Science.gov

Sample records for 3rd generation light

  1. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  2. SESAME, A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Einfeld, D.; Hasnain, S.S.; Sayers, Z.; Schopper, H.; Winick, H.; Al-Dmour, E.

    2004-05-12

    Developed under the auspices of UNESCO, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be a major international research centre in the Middle East and Mediterranean region. On 6th of January 2003, the official foundation of SESAME took place. The facility is located in Allan, Jordan, 30 km North-West of Amman. As of August 2003 the Founding Members are Bahrain, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey and United Arabic Emirates, representing a population of over 300 million. SESAME will be a 2.5 GeV 3rd Generation light source (emittance 24.6 nm.rad, circumference {approx}125m). About 40% of the circumference is available for insertion devices (average length 2.75m) in 13 straight sections. Beam lines are up to 36m. The site and a building are provided by Jordan. Construction started in August 2003. The scientific program will start with up to 6 beam lines: MAD Protein Crystallography, SAXS and WAXS for polymers and proteins, Powder Diffraction for material science, UV/VUV/SXR Photoelectron Spectroscopy and Photoabsorption Spectroscopy, IR Spectroscopy, and EXAFS.

  3. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member

  4. SESAME — A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Å°lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ˜133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  5. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    U˝Lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ~133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  6. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  7. Precipitation Model Validation in 3rd Generation Aeroturbine Disc Alloys

    NASA Technical Reports Server (NTRS)

    Olson, G. B.; Jou, H.-J.; Jung, J.; Sebastian, J. T.; Misra, A.; Locci, I.; Hull, D.

    2008-01-01

    In support of application of the DARPA-AIM methodology to the accelerated hybrid thermal process optimization of 3rd generation aeroturbine disc alloys with quantified uncertainty, equilibrium and diffusion couple experiments have identified available fundamental thermodynamic and mobility databases of sufficient accuracy. Using coherent interfacial energies quantified by Single-Sensor DTA nucleation undercooling measurements, PrecipiCalc(TM) simulations of nonisothermal precipitation in both supersolvus and subsolvus treated samples show good agreement with measured gamma particle sizes and compositions. Observed longterm isothermal coarsening behavior defines requirements for further refinement of elastic misfit energy and treatment of the parallel evolution of incoherent precipitation at grain boundaries.

  8. Designing a 3rd generation, authenticatable attribute measurement system

    SciTech Connect

    Thron, Jonathan; Karpius, Peter; Santi, Peter; Smith, Morag; Vo, Duc; Williams, Richard

    2009-01-01

    Attribute measurement systems (AMS) are designed to measure potentially sensitive items containing Special Nuclear Materials to determine if the items possess attributes which fall within an agreed-upon range. Such systems could be used in a treaty to inspect and verify the identity of items in storage without revealing any sensitive information associated with the item. An AMS needs to satisfy two constraints: the host party needs to be sure that none of their sensitive information is released, while the inspecting party wants to have confidence that the limited amount of information they see accurately reflects the properties of the item being measured. The former involves 'certifying' the system and the latter 'authenticating' it. Previous work into designing and building AMS systems have focused more on the questions of certifiability than on the questions of authentication - although a few approaches have been investigated. The next step is to build a 3rd generation AMS which (1) makes the appropriate measurements, (2) can be certified, and (3) can be authenticated (the three generations). This paper will discuss the ideas, options, and process of producing a design for a 3rd generation AMS.

  9. Microstructure Modeling of 3rd Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.

  10. Results from the UK 3rd generation programme: Albion

    NASA Astrophysics Data System (ADS)

    McEwen, R. K.; Axcell, C.; Knowles, P.; Hoade, K. P.; Wilson, M.; Dennis, P. N. J.; Backhouse, P.; Gordon, N. T.

    2008-10-01

    Following the development of 1st Generation systems in the 1970s, thermal imaging has been in service with the UK armed forces for over 25 years and has proven itself to be a battle winning technology. More recently the wider accessibility to similar technologies within opposing forces has reduced the military advantage provided by these 1st Generation systems and a clear requirement has been identified by the UK MOD for thermal imaging sensors providing increased detection, recognition and identification (DRI) ranges together with a simplified logistical deployment burden and reduced through-life costs. In late 2005, the UK MOD initiated a programme known as "Albion" to develop high performance 3rd Generation single waveband infrared detectors to meet this requirement. At the same time, under a separate programme supporting higher risk technology, a dual waveband infrared detector was also developed. The development phase of the Albion programme has now been completed and prototype detectors are now available and have been integrated into demonstration thermal imaging cameras. The Albion programme has now progressed into the second phase, incorporating both single and dual waveband devices, focussing on low rate initial production (LRIP) and qualification of the devices for military applications. All of the detectors have been fabricated using cadmium mercury telluride material (CMT), grown by metal organic vapour phase epitaxy (MOVPE) on low cost, gallium arsenide (GaAs) substrates and bump bonded to the silicon read out circuit (ROIC). This paper discusses the design features of the 3rd Generation detectors developed in the UK together with the results obtained from the prototype devices both in the laboratory and when integrated into field deployable thermal imaging cameras.

  11. IVHM for the 3rd Generation RLV Program: Technology Development

    NASA Technical Reports Server (NTRS)

    Kahle, Bill

    2000-01-01

    The objective behind the Integrated Vehicle Health Management (IVHM) project is to develop and integrate the technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Technological areas discussed include: developing, validating, and transfering next generation IVHM technologies to near term industry and government reusable launch systems; focus NASA on the next generation and highly advanced sensor and software technologies; and validating IVHM systems engineering design process for future programs.

  12. New Material System for 3rd Generation IR Applications

    DTIC Science & Technology

    2010-12-01

    CdTe /Si composite substrates. However, in either case, HgCdSe growth experiments were conducted and material characterized . 3.2 HgCdSe Material...indeed tunable, we varied the material fluxes and measured the cut-off wavelength of the layer. Figure 6 shows several films characterized by Fourier...misfit dislocations need to be generated somewhere in the thin film stack to alleviate this energy which ultimately propagates into the IR-absorbing

  13. Structures for the 3rd Generation Reusable Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2001-01-01

    A major goal of NASA is to create an advance space transportation system that provides a safe, affordable highway through the air and into space. The long-term plans are to reduce the risk of crew loss to 1 in 1,000,000 missions and reduce the cost of Low-Earth Orbit by a factor of 100 from today's costs. A third generation reusable concept vehicle (RCV) was developed to assess technologies required to meet NASA's space access goals. The vehicle will launch from Cape Kennedy carrying a 25,000 lb. payload to the International Space Station (ISS). The system is an air breathing launch vehicle (ABLV) hypersonic lifting body with rockets and uses triple point hydrogen and liquid oxygen propellant. The focus of this paper is on the structural concepts and analysis methods used in developing the third generation reusable launch vehicle (RLV). Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.

  14. Microstructure Modeling of 3rd Generation Disk Alloy

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2008-01-01

    The objective of this initiative, funded by NASA's Aviation Safety Program, is to model, validate, and predict, with high fidelity, the microstructural evolution of third-generation high-refractory Ni-based disc superalloys during heat treating and service conditions. This initiative is a natural extension of the DARPA-AIM (Accelerated Insertion of Materials) initiative with GE/Pratt-Whitney and with other process simulation tools. Strong collaboration with the NASA Glenn Research Center (GRC) is a key component of this initiative and the focus of this program is on industrially relevant disk alloys and heat treatment processes identified by GRC. Employing QuesTek s Computational Materials Dynamics technology and PrecipiCalc precipitation simulator, physics-based models are being used to achieve high predictive accuracy and precision. Combining these models with experimental data and probabilistic analysis, "virtual alloy design" can be performed. The predicted microstructures can be optimized to promote desirable features and concurrently eliminate nondesirable phases that can limit the reliability and durability of the alloys. The well-calibrated and well-integrated software tools that are being applied under the proposed program will help gas turbine disk alloy manufacturers, processing facilities, and NASA, to efficiently and effectively improve the performance of current and future disk materials.

  15. The Goodrich 3rd generation DB-110 system: successful flight test on the F-16 aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Davis; Iyengar, Mrinal; Maver, Larry; Dyer, Gavin; Francis, John

    2007-04-01

    The 3rd Generation Goodrich DB-110 system provides users with a three (3) field-of-view high performance Airborne Reconnaissance capability that incorporates a dual-band day and nighttime imaging sensor, a real time recording and a real time data transmission capability to support long range, medium range, and short range standoff and over-flight mission scenarios, all within a single pod. Goodrich developed their 3rd Generation Airborne Reconnaissance Pod for operation on a range of aircraft types including F-16, F-15, F-18, Euro-fighter and older aircraft such as the F-4, F-111, Mirage and Tornado. This system upgrades the existing, operationally proven, 2nd generation DB-110 design with enhancements in sensor resolution, flight envelope and other performance improvements. Goodrich recently flight tested their 3rd Generation Reconnaissance System on a Block 52 F-16 aircraft with first flight success and excellent results. This paper presents key highlights of the system and presents imaging results from flight test.

  16. SCHOOL LIGHTING APPLICATION DATA. EXCERPTS FROM THE IES LIGHTING HANDBOOK, 3RD EDITION.

    ERIC Educational Resources Information Center

    Illuminating Engineering Society, New York, NY.

    THIS PUBLICATION REGARDING SCHOOL LIGHTING WAS PREPARED AS A USEFUL ADDITION TO THE AMERICAN STANDARD GUIDE FOR SCHOOL LIGHTING. THE MATERIAL HAS BEEN EXTRACTED FROM THE IES LIGHTING HANDBOOK TO INCLUDE A MORE DETAILED TREATMENT OF SUBJECTS TO WHICH THE DESIGNER MUST GIVE IMPORTANT CONSIDERATION. THERE IS A MORE EXTENSIVE TREATMENT OF REFLECTED…

  17. The Lived Experiences of 3rd Generation and beyond U.S.-Born Mexican Heritage College Students: A Qualitative Study

    ERIC Educational Resources Information Center

    Galvan, Richard

    2011-01-01

    The purpose of this study was to describe the psychosocial and identity challenges of 3rd generation and beyond U.S.-born (3GAB-USB) Mexican heritage college students. Alvarez (1973) has written about the psychosocial impact "hybridity" can have on a U.S.- born (USB) Mexican individual who incorporates two distinct cultures (American and…

  18. Advanced Materials Research with 3RD Generation Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Soukiassian, P.; D'angelo, M.; Enriquez, H.; Aristov, V. Yu.

    H and D surface nanochemistry on an advanced wide band gap semiconductor, silicon carbide is investigated by synchrotron radiation-based core level and valence band photoemission, infrared absorption and scanning tunneling spectroscopy, showing the 1st example of H/D-induced semiconductor surface metallization, that also occurs on a pre-oxidized surface. These results are compared to recent state-of-the-art ab-initio total energy calculations. Most interestingly, an amazing isotopic behavior is observed with a smaller charge transfer from D atoms suggesting the role of dynamical effects. Such findings are especially exciting in semiconductor physics and in interface with biology.

  19. 3 rd generation 1280 x 720 FPA development status at Raytheon Vision Systems

    NASA Astrophysics Data System (ADS)

    King, D. F.; Radford, W. A.; Patten, E. A.; Graham, R. W.; McEwan, T. F.; Vodicka, J. G.; Bornfreund, R. E.; Goetz, P. M.; Venzor, G. M.; Johnson, S. M.; Jensen, J. E.; Nosho, B. Z.; Roth, J. A.

    2006-05-01

    Raytheon Vision Systems (RVS) has developed and demonstrated the first-ever 1280 x 720 pixel dual-band MW/LWIR focal plane arrays (FPA) to support 3rd-Generation tactical IR systems under the U.S. Army's Dual-Band FPA Manufacturing (DBFM) program. The MW/LWIR detector arrays are fabricated from MBE-grown HgCdTe triple-layer heterojunction (TLHJ) wafers. The RVS dual-band FPA architecture provides highly simultaneous temporal detection in the MWIR and LWIR bands using time-division multiplexed integration (TDMI) incorporated into the readout integrated circuit (ROIC). The TDMI ROIC incorporates a high degree of integration and output flexibility, and supports both dual-band and single-band full-frame operating modes, as well as high-speed LWIR "window" operation at 480 Hz frame rate. The ROIC is hybridized to a two-color detector array using a single indium interconnect per pixel, which makes it highly producible for 20 μm unit cells and exploits mature fabrication processes currently used to produce single-color FPAs. High-quality 1280 x 720 MW/LWIR FPAs have been fabricated and excellent dual-band imagery produced at 60 Hz frame rate. The 1280 x 720 detector arrays for these FPAs have LWIR cutoff wavelengths >=10.5 μm at 78K. These FPAs have demonstrated high-sensitivity at 78K with MW NETD values < 20 mK and LW NETD values <30 mK with f/3.5 apertures. Pixel operability greater than 99.9% has been achieved in the MW band and greater than 98% in the LW band.

  20. Development of partially-coherent wavefront propagation simulation methods for 3rd and 4th generation synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Fluerasu, Andrei; Hulbert, Steve; Idir, Mourad; Kaznatcheev, Konstantine; Shapiro, David; Shen, Qun; Baltser, Jana

    2011-09-01

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, is of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using "Synchrotron Radiation Workshop" (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.

  1. Assessment of human exposure to 3rd generation cephalosporin resistant E. coli (CREC) through consumption of broiler meat in Belgium.

