuy, H.; Melgar-Quiñonez, H.

    2016-12-01

    Model coupling is a crucial step to constructing many environmental models, as it allows for the integration of independently-built models representing different system sub-components to simulate the entire system. Model coupling has been of particular interest in combining socioeconomic System Dynamics (SD) models, whose visual interface facilitates their direct use by stakeholders, with more complex physically-based models of the environmental system. However, model coupling processes are often cumbersome and inflexible and require extensive programming knowledge, limiting their potential for continued use by stakeholders in policy design and analysis after the end of the project. Here, we present Tinamit, a flexible Python-based model-coupling software tool whose easy-to-use API and graphical user interface make the coupling of stakeholder-built SD models with physically-based models rapid, flexible and simple for users with limited to no coding knowledge. The flexibility of the system allows end users to modify the SD model as well as the linking variables between the two models themselves with no need for recoding. We use Tinamit to couple a stakeholder-built socioeconomic model of soil salinization in Pakistan with the physically-based soil salinity model SAHYSMOD. As climate extremes increase in the region, policies to slow or reverse soil salinity buildup are increasing in urgency and must take both socioeconomic and biophysical spheres into account. We use the Tinamit-coupled model to test the impact of integrated policy options (economic and regulatory incentives to farmers) on soil salinity in the region in the face of future climate change scenarios. Use of the Tinamit model allowed for rapid and flexible coupling of the two models, allowing the end user to continue making model structure and policy changes. In addition, the clear interface (in contrast to most model coupling code) makes the final coupled model easily accessible to stakeholders with

  18. The Heliopause Electrostatic Rapid Transit System (HERTS) Design, Trades, and Analyses Performed in the First Year of a Two Year Investigation

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2016-01-01

    The Heliopause Electrostatic Rapid Transit System (HERTS)1 was one of the seven total Phase II NASA Innovative Advanced Concepts (NIAC) that was down-selected in 2015 for continued funding and research. In Phase I we learned that a spacecraft propelled by an Electric Sail (E-Sail) can travel great astronomical distances, such as to the Heliopause region of the solar system (approx.100 to 120 AU) in approximately one quarter of the time (10 years) versus the time it took the Voyager spacecraft launched in 1977 (36 years). The current work within the Phase II NIAC effort builds upon the work that was done in the Phase I NIAC and is focused on: 1) Testing of plasma interaction with a charged wire in a unique MSFC test chamber, 2) Development of a Particle-in-Cell (PIC) models that are validated in the plasma testing and used to extrapolate to the E-Sail propulsion system design. 3) Further down select of a wire deployment and control approach from those narrowed down in the Phase I effort. This paper will document the findings to date (June, 2016) of the above focused areas.

  19. Development and validation of a rapid ultra-high performance liquid chromatography method for the assay of benzalkonium chloride using a quality-by-design approach.

    PubMed

    Mallik, Rangan; Raman, Srividya; Liang, Xiaoli; Grobin, Adam W; Choudhury, Dilip

    2015-09-25

    A rapid robust reversed-phase UHPLC method has been developed for the analysis of total benzalkonium chloride in preserved drug formulation. A systematic Quality-by-Design (QbD) method development approach using commercial, off the shelf software (Fusion AE(®)) has been used to optimize the column, mobile phases, gradient time, and other HPLC conditions. Total benzalkonium chloride analysis involves simple sample preparation. The method uses gradient elution from an ACE Excel 2 C18-AR column (50mm×2.1mm, 2.0μm particle size), ammonium phosphate buffer (pH 3.3; 10mM) as aqueous mobile phase and methanol/acetonitrile (85/15, v/v) as the organic mobile phase with UV detection at 214nm. Using these conditions, major homologs of the benzalkonium chloride (C12 and C14) have been separated in less than 2.0min. The validation results confirmed that the method is precise, accurate and linear at concentrations ranging from 0.025mg/mL to 0.075mg/mL for total benzalkonium chloride. The recoveries ranged from 99% to 103% at concentrations from 0.025mg/mL to 0.075mg/mL for total benzalkonium chloride. The validation results also confirmed the robustness of the method as predicted by Fusion AE(®).

  20. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering (SERS): Design and Nanofabrication of SERS Substrates for Rapid Field Test of Food Contaminants.

    PubMed

    Shi, Ruyi; Liu, Xiangjiang; Ying, Yibin

    2017-09-18

    Surface-enhanced Raman scattering (SERS) is capable of detecting single molecule with high specificity and has become a promising technique for rapid chemical analysis of agricultural products and foods. With a deeper understanding of the SERS effect and advances in nanofabrication technology, SERS is now on the edge of going out of the laboratory and becoming a sophisticated analytical tool to fulfill various real-world tasks. This review focuses on the challenges that SERS has met in this progress, such as how to obtain a reliable SERS signal, improve the sensitivity and specificity in a complex sample matrix, develop simple and user-friendly practical sensing approach, reduce the running cost, etc. This review highlights the new thoughts on design and nanofabrication of SERS-active substrates for solving these challenges and introduces the recent advances of SERS applications in this area. We hope that our discussion will encourage more researches to address these challenges and eventually help to bring SERS technology out of the laboratory.

  1. The Heliopause Electrostatic Rapid Transit System (HERTS) - Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.; Scheider, Todd; Heaton, Andrew; Vaughn, Jason; Stone, Nobie; Wright, Ken

    2017-01-01

    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail (E-Sail) for future scientific exploration missions. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two-year follow-on Phase II NIAC award in October 2015. This paper documents the findings from this three-year investigation. An Electric sail, a propellant-less propulsion system, uses solar wind ions to rapidly travel either to deep space or the inner solar system. Scientific spacecraft could reach Pluto in 5 years, or the boundary of the solar system in ten to twelve years compared to the thirty-five plus years the Voyager spacecraft took. The team's recent focuses have been: 1) Developing a Particle in Cell (PIC) numeric engineering model from MSFC's experimental data on the interaction between simulated solar wind and a charged bare wire that can be applied to a variety of missions, 2) Determining what missions could benefit from this revolutionary propulsion system, 3) Conceptualizing spacecraft designs for various tasks: to reach the solar system's edge, to orbit the sun as Heliophysics sentinels, or to examine a multitude of asteroids.

  2. Surgical planning and microvascular reconstruction of the mandible with a fibular flap using computer-aided design, rapid prototype modelling, and precontoured titanium reconstruction plates: a prospective study.

    PubMed

    Sieira Gil, R; Roig, A Marí; Obispo, C Arranz; Morla, A; Pagès, C Martí; Perez, J Llopis

    2015-01-01

    The standard of mandibular reconstruction has increased since the introduction of computer-assisted design (CAD) and rapid prototype modelling (RPM) for surgical planning. Between 2008 and 2013, a prospective pilot study of 20 patients was planned to compare the outcomes of patients treated by mandibular reconstruction who had CAD and RPM-guided operations using a precontoured titanium plate, with the outcomes of patients treated conventionally. We recorded the time taken for reconstruction, total operating time, and whether this type of planning could improve the results of mandibular reconstruction. We found significant differences in the incidence of dental malocclusion (p=0.03) and exposure of the titanium plate (p=0.009). The mean operating time for reconstruction in the preoperative planning group was 135 (37)min compared with 176 (58)min in the conventional group (p=0.04). Preoperative planning using CAD and RPM can increase the accuracy of microvascular mandibular reconstruction and reduce the operating time for reconstruction. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Design and testing of multiplex RT-PCR primers for the rapid detection of influenza A virus genomic segments: Application to equine influenza virus.

    PubMed

    Lee, EunJung; Kim, Eun-Ju; Shin, Yeun-Kyung; Song, Jae-Young

    2016-02-01

    The avian influenza A virus causes respiratory infections in animal species. It can undergo genomic recombination with newly obtained genetic material through an interspecies transmission. However, the process is an unpredictable event, making it difficult to predict the emergence of a new pandemic virus and distinguish its origin, especially when the virus is the result of multiple infections. Therefore, identifying a novel influenza is entirely dependent on sequencing its whole genome. Occasionally, however, it can be time-consuming, costly, and labor-intensive when sequencing many influenza viruses. To compensate for the difficulty, we developed a rapid, cost-effective, and simple multiplex RT-PCR to identify the viral genomic segments. As an example to evaluate its performance, H3N8 equine influenza virus (EIV) was studied for the purpose. In developing this protocol to amplify the EIV eight-segments, a series of processes, including phylogenetic analysis based on different influenza hosts, in silico analyses to estimate primer specificity, coverage, and variation scores, and investigation of host-specific amino acids, were progressively conducted to reduce or eliminate the negative factors that might affect PCR amplification. Selectively, EIV specific primers were synthesized with dual priming oligonucleotides (DPO) system to increase primer specificity. As a result, 16 primer pairs were selected to screen the dominantly circulating H3N8 EIV 8 genome segments: PA (3), PB2 (1), PA (3), NP (3), NA8 (2), HA3 (1), NS (1), and M (2). The diagnostic performance of the primers was evaluated with eight sets composing of four segment combinations using viral samples from various influenza hosts. The PCR results suggest that the multiplex RT-PCR has a wide range of applications in detection and diagnosis of newly emerging EIVs. Further, the proposed procedures of designing multiplex primers are expected to be used for detecting other animal influenza A viruses.

  4. Fabrication of cross-shaped Cu-nanowire resistive memory devices using a rapid, scalable, and designable inorganic-nanowire-digital-alignment technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Wentao; Lee, Yeongjun; Min, Sung-Yong; Park, Cheolmin; Lee, Tae-Woo

    2016-09-01

    Resistive random-access memory (RRAM) is a candidate next generation nonvolatile memory due to its high access speed, high density and ease of fabrication. Especially, cross-point-access allows cross-bar arrays that lead to high-density cells in a two-dimensional planar structure. Use of such designs could be compatible with the aggressive scaling down of memory devices, but existing methods such as optical or e-beam lithographic approaches are too complicated. One-dimensional inorganic nanowires (i-NWs) are regarded as ideal components of nanoelectronics to circumvent the limitations of conventional lithographic approaches. However, post-growth alignment of these i-NWs precisely on a large area with individual control is still a difficult challenge. Here, we report a simple, inexpensive, and rapid method to fabricate two-dimensional arrays of perpendicularly-aligned, individually-conductive Cu-NWs with a nanometer-scale CuxO layer sandwiched at each cross point, by using an inorganic-nanowire-digital-alignment technique (INDAT) and a one-step reduction process. In this approach, the oxide layer is self-formed and patterned, so conventional deposition and lithography are not necessary. INDAT eliminates the difficulties of alignment and scalable fabrication that are encountered when using currently-available techniques that use inorganic nanowires. This simple process facilitates fabrication of cross-point nonvolatile memristor arrays. Fabricated arrays had reproducible resistive switching behavior, high on/off current ratio (Ion/Ioff) 10 6 and extensive cycling endurance. This is the first report of memristors with the resistive switching oxide layer self-formed, self-patterned and self-positioned; we envision that the new features of the technique will provide great opportunities for future nano-electronic circuits.

  5. RAPID and DDS

    NASA Technical Reports Server (NTRS)

    Utz, Hans Heinrich

    2011-01-01

    This talk gives an overview of the the Robot Applications Programmers Interface Delegate (RAPID) as well as the distributed systems middleware Data Distribution Service (DDS). DDS is an open software standard, RAPID is cleared for open-source release under NOSA. RAPID specifies data-structures and semantics for high-level telemetry published by NASA robotic software. These data-structures are supported by multiple robotic platforms at Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL) and Ames Research Center (ARC), providing high-level interoperability between those platforms. DDS is used as the middleware for data transfer. The feature set of the middleware heavily influences the design decision made in the RAPID specification. So it is appropriate to discuss both in this introductory talk.

  6. Design and baseline findings of a large-scale rapid response to an HIV outbreak in people who inject drugs in Athens, Greece: the ARISTOTLE programme

    PubMed Central

    Hatzakis, Angelos; Sypsa, Vana; Paraskevis, Dimitrios; Nikolopoulos, Georgios; Tsiara, Chrissa; Micha, Katerina; Panopoulos, Anastasios; Malliori, Meni; Psichogiou, Mina; Pharris, Anastasia; Wiessing, Lucas; van de Laar, Marita; Donoghoe, Martin; Heckathorn, Douglas D.; Friedman, Samuel R.; Des Jarlais, Don C.

    2016-01-01

    Aims To (i) describe an intervention implemented in response to the HIV-1 outbreak among people who inject drugs (PWIDs) in Greece (ARISTOTLE programme), (ii) assess its success in identifying and testing this population and (iii) describe socio-demographic characteristics, risk behaviours and access to treatment/prevention, estimate HIV prevalence and identify risk factors, as assessed at the first participation of PWIDs. Design A ‘seek, test, treat, retain’ intervention employing five rounds of respondent-driven sampling. Setting Athens, Greece (2012–13). Participants A total of 3320 individuals who had injected drugs in the past 12 months. Intervention ARISTOTLE is an intervention that involves reaching out to high-risk, hard-to-reach PWIDs (‘seek’), engaging them in HIV testing and providing information and materials to prevent HIV (‘test’) and initiating and maintaining anti-retroviral and opioid substitution treatment for those testing positive (‘treat’ and ‘retain’). Measurements Blood samples were collected for HIV testing and personal interviews were conducted. Findings ARISTOTLE recruited 3320 PWIDs during the course of 13.5 months. More than half (54%) participated in multiple rounds, resulting in 7113 visits. HIV prevalence was 15.1%. At their first contact with the programme, 12.5% were on opioid substitution treatment programmes and the median number of free syringes they had received in the preceding month was 0. In the multivariable analysis, apart from injection-related variables, homelessness was a risk factor for HIV infection in male PWIDs [odds ratio (OR) yes versus no=1.89, 95% confidence interval (CI)=1.41, 2.52]while, in female PWIDS, the number of sexual partners (OR for >5 versus one partner in the past year=4.12, 95% CI=1.93, 8.77) and history of imprisonment (OR yes versus no=2.76, 95% CI=1.43, 5.31) were associated with HIV. Conclusions In Athens, Greece, the ARISTOTLE intervention for identifying HIV

  7. On-site bundled rapid HIV/HCV testing in substance use disorder treatment programs: study protocol for a hybrid design randomized controlled trial.

    PubMed

    Frimpong, Jemima A; D'Aunno, Thomas; Perlman, David C; Strauss, Shiela M; Mallow, Alissa; Hernandez, Diana; Schackman, Bruce R; Feaster, Daniel J; Metsch, Lisa R

    2016-03-03

    More than 1.2 million people in the United States are living with human immunodeficiency virus (HIV), and 3.2 million are living with hepatitis C virus (HCV). An estimated 25 % of persons living with HIV also have HCV. It is therefore of great public health importance to ensure the prompt diagnosis of both HIV and HCV in populations that have the highest prevalence of both infections, including individuals with substance use disorders (SUD). In this theory-driven, efficacy-effectiveness-implementation hybrid study, we will develop and test an on-site bundled rapid HIV/HCV testing intervention for SUD treatment programs. Its aim is to increase the receipt of HIV and HCV test results among SUD treatment patients. Using a rigorous process involving patients, providers, and program managers, we will incorporate rapid HCV testing into evidence-based HIV testing and linkage to care interventions. We will then test, in a randomized controlled trial, the extent to which this bundled rapid HIV/HCV testing approach increases receipt of HIV and HCV test results. Lastly, we will conduct formative research to understand the barriers to, and facilitators of, the adoption, implementation, and sustainability of the bundled rapid testing strategy in SUD treatment programs. Novel approaches that effectively integrate on-site rapid HIV and rapid HCV testing are needed to address both the HIV and HCV epidemics. If feasible and efficacious, bundled rapid HIV/HCV testing may offer a scalable, potentially cost-effective approach to testing high-risk populations, such as patients of SUD treatment programs. It may ultimately lead to improved linkage to care and progress through the HIV and HCV care and treatment cascades. ClinicalTrials.gov: NCT02355080 . (30 January 2015).

  8. Rapid small lot manufacturing

    SciTech Connect

    Harrigan, R.W.

    1998-05-09

    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  9. Design options for achieving a rapidly variable heat-to-power ratio in a combined heat and power (CHP) fuel cell system (FCS)

    NASA Astrophysics Data System (ADS)

    Colella, Whitney

    This article calls for a change in paradigm within the fuel cells industry such that it focuses less on solely maximizing a fuel cell's electrical efficiency, and more on a fuel cell system's (FCS) overall combined thermal and electrical efficiency, as defined in relation to the instantaneous demand for heat and electricity. Based on market needs in the power generation sector, it emphasizes the need to develop FCSs such that they can achieve a heat-to-power ratio that can be rapidly varied. This article then delineates engineering methods to achieve a rapidly variable heat-to-power ratio for a combined heat and power (CHP) FCS.

  10. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum.

    PubMed

    Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S

    2015-03-01

    1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds.

  11. Rapid SAW Sensor Development Tools

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.

  12. A More Rapid, Rapid Response.

    PubMed

    Robison, Justin; Slamon, Nicholas B

    2016-09-01

    Critical care physicians' standard for arrival to a rapid response team activation is 10 minutes or less at this institution. This study proposes that a FaceTime (Apple, Cupertino, CA) video call between the staff at the bedside and the critical care physician will allow the implementation of potentially life-saving therapies earlier than the current average response (4.5 min). Prospective cohort study. Freestanding, tertiary-care children's hospital. Pediatric patients ages 0-17. Six units were chosen as matched pairs. In the telemedicine units, after notification of an rapid response team, the critical care intensivist established a FaceTime video call with the nurse at the bedside and gathered history, visually assessed the patient, and suggested interventions. Simultaneously, the rapid response nurse, respiratory therapist, and fellow were dispatched to respond to the bedside. After the video call, the intensivist also reported to the bedside. The control units followed the standard rapid response team protocol: the intensivist physically responded to the bedside. Differences in response time, number of interventions, Pediatric Early Warning System scores, and disposition were measured, and the PICU course of those transferred was evaluated. The telemedicine group's average time to establish FaceTime interface was 2.6 minutes and arrival at bedside was 3.7 minutes. The control group average arrival time was 3.6 minutes. The difference between FaceTime interface and physical arrival in the control group was statistically significant (p = 0.012). Physical arrival times between the telemedicine and control groups remained consistent. Fifty-eight percent of the telemedicine patients and 73% of the control patients were admitted to the PICU (p = 0.13). Of patients transferred to the PICU, there was no difference in rate of intubation, initiation of bilevel positive airway pressure, central line placement, or vasopressors. The study group averaged 1.4 interventions

  13. Low-temperature growth of single-walled carbon nanotube using Al2O3/Pd/Al2O3 multilayer catalyst by alcohol gas source method at high vacuum

    NASA Astrophysics Data System (ADS)

    Kiribayashi, Hoshimitsu; Ogawa, Seigo; Kozawa, Akinari; Saida, Takahiro; Naritsuka, Shigeya; Maruyama, Takahiro

    2016-06-01

    We carried out single-walled carbon nanotube (SWCNT) growth at 500 and 600 °C using Al2O3/Pd/Al2O3 multilayer catalysts on SiO2/Si substrates by the alcohol gas source method. When the ethanol pressures were 1 × 10-4 and 1 × 10-3 Pa, radial-breathing-mode (RBM) peaks and sharp G band peaks appeared in Raman spectra, indicating the growth of SWCNTs even at 500 °C. When the growth temperature and ethanol pressure were 500 °C and 1 × 10-4 Pa, respectively, the growth rate decreased gradually with the growth time, but the SWCNT growth continued for more than 4 h and the diameter distribution changed as the growth proceeded. X-ray photoelectron spectroscopy measurements showed that oxidized Pd catalyst particles were reduced to metallic states after the SWCNT growth started.

  14. Local-Rapid Evaluation of Atmospheric Conditions (L-REAC) System, Design and Development Volume 5 (Mobile L-REAC System Proof of Concept and Four Feasibility Studies)

    DTIC Science & Technology

    2012-12-01

    Website—An Alternative DMZ The successful website design was a product of several iterative steps. In the following three sections, the evolution of...L-REAC® System output was secured from unauthorized entries. The L-REAC® System website design did not use two separate windows; instead, the two

  15. Rapid Geometry Creation for Computer-Aided Engineering Parametric Analyses: A Case Study Using ComGeom2 for Launch Abort System Design

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica; Gage, Peter; Manning, Ted

    2007-01-01

    ComGeom2, a tool developed to generate Common Geometry representation for multidisciplinary analysis, has been used to create a large set of geometries for use in a design study requiring analysis by two computational codes. This paper describes the process used to generate the large number of configurations and suggests ways to further automate the process and make it more efficient for future studies. The design geometry for this study is the launch abort system of the NASA Crew Launch Vehicle.

  16. Rapid response manufacturing (RRM)

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1997-02-18

    US industry is fighting to maintain its competitive edge in the global market place. Today markets fluctuate rapidly. Companies, to survive, have to be able to respond with quick-to-market, improved, high quality, cost efficient products. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies. The RRM project was established to leverage the expertise and resources of US private industries and federal agencies to develop, integrate, and deploy new technologies that meet critical needs for effective product realization. The RRM program addressed a needed change in the US Manufacturing infrastructure that will ensure US competitiveness in world market typified by mass customization. This project provided the effort needed to define, develop and establish a customizable infrastructure for rapid response product development design and manufacturing. A major project achievement was the development of a broad-based framework for automating and integrating the product and process design and manufacturing activities involved with machined parts. This was accomplished by coordinating and extending the application of feature-based product modeling, knowledge-based systems, integrated data management, and direct manufacturing technologies in a cooperative integrated computing environment. Key technological advancements include a product model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering environment, knowledge-based software aids for design and process planning, and new production technologies to make products directly from design application software.

  17. MRPrimerW: a tool for rapid design of valid high-quality primers for multiple target qPCR experiments.

    PubMed

    Kim, Hyerin; Kang, NaNa; An, KyuHyeon; Koo, JaeHyung; Kim, Min-Soo

    2016-07-08

    Design of high-quality primers for multiple target sequences is essential for qPCR experiments, but is challenging due to the need to consider both homology tests on off-target sequences and the same stringent filtering constraints on the primers. Existing web servers for primer design have major drawbacks, including requiring the use of BLAST-like tools for homology tests, lack of support for ranking of primers, TaqMan probes and simultaneous design of primers against multiple targets. Due to the large-scale computational overhead, the few web servers supporting homology tests use heuristic approaches or perform homology tests within a limited scope. Here, we describe the MRPrimerW, which performs complete homology testing, supports batch design of primers for multi-target qPCR experiments, supports design of TaqMan probes and ranks the resulting primers to return the top-1 best primers to the user. To ensure high accuracy, we adopted the core algorithm of a previously reported MapReduce-based method, MRPrimer, but completely redesigned it to allow users to receive query results quickly in a web interface, without requiring a MapReduce cluster or a long computation. MRPrimerW provides primer design services and a complete set of 341 963 135 in silico validated primers covering 99% of human and mouse genes. Free access: http://MRPrimerW.com. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. MRPrimerW: a tool for rapid design of valid high-quality primers for multiple target qPCR experiments

    PubMed Central

    Kim, Hyerin; Kang, NaNa; An, KyuHyeon; Koo, JaeHyung; Kim, Min-Soo

    2016-01-01

    Design of high-quality primers for multiple target sequences is essential for qPCR experiments, but is challenging due to the need to consider both homology tests on off-target sequences and the same stringent filtering constraints on the primers. Existing web servers for primer design have major drawbacks, including requiring the use of BLAST-like tools for homology tests, lack of support for ranking of primers, TaqMan probes and simultaneous design of primers against multiple targets. Due to the large-scale computational overhead, the few web servers supporting homology tests use heuristic approaches or perform homology tests within a limited scope. Here, we describe the MRPrimerW, which performs complete homology testing, supports batch design of primers for multi-target qPCR experiments, supports design of TaqMan probes and ranks the resulting primers to return the top-1 best primers to the user. To ensure high accuracy, we adopted the core algorithm of a previously reported MapReduce-based method, MRPrimer, but completely redesigned it to allow users to receive query results quickly in a web interface, without requiring a MapReduce cluster or a long computation. MRPrimerW provides primer design services and a complete set of 341 963 135 in silico validated primers covering 99% of human and mouse genes. Free access: http://MRPrimerW.com. PMID:27154272

  19. Design

    ERIC Educational Resources Information Center

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  20. Design.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Provides an annotated bibliography of resources on this month's theme "Design" for K-8 language arts, art and architecture, music and dance, science, math, social studies, health, and physical education. Includes Web sites, CD-ROMs and software, videos, books, audiotapes, magazines, professional resources and classroom activities.…

  1. Design

    ERIC Educational Resources Information Center

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  2. Rapid Prototyping Enters Mainstream Manufacturing.

    ERIC Educational Resources Information Center

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  3. Rapid Prototyping Enters Mainstream Manufacturing.

    ERIC Educational Resources Information Center

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  4. Design and Development of Low Cost, Simple, Rapid and Safe, Modified Field Kits for the Visual Detection and Determination of Arsenic in Drinking Water Samples

    PubMed Central

    Cherukuri, Jyotsna; Anjaneyulu, Y.

    2005-01-01

    Arsenic is naturally found in surface and ground waters and the inorganic forms of arsenic are the most toxic forms. The adverse health effects of arsenic may involve the respiratory, gastrointestinal, cardiovascular, nervous, and haematopoietic systems. Arsenic contamination in drinking water is a global problem widely seen in Bangladesh and West Bengal of the Indian sub continent. As there is a great demand for field test kits due to the anticipated reduction of the US EPA arsenic standard from 50ppb to 10ppb a field kit which offers rapid, simple and safe method for precise estimation of arsenic at 10ppb in drinking water samples is developed. Field methods, based on the mercuric-bromide-stain, consist of three different major parts, which are carried out stepwise. The first part of the procedure is to remove serious interference caused by hydrogen sulphide. In commercially available kits either the sulphide is oxidized to sulphate and the excess oxidizing reagent removed prior to the hydride generation step or, the hydrogen sulphide is filtered out by passing the gas stream through a filter impregnated with lead acetate during the hydride generation step. The present method employs cupric chloride in combination with ferric chloride or Fenton’s reagent for the removal of hydrogen sulphide, which is rapid, simple and more efficient. Other interferences at this step of the analyses are normally not expected for drinking water analysis. In the second step, the generation of the arsine gas involves the classical way of using zinc metal and hydrochloric acid, which produce the ‘nascent’ hydrogen, which is the actual reducing agent. Hydrochloric acid can be replaced by sulfamic acid, which is solid and avoids a major disadvantage of having to handle a corrosive liquid in the field. The arsine gas produces a yellowish spot on the reagent paper. Depending on the arsenic content, either, Yellow – H (HgBr)2 As (10–50ppb), Brown – (HgBr)3 As (50–100ppb) or

  5. Design and development of low cost, simple, rapid and safe, modified field kits for the visual detection and determination of arsenic in drinking water samples.