    PubMed

    Depoorter, P; Persoons, D; Uyttendaele, M; Butaye, P; De Zutter, L; Dierick, K; Herman, L; Imberechts, H; Van Huffel, X; Dewulf, J

    2012-09-17

    Acquired resistance of Escherichia coli to 3rd generation cephalosporin antimicrobials is a relevant issue in intensive broiler farming. In Belgium, about 35% of the E. coli strains isolated from live broilers are resistant to 3rd generation cephalosporins while over 60% of the broilers are found to be carrier of these 3rd generation cephalosporin resistant E. coli (CREC) after selective isolation. A model aimed at estimating the exposure of the consumer to CREC by consumption of broiler meat was elaborated. This model consists of different modules that simulate the farm to fork chain starting from primary production, over slaughter, processing and distribution to storage, preparation and consumption of broiler meat. Input data were obtained from the Belgian Food Safety agencies' annual monitoring plan and results from dedicated research programs or surveys. The outcome of the model using the available baseline data estimates that the probability of exposure to 1000 colony forming units (cfu) of CREC or more during consumption of a meal containing chicken meat is ca. 1.5%, the majority of exposure being caused by cross contamination in the kitchen. The proportion of CREC (within the total number of E. coli) at primary production and the overall contamination of broiler carcasses or broiler parts with E. coli are dominant factors in the consumer exposure to CREC. The risk of this exposure for human health cannot be estimated at this stage given a lack of understanding of the factors influencing the transfer of cephalosporin antimicrobial resistance genes from these E. coli to the human intestinal bacteria and data on the further consequences of the presence of CREC on human health.

  2. A 3rd Generation Advanced High-Strength Steel (AHSS) Produced by Dual Stabilization Heat Treatment (DSHT)

    NASA Astrophysics Data System (ADS)

    Qu, Hao; Michal, Gary M.; Heuer, Arthur H.

    2013-10-01

    A 3rd generation advanced high-strength steel containing, in wt pct, 0.3 C, 4.0 Mn, 1.5 Al, 2.1 Si, and 0.5 Cr has been produced using a dual stabilization heat treatment—a five stage thermal processing schedule compatible with continuous galvanized steel production. In excess of 30 vol pct retained austenite containing at least 0.80 wt pct C was achieved with this alloy, which had tensile strengths up to 1650 MPa and tensile elongations around 20 pct.

  3. Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: preparation, in vitro and in vivo evaluation.

    PubMed

    He, Zhijian; Schulz, Anita; Wan, Xiaomeng; Seitz, Joshua; Bludau, Herdis; Alakhova, Daria Y; Darr, David B; Perou, Charles M; Jordan, Rainer; Ojima, Iwao; Kabanov, Alexander V; Luxenhofer, Robert

    2015-06-28

    The clinically and commercially successful taxanes, paclitaxel and docetaxel suffer from two major drawbacks, namely their very low aqueous solubility and the risk of developing resistance. Here, we present a method that overcomes both drawbacks in a very simple manner. We formulated 3rd generation taxoids, able to avoid common drug resistance mechanisms with doubly amphiphilic poly(2-oxazoline)s (POx), a safe and highly efficient polymer for the formulation of extremely hydrophobic drugs. We found excellent solubilization of different 3rd generation taxoids irrespective of the drug's chemical structures with essentially quantitative drug loading and final drug to polymer ratios around unity. The small, highly loaded micelles with a hydrodynamic diameter of less than 100nm are excellently suited for parenteral administration. Moreover, a selected formulation with the taxoid SB-T-1214 is about one to two orders of magnitude more active in vitro than paclitaxel in the multidrug resistant breast cancer cell line LCC6-MDR. In contrast, in wild-type LCC6, no difference was observed. Using a q4d×4 dosing regimen, we also found that POx/SB-T-1214 significantly inhibits the growth of LCC6-MDR orthotropic tumors, outperforming commercial paclitaxel drug Taxol and Cremophor EL formulated SB-T-1214.

  4. Concentrating-solar biomass gasification process for a 3rd generation biofuel.

    PubMed

    Hertwich, Edgar G; Zhang, Xiangping

    2009-06-01

    A new concept of producing synfuel from biomass using concentrating solar energy as its main energy source is proposed in this paper. The aim of the concept is to obtain an easy to handle fuel with near-zero CO2 emission and reduced land-use requirements compared to first and second generation biofuels. The concept's key feature is the use of high-temperature heat from a solar concentrating tower to drive the chemical process of converting biomassto a biofuel, obtaining a near-complete utilization of carbon atoms in the biomass. H2 from water electrolysis with solar power is used for reverse water gas shift to avoid producing CO2 during the process. In a chemical process simulation, we compare the solar biofuel concept with two other advanced synfuel concepts: second generation biofuel and coal-to-liquid, both using gasification technology and capture and storage of CO2 generated in the fuel production. The solar-driventhird generation biofuel requires only 33% of the biomass input and 38% of total land as the second generation biofuel, while still exhibiting a CO2-neutral fuel cycle. With CO2 capture, second generation biofuel would lead to the removal of 50% of the carbon in the biomass from the atmosphere. There is a trade-off between reduced biomass feed costs and the increased capital requirements for the solar-driven process; it is attractive at intermediate biomass and CO2 prices.

  5. Safe Life Propulsion Design Technologies (3rd Generation Propulsion Research and Technology)

    NASA Technical Reports Server (NTRS)

    Ellis, Rod

    2000-01-01

    The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.

  6. [Piperacillin/tazobactam--Tazocin. A penicillin-based alternative to 3rd generation cephalosporins and carbapenems].

    PubMed

    Schønning, Kristian; Tvede, Michael

    2002-05-13

    The antibiotic piperacillin/tazobactam has recently been licensed for use in Denmark. Piperacillin/tazobactam combines a well known beta-lactam antibiotitic, piperacillin, and an inhibitor of bacterial beta-lactamase, tazobactam. The combination of piperacillin and tazobactam compared to piperacillin alone has an expanded antimicrobial spectrum, which includes Klebsiellae, Escherichia coli, and Proteus vulgaris resistant to ampicillin, as well as beta-lactamase-producing Staphylococcus aureus. As piperacillin in itself possesses antimicrobial activity against streptococci, enterococci, and Pseudomonas aeruginosa, the antimicrobial activity of piperacillin/tazobactam indicates that the combination may constitute an alternative to third generation cephalosporins and carbapenems in the treatment of complicated intra-abdominal infections infections in critically ill patients and for the empirical treatment of acute neutropenic febrile patients, as indicated by clinical studies.

  7. From bottom to top: Identification to precision measurement of 3rd-generation quarks with the atlas detector

    NASA Astrophysics Data System (ADS)

    Sapp, Kevin

    The 3rd-generation quarks, bottom ( b) and top (t), are recent additions to the Standard Model of particle physics, and precise characterization of their properties have important implications to searching for new physics phenomena. This thesis presents two analyses which use 4.6 fb-1 of pp collision data at √s = 7 TeV collected by the ATLAS detector at the Large Hadron Collider (LHC) to measure their properties. The first is an analysis which measures our ability to identify jets originating from b quarks with machine-learning algorithms applied to simulated and real data, so the result in simulation can be corrected to match that in data. This measurement has implications for our ability to identify processes with b quarks in their final state; t quarks decay to a b quark and a weak vector boson W more than 99% of the time. The second analysis presented measures properties of the t → Wb decay channel associated with phenomena not predicted by the Standard Model, through a set of effective couplings which preserve Lorentz covariance. The kinematic information of the final-state particles is used to construct an event-specific coordinate system, and probability density is estimated as a function of solid angle in these coordinates. A parameterization of the effective couplings is extracted via a novel unfolding method, finding their values consistent with the Standard Model expectation, contributing the first measurement of the correlation between the parameters, and improving on previous limits.

  8. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    SciTech Connect

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  9. Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.

    PubMed

    Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori

    2015-06-01

    The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump.

  10. The perceptions of professional soccer players on the risk of injury from competition and training on natural grass and 3rd generation artificial turf

    PubMed Central

    2014-01-01

    Background The purpose of this study was to describe professional soccer players’ perceptions towards injuries, physical recovery and the effect of surface related factors on injury resulting from soccer participation on 3rd generation artificial turf (FT) compared to natural grass (NG). Methods Information was collected through a questionnaire that was completed by 99 professional soccer players from 6 teams competing in Major League Soccer (MLS) during the 2011 season. Results The majority (93% and 95%) of the players reported that playing surface type and quality influenced the risk of sustaining an injury. Players believed that playing and training on FT increased the risk of sustaining a non-contact injury as opposed to a contact injury. The players identified three surface related risk factors on FT, which they related to injuries and greater recovery times: 1) Greater surface stiffness 2) Greater surface friction 3) Larger metabolic cost to playing on artificial grounds. Overall, 94% of the players chose FT as the surface most likely to increase the risk of sustaining an injury. Conclusions Players believe that the risk of injury differs according to surface type, and that FT is associated with an increased risk of non-contact injury. Future studies should be designed prospectively to systematically track the perceptions of groups of professional players training and competing on FT and NG. PMID:24581229

  11. A novel amperometric alcohol biosensor developed in a 3rd generation bioelectrode platform using peroxidase coupled ferrocene activated alcohol oxidase as biorecognition system.

    PubMed

    Chinnadayyala, Somasekhar R; Kakoti, Ankana; Santhosh, Mallesh; Goswami, Pranab

    2014-05-15

    Alcohol oxidase (AOx) with a two-fold increase in efficiency (Kcat/Km) was achieved by physical entrapment of the activator ferrocene in the protein matrix through a simple microwave based partial unfolding technique and was used to develop a 3rd generation biosensor for improved detection of alcohol in liquid samples. The ferrocene molecules were stably entrapped in the AOx protein matrix in a molar ratio of ~3:1 through electrostatic interaction with the Trp residues involved in the functional activity of the enzyme as demonstrated by advanced analytical techniques. The sensor was fabricated by immobilizing ferrocene entrapped alcohol oxidase (FcAOx) and sol-gel chitosan film coated horseradish peroxidase (HRP) on a multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode through layer-by-layer technique. The bioelectrode reactions involved the formation of H2O2 by FcAOx biocatalysis of substrate alcohol followed by HRP-catalyzed reduction of the liberated H2O2 through MWCNT supported direct electron transfer mechanism. The amperometric biosensor exhibited a linear response to alcohol in the range of 5.0 × 10(-6) to 30 × 10(-4)mol L(-1) with a detection limit of 2.3 × 10(-6) mol L(-1), and a sensitivity of 150 µA mM(-1) cm(-2). The biosensor response was steady for 28 successive measurements completed in a period of 5h and retained ~90% of the original response even after four weeks when stored at 4 °C. The biosensor was successfully applied for the determination of alcohol in commercial samples and its performance was validated by comparing with the data obtained by GC analyses of the samples.

  12. Effects of Deep Water Source-Sink Terms in 3rd generation Wave Model SWAN using different wind data in Black Sea

    NASA Astrophysics Data System (ADS)

    Kirezci, Cagil; Ozyurt Tarakcioglu, Gulizar

    2016-04-01

    Coastal development in Black Sea has increased in recent years. Therefore, careful monitoring of the storms and verification of numerical tools with reliable data has become important. Previous studies by Kirezci and Ozyurt (2015) investigated extreme events in Black Sea using different wind datasets (NCEP's CFSR and ECMWF's operational datasets) and different numerical tools (SWAN and Wavewatch III). These studies showed that significant effect to results is caused by the deep water source-sink terms (wave growth by wind, deep water dissipation of wave energy (whitecapping) and deep water non-linear wave-wave interactions). According to Timmermans(2015), uncertainty about wind forcing and the process of nonlinear wave-wave interactions are found to be dominant in numerical wave modelling. Therefore, in this study deep water source and sink term solution approaches of 3rd generation numerical tool (SWAN model) are tested, validated and compared using the selected extreme storms in Black Sea. 45 different storms and storm like events observed in Black Sea between years 1994-1999 are selected to use in the models. The storm selection depends on the instrumental wave data (significant wave heights, mean wave period and mean wave direction) obtained in NATO-TU Waves project by the deep water buoy measurements at Hopa, Sinop, Gelendzhik, and wind data (mean and peak wind speeds, storm durations) of the regarding events. 2 different wave growth by wind with the corresponding deep water dissipation terms and 3 different wave -wave interaction terms of SWAN model are used in this study. Wave growth by wind consist of two parts, linear growth which is explained by Cavaleri and Malanotte-Rizzoli(1981),and dominant exponential growth. There are two methods in SWAN model for exponential growth of wave, first one by Snyder et al. (1981), rescaled in terms of friction velocity by Komen et. al (1984) which is derived using driving wind speed at 10m elevation with related drag

  13. The 3rd generation Front-End cards of the Pierre Auger surface detectors: Test results and performance in the field

    NASA Astrophysics Data System (ADS)

    Szadkowski, Z.; Bäcker, T.; Becker, K.-H.; Buchholz, P.; Fleck, I.; Kampert, K.-H.; Rammes, M.; Rautenberg, J.; Taşcău, O.

    2009-07-01

    The surface detector array of the Pierre Auger Observatory comprises 1600 water Cherenkov detectors distributed over an area of 3000 km2. The Cherenkov light is detected by three 9-in. photo-multiplier tubes from which the signals of the anode and last dynode are digitized by 10 bit 40 MHz FADCs. An Altera Cyclone FPGA is employed to generate different local triggers and to handle the data transfer to a communication board. After briefly discussing the design of the cards we present an autonomous test-bench, which has been set up in order to test the large number of boards prior to installation in the field. The qualification procedure and the results obtained in the laboratory are presented. Up to three years of operation in the field demonstrate a very good performance and reliability of the Front-End cards.

  14. Fifth generation light sources

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2016-12-01

    Coherent light sources are one of the most fundamental research tools in biology, technology and in other areas. Synchrotron light source consists of a few basic parts: energy source - which is an electron beam accelerator, energy converter between electron and photon beams - which is an undulator, and photon user experimental lines. Each of these parts is separately a complex system, which is currently a subject to fast technological development. Future light sources of the fifth generation are based on completely new solutions of these fundamental parts, in comparison with the sources of the previous generations. Energy source is a new generation laser - plasma accelerator with electrical field in the area of multiple GV/m. A miniature undulator is tested in the MEMS technology from new materials. Classical light beam lines, vacuum, and difficult for management and beam distribution, change their meaning in the case of availability of miniature undulators positioned immediately at or even inside the experimental stations. After an introduction concerning the light sources of the previous generations, the article shows current research efforts on the mentioned key components of the fifth generation light sources. In some cases this is a continuation and modernization of the previous technologies, in the majority it is a brave endeavour to apply completely new technologies, like laser - plasma acceleration.

  15. Research at the CEA in the field of safety in 2nd and 3rd generation light water reactors

    NASA Astrophysics Data System (ADS)

    Billot, Philippe

    2012-05-01

    The research programs at the CEA in the field of safety in nuclear reactors are carried out in a framework of international partnerships. Their purpose is to develop studies on: The methods allowing for the determination of earthquake hazards and their consequences; The behaviour of fuel in an accident situation; The comprehension of deflagration and detonation phenomena of hydrogen and the search for effective prevention methods involving an explosion risk; The cooling of corium in order to stop its progression in and outside the vessel thereby reducing the risk of perforating the basemat; The behaviour of the different fission product families according to their volatility for the UO2 and MOX fuels.

  16. Feel the heat: The effect of temperature on development, behavior and central pattern generation in 3rd instar Calliphora vicina larvae.

    PubMed

    Hückesfeld, Sebastian; Niederegger, Senta; Schlegel, Philipp; Heinzel, H-G; Spiess, Roland

    2011-01-01

    Like in all poikilothermic animals, higher temperatures increase developmental rate and activity in Calliphora vicina larvae. We therefore could expect temperature to have a persistent effect on the output of the feeding and crawling central pattern generators (CPGs). When confronted with a steep temperature gradient, larvae show evasive behavior after touching the substrate with the cephalic sense organs. Beside this reflex behavior the terminal- and dorsal organ might also mediate long term CPG modulation. Both organs were thermally stimulated while their response was recorded from the maxillary- or antennal nerve. The terminal organ showed a tonic response characteristic while the dorsal organ was not sensitive to temperature. Thermal stimulation of the terminal organ did not affect the ongoing patterns of fictive feeding or crawling, recorded from the antennal- or abdominal nerve respectively. A selective increase of the central nervous system (CNS) temperature accelerated the motor patterns of both feeding and crawling. We propose that temperature affects centrally generated behavior via two pathways: short term changes like thermotaxis are mediated by the terminal organ, while long term adaptations like increased feeding rate are caused by temperature sensitive neurons in the CNS which were recently shown to exist in Drosophila larvae.

  17. Parametric light generation.

    PubMed

    Ebrahimzadeh, M

    2003-12-15

    Since its invention more than 40 years ago, the laser has become an indispensable optical tool, capable of transforming light from its naturally incoherent state to a highly coherent state in space and time. Yet, due to fundamental limitations, operation of the laser remains confined to restricted spectral and temporal regions. Nonlinear optics can overcome this limitation by allowing access to new spectral and temporal regimes through the exploitation of suitable dielectric materials in combination with the laser. In particular, optical parametric oscillators are versatile coherent light sources with unique flexibility that can provide optical radiation across an entire spectral range from the ultraviolet to the far-infrared and over all temporal scales from continuous wave to the ultrafast femtosecond domain.

  18. Light beam frequency comb generator

    DOEpatents

    Priatko, G.J.; Kaskey, J.A.

    1992-11-24

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.

  19. Light beam frequency comb generator

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1992-01-01

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

  20. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1986-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction.

  1. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1986-03-11

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  2. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier

    NASA Astrophysics Data System (ADS)

    Bonifacio, R.; Desalvosouza, L.; Pierini, P.; Scharlemann, E. T.

    FEL operation at short wavelength is limited by electron beam quality, by the availability of mirrors for oscillators, and by the availability of input sources for FEL amplifiers. It is possible to use and FEL amplifier as a resonant frequency tripling device, generating light and strong bunching at the 3rd harmonic of a conventional input source in an initial section of wiggler, then using a second section of wiggler resonant at the tripled frequency to amplify the short wavelength light. Neither mirrors nor a short-wavelength input source are required, and some relaxation of electron beam quality appears to be possible. We illustrate the scheme with a one-dimensional model and then with NUTMEG simulations of an 80 nm FEL amplifier initiated by a 240 nm input signal, in which an efficiency of conversion of electron beam power to 80 nm light of nearly 10(exp -4) was obtained.

  3. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier

    SciTech Connect

    Bonifacio, R.; de Salvo Souza, L.; Pierini, P. . Dipt. di Fisica Istituto Nazionale di Fisica Nucleare, Milan ); Scharlemann, E.T. )

    1989-01-01

    FEL operation at short wavelength is limited by electron beam quality, by the availability of mirrors for oscillators, and by the availability of input sources for FEL amplifiers. It is possible to use and FEL amplifier as a resonant frequency tripling device, generating light and strong bunching at the 3rd harmonic of a conventional input source in an initial section of wiggler, then using a second section of wiggler resonant at the tripled frequency to amplify the short wavelength light. Neither mirrors nor a short-wavelength input source are required, and some relaxation of electron beam quality appears to be possible. We illustrate the scheme with a one-dimensional model and then with NUTMEG simulations of an 80 nm FEL amplifier initiated by a 240 nm input signal, in which an efficiency of conversion of electron beam power to 80 nm light of nearly 10{sup -4} was obtained. 3 refs., 6 figs., 1 tab.

  4. BOOK REVIEW: Modern Physics, 3rd edn

    NASA Astrophysics Data System (ADS)

    Lovett, David

    1999-09-01

    The number of broadly based physics texts written at a level corresponding to second year and above of UK physics degrees is limited. This is such a book thoroughly updated in a third edition, the first edition having been published 20 years ago. The book is unusual in that the reader is referred to the Freeman website www.whfreeman.com/physics for some additional sections. It will be interesting to see whether this proves to be an attractive feature. The coverage reflects the US emphasis on topics and contains both theoretical and experimental details. It should not be regarded as an introductory text although it is clearly written. Thus the first two chapters take the reader straight into relativity, concentrating mainly on special relativity but going on to general relativity. From here the reader is led to ideas of quantization of charge, light and energy, followed by an exploration of the nuclear atom, wavelike properties of particles and Schrödinger's equation. Solution of this equation for the hydrogen atom introduces a section on spectroscopy. The next chapter on statistical physics includes Fermi-Dirac and Bose-Einstein statistics and brings to a close Part 1, which concentrates on the theoretical groundwork. Consistent with its title, the book does not cover traditional aspects of thermodynamics and electromagnetic theory. Part 2 is entitled `Applications' and begins with a chapter on molecular structure and spectra. Lasers and masers are included here but geometrical, physical and nonlinear optics get limited or no coverage. Solid state physics follows but, despite the title of the book, there is little on modern devices, although the section on superconductivity mentions high temperature materials. The chapters on nuclear physics, fission, fusion reactors and medical applications and a chapter on particle physics are comprehensive. Finally a chapter on astrophysics and cosmology is referred to, but the reader must find this at the website. As this is

  5. Search for 3rd Generation Vector Leptoquarks in the Di-tau Di-jet Channel in Proton Antiproton Collisions at square √s = 1.96 TeV

    SciTech Connect

    Forrester, Stanley Scott

    2006-01-01

    We search for third generation vector leptoquarks (V LQ3) produced in colliding p$\\bar{p}$ beams operating at √s = 1.96 TeV at the CDF experiment in Run II of the Fermilab Tevatron. We use 322 pb-1 of data to search for the V LQ3 signal in the di-tau plus di-jet channel. For the first time, the full matrix element is used in the Monte Carlo simulation of this signal. With no events observed in the signal region, we set a 95% C.L. upper limit on the V LQ3 pair production cross section of σ < 344fb, assuming Yang-Mills couplings and Br(V LQ3 → bτ) = 1, and a lower limit on the V LQ3 mass of mV LQ3 > 317 GeV=c2. If theoretical uncertainties on the cross section are applied in the least favorable manner the results are σ < 360fb and mV LQ3 > 294 GeV=c2. The Minimal coupling V LQ3 result is an upper limit on the cross section of σ < 493fb (σ < 610fb) and the lower limit on the mass is mV LQ3 > 251 GeV=c2 (mV LQ3 > 223 GeV=c2) for the nominal (1σ varied) theoretical expectation.

  6. The Ups and Downs of 3rd Grade

    ERIC Educational Resources Information Center

    Felton, Kelsey Augst; Akos, Patrick

    2011-01-01

    The transition from 2nd to 3rd grade has received little notice in education research--yet the authors' experience in elementary school counseling convinced them that most students undergo a seismic shift during this period. Third grade is not only the first year students will encounter standardized end-of-grade tests, but also a year in which…

  7. PREFACE: 3rd International Congress on Mechanical Metrology (CIMMEC2014)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    From October 14th to 16th 2014, The Brazilian National Institute of Metrology, Quality, and Technology (Inmetro) and the Brazilian Society of Metrology (SBM) organized the 3rd International Congress on Mechanical Metrology (3rd CIMMEC). The 3rd CIMMEC was held in the city of Gramado, Rio Grande do Sul, Brazil. Anticipating the interest and enthusiasm of the technical-scientific community, the Organizing Institutions invite people and organizations to participate in this important congress, reiterating the commitment to organize an event according to highest international standards. This event has been conceived to integrate people and organizations from Brazil and abroad in the discussion of advanced themes in metrology. Manufacturers and dealers of measuring equipment and standards, as well as of auxiliary accessories and bibliographic material, had the chance to promote their products and services in stands at the Fair, which has taken place alongside the Congress. The 3rd CIMMEC consisted of five Keynote Speeches and 116 regular papers. Among the regular papers, the 25 most outstanding ones, comprising a high quality content on Mechanical Metrology, were selected to be published in this issue of Journal of Physics: Conference Series. It is our great pleasure to present this volume of Journal of Physics: Conference Series to the scientific community to promote further research in Mechanical Metrology and related areas. We believe that this volume will be both an excellent source of scientific material in the fast evolving fields that were covered by CIMMEC 2014.

  8. PREFACE: 3rd International Symposium ''Optics and its Applications''

    NASA Astrophysics Data System (ADS)

    Calvo, M. L.; Dolganova, I. N.; Gevorgyan, N.; Guzman, A.; Papoyan, A.; Sarkisyan, H.; Yurchenko, S.

    2016-01-01

    The SPIE.FOCUS Armenia: 3rd International Symposium ''Optics and its Applications'' (OPTICS-2015) http://rau.am/optics2015/ was held in Yerevan, Armenia, in the period October 1 - 5, 2015. The symposium was organized by the International Society for Optics and Photonics (SPIE), the Armenian SPIE student chapter with collaboration of the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-PYRKAL, and the Yerevan State University (YSU). The Symposium was co-organized by the SPIE & OSA student chapters of BMSTU, the Armenian OSA student chapter, and the SPIE student chapters of Lund University and Wroclaw University of Technology. The symposium OPTICS-2015 was dedicated to the International Year of Light and Light-Based Technologies. OPTICS-2015 was devoted to modern topics and optical technologies such as: optical properties of nanostructures, silicon photonics, quantum optics, singular optics & its applications, laser spectroscopy, strong field optics, biomedical optics, nonlinear & ultrafast optics, photonics & fiber optics, and mathematical methods in optics. OPTICS-2015 was attended by 100 scientists and students representing 17 countries: Armenia, China, Czech Republic, France, Georgia, Germany, India, Iran, Italy, Latvia, Mexico, Poland, Russia, Saudi Arabia, Sweden, Ukraine, and USA. Such a broad international community confirmed the important mission of science to be a uniting force between different countries, religions, and nations. We hope that OPTICS-2015 inspired and motivated students and young scientists to work in optics and in science in general. The present volume of Journal of Physics: Conference Series includes proceedings of the symposium covering various aspects of modern problems in optics. We are grateful to all people who were involved in the organization process. We gratefully acknowledge support from

  9. Microwave generated plasma light source apparatus

    SciTech Connect

    Yoshizawa, K.; Ito, H.; Kodama, H.; Komura, H.; Minowa, Y.

    1985-02-05

    A microwave generated plasma light source including a microwave generator, a microwave cavity having a light reflecting member forming at least a portion of the cavity, and a member transparent to light and opaque to microwaves disposed across an opening of the cavity opposite the feeding opening through which the microwave generator is coupled. An electrodeless discharge bulb is disposed at a position in the cavity such that the cavity operates as a resonant cavity at least when the bulb is emitting light. In the bulb is encapsulated at least one discharge light emissive substance. The bulb has a shape and is sufficiently small that the bulb acts substantially as a point light source.