    PubMed

    Cherukurii, Jyotsna; Anjaneyulu, Y

    2005-08-01

    Arsenic is naturally found in surface and ground waters and the inorganic forms of arsenic are the most toxic forms. The adverse health effects of arsenic may involve the respiratory, gastrointestinal, cardiovascular, nervous, and haematopoietic systems. Arsenic contamination in drinking water is a global problem widely seen in Bangladesh and West Bengal of the Indian sub continent. As there is a great demand for field test kits due to the anticipated reduction of the US EPA arsenic standard from 50ppb to 10ppb a field kit which offers rapid, simple and safe method for precise estimation of arsenic at 10ppb in drinking water samples is developed. Field methods, based on the mercuric-bromide-stain, consist of three different major parts, which are carried out stepwise. The first part of the procedure is to remove serious interference caused by hydrogen sulphide. In commercially available kits either the sulphide is oxidized to sulphate and the excess oxidizing reagent removed prior to the hydride generation step or, the hydrogen sulphide is filtered out by passing the gas stream through a filter impregnated with lead acetate during the hydride generation step. The present method employs cupric chloride in combination with ferric chloride or Fentonis reagent for the removal of hydrogen sulphide, which is rapid, simple and more efficient. Other interferences at this step of the analyses are normally not expected for drinking water analysis. In the second step, the generation of the arsine gas involves the classical way of using zinc metal and hydrochloric acid, which produce the enascenti hydrogen, which is the actual reducing agent. Hydrochloric acid can be replaced by sulfamic acid, which is solid and avoids a major disadvantage of having to handle a corrosive liquid in the field. The arsine gas produces a yellowish spot on the reagent paper. Depending on the arsenic content, either, Yellow n H (HgBr)2 As (10-50ppb), Brown n (HgBr)3 As (50-100ppb) or Black n Hg3 As2

  6. Quaternary rare-earth sulfides RE3M0.5GeS7 (RE=La-Nd, Sm; M=Co, Ni) and Y3Pd0.5SiS7

    NASA Astrophysics Data System (ADS)

    Iyer, Abishek K.; Yin, Wenlong; Lee, Emma J.; Lin, Xinsong; Mar, Arthur

    2017-06-01

    The two metal-deficient series of quaternary Ge-containing sulfides RE3M0.5GeS7 (RE = La-Nd, Sm; M = Co, Ni), as well as the related Si-containing sulfide Y3Pd0.5SiS7, were prepared by reactions of the elements at 1050 °C. Single-crystal X-ray diffraction analysis performed on all compounds confirmed noncentrosymmetric hexagonal structures (space group P63, Z =2) with cell parameters in the ranges of a =10.0-10.3 Å and c =5.7-5.8 Å for RE3Co0.5GeS7 and RE3Ni0.5GeS7, or a =9.7891(3) Å and c =5.6840(4) Å for Y3Pd0.5SiS7. They are classified as La3Mn0.5SiS7-type structures, with M atoms centred within octahedra (in contrast to La3CuSiS7-type structures in which M atoms occupy trigonal planar sites) and Ge atoms centred within tetrahedra, both types of polyhedra being arranged in one-dimensional stacks aligned along the c-direction. Charge balance requirements dictate half-occupancy of the M sites. However, bond valence sum arguments indicated that the M atoms are somewhat underbonded within these octahedral sites, so that there is evidence that in some compounds, they can also enter the trigonal planar site at low occupancy ( 5%). Magnetic measurements on RE3Co0.5GeS7 (RE = Ce, Pr, Sm) revealed paramagnetic behaviour for the Ce and Pr members and apparent antiferromagnetic ordering (TN =14 K) for the Sm member; fitting to the Curie-Weiss law gave effective magnetic moments consistent with the presence of RE3+ and Co2+ species. Band structure calculations on ordered models of La3M0.5GeS7 (M = Co, Ni) showed that the Fermi level cuts through M 3d states in the DOS curve and supported the presence of strong M-S and Ge-S bonding interactions.

  7. Cast Off expansion plan by rapid improvement through Optimization tool design, Tool Parameters and using Six Sigma’s ECRS Technique

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, T.; Saravanan, R.

    2017-03-01

    Powerful management concepts step-up the quality of the product, time saving in producing the product thereby increase the production rate, improves tools and techniques, work culture, work place and employee motivation and morale. In this paper discussed about the case study of optimizing the tool design, tool parameters to cast off expansion plan according ECRS technique. The proposed designs and optimal tool parameters yielded best results and meet the customer demand without expansion plan. Hence the work yielded huge savings of money (direct and indirect cost), time and improved the motivation and more of employees significantly.

  8. Design and application of two rapid screening techniques for isolation of Mn(IV) reduction-deficient mutants of Shewanella putrefaciens

    SciTech Connect

    Burnes, B.S.; Mulberry, M.J.; DiChristina, T.J.

    1998-07-01

    Chemical mutagenesis procedures and two newly developed rapid plate assays were used to identify two Mn(IV) reduction-deficient (Mnr) mutants of Shewanella putrefaciens. All eleven members of a set of previously isolated Fe(III) reduction-deficient (Fer) mutants displayed Mnr-positive phenotypes on the plate assays and were also capable of anaerobic growth on Mn(IV) as the sole terminal electron acceptor. The inability of S. putrefaciens 200 to form anaerobic colonies on Mn(IV)-supplemented solid medium [most likely due to limiting local Mn(IV) concentrations or to toxic effects associated with elevated levels of produced Mn(II)] necessitated the development of alternate plate-assay-based screening methods.

  9. Rapid Radiochemical Methods for Selected Radionuclides

    EPA Pesticide Factsheets

    The rapid methods documents are supplement guidance in a planned series designed to present radioanalytical laboratory personnel, Incident Commanders (and their designees), and other field response personnel.

  10. Automated statistical experimental design approach for rapid separation of coenzyme Q10 and identification of its biotechnological process related impurities using UHPLC and UHPLC-APCI-MS.

    PubMed

    Talluri, Murali V N Kumar; Kalariya, Pradipbhai D; Dharavath, Shireesha; Shaikh, Naeem; Garg, Prabha; Ramisetti, Nageswara Rao; Ragampeta, Srinivas

    2016-09-01

    A novel ultra high performance liquid chromatography method development strategy was ameliorated by applying quality by design approach. The developed systematic approach was divided into five steps (i) Analytical Target Profile, (ii) Critical Quality Attributes, (iii) Risk Assessments of Critical parameters using design of experiments (screening and optimization phases), (iv) Generation of design space, and (v) Process Capability Analysis (Cp) for robustness study using Monte Carlo simulation. The complete quality-by-design-based method development was made automated and expedited by employing sub-2 μm particles column with an ultra high performance liquid chromatography system. Successful chromatographic separation of the Coenzyme Q10 from its biotechnological process related impurities was achieved on a Waters Acquity phenyl hexyl (100 mm × 2.1 mm, 1.7 μm) column with gradient elution of 10 mM ammonium acetate buffer (pH 4.0) and a mixture of acetonitrile/2-propanol (1:1) as the mobile phase. Through this study, fast and organized method development workflow was developed and robustness of the method was also demonstrated. The method was validated for specificity, linearity, accuracy, precision, and robustness in compliance to the International Conference on Harmonization, Q2 (R1) guidelines. The impurities were identified by atmospheric pressure chemical ionization-mass spectrometry technique. Further, the in silico toxicity of impurities was analyzed using TOPKAT and DEREK software.

  11. Examining the Use of First Principles of Instruction by Instructional Designers in a Short-Term, High Volume, Rapid Production of Online K-12 Teacher Professional Development Modules

    ERIC Educational Resources Information Center

    Mendenhall, Anne M.

    2012-01-01

    Merrill (2002a) created a set of fundamental principles of instruction that can lead to effective, efficient, and engaging (e[superscript 3]) instruction. The First Principles of Instruction (Merrill, 2002a) are a prescriptive set of interrelated instructional design practices that consist of activating prior knowledge, using specific portrayals…

  12. Computer-Aided Designing and Manufacturing of Lingual Fixed Orthodontic Appliance Using 2D/3D Registration Software and Rapid Prototyping

    PubMed Central

    Kwon, Soon-Yong; Kim, Ki-Beom; Chung, Kyu-Rhim; Kim (Sunny), Seong-Hun

    2014-01-01

    The availability of 3D dental model scanning technology, combined with the ability to register CBCT data with digital models, has enabled the fabrication of orthognathic surgical CAD/CAM designed splints, customized brackets, and indirect bonding systems. In this study, custom lingual orthodontic appliances were virtually designed by merging 3D model images with lateral and posterior-anterior cephalograms. By exporting design information to 3D CAD software, we have produced a stereolithographic prototype and converted it into a cobalt-chrome alloy appliance as a way of combining traditional prosthetic investment and cast techniques. While the bonding procedure of the appliance could be reinforced, CAD technology simplified the fabrication process by eliminating the soldering phase. This report describes CAD/CAM fabrication of the complex anteroposterior lingual bonded retraction appliance for intrusive retraction of the maxillary anterior dentition. Furthermore, the CAD/CAM method eliminates the extra step of determining the lever arm on the lateral cephalograms and subsequent design modifications on the study model. PMID:24899895

  13. Rapid Method Development in Hydrophilic Interaction Liquid Chromatography for Pharmaceutical Analysis Using a Combination of Quantitative Structure-Retention Relationships and Design of Experiments.

    PubMed

    Taraji, Maryam; Haddad, Paul R; Amos, Ruth I J; Talebi, Mohammad; Szucs, Roman; Dolan, John W; Pohl, Chris A

    2017-02-07

    A design-of-experiment (DoE) model was developed, able to describe the retention times of a mixture of pharmaceutical compounds in hydrophilic interaction liquid chromatography (HILIC) under all possible combinations of acetonitrile content, salt concentration, and mobile-phase pH with R(2) > 0.95. Further, a quantitative structure-retention relationship (QSRR) model was developed to predict retention times for new analytes, based only on their chemical structures, with a root-mean-square error of prediction (RMSEP) as low as 0.81%. A compound classification based on the concept of similarity was applied prior to QSRR modeling. Finally, we utilized a combined QSRR-DoE approach to propose an optimal design space in a quality-by-design (QbD) workflow to facilitate the HILIC method development. The mathematical QSRR-DoE model was shown to be highly predictive when applied to an independent test set of unseen compounds in unseen conditions with a RMSEP value of 5.83%. The QSRR-DoE computed retention time of pharmaceutical test analytes and subsequently calculated separation selectivity was used to optimize the chromatographic conditions for efficient separation of targets. A Monte Carlo simulation was performed to evaluate the risk of uncertainty in the model's prediction, and to define the design space where the desired quality criterion was met. Experimental realization of peak selectivity between targets under the selected optimal working conditions confirmed the theoretical predictions. These results demonstrate how discovery of optimal conditions for the separation of new analytes can be accelerated by the use of appropriate theoretical tools.

  14. Right-Rapid-Rough

    NASA Technical Reports Server (NTRS)

    Lawrence, Craig

    2003-01-01

    IDEO (pronounced 'eye-dee-oh') is an international design, engineering, and innovation firm that has developed thousands of products and services for clients across a wide range of industries. Its process and culture attracted the attention of academics, businesses, and journalists around the world, and are the subject of a bestselling book, The Art of Innovation by Tom Kelley. One of the keys to IDEO's success is its use of prototyping as a tool for rapid innovation. This story covers some of IDEO's projects, and gives reasons for why they were successful.

  15. Pakistan RAPID III.

    PubMed

    Bhatti, M U

    1990-01-01

    The author describes the software called RAPID (Resources for the Awareness of Population Impact on Development), which was developed by the Futures Group, a U.S. company. The software is designed for IBM-PCs and compatibles, with a configuration that includes 640K RAM, a fixed disk drive, and DOS 2.0 or higher. The application in Pakistan of this software in an information, education, and communication program sponsored by the National Institute of Population Studies, including the translation of the software into Urdu, is briefly outlined.

  16. Rapid and Quiet Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    This describes aspects of the rapid and quiet drill (RAQD), which is a prototype apparatus for drilling concrete or bricks. The design and basic principle of operation of the RAQD overlap, in several respects, with those of ultrasonic/ sonic drilling and coring apparatuses described in a number of previous NASA Tech Briefs articles. The main difference is that whereas the actuation scheme of the prior apparatuses is partly ultrasonic and partly sonic, the actuation scheme of the RAQD is purely ultrasonic. Hence, even though the RAQD generates considerable sound, it is characterized as quiet because most or all of the sound is above the frequency range of human hearing.

  17. Response surface methodology to design a selective enrichment broth for rapid detection of Salmonella spp. by SYBR Green Ι real-time PCR.

    PubMed

    Zhang, Qiaoyan; Chen, Tingting; Yang, Shengli; Wang, Xiaofu; Guo, Hui

    2013-05-01

    In order to meet dominant growth of Salmonella spp. in a composed system of five pathogens for accurate detection, designing an appropriate selective enrichment broth was clearly needed. First, we built a high-throughput assay procedure based on SYBR Green Ι real-time PCR, which possessed the necessary specificity for Salmonella spp., a good linear standard curve with typical R (2) value (0.9984) and high amplification efficiency (99.0 %). Further, for the larger target biomass in the mixed microflora, acarbose, LiCl and bile salt were selected to optimize their concentrations using response surface methodology (RSM). A central composite design was employed to collect the data and fit the response. A quadratic polynomial model was derived by computer simulation. Statistical analysis was carried out to explore the action and interaction of the variables on the response. In the end, a novel broth (Sal-5) was formulated to allow the efficient enrichment of Salmonella spp. and inhibit the growth of other tested strains. A detection platform was developed, including selective enrichment in Sal-5, DNA extraction by the boiling lysis method and real-time PCR test based on SYBR Green Ι. This work could extend the application of RSM and real-time PCR in the design of other selective enrichment media for common pathogens.

  18. A compact and hand-held infection-screening system for use in rapid medical inspection at airport quarantine stations: system design and preliminary validation.

    PubMed

    Sun, Guanghao; Miyata, Keisuke; Matsuoka, Ayumu; Zhao, Zijun; Iwakami, Sayuri; Kim, Seokjin; Matsui, Takemi

    2015-04-01

    To conduct mass screening and thereby reduce the spread of infection, a compact (13.5 cm × 8.5 cm × 2.5 cm), highly-mobile and hand-held infection-screening system was developed for rapid medical inspection in mass gathering places such as airports. The system is capable of non-contact vital-sign monitoring using two integrated sensors: a 24-GHz microwave radar for measuring heart and respiration rates and a thermopile array for capturing facial temperature. Subsequently, the system detects infected individuals using a linear discriminant function (LDA) from the derived vital-signs data. The system was tested on 10 subjects under two conditions (resting as normal and exercising as pseudo-infected, i.e. a 10-min bicycle ergometer at 100 W exercise); the normal and pseudo-infected conditions were classified successfully via LDA for all subjects (p < 0.01; classification error rate < 5%). The proposed non-contact system can be applied for preventing secondary exposure of medical doctors at the outbreak of highly pathogenic infectious diseases such as the Ebola virus.

  19. Ensembling and filtering: an effective and rapid in silico multitarget drug-design strategy to identify RIPK1 and RIPK3 inhibitors.

    PubMed

    Fayaz, S M; Rajanikant, G K

    2015-12-01

    Necroptosis, a programmed necrosis pathway, is witnessed in diverse human diseases and is primarily regulated by receptor-interacting serine/threonine protein kinase 1 (RIPK1) and RIPK3. Ablation or inhibition of these individual proteins, or both, has been shown to be protective in various in vitro and in vivo disease models involving necroptosis. In this study, we propose an effective and rapid virtual screening strategy to identify multitarget inhibitors of both RIPK1 and RIPK3. It involves ensemble pharmacophore-based screening (EPS) of a compound database, post-EPS filtration (PEPSF) of the ligand hits, and multiple dockings. Structurally diverse inhibitors were identified through ensemble pharmacophore features, and the speed of this process was enhanced by filtering out the compounds containing cross-features. The stability of these inhibitors with both of the proteins was verified by means of molecular dynamics (MD) simulation. Graphical Abstract A generalized workflow employed in this study. Subsequent utilization of EPS and PEPSF might lead to reduced computational time and load.

  20. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Matsui, Yukiko; Yamagata, Masaki; Murakami, Satoshi; Saito, Yasuteru; Higashizaki, Tetsuya; Ishiko, Eriko; Kono, Michiyuki; Ishikawa, Masashi

    2015-04-01

    We evaluate the effects of lithium salt on the charge-discharge performance of a graphite negative electrode in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) ionic liquid-based electrolytes. Although the graphite negative electrode exhibits good cyclability and rate capability in both 0.43 mol dm-3 LiFSI/EMImFSI and LiTFSI/EMImFSI (TFSI- = bis(trifluoromethylsulfonyl)imide) at room temperature, only the LiFSI/EMImFSI system enables the graphite electrode to be operated with sufficient discharge capacity at the low temperature of 0 °C, even though there is no noticeable difference in ionic conductivity, compared with LiTFSI/EMImFSI. Furthermore, a clear difference in the low-temperature behaviors of the two cells composed of EMImFSI with a high-concentration of lithium salts is observed. Additionally, charge-discharge operation of the graphite electrode at C-rate of over 5.0 can be achieved using of the high-concentration LiFSI/EMImFSI electrolyte. Considering the low-temperature characteristics in both high-concentration electrolytes, the stable and rapid charge-discharge operation in the high-concentration LiFSI/EMImFSI is presumably attributed to a suitable electrode/electrolyte interface with low resistivity. These results suggest that optimization of the electrolyte composition can realize safe and high-performance lithium-ion batteries that utilize ionic liquid-based electrolytes.

  1. Rapid plant diversity assessment using a pixel nested plot design: A case study in Beaver Meadows, Rocky Mountain National Park, Colorado, USA

    USGS Publications Warehouse

    Kalkhan, M.A.; Stafford, E.J.; Stohlgren, T.J.

    2007-01-01

    Geospatial statistical modelling and thematic maps have recently emerged as effective tools for the management of natural areas at the landscape scale. Traditional methods for the collection of field data pertaining to questions of landscape were developed without consideration for the parameters of these applications. We introduce an alternative field sampling design based on smaller unbiased random plot and subplot locations called the pixel nested plot (PNP). We demonstrate the applicability of the PNP design of 15 m x 15 m to assess patterns of plant diversity and species richness across the landscape at Rocky Mountain National Park (RMNP), Colorado, USA in a time (cost)-efficient manner for field data collection. Our results produced comparable results to a previous study in the Beaver Meadow study (BMS) area within RMNP, where there was a demonstrated focus of plant diversity. Our study used the smaller PNP sampling design for field data collection which could be linked to geospatial information data and could be used for landscape-scale analyses and assessment applications. In 2003, we established 61 PNP in the eastern region of RMNP. We present a comparison between this approach using a sub-sample of 19 PNP from this data set and 20 of Modified Whittaker nested plots (MWNP) of 20 m x 50 m that were collected in the BMS area. The PNP captured 266 unique plant species while the MWNP captured 275 unique species. Based on a comparison of PNP and MWNP in the Beaver Meadows area, RMNP, the PNP required less time and area sampled to achieve a similar number of species sampled. Using the PNP approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and therefore cost-effective manner. ?? 2007 The Authors.

  2. CPV modelling with Solcore: An extensible modelling framework for the rapid computational simulation and evaluation of solar cell designs and concepts

    NASA Astrophysics Data System (ADS)

    Führer, Markus; Farrell, Daniel; Ekins-Daukes, Nicholas

    2013-09-01

    Computer modelling can reduce the costs of CPV solar cell development by allowing the evaluation of designs without physical device growth. We present solcore, a powerful multi-tier modelling framework for simulation of nano-structured solar cells, written in the open source, popular, and approachable programming language Python. Capabilities include modules for materials (parameterisation, database), 1D arbitrary potential Schrödinger equation solver and absorption calculator, kṡp band structure solver, spectral irradiance model and database, and multijunction quantum efficiency and IV calculators.

  3. Malaria rapid diagnostic kits: quality of packaging, design and labelling of boxes and components and readability and accuracy of information inserts

    PubMed Central

    2011-01-01

    Background The present study assessed malaria RDT kits for adequate and correct packaging, design and labelling of boxes and components. Information inserts were studied for readability and accuracy of information. Methods Criteria for packaging, design, labelling and information were compiled from Directive 98/79 of the European Community (EC), relevant World Health Organization (WHO) documents and studies on end-users' performance of RDTs. Typography and readability level (Flesch-Kincaid grade level) were assessed. Results Forty-two RDT kits from 22 manufacturers were assessed, 35 of which had evidence of good manufacturing practice according to available information (i.e. CE-label affixed or inclusion in the WHO list of ISO13485:2003 certified manufacturers). Shortcomings in devices were (i) insufficient place for writing sample identification (n = 40) and (ii) ambiguous labelling of the reading window (n = 6). Buffer vial labels were lacking essential information (n = 24) or were of poor quality (n = 16). Information inserts had elevated readability levels (median Flesch Kincaid grade 8.9, range 7.1 - 12.9) and user-unfriendly typography (median font size 8, range 5 - 10). Inadequacies included (i) no referral to biosafety (n = 18), (ii) critical differences between depicted and real devices (n = 8), (iii) figures with unrealistic colours (n = 4), (iv) incomplete information about RDT line interpretations (n = 31) and no data on test characteristics (n = 8). Other problems included (i) kit names that referred to Plasmodium vivax although targeting a pan-species Plasmodium antigen (n = 4), (ii) not stating the identity of the pan-species antigen (n = 2) and (iii) slight but numerous differences in names displayed on boxes, device packages and information inserts. Three CE labelled RDT kits produced outside the EC had no authorized representative affixed and the shape and relative dimensions of the CE symbol affixed did not comply with the Directive 98/79/EC

  4. Malaria rapid diagnostic kits: quality of packaging, design and labelling of boxes and components and readability and accuracy of information inserts.

    PubMed

    Gillet, Philippe; Maltha, Jessica; Hermans, Veerle; Ravinetto, Raffaella; Bruggeman, Cathrien; Jacobs, Jan

    2011-02-13

    The present study assessed malaria RDT kits for adequate and correct packaging, design and labelling of boxes and components. Information inserts were studied for readability and accuracy of information. Criteria for packaging, design, labelling and information were compiled from Directive 98/79 of the European Community (EC), relevant World Health Organization (WHO) documents and studies on end-users' performance of RDTs. Typography and readability level (Flesch-Kincaid grade level) were assessed. Forty-two RDT kits from 22 manufacturers were assessed, 35 of which had evidence of good manufacturing practice according to available information (i.e. CE-label affixed or inclusion in the WHO list of ISO13485:2003 certified manufacturers). Shortcomings in devices were (i) insufficient place for writing sample identification (n=40) and (ii) ambiguous labelling of the reading window (n=6). Buffer vial labels were lacking essential information (n=24) or were of poor quality (n=16). Information inserts had elevated readability levels (median Flesch Kincaid grade 8.9, range 7.1-12.9) and user-unfriendly typography (median font size 8, range 5-10). Inadequacies included (i) no referral to biosafety (n=18), (ii) critical differences between depicted and real devices (n=8), (iii) figures with unrealistic colours (n=4), (iv) incomplete information about RDT line interpretations (n=31) and no data on test characteristics (n=8). Other problems included (i) kit names that referred to Plasmodium vivax although targeting a pan-species Plasmodium antigen (n=4), (ii) not stating the identity of the pan-species antigen (n=2) and (iii) slight but numerous differences in names displayed on boxes, device packages and information inserts. Three CE labelled RDT kits produced outside the EC had no authorized representative affixed and the shape and relative dimensions of the CE symbol affixed did not comply with the Directive 98/79/EC. Overall, RDTs with evidence of GMP scored better

  5. Design and baseline findings of a large-scale rapid response to an HIV outbreak in people who inject drugs in Athens, Greece: the ARISTOTLE programme.

    PubMed

    Hatzakis, Angelos; Sypsa, Vana; Paraskevis, Dimitrios; Nikolopoulos, Georgios; Tsiara, Chrissa; Micha, Katerina; Panopoulos, Anastasios; Malliori, Meni; Psichogiou, Mina; Pharris, Anastasia; Wiessing, Lucas; van de Laar, Marita; Donoghoe, Martin; Heckathorn, Douglas D; Friedman, Samuel R; Des Jarlais, Don C

    2015-09-01

    To (i) describe an intervention implemented in response to the HIV-1 outbreak among people who inject drugs (PWIDs) in Greece (ARISTOTLE programme), (ii) assess its success in identifying and testing this population and (iii) describe socio-demographic characteristics, risk behaviours and access to treatment/prevention, estimate HIV prevalence and identify risk factors, as assessed at the first participation of PWIDs. A 'seek, test, treat, retain' intervention employing five rounds of respondent-driven sampling. Athens, Greece (2012-13). A total of 3320 individuals who had injected drugs in the past 12 months. ARISTOTLE is an intervention that involves reaching out to high-risk, hard-to-reach PWIDs ('seek'), engaging them in HIV testing and providing information and materials to prevent HIV ('test') and initiating and maintaining anti-retroviral and opioid substitution treatment for those testing positive ('treat' and 'retain'). Blood samples were collected for HIV testing and personal interviews were conducted. ARISTOTLE recruited 3320 PWIDs during the course of 13.5 months. More than half (54%) participated in multiple rounds, resulting in 7113 visits. HIV prevalence was 15.1%. At their first contact with the programme, 12.5% were on opioid substitution treatment programmes and the median number of free syringes they had received in the preceding month was 0. In the multivariable analysis, apart from injection-related variables, homelessness was a risk factor for HIV infection in male PWIDs [odds ratio (OR) yes versus no = 1.89, 95% confidence interval (CI) = 1.41, 2.52] while, in female PWIDS, the number of sexual partners (OR for > 5 versus one partner in the past year = 4.12, 95% CI = 1.93, 8.77) and history of imprisonment (OR yes versus no = 2.76, 95% CI = 1.43, 5.31) were associated with HIV. In Athens, Greece, the ARISTOTLE intervention for identifying HIV-positive people among people who inject drugs (PWID) facilitated rapid

  6. The choice of ultrasound assisted extraction coupled with spectrophotometric for rapid determination of gallic acid in water samples: Central composite design for optimization of process variables.