  10. PreK-3rd: How Superintendents Lead Change. PreK-3rd Policy Action Brief. No. Five

    ERIC Educational Resources Information Center

    Marietta, Geoff

    2010-01-01

    Leading change to create an integrated PreK-3rd education and connect early learning programs with the K-12 system is not easy. Superintendents require courage to take the first step, persistence and political skills to encourage organizational and community engagement, and a relentless focus on results to measure progress and build momentum. As a…

  11. Performance of new generation pole light

    NASA Astrophysics Data System (ADS)

    Foo, K. C.; Karunanithi, S.; Thio, G.

    2013-06-01

    This paper describes the design and implementation of a standalone photovoltaic power supply which caters for garden lighting scheme. New Generation Pole Light (NGPL) consists of three parts which are light dependent resistor (LDR) and pyroelectric infrared (PIR) sensors, microcontroller and light emitting diode (LED) and finally, solar charging system. During the night, LED is switched on with two operating modes which are ultra-bright lighting for a predetermine period (when human presence is detected) and dim lighting. Meanwhile, LED is switched off at day time and solar charging system will recover the capacity of discharged battery. NGPL provides portable, sustainable, environmental friendly and requires minimal maintenance for outdoor lighting scheme for both urban and rural areas.

  12. The 3rd Annual Controlled Structures Technology Symposium

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of presentations at the Controlled Structures Technology (CST) MIT Space Engineering Research Center 3rd Annual Symposium are included. Topics covered include optical interferometer testbed; active impedence matching of complex structural systems; application of CST to adaptive optics; middeck 0-G dynamics Experiment (MODE); inhibiting multiple mode vibration in controlled flexible systems; the middeck active control experiment (MACE); robust control for uncertain structures; cost averaging techniques for robust structural control; and intelligent structures technology.

  13. Nice observatory measurements of double stars (3rd series)

    NASA Astrophysics Data System (ADS)

    Thorel, J.-C.

    2000-12-01

    We present recent measurements of visual double stars made at the Nice Observatory (3rd series). We also report the discovery of a new double star: JCT 4. Moreover we give a more precise position of the double star DOO 35. Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  14. Joint Force Quarterly. Issue 66, 3rd Quarter 2012

    DTIC Science & Technology

    2012-07-01

    core combat systems are interactive with one another, creating a synergistic outcome and capability rather than providing an additive- segmented tool ...J o i n t F o r c e Q u a r t e r l y issue 66, 3rd Quarter 2012 Achieving Force Resilience Offensive Cyber Joint System Assessments Report...cross-pollination” of students on a large scale. At a joint-minded level, we need to rethink our Service personnel systems , which could enhance the

  15. Simulation of robustness of a new e-beam column with the 3 rd-order imaging technique

    NASA Astrophysics Data System (ADS)

    Takeya, K.; Fuse, T.; Kinoshita, H.; Parker, N. William

    2008-03-01

    We are now investigating a new concept column with the 3 rd-order imaging technique, in order to obtain fine resolution and high current density beams for electron beam direct writing (EBDW) suitable for below 32nm technology nodes. From the first experimental verification, it is found that the 3 rd-order imaging has a benefit of increasing the beam current compared with conventional Gaussian beam without any beam blurring. However, in order to realize such a column which can work stably in the sub 32nm technology node generations, it is important to clarify how robust the 3 rd-order imaging is against the mechanical tolerances in column manufacturing. This paper describes the tolerance analysis for errors of column manufacturing by simulation. The column has an electron gun with small virtual source and two (Gun and Main) lenses. A patterned beam defining aperture, which enables the 3 rd-order imaging, is set between the 1 st and the 2 nd lenses. The influences of errors such as concentricity, offset and tilt between optical parts on the beam shape, beam current density distribution, and beam edge acuity on a wafer is analyzed for this column. According to these results, the 3 rd-order imaging appears to have sufficiently large allowance compared to the error budget for column manufacturing required in the sub 32nm technology node patterning.

  16. White Light Generation in Human Saliva

    NASA Astrophysics Data System (ADS)

    Santhosh, C.; Dharmadhikari, A. K.; Dharmadhikari, J. A.; Alti, K.; Mathur, D.

    2011-07-01

    Interaction of intense, femto-second pulses of infrared light (800 nm) with water generates white light supercontinuum due to nonlinear optical effects. This supercontinuum was found to be suppressed by the addition of alpha amylase, a major protein in the human saliva. We have studied the suppression of supper continuum by human saliva, collected from healthy subjects with and without smoking habits. Suppression of the blue-sided components was observed significantly in non-smokers saliva than chain smokers.

  17. 3rd International Conference on X-ray Technique

    NASA Astrophysics Data System (ADS)

    Potrakhov, N. N.; Gryaznov, A. Yu; Lisenkov, A. A.; Kostrin, D. K.

    2017-02-01

    In this preface a brief history, modern aspects and future tendencies in development of the X-ray technique as seen from the 3rd International Conference on X-ray Technique that was held on 24–25 November 2016 in Saint Petersburg, Russia are described On 24–25 November 2016 in Saint Petersburg on the basis of Saint Petersburg State Electrotechnical University “LETI” n. a. V. I. Ulyanov (Lenin) was held the 3rd International Conference on X-ray Technique. The tradition to hold a similar conference in our country was laid in Soviet times. The last of them, the All-Union Conference on the Prospects of X-ray Tubes and Equipment was organized and held more than a quarter century ago – on 21–23 November 1999, at the initiative and under the leadership of the chief engineer of the Leningrad association of electronic industry “Svetlana” Borovsky Alexander Ivanovich and the chief of special design bureau of X-ray devices of “Svetlana” Shchukin Gennady Anatolievich. The most active part in the organization and work of the conference played members of the department of X-ray and electron beam instruments of Leningrad Electrotechnical Institute “LETI” (the former name of Saint Petersburg State Electrotechnical University “LETI”), represented by head of the department professor Ivanov Stanislav Alekseevich.

  18. 3rd grade English language learners making sense of sound

    NASA Astrophysics Data System (ADS)

    Suarez, Enrique; Otero, Valerie

    2013-01-01

    Despite the extensive body of research that supports scientific inquiry and argumentation as cornerstones of physics learning, these strategies continue to be virtually absent in most classrooms, especially those that involve students who are learning English as a second language. This study presents results from an investigation of 3rd grade students' discourse about how length and tension affect the sound produced by a string. These students came from a variety of language backgrounds, and all were learning English as a second language. Our results demonstrate varying levels, and uses, of experiential, imaginative, and mechanistic reasoning strategies. Using specific examples from students' discourse, we will demonstrate some of the productive aspects of working within multiple language frameworks for making sense of physics. Conjectures will be made about how to utilize physics as a context for English Language Learners to further conceptual understanding, while developing their competence in the English language.

  19. 3rd Pavia international symposium on advanced kidney cancer.

    PubMed

    Porta, Camillo; Bracarda, Sergio

    2012-02-01

    Kidney cancers' natural history has radically changed in the past few years, due to the development of novel targeted agents. Despite these improvements, several unanswered questions still remain on the table, regarding the best first-line treatment, the ideal sequence of treatments, the management of specific subgroups of patients (e.g., elderly patients or those with comorbidities) and the relevance of prognostic factors, among many others. To foster discussions among clinicians and investigators working in this field, and to exchange different viewpoints concerning the newest advances in kidney cancer pathogenesis and treatment, the 3rd Pavia International Symposium on Advanced Kidney cancer was held in Pavia (Italy) between 30 June and 1 July 2011. The aim of this report is to summarize the most significant advances in the different disciplines applied to advanced kidney cancer, which were presented and discussed during the meeting, and how these advances will be changing the perspective of patients with this disease.

  20. Generation and manipulation of attosecond light pulses

    NASA Astrophysics Data System (ADS)

    Gaarde, Mette

    2006-05-01

    Attosecond pulses of light can be generated in the extremely non-linear interactions between an ultrashort, intense laser pulse and a gas of atoms, via the process of high harmonic generation [1,2]. In one approach, a number of odd harmonics of rougly equal strength are combined to form a train of sub-femtosecond pulses. If the harmonics are locked in phase to each other, the train will consist of the emission of one attosecond pulse every half cycle of the driving laser field [1,3]. It is in general not trivial to ensure that the harmonics are phase-locked as they are generated with intrinsically different phases. These phases originate in the strong field dynamics of the light-matter interaction [4].We will discuss different ways of generating and manipulating attosecond pulses via high harmonic generation. We will show how the harmonics can be phase-locked and better synchronized so as to form optimal pulse trains [3]. We will also show that it is possible to generate trains of pulses separated by a full laser cycle, by combining the driving laser field with its second harmonic [5]. The strong field continuum dynamics driven by the two-color field is very different from that of the one-color field and varies strongly with the delay between the two laser fields [6]. (1) P. M. Paul et al, Science 292, 1689 (2001).(2) M. Hentschel et al, Nature 414, 509 (2001).(3) R. Lopez-Martens et al, PRL 94, 033001 (2005).(4) P. Antoine, A. L'Huillier, and M. Lewenstein, PRL 77, 1234 (1996).(5) J. Mauritsson et al, in preparation (2006).(6) M. B. Gaarde et al, in preparation (2006).

  1. Extreme and Local 3rd Harmonic Response of Niobium (Nb) Superconductor

    NASA Astrophysics Data System (ADS)

    Oripov, Bakhrom; Tai, Tamin; Anlage, Steven

    Superconducting Radio Frequency (SRF) cavities are being widely used in new generation particle accelerators. These SRF cavities are based on bulk Nb. Based on the needs of the SRF community to identify defects on Nb surfaces, a novel near-field magnetic microwave microscope was successfully built using a magnetic writer from a conventional magnetic recording hard-disk drive1. This magnetic writer can create an RF magnetic field, localized and strong enough to drive Nb into the vortex state. This probe enables us to locate defects through scanning and mapping of the local electrodynamic response in the multi-GHz frequency range. Recent measurements have shown that 3rd harmonic nonlinear response is far more sensitive to variations in input power and temperature then linear response, thus we mainly study the 3rd harmonic response. Moreover, the superconductor is usually the only source for nonlinear response in our setup, thus there is less chance of having noise or background signal. Understanding the mechanism responsible for this non-linear response is important for improving the performance of SRF cavities. Besides Nb we also study various other superconductors such as MgB2 and the cuprate Bi-Sr-Ca-Cu-O (BSCCO) for potential applications in SRF cavities. This work is funded by US Department of Energy through Grant # DE-SC0012036T and CNAM.

  2. Third-generation synchrotron light sources

    SciTech Connect

    Schlachter, A.S.; Wuilleumier, F.J.

    1993-09-01

    X rays are a powerful probe of matter because they interact with electrons in atoms, molecules, and solids. They are commonly produced by relativistic electrons or positrons stored in a synchrotron. Recent advances in technology are leading to the development of a new third generation of synchrotron radiation sources that produce vacuum-ultraviolet and x-ray beams of unprecedented brightness. These new sources are characterized by a very low electron-beam emittance and by long straight sections to accommodate permanent-magnet undulators and wigglers. Several new low-energy light sources, including the Advanced Light Source, presently under construction at the Lawrence Berkeley Laboratory, and ELETTRA, presently being constructed in Trieste, will deliver the world`s brightest synchrotron radiation in the VUV and soft x-ray regions of the spectrum. Applications include atomic and molecular physics and chemistry, surface and materials science, microscopy, and life sciences.

  3. Generating A Strobed Laser Light Sheet

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Franke, John M.; Rhodes, David B.; Jones, Stephen B.

    1994-01-01

    An optoelectronic system generating synchronous, strobed sheet of laser light developed for use in making visible flow of air about model helicopter rotor. Used in wind-tunnel tests to determine actual locations of vortices for comparison with locations predicted by mathematical models to validate models. Each blade tip produces vortex. By establishing successive vortex locations, researcher determines trajectory of vortex pattern. Light-sheet strobe circuits provide selection of blade positions, strobe-pulse durations, and multiple pulses per revolution for rotors having two to nine blades. To make flow visible, vaporizing propylene glycol injected upstream of model. System also provides calibrated trigger delay of strobe pulses, adjustable strobe-pulse durations, selectable number of blades, and slip-sync mode to make flow visible as though in slow motion.

  4. Microdrilling of PCB substrate using DPSS 3rd harmonic laser

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Chang, Won Seok; Yoon, Kyung Ku; Jeong, Sungho; Shin, Bo Sung; Whang, Kyung Hyun

    2003-02-01

    Micromachining using the DPSS 3rd Harmonic Laser (355nm) has outstanding advantages as a UV source in comparison with Excimer lasers in various aspects such as maintenance cost, maskless machining, high repetition rate and so on. It also has the greater absorptivity of many materials in contrast to other IR sources. In this paper, the process for micro-drilling of through and blind hope in Cu/PI/Cu substrate with the UV DPSSL and a scanning device is investigated by both experimental and numerical methods. It is known that there is a large gap between the ablation threshold of copper and that of PI. We use the multi path for through hole with high energy density and we use Archimedes spiral path for blind hole with different energy densities to ablate different material. Furthermore, Matlab simulations considering the energy threshold of material is performed to anticipate the ablation shape according to the duplication of pulse, and FEM thermal analysis is used to predict the ablation depth of copper. This study would be widely applicable to various laser micromachining applications including through and blind hole micro-drilling of PCB, and micromachining of semiconductor components, medical parts and printer nozzles amongst others.

  5. 80. GENERAL VIEW TO NORTH ON 3RD AVENUE EL AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. GENERAL VIEW TO NORTH ON 3RD AVENUE EL AT GUN HILL STATION. 7TH AVENUE EL EXPRESS IS VISIBLE ABOVE THE 3RD AVENUE EL WHICH JOINED ONTO THE SAME STRUCTURE AT GUN HILL ROAD. NOTE: GUN HILL ROAD IS THE NORTH TERMINUS OF THE 3RD AVENUE ELEVATED. TRAINS DID NOT CARRY PASSENGERS BEYOND THIS POINT, ALTHOUGH THE 3RD AVENUE TRACK DID EXTEND FURTHER NORTH FOR SWITCHING PURPOSES AND INTO THE YARDS. - Interborough Rapid Transit Company, Third Avenue Elevated Line, Borough of the Bronx, New York County, NY

  6. Bifurcation of limit cycles in 3rd-order Z2 Hamiltonian planar vector fields with 3rd-order perturbations

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Han, Maoan

    2013-04-01

    In this paper, we show that a Z2-equivariant 3rd-order Hamiltonian planar vector fields with 3rd-order symmetric perturbations can have at least 10 limit cycles. The method combines the general perturbation to the vector field and the perturbation to the Hamiltonian function. The Melnikov function is evaluated near the center of vector field, as well as near homoclinic and heteroclinic orbits.

  7. SESAME -- A third generation synchrotron light source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2012-03-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research centre in construction in Jordan, enabling world-class research while promoting peace through scientific cooperation. Its centerpiece, a new 2.5 GeV 3rd Generation Electron Storage Ring (133m circumference, 26nm-rad emittance, 12 places for insertion devices), will provide intense light from infra-red to hard X-rays. Members of the Council (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority,Turkey) provide the operations budget. Voluntary contributions by several Council Members that could amount to over 20 million over 5 years are now being finalized. This, plus funds from other sources, will enable acquisition of the technical components of the new ring and the upgrading of beamline equipment donated by several European and US labs. All concrete shielding is complete. The 0.8 GeV BESSY I injector system, a gift from Germany, is now being installed. A training program has been underway since 2000. SESAME is on track to start operation with four day-one beam lines in 2015.

  8. PREFACE: 3rd International Conference on Hadron Physics (TROIA'11)

    NASA Astrophysics Data System (ADS)

    Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ

    2012-03-01

    The 3rd International Conference on Hadron Physics, TROIA'11 was held at Canakkale, Turkey on 22-25 August 2011. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University and HadronPhysics2 Consortium sponsored the conference. Its aim was to bring together the experts and young scientists working on experimental and theoretical hadron physics. About 60 participants from 12 countries attended the conference. The topics covered included: Chiral Perturbation Theory QCD Sum Rules Effective Field Theory Exotic Hadrons Hadron Properties from Lattice QCD Experimental Results and Future Perspectives Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and the afternoon sessions were devoted to contributed talks and poster presentations. The speakers of the invited talks were: D Melikhov, M Nielsen, M Oka, E Oset, S Scherer, T T Takahashi and R Wanke. The conference venue was a resort hotel near Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient town of Troia and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Kadir Utku Can, and all other members of the Organizing Committee for their patience and efforts. 13 February 2012 The Editors Güray Erkol Ayşe Küçükarslan Altuğ Özpineci Conference photograph

  9. PREFACE: 3rd International Meeting on Silicene (IMS-3)

    NASA Astrophysics Data System (ADS)

    Kara, Abdelkader; Enriquez, Hanna; Lemaire, Jean Louis; Oughaddou, Hamid

    2014-03-01

    . Historical summary Every two years, the STARM (science, technologie avanc\\'ee et recherche pour la Mediterran\\'ee, http://www.starm.emcmre.org/) society is organizing an international conference entitled Euro-Mediterranean Conference on Materials and Renewable Energies (EMCMRE, http://www.emcmre.org/) in countries across the Mediterranean Sea. It is in this framework that an international meeting dedicated to silicene is organized simultaneously since 2010: 1st International Meeting of Silicene (IMS-1), Safi, Morocco, 2010 2nd International Meeting of Silicene (IMS-2), Marrakech, Morocco, 2011 3rd International Meeting of Silicene (IMS-3), Istres-Marseille, France, 2013 Conference pictures are available in the PDF

  10. Potential for Significant Reductions in Dropout Rates: Analysis of an Entire 3rd Grade State Cohort

    ERIC Educational Resources Information Center

    Cratty, Dorothyjean

    2012-01-01

    Nineteen percent of 1997-98 North Carolina 3rd graders were observed to drop out of high school. A series of logits predict probabilities of dropping out on determinants such as math and reading test scores, absenteeism, suspension, and retention, at the following grade levels: 3rd, 5th, 8th, and 9th. The same cohort and variables are used to…

  11. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  12. Generating artificial light curves: revisited and updated

    NASA Astrophysics Data System (ADS)

    Emmanoulopoulos, D.; McHardy, I. M.; Papadakis, I. E.

    2013-08-01

    The production of artificial light curves with known statistical and variability properties is of great importance in astrophysics. Consolidating the confidence levels during cross-correlation studies, understanding the artefacts induced by sampling irregularities, establishing detection limits for future observatories are just some of the applications of simulated data sets. Currently, the widely used methodology of amplitude and phase randomization is able to produce artificial light curves which have a given underlying power spectral density (PSD) but which are strictly Gaussian distributed. This restriction is a significant limitation, since the majority of the light curves, e.g. active galactic nuclei, X-ray binaries, gamma-ray bursts, show strong deviations from Gaussianity exhibiting `burst-like' events in their light curves yielding long-tailed probability density functions (PDFs). In this study, we propose a simple method which is able to precisely reproduce light curves which match both the PSD and the PDF of either an observed light curve or a theoretical model. The PDF can be representative of either the parent distribution or the actual distribution of the observed data, depending on the study to be conducted for a given source. The final artificial light curves contain all of the statistical and variability properties of the observed source or theoretical model, i.e. the same PDF and PSD, respectively. Within the framework of Reproducible Research, the code and the illustrative example used in this paper are both made publicly available in the form of an interactive MATHEMATICA notebook.

  13. 75 FR 55313 - Record of Decision (ROD) for Conversion of the 3rd Armored Cavalry Regiment (3rd ACR) to a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... conversion, the 3rd ACR will provide the Army with a force structure that has the flexibility to respond... Infantry BCTs and Heavy Armor BCTs augmented with the protection and versatility of an additional SBCT. The... socioeconomic impacts that would be associated with the stationing of the different types of Army BCTs...

  14. 15. OFFSHORE VIEW OF PIER, LOOKING EASTNORTHEAST, 3RD TEE, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. OFFSHORE VIEW OF PIER, LOOKING EAST-NORTHEAST, 3RD TEE, SHOWING RESTROOMS IN FOREGROUND WITH PUMPHOUSE AND TACKLE BOX BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  15. 19. OFFSHORE VIEW OF 3RD TEE, LOOKING NORTHWEST, SHOWING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. OFFSHORE VIEW OF 3RD TEE, LOOKING NORTHWEST, SHOWING SOUTHEAST SIDE OF TACKLE BOX IN FOREGROUND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  16. 19. MILL NO. 1, 3rd FLOOR, CEILING TRACKING WITH AIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. MILL NO. 1, 3rd FLOOR, CEILING TRACKING WITH AIR CLEANER (BLEW DUST/LINT DOWNWARD WHILE TRAVELING ON TRACK OVER MILL MACHINERY). - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  17. Two-mirrored galvanometer laser light sheet generator

    NASA Technical Reports Server (NTRS)

    Leighty, B. D.; Franke, J. M.; Jones, S. B.; Rhodes, D. B.

    1988-01-01

    Light sheets generated with either laser or noncoherent sources have found widespread application to flow visualization. Previous light sheet generating systems were usually dedicated to a specific viewing geometry. The technique with the most flexibility is the galvanometer mirror based laser light sheet system. A two-mirrored system was designed and developed to provide flexibility and adaptability to a wide range of applications. The design includes the capability to control the size and location of the laser light sheet in real time, to generate horizontal or vertical sheets, to sweep the sheet repeatedly through a volume, to generate multiple sheets with controllable separation and to rotate single or multiple laser light sheets. The system is capable of producing up to 12 sheets of laser light at an angular divergence of + or - 20 degrees. Maximum scan rate of any one line is 500 Hertz. This system has proven to be uniquely versatile and a patent has been applied for.

  18. Survey of K-3rd-Grade Teachers' Knowledge of Ear Infections and Willingness to Participate in Prevention Programs

    ERIC Educational Resources Information Center

    Danhauer, Jeffrey L.; Johnson, Carole E.; Caudle, Abby T.

    2011-01-01

    Purpose: Ear infections are prevalent in kindergarten through 3rd-grade (K-3rd) children and can affect their performance at school. Chewing gum, when administered by parents and teachers, can help prevent ear infections in children. This pilot study surveyed K-3rd-grade teachers in the Santa Barbara School Districts to assess their knowledge…

  19. VLTI: First Light for the Second Generation

    NASA Astrophysics Data System (ADS)

    Woillez, J.; Gonté, F.; Abad, J. A.; Abadie, S.; Abuter, R.; Accardo, M.; Acuña, M.; Alonso, J.; Andolfato, L.; Avila, G.; Barriga, P. J.; Beltran, J.; Berger, J.-P.; Bollados, C.; Bourget, P.; Brast, R.; Bristow, P.; Caniguante, L.; Castillo, R.; Conzelmann, R.; Cortes, A.; Delplancke, F.; Dell Valle, D.; Derie, F.; Diaz, A.; Donoso, R.; Duhoux, Ph.; Dupuy, C.; Elao, C.; Egner, S.; Fuenteseca, E.; Fernandez, R.; Gaytan, D.; Glindemann, A.; Gonzales, J.; Guisard, S.; Hagenauer, P.; Haimerl, A.; Heinz, V.; Henriquez, J. P.; van der Heyden, P.; Hubin, N.; Huerta, R.; Jochum, L.; Kirchbauer, J.-P.; Leiva, A.; Lévêque, S.; Lizon, J.-P.; Luco, F.; Mardones, P.; Mellado, A.; Mérand, A.; Osorio, J.; Ott, J.; Pallanca, L.; Pavez, M.; Pasquini, L.; Percheron, I.; Pirard, J.-F.; Phan, D. T.; Pineda, J. C.; Pino, A.; Poupar, S.; Ramírez, A.; Reinero, C.; Riquelme, M.; Romero, J.; Rivinius, Th.; Rojas, C.; Rozas, F.; Salgado, F.; Schöller, M.; Schuhler, N.; Siclari, W.; Stephan, C.; Tamblay, R.; Tapia, M.; Tristram, K.; Valdes, G.; de Wit, W.-J.; Wright, A.; Zins, G.

    2015-12-01

    The Very Large Telescope Interferometer (VLTI) stopped operation on 4 March 2015 with the objective of upgrading its infrastructure in preparation for the second generation VLTI instruments GRAVITY and MATISSE. A brief account of the eight bustling months it took our interferometer to metamorphose into its second generation, under the supervision of the VLTI Facility Project, is presented.

  20. Visual, Critical, and Scientific Thinking Dispositions in a 3rd Grade Science Classroom

    NASA Astrophysics Data System (ADS)

    Foss, Stacy

    Many American students leave school without the required 21st century critical thinking skills. This qualitative case study, based on the theoretical concepts of Facione, Arheim, and Vygotsky, explored the development of thinking dispositions through the arts in science on the development of scientific thinking skills when used as a conceptual thinking routine in a rural 3rd grade classroom. Research questions examined the disposition to think critically through the arts in science and focused on the perceptions and experiences of 25 students with the Visual Thinking Strategy (VTS) process. Data were collected from classroom observations (n = 10), student interviews (n = 25), teacher interviews ( n = 1), a focus group discussion (n = 3), and artifacts of student work (n = 25); these data included perceptions of VTS, school culture, and classroom characteristics. An inductive analysis of qualitative data resulted in several emergent themes regarding disposition development and students generating questions while increasing affective motivation. The most prevalent dispositions were open-mindedness, the truth-seeking disposition, the analytical disposition, and the systematicity disposition. The findings about the teachers indicated that VTS questions in science supported "gradual release of responsibility", the internalization of process skills and vocabulary, and argumentation. This case study offers descriptive research that links visual arts inquiry and the development of critical thinking dispositions in science at the elementary level. A science curriculum could be developed, that emphasizes the development of thinking dispositions through the arts in science, which in turn, could impact the professional development of teachers and learning outcomes for students.

  1. Synchronization System for Next Generation Light Sources

    SciTech Connect

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  2. Next Generation Accelerator-Based Light Sources

    SciTech Connect

    Gwyn Williams

    2005-06-26

    We discuss the physics which is driving the evolution of new sources for microscopy and spectroscopy. A new generation of sources, called energy recovery linacs or ERL’s, will be described and reviewed with particular emphasis on the examples of imaging and spectroscopic applications enabled by them.