    PubMed

    Pooralhossini, Jaleh; Ghaedi, Mehrorang; Zanjanchi, Mohammad Ali; Asfaram, Arash

    2017-01-01

    A sensitive procedure namely ultrasound-assisted (UA) coupled dispersive nano solid-phase microextraction spectrophotometry (DNSPME-UV-Vis) was designed for preconcentration and subsequent determination of gallic acid (GA) from water samples, while the detailed of composition and morphology and also purity and structure of this new sorbent was identified by techniques like field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDX) techniques. Among conventional parameters viz. pH, amount of sorbent, sonication time and volume of elution solvent based on Response Surface Methodology (RSM) and central composite design according to statistics based contour the best operational conditions was set at pH of 2.0; 1.5mg sorbent, 4.0min sonication and 150μL ethanol. Under these pre-qualified conditions the method has linear response over wide concentration range of 15-6000ngmL(-1) with a correlation coefficient of 0.9996. The good figure of merits like acceptable LOD (S/N=3) and LOQ (S/N=10) with numerical value of 2.923 and 9.744ngmL(-1), respectively and relative recovery between 95.54 and 100.02% show the applicability and efficiency of this method for real samples analysis with RSDs below 6.0%. Finally the method with good performance were used for monitoring under study analyte in various real samples like tap, river and mineral waters.

  7. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking ...

  8. Rational Design of α-Fe2O3/Reduced Graphene Oxide Composites: Rapid Detection and Effective Removal of Organic Pollutants.

    PubMed

    Zhang, Lili; Bao, Zhiwei; Yu, Xinxin; Dai, Peng; Zhu, Jin; Wu, Mingzai; Li, Guang; Liu, Xiansong; Sun, Zhaoqi; Chen, Changle

    2016-03-01

    α-Fe2O3/reduced graphene oxide (α-Fe2O3/rGO) composites are rationally designed and prepared to integrate organic pollutants detection and their photocatalytic degradation. Specifically, the composites are used as the substrate for surface-enhanced Raman scattering (SERS) to detect rhodamine 6G (R6G). Repeatable strong SERS signals could be obtained with R6G concentration as low as 10(-5) M. In addition, the substrate exhibits self-cleaning properties under solar irradiation. Compared with pure α-Fe2O3 and α-Fe2O3/rGO mechanical mixtures, the α-Fe2O3/rGO composites show much higher photocatalytic activity and much greater Raman enhancement factor. After 10 cycling measurements, the photodegradation rate of R6G could be maintained at 90.5%, indicating high stability of the photocatalyst. This study suggests that the α-Fe2O3/rGO composites would serve both as recyclable SERS substrate and as excellent visible light photocatalyst.

  9. The role of solvent on the mechanism of proton transfer to hydride complexes: the case of the [W(3)PdS(4)H(3)(dmpe)(3)(CO)](+) cubane cluster.

    PubMed

    Algarra, Andrés G; Basallote, Manuel G; Feliz, Marta; Fernández-Trujillo, M Jesús; Llusar, Rosa; Safont, Vicent S

    2010-02-01

    The kinetics of reaction of the [W(3)PdS(4)H(3)(dmpe)(3)(CO)](+) hydride cluster (1(+)) with HCl has been measured in dichloromethane, and a second-order dependence with respect to the acid is found for the initial step. In the presence of added BF(4) (-) the second-order dependence is maintained, but there is a deceleration that becomes more evident as the acid concentration increases. DFT calculations indicate that these results can be rationalized on the basis of the mechanism previously proposed for the same reaction of the closely related [W(3)S(4)H(3)(dmpe)(3)](+) cluster, which involves parallel first- and second-order pathways in which the coordinated hydride interacts with one and two acid molecules, and ion pairing to BF(4) (-) hinders formation of dihydrogen bonded adducts able to evolve to the products of proton transfer. Additional DFT calculations are reported to understand the behavior of the cluster in neat acetonitrile and acetonitrile-water mixtures. The interaction of the HCl molecule with CH(3)CN is stronger than the W-H...HCl dihydrogen bond and so the reaction pathways operating in dichloromethane become inefficient, in agreement with the lack of reaction between 1(+) and HCl in neat acetonitrile. However, the attacking species in acetonitrile-water mixtures is the solvated proton, and DFT calculations indicate that the reaction can then go through pathways involving solvent attack to the W centers, while still maintaining the coordinated hydride, which is made possible by the capability of the cluster to undergo structural changes in its core.

  10. Interlaboratory Standardization of the Sandwich Enzyme-Linked Immunosorbent Assay Designed for MATS, a Rapid, Reproducible Method for Estimating the Strain Coverage of Investigational Vaccines

    PubMed Central

    Plikaytis, Brian D.; Stella, Maria; Boccadifuoco, Giuseppe; DeTora, Lisa M.; Agnusdei, Mauro; Santini, Laura; Brunelli, Brunella; Orlandi, Luca; Simmini, Isabella; Giuliani, Marzia; Ledroit, Morgan; Hong, Eva; Taha, Muhamed-Kheir; Ellie, Kim; Rajam, Gowrisankar; Carlone, George M.; Claus, Heike; Vogel, Ulrich; Borrow, Ray; Findlow, Jamie; Gilchrist, Stefanie; Stefanelli, Paola; Fazio, Cecilia; Carannante, Anna; Oksnes, Jan; Fritzsønn, Elisabeth; Klem, Anne-Marie; Caugant, Dominique A.; Abad, Raquel; Vázquez, Julio A.; Rappuoli, Rino; Pizza, Mariagrazia; Donnelly, John J.

    2012-01-01

    The meningococcal antigen typing system (MATS) sandwich enzyme-linked immunosorbent assay (ELISA) was designed to measure the immunologic cross-reactivity and quantity of antigens in target strains of a pathogen. It was first used to measure the factor H-binding protein (fHbp), neisserial adhesin A (NadA), and neisserial heparin-binding antigen (NHBA) content of serogroup B meningococcal (MenB) isolates relative to a reference strain, or “relative potency” (RP). With the PorA genotype, the RPs were then used to assess strain coverage by 4CMenB, a multicomponent MenB vaccine. In preliminary studies, MATS accurately predicted killing in the serum bactericidal assay using human complement, an accepted correlate of protection for meningococcal vaccines. A study across seven laboratories assessed the reproducibility of RPs for fHbp, NadA, and NHBA and established qualification parameters for new laboratories. RPs were determined in replicate for 17 MenB reference strains at laboratories A to G. The reproducibility of RPs among laboratories and against consensus values across laboratories was evaluated using a mixed-model analysis of variance. Interlaboratory agreement was very good; the Pearson correlation coefficients, coefficients of accuracy, and concordance correlation coefficients exceeded 99%. The summary measures of reproducibility, expressed as between-laboratory coefficients of variation, were 7.85% (fHbp), 16.51% (NadA), and 12.60% (NHBA). The overall within-laboratory measures of variation adjusted for strain and laboratory were 19.8% (fHbp), 28.8% (NHBA), and 38.3% (NadA). The MATS ELISA was successfully transferred to six laboratories, and a further laboratory was successfully qualified. PMID:22875603

  11. Design and synthesis of a novel fluorescent protein probe for easy and rapid electrophoretic gel staining by using a commonly available UV-based fluorescent imaging system.

    PubMed

    Suzuki, Yoshio; Takagi, Nobuyuki; Sano, Takuma; Chimuro, Tomoyuki

    2013-09-01

    A new fluorescent molecular probe, methyl 3-(3,5-bis((bis(pyridin-2-ylmethyl)amino)-methyl)-4-hydroxyphenyl)-2-(5-(dimethylamino)naphthalene-1-sulfonamido) propanoate, dizinc(II) chloride salt (Dansyl-1-Zn(II)), which possesses Zn(II) complexes and a dansyl group, was designed and synthesized to enable the detection of proteins in solution and in high-throughput electrophoresis by using a UV-based detection system. Dansyl-1-Zn(II) exhibited weak fluorescence in the absence of proteins and strong green fluorescence at approximately 510 nm in the presence of BSA upon irradiation with light at a wavelength of 345 nm. Compared with conventional protocols for in-gel SDS-PAGE protein staining (e.g. silver staining, SYPRO Ruby, and Oriole), the operating times of which range from 90 min to overnight, Dansyl-1-Zn(II) allowed 1-step protein staining (SDS-PAGE →Staining →Detection) and shortened the operating time (35 min) with high sensitivity (LOD: 1 ng or less) under 312-nm or 365-nm light excitation with orange or red emission filters, respectively. Moreover, Dansyl-1-Zn(II) was successfully applied to protein identification by MS via in-gel tryptic digestion, Western blotting, and Native-PAGE. Accordingly, Dansyl-1-Zn(II) may facilitate highly sensitive and high-throughput protein detection, and it may be widely applicable as a convenient tool in various scientific and medical fields. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Rapid PCR authentication Lonicera japanica].

    PubMed

    Jiang, Chao; Hou, Jing-Yi; Huang, Lu-Qi; Yuan, Yuan; Chen, Min; Jin, Yan

    2014-10-01

    To simply and rapid authenticate Lonicera japanica. Rapid allele-specific PCR primer was designed base on trnL-trnF 625 G/T Single nucleotide polymorphism and the PCR reaction systems including annealing temperature was optimized; optimized results were performed to authenticate L. japanica and its 9 adulterants. When 100 x SYBR Green I was added in the PCR product of 87 degrees C initial denatured 1 min; 87 degrees C denatured 5 s, 68 degrees C annealing 5 s, 30 cycle; L. japanica visualize strong green fluorescence under 365 nm UV lamp whereas adulterants without. The results indicate rapid allele-specific PCR could authenticate L. japanica and its adulterants rapidly and simply.

  13. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications

    NASA Astrophysics Data System (ADS)

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-01

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus Hp(3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  14. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications.

    PubMed

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-21

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus Hp(3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  15. Ultrasound-assisted magnetic dispersive solid-phase microextraction: A novel approach for the rapid and efficient microextraction of naproxen and ibuprofen employing experimental design with high-performance liquid chromatography.

    PubMed

    Ghorbani, Mahdi; Chamsaz, Mahmoud; Rounaghi, Gholam Hossein

    2016-03-01

    A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound-assisted magnetic dispersive solid-phase microextraction. Magnetic ethylendiamine-functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett-Burman screening design was used to study the main variables affecting the microextraction process, and the Box-Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1-500 and 0.3-650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples.

  16. Preliminary Component Integration Using Rapid Prototyping Techniques

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Salvail, Pat; Gordon, Gail (Technical Monitor)

    2001-01-01

    Rapid prototyping is a very important tool that should be used by both design and manufacturing disciplines during the development of elements for the aerospace industry. It helps prevent lack of adequate communication between design and manufacturing engineers (which could lead to costly errors) through mutual consideration of functional models generated from drawings. Rapid prototyping techniques are used to test hardware for design and material compatibility at Marshall Space Flight Center.

  17. Ce{sub 2}PdIn{sub 8}, Ce{sub 3}PdIn{sub 11} and Ce{sub 5}Pd{sub 2}In{sub 19}—members of homological series based on AuCu{sub 3}- and PtHg{sub 2}-type structural units

    SciTech Connect

    Tursina, A.; Nesterenko, S.; Seropegin, Y.; Noël, H.; Kaczorowski, D.

    2013-04-15

    Crystal structures of three members of a unique homological series with the general formula Ce{sub m}Pd{sub n}In{sub 3m+2n} based on the AuCu{sub 3} and PtHg{sub 2} structure types were studied by single-crystal X-ray diffraction. The compounds crystallize with space group P4/mmm (Z=1) and the lattice parameters: a=4.6900(9) Å, c=12.185(6) Å for Ce{sub 2}PdIn{sub 8}, a=4.6846(8) Å, c=16.846(8) Å for Ce{sub 3}PdIn{sub 11}, and a=4.70120(10) Å, c=29.1359(4) Å for Ce{sub 5}Pd{sub 2}In{sub 19}. The crystal structures of Ce{sub 3}PdIn{sub 11} and Ce{sub 5}Pd{sub 2}In{sub 19} represent new types. The three structures constitute of [CeIn{sub 3}] cuboctahedra layers and [PdIn{sub 2}] rectangular polyhedra layers, alternating along the tetragonal c-axis in accordance with the m:n proportion. The magnetic and electrical transport properties of the novel compounds Ce{sub 3}PdIn{sub 11} and Ce{sub 5}Pd{sub 2}In{sub 19} were investigated down to 1.72 K. Both indides are Curie–Weiss paramagnets due to the presence of fairly well localized 4f electrons of trivalent cerium ions. The electrical resistivity of both materials is dominated over an extended temperature range by strong spin–flip Kondo interactions with the characteristic temperature scale of 20–30 K. - Graphical abstract: TOC Figure Crystal structures of Ce{sub 3}PdIn{sub 11}, Ce{sub 2}PdIn{sub 8}, and Ce{sub 5}Pd{sub 2}In{sub 19}. Highlights: ► Large section of Ce–Pd–In phase diagram was examined. ► Three distinct ternary phases were identified, two of them for the first time. ► Crystal structures of two novel compounds constitute new structure types. ► The determined crystal structures show close mutual relationship. ► Ce{sub 3}PdIn{sub 11} and Ce{sub 5}Pd{sub 2}In{sub 19} are paramagnetic Kondo lattices.

  18. Organizational Design for USSOCOM Rapid Acquisition

    DTIC Science & Technology

    2017-03-31

    essential functions the organization must perform . Next, it analyzes five major organizational structure elements to allow alignment of individual...Subsystems support each major element of the open system. The subsystems perform the functions required for organizational survival. Daft’s model shows...Mintzberg’s five essential elements both resulted in a better understanding of functions to be performed . This section analyzes the organizational

  19. PUBLISHER'S NOTE: Rapid Communications Rapid Communications

    NASA Astrophysics Data System (ADS)

    Miller, Tom

    2009-09-01

    As part of a general review of Superconductor Science and Technology, we have been examining the scope for Rapid Communications (RAPs). We recognize these articles make up an important part of the journal representing the latest state-of-the-art research in superconductivity. To reflect this, we have devised a new scope for this article type: 'Rapid Communications. The journal offers open access to outstanding short articles (no longer than 5 journal pages or 4500 words including figures) reporting new and timely developments in superconductivity and its applications. These articles should report very substantial new advances in superconductivity to the readers of Superconductor Science and Technology, but are not expected to meet any requirement of 'general interest'. RAPs will be processed quickly (average receipt to online publication for RAPs is around 60 days) and are permanently free to read in the electronic journal. Authors submitting a RAP should provide reasons why the work is urgent and requires rapid publication. Each RAP will be assessed for suitability by our Reviews and Rapid Communications Editor before full peer review takes place.' The essential points are: They should report very substantial new advances in superconductivity and its application; They must be no longer than 5 journal pages long (approx. 4500 words); Average publication time for a Rapid Communication is 60 days; They are free to read. As mentioned in the previous publisher's announcement (2009 Supercond. Sci. Technol. 22 010101), each submitted Rapid Communication must come with a letter justifying why it should be prioritized over regular papers and will be pre-assessed by our Reviews and Rapid Communications Editor. In addition, we will work with the authors of any Rapid Communication to promote and raise the visibility of the work presented in it. We will be making further changes to the journal in the near future and we write to you accordingly. Thank you for your kind

  20. Rapid Thawing and Heating of Foods

    DTIC Science & Technology

    1974-09-01

    has been designed for the rapid thawing and heating of foods and has been tried out on scalloped potatoes , Creole squash, noodles and cheese, and...not be equal to the average temperature in the food. This situation has led us to construct a stirred- water calorimeter with which enthalpy changes...the rapid heating experiments, because the specific heat of food depends strongly on its water content. 4. Main Results Rapid thawing and

  1. Rapid Reading, Yes

    ERIC Educational Resources Information Center

    Frommer, Harvey

    1971-01-01

    Recommends instruction in rapid reading fo high school and college students and asserts that flexibility of speed and reasoning provide the foundation for effective rapid reading. Describes the components of rapid reading as orientation, selection, clarification, arrangement, review, and study. (RW)

  2. Development of a Decision Aid for Cardiopulmonary Resuscitation Involving Intensive Care Unit Patients' and Health Professionals' Participation Using User-Centered Design and a Wiki Platform for Rapid Prototyping: A Research Protocol.

    PubMed

    Plaisance, Ariane; Witteman, Holly O; Heyland, Daren Keith; Ebell, Mark H; Dupuis, Audrey; Lavoie-Bérard, Carole-Anne; Légaré, France; Archambault, Patrick Michel

    2016-02-11

    Cardiopulmonary resuscitation (CPR) is an intervention used in cases of cardiac arrest to revive patients whose heart has stopped. Because cardiac arrest can have potentially devastating outcomes such as severe neurological deficits even if CPR is performed, patients must be involved in determining in advance if they want CPR in the case of an unexpected arrest. Shared decision making (SDM) facilitates discussions about goals of care regarding CPR in intensive care units (ICUs). Patient decision aids (DAs) are proven to support the implementation of SDM. Many patient DAs about CPR exist, but they are not universally implemented in ICUs in part due to lack of context and cultural adaptation. Adaptation to local context is an important phase of implementing any type of knowledge tool such as patient DAs. User-centered design supported by a wiki platform to perform rapid prototyping has previously been successful in creating knowledge tools adapted to the needs of patients and health professionals (eg, asthma action plans). This project aims to explore how user-centered design and a wiki platform can support the adaptation of an existing DA for CPR to the local context. The primary objective is to use an existing DA about CPR to create a wiki-based DA that is adapted to the context of a single ICU and tailorable to individual patient's risk factors while employing user-centered design. The secondary objective is to document the use of a wiki platform for the adaptation of patient DAs. This study will be conducted in a mixed surgical and medical ICU at Hôtel-Dieu de Lévis, Quebec, Canada. We plan to involve all 5 intensivists and recruit at least 20 alert and oriented patients admitted to the ICU and their family members if available. In the first phase of this study, we will observe 3 weeks of daily interactions between patients, families, intensivists, and other allied health professionals. We will specifically observe 5 dyads of attending intensivists and alert

  3. Development of a Decision Aid for Cardiopulmonary Resuscitation Involving Intensive Care Unit Patients' and Health Professionals' Participation Using User-Centered Design and a Wiki Platform for Rapid Prototyping: A Research Protocol

    PubMed Central

    Heyland, Daren Keith; Ebell, Mark H; Dupuis, Audrey; Lavoie-Bérard, Carole-Anne; Légaré, France; Archambault, Patrick Michel

    2016-01-01

    Background Cardiopulmonary resuscitation (CPR) is an intervention used in cases of cardiac arrest to revive patients whose heart has stopped. Because cardiac arrest can have potentially devastating outcomes such as severe neurological deficits even if CPR is performed, patients must be involved in determining in advance if they want CPR in the case of an unexpected arrest. Shared decision making (SDM) facilitates discussions about goals of care regarding CPR in intensive care units (ICUs). Patient decision aids (DAs) are proven to support the implementation of SDM. Many patient DAs about CPR exist, but they are not universally implemented in ICUs in part due to lack of context and cultural adaptation. Adaptation to local context is an important phase of implementing any type of knowledge tool such as patient DAs. User-centered design supported by a wiki platform to perform rapid prototyping has previously been successful in creating knowledge tools adapted to the needs of patients and health professionals (eg, asthma action plans). This project aims to explore how user-centered design and a wiki platform can support the adaptation of an existing DA for CPR to the local context. Objective The primary objective is to use an existing DA about CPR to create a wiki-based DA that is adapted to the context of a single ICU and tailorable to individual patient’s risk factors while employing user-centered design. The secondary objective is to document the use of a wiki platform for the adaptation of patient DAs. Methods This study will be conducted in a mixed surgical and medical ICU at Hôtel-Dieu de Lévis, Quebec, Canada. We plan to involve all 5 intensivists and recruit at least 20 alert and oriented patients admitted to the ICU and their family members if available. In the first phase of this study, we will observe 3 weeks of daily interactions between patients, families, intensivists, and other allied health professionals. We will specifically observe 5 dyads of

  4. Design and application of an inertial impactor in combination with an ATP bioluminescence detector for in situ rapid estimation of the efficacies of air controlling devices on removal of bioaerosols.

    PubMed

    Yoon, Ki Young; Park, Chul Woo; Byeon, Jeong Hoon; Hwang, Jungho

    2010-03-01

    We proposed a rapid method to estimate the efficacies of air controlling devices in situ using ATP bioluminescence in combination with an inertial impactor. The inertial impactor was designed to have 1 mum of cutoff diameter, and its performance was estimated analytically, numerically, and experimentally. The proposed method was characterized using Staphylococcus epidermidis, which was aerosolized with a nebulizer. The bioaerosol concentrations were estimated within 25 min using the proposed method without a culturing process, which requires several days for colony formation. A linear relationship was obtained between the results of the proposed ATP method (RLU/m(3)) and the conventional culture-based method (CFU/m(3)), with R(2) 0.9283. The proposed method was applied to estimate the concentration of indoor bioaerosols, which were identified as a mixture of various microbial species including bacteria, fungi, and actinomycetes, in an occupational indoor environment, controlled by mechanical ventilation and an air cleaner. Consequently, the proposed method showed a linearity with the culture-based method for indoor bioaerosols with R(2) 0.8189, even though various kinds of microorganisms existed in the indoor air. The proposed method may be effective in monitoring the changes of relative concentration of indoor bioaerosols and estimating the effectiveness of air control devices in indoor environments.

  5. Design, implementation and evaluation of a training programme for school teachers in the use of malaria rapid diagnostic tests as part of a basic first aid kit in southern Malawi.

    PubMed

    Witek-McManus, Stefan; Mathanga, Don P; Verney, Allison; Mtali, Austin; Ali, Doreen; Sande, John; Mwenda, Reuben; Ndau, Saidi; Mazinga, Charles; Phondiwa, Emmanuel; Chimuna, Tiyese; Melody, David; Roschnik, Natalie; Brooker, Simon J; Halliday, Katherine E

    2015-09-17

    With increasing levels of enrolment, primary schools present a pragmatic opportunity to improve the access of school children to timely diagnosis and treatment of malaria, increasingly recognised as a major health problem within this age group. The expanded use of malaria rapid diagnostic tests (RDTs) and artemisinin combination therapy (ACT) by community health workers (CHWs) has raised the prospect of whether teachers can provide similar services for school children. We describe and evaluate the training of primary school teachers to use a first aid kit containing malaria RDTs and ACT for the diagnosis and treament of uncomplicated malaria in school children in southern Malawi. We outline the development of the intervention as: (1) conception and design, (2) pilot training, (3) final training, and (4) 7-month follow up. The training materials were piloted at a four-day workshop in July 2013 following their design at national stakeholders meetings. The evaluation of the pilot training and materials were assessed in relation to increased knowledge and skill sets using checklist evaluations and questionnaires, the results of which informed the design of a final seven-day training programme held in December 2013. A follow up of trained teachers was carried out in July 2014 following 7 months of routine implementation. A total of 15 teachers were evaluated at four stages: pilot training, two weeks following pilot, final training and seven months following final training. A total of 15 and 92 teachers were trained at the pilot and final training respectively. An average of 93 % of the total steps required to use RDTs were completed correctly at the final training, declining to 87 % after 7 months. All teachers were observed correctly undertaking safe blood collection and handling, accurate RDT interpretation, and correct dispensing of ACT. The most commonly observed errors were a failure to wait 20 minutes before reading the test result, and adding an incorrect volume

  6. Rapidly solidified materials, 1985

    SciTech Connect

    Lee, P.W.; Carbonara, R.S.

    1985-01-01

    This book presents the papers given at a conference on phase transformations in metals. Topics considered at the conference included rapidly solidified titanium alloys, aging response of rapidly solidified titanium-tungsten alloys, silicon diffusion in amorphous alloys, crystalline transformation, structural relaxation, crystallization, surface oxidation, metallic glasses, magnetic properties, calorimetry, microscopy, nucleation, texture formation, austenitic steels, elevated temperature ductility loss, precipitation in a rapidly solidified alloy, energy savings through the use of amorphous steels in distribution transformers, and a review of the uses of rapidly quenched materials by the major industrial groups.

  7. Evolution of rapid nerve conduction.

    PubMed

    Castelfranco, Ann M; Hartline, Daniel K

    2016-06-15

    Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution. Copyright © 2016. Published by Elsevier B.V.

  8. Design and baseline data of a randomized trial to evaluate coverage and frequency of mass treatment with azithromycin: the Partnership for Rapid Elimination of Trachoma (PRET) in Tanzania and The Gambia.

    PubMed

    Stare, Dianne; Harding-Esch, Emma; Munoz, Beatriz; Bailey, Robin; Mabey, David; Holland, Martin; Gaydos, Charlotte; West, Sheila

    2011-02-01

    Trachoma is the principal cause of infectious blindness. As part of its strategy to eliminate trachoma, the World Health Organization recommends annual mass antibiotic treatment for at least 3 years with an 80% population coverage target. However, to date, ideal population coverage and mass treatment duration have not been determined and further evaluation of treatment recommendations in areas of varying endemicity is warranted. The studies presented here evaluate the impact of coverage level and frequency of mass treatment with single dose azithromycin on trachoma and ocular C. trachomatis infection. The Partnership for the Rapid Elimination of Trachoma supervises 2 randomized, community-based clinical trials in Tanzania and The Gambia. Although each trial is a stand-alone effort, protocols, data collection, and analytic approaches have been harmonized to permit generalizations. Communities in each site were randomized using a 2X2 factorial design to standard (80%-90.0%) versus high (over 90.0%) treatment coverage; communities were further randomized to annual treatment for 3 years versus a "graduation" rule where evidence indicates an absence of follicular trachoma or infection and annual treatment is halted. Average prevalence of follicular trachoma in children age less than 5 years was 32.2% in Tanzania and 5.96% in The Gambia. Randomization appeared to be effective, as prevalence was not statistically different between the arms within each country. There are challenges in harmonizing 2, large trials in Africa. Study outcomes will provide critical data to national trachoma control programs on treatment methodology and resource allocation toward elimination of the disease.

  9. Ambulance-delivered transdermal glyceryl trinitrate versus sham for ultra-acute stroke: Rationale, design and protocol for the Rapid Intervention with Glyceryl trinitrate in Hypertensive stroke Trial-2 (RIGHT-2) trial (ISRCTN26986053).