  3. Generation of Single-Cycle Light Pulses

    SciTech Connect

    Stuart, B C; Jovanovic, I; Armstrong, J P; Pyke, B; Crane, J K; Shuttlesworth, R

    2004-02-13

    Most optical pulses, even at the 10-femtosecond timescale, consist of several oscillations of the electric field. By producing and amplifying an ultra-broadband continuum, single cycle (e 3 fs) or shorter optical pulses may be generated. This requires a very challenging pulse-compression with sub-femtosecond accuracy. Production of these single-cycle pulses will lead to new generations of experiments in the areas of coherent control of chemical excitations and reactions, 0.1-fs high-order harmonic (XUV) generation for probing of materials and fast processes, and selective 3-D micron-scale material removal and modification. We activated the first stage of a planned three-stage optical parametric amplifier (OPA) that would ultimately produce sub-3 fs pulses. Active control with a learning algorithm was implemented to optimize the continuum generated in an argon-filled capillary and to control and optimize the final compressed pulse temporal shape. A collaboration was initiated to coherently control the population of different states upon dissociation of Rb{sub 2}. Except for one final optic, a pulse compressor and diagnostics were constructed to produce and characterize pulses in the 5-fs range from the first OPA stage.

  4. Low efficiency gratings for 3rd harmonic diagnostics applications

    SciTech Connect

    Britten, J.A.; Boyd, R.D.; Perry, M.D.; Shore, B.W.; Thomas, I.M.

    1995-08-09

    The baseline design of the National Ignition Facility (NIF) calls for sampling gratings to provide third-harmonic energy diagnostics in the highly constrained area of the target chamber. These 40 {times} 4O cm transmission gratings are to diffract at (order +1) nominally 0.3% of the incident 351 run light at a small angle on to a focusing mirror and into a calorimeter. The design calls for a plane grating of 500 lines/mm, and approximately 30 run deep, etched into a fused silica focusing lens and subsequently overcoated with a solgel anti reflective coating. Gratings of similar aperture and feature size have been produced for other applications by ion etching processes, but, in an effort to reduce substantially the cost of such optics, we are studying the feasibility of making these gratings by wet chemical etching techniques. Experimentation with high-quality fused silica substrates on 5 and 15 cm. scale has led to a wet etching process which can meet the design goals and which offers no significant scaleup barriers to full sized optics. The grating is produced by holographic exposure and a series of processing steps using only a photoresist mask and a final hydrofluoric acid etch. Gratings on 15 cm diameter test substrates exhibit absolute diffraction efficiencies from 0.2--0.4% with a standard deviation of about 15% of the mean over the full aperture. The efficiency variation is due to variation in linewidth caused by spatial nonuniformities in exposure energy. Uniformity improvements can be realized by using a smaller, more uniform portion of the exposure beam and exposing for longer times. The laser damage threshold for these gratings has been measured at LLNL and found to be identical to that of the fused silica substrate.

  5. Twin-Mirrored-Galvanometer Laser-Light-Sheet Generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1991-01-01

    Multiple, rotating laser-light sheets generated to illuminate flows in wind tunnels. Designed and developed to provide flexibility and adaptability to wide range of applications. Design includes capability to control size and location of laser-light sheet in real time, to generate horizontal or vertical sheets, to sweep sheet repeatedly through volume, to generate multiple sheets with controllable separation, and to rotate single or multiple laser-light sheets. Includes electronic equipment and laser mounted on adjustable-height platform. Twin-mirrored galvanometer unit supported by tripod to reduce vibration. Other possible applications include use in construction industry to align beams of building. Artistic or display applications also possible.

  6. 3rd College of Surgeons Lecture--bringing up surgeons.

    PubMed

    Ong, Siew Chey

    2009-03-01

    The talk traces briefly the development and changes of surgical training in the English-speaking world in the early days and the trials and tribulations of surgical training in Singapore a few decades ago. The factors that brought about the surge of American surgery from late 19th century to the first half of the 20th century are discussed. Structured surgical training leading to the exit point was introduced by William Halsted of Johns Hopkins Hospital around 1892, a system that was later adopted by all other medical disciplines and by all other hospitals in the US. It is considered to be the prime mover of the rapid progress of American medicine. Training surgeons to only the entry point while leaving the competence of trainees to chance, used to be common in the British surgical world. The trend now favours surgical training to the exit point. It is also the system being adopted in Singapore. Increasing demands of high standard of patient care and public accountability no longer allow us to be casual and permissive mentors of future generations of surgeons. Proper surgical upbringing requires a good structured programme that itself needs to be accredited and periodically reviewed. It also requires that discipline be observed on the part of trainees. Knowledge and skills are within the capability of our mentors to impart, but inculcation of good attitude and ethics in trainees is a harder goal to achieve.

  7. Slow light and broadband coherent phonon generation

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Rakich, Peter; Reinke, Charles; Camacho, Ryan; Davids, Paul

    2012-03-01

    Recent advance in controlling optical forces using nanostructures suggests that nanoscale optical waveguides are capable of generating coherent acoustic phonons efficiently through a combination of radiation pressure and electrostriction. We discuss the critical roles of group velocity in such processes. This photon-phonon coupling would allow an acoustic intermediary to perform on-chip optical delay with a capacity 105 greater than photonic delay lines of the same size.

  8. A twin-mirrored galvanometer laser light sheet generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1988-01-01

    A galvanometer mirror-based laser light sheet system has been developed for use in the Basic Aerodynamics Research Tunnel at NASA Langley. This system generates and positions single or multiple light sheets over aeronautical research models being tested in the low speed tunnel. This report describes a twin mirrored galvanometer laser light sheet generator and shows typical light sheet arrangements in use. With this system, illumination of smoke entrained in the flow over a delta wing model reveals the vortical flow produced by the separation of the flow at the leading edge of the model. The light sheet system has proven to be very adaptable and easy to use in sizing and positioning light sheets in wind tunnel applications.

  9. Generation of Coherent Light by a Moving Medium

    NASA Astrophysics Data System (ADS)

    Svidzinsky, Anatoly A.; Li, Fu; Zhang, Xiwen

    2017-03-01

    We show that steady nonuniform motion of a medium through an optical resonator can yield light amplification at the resonator frequency. High gain can be achieved if at the generated frequency the medium refractive index is close to zero or the medium has a very strong frequency dispersion. We also discuss an analogy between light amplification by a moving medium and the generation of sound waves when gas flows along a tube with acoustically closed-open boundaries.

  10. 3rd International Conference on Turbulent Mixing and Beyond

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.

    2013-07-01

    1. Introduction 'Turbulent Mixing and Beyond' (TMB) is the programme established for scientists, by scientists. It is merit-based, and is shaped by requirements of academic credentials, and novelty and quality of information. The goals of this programme are to expose the generic problem of non-equilibrium turbulent processes to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in application of novel approaches in a broad range of phenomena, in which the turbulent processes occur, and to have a potential impact on technology. The programme was founded in 2007 with the support of the international scientific community and of the US National Science Foundation, the US Air Force Office of the Scientific Research and its European Office for Research and Development in the UK, the UNESCO-IAEA International Centre for Theoretical Physics in Italy, the Commissariat l'Energie Atomique in France, the US Department of Energy and the Department of Energy National Laboratories, the Institute for Laser Engineering in Japan, and the University of Chicago in the USA. The International Conference on Turbulent Mixing and Beyond provides opportunities to bring together researchers from the areas, which include but are not limited to, fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and communications, and to have their attention focused on the long-standing formidable task of non-equilibrium turbulent processes. 2. Non-equilibrium turbulent processes Non-equilibrium turbulent processes play a key role in a wide variety of phenomena, ranging from astrophysical to atomistic scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and

  11. The 4th Generation Light Source at Jefferson Lab

    SciTech Connect

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-04-25

    A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

  12. Wavelength conversion of incoherent light by sum-frequency generation.

    PubMed

    Arahira, Shin; Murai, Hitoshi

    2014-06-02

    In this paper, we reveal that some kinds of optical nonlinearities are further enhanced when incoherent light, instead of a laser, is used as a pump light. This idea was confirmed both theoretically and experimentally in the case of sum-frequency generation (SFG) using the optical second nonlinearity. The conversion efficiency of the SFG with incoherent light pumping increased as the bandwidth of the incoherent pump light decreased, finally reaching twice the conversion efficiency of conventional second harmonic generation (SHG) by laser pumping. This method dramatically relaxes the severe requirements of phase matching in the nonlinear optical process. The conversion efficiency became less sensitive to misalignment of the wavelength of pump light and also of device operation temperature when the bandwidth of the incoherent pump light was sufficiently broad, although the improvement of the conversion efficiency had an inverse relationship with the insensitivity to the phase-matching condition. The temperature tuning range was enhanced by more than two orders of magnitude in comparison with the conventional SHG method. As an example of a promising application of this new idea, we performed the generation of quantum entangled photon-pairs using cascaded optical nonlinearities (SFG and the subsequent spontaneous parametric down conversion) in a single periodically poled LiNbO3 waveguide device, in which the incoherent light was used as the pump source for both the parametric processes. We have achieved high fidelity exceeding 99% in quantum-state tomography experiments.

  13. Plane stress yield function described by 3rd-degree spline curve and its application

    NASA Astrophysics Data System (ADS)

    Aamaishi, Toshiro; Tsutamori, Hideo; Iizuka, Eiji; Sato, Kentaro; Ogihara, Yuki; Matsui, Yohei

    2016-08-01

    In this study, a plane stress yield function which is described by 3rd-degree spline curve is proposed. This yield function can predict a material anisotropy with flexibility and consider evolution of anisotropy in terms of both r values and stresses. As an application, hole expanding simulation results are shown to discuss accuracy of the proposed yield function.

  14. Starting Young: Massachusetts Birth-3rd Grade Policies That Support Children's Literacy Development

    ERIC Educational Resources Information Center

    Cook, Shayna; Bornfreund, Laura

    2015-01-01

    Massachusetts is one of a handful of states that is often recognized as a leader in public education, and for good reason. The Commonwealth consistently outperforms most states on national reading and math tests and often leads the pack in education innovations. "Starting Young: Massachusetts Birth-3rd Grade Policies that Support Children's…

  15. Prediction of High School Dropout or Graduation from 3rd Grade Data.

    ERIC Educational Resources Information Center

    Lloyd, Dee Norman; Bleach, Gail

    Measures of background characteristics, school performance, and tested achievement were analyzed for four race-by-sex samples of 3rd graders who were known to have later become high school dropouts or graduates. Results showed that as early as five to eight years before leaving school, dropouts differed significantly from graduates in age, tested…

  16. Using Food as a Tool to Teach Science to 3rd Grade Students in Appalachian Ohio

    ERIC Educational Resources Information Center

    Duffrin, Melani W.; Hovland, Jana; Carraway-Stage, Virginia; McLeod, Sara; Duffrin, Christopher; Phillips, Sharon; Rivera, David; Saum, Diana; Johanson, George; Graham, Annette; Lee, Tammy; Bosse, Michael; Berryman, Darlene

    2010-01-01

    The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. In 2007 to 2008, a foods curriculum developed by professionals in nutrition and education was implemented in 10 3rd-grade classrooms in Appalachian Ohio; teachers in these…

  17. The Effect of Book Blogging on the Motivation of 3rd-Grade Students

    ERIC Educational Resources Information Center

    Swanson, Kristen N.; Legutko, Robert S.

    2008-01-01

    A Web 2.0 technology was implemented during reading instruction in one 3rd-grade classroom in suburban southeastern Pennsylvania. Trained preservice teachers provided feedback to students via the World Wide Web to enhance their performance and social connections. Motivation scores were measured before and after the intervention was implemented. A…

  18. Education Reform Starts Early: Lessons from New Jersey's PreK-3rd Reform Efforts

    ERIC Educational Resources Information Center

    Mead, Sara

    2009-01-01

    This report seeks to describe how New Jersey became a national leader in early education and PreK-3rd, identify its successes and challenges, draw lessons from its experience for policymakers in other states and nationally, and provide recommendations for New Jersey policymakers to translate progress to date into sustained, large scale learning…

  19. 75 FR 34450 - Filing Dates for the Indiana Special Election in the 3rd Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION Filing Dates for the Indiana Special Election in the 3rd Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Indiana has scheduled a...

  20. Evaluation of the "Respect Not Risk" Firearm Safety Lesson for 3rd-Graders

    ERIC Educational Resources Information Center

    Liller, Karen D.; Perrin, Karen; Nearns, Jodi; Pesce, Karen; Crane, Nancy B.; Gonzalez, Robin R.

    2003-01-01

    The purpose of this study was to evaluate the MORE HEALTH "Respect Not Risk" Firearm Safety Lesson for 3rd-graders in Pinellas County, Florida. Six schools representative of various socioeconomic levels were selected as the test sites. Qualitative and quantitative data were collected. A total of 433 matched pretests/posttests were used…

  1. 16. 3RD FLOOR, J.M. LEHMANN CO. FIVEROLL TOILET SOAP MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. 3RD FLOOR, J.M. LEHMANN CO. FIVE-ROLL TOILET SOAP MILL INSTALLED 1950, TO WEST; BUCKET CONVEYOR AT RIGHT MOVED WASTE FROM 2ND FLOOR SOAP PRESSES TO 5TH FLOOR RE-MANUFACTURE - Colgate & Company Jersey City Plant, Building No. B-14, 54-58 Grand Street, Jersey City, Hudson County, NJ

  2. The POLIS interferometer for ponderomotive squeezed light generation

    NASA Astrophysics Data System (ADS)

    Calloni, Enrico; Conte, Andrea; De Laurentis, Martina; Naticchioni, Luca; Puppo, Paola; Ricci, Fulvio

    2016-07-01

    POLIS (POnderomotive LIght Squeezer) is a suspended interferometer, presently under construction, devoted to the generation of ponderomotive squeezed light and to the study of the interaction of non classical quantum states of light and macroscopic objects. The interferometer is a Michelson whose half-meter long arms are constituted by high-finesse cavities, suspended to a seismic isolation chain similar to the Virgo SuperAttenuator. The mass of the suspended cavity mirrors are chosen to be tens of grams: this value is sufficiently high to permit the use of the well-tested Virgo suspension techniques but also sufficiently small to generate the coupling among the two phase quadratures with a limited amount of light in the cavity, of the order of few tens of kW. In this short paper the main features of the interferometer are shown, together with the expected sensitivity and squeezing factor.