    PubMed

    Appleton, Jason P; Scutt, Polly; Dixon, Mark; Howard, Harriet; Haywood, Lee; Havard, Diane; Hepburn, Trish; England, Tim; Sprigg, Nikola; Woodhouse, Lisa J; Wardlaw, Joanna M; Montgomery, Alan A; Pocock, Stuart; Bath, Philip M

    2017-01-01

    Rationale Vascular nitric oxide levels are low in acute stroke and donors such as glyceryl trinitrate have shown promise when administered very early after stroke. Potential mechanisms of action include augmentation of cerebral reperfusion, thrombolysis and thrombectomy, lowering blood pressure, and cytoprotection. Aim To test the safety and efficacy of four days of transdermal glyceryl trinitrate (5 mg/day) versus sham in patients with ultra-acute presumed stroke who are recruited by paramedics prior to hospital presentation. Sample size estimates The sample size of 850 patients will allow a shift in the modified Rankin Scale with odds ratio 0.70 (glyceryl trinitrate versus sham, ordinal logistic regression) to be detected with 90% power at 5% significance (two-sided). Design The Rapid Intervention with Glyceryl trinitrate in Hypertensive stroke Trial-2 (RIGHT-2) is a multicentre UK prospective randomized sham-controlled outcome-blinded parallel-group trial in 850 patients with ultra-acute (≤4 h of onset) FAST-positive presumed stroke and systolic blood pressure ≥120 mmHg who present to the ambulance service following a 999 emergency call. Data collection is performed via a secure internet site with real-time data validation. Study outcomes The primary outcome is the modified Rankin Scale measured centrally by telephone at 90 days and masked to treatment. Secondary outcomes include: blood pressure, impairment, recurrence, dysphagia, neuroimaging markers of the acute lesion including vessel patency, discharge disposition, length of stay, death, cognition, quality of life, and mood. Neuroimaging and serious adverse events are adjudicated blinded to treatment. Discussion RIGHT-2 has recruited more than 500 participants from seven UK ambulance services. Status Trial is ongoing. Funding British Heart Foundation. Registration ISRCTN26986053.

  10. Rapid and simultaneous determination of twenty amino acids in complex biological and food samples by solid-phase microextraction and gas chromatography-mass spectrometry with the aid of experimental design after ethyl chloroformate derivatization.

    PubMed

    Mudiam, Mohana Krishna Reddy; Ratnasekhar, Ch; Jain, Rajeev; Saxena, Prem Narain; Chauhan, Abhishek; Murthy, R C

    2012-10-15

    Amino acids play a vital role as intermediates in many important metabolic pathways such as the biosynthesis of nucleotides, vitamins and secondary metabolites. A sensitive and rapid analytical method has been proposed for the first time for the simultaneous determination of twenty amino acids using solid-phase microextraction (SPME). The protein samples were hydrolyzed by 6M HCl under microwave radiation for 120 min. Then the amino acids were derivatized by ethyl chloroformate (ECF) and the ethoxy carbonyl ethyl esters of amino acids formed were extracted using SPME by direct immersion. Finally the extracted analytes on the SPME fiber were desorbed at 260°C and analyzed by gas chromatography-mass spectrometer (GC-MS) in electron ionization mode. Factors which affect the SPME efficiency were screened by Plackett-Burmann design; most significant factors were optimized with response surface methodology. The optimum conditions for SPME are as follows: pH of 1.7, ionic strength of 733 mg, extraction time of 30 min and fiber of divinyl benzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS). The recovery of all the amino acids was found to be in the range of 89.17-100.98%. The limit of detection (LOD) of all derivatized amino acids in urine, hair and soybean was found to be in the range of 0.20-7.52 μg L(-1), 0.21-8.40 μg L(-1) and 0.18-5.62 μg L(-1), respectively. Finally, the proposed technique was successfully applied for the determination of amino acids in complex biological (hair, urine) and food samples (soybean). The method can find wide applications in the routine analysis of amino acids in any biological as well as food samples.

  11. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  12. Rapid improvement teams.

    PubMed

    Alemi, F; Moore, S; Headrick, L; Neuhauser, D; Hekelman, F; Kizys, N

    1998-03-01

    Suggestions, most of which are supported by empirical studies, are provided on how total quality management (TQM) teams can be used to bring about faster organizationwide improvements. Ideas are offered on how to identify the right problem, have rapid meetings, plan rapidly, collect data rapidly, and make rapid whole-system changes. Suggestions for identifying the right problem include (1) postpone benchmarking when problems are obvious, (2) define the problem in terms of customer experience so as not to blame employees nor embed a solution in the problem statement, (3) communicate with the rest of the organization from the start, (4) state the problem from different perspectives, and (5) break large problems into smaller units. Suggestions for having rapid meetings include (1) choose a nonparticipating facilitator to expedite meetings, (2) meet with each team member before the team meeting, (3) postpone evaluation of ideas, and (4) rethink conclusions of a meeting before acting on them. Suggestions for rapid planning include reducing time spent on flowcharting by focusing on the future, not the present. Suggestions for rapid data collection include (1) sample patients for surveys, (2) rely on numerical estimates by process owners, and (3) plan for rapid data collection. Suggestions for rapid organizationwide implementation include (1) change membership on cross-functional teams, (2) get outside perspectives, (3) use unfolding storyboards, and (4) go beyond self-interest to motivate lasting change in the organization. Additional empirical investigations of time saved as a consequence of the strategies provided are needed. If organizations solve their problems rapidly, fewer unresolved problems may remain.

  13. Rapidly Progressive Dementia

    PubMed Central

    Geschwind, Michael D.; Shu, Huidy; Haman, Aissa; Sejvar, James J.; Miller, Bruce L.

    2009-01-01

    In contrast with more common dementing conditions that typically develop over years, rapidly progressive dementias can develop subacutely over months, weeks, or even days and be quickly fatal. Because many rapidly progressive dementias are treatable, it is paramount to evaluate and diagnose these patients quickly. This review summarizes recent advances in the understanding of the major categories of RPD and outlines efficient approaches to the diagnosis of the various neurodegenerative, toxic-metabolic, infectious, autoimmune, neoplastic, and other conditions that may progress rapidly. PMID:18668637

  14. Rapidly progressive Alzheimer disease.

    PubMed

    Schmidt, Christian; Wolff, Martin; Weitz, Michael; Bartlau, Thomas; Korth, Carsten; Zerr, Inga

    2011-09-01

    Different rates of progression have been observed among patients with Alzheimer disease. Risk factors that accelerate deterioration have been identified and some are being discussed, such as genetics, comorbidity, and the early appearance of Alzheimer disease motor signs. Progressive forms of Alzheimer disease have been reported with rapid cognitive decline and disease duration of only a few years. This short review aims to provide an overview of the current knowledge of rapidly progressive Alzheimer disease. Furthermore, we suggest that rapid, in this context, should be defined as a Mini-Mental State Examination score decrease of 6 points per year.

  15. Hydropower RAPID Toolkit

    SciTech Connect

    2016-12-01

    This fact sheet provides a brief overview of the U.S. Department of Energy (DOE) Hydropower Regulatory and Permitting Information Desktop (RAPID) Toolkit including its capabilities, features, and benefits.

  16. ISS-RapidScat

    NASA Image and Video Library

    2014-01-22

    Artist rendering of NASA ISS-RapidScat instrument inset, which will launch to the International Space Station in 2014 to measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring.

  17. Deconstruction Rapid Assessment Tool

    EPA Pesticide Factsheets

    Deconstruction Rapid Assessment Tool (EPA 905-F-15-001) instructions, form and spreadsheet for assessing and triaging structures being considered for deconstruction. Promote environmental stewardship and economic revitalization through deconstruction.

  18. Rapid prototyping of pulse oximeter.

    PubMed

    Jalan, P; Bracio, B R; Rider, P J; Toniolo, H

    2006-01-01

    Measurement of oxygen saturation levels in blood is a vital activity during most medical treatments. A pulse oximeter is a device most commonly used to perform this measurement. It provides convenient, non-invasive and continuous monitoring of oxygen levels in a human body. However, it is often a tedious task to select the appropriate hardware and software components to manufacture a pulse oximeter that gives accurate results. This paper describes a student project, which had the goals to expose the student to this important technique of applying rapid prototyping methods to the design of a state of the art pulse oximeter.

  19. Rapid Active Sampling Package

    NASA Technical Reports Server (NTRS)

    Peters, Gregory

    2010-01-01

    A field-deployable, battery-powered Rapid Active Sampling Package (RASP), originally designed for sampling strong materials during lunar and planetary missions, shows strong utility for terrestrial geological use. The technology is proving to be simple and effective for sampling and processing materials of strength. Although this originally was intended for planetary and lunar applications, the RASP is very useful as a powered hand tool for geologists and the mining industry to quickly sample and process rocks in the field on Earth. The RASP allows geologists to surgically acquire samples of rock for later laboratory analysis. This tool, roughly the size of a wrench, allows the user to cut away swaths of weathering rinds, revealing pristine rock surfaces for observation and subsequent sampling with the same tool. RASPing deeper (.3.5 cm) exposes single rock strata in-situ. Where a geologist fs hammer can only expose unweathered layers of rock, the RASP can do the same, and then has the added ability to capture and process samples into powder with particle sizes less than 150 microns, making it easier for XRD/XRF (x-ray diffraction/x-ray fluorescence). The tool uses a rotating rasp bit (or two counter-rotating bits) that resides inside or above the catch container. The container has an open slot to allow the bit to extend outside the container and to allow cuttings to enter and be caught. When the slot and rasp bit are in contact with a substrate, the bit is plunged into it in a matter of seconds to reach pristine rock. A user in the field may sample a rock multiple times at multiple depths in minutes, instead of having to cut out huge, heavy rock samples for transport back to a lab for analysis. Because of the speed and accuracy of the RASP, hundreds of samples can be taken in one day. RASP-acquired samples are small and easily carried. A user can characterize more area in less time than by using conventional methods. The field-deployable RASP used a Ni

  20. Rapid Geophysical Surveyor. Final report

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2{1/2} in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques.

  1. Recent progress on FFAGS for rapid acceleration

    SciTech Connect

    C. Johnstone; S. Koscielniak

    2002-12-10

    Muon acceleration is one of the more difficult stages to develop for a Neutrino Factory or Muon Collider. The large transverse and longitudinal admittances which must be designed into the system and the rapidity with which acceleration must take place because of muon decay preclude the use of conventional synchrotron design. The approach here employs fixed-field architectures for muon acceleration; specifically, a fixed-field alternating gradient or FFAG accelerator. This paper explores the FFAG option, in particular addressing an adjustment in the rf phase which, although characteristic of fixed-field machines, becomes problematic in the context of rapid acceleration.

  2. RAPID REMOVAL OF A GROUNDWATER CONTAMINANT PLUME.

    USGS Publications Warehouse

    Lefkoff, L. Jeff; Gorelick, Steven M.; ,

    1985-01-01

    A groundwater management model is used to design an aquifer restoration system that removes a contaminant plume from a hypothetical aquifer in four years. The design model utilizes groundwater flow simulation and mathematical optimization. Optimal pumping and injection strategies achieve rapid restoration for a minimum total pumping cost. Rapid restoration is accomplished by maintaining specified groundwater velocities around the plume perimeter towards a group of pumping wells located near the plume center. The model does not account for hydrodynamic dispersion. Results show that pumping costs are particularly sensitive to injection capacity. An 8 percent decrease in the maximum allowable injection rate may lead to a 29 percent increase in total pumping costs.

  3. Rapid road repair vehicle

    SciTech Connect

    Mara, L.M.

    1999-09-07

    Disclosed are improvements to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  4. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  5. Rapid Cycling and Its Treatment

    MedlinePlus

    ... may be rapid, ultra-rapid or ultradian cycling. Biological rhythm disturbances: This theory proposes that people with rapid cycling have daily biological rhythms that are out of sync with typical “ ...

  6. Rapid Prototyping of Composite Structures

    NASA Technical Reports Server (NTRS)

    Colton, Jonathan S.

    1998-01-01

    This progress report for the project Rapid Production of Composite Structures covers the period from July 14, 1997 to June 30, 1998. It will present a short overview of the project, followed by the results to date and plans for the future. The goal of this research is to provide a minimum 100x reduction in the time required to produce arbitrary, laminated products without the need for a separate mold or an autoclave. It will accomplish this by developing the science underlying the rapid production of composite structures, specifically those of carbon fiber-epoxy materials. This scientific understanding will be reduced to practice in a demonstration device that will produce a part on the order of 12" by 12" by 6". Work in the past year has focussed on developing an understanding of the materials issues and of the machine design issues. Our initial goal was to use UV cureable resins to accomplish full cure on the machine. Therefore, we have centered our materials work around whether or not UV cureable resins will work. Currently, the answer seems to be that they will not work, because UV light cannot penetrate the carbon fibers, and because no "shadow" curing seems to occur. As a result, non-UV cureable resins are being investigated. This has resulted in a change in the machine design focus. We are now looking into a "dip and place" machine design, whereby a prepreg layer would have one side coated with a curing agent, and then would be placed onto the previous layer. This would lead to cure at the interface, but not to the top of the layer. The formulation of the resins to accomplish this task at room or slightly elevated temperatures is being investigated, as is the machine design needed to apply the curing agent and then cure or partially cure the part. A final, out-of-autoclave, post-cure may be needed with this strategy, as final cure on the machine may not be possible, as it was for the initial UV cure strategy. The remainder of this report details the progress

  7. Navigate the Digital Rapids

    ERIC Educational Resources Information Center

    Lindsay, Julie; Davis, Vicki

    2010-01-01

    How can teachers teach digital citizenship when the digital landscape is changing so rapidly? How can teachers teach proper online social interactions when the students are outside their classroom and thus outside their control? Will encouraging students to engage in global collaborative environments land teachers in hot water? These are the…

  8. Rapid Prototyping Reconsidered

    ERIC Educational Resources Information Center

    Desrosier, James

    2011-01-01

    Continuing educators need additional strategies for developing new programming that can both reduce the time to market and lower the cost of development. Rapid prototyping, a time-compression technique adapted from the high technology industry, represents one such strategy that merits renewed evaluation. Although in higher education rapid…

  9. Rapid Prototyping in PVS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Butler, Ricky (Technical Monitor)

    2003-01-01

    PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.

  10. AFRPL Rapid Indexing System.

    ERIC Educational Resources Information Center

    Beltran, Alfred A.

    A modified Keyword Out of Context (KWOC) system was developed to gain rapid control over more than 8,000 scattered, unindexed documents. This was the first step in providing the technical information support required by Air Force Rocket Propulsion Laboratory scientists and engineers. Implementation of the KWOC system, computer routines, and…

  11. Rapid response deluge system

    NASA Astrophysics Data System (ADS)

    Mille, J. R.

    1984-08-01

    The development of a rapid response deluge system by the Ammunition Equipment Directorate (AED) for use in suppressing propellant fires during demilitarization shows great promise. Prototype systems have been tested and data acquired on their efficiencies. Present system vs previous generations and lessons learned are discussed.

  12. Rapid Prototyping Reconsidered

    ERIC Educational Resources Information Center

    Desrosier, James

    2011-01-01

    Continuing educators need additional strategies for developing new programming that can both reduce the time to market and lower the cost of development. Rapid prototyping, a time-compression technique adapted from the high technology industry, represents one such strategy that merits renewed evaluation. Although in higher education rapid…

  13. AFRPL Rapid Indexing System.

    ERIC Educational Resources Information Center

    Beltran, Alfred A.

    A modified Keyword Out of Context (KWOC) system was developed to gain rapid control over more than 8,000 scattered, unindexed documents. This was the first step in providing the technical information support required by Air Force Rocket Propulsion Laboratory scientists and engineers. Implementation of the KWOC system, computer routines, and…

  14. IFSAR for the Rapid Terrain Visualization Demonstration

    SciTech Connect

    BURNS,BRYAN L.; EICHEL,PAUL H.; HENSLEY JR.,WILLIAM H.; KIM,THEODORE J.

    2000-10-31

    The Rapid Terrain Visualization Advanced Concept Technology Demonstration (RTV-ACTD) is designed to demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies. The primary sensor for this mission is an interferometric synthetic aperture radar (IFSAR) designed at Sandia National Laboratories. This paper will outline the design of the system and its performance, and show some recent flight test results. The RTV IFSAR will meet DTED level III and IV specifications by using a multiple-baseline design and high-accuracy differential and carrier-phase GPS navigation. It includes innovative near-real-time DEM production on-board the aircraft. The system is being flown on a deHavilland DHC-7 Army aircraft.

  15. Rapid Prototyping of Composite Structures

    NASA Technical Reports Server (NTRS)

    Colton, Jonathan S.

    1998-01-01

    This final report for the project Rapid Production of Composite Structures covers the period from July 14, 1997 to September 30, 1998. It will present a short overview of the project, followed by the results to date and plans for the future. The goal of this research is to provide a minimum 100x reduction in the time required to produce arbitrary, laminated products without the need for a separate mold or an autoclave. It will accomplish this by developing the science underlying the rapid production of composite structures, specifically those of carbon fiber-epoxy materials. This scientific understanding will be reduced to practice in a demonstration device that will produce a part on the order of 12in. by 12in. by 6in. Work in the past year has focussed on developing an understanding of the materials issues and of the machine design issues. Our initial goal was to use UV cureable resins to accomplish full cure on the machine. Therefore, we have centered our materials work around whether or not UV cureable resins will work. Currently, the answer seems to be that they will not work, because UV light cannot penetrate the carbon fibers, and because no "shadow" curing seems to occur. As a result, non-UV cureable resins are being investigated. This has resulted in a change in the machine design focus. We are now looking into a "dip and place" machine design, whereby a prepreg layer would have one side coated with a curing agent, and then would be placed onto the previous layer. This would lead to cure at the interface, but not to the top of the layer. The formulation of the resins to accomplish this task at room or slightly elevated temperatures is being investigated, as is the machine design needed to apply the curing agent and then cure or partially cure the part. A final, out-of-autoclave, post-cure may be needed with this strategy, as final cure on the machine may not be possible, as it was for the initial UV cure strategy. The remainder of this report details the

  16. Rapid Prototyping of Composite Structures

    NASA Technical Reports Server (NTRS)

    Colton, Jonathan S.

    1998-01-01

    This final report for the project Rapid Production of Composite Structures covers the period from July 14, 1997 to September 30, 1998. It will present a short overview of the project, followed by the results to date and plans for the future. The goal of this research is to provide a minimum 100x reduction in the time required to produce arbitrary, laminated products without the need for a separate mold or an autoclave. It will accomplish this by developing the science underlying the rapid production of composite structures, specifically those of carbon fiber-epoxy materials. This scientific understanding will be reduced to practice in a demonstration device that will produce a part on the order of 12in. by 12in. by 6in. Work in the past year has focussed on developing an understanding of the materials issues and of the machine design issues. Our initial goal was to use UV cureable resins to accomplish full cure on the machine. Therefore, we have centered our materials work around whether or not UV cureable resins will work. Currently, the answer seems to be that they will not work, because UV light cannot penetrate the carbon fibers, and because no "shadow" curing seems to occur. As a result, non-UV cureable resins are being investigated. This has resulted in a change in the machine design focus. We are now looking into a "dip and place" machine design, whereby a prepreg layer would have one side coated with a curing agent, and then would be placed onto the previous layer. This would lead to cure at the interface, but not to the top of the layer. The formulation of the resins to accomplish this task at room or slightly elevated temperatures is being investigated, as is the machine design needed to apply the curing agent and then cure or partially cure the part. A final, out-of-autoclave, post-cure may be needed with this strategy, as final cure on the machine may not be possible, as it was for the initial UV cure strategy. The remainder of this report details the

  17. Utilizing Rapid Prototyping for Architectural Modeling

    ERIC Educational Resources Information Center

    Kirton, E. F.; Lavoie, S. D.

    2006-01-01

    This paper will discuss our approach to, success with and future direction in rapid prototyping for architectural modeling. The premise that this emerging technology has broad and exciting applications in the building design and construction industry will be supported by visual and physical evidence. This evidence will be presented in the form of…

  18. A Rapid and Quantitative Recombinase Activity Assay

    USDA-ARS?s Scientific Manuscript database

    We present here a comparison between the recombinase systems FLP-FRT and Cre-loxP. A transient excision based dual luciferase expression assay is used for its rapid and repeatable nature. The detection system was designed within an intron to remove the remaining recombinase recognition site and no...

  19. Utilizing Rapid Prototyping for Architectural Modeling

    ERIC Educational Resources Information Center

    Kirton, E. F.; Lavoie, S. D.

    2006-01-01

    This paper will discuss our approach to, success with and future direction in rapid prototyping for architectural modeling. The premise that this emerging technology has broad and exciting applications in the building design and construction industry will be supported by visual and physical evidence. This evidence will be presented in the form of…

  20. Classroom Evaluation of a Rapid Prototyping System.

    ERIC Educational Resources Information Center

    Tennyson, Stephen A.; Krueger, Thomas J.

    2001-01-01

    Introduces rapid prototyping which creates virtual models through a variety of automated material additive processes. Relates experiences using JP System 5 in freshman and sophomore engineering design graphics courses. Analyzes strengths and limitations of the JP System 5 and discusses how to use it effectively. (Contains 15 references.)…

  1. Rapid wetting dynamics

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Bellani, Gabriele; Amberg, Gustav

    2010-11-01

    Contact lines between solids and liquid or gas interfaces appear in very many instances of fluid flows. This could be coffee stains, water-oil mixtures in oil recovery, hydrophobic feet of insects or leaves in nature. In the present work we elucidate some of the wetting physics governing the very rapid wetting. Experimental and numerical results of spontaneously spreading droplets are presented, where focus is directed towards understanding the very rapid flow regime and highly dynamic initial wetting phase, where the contact line speed is limited by dissipative processes on a molecular scale occurring at the contact line. In particular we show the influence of the surface wettability and the liquid viscosity on the spreading dynamics, such as the contact line motion and dynamic contact angle in time.

  2. Rapid climate change

    SciTech Connect

    Morantine, M.C.

    1995-12-31

    Interactions between insolation changes due to orbital parameter variations, carbon dioxide concentration variations, the rate of deep water formation in the North Atlantic and the evolution of the northern hemisphere ice sheets during the most recent glacial cycle will be investigated. In order to investigate this period, a climate model is being developed to evaluate the physical mechanisms thought to be most significant during this period. The description of the model sub-components will be presented. The more one knows about the interactions between the sub-components of the climate system during periods of documented rapid climate change, the better equipped one will be to make rational decisions on issues related to impacts on the environment. This will be an effort to gauge the feedback processes thought to be instrumental in rapid climate shifts documented in the past, and their potential to influence the current climate. 53 refs.

  3. Rapid road repair vehicle

    DOEpatents

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  4. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  5. Rapid Detection of Pathogens

    SciTech Connect

    David Perlin

    2005-08-14

    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleic acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development

  6. Rapidly refuelable fuel cell

    DOEpatents

    Joy, R.W.

    1982-09-20

    A rapidly refuelable dual cell of an electrochemical type is described wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  7. Rapid Runway Repair Study.

    DTIC Science & Technology

    This report describes a series of tests to evaluate a system for rapidly repairing airfield pavement using polymer concrete (synthetic polymer plus...aggregate), thermally cured by microwave power. The technique, developed by the Syracuse University Research Corporation (SURC) for highway...maintenance, uses a truck-mounted 50-kilowatt microwave generator to irradiate areas patched with polymer concrete . Test results indicate that the polymer

  8. Rapid frequency scan EPR.

    PubMed

    Tseitlin, Mark; Rinard, George A; Quine, Richard W; Eaton, Sandra S; Eaton, Gareth R

    2011-08-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x, y plane decays to baseline at the end of the scan, which typically is about 5T(2) after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5T(2). However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5T(2), even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B(1), periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation.

  9. Rapidly Progressive Dementia

    PubMed Central

    Geschwind, Michael D.

    2016-01-01

    Purpose of Review This article presents a practical and informative approach to the evaluation of a patient with a rapidly progressive dementia (RPD). Recent Findings Prion diseases are the prototypical causes of RPD, but reversible causes of RPD might mimic prion disease and should always be considered in a differential diagnosis. Aside from prion diseases, the most common causes of RPD are atypical presentations of other neurodegenerative disorders, curable disorders including autoimmune encephalopathies, as well as some infections, and neoplasms. Numerous recent case reports suggest dural arterial venous fistulas sometimes cause RPDs. Summary RPDs, in which patients typically develop dementia over weeks to months, require an alternative differential than the slowly progressive dementias that occur over a few years. Because of their rapid decline, patients with RPDs necessitate urgent evaluation and often require an extensive workup, typically with multiple tests being sent or performed concurrently. Jakob-Creutzfeldt disease, perhaps the prototypical RPD, is often the first diagnosis many neurologists consider when treating a patient with rapid cognitive decline. Many conditions other than prion disease, however, including numerous reversible or curable conditions, can present as an RPD. This chapter discusses some of the major etiologies for RPDs and offers an algorithm for diagnosis. PMID:27042906

  10. Rapid Frequency Scan EPR

    PubMed Central

    Tseitlin, Mark; Rinard, George A.; Quine, Richard W.; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    In rapid frequency scan EPR with triangular scans, sufficient time must be allowed to insure that the magnetization in the x,y plane decays to baseline at the end of the scan, which typically is about 5 T2 after the spins are excited. To permit relaxation of signals excited toward the extremes of the scan the total scan time required may be much longer than 5 T2. However, with periodic, saw-tooth excitation, the slow-scan EPR spectrum can be recovered by Fourier deconvolution of data recorded with a total scan period of 5 T2, even if some spins are excited later in the scan. This scan time is similar to polyphase excitation methods. The peak power required for either polyphase excitation or rapid frequency scans is substantially smaller than for pulsed EPR. The use of an arbitrary waveform generator (AWG) and cross loop resonator facilitated implementation of the rapid frequency scan experiments reported here. The use of constant continuous low B1, periodic excitation waveform, and constant external magnetic field is similar to polyphase excitation, but could be implemented without the AWG that is required for polyphase excitation. PMID:21664848

  11. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  12. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  13. Rapid Target Locator

    NASA Astrophysics Data System (ADS)

    Bisbee, John

    1985-12-01

    Like beauty, "real time" is in the eye of the beholder. Airborne electro-optical (EO) reconnaissance systems can transmit an image in real time to a display in an imagery interpreter's (II) console, but it then takes around 15 min for the II to issue his report. Thus, while the II sees real-time imagery, the officer in the field who requested the coverage sees a report that is not real time and that may be rapidly losing its value. The greatest delay in issuing the report comes from having to determine where the target is. This is currently done on the Analytical Photogrammetric Positioning System (APPS) that uses stereophotomaps to determine the x, y, z coordinates of a point on the ground; it takes many minutes to measure the position of each target. Our goal is to reduce that portion of the recce cycle that uses Itek technology--from time over target to issuance of a report--to less than 2 min. A still shorter time would be desirable in the face of rapidly moving targets,, but there is little point in making the time negligible compared to that required for Oil to evaluate the report and issue orders, plus the time required to respond to the orders. It is clear that we can achieve this 2-min goal only if we can greatly reduce the time it now takes to determine the location of a target. The accuracy with which a target is located should not suffer while the time is reduced. There is a tradeoff to be made between timeliness and accuracy when the target is moving: neither short time with poor accuracy nor high accuracy with long time is desirable. We have arbitrarily adopted goals in which a target can be located to about 100 ft in less than half a minute. The experiments reported here investigated one concept, called Rapid Target Locator (RATL), for achieving this performance.