  3. Light pollution generated by laser guide star at Canarian Observatories

    NASA Astrophysics Data System (ADS)

    Chueca, Sergio; Fuensalida, Jesus J.

    2004-11-01

    A new generation of instrument using a launching laser is been developed to correct the atmospheric image blurring and to establish optical communication with space. Then, light pollution generated by laser will be a serious operational problem in next years. This laser could affect astronomical works of adjacent telescopes when the laser lay across the field of view of the observing telescope, this is a kind of light pollution. This could be avoided with an adequate operational politic to detect possible interference between the laser and the astronomical telescopes. In this paper is analysed the mathematical probability of a cross-event happen.

  4. Fifth-Generation Free-Electron Laser Light Sources

    SciTech Connect

    Pellegrini, Claudio

    2011-03-02

    During the past few years, the Linac Coherent Light Source (LCLS) and the Free-Electron Laser in Hamburg (FLASH) have demonstrated the outstanding capability of free-electron lasers (FELs) as sources of coherent radiation in the soft and hard x-ray region. The high intensity, tens of GW, short pulses (few to less than 100 femtoseconds, and the unique transverse coherence properties are opening a new window to study the structure and dynamics of atomic and molecular systems. The LCLS, FLASH, and the other FELs now under construction are only the beginning of the development of these light sources. The next generations will reach new levels of performance: terawatt, atto-second, ultra-small line-width, high repetition rate, full longitudinal and transverse coherence. These future developments and the R&D needed to successfully build and operate the next generation of FEL light sources will be discussed.

  5. Foundational Skills to Support Reading for Understanding in Kindergarten through 3rd Grade. Educator's Practice Guide. NCEE 2016-4008

    ERIC Educational Resources Information Center

    Foorman, Barbara; Beyler, Nicholas; Borradaile, Kelley; Coyne, Michael; Denton, Carolyn A.; Dimino, Joseph; Furgeson, Joshua; Hayes, Lynda; Henke, Juliette; Justice, Laura; Keating, Betsy; Lewis, Warnick; Sattar, Samina; Streke, Andrei; Wagner, Richard; Wissel, Sarah

    2016-01-01

    The goal of this practice guide is to offer educators specific, evidence-based recommendations for teaching foundational reading skills to students in kindergarten through 3rd grade. This guide is a companion to the existing practice guide, "Improving Reading Comprehension in Kindergarten Through 3rd Grade", and as a set, these guides…

  6. Conference report: the 3rd Global CRO Council for Bioanalysis at the International Reid Bioanalytical Forum.

    PubMed

    Breda, Massimo; Garofolo, Fabio; Caturla, Maria Cruz; Couerbe, Philippe; Maltas, John; White, Peter; Struwe, Petra; Sangster, Timothy; Riches, Suzanne; Hillier, Jim; Garofolo, Wei; Zimmerman, Thomas; Pawula, Maria; Collins, Eileen; Schoutsen, Dick; Wieling, Jaap; Green, Rachel; Houghton, Richard; Jeanbaptiste, Bernard; Claassen, Quinton; Harter, Tammy; Seymour, Mark

    2011-12-01

    The 3rd Global CRO Council Closed Forum was held on the 3rd and 4th July 2011 in Guildford, United Kingdom, in conjunction with the 19th International Reid Bioanalytical Forum. In attendance were 21 senior-level representatives from 19 CROs on behalf of nine European countries and, for many of the attendees, this occasion was the first time that they had participated in a GCC meeting. Therefore, this closed forum was an opportunity to increase awareness of the aim of the GCC and how it works, share information about bioanalytical regulations and audit findings from different agencies, their policies and procedures and also to discuss some topics of interest and aim to develop ideas and provide recommendations for bioanalytical practices at future GCC meetings in Europe.

  7. Electrically controlled nonlinear generation of light with plasmonics.

    PubMed

    Cai, Wenshan; Vasudev, Alok P; Brongersma, Mark L

    2011-09-23

    Plasmonics provides a route to develop ultracompact optical devices on a chip by using extreme light concentration and the ability to perform simultaneous electrical and optical functions. These properties also make plasmonics an ideal candidate for dynamically controlling nonlinear optical interactions at the nanoscale. We demonstrate electrically tunable harmonic generation of light from a plasmonic nanocavity filled with a nonlinear medium. The metals that define the cavity also serve as electrodes that can generate high direct current electric fields across the nonlinear material. A fundamental wave at 1.56 micrometers was frequency doubled and modulated in intensity by applying a moderate external voltage to the electrodes, yielding a voltage-dependent nonlinear generation with a normalized magnitude of ~7% per volt.

  8. 3rd Workshop on Semantic Ambient Media Experience (SAME) - In Conjunction with AmI-2010

    NASA Astrophysics Data System (ADS)

    Lugmayr, Artur; Stockleben, Bjoern; Kaario, Juha; Pogorelc, Bogdan; Risse, Thomas

    The SAME workshop takes place for the 3rd time in 2010, and it's theme in this year was creating the business value-creation, vision, media theories and technology for ambient media. SAME differs from other workshops due to its interactive and creative touch and going beyond simple powerpoint presentations. Several results will be published by AMEA - the AMbient Media Association (www.ambientmediaassociation.org.

  9. Insights from the 3rd World Congress on Integrated Computational Materials Engineering

    NASA Astrophysics Data System (ADS)

    Howe, D.; Goodlet, B.; Weaver, J.; Spanos, G.

    2016-05-01

    The 3rd World Congress on Integrated Computational Materials Engineering (ICME) was a forum for presenting the "state-of-the-art" in the ICME discipline, as well as for charting a path for future community efforts. The event concluded with in an interactive panel-led discussion that addressed such topics as integrating efforts between experimental and computational scientists, uncertainty quantification, and identifying the greatest challenges for future workforce preparation. This article is a summary of this discussion and the thoughts presented.

  10. 13. Photocopy of 1920 drawing titled: BUILDING 78, 3RD FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of 1920 drawing titled: BUILDING 78, 3RD FLOOR BALCONY AND FIRE ESCAPES, including plans for skylight and North Elevation. HABS photograph is an 8x10' contact print made from a high contrast negative of an enlargement made from microfiche. Original is in the collection of Department of Public Works, Puget Sound Naval Shipyard, Bremerton, WA. - Puget Sound Naval Shipyard, Administration Building, Farragut Avenue, Bremerton, Kitsap County, WA

  11. Using Photographs to Probe Students' Understanding of Physical Concepts: The Case of Newton's 3rd Law

    NASA Astrophysics Data System (ADS)

    Eshach, Haim

    2010-08-01

    The starting point of the present research is the following question: since we live in an age that makes increasing use of visual representations of all sorts, is not the visual representation a learner constructs a window into his/her understanding of what is or is not being learned? Following this direction of inquiry, the present preliminary study introduces and evaluates a novel technique for pinpointing learners’ misconceptions, namely, one that has learners create and interpret their own photographs (CIP). 27 high-school students and 26 pre-service teacher trainees were asked to assume the role of textbook designers and create a display—photograph plus attached verbal explanation—which, in their opinion, best depicted Newton’s 3rd law. Subsequent analysis of the participants’ photographs yielded the following six misconception categories: 3rd law not depicted; 3rd law depicts a sequence of events; tendency to introduce irrelevant entities in explanations; the word ‘reaction’ used colloquially; tendency to restrict the application of the third law to dynamic situations; and informal explanations in which the word “force” is absent. The findings indicate that, indeed, the CIP method can be effectively employed to elicit, detect, and investigate learners’ misconceptions. The CIP method joins the growing efforts to utilize the yet relatively untapped potential of visual tools for science education purposes.

  12. Real-time Image Generation for Compressive Light Field Displays

    NASA Astrophysics Data System (ADS)

    Wetzstein, G.; Lanman, D.; Hirsch, M.; Raskar, R.

    2013-02-01

    With the invention of integral imaging and parallax barriers in the beginning of the 20th century, glasses-free 3D displays have become feasible. Only today—more than a century later—glasses-free 3D displays are finally emerging in the consumer market. The technologies being employed in current-generation devices, however, are fundamentally the same as what was invented 100 years ago. With rapid advances in optical fabrication, digital processing power, and computational perception, a new generation of display technology is emerging: compressive displays exploring the co-design of optical elements and computational processing while taking particular characteristics of the human visual system into account. In this paper, we discuss real-time implementation strategies for emerging compressive light field displays. We consider displays composed of multiple stacked layers of light-attenuating or polarization-rotating layers, such as LCDs. The involved image generation requires iterative tomographic image synthesis. We demonstrate that, for the case of light field display, computed tomographic light field synthesis maps well to operations included in the standard graphics pipeline, facilitating efficient GPU-based implementations with real-time framerates.

  13. Digital phantoms generated by spectral and spatial light modulators

    PubMed Central

    Chon, Bonghwan; Tokumasu, Fuyuki; Lee, Ji Youn; Allen, David W.; Rice, Joseph P.; Hwang, Jeeseong

    2015-01-01

    Abstract. A hyperspectral image projector (HIP) based on liquid crystal on silicon spatial light modulators is explained and demonstrated to generate data cubes. The HIP-constructed data cubes are three-dimensional images of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxyhemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standard data cubes, so-called digital phantoms, to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and interlaboratory comparisons for quantitative biomedical imaging applications. PMID:26502383

  14. Digital phantoms generated by spectral and spatial light modulators

    NASA Astrophysics Data System (ADS)

    Chon, Bonghwan; Tokumasu, Fuyuki; Lee, Ji Youn; Allen, David W.; Rice, Joseph P.; Hwang, Jeeseong

    2015-12-01

    A hyperspectral image projector (HIP) based on liquid crystal on silicon spatial light modulators is explained and demonstrated to generate data cubes. The HIP-constructed data cubes are three-dimensional images of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxyhemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standard data cubes, so-called digital phantoms, to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and interlaboratory comparisons for quantitative biomedical imaging applications.

  15. Control of Laser High-Harmonic Generation with Counterpropagating Light

    NASA Astrophysics Data System (ADS)

    Voronov, S. L.; Kohl, I.; Madsen, J. B.; Simmons, J.; Terry, N.; Titensor, J.; Wang, Q.; Peatross, J.

    2001-09-01

    Relatively weak counterpropagating light is shown to disrupt the emission of laser high-harmonic generation. Harmonic orders ranging from the teens to the low thirties produced by a 30-femtosecond pulse in a narrow argon jet are ``shut down'' with a contrast as high as 2 orders of magnitude by a chirped 1-picosecond counterpropagating laser pulse (60 times less intense). Alternatively, under poor phase-matching conditions, the counterpropagating light boosts harmonic production by similar contrast through quasiphase matching where out-of-phase emission is suppressed.

  16. HARDROC3, a 3rd generation ASIC with zero suppress for ILC Semi Digital Hadronic Calorimeter

    NASA Astrophysics Data System (ADS)

    Dulucq, F.; Callier, S.; de La Taille, C.; Martin-Chassard, G.; Seguin-Moreau, N.; Zoccarato, Y.

    2017-02-01

    HARDROC is the front end chip designed to read out the Resistive Plate Chambers foreseen for the Digital HAdronic CALorimeter (DHCAL) of the future International Linear Collider. The very fine granularity of the calorimeter implies thousands of electronics channels per cubic meter which is a new feature of "imaging" calorimetry. Moreover, for compactness, chips must be embedded inside the detector making crucial the reduction of the power consumption down to 12 μ W per channel. This is achieved using power-pulsing and online zero-suppression. Around 800 HARDROC3 were produced in 2015. The overall performance and production tests will be detailed.

  17. Design and development of a high-performance 3rd-generation handheld thermal camera

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Negi, Satya S.

    2004-10-01

    A high performance hand held thermal imaging camera has been developed based upon 320 x 256 elements InSb focal plane array (FPA) operating in MWIR region. The primary design goal of this camera was to design a low cost, compact, lightweight and man portable thermal camera with a recognition range of 2 Km. A staring FPA based upon the InSb technology with long and variable integration time provides the answer best suited under these requirements. The system provides the various features such as non-uniformity correction (NUC), bad pixel detection and replacement (BPR), contrast enhancement, histogram equalization and digital scan conversion for CCIR-B compatible output. The design methodology and the performance are presented.

  18. Theoretical Efficiency of 3rd Generation Solar Cells: Comparison between Carrier Multiplication and Down-Conversion

    DTIC Science & Technology

    2012-01-01

    isolate the chemical potential using the Ruppel and Würfel photon flux method [19], which is a rephrasing of Kirchh- off’s law of radiation [16] using...circuit conditions, using the Ruppel and Würfel relation [19], the outgoing emission equals the incoming absorption (Kirchhoff’s law of radiation...ary that the Ruppel –Würfel photon flux method [19] uses must be Z.R. Abrams et al. / Solar Energy Materials & Solar Cells ] (

  19. Design and Experimental Evaluation of a 3rd Generation Addressable CMOS Piezoresistive Stress Sensing Test Chip

    SciTech Connect

    Sweet, J.N.; Peterson, D.W.; Hsia, A.H.