  14. Rapid Response Manufacturing (RRM). Final CRADA report

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1997-08-28

    A major accomplishment of the Rapid Response Manufacturing (RRM) project was the development of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined part products. Key components of the framework are a manufacturing model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering working environment, knowledge-based software systems for design, process planning, and manufacturing and new production technologies for making products directly from design application software.

  15. Preliminary Component Integration Utilizing Rapid Prototyping Techniques

    NASA Technical Reports Server (NTRS)

    Cooper, K.; Salvail, P.

    2001-01-01

    One of the most costly errors committed during the development of an element to be used in the space industry is the lack of communication between design and manufacturing engineers. A very important tool that should be utilized in the development stages by both design and manufacturing disciplines is rapid prototyping. Communication levels are intensified with the injection of functional models that are generated from a drawing. At the Marshall Space Flight Center, this discipline is utilized on a more frequent basis as a manner by which hardware may be tested for design and material compatibility.

  16. Models of Rapid Solidification

    NASA Technical Reports Server (NTRS)

    Gilmer, G. H.; Broughton, J. Q.

    1984-01-01

    Laser annealing studies provide much information on various consequences of rapid solidification, including the trapping of impurities in the crystal, the generation of vacancies and twins, and on the fundamental limits to the speed of the crystal-melt interface. Some results obtained by molecular dynamics methods of the solidification of a Lennard-Jones liquid are reviewed. An indication of the relationship of interface speed to undercooling for certain materials can be derived from this model. Ising model simulations of impurity trapping in silicon are compared with some of the laser annealing results. The consequences of interface segregation and atomic strain are discussed.

  17. Models of Rapid Solidification

    NASA Technical Reports Server (NTRS)

    Gilmer, G. H.; Broughton, J. Q.

    1984-01-01

    Laser annealing studies provide much information on various consequences of rapid solidification, including the trapping of impurities in the crystal, the generation of vacancies and twins, and on the fundamental limits to the speed of the crystal-melt interface. Some results obtained by molecular dynamics methods of the solidification of a Lennard-Jones liquid are reviewed. An indication of the relationship of interface speed to undercooling for certain materials can be derived from this model. Ising model simulations of impurity trapping in silicon are compared with some of the laser annealing results. The consequences of interface segregation and atomic strain are discussed.

  18. FFAGS for rapid acceleration

    SciTech Connect

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  19. Rapid prototype and test

    SciTech Connect

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  20. REM. Rapid Eye Mount

    SciTech Connect

    Molinari, E.; Vergani, S.D.; Zerbi, F. M.; Covino, S.; Chincarini, G.

    2004-09-28

    REM is a robotic fast moving telescope designed to immediately point and observe in optical and IR the GRBs detected by satellites. Its immediate data gathering capabilities and its accurate astrometry will issue early alerts for the VLT.

  1. REM. Rapid Eye Mount

    NASA Astrophysics Data System (ADS)

    Molinari, E.; Vergani, S. D.; Zerbi, F. M.; Covino, S.; Chincarini, G.

    2004-09-01

    REM is a robotic fast moving telescope designed to immediately point and observe in optical and IR the GRBs detected by satellites. Its immediate data gathering capabilities and its accurate astrometry will issue early alerts for the VLT.

  2. A Corrosion Control Manual for Rail Rapid Transit

    NASA Technical Reports Server (NTRS)

    Gilbert, L. O.; Fitzgerald, J. H., III; Menke, J. T.; Lizak, R. M. (Editor)

    1982-01-01

    This manual addresses corrosion problems in the design, contruction, and maintenance of rapid transit systems. Design and maintenance solutions are provided for each problem covered. The scope encompasses all facilities of urban rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. The types of corrosion and their causes as well as rapid transit properties are described. Corrosion control committees, and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual are listed. A bibliography of papers and excerpts of reports is provided and a glossary of frequently used terms is included.

  3. Rapid Decisions From Experience

    PubMed Central

    Zeigenfuse, Matthew D.; Pleskac, Timothy J.; Liu, Taosheng

    2014-01-01

    In many everyday decisions, people quickly integrate noisy samples of information to form a preference among alternatives that offer uncertain rewards. Here, we investigated this decision process using the Flash Gambling Task (FGT), in which participants made a series of choices between a certain payoff and an uncertain alternative that produced a normal distribution of payoffs. For each choice, participants experienced the distribution of payoffs via rapid samples updated every 50 ms. We show that people can make these rapid decisions from experience and that the decision process is consistent with a sequential sampling process. Results also reveal a dissociation between these preferential decisions and equivalent perceptual decisions where participants had to determine which alternatives contained more dots on average. To account for this dissociation, we developed a sequential sampling rank-dependent utility model, which showed that participants in the FGT attended more to larger potential payoffs than participants in the perceptual task despite being given equivalent information. We discuss the implications of these findings in terms of computational models of preferential choice and a more complete understanding of experience-based decision making. PMID:24549141

  4. Advances in rapid prototyping

    NASA Astrophysics Data System (ADS)

    Atwood, C. L.; McCarty, G. D.; Pardo, B. T.; Bryce, E. A.

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System's QuickCast(trademark) resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast(trademark) resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. They use the selective laser sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  5. The Rapid Burster

    NASA Image and Video Library

    2017-01-31

    These four images show an artist's impression of gas accreting onto the neutron star in the binary system MXB 1730-335, also known as the "Rapid Burster." In such a binary system, the gravitational pull of the dense neutron star is stripping gas away from its stellar companion (a low-mass star, not shown in these images). The gas forms an accretion disk and spirals towards the neutron star. Observations of the Rapid Burster using three X-ray space telescopes -- NASA's NuSTAR and Swift, and ESA's XMM-Newton -- have revealed what happens around the neutron star before and during a so-called "type-II" burst. These bursts are sudden, erratic and extremely intense releases of X-rays that liberate enormous amounts of energy during periods when very little emission occurs otherwise. Before the burst, the fast-spinning magnetic field of the neutron star keeps the gas flowing from the companion star at bay, preventing it from reaching closer to the neutron star and effectively creating an inner edge at the center of the disk (Figure 1, panel 1). During this phase, only small amounts of gas leak towards the neutron star. However, as the gas continues to flow and accumulate near this edge, it spins faster and faster. http://photojournal.jpl.nasa.gov/catalog/PIA21418

  6. Randomized comparison of ticagrelor versus prasugrel in patients with acute coronary syndrome and planned invasive strategy--design and rationale of the iNtracoronary Stenting and Antithrombotic Regimen: Rapid Early Action for Coronary Treatment (ISAR-REACT) 5 trial.

    PubMed

    Schulz, Stefanie; Angiolillo, Dominick J; Antoniucci, David; Bernlochner, Isabell; Hamm, Christian; Jaitner, Juliane; Laugwitz, Karl-Ludwig; Mayer, Katharina; von Merzljak, Barbara; Morath, Tanja; Neumann, Franz-Josef; Richardt, Gert; Ruf, Judith; Schömig, Gisela; Schühlen, Helmut; Schunkert, Heribert; Kastrati, Adnan

    2014-02-01

    In acute coronary syndromes (ACS), a dual antiplatelet regimen with an adenosine diphosphate (ADP) receptor antagonist plus aspirin has become the cornerstone of treatment. The third-generation thienopyridine prasugrel and the cyclopentyl-triazolo-pyrimidine ticagrelor provide a greater, more rapid and consistent platelet inhibition compared to their predecessor clopidogrel. Based on their advantages over clopidogrel in two landmark studies, both drugs received a class I recommendation for their use in ACS patients with and without ST segment elevation. Due to differences in ACS populations and conditions investigated, the relative merits of ticagrelor versus prasugrel in the treatment of ACS patients with planned invasive strategy cannot be reliably estimated from independent trials. To date, no direct head-to-head comparison of ticagrelor and prasugrel in terms of clinical outcome exists. The aim of this multicenter, randomized, open-label trial is to assess whether ticagrelor is superior to prasugrel in ACS patients with planned invasive strategy.

  7. Aerodynamics inside a rapid compression machine

    SciTech Connect

    Mittal, Gaurav; Sung, Chih-Jen

    2006-04-15

    The aerodynamics inside a rapid compression machine after the end of compression is investigated using planar laser-induced fluorescence (PLIF) of acetone. To study the effect of reaction chamber configuration on the resulting aerodynamics and temperature field, experiments are conducted and compared using a creviced piston and a flat piston under varying conditions. Results show that the flat piston design leads to significant mixing of the cold vortex with the hot core region, which causes alternate hot and cold regions inside the combustion chamber. At higher pressures, the effect of the vortex is reduced. The creviced piston head configuration is demonstrated to result in drastic reduction of the effect of the vortex. Experimental conditions are also simulated using the Star-CD computational fluid dynamics package. Computed results closely match with experimental observation. Numerical results indicate that with a flat piston design, gas velocity after compression is very high and the core region shrinks quickly due to rapid entrainment of cold gases. Whereas, for a creviced piston head design, gas velocity after compression is significantly lower and the core region remains unaffected for a long duration. As a consequence, for the flat piston, adiabatic core assumption can significantly overpredict the maximum temperature after the end of compression. For the creviced piston, the adiabatic core assumption is found to be valid even up to 100 ms after compression. This work therefore experimentally and numerically substantiates the importance of piston head design for achieving a homogeneous core region inside a rapid compression machine. (author)

  8. Diet for rapid weight loss

    MedlinePlus

    ... diet; VLCD; Low-calorie diet; LCD; Very low energy diet; Weight loss - rapid weight loss; Overweight - rapid ... AM, Aveyard P. Clinical effectiveness of very-low-energy diets in the management of weight loss: a ...

  9. RAVE: Rapid Visualization Environment

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Anderson, Kevin; Simoudis, Avangelos

    1994-01-01

    Visualization is used in the process of analyzing large, multidimensional data sets. However, the selection and creation of visualizations that are appropriate for the characteristics of a particular data set and the satisfaction of the analyst's goals is difficult. The process consists of three tasks that are performed iteratively: generate, test, and refine. The performance of these tasks requires the utilization of several types of domain knowledge that data analysts do not often have. Existing visualization systems and frameworks do not adequately support the performance of these tasks. In this paper we present the RApid Visualization Environment (RAVE), a knowledge-based system that interfaces with commercial visualization frameworks and assists a data analyst in quickly and easily generating, testing, and refining visualizations. RAVE was used for the visualization of in situ measurement data captured by spacecraft.

  10. Solid state rapid thermocycling

    DOEpatents

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  11. Rapid Prototyping Roadmapping

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth G.

    1998-01-01

    Roadmapping has long been thought of as a process for getting from point A to point B within a single discipline. Roadmapping for Rapid Prototyping has multiple paths of which we will diagram in this meeting. When you consider the dynamic change that the computer has made in both developing as well as manufacturing products, we could only assume that further electronic medium matched with mechanical inventions will continue. This industry roadmap is intended to point and lead us to the promised manufacturing land. We hope to reduce the inherent risk associated with technology development by providing a clear goal of mapping to a manufacturing process. The work of DoE in 1994 was excellent and began a journey that would benefit the decision makers and allow for choices that would be good investment decisions. While this work included government agencies, this map is broader and includes industry and academia input.

  12. Rapid diagnosis of sepsis

    PubMed Central

    Bloos, Frank; Reinhart, Konrad

    2014-01-01

    Fast and appropriate therapy is the cornerstone in the therapy of sepsis. However, the discrimination of sepsis from non-infectious causes of inflammation may be difficult. Biomarkers have been suggested to aid physicians in this decision. There is currently no biochemical technique available which alone allows a rapid and reliable discrimination between sepsis and non-infectious inflammation. Procalcitonin (PCT) is currently the most investigated biomarker for this purpose. C-reactive protein and interleukin 6 perform inferior to PCT in most studies and their value in diagnosing sepsis is not defined. All biomarkers including PCT are also released after various non-infectious inflammatory impacts. This shortcoming needs to be taken into account when biomarkers are used to aid the physician in the diagnosis of sepsis. Polymerase chain reaction (PCR) based pathogen detection may improve time to adequate therapy but cannot rule out the presence of infection when negative. PMID:24335467

  13. Rapid Polymer Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor (Inventor); Brock, Mathew W. (Inventor)

    2011-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal or transverse direction at the tip, a polymer sequence is passed through the tip, and a change in an electrical current signal is measured as each polymer component passes through the tip. Each measured change in electrical current signals is compared with a database of reference signals, with each reference signal identified with a polymer component, to identify the unknown polymer component. The tip preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  14. Rapid Prototyping Methodology in Action: A Developmental Study.

    ERIC Educational Resources Information Center

    Jones, Toni Stokes; Richey, Rita C.

    2000-01-01

    Investigated the use of rapid prototyping methodologies in two projects conducted in a natural work setting to determine the nature of its use by designers and customers and the extent to which its use enhances traditional instructional design. Discusses design and development cycle-time reduction, product quality, and customer and designer…

  15. Library reuse in a rapid development environment

    NASA Technical Reports Server (NTRS)

    Uhde, JO; Weed, Daniel; Gottlieb, Robert; Neal, Douglas

    1995-01-01

    The Aeroscience and Flight Mechanics Division (AFMD) established a Rapid Development Laboratory (RDL) to investigate and improve new 'rapid development' software production processes and refine the use of commercial, off-the-shelf (COTS) tools. These tools and processes take an avionics design project from initial inception through high fidelity, real-time, hardware-in-the-loop (HIL) testing. One central theme of a rapid development process is the use and integration of a variety of COTS tools: This paper discusses the RDL MATRIX(sub x)(R) libraries, as well as the techniques for managing and documenting these libraries. This paper also shows the methods used for building simulations with the Advanced Simulation Development System (ASDS) libraries, and provides metrics to illustrate the amount of reuse for five complete simulations. Combining ASDS libraries with MATRIX(sub x)(R) libraries is discussed.

  16. Library reuse in a rapid development environment

    NASA Technical Reports Server (NTRS)

    Uhde, JO; Weed, Daniel; Gottlieb, Robert; Neal, Douglas

    1995-01-01

    The Aeroscience and Flight Mechanics Division (AFMD) established a Rapid Development Laboratory (RDL) to investigate and improve new 'rapid development' software production processes and refine the use of commercial, off-the-shelf (COTS) tools. These tools and processes take an avionics design project from initial inception through high fidelity, real-time, hardware-in-the-loop (HIL) testing. One central theme of a rapid development process is the use and integration of a variety of COTS tools: This paper discusses the RDL MATRIX(sub x)(R) libraries, as well as the techniques for managing and documenting these libraries. This paper also shows the methods used for building simulations with the Advanced Simulation Development System (ASDS) libraries, and provides metrics to illustrate the amount of reuse for five complete simulations. Combining ASDS libraries with MATRIX(sub x)(R) libraries is discussed.

  17. Library reuse in a rapid development environment

    SciTech Connect

    Uhde, J.; Weed, D.; Gottlieb, R.; Neal, D.

    1995-09-01

    The Aeroscience and Flight Mechanics Division (AFMD) established a Rapid Development Laboratory (RDL) to investigate and improve new `rapid development` software production processes and refine the use of commercial, off-the-shelf (COTS) tools. These tools and processes take an avionics design project from initial inception through high fidelity, real-time, hardware-in-the-loop (HIL) testing. One central theme of a rapid development process is the use and integration of a variety of COTS tools: This paper discusses the RDL MATRIX(sub x)(R) libraries, as well as the techniques for managing and documenting these libraries. This paper also shows the methods used for building simulations with the Advanced Simulation Development System (ASDS) libraries, and provides metrics to illustrate the amount of reuse for five complete simulations. Combining ASDS libraries with MATRIX(sub x)(R) libraries is discussed.

  18. Rapidly solidified ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Craciunescu, C. M.; Ercuta, A.; Mitelea, I.; Valeanu, M.; Teodorescu, V. S.; Lupu, N.; Chiriac, H.

    2008-05-01

    Ferromagnetic shape memory alloys have been manufactured by various techniques involving rapid solidification. Bulk alloys have been obtained by extracting the melted alloy in especially designed copper molds; glass coated wires have been obtained by drawing the melt from glass recipients followed by water cooling and ribbons have been fabricated by melt-spinning. Microstructural observations show particular solidification aspects of fractured areas, while ferromagnetic behavior has been detected in glass coated wires obtained by rapid solidification. The martensitic microstructure was observed on Co-Ni-Ga rapid solidified bulk alloys and Fe-Pd ribbons. The memory effect was detected using a Vibran system that allows the detection of the phase transition for the ribbons and by visual observation for other specimens. The conclusions of the observations are related to the comparison between the ferromagnetic behaviors of shape memory alloys solidified using different techniques.

  19. The rapid transient surveyor

    NASA Astrophysics Data System (ADS)

    Baranec, C.; Lu, J. R.; Wright, S. A.; Tonry, J.; Tully, R. B.; Szapudi, I.; Takamiya, M.; Hunter, L.; Riddle, R.; Chen, S.; Chun, M.

    2016-07-01

    The Rapid Transient Surveyor (RTS) is a proposed rapid-response, high-cadence adaptive optics (AO) facility for the UH 2.2-m telescope on Maunakea. RTS will uniquely address the need for high-acuity and sensitive near-infrared spectral follow-up observations of tens of thousands of objects in mere months by combining an excellent observing site, unmatched robotic observational efficiency, and an AO system that significantly increases both sensitivity and spatial resolving power. We will initially use RTS to obtain the infrared spectra of 4,000 Type Ia supernovae identified by the Asteroid Terrestrial-Impact Last Alert System over a two year period that will be crucial to precisely measuring distances and mapping the distribution of dark matter in the z < 0.1 universe. RTS will comprise an upgraded version of the Robo-AO laser AO system and will respond quickly to target-of-opportunity events, minimizing the time between discovery and characterization. RTS will acquire simultaneous-multicolor images with an acuity of 0.07-0.10" across the entire visible spectrum (20% i'-band Strehl in median conditions) and <0.16" in the near infrared, and will detect companions at 0.5" at contrast ratio of 500. The system will include a high-efficiency prism integral field unit spectrograph: R = 70-140 over a total bandpass of 840-1830nm with an 8.7" by 6.0" field of view (0.15" spaxels). The AO correction boosts the infrared point-source sensitivity of the spectrograph against the sky background by a factor of seven for faint targets, giving the UH 2.2-m the H-band sensitivity of a 5.7-m telescope without AO.

  20. Advances in rapid prototyping

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  1. Rapid Response Skills Training

    ERIC Educational Resources Information Center

    Kelley-Winders, Anna Faye

    2008-01-01

    Mississippi Gulf Coast Community College's (MGCCC) long-term commitment to providing workforce training in a post-Katrina environment became a catalyst for designing short-term flexible educational opportunities. Providing nationally recognized skills training for the recovery/rebuilding of communities challenged the college to develop innovative,…

  2. Rapid Response Skills Training

    ERIC Educational Resources Information Center

    Kelley-Winders, Anna Faye

    2008-01-01

    Mississippi Gulf Coast Community College's (MGCCC) long-term commitment to providing workforce training in a post-Katrina environment became a catalyst for designing short-term flexible educational opportunities. Providing nationally recognized skills training for the recovery/rebuilding of communities challenged the college to develop innovative,…

  3. A rapid, precise, reciprocating-movement color filter system

    NASA Technical Reports Server (NTRS)

    Phillipps, P. G.; Epstein, P.; Donovan, G.; Lawhite, E.

    1972-01-01

    Unit was designed for moving color filters in and out of position in less than 46 ms. System may be used to record previously derived colors on photorecorder or to scan different color or wavelength components of rapidly passing scene, as in aerial reconnaissance. Rapid, precise reciprocating movement may be useful in purely mechanical and chemical applications.

  4. 75 FR 13668 - Amendment of Class E Airspace; Cedar Rapids, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... airspace designated as surface areas to accommodate SIAPs at The Eastern Iowa Airport, Cedar Rapids, IA... airspace designated as surface areas. * * * * * ACE IA E2 Cedar Rapids, IA Cedar Rapids, The Eastern Iowa... Class E airspace area is effective during specific dates and times established in advance by a Notice to...

  5. Rapid detection of bacteria in foods and biological fluids

    NASA Technical Reports Server (NTRS)

    Fealey, R. D.; Renner, W.

    1973-01-01

    Simple and inexpensive apparatus, called "redox monitoring cell," rapidly detects presence of bacteria. Bacteria is detected by measuring drop in oxygen content in test solution. Apparatus consists of vial with two specially designed electrodes connected to sensitive voltmeter.

  6. Open architecture for rapid deployment of capability

    NASA Astrophysics Data System (ADS)

    Glassman, Jacob

    2016-05-01

    Modern warfare has drastically changed from conventional to non-conventional and from fixed threats to dynamic ones over the past several decades. This unprecedented fundamental shift has now made our adversaries and their weapons more nebulous and ever changing. Our current acquisition system however is not suited to develop, test and deploy essential capability to counter these dynamic threats in time to combat them. This environment requires a new infrastructure in our system design to rapidly adopt capabilities that we do not currently plan for or even know about. The key to enabling this rapid implementation is Open Architecture in acquisition. The DoD has shown it can rapidly prototype capabilities such as unmanned vehicles but has severely struggled in moving from the prototyping to deployment. A major driver of this disconnect is the lack of established infrastructure to employ said capability such as launch and recovery systems and command and control. If we are to be successful in transitioning our rapid capability to the warfighter we must implement established well defined interfaces and enabling technologies to facilitate the rapid adoption of capability so the warfighter has the tools to effectively counter the threat.

  7. Robust formulation for the design of tissue engineering scaffolds: A comprehensive study on structural anisotropy, viscoelasticity and degradation of 3D scaffolds fabricated with customized desktop robot based rapid prototyping (DRBRP) system.

    PubMed

    Hoque, M Enamul

    2017-03-01

    This study investigates the scaffolds' structural anisotropy (i.e. the effect of loading direction), viscoelasticity (i.e. the effect of cross head speed or strain rate), and the influence of simulated physiological environment (PBS solution at 37°C) on the mechanical properties. Besides, the in vitro degradation study has also been performed that evaluates the effect of variation in material and lay-down pattern on the scaffolds' degradation kinetics in terms of mass loss, and change in morphological and mechanical properties. Porous three dimensional (3D) scaffolds of polycarprolactone (PCL) and polycarprolactone-polyethylene glycol (PCL-PEG) were developed by laying down the microfilaments directionally layer-by-layer using an in-house built computer-controlled extrusion and deposition process, called desktop robot based rapid prototyping (DRBRP) system. The loading direction, strain rate and physiological environment directly influenced the mechanical properties of the scaffolds. In vitro degradation study demonstrated that both PCL and PCL-PEG scaffolds realized homogeneous hydrolytic degradation via surface erosion resulting in a consistent and predictable mass loss. The linear mass loss caused uniform and linear increase in porosity that accordingly led to the decrease in mechanical properties. The synthetic polymer had the potential to modulate hydrophilicity and/or degradability and consequently, the biomechanical properties of the scaffolds by varying the polymer constituents.

  8. The Rapid Transient Surveyor

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Tonry, John; Wright, Shelley; Tully, R. Brent; Lu, Jessica R.; Takamiya, Marianne Y.; Hunter, Lisa

    2016-01-01

    The next decade of astronomy will be dominated by large area surveys (see the detailed discussion in the Astro-2010 Decadal survey and NRC's recent OIR System Report). Ground-based optical transient surveys, e.g., LSST, ZTF and ATLAS and space-based exoplanet, supernova, and lensing surveys such as TESS and WFIRST will join the Gaia all-sky astrometric survey in producing a flood of data that will enable leaps in our understanding of the universe. There is a critical need for further characterization of these discoveries through high angular resolution images, deeper images, spectra, or observations at different cadences or periods than the main surveys. Such follow-up characterization must be well matched to the particular surveys, and requires sufficient additional observing resources and time to cover the extensive number of targets.We describe plans for the Rapid Transient Surveyor (RTS), a permanently mounted, rapid-response, high-cadence facility for follow-up characterization of transient objects on the U. of Hawai'i 2.2-m telescope on Maunakea. RTS will comprise an improved robotic laser adaptive optics system, based on the prototype Robo-AO system (formerly at the Palomar 1.5-m and now at the Kitt Peak 2.2-m telescope), with simultaneous visible and near-infrared imagers as well as a near-infrared integral field spectrograph (R~100, λ = 850 - 1830 nm, 0.15″ spaxels, 8.7″×6.0″ FoV). RTS will achieve an acuity of ~0.07″ in visible wavelengths and < 0.16″ in the near infrared leading to an increase of the infrared point-source sensitivity against the sky background by a factor of ~9, crucial for efficient near-infrared spectroscopy.RTS will allow us to map the dark matter distribution in the z < 0.1 local universe with ten times better accuracy and precision than previous experiments. ATLAS will discover several thousand SNIae per year, measuring SNIa peak brightness, and decline rates, while RTS will measure reddening by dust, confirm SN type and

  9. Building a rapid response team.

    PubMed

    Halvorsen, Lisa; Garolis, Salomeja; Wallace-Scroggs, Allyson; Stenstrom, Judy; Maunder, Richard

    2007-01-01

    The use of rapid response teams is a relatively new approach for decreasing or eliminating codes in acute care hospitals. Based on the principles of a code team for cardiac and/or respiratory arrest in non-critical care units, the rapid response teams have specially trained nursing, respiratory, and medical personnel to respond to calls from general care units to assess and manage decompensating or rapidly changing patients before their conditions escalate to a full code situation. This article describes the processes used to develop a rapid response team, clinical indicators for triggering a rapid response team call, topics addressed in an educational program for the rapid response team members, and methods for evaluating effectiveness of the rapid response team.

  10. QEPAS detector for rapid spectral measurements

    NASA Astrophysics Data System (ADS)

    Kosterev, A. A.; Buerki, P. R.; Dong, L.; Reed, M.; Day, T.; Tittel, F. K.

    2010-07-01

    A quartz enhanced photoacoustic spectroscopy sensor designed for fast response was used in combination with a pulsed external cavity quantum cascade laser to rapidly acquire gas absorption data over the 1196-1281 cm-1 spectral range. The system was used to measure concentrations of water vapor, pentafluoroethane (freon-125), acetone, and ethanol both individually and in combined mixtures. The precision achieved for freon-125 concentration in a single 1.1 s long spectral scan is 13 ppbv.

  11. Rapid Polymer Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  12. Rapid diagnosis in serology.

    PubMed

    García-Bermejo, Isabel; de Ory, Fernando

    2017-04-01

    Serological diagnosis of acute phase infections implies the detection of IgM specific response, an effective marker of primary infection, but with less clinical significance in reactivations or reinfections. The aim of this article is to provide an updated view of the rapid diagnosis in serology by detecting the IgM isotype and reviewing its applications and limitations. Point-of-care (PoC) tests are analyzed. PoC tests are used in geographical areas where traditional tests are not available, as well as in other circumstances where their use brings the diagnosis directly to the target population. Likewise, their use reduces the response time between taking the sample and the diagnosis, making it easier to make clinical decisions. PoC assays have proven cost-effective, especially in preventing vertical transmission of syphilis and HIV infection. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  13. Problems of rapid growth.

    PubMed

    Kim, T D

    1980-01-01

    South Korea's export-oriented development strategy has achieved a remarkable growth record, but it has also brought 2 different problems: 1) since the country's exports accounted for about 1% of total world export volume, the 1st world has become fearful about Korea's aggressive export drive; and 2) the fact that exports account for over 30% of its total gross national product (GNP) exposes the vulnerability of South Korea's economy itself. South Korea continues to be a poor nation, although it is rated as 1 of the most rapidly growing middle income economies. A World Bank 1978 report shows Korea to be 28th of 58 middle income countries in terms of per capita GNP in 1976. Of 11 newly industrializing countries (NIC), 5 in the European continent are more advanced than the others. A recent emphasis on the basic human needs approach has tended to downgrade the concept of GNP. Korea has only an abundant labor force and is without any natural resources. Consequently, Korea utilized an export-oriented development strategy. Oil requirements are met with imports, and almost all raw materials to be processed into exportable products must be imported. To pay import bills Korea must export and earn foreign exchange. It must be emphasized that foreign trade must always be 2-way traffic. In order to export more to middle income countries like Korea, the countries of the 1st world need to ease their protectionist measures against imports from developing countries.

  14. Rapid Evaporation of microbubbles

    NASA Astrophysics Data System (ADS)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  15. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus).

    PubMed

    Imandi, Sarat Babu; Karanam, Sita Kumari; Garapati, Hanumantha Rao

    2013-01-01

    Mustard oil cake (Brassica napus), the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF) using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds) was observed with the substrate of mustard oil cake in four days of fermentation.

  16. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus)

    PubMed Central

    Imandi, Sarat Babu; Karanam, Sita Kumari; Garapati, Hanumantha Rao

    2013-01-01

    Mustard oil cake (Brassica napus), the residue obtained after extraction of mustard oil from mustard oil seeds, was investigated for the production of lipase under solid state fermentation (SSF) using the marine yeast Yarrowia lipolytica NCIM 3589. Process parameters such as incubation time, biomass concentration, initial moisture content, carbon source concentration and nitrogen source concentration of the medium were optimized. Screening of ten nitrogen and five carbon sources has been accomplished with the help of Plackett-Burman design. The highest lipase activity of 57.89 units per gram of dry fermented substrate (U/gds) was observed with the substrate of mustard oil cake in four days of fermentation. PMID:24516460

  17. CMOS-controlled rapidly tunable photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Ray

    With rapidly increasing data bandwidth demands, wavelength-division-multiplexing (WDM) optical access networks seem unavoidable in the near future. To operate WDM optical networks in an efficient scheme, wavelength reconfigurability and scalability of the network are crucial. Unfortunately, most of the existing wavelength tunable technologies are neither rapidly tunable nor spectrally programmable. This dissertation presents a tunable photodetector that is designed for dynamic-wavelength allocation WDM network environments. The wavelength tuning mechanism is completely different from existing technologies. The spectrum of this detector is programmable through low-voltage digital patterns. Since the wavelength selection is achieved by electronic means, the device wavelength reconfiguration time is as fast as the electronic switching time. In this dissertation work, we have demonstrated a tunable detector that is hybridly integrated with its customized CMOS driver and receiver with nanosecond wavelength reconfiguration time. In addition to its nanosecond wavelength reconfiguration time, the spectrum of this detector is digitally programmable, which means that it can adapt to system changes without re-fabrication. We have theoretically developed and experimentally demonstrated two device operating algorithms based on the same orthogonal device-optics basis. Both the rapid wavelength tuning time and the scalability make this novel device very viable for new reconfigurable WDM networks. By taking advantage of CMOS circuit design, this detector concept can be further extended for simultaneous multiple wavelength detection. We have developed one possible chip architecture and have designed a CMOS tunable optical demux for simultaneous controllable two-wavelength detection.

  18. Rapid prototyping applications at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Atwood, C. L.; McCarty, G. D.; Pardo, B. T.; Bryce, E. A.

    In an effort to reduce the cycle time for producing prototypical mechanical and electro-mechanical components, Sandia National Laboratories has integrated rapid prototyping processes into the design and manufacturing process. The processes currently in operation within the Rapid Prototyping Laboratory are Stereolithography (SL), Selective Laser Sintering (SLS), and Direct Shell Production Casting (DSPC). These emerging technologies have proven to be valuable tools for reducing lead times and fabrication costs. Sandia uses the SL and SLS processes to support internal product development efforts. Their primary use is to fabricate patterns for investment casting in support of a Sandia-managed program called FASTCAST that integrates computational technologies and experimental data into the investment casting process. These processes are also used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. The DSPC process is currently being developed as a method of fabricating ceramic investment casting molds directly from a CAD solid model. Sandia is an Alpha machine test site for this process. This presentation will provide an overview of the SL and SLS processes and an update of our experience and success in integrating these technologies into the product development cycle. It will also provide a lead-in for a tour of the Rapid Prototyping Laboratory, where these processes will be demonstrated.

  19. Rapid prototyping applications at Sandia National Laboratories

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1994-02-01

    In an effort to reduce the cycle time for producing prototypical mechanical and electro-mechanical components, Sandia National Laboratories has integrated rapid prototyping processes into the design and manufacturing process. The processes currently in operation within the Rapid Prototyping Laboratory are Stereolithography (SL), Selective Laser Sintering (SLS), and Direct Shell Production Casting (DSPC). These emerging technologies have proven to be valuable tools for reducing lead times and fabrication costs. Sandia uses the SL and SLS processes to support internal product development efforts. Their primary use is to fabricate patterns for investment casting in support of a Sandia-managed program called FASTCAST that integrates computational technologies and experimental data into the investment casting process. These processes are also used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. The DSPC process is currently being developed as a method of fabricating ceramic investment casting molds directly from a CAD solid model. Sandia is an Alpha machine test site for this process. This presentation will provide an overview of the SL and SLS processes and an update of our experience and success in integrating these technologies into the product development cycle. It will also provide a lead-in for a tour of the Rapid Prototyping Laboratory, where these processes will be demonstrated.

  20. [Rapid-sequence anesthesia induction].

    PubMed

    Lloréns Herrerías, J

    2003-02-01

    Rapid-sequence induction (RSI) techniques are designed to reduce the risk of aspiration in cases where risk is high. ISR is often for surgery, particularly under emergency conditions, but is also found in procedures requiring emergency tracheal intubation inside and outside the hospital. ISR techniques have proven safe for reducing the risk of aspiration and providing good conditions for intubation in such situations. The great variety of clinical situations that can be involved means that the combination of drugs to be used should be individualized for each case. In addition to the two objectives of RSI named and the particular nature of a case, the risk of presenting unforeseen difficult intubation is yet another factor affecting choice of drugs. Precisely because of this last factor and the good results obtained with short-acting opiates, great interest has developed in recent years in RSI that does not use neuromuscular blocking agents. However, conclusive data are unavailable. Studies are often difficult to compare because of small differences in the combination of drugs, the dosing of one or more of them, the route of administration, or because the criteria used to define ideal intubation conditions are different.

  1. Rapid Optimization Library

    SciTech Connect

    Denis Rldzal, Drew Kouri

    2014-05-13

    ROL provides interfaces to and implementations of algorithms for gradient-based unconstrained and constrained optimization. ROL can be used to optimize the response of any client simulation code that evaluates scalar-valued response functions. If the client code can provide gradient information for the response function, ROL will take advantage of it, resulting in faster runtimes. ROL's interfaces are matrix-free, in other words ROL only uses evaluations of scalar-valued and vector-valued functions. ROL can be used to solve optimal design problems and inverse problems based on a variety of simulation software.

  2. Rapid Optimization Library

    SciTech Connect

    Denis Rldzal, Drew Kouri

    2014-05-13

    ROL provides interfaces to and implementations of algorithms for gradient-based unconstrained and constrained optimization. ROL can be used to optimize the response of any client simulation code that evaluates scalar-valued response functions. If the client code can provide gradient information for the response function, ROL will take advantage of it, resulting in faster runtimes. ROL's interfaces are matrix-free, in other words ROL only uses evaluations of scalar-valued and vector-valued functions. ROL can be used to solve optimal design problems and inverse problems based on a variety of simulation software.

  3. Dynamic NMR studies of ligand-receptor interactions: design and analysis of a rapidly exchanging complex of FKBP-12/FK506 with a 24 kDa calcineurin fragment.

    PubMed Central

    Fejzo, J.; Lepre, C. A.; Peng, J. W.; Su, M. S.; Thomson, J. A.; Moore, J. M.

    1996-01-01

    Dynamic NMR methods, such as differential line broadening and transferred NOE spectroscopy, are normally reserved for the study of small molecule ligand interactions with large protein receptors. Using a combination of isotope labeling and isotope edited NMR, we have extended these techniques to characterize interactions of a much larger protein/drug complex, FKBP-12/ FK506 with its receptor protein, calcineurin. In order to examine this multicomponent system by dynamic NMR methods, the 93 kDa, tightly bound FKBP-12/FK506/Cn complex was replaced with a lower affinity, rapidly exchanging system consisting of FKBP-12/FK506 (13 kDa), recombinant calcineurin subunit B (CnB) (20 kDa), and a synthetic peptide (4 kDa) corresponding to the B binding domain (BBD) of calcineurin catalytic subunit A (CnA). Analysis of 1H-13C HSQC data acquired for the FKBP-12/ 13C-FK506 and FKBP-12/13C-FK506/CnB/BBD complexes indicates that FKBP-12/FK506 and CnB/BBD are in fast exchange in the quaternary complex. Comparison of proton line widths shows significant broadening of resonances along the macrocycle backbone at 13-CH, 13-OMe, 15-OMe, 18-CH2, 20-CH, 21-CH, and 25-Me, as well as moderate broadening on the macrocycle backbone at 17-Me, 24-CH, and the pyranose 12-CH2 protons. The tri-substituted olefin and cyclohexyl groups also show moderate broadening at the 27-Me, 28-CH, and 30-CH2 positions, respectively. Unexpectedly, little line broadening was observed for the allyl resonances of FK506 in the quaternary complex, although 13C longitudinal relaxation measurements suggest this group also makes contacts with calcineurin. In addition, intermolecular transfer NOE peaks were observed for the allyl 37-CH2, 21-CH, 30-CH2, 13-OMe, 15-OMe, 17-Me, 25-Me, and 27-Me groups, indicating that these are potential sites on the FK506 molecule that interact with calcineurin. PMID:8880916

  4. RAPID: Collaborative Commanding and Monitoring of Lunar Assets

    NASA Technical Reports Server (NTRS)

    Torres, Recaredo J.; Mittman, David S.; Powell, Mark W.; Norris, Jeffrey S.; Joswig, Joseph C.; Crockett, Thomas M.; Abramyan, Lucy; Shams, Khawaja S.; Wallick, Michael; Allan, Mark; hide

    2011-01-01

    RAPID (Robot Application Programming Interface Delegate) software utilizes highly robust technology to facilitate commanding and monitoring of lunar assets. RAPID provides the ability for intercenter communication, since these assets are developed in multiple NASA centers. RAPID is targeted at the task of lunar operations; specifically, operations that deal with robotic assets, cranes, and astronaut spacesuits, often developed at different NASA centers. RAPID allows for a uniform way to command and monitor these assets. Commands can be issued to take images, and monitoring is done via telemetry data from the asset. There are two unique features to RAPID: First, it allows any operator from any NASA center to control any NASA lunar asset, regardless of location. Second, by abstracting the native language for specific assets to a common set of messages, an operator may control and monitor any NASA lunar asset by being trained only on the use of RAPID, rather than the specific asset. RAPID is easier to use and more powerful than its predecessor, the Astronaut Interface Device (AID). Utilizing the new robust middleware, DDS (Data Distribution System), developing in RAPID has increased significantly over the old middleware. The API is built upon the Java Eclipse Platform, which combined with DDS, provides platform-independent software architecture, simplifying development of RAPID components. As RAPID continues to evolve and new messages are being designed and implemented, operators for future lunar missions will have a rich environment for commanding and monitoring assets.

  5. Reconceiving ISD: Three Perspectives on Rapid Prototyping as a Paradigm Shift.

    ERIC Educational Resources Information Center

    Rathbun, Gail A.; And Others

    Confronting recent design challenges, instructional designers have latched onto adaptive procedural techniques from outside the Instructional Systems Design (ISD) field. This discussion of rapid prototyping (RP) examines the perspectives of: (1) the prototype as the designer"s cognitive tool; (2) the designer as co-inquirer; and (3) the…

  6. Rapid Statistical Methods: Part 1.

    ERIC Educational Resources Information Center

    Lyon, A. J.

    1980-01-01

    Discusses some rapid statistical methods which are intended for use by physics teachers. Part one of this article gives some of the simplest and most commonly useful rapid methods. Part two gives references to the relevant theory together with some alternative and additional methods. (HM)

  7. In-Space Rapid Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth G.

    1998-01-01

    In-space manufacturing objectives are: (1) Develop and demonstrate capability to directly fabricate components in space using rapid prototyping technology - ceramics (alumina, silicon nitride, zirconia), metallics (stainless, inconel, etc.), high strength/temperature plastics (PEEK). and ABS plastics (starting point). (2) Perform material science experiments on rapid prototyping candidate materials in microgravity.

  8. Towards Enhanced Affective Design: Rethinking the Notion of Design

    NASA Astrophysics Data System (ADS)

    Kim, SuKyoung; Cho, Youngil

    2017-09-01

    Design disciplines have been contributing to shaping the life of human beings, as well as fostering culture and heritage. Design disciplines and research have been rapidly transforming, and not only objects but also services are target of design. This paper reviews design disciplines towards enhanced affective design, which attributes to intuitive knowledge. It aims at rethinking the notion of design to propose a conceptual framework for integrating user experience into objects that strengthen the form and function based design with pleasing.

  9. Rapid DOTS expansion in India.

    PubMed Central

    Khatri, G. R.; Frieden, Thomas R.

    2002-01-01

    Since late 1998 the coverage of the DOTS strategy in India has been expanded rapidly. In both 2000 and 2001 the country probably accounted for more than half the global increase in the number of patients treated under DOTS and by early 2002 more than a million patients were being treated in this way in India. As a result, nearly 200 000 lives were saved. The lessons learnt relate to the importance of the following elements of the programme: (1) getting the science right and ensuring technical excellence; (2) building commitment and ensuring the provision of funds and flexibility in their utilization; (3) maintaining focus and priorities; (4) systematically appraising each area before starting service delivery; (5) ensuring an uninterrupted drug supply; (6) strengthening the established infrastructure and providing support for staff; (7) supporting the infrastructure required in urban areas; (8) ensuring full-time independent technical support and supervision, particularly during the initial phases of implementation; (9) monitoring intensively and giving timely feedback; and (10) continuous supervision. Tuberculosis (TB) control still faces major challenges in India. To reach its potential, the control programme needs to: continue to expand so as to cover the remaining half of the country, much of which has a weaker health infrastructure than the areas already covered; increase its reach in the areas already covered so that a greater proportion of patients is treated; ensure sustainability; improve the patient-friendliness of services; confront TB associated with human immunodeficiency virus (HIV) infection. It is expected that HIV will increase the number of TB cases by at least 10% and by a considerably higher percentage if HIV becomes much more widespread. India's experience shows that DOTS can achieve high case-detection and cure rates even with imperfect technology and often with an inadequate public health infrastructure. However, this can only happen if the

  10. Rapid Adenovirus typing method for species identification.

    PubMed

    Rayne, Fabienne; Wittkop, Linda; Bader, Clément; Kassab, Somar; Tumiotto, Camille; Berciaud, Sylvie; Wodrich, Harald; Lafon, Marie-Edith

    2017-11-01

    Adenoviruses are characterized by a large variability, reflected by their classification in species A to G. Certain species, eg A and C, could be associated with increased clinical severity, both in immunocompetent and immunocompromised hosts suggesting that in some instances species identification provides clinically relevant information. Here we designed a novel "pVI rapid typing method" to obtain quick, simple and cost effective species assignment for Adenoviruses, thanks to combined fusion temperature (Tm) and amplicon size analysis. Rapid typing results were compared to Sanger sequencing in the hexon gene for 140 Adenovirus-positive clinical samples included in the Typadeno study. Species A and C could be identified with a 100% positive predictive value, thus confirming the value of this simple typing method. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Relatively Inexpensive Rapid Prototyping of Small Parts

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    2003-01-01

    Parts with complex three-dimensional shapes and with dimensions up to 8 by 8 by 10 in. (20.3 by 20.3 by 25.4 cm) can be made as unitary pieces of a room-temperature-curing polymer, with relatively little investment in time and money, by a process now in use at Johnson Space Center. The process is one of a growing number of processes and techniques that are known collectively as the art of rapid prototyping. The main advantages of this process over other rapid-prototyping processes are greater speed and lower cost: There is no need to make paper drawings and take them to a shop for fabrication, and thus no need for the attendant paperwork and organizational delays. Instead, molds for desired parts are made automatically on a machine that is guided by data from a computer-aided design (CAD) system and can reside in an engineering office.

  12. Low Gravity Rapid Thermal Analysis of Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.

    2004-01-01

    It has been observed by two research groups that ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass crystallization is suppressed in microgravity. The mechanism for this phenomenon is unknown at the present time. In order to better understand the mechanism, an experiment was performed on NASA's KC135 reduced gravity aircraft to obtain quantitative crystallization data. An apparatus was designed and constructed for performing rapid thermal analysis of milligram quantities of ZBLAN glass. The apparatus employs an ellipsoidal furnace allowing for rapid heating and cooling. Using this apparatus nucleation and crystallization kinetic data was obtained leading to the construction of time-temperature-transformation curves for ZBLAN in microgravity and unit gravity.

  13. A Wire Crossed-Loop-Resonator for Rapid Scan EPR.

    PubMed

    Rinard, George A; Quine, Richard W; Biller, Joshua R; Eaton, Gareth R

    2010-04-09

    A crossed-loop (orthogonal mode) resonator (CLR) was constructed of fine wire to achieve design goals for rapid scan in vivo EPR imaging at VHF frequencies (in practice, near 250 MHz). This application requires the resonator to have a very open design to facilitate access to the animal for physiological support during the image acquisition. The rapid scan experiment uses large amplitude magnetic field scans, and sufficiently large resonator and detection bandwidths to record the rapidly-changing signal response. Rapid-scan EPR is sensitive to RF/microwave source noise and to baseline changes that are coherent with the field scan. The sensitivity to source noise is a primary incentive for using a CLR to isolate the detected signal from the RF source noise. Isolation from source noise of 44 and 47 dB was achieved in two resonator designs. Prior results showed that eddy currents contribute to background problems in rapid scan EPR, so the CLR design had to minimize conducting metal components. Using fine (AWG 38) wire for the resonators decreased eddy currents and lowered the resonator Q, thus providing larger resonator bandwidth. Mechanical resonances at specific scan frequencies are a major contributor to rapid scan backgrounds.

  14. Rapid Modeling and Analysis Tools: Evolution, Status, Needs and Directions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Stone, Thomas J.; Ransom, Jonathan B. (Technical Monitor)

    2002-01-01

    Advanced aerospace systems are becoming increasingly more complex, and customers are demanding lower cost, higher performance, and high reliability. Increased demands are placed on the design engineers to collaborate and integrate design needs and objectives early in the design process to minimize risks that may occur later in the design development stage. High performance systems require better understanding of system sensitivities much earlier in the design process to meet these goals. The knowledge, skills, intuition, and experience of an individual design engineer will need to be extended significantly for the next generation of aerospace system designs. Then a collaborative effort involving the designer, rapid and reliable analysis tools and virtual experts will result in advanced aerospace systems that are safe, reliable, and efficient. This paper discusses the evolution, status, needs and directions for rapid modeling and analysis tools for structural analysis. First, the evolution of computerized design and analysis tools is briefly described. Next, the status of representative design and analysis tools is described along with a brief statement on their functionality. Then technology advancements to achieve rapid modeling and analysis are identified. Finally, potential future directions including possible prototype configurations are proposed.

  15. Rapid thermal conditioning of sewage sludge

    NASA Astrophysics Data System (ADS)

    Zheng, Jianhong

    shows the fundamental importance of rapid processing. Rapid thermal conditioning may be incorporated into a wastewater treatment plant where biological treatment is used. For purposes of a concrete example, flow-sheets for the incorporation of the RTC process into the New York City Wards Island WPCP were prepared, and experimental data from the laboratory scale RTC test facility were used to set design parameters. A design incorporating nitrogen removal into the RTC flow sheet was also examined. ASPEN software was used to design the proposed processes and perform economic analyses. Cost estimates for these alternatives show a substantial advantage to implement RTC in comparison to present plant operation. About one third of the current sludge processing cost can be saved by incorporation of RTC into the Wards Island Plant. With nitrogen removal, the economics are even more attractive.

  16. A corrosion control manual for rail rapid transit

    NASA Technical Reports Server (NTRS)

    Gilbert, L. O.; Fitzgerald, J. F., II; Menke, J. T.

    1982-01-01

    In 1979, during the planning stage of the Metropolitan Dade County Transit System, the need was expressed for a corrosion control manual oriented to urban rapid transit system use. This manual responds to that need. The objective of the manual is to aid rail rapid transit agencies by providing practical solutions to selected corrosion problems. The scope of the manual encompasses corrosion problems of the facilities of rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. It also discusses stray electric current corrosion. Both design and maintenance solutions are provided for each problem. Also included are descriptions of the types of corrosion and their causes, descriptions of rapid transit properties, a list of corrosion control committees and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual. A bibliography of papers and excerpts of reports and a glossary of frequency used terms are provided.

  17. Rapid diagnostic tests for malaria.

    PubMed

    Visser, Theodoor; Daily, Jennifer; Hotte, Nora; Dolkart, Caitlin; Cunningham, Jane; Yadav, Prashant

    2015-12-01

    Maintaining quality, competitiveness and innovation in global health technology is a constant challenge for manufacturers, while affordability, access and equity are challenges for governments and international agencies. In this paper we discuss these issues with reference to rapid diagnostic tests for malaria. Strategies to control and eliminate malaria depend on early and accurate diagnosis. Rapid diagnostic tests for malaria require little training and equipment and can be performed by non-specialists in remote settings. Use of these tests has expanded significantly over the last few years, following recommendations to test all suspected malaria cases before treatment and the implementation of an evaluation programme to assess the performance of the malaria rapid diagnostic tests. Despite these gains, challenges exist that, if not addressed, could jeopardize the progress made to date. We discuss recent developments in rapid diagnostic tests for malaria, highlight some of the challenges and provide suggestions to address them.

  18. Rapidly Progressing Alzheimer's: Something Else?

    MedlinePlus

    ... Something else? My mother has been diagnosed with Alzheimer's disease, but she seems to be declining rapidly. Doesn' ... Answers from Jonathan Graff-Radford, M.D. Yes, Alzheimer's disease usually worsens slowly. But its speed of progression ...

  19. Rapidly solidified titanium alloys by melt overflow

    NASA Technical Reports Server (NTRS)

    Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III

    1989-01-01

    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  20. Rapid Application Development of a Self-Paced Pre-Service Teacher Technology Course.

    ERIC Educational Resources Information Center

    Lohr, Linda; Javeri, Manisha; Mahoney, Chris; Strongin, Dawn; Gall, James

    With technology changing rapidly, instruction on its use must change rapidly as well. Instructional designers are thus increasingly dependent on the use of rapid application development (RAD) procedures for producing timely instruction related to technology use. In recent years, the use of self-paced instruction in the educational environment has…

  1. Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

    NASA Astrophysics Data System (ADS)

    Trumbauer, Eric Michael

    This research develops automated, on-board trajectory planning algorithms in order to support current and new mission concepts. These include orbiter missions to Phobos or Deimos, Outer Planet Moon orbiters, and robotic and crewed missions to small bodies. The challenges stem from the limited on-board computing resources which restrict full trajectory optimization with guaranteed convergence in complex dynamical environments. The approach taken consists of leveraging pre-mission computations to create a large database of pre-computed orbits and arcs. Such a database is used to generate a discrete representation of the dynamics in the form of a directed graph, which acts to index these arcs. This allows the use of graph search algorithms on-board in order to provide good approximate solutions to the path planning problem. Coupled with robust differential correction and optimization techniques, this enables the determination of an efficient path between any boundary conditions with very little time and computing effort. Furthermore, the optimization methods developed here based on sequential convex programming are shown to have provable convergence properties, as well as generating feasible major iterates in case of a system interrupt -- a key requirement for on-board application. The outcome of this project is thus the development of an algorithmic framework which allows the deployment of this approach in a variety of specific mission contexts. Test cases related to missions of interest to NASA and JPL such as a Phobos orbiter and a Near Earth Asteroid interceptor are demonstrated, including the results of an implementation on the RAD750 flight processor. This method fills a gap in the toolbox being developed to create fully autonomous space exploration systems.

  2. Appendix C: Rapid development approaches for system engineering and design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Conventional system architectures, development processes, and tool environments often produce systems which exceed cost expectations and are obsolete before they are fielded. This paper explores some of the reasons for this and provides recommendations for how we can do better. These recommendations are based on DoD and NASA system developments and on our exploration and development of system/software engineering tools.

  3. Appendix B: Rapid development approaches for system engineering and design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Conventional processes often produce systems which are obsolete before they are fielded. This paper explores some of the reasons for this, and provides a vision of how we can do better. This vision is based on our explorations in improved processes and system/software engineering tools.

  4. The application of rapid prototyping technique in chin augmentation.

    PubMed

    Li, Min; Lin, Xin; Xu, Yongchen

    2010-04-01

    This article discusses the application of computer-aided design and rapid prototyping techniques in prosthetic chin augmentation for mild microgenia. Nine cases of mild microgenia underwent an electrobeam computer tomography scan. Then we performed three-dimensional reconstruction and operative design using computer software. According to the design, we determined the shape and size of the prostheses and made an individualized prosthesis for each chin augmentation with the rapid prototyping technique. With the application of computer-aided design and a rapid prototyping technique, we could determine the shape, size, and embedding location accurately. Prefabricating the individual prosthesis model is useful in improving the accuracy of treatment. In the nine cases of mild microgenia, three received a silicone implant, four received an ePTFE implant, and two received a Medpor implant. All patients were satisfied with the results. During follow-up at 6-12 months, all patients remained satisfied. The application of computer-aided design and rapid prototyping techniques can offer surgeons the ability to design an individualized ideal prosthesis for each patient.

  5. Rapidly Moving Divertor Plates In A Tokamak

    SciTech Connect

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  6. JPSS CGS Tools For Rapid Algorithm Updates

    NASA Astrophysics Data System (ADS)

    Smith, D. C.; Grant, K. D.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, JPSS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the ground processing component of both POES and the Defense Meteorological Satellite Program (DMSP) replacement known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS). Both are developed by Raytheon Intelligence and Information Systems (IIS). The Interface Data Processing Segment will process NPOESS Preparatory Project, Joint Polar Satellite System and Defense Weather Satellite System satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government. Under NPOESS, Northrop Grumman Aerospace Systems Algorithms and Data Products (A&DP) organization was responsible for the algorithms that produce the EDRs, including their quality aspects. For JPSS, that responsibility has transferred to NOAA's Center for Satellite Applications & Research (STAR). As the Calibration and Validation (Cal/Val) activities move forward following both the NPP launch and subsequent JPSS and DWSS launches, rapid algorithm updates may be required. Raytheon and

  7. Rapid Flow Analysis Studies with Spectroscopic Detectors.

    NASA Astrophysics Data System (ADS)

    Thalib, Amlius

    A rapid flow analysis study based on segmented flow and flow injection principles is described in this thesis. The main objective of this study was to establish the response characteristics in continuous flow analysis systems in order to improve sampling rates with several types of spectroscopic detectors. It was found from flame photometric studies that non-segmented flowing streams are applicable to rapid flow analysis with automatic sample aspiration. Calcium was used as a typical example and determined at sampling rates up to 360 h('-1) with a detection limit of 0.05 mg L(' -1). A rapid flow system is reported using direct aspiration for AAS analysis with both manual injection and automatic aspiration techniques, and found to give sampling rates of up to 600-720 samples h('-1). Speed of analysis was reduced by about 50% when using an external peristaltic pump in the flow system design, due to increased sample dispersion. A novel aspect of a rapid flow injection approach reported with ICPAES detection includes the method of injecting samples via a peristaltic pump with simultaneous computer data processing. Determination of serum cations (Na, K, Ca, Mg and Fe) was demonstrated as an example of an application of the technique at sampling rates of 240 h('-1). Precision and detection limits for 13 elements in a single standard solution are reported. The use of automated aspiration sampling is also reported in this method for comparison. Further studies on flow characteristics were carried out by a combination of the rapid flow system with very short sampling times as low as 2 seconds using UV-visible spectrophotometric detection. Analysis of human blood serum samples was used as an example where total protein and inorganic phosphate were determined at sampling rates of 240 h('-1) and 360 h('-1) respectively. The novel aspects of the results from these studies include the very rapid sample throughput developed with simple and inexpensive experimental approaches in

  8. Review, Selection and Installation of a Rapid Prototype Machine

    NASA Technical Reports Server (NTRS)

    McEndree, Caryl

    2008-01-01

    The objective of this paper is to impress upon the reader the benefits and advantages of investing in rapid prototyping (additive manufacturing) technology thru the procurement of one or two new rapid prototyping machines and the creation of a new Prototype and Model Lab at the Kennedy Space Center (KSC). This new resource will be available to all of United Space Alliance, LLC (USA), enabling engineers from around the company to pursue a more effective means of communication and design with our co-workers, and our customer, the National Aeronautics and Space Administration (NASA). The Rapid Protoyping/3D printing industry mirrors the transition the CAD industry made several years ago, when companies were trying to justify the expenditure of converting to a 3D based system from a 2D based system. The advantages of using a 3D system seemed to be outweighed by the cost it would take to convert not only legacy 2D drawings into 3D models but the training of personnel to use the 3D CAD software. But the reality was that when a 3D CAD system is employed, it gives engineers a much greater ability to conceive new designs and the ability to engineer new tools and products much more effectively. Rapid Prototyping (RP) is the name given to a host of related technologies that are used to fabricate physical objects directly from Computer Aided Design (CAD) data sources. These methods are generally similar to each other in that they add and bond materials in a layer wise-fashion to form objects, instead of machining away material. The machines used in Rapid Prototyping are also sometimes referred to as Rapid Manufacturing machines due to the fact that some of the parts fabricated in a RP machine can be used as the finished product. The name "Rapid Prototyping" is really a misnomer. It is much more than prototypes and it is not always rapid.

  9. Water Resources of Rapides Parish

    USGS Publications Warehouse

    Griffith, J.M.

    2009-01-01

    Rapides Parish, located in central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 443 million gallons per day (Mgal/d) were withdrawn from water sources in Rapides Parish. About 92 percent (409 Mgal/d) was withdrawn from surface water, and 8 percent (34 Mgal/d) was withdrawn from groundwater. Withdrawals for power generation accounted for 91 percent (403 Mgal/d) of the total water withdrawn. Withdrawals for other uses included public supply (27 Mgal/d), irrigation (9 Mgal/d), and aquaculture (3 Mgal/d). Water withdrawals in the parish generally increased from 1960 to 1995 and decreased from 1995 to 2005. This fact sheet summarizes basic information on the water resources of Rapides Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  10. An application generator for rapid prototyping of Ada real-time control software

    NASA Technical Reports Server (NTRS)

    Johnson, Jim; Biglari, Haik; Lehman, Larry

    1990-01-01

    The need to increase engineering productivity and decrease software life cycle costs in real-time system development establishes a motivation for a method of rapid prototyping. The design by iterative rapid prototyping technique is described. A tool which facilitates such a design methodology for the generation of embedded control software is described.

  11. Design thinking.

    PubMed

    Brown, Tim

    2008-06-01

    In the past, design has most often occurred fairly far downstream in the development process and has focused on making new products aesthetically attractive or enhancing brand perception through smart, evocative advertising. Today, as innovation's terrain expands to encompass human-centered processes and services as well as products, companies are asking designers to create ideas rather than to simply dress them up. Brown, the CEO and president of the innovation and design firm IDEO, is a leading proponent of design thinking--a method of meeting people's needs and desires in a technologically feasible and strategically viable way. In this article he offers several intriguing examples of the discipline at work. One involves a collaboration between frontline employees from health care provider Kaiser Permanente and Brown's firm to reengineer nursing-staff shift changes at four Kaiser hospitals. Close observation of actual shift changes, combined with brainstorming and rapid prototyping, produced new procedures and software that radically streamlined information exchange between shifts. The result was more time for nursing, better-informed patient care, and a happier nursing staff. Another involves the Japanese bicycle components manufacturer Shimano, which worked with IDEO to learn why 90% of American adults don't ride bikes. The interdisciplinary project team discovered that intimidating retail experiences, the complexity and cost of sophisticated bikes, and the danger of cycling on heavily trafficked roads had overshadowed people's happy memories of childhood biking. So the team created a brand concept--"Coasting"--to describe a whole new category of biking and developed new in-store retailing strategies, a public relations campaign to identify safe places to cycle, and a reference design to inspire designers at the companies that went on to manufacture Coasting bikes.

  12. Rapid manufacturing of aluminum components.

    PubMed

    Sercombe, T B; Schaffer, G B

    2003-08-29

    A manufacturing technique for the production of aluminum components is described. A resin-bonded part is formed by a rapid prototyping technique and then debound and infiltrated by a second aluminum alloy under a nitrogen atmosphere. During thermal processing, the aluminum reacts with the nitrogen and is partially transformed into a rigid aluminum nitride skeleton, which provides the structural rigidity during infiltration. The simplicity and rapidity of this process in comparison to conventional production routes, combined with the ability to fabricate complicated parts of almost any geometry and with high dimensional precision, provide an additional means to manufacture aluminum components.

  13. Rapid prototyping of clinical software assistants

    NASA Astrophysics Data System (ADS)

    Rexilius, Jan; Peitgen, Heinz-Otto

    2008-03-01

    Computer assistance in image-based diagnosis and therapy are continuously growing fields that have gained importance in several medical disciplines. Today, various free and commercial tools are available. However, only few are routinely applied in clinical practice. Especially tools that provide a flsupport of the whole design process from development and evaluation to the actual deployment in a clinical environment are missing. In this work, we introduce a categorization of the design process into different types and fields of application. To this end, we propose a novel framework that allows the development of software assistants that can be integrated into the design process of new algorithms and systems. We focus on the specific features of software prototypes that are valuable for engineers and clinicians, rather than on product development. An important aspect in this work is the categorization of the software design process into different components. Furthermore, we examine the interaction between these categories based on a new knowledge flow model. Finally, an encapsulation of these tasks within an application framework is proposed. We discuss general requirements and present a layered architecture. Several components for data- and workflow-management provide a generic functionality that can be customized on the developer and the user level. A flexible handling of is offered through the use of a visual programming and rapid prototyping platform. Currently, the framework is used in 15 software prototypes and as a basis of commercial products. More than 90 clinical partners all over the world work with these tools.

  14. Integration of rapid prototyping into product development

    SciTech Connect

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31

    Sandia National Laboratories is a vertically multi-disciplined research and development laboratory with a long history of designing and developing d electro-mechanical products in the national interest. Integrating new technologies into the prototyping phase of our development cycle is necessary to reduce the cycle time from initial design to finished product. The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with relative speed and production-like quality. Issues of accuracy, feature definition, and surface finish continue to drive research and development of these processes. Sandia uses Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal product development efforts. The primary use of SL and SLS is to produce patterns for investment casting in support of a Sandia managed program called FASTCAST that integrates computational technologies and experimental data into the investment casting process. These processes are also used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. This presentation will provide an overview of the SL and SLS processes and an update of our experience and success in integrating these technologies into the product development cycle. Also presented will be several examples of prototype parts manufactured using SL and SLS with a focus on application, accuracy, surface and feature definition.

  15. DEVELOPMENT OF THE PRIEST RAPIDS TURBINE UPGRADE PROJECT

    SciTech Connect

    DeBolt, Donald; Richmond, Marshall C.; Donelson, Richard K.; Strickler, Brad; Weisbeck, Molly

    2015-07-14

    The Priest Rapids Dam is located on the Columbia River and is operated by Public Utility District No. 2 of Grant County, WA (GCPUD). In operation since 1959, GCPUD decided that a major upgrade was necessary. As with other hydroelectric facilities on the Columbia River, improving fish passage at Priest Rapids Dam is of great importance for salmon and steelhead populations in the Pacific Northwest. Consequently, GCPUD established the Priest Rapids Turbine Upgrade Project to extend the life of the units, increase efficiency and power production, and improve fish-passage. The Priest Rapids powerhouse is equipped with 10 vertical Kaplan turbines with runner diameters of 7.21 m operating under net heads varying from 18 m to 27 m. The scope of the project included a design competition involving three turbine manufacturers providing up to two designs for evaluation. Selection of the replacement design was determined by the lowest evaluated price based on model test results conducted at an independent laboratory (Ecole Polytechnique Federale de Lausanne in Lausanne Switzerland) and a biological performance score determined by a newly developed Biological Performance Assessment (BioPA) performed by Pacific Northwest National Laboratory in Richland, WA. In the paper, the hydraulic design challenges are reviewed, in addition to comparisons of designs evaluated during the competitive model test program and biological assessment. The paper also provides a description of the process followed by GCPUD, and how the evaluation criteria influenced the development and the finally selected solution.

  16. A Rapidly Deployable Bridge System

    DTIC Science & Technology

    2013-01-15

    A Rapidly Deployable Bridge System Gareth R. Thomas1 and Bernard J. Sia2 1ATA Engineering, 11995 El Camino Real, San Diego, CA 92130; PH (858) 480...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ATA Engineering,11995 El Camino Real,San Diego,CA,92130 8. PERFORMING ORGANIZATION REPORT NUMBER

  17. Rapid Transit to Sentence Writing.

    ERIC Educational Resources Information Center

    Panuska, Janet A.

    This paper offers a sample selection of exercises from the text "Rapid Transit to Sentence Writing," which is based on the idea that learning to write a sentence is a process which involves understanding the relationship of the parts of the sentence to the whole sentence. The book received the 1989 Innovative Teaching Honors Award from…

  18. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  19. The Rapid Induction Susceptibility Scale.

    ERIC Educational Resources Information Center

    Page, Roger A.; Handley, George W.

    1989-01-01

    Developed Rapid Induction Susceptibility Scale using Chiasson induction to produce hypnotic susceptibility scale which is quickly administered and yields scores comparable to the Stanford Hypnotic Susceptibility Scale, Form C (SHSS:C). Found that validation study with college students (N=100) produced a correlation of .88 with the SHSS:C and…

  20. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  1. The Rapid Induction Susceptibility Scale.

    ERIC Educational Resources Information Center

    Page, Roger A.; Handley, George W.

    1989-01-01

    Developed Rapid Induction Susceptibility Scale using Chiasson induction to produce hypnotic susceptibility scale which is quickly administered and yields scores comparable to the Stanford Hypnotic Susceptibility Scale, Form C (SHSS:C). Found that validation study with college students (N=100) produced a correlation of .88 with the SHSS:C and…

  2. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  3. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  4. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  5. Portable Diagnostics and Rapid Germination

    SciTech Connect

    Dunn, Zachary Spencer

    2016-12-01

    In the Bioenergy and Defense Department of Sandia National Laboratories, characterization of the BaDx (Bacillus anthracis diagnostic cartridge) was performed and rapid germination chemistry was investigated. BaDx was tested with complex sample matrixes inoculated with Bacillus anthracis, and the trials proved that BaDx will detect Bacillus anthracis in a variety of the medium, such as dirt, serum, blood, milk, and horse fluids. The dimensions of the device were altered to accommodate an E. coli or Listeria lateral flow immunoassay, and using a laser printer, BaDx devices were manufactured to identify E. coli and Listeria. Initial testing with E. coli versions of BaDx indicate that the device will be viable as a portable diagnostic cartridge. The device would be more effective with faster bacteria germination; hence studies were performed the use of rapid germination chemistry. Trials with calcium dipicolinic acid displayed increased cell germination, as shown by control studies using a microplate reader. Upon lyophilization the rapid germination chemistry failed to change growth patterns, indicating that the calcium dipicolinic acid was not solubilized under the conditions tested. Although incompatible with the portable diagnostic device, the experiments proved that the rapid germination chemistry was effective in increasing cell germination.

  6. Rapid-scan EPR imaging

    NASA Astrophysics Data System (ADS)

    Eaton, Sandra S.; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A.; McPeak, Joseph; Quine, Richard W.; Rinard, George A.; Epel, Boris; Halpern, Howard J.; Eaton, Gareth R.

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250 MHz.

  7. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    PubMed

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  8. Rapid tooling by rapid prototyping: tools made by laser

    NASA Astrophysics Data System (ADS)

    Macht, Michael; Breitinger, Frank

    1996-08-01

    In view of the competitive situation on the international market, companies are being forced to develop products more rapidly and with less likelihood of errors occurring. In the recent past, product development has been greatly speeded up, above all by computer-aided methods. However, these are not entirely sufficient to achieve a further reduction in product development times. New manufacturing methods such as 'rapid prototyping' (RP) now make it possible to obtain not only computer models but also actual physical patterns in a very early development stage. As RP technologies gained in strength, a demand arose for prototypes in the actual material which it was intended to use for the production article. Using suitable process chains, it is now possible to produce components from various near-series plastics (for example by vacuum casting) and also from metals (e.g. by lost-wax casting or sand casting). At the Augsburg User Center run by Institute for Machine Tools and Industrial Management of Munich Technical University, processes for the rapid production of prototype tools which unite machining methods, RP technologies and molding techniques have therefore been developed.

  9. Towards Rapid Re-Certification Using Formal Analysis

    DTIC Science & Technology

    2015-05-01

    the problem… • Brooks’ Law. • Too many cooks! Increases accidental complexity. • “9 women can’t make a baby in 1 month!” 7 What kind of...the analysis determine the impact. • Result: Rapid analysis at recertification (or design ) time. • Focus on the parts that commensurate with...Zumwalt’s radar system, designating it as high- confidentiality data. Application Profile Language Formalization in Description Logic P COLLECT

  10. Electronic Design Automation: Integrating the Design and Manufacturing Functions

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic; Salkowski, Charles

    1997-01-01

    As the complexity of electronic systems grows, the traditional design practice, a sequential process, is replaced by concurrent design methodologies. A major advantage of concurrent design is that the feedback from software and manufacturing engineers can be easily incorporated into the design. The implementation of concurrent engineering methodologies is greatly facilitated by employing the latest Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and support virtual prototyping, rapid prototyping, and hardware-software co-design. This report presents recommendations for enhancing the electronic design and manufacturing capabilities and procedures at JSC based on a concurrent design methodology that employs EDA tools.

  11. Designing dc Inductors With Airgaps

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.

    1986-01-01

    Optimal parameters obtained designing near saturation point. New iterative procedure aids design of dc inductors with airgaps in cores. For given core area and length, technique gives design having specified inductance and peak flux density in core, using minimum required copper weight. Executed rapidly on programmable, hand-held calculator. Applications include lightweight inductors for aircraft electronics.

  12. Rapid Analysis Model: Reducing Analysis Time without Sacrificing Quality.

    ERIC Educational Resources Information Center

    Lee, William W.; Owens, Diana

    2001-01-01

    Discusses the performance technology design process and the fact that the analysis phase is often being eliminated to speed up the process. Proposes a rapid analysis model that reduces time needed for analysis and still ensures more successful value-added solutions that focus on customer satisfaction. (LRW)

  13. Rapid assessment of assignments using plagiarism detection software.

    PubMed

    Bischoff, Whitney R; Abrego, Patricia C

    2011-01-01

    Faculty members most often use plagiarism detection software to detect portions of students' written work that have been copied and/or not attributed to their authors. The rise in plagiarism has led to a parallel rise in software products designed to detect plagiarism. Some of these products are configurable for rapid assessment and teaching, as well as for plagiarism detection.

  14. Preliminary results using a rapid photographic wake traverse system

    NASA Astrophysics Data System (ADS)

    Earnshaw, P. B.

    1983-11-01

    A rapid photographic wake traverse system was constructed for a 4 ft x 3 ft wind tunnel in order to assess the feasibility of, and design requirements for, a similar equipment to suit a 5 m wind tunnel. Sample photographs using a gothic wing and a Harrier model with and without stores show the ease with which useful information can be acquired.

  15. Patient specific ankle-foot orthoses using rapid prototyping

    PubMed Central

    2011-01-01

    Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required. PMID:21226898

  16. Patient specific ankle-foot orthoses using rapid prototyping.

    PubMed

    Mavroidis, Constantinos; Ranky, Richard G; Sivak, Mark L; Patritti, Benjamin L; DiPisa, Joseph; Caddle, Alyssa; Gilhooly, Kara; Govoni, Lauren; Sivak, Seth; Lancia, Michael; Drillio, Robert; Bonato, Paolo

    2011-01-12

    Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  17. Rapid response manufacturing (RRM). Final CRADA report

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1998-02-10

    US industry is fighting to maintain its competitive edge in the global market place. Markets fluctuate rapidly. Companies have to be able to respond quickly with improved, high quality, cost efficient products. Because companies and their suppliers are geographically distributed, rapid product realization is dependent on the development of a secure integrated concurrent engineering environment operating across multiple business entities. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies implemented in a secure environment. This documents the work done under this CRADA to develop capabilities, which permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process. Lockheed Martin Energy Systems (LMES), through a CRADA with the National Center for Manufacturing Sciences (NCMS), worked within a consortium of major industrial firms--Ford, General Motors, Texas Instruments, United Technologies, and Eastman Kodak--and several small suppliers of advanced manufacturing technology--MacNeal-Schwendler Corp., Teknowledge Corp., Cimplex Corp., Concentra, Spatial Technology, and Structural Dynamics Research Corp. (SDRC)--to create infrastructure to support the development and implementation of secure engineering environments for Rapid Response Manufacturing. The major accomplishment achieved under this CRADA was the demonstration of a prototypical implementation of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined parts in a secure NWC compliant environment. Specifically, methods needed to permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process were developed and demonstrated. An important aspect of this demonstration was

  18. Rapid Prototyping of Patterned Multifunctional Nanostructures

    SciTech Connect

    FAN,HONGYOU; LU,YUNFENG; LOPEZ,GABRIEL P.; BRINKER,C. JEFFREY

    2000-07-18

    The ability to engineer ordered arrays of objects on multiple length scales has potential for applications such as microelectronics, sensors, wave guides, and photonic lattices with tunable band gaps. Since the invention of surfactant templated mesoporous sieves in 1992, great progress has been made in controlling different mesophases in the form of powders, particles, fibers, and films. To date, although there have been several reports of patterned mesostructures, materials prepared have been limited to metal oxides with no specific functionality. For many of the envisioned applications of hierarchical materials in micro-systems, sensors, waveguides, photonics, and electronics, it is necessary to define both form and function on several length scales. In addition, the patterning strategies utilized so far require hours or even days for completion. Such slow processes are inherently difficult to implement in commercial environments. The authors present a series of new methods of producing patterns within seconds. Combining sol-gel chemistry, Evaporation-Induced Self-Assembly (EISA), and rapid prototyping techniques like pen lithography, ink-jet printing, and dip-coating on micro-contact printed substrates, they form hierarchically organized silica structures that exhibit order and function on multiple scales: on the molecular scale, functional organic moieties are positioned on pore surfaces, on the mesoscale, mono-sized pores are organized into 1-, 2-, or 3-dimensional networks, providing size-selective accessibility from the gas or liquid phase, and on the macroscale, 2-dimensional arrays and fluidic or photonic systems may be defined. These rapid patterning techniques establish for the first time a link between computer-aided design and rapid processing of self-assembled nanostructures.

  19. Rapid mask prototyping for microfluidics.

    PubMed

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  20. RATT: Rapid Annotation Transfer Tool

    PubMed Central

    Otto, Thomas D.; Dillon, Gary P.; Degrave, Wim S.; Berriman, Matthew

    2011-01-01

    Second-generation sequencing technologies have made large-scale sequencing projects commonplace. However, making use of these datasets often requires gene function to be ascribed genome wide. Although tool development has kept pace with the changes in sequence production, for tasks such as mapping, de novo assembly or visualization, genome annotation remains a challenge. We have developed a method to rapidly provide accurate annotation for new genomes using previously annotated genomes as a reference. The method, implemented in a tool called RATT (Rapid Annotation Transfer Tool), transfers annotations from a high-quality reference to a new genome on the basis of conserved synteny. We demonstrate that a Mycobacterium tuberculosis genome or a single 2.5 Mb chromosome from a malaria parasite can be annotated in less than five minutes with only modest computational resources. RATT is available at http://ratt.sourceforge.net. PMID:21306991

  1. Validation of rapid microbiological methods.

    PubMed

    Peris-Vicente, Juan; Carda-Broch, Samuel; Esteve-Romero, Josep

    2015-06-01

    Classical microbiological methods currently have unacceptably long cycle times. Rapid microbiological methods have been available on the market for decades and have been applied by the clinical and food industries. However, their implementation in the pharmaceutical industry has been hampered by stringent regulations on validation and comparison with classical methods. To encourage the implementation of these methodologies, they must be validated to assess that the results are straightforward. A comparison with traditional methods should be also performed. In this review, information about the validation of rapid microbiological methods reported in the literature is provided as well as an explanation of the difficulty of validation of these methods. A comparison with traditional methods is also discussed. This information is useful for industries and laboratories that can potentially implement these methods. © 2014 Society for Laboratory Automation and Screening.

  2. Rapid synthesis of beta zeolites

    DOEpatents

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  3. A Rapid Global Effects Capability

    DTIC Science & Technology

    2016-06-01

    emerging technologies, future platforms, and force structure .3 Research included historical references, primary, and secondary sources. Interviews...40 RECOMMENDATIONS………………………………………………………………. 41 BIBLIOGRAPHY ...including, but not limited to, basing, emerging technologies, future platforms, and force structure .8 Thesis statement A Rapid Global Effects

  4. Rapid Continuous Multimaterial Extrusion Bioprinting.

    PubMed

    Liu, Wanjun; Zhang, Yu Shrike; Heinrich, Marcel A; De Ferrari, Fabio; Jang, Hae Lin; Bakht, Syeda Mahwish; Alvarez, Mario Moisés; Yang, Jingzhou; Li, Yi-Chen; Trujillo-de Santiago, Grissel; Miri, Amir K; Zhu, Kai; Khoshakhlagh, Parastoo; Prakash, Gyan; Cheng, Hao; Guan, Xiaofei; Zhong, Zhe; Ju, Jie; Zhu, Geyunjian Harry; Jin, Xiangyu; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2017-01-01

    The development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled extrusion of bioinks from a single printhead consisting of bundled capillaries synergized with programmed movement of the motorized stage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rapid Sampling from Sealed Containers

    SciTech Connect

    Johnston, R.G.; Garcia, A.R.E.; Martinez, R.K.; Baca, E.T.

    1999-02-28

    The authors have developed several different types of tools for sampling from sealed containers. These tools allow the user to rapidly drill into a closed container, extract a sample of its contents (gas, liquid, or free-flowing powder), and permanently reseal the point of entry. This is accomplished without exposing the user or the environment to the container contents, even while drilling. The entire process is completed in less than 15 seconds for a 55 gallon drum. Almost any kind of container can be sampled (regardless of the materials) with wall thicknesses up to 1.3 cm and internal pressures up to 8 atm. Samples can be taken from the top, sides, or bottom of a container. The sampling tools are inexpensive, small, and easy to use. They work with any battery-powered hand drill. This allows considerable safety, speed, flexibility, and maneuverability. The tools also permit the user to rapidly attach plumbing, a pressure relief valve, alarms, or other instrumentation to a container. Possible applications include drum venting, liquid transfer, container flushing, waste characterization, monitoring, sampling for archival or quality control purposes, emergency sampling by rapid response teams, counter-terrorism, non-proliferation and treaty verification, and use by law enforcement personnel during drug or environmental raids.

  6. Rapid recalibration to audiovisual asynchrony.

    PubMed

    Van der Burg, Erik; Alais, David; Cass, John

    2013-09-11

    To combine information from different sensory modalities, the brain must deal with considerable temporal uncertainty. In natural environments, an external event may produce simultaneous auditory and visual signals yet they will invariably activate the brain asynchronously due to different propagation speeds for light and sound, and different neural response latencies once the signals reach the receptors. One strategy the brain uses to deal with audiovisual timing variation is to adapt to a prevailing asynchrony to help realign the signals. Here, using psychophysical methods in human subjects, we investigate audiovisual recalibration and show that it takes place extremely rapidly without explicit periods of adaptation. Our results demonstrate that exposure to a single, brief asynchrony is sufficient to produce strong recalibration effects. Recalibration occurs regardless of whether the preceding trial was perceived as synchronous, and regardless of whether a response was required. We propose that this rapid recalibration is a fast-acting sensory effect, rather than a higher-level cognitive process. An account in terms of response bias is unlikely due to a strong asymmetry whereby stimuli with vision leading produce bigger recalibrations than audition leading. A fast-acting recalibration mechanism provides a means for overcoming inevitable audiovisual timing variation and serves to rapidly realign signals at onset to maximize the perceptual benefits of audiovisual integration.

  7. Rapid Vision Correction by Special Operations Forces.

    PubMed

    Reynolds, Mark E

    This report describes a rapid method of vision correction used by Special Operations Medics in multiple operational engagements. Between 2011 and 2015, Special Operations Medics used an algorithm- driven refraction technique. A standard block of instruction was provided to the medics, along with a packaged kit. The technique was used in multiple operational engagements with host nation military and civilians. Data collected for program evaluation were later analyzed to assess the utility of the technique. Glasses were distributed to 230 patients with complaints of either decreased distance or near (reading). Most patients (84%) with distance complaints achieved corrected binocular vision of 20/40 or better, and 97% of patients with near-vision complaints achieved corrected near-binocular vision of 20/40 or better. There was no statistically significant difference between the percentages of patients achieving 20/40 when medics used the technique under direct supervision versus independent use. A basic refraction technique using a designed kit allows for meaningful improvement in distance and/or near vision at austere locations. Special Operations Medics can leverage this approach after specific training with minimal time commitment. It can serve as a rapid, effective intervention with multiple applications in diverse operational environments. 2017.

  8. An experimental investigation of rapid boiling of

    NASA Astrophysics Data System (ADS)

    Tosse, S.; Vaagsaether, K.; Bjerketvedt, D.

    2015-05-01

    Storage of pressurized liquified gases is a growing safety concern in many industries. Knowledge of the thermodynamics and kinetics involved in the rapid depressurization and evaporation of such substances is key to the design and implementation of effective safety measures in storage and transportation situations. In the present study, experiments on the rapid depressurization of liquid are conducted in a vertical transparent shock tube which enables the observation of evaporation waves and other structures. The depressurization was initiated by puncturing a membrane in one end of the tube. The thermodynamic mechanisms that govern the evaporation process are not unique to , and the same principles can be applied to any liquified gas. The experiments were photographed by a high-speed camera. Evaporation waves propagating into the liquid were observed, traveling at a near constant velocity on the order of 20-30 m/s. A contact surface between the vapor and the liquid-vapor mixture was also observed, accelerating out of the tube. Pressure readings in the tube suggest that the evaporation wave could be similar to a spinodal decomposition wave, but further experiments are needed to confirm this. When the membrane was in direct contact with the liquified , some indications of homogeneous nucleation were observed.

  9. Rapid genetic detection of ingested Amanita phalloides.

    PubMed

    Gausterer, Christian; Penker, Martina; Krisai-Greilhuber, Irmgard; Stein, Christina; Stimpfl, Thomas

    2014-03-01

    Mushrooms are often poorly digested by humans. Thus, their remains (tissues, spores) may persist in the gastrointestinal tract and can be detected in feces several days after mushroom consumption. In this report, we present protocols for the rapid PCR-based detection of fungal traces in a variety of complex samples. Novel primers were designed to amplify portions of ribosomal DNA from deadly poisonous European members of the genus Amanita, namely the death cap (A. phalloides), the destroying angel (A. virosa) and the fool's mushroom (A. verna), respectively. Assay sensitivity was sufficient to discover diluted DNA traces in amounts below the genomic content of a single target mushroom cell. Specificity testing was performed with DNA extracts from a variety of mushroom species. Template amplification was exclusively observed with intended targets and it was not compromised by a vast excess of non-target DNA (i.e. DNA from human and human fecal origin, respectively). A series of experiments was conducted with prepared specimens in order to follow the course of mushroom food processing and digestion. Amplification by direct PCR was successful with raw, fried and digested mixed mushrooms. To improve assay performance with fecal samples, a rapid protocol for sample pre-processing (including water-ether sedimentation and bead beating) and a modified PCR reaction mix were applied. Thereby, it was possible to detect the presence of A. phalloides DNA in spiked feces as well as in clinical samples (vomit, stool) from two independent cases of suspected mushroom poisoning.

  10. Ada and the rapid development lifecycle

    NASA Technical Reports Server (NTRS)

    Deforrest, Lloyd; Gref, Lynn

    1991-01-01

    JPL is under contract, through NASA, with the US Army to develop a state-of-the-art Command Center System for the US European Command (USEUCOM). The Command Center System will receive, process, and integrate force status information from various sources and provide this integrated information to staff officers and decision makers in a format designed to enhance user comprehension and utility. The system is based on distributed workstation class microcomputers, VAX- and SUN-based data servers, and interfaces to existing military mainframe systems and communication networks. JPL is developing the Command Center System utilizing an incremental delivery methodology called the Rapid Development Methodology with adherence to government and industry standards including the UNIX operating system, X Windows, OSF/Motif, and the Ada programming language. Through a combination of software engineering techniques specific to the Ada programming language and the Rapid Development Approach, JPL was able to deliver capability to the military user incrementally, with comparable quality and improved economies of projects developed under more traditional software intensive system implementation methodologies.

  11. Operations analysis of gravity assisted rapid transit

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Gravity assisted rapid transit (GART) with 6 percent grades before and after each station are compared with conventional systems in terms of energy consumption, run time, line capacity and schedule stability under abnormal circumstances. Parametric analyses of run times and energy consumption include the impact of alternate accelerating and braking levels. The capcity analysis uses a network simulation program to determine the location and severity of all signal delays. Based on results of initial simulations, the block design was revised to eliminate bottlenecks in normal operations. The systems are then compared at headways of 80 to 180 seconds. One month of incidence reports of a modern operating transit system are reviewed to determine the failures to be simulated. The impact of failures resulting in station delays (30 to 360 seconds), speed limit reduction (20 mph and 30 mph to one or more trains), vehicle performance (75 percent acceleration) are compared at scheduled headway of 90 to 180 seconds.

  12. Robot Engine: rapid product development path

    NASA Astrophysics Data System (ADS)

    Sert, Buelent

    1993-05-01

    Using the Robot Engine framework Denning has developed four new products in four distinctly different markets in less than three years. The Robot Engine concept reduced development time by more than half and assured a better chance of success in developing these new products. Similar to the personal computer industry, the mobile robotic industry has the potential to make it possible for a number of independent payload developers to design and sell useful devices compatible with the navigation system by utilizing the Robot Engine concept. This paper will review the basic modular mechanical, hardware, and software components, and the basic integration challenges for rapid prototyping of robotic products. Human interface, vehicle control, navigation, and sensory data fusion/arbitration will be discussed within this framework.

  13. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  14. Rapid and precise measurement of flatband voltage

    NASA Technical Reports Server (NTRS)

    Li, S. P.; Ryan, M.; Bates, E. T.

    1976-01-01

    The paper outlines the design, principles of operation, and calibration of a five-IC network intended to give a rapid, precise, and automatic determination of the flatband voltage of MOS capacitors. The basic principle of measurement is to compare the analog output voltage of a capacitance meter - which is directly proportional to the capacitance being measured - with a preset or dialed-in voltage proportional to the calculated flatband capacitance by means of a comparator circuit. The bias to the MOS capacitor supplied through the capacitance meter is provided by a ramp voltage going from a negative toward a positive voltage level and vice versa. The network employs two monostable multivibrators for reading and recording the flatband voltage and for resetting the initial conditions and restarting the ramp. The flatband voltage can be held and read on a digital voltmeter.

  15. Rapid and precise measurement of flatband voltage

    NASA Technical Reports Server (NTRS)

    Li, S. P.; Ryan, M.; Bates, E. T.

    1976-01-01

    The paper outlines the design, principles of operation, and calibration of a five-IC network intended to give a rapid, precise, and automatic determination of the flatband voltage of MOS capacitors. The basic principle of measurement is to compare the analog output voltage of a capacitance meter - which is directly proportional to the capacitance being measured - with a preset or dialed-in voltage proportional to the calculated flatband capacitance by means of a comparator circuit. The bias to the MOS capacitor supplied through the capacitance meter is provided by a ramp voltage going from a negative toward a positive voltage level and vice versa. The network employs two monostable multivibrators for reading and recording the flatband voltage and for resetting the initial conditions and restarting the ramp. The flatband voltage can be held and read on a digital voltmeter.

  16. Rapid Spacecraft Development: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Watson, William A.

    2002-01-01

    The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center is responsible for the management and direction of a dynamic and versatile program for the definition, competition, and acquisition of multiple indefinite delivery and indefinite quantity contracts - resulting in a catalog of spacecraft buses. Five spacecraft delivery orders have been placed by the RSDO and one spacecraft has been launched. Numerous concept and design studies have been performed, most with the intent of leading to a future spacecraft acquisition. A collection of results and lessons learned is recorded to highlight management techniques, methods and processes employed in the conduct of spacecraft acquisition. Topics include working relationships under fixed price delivery orders, price and value, risk management, contingency reserves, and information restrictions.

  17. Rapid sample injection for hyperpolarized NMR spectroscopy.

    PubMed

    Bowen, Sean; Hilty, Christian

    2010-06-14

    Due to its ability to enhance the signal of a single NMR scan by several orders of magnitude, solid-to-liquid state dynamic nuclear polarization (DNP) appears well suited for the analysis of minimal amounts of compounds, as well as for the study of rapid chemical reactions. A key requirement in enabling the application of DNP-NMR to typical small-molecule substances encountered in chemistry and biochemistry is the ability to obtain high-resolution spectra, while at the same time minimizing the loss of polarization due to spin relaxation between the separate steps of DNP polarization and NMR measurement. Here, we present data demonstrating the capability of measuring DNP enhanced NMR spectra of compounds with comparably short relaxation times, with only minimal line broadening attributable to the sample transfer process. We discuss the performance characteristics of a sample injection apparatus specifically designed to provide high-resolution DNP-NMR spectra of small molecule compounds.

  18. Microfluidic Wheatstone bridge for rapid sample analysis.

    PubMed

    Tanyeri, Melikhan; Ranka, Mikhil; Sittipolkul, Natawan; Schroeder, Charles M

    2011-12-21

    We developed a microfluidic analogue of the classic Wheatstone bridge circuit for automated, real-time sampling of solutions in a flow-through device format. We demonstrate precise control of flow rate and flow direction in the "bridge" microchannel using an on-chip membrane valve, which functions as an integrated "variable resistor". We implement an automated feedback control mechanism in order to dynamically adjust valve opening, thereby manipulating the pressure drop across the bridge and precisely controlling fluid flow in the bridge channel. At a critical valve opening, the flow in the bridge channel can be completely stopped by balancing the flow resistances in the Wheatstone bridge device, which facilitates rapid, on-demand fluid sampling in the bridge channel. In this article, we present the underlying mechanism for device operation and report key design parameters that determine device performance. Overall, the microfluidic Wheatstone bridge represents a new and versatile method for on-chip flow control and sample manipulation.

  19. Rapid prototyping of an advanced motion controller

    NASA Astrophysics Data System (ADS)

    Cooper, R. S.

    This paper illustrates how, using existing research material, an advanced motion control system was developed both rapidly and economically. The paper emphasizes the approach used to put the system together, rather than the results of the evaluation (which is still under way). The system consists of a field-oriented controlled (FOC) induction motor, along with a pulse-population modulated current motor drive. Specific areas addressed in this paper include: a thorough overview of the technologies involved in the project (with emphasis on FOC theory); use of advanced simulation tools and models to aid in system design and debug; use of existing systems wherever possible to help speed up development; and developing the system in an environment suited to true development work.

  20. Rugate filters prepared by rapidly alternating deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Chao; Fang, Ming; Shao, Yu-Chuan; Jin, Yun-Xia; He, Hong-Bo

    2011-09-01

    A methodology for the fabrication of composite (Nb2O5)1-x(SiO2)x thin-film rugate filters by using pulsed direct current magnetron sputtering is presented. The two materials are mixed using rapidly alternating deposition technology. The optical properties of the composite films varying with the composition of the material are studied in detail. Refractive indices between 1.50 and 2.14 can be realized in our coating system. Two designed rugate filters with a reflection band at the wavelength of 532 nm are fabricated using an automatic deposition process. The microstructure of the rugate filter is investigated by using scanning electron microscopy. The calculated and the measured transmittance spectra are in good agreement with each other. The causes of the slight differences between them are also analysed.

  1. An FPGA-based rapid prototyping platform for wavelet coprocessors

    NASA Astrophysics Data System (ADS)

    Vera, Alonzo; Meyer-Baese, Uwe; Pattichis, Marios

    2007-04-01

    MatLab/Simulink-based design flows are being used by DSP designers to improve time-to-market of FPGA implementations. 1 Commonly, digital signal processing cores are integrated in an embedded system as coprocessors. Existing CAD tools do not fully address the integration of a DSP coprocessor into an embedded system design. This integration might prove to be time consuming and error prone. It also requires that the DSP designer has an excellent knowledge of embedded systems and computer architecture details. We present a prototyping platform and design flow that allows rapid integration of embedded systems with a wavelet coprocessor. The platform comprises of software and hardware modules that allow a DSP designer a painless integration of a coprocessor with a PowerPC-based embedded system. The platform has a wide range of applications, from industrial to educational environments.

  2. Rapid diagnosis of pulmonary tuberculosis

    PubMed Central

    Sarmiento, José Mauricio Hernández; Restrepo, Natalia Builes; Mejía, Gloria Isabel; Zapata, Elsa; Restrepo, Mary Alejandra; Robledo, Jaime

    2014-01-01

    Introduction World Health Organization had estimated 9.4 million tuberculosis cases on 2009, with 1.7 million of deaths as consequence of treatment and diagnosis failures. Improving diagnostic methods for the rapid and timely detection of tuberculosis patients is critical to control the disease. The aim of this study was evaluating the accuracy of the cord factor detection on the solid medium Middlebrook 7H11 thin layer agar compared to the Lowenstein Jensen medium for the rapid tuberculosis diagnosis. Methods Patients with suspected tuberculosis were enrolled and their sputum samples were processed for direct smear and culture on Lowenstein Jensen and BACTEC MGIT 960, from which positive tubes were subcultured on Middlebrook 7H11 thin layer agar. Statistical analysis was performed comparing culture results from Lowenstein Jensen and the thin layer agar, and their corresponding average times for detecting Mycobacterium tuberculosis. The performance of cord factor detection was evaluated determining its sensitivity, specificity, positive and negative predictive value. Results 111 out of 260 patients were positive for M. tuberculosis by Lowenstein Jensen medium with an average time ± standard deviation for its detection of 22.3 ± 8.5 days. 115 patients were positive by the MGIT system identifying the cord factor by the Middlebrook 7H11 thin layer agar which average time ± standard deviation was 5.5 ± 2.6 days. Conclusion The cord factor detection by Middlebrook 7H11 thin layer agar allows early and accurate tuberculosis diagnosis during an average time of 5 days, making this rapid diagnosis particularly important in patients with negative sputum smear. PMID:25419279

  3. Rapid qualitative protease microassay (RPM).

    PubMed

    Mohan, S; Ma, P W K; Luthe, D S

    2005-09-30

    A rapid qualitative protease microassay (RPM) was developed as an alternative to conventional assays of cysteine protease activity in HPLC fractions. Using this technique protease activity in samples could be visually determined within 5 min. The method was sensitive to 3.3x10(-7) U/mL of papain and detected cysteine protease activity in dilute HPLC fractions with activity of 5.4x10(-5) U/mL. Because the method monitors the decolorization of Coomassie Brilliant Blue stained substrate, it can be modified to detect other classes of proteases.

  4. Rapid thermal processing by stamping

    DOEpatents

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  5. Rapid Prototyping in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim; Moniz, Matt

    2002-01-01

    Describes how technology education majors are using a high-tech model builder, called a fused deposition modeling machine, to develop their models directly from computer-based designs without any machining. Gives examples of applications in technology education. (JOW)

  6. Rapid Prototyping in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim; Moniz, Matt

    2002-01-01

    Describes how technology education majors are using a high-tech model builder, called a fused deposition modeling machine, to develop their models directly from computer-based designs without any machining. Gives examples of applications in technology education. (JOW)

  7. Rapid prototyping and AI programming environments applied to payload modeling

    NASA Technical Reports Server (NTRS)

    Carnahan, Richard S., Jr.; Mendler, Andrew P.

    1987-01-01

    This effort focused on using artificial intelligence (AI) programming environments and rapid prototyping to aid in both space flight manned and unmanned payload simulation and training. Significant problems addressed are the large amount of development time required to design and implement just one of these payload simulations and the relative inflexibility of the resulting model to accepting future modification. Results of this effort have suggested that both rapid prototyping and AI programming environments can significantly reduce development time and cost when applied to the domain of payload modeling for crew training. The techniques employed are applicable to a variety of domains where models or simulations are required.

  8. Submillisecond organic synthesis: Outpacing Fries rearrangement through microfluidic rapid mixing.

    PubMed

    Kim, Heejin; Min, Kyoung-Ik; Inoue, Keita; Im, Do Jin; Kim, Dong-Pyo; Yoshida, Jun-ichi

    2016-05-06

    In chemical synthesis, rapid intramolecular rearrangements often foil attempts at site-selective bimolecular functionalization. We developed a microfluidic technique that outpaces the very rapid anionic Fries rearrangement to chemoselectively functionalize iodophenyl carbamates at the ortho position. Central to the technique is a chip microreactor of our design, which can deliver a reaction time in the submillisecond range even at cryogenic temperatures. The microreactor was applied to the synthesis of afesal, a bioactive molecule exhibiting anthelmintic activity, to demonstrate its potential for practical synthesis and production.

  9. Rapid self-healing hydrogels

    PubMed Central

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  10. KEPLER RAPIDLY ROTATING GIANT STARS

    SciTech Connect

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  11. Rapid ISS Power Availability Simulator

    NASA Technical Reports Server (NTRS)

    Downing, Nicholas

    2011-01-01

    The ISS (International Space Station) Power Resource Officers (PROs) needed a tool to automate the calculation of thousands of ISS power availability simulations used to generate power constraint matrices. Each matrix contains 864 cells, and each cell represents a single power simulation that must be run. The tools available to the flight controllers were very operator intensive and not conducive to rapidly running the thousands of simulations necessary to generate the power constraint data. SOLAR is a Java-based tool that leverages commercial-off-the-shelf software (Satellite Toolkit) and an existing in-house ISS EPS model (SPEED) to rapidly perform thousands of power availability simulations. SOLAR has a very modular architecture and consists of a series of plug-ins that are loosely coupled. The modular architecture of the software allows for the easy replacement of the ISS power system model simulator, re-use of the Satellite Toolkit integration code, and separation of the user interface from the core logic. Satellite Toolkit (STK) is used to generate ISS eclipse and insulation times, solar beta angle, position of the solar arrays over time, and the amount of shadowing on the solar arrays, which is then provided to SPEED to calculate power generation forecasts. The power planning turn-around time is reduced from three months to two weeks (83-percent decrease) using SOLAR, and the amount of PRO power planning support effort is reduced by an estimated 30 percent.

  12. Rapidly Developing Toxic Epidermal Necrolysis

    PubMed Central

    Nielsen, Jonas

    2013-01-01

    Severe cutaneous reactions with potentially fatal outcomes can have many different causes. The Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare. They are characterized by a low incidence but high mortality, and drugs are most commonly implicated. Urgent active therapy is required. Prompt recognition and withdrawal of suspect drug and rapid intervention can result in favourable outcome. No further international guidelines for treatment exist, and much of the treatment relies on old or experimental concepts with no scientific evidence. We report on a 54-year-old man experiencing rapidly developing drug-induced severe TEN and presented multiorgan failure involving the respiratory and circulatory system, coagulopathy, and renal insufficiency. Detachment counted 30% of total body surface area (TBSA). SCORTEN = 5, indicating a mortality rate >90%. The patient was sedated and mechanically ventilated, supported with fluids and inotropes to maintain a stable circulation. Component therapy was guided by thromboelastography (TEG). The patient received plasmapheresis, and shock reversal treatment was initiated. He was transferred to a specialized intensive care burn unit within 24 hours from admittance. The initial care was continued, and hemodialysis was started. Pulmonary, circulatory, and renal sequelae resolved with intensive care, and re-epithelialization progressed slowly. The patient was discharged home on hospital day 19. PMID:24069541

  13. Rapidly rotating neutron star progenitors

    NASA Astrophysics Data System (ADS)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-12-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.

  14. Rapid Prototyping as Method for Developing Instructional Strategies for Supporting Computer-Mediated Communication among University Students

    ERIC Educational Resources Information Center

    Knowlton, Dave S.

    2006-01-01

    Because rapid prototyping results in the quick development of curriculum, materials, and processes, it is a form of design that could be particularly useful to professors in higher education. Yet, literature documenting the use of rapid prototyping in higher education is scarce. This paper offers a case example of rapid prototyping being used as a…

  15. Rapid Capability Fielding Toolbox Study

    DTIC Science & Technology

    2010-03-01

    engineering  ( CAD / CAE ) tools used in hardware development.   CAD / CAE  tools for electronics  design  differ from those  used  for aerospace  structures...capabilities to the  warfighter. 33  Glossary  Acronyms    BPMN  Business Process Modeling Notation  CAD   Computer‐Aided  Design   CAE   Computer‐Aided...tools  to  take mechanical  system  CAD   concepts and automatically develop  manufacture‐ready  individual piece parts  optimized   for various  design

  16. Moved by a Rapid Transit

    NASA Astrophysics Data System (ADS)

    Bueter, C.

    2013-04-01

    Enticing by virtue of its predictability, historical utility, and spectacle, the transit of Venus is a niche event among astronomical phenomena. Though the value of a transit for scientific purposes is now diminished, the brief appearance of Venus silhouetted against the background of the Sun in 2004 moved the artistic community to celebrate the rare alignment. Artists of all ages combined old traditions with fresh technology to create a 21st-century tapestry of music, sculpture, paintings, glasswork, quilts, sky shows, and digital imagery. A full catalog of transit-related art generated over the centuries would feature the sampling of entries presented here and at the Moved by a Rapid Transit website.

  17. Rapid solidification of metallic particulates

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    In order to maximize the heat transfer coefficient the most important variable in rapid solidification is the powder particle size. The finer the particle size, the higher the solidification rate. Efforts to decrease the particle size diameter offer the greatest payoff in attained quench rate. The velocity of the liquid droplet in the atmosphere is the second most important variable. Unfortunately the choices of gas atmospheres are sharply limited both because of conductivity and cost. Nitrogen and argon stand out as the preferred gases, nitrogen where reactions are unimportant and argon where reaction with nitrogen may be important. In gas atomization, helium offers up to an order of magnitude increase in solidification rate over argon and nitrogen. By contrast, atomization in vacuum drops the quench rate several orders of magnitude.

  18. Rapid Solidification of Magnetic Oxides

    NASA Technical Reports Server (NTRS)

    Kalonji, G.; Deguire, M. R.

    1985-01-01

    The enhanced control over microstructural evolution inherent in rapid solidification processing techniques are exploited to create novel ceramic magnetic materials. The great sensitivity of magnetic properties to local structure provides a powerful probe both for the study of structure and of microscopic solidification mechanisms. The first system studied is the SrO-Fe2O3 binary, which contains the commercially important hard magnetic compound strontium hexaferrite. The products were analyzed by transmission electron microscopy, Mossbauer spectroscopy, magnetic measurements, and differential thermal analysis. As-quenched ribbons contain high concentrations of super-paramagnetic particles, 80 to 250 Angstroms in diameter, in a glassy matrix. This suggests the possibility of crystallizing monodomain strontium hexaferrite during subsequent heat treatment, with a resulting increase in coercivity over conventionally processed ferrite magnets. That magnetic properties can be controlled in solidification processing by varying the quench rate is demonstrated.

  19. Customer-experienced rapid prototyping

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Zhang, Fu; Li, Anbo

    2008-12-01

    In order to describe accurately and comprehend quickly the perfect GIS requirements, this article will integrate the ideas of QFD (Quality Function Deployment) and UML (Unified Modeling Language), and analyze the deficiency of prototype development model, and will propose the idea of the Customer-Experienced Rapid Prototyping (CE-RP) and describe in detail the process and framework of the CE-RP, from the angle of the characteristics of Modern-GIS. The CE-RP is mainly composed of Customer Tool-Sets (CTS), Developer Tool-Sets (DTS) and Barrier-Free Semantic Interpreter (BF-SI) and performed by two roles of customer and developer. The main purpose of the CE-RP is to produce the unified and authorized requirements data models between customer and software developer.

  20. Rapid world modelling for robotics

    SciTech Connect

    Littile, C.Q.; Wilson, C.W.

    1996-04-01

    The ability to use an interactive world model, whether it is for robotics simulation or most other virtual graphical environments, relies on the users ability to create an accurate world model. Typically this is a tedious process, requiring many hours to create 3-D CAD models of the surfaces within a workspace. The goal of this ongoing project is to develop usable methods to rapidly build world models of real world workspaces. This brings structure to an unstructured environment and allows graphical based robotics control to be accomplished in a reasonable time frame when traditional CAD modelling is not enough. To accomplish this, 3D range sensors are deployed to capture surface data within the workspace. This data is then transformed into surface maps, or models. A 3D world model of the workspace is built quickly and accurately, without ever having to put people in the environment.