    1999-04-13

    Piezoresistive stress sensing chips have been used extensively for measurement of assembly related die surface stresses. Although many experiments can be performed with resistive structures which are directly bonded, for extensive stress mapping it is necessary to have a large number of sensor cells which can be addressed using CMOS logic circuitry. Our previous test chip, the ATC04, has 100 cells, each approximately 0.012 in. on a side, on a chip with a side dimension of 0.45 in. When a cell resistor is addressed, it is connected to a four terminal measurement bus through CMOS transmission gates. In theory, the gate resistances do not affect the measurement. In practice, there may be subtle effects which appear when very high accuracy is required. At high temperatures, gate leakage can increase to a point at which the resistor measurement becomes inaccurate. For ATC04 this occurred at or above 50 C. Here, we report on the first measurements obtained with a new prototype test chip, the ATC06. This prototype was fabricated in a 0.5 micron feature size silicided CMOS process using the MOSIS prototyping facility. The cell size was approximately 0.004 in. on a side. In order to achieve piezoresistive behavior for the implanted resistors it was necessary to employ a non-standard silicide ''blocking'' process. The stress sensitivity of both implanted and polysilicon blocked resistors is discussed. Using a new design strategy for the CMOS logic, it was possible to achieve a design in which only 5 signals had to be routed to a cell for addressing vs. 9 for ATC04. With our new design, the resistor under test is more effectively electrically isolated from other resistors on the chip, thereby improving high temperature performance. We present data showing operation up to 140 C.

  20. Simplified Generation of High-Angular-Momentum Light Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the

  1. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  2. Flashing light signaling circuit in sponges: endogenous light generation after tissue ablation in Suberites domuncula.

    PubMed

    Wiens, Matthias; Wang, Xiaohong; Unger, Andreas; Schröder, Heinz C; Grebenjuk, Vladislav A; Pisignano, Dario; Jochum, Klaus P; Müller, Werner E G

    2010-12-15

    The skeleton of siliceous sponges (phylum Porifera: classes Demospongiae and Hexactinellida), composed of tightly interacting spicules that assemble to a genetically fixed scaffold, is formed of bio-silica. This inorganic framework with the quality of quartz glass has been shown to operate as light waveguide in vitro and very likely has a similar function in vivo. Furthermore, the molecular toolkit for endogenous light generation (luciferase) and light/photon harvesting (cryptochrome) has been identified in the demosponge Suberites domuncula. These three components of a light signaling system, spicules-luciferase-cryptochrome, are concentrated in the surface layers (cortex) of the poriferan body. Specimens from which this cortex has been removed/ablated do not emit light. However, with regeneration and reconstitution of the cortex the animals re-gain the capacity to flash light. This newly discovered characteristic of sponges to generate light prompted us to investigate the genetic basis for the endogenous light signaling system. As a potential transcription factor involved in the expression of luciferase and cryptochrome, a SOX-related protein has been identified. In dark-adapted animals or in tissue from below the cortex region, the medulla, no gene or protein expression of SOX-related protein, luciferase, and cryptochrome could be detected. However, during the regeneration of the cortex, a stage-specific expression pattern was recorded: SOX-related protein > luciferase > cryptochrome. We conclude that a flashing light signaling circuit exists, which might control the retinoic acid-induced differentiation of stem cells into pulsating and contracting sponge cells, that is, pinacocytes and myocytes.

  3. Preface to Special Topic: Invited Papers of the 3rd International Conference on Ultrafast Structural Dynamics

    PubMed Central

    Johnson, S. L.

    2016-01-01

    The ability to visualize the real-time dynamics of atomic, magnetic, and electronic structure is widely recognized in many fields as a key element underpinning many important processes in chemistry, materials science, and biology. The need for an improved understanding of such processes becomes acute as energy conversion processes on fast time scales become increasingly relevant to problems in science and technology. This special issue, containing invited papers from participants at the 3rd International Conference on Ultrafast Structural Dynamics held June 10–12, 2015 in Zurich, Switzerland, discusses several recent developments in this area. PMID:27191008

  4. Overview of the 3rd isirv-Antiviral Group Conference – advances in clinical management

    PubMed Central

    Hurt, Aeron C; Hui, David S; Hay, Alan; Hayden, Frederick G

    2015-01-01

    This review highlights the main points which emerged from the presentations and discussions at the 3rd isirv-Antiviral Group Conference - advances in clinical management. The conference covered emerging and potentially pandemic influenza viruses and discussed novel/pre-licensure therapeutics and currently approved antivirals and vaccines for the control of influenza. Current data on approved and novel treatments for non-influenza respiratory viruses such as MERS-CoV, respiratory syncytial virus (RSV) and rhinoviruses and the challenges of treating immunocompromised patients with respiratory infections was highlighted. PMID:25399715

  5. [Modern surgical treatment of breast cancer. 3rd Breast Cancer Consensus Conference].

    PubMed

    Lázár, György; Bursics, Attila; Farsang, Zoltán; Harsányi, László; Kósa, Csaba; Maráz, Róbert; Mátrai, Zoltán; Paszt, Attila; Pavlovics, Gábor; Tamás, Róbert

    2016-09-01

    Therapy for breast cancer today is characterised by ever more precise diagnostic methods and ever more effective oncological treatments, a trend which will certainly continue into the future. Breast preservation and the application of oncoplastic principles are increasingly popular. A sentinel lymph node biopsy in the surgical treatment of the axilla is primary, with the indication for axillary block dissection (ABD) narrowing and radiation therapy becoming an alternative to ABD in certain cases. This publication summarises our recommendations on the surgical treatment of breast cancer based on the content of the 3rd Breast Cancer Consensus Conference and considering the latest international studies and professional recommendations.

  6. Preface to Special Topic: Invited Papers of the 3rd International Conference on Ultrafast Structural Dynamics.

    PubMed

    Johnson, S L

    2016-03-01

    The ability to visualize the real-time dynamics of atomic, magnetic, and electronic structure is widely recognized in many fields as a key element underpinning many important processes in chemistry, materials science, and biology. The need for an improved understanding of such processes becomes acute as energy conversion processes on fast time scales become increasingly relevant to problems in science and technology. This special issue, containing invited papers from participants at the 3rd International Conference on Ultrafast Structural Dynamics held June 10-12, 2015 in Zurich, Switzerland, discusses several recent developments in this area.

  7. Light Emitting Diode-Generated Blue Light Modulates Fibrosis Characteristics: Fibroblast Proliferation, Migration Speed, and Reactive Oxygen Species Generation

    PubMed Central

    Mamalis, Andrew; Garcha, Manveer; Jagdeo, Jared

    2016-01-01

    Background and Objective Blue light is part of the visible light spectrum that does not generate harmful DNA adducts associated with skin cancer and photoaging, and may represent a safer therapeutic modality for treatment of keloid scars and other fibrotic skin diseases. Our laboratory previously demonstrated that light-emitting diode (LED) red and infrared light inhibits proliferation of skin fibroblasts. Moreover, different wavelengths of light can produce different biological effects. Furthermore, the effects of LED blue light (LED-BL) on human skin fibroblasts are not well characterized. This study investigated the effects of LED-BL on human skin fibroblast proliferation, viability, migration speed, and reactive oxygen-species (ROS) generation. Methods and Materials Irradiation of adult human skin fibroblasts using commercially-available LED-BL panels was performed in vitro, and modulation of proliferation and viability was quantified using the trypan blue dye exclusion assay, migratory speed was assessed using time-lapse video microscopy, and intracellular ROS generation was measured using the dihydrorhodamine flow cytometry assay. Statistical differences between groups were determined by ANOVA and Student s t-test. Results Human skin fibroblasts treated with LED-BL fluences of 5, 30, 45, and 80 J/cm2 demonstrated statistically significant dose-dependent decreases in relative proliferation of 8.4%, 29.1%, 33.8%, 51.7%, and 55.1%, respectively, compared to temperature and environment matched bench control plates, respectively. LED-BL fluences of 5, 30, 45 and 80 J/cm2 decreased fibroblast migration speed to 95 ± 7.0% (p = 0.64), 81.3 ± 5.5% (p = 0.021), 48.5 ± 2.7% (p < 0.0001), and 32.3 ± 1.9% (p < 0.0001), respectively, relative to matched controls. LED fluences of 5, 10, 30, and 80 J/cm2 resulted in statistically significant increases in reactive oxygen species of 110.4%, 116.6%, 127.5%, and 130%, respectively, relative to bench controls. Conclusion At

  8. PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-07-01

    The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo International Symposium, and jointly with MANA Workshop on Materials Processing by External Stimulation, and JSPS CORE Program of Construction of the World Center on Electromagnetic Processing of Materials. At the end of MAP3 it was decided that the next MAP4 will be held in Atlanta, USA in 2010. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. MAP3 focused on the magnetic field interactions involved in the study and processing of materials in all disciplines ranging from physics to chemistry and biology: Magnetic field effects on chemical, physical, and biological phenomena Magnetic field effects on electrochemical phenomena Magnetic field effects on thermodynamic phenomena Magnetic field effects on hydrodynamic phenomena Magnetic field effects on crystal growth Magnetic processing of materials Diamagnetic levitation Magneto-Archimedes effect Spin chemistry Application of magnetic fields to analytical chemistry Magnetic orientation Control of structure by magnetic fields Magnetic separation and purification Magnetic field-induced phase transitions Materials properties in high magnetic fields Development of NMR and MRI Medical application of magnetic fields Novel magnetic phenomena Physical property measurement by Magnetic fields High magnetic field generation> MAP3 consisted of 84 presentations including 16 invited talks. This volume of Journal of Physics: Conference Series contains the proceeding of MAP3 with 34 papers that provide a scientific record of the topics covered by the conference with the special topics (13 papers) in

  9. The Third International Genomic Medicine Conference (3rd IGMC, 2015): overall activities and outcome highlights.

    PubMed

    Abu-Elmagd, Muhammad; Assidi, Mourad; Dallol, Ashraf; Buhmeida, Abdelbaset; Pushparaj, Peter Natesan; Kalamegam, Gauthaman; Al-Hamzi, Emad; Shay, Jerry W; Scherer, Stephen W; Agarwal, Ashok; Budowle, Bruce; Gari, Mamdooh; Chaudhary, Adeel; Abuzenadah, Adel; Al-Qahtani, Mohammed

    2016-10-17

    The Third International Genomic Medicine Conference (3(rd) IGMC) was organised by the Centre of Excellence in Genomic Medicine Research (CEGMR) at the King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia (KSA). This conference is a continuation of a series of meetings, which began with the first International Genomic Medicine Conference (1(st) IGMC, 2011) followed by the second International Genomic Medicine Conference (2(nd) IGMC, 2013). The 3(rd) IGMC meeting presented as a timely opportunity to bring scientists from across the world to gather, discuss, and exchange recent advances in the field of genomics and genetics in general as well as practical information on using these new technologies in different basic and clinical applications. The meeting undoubtedly inspired young male and female Saudi researchers, who attended the conference in large numbers, as evidenced by the oversubscribed oral and poster presentations. The conference also witnessed the launch of the first content for npj Genomic Medicine, a high quality new journal was established in partnership by CEGMR with Springer Nature and published as part of the Nature Partner Journal series. Here, we present a brief summary report of the 2-day meeting including highlights from the oral presentations, poster presentations, workshops, poster prize-winners and comments from the distinguished scientists.

  10. Editorial: 3rd Special Issue on behavior change, health, and health disparities

    PubMed Central

    Higgins, Stephen T.

    2017-01-01

    This Special Issue of Preventive Medicine (PM) is the 3rd that we have organized on behavior change, health, and health disparities. This is a topic of critical importance to improving U.S. population health. There is broad scientific consensus that personal behaviors such as cigarette smoking, other substance abuse, and physical inactivity/obesity are among the most important modifiable causes of chronic disease and its adverse impacts on population health. Hence, effectively promoting health-related behavior change needs to be a key component of health care research and policy. There is also broad recognition that while these problems extend throughout the population, they disproportionately impact economically disadvantaged populations and other vulnerable populations and represent a major contributor to health disparities. Thus, behavior change represents an essential step in curtailing health disparities, which receives special attention in this 3rd Special Issue. We also devote considerable space to the longstanding challenges of reducing cigarette smoking and use of other tobacco and nicotine delivery products in vulnerable populations, obesity, and for the first time food insecurity. Across each of these topics we include contributions from highly accomplished policymakers and scientists to acquaint readers with recent accomplishments as well as remaining knowledge gaps and challenges. PMID:27693562

  11. 3rd Circuit hints it may reconsider McNemar reasoning.

    PubMed

    1997-10-17

    The [name removed] v. The Disney Store ruling is under criticism and the 3rd U.S. Circuit Court of Appeals may reconsider its 1996 decision to not allow employees who receive disability benefits to sue under the Americans with Disabilities Act (ADA). A panel of 3rd Circuit judges, working on [name removed] v. American Sterilizer Co., asserts that the [name removed] decision should not be used to assume that an individual's ADA claims are barred because of prior representations of disability. [Name removed] is suing American Sterilizer under the retaliation provisions of the ADA. Other courts are criticizing the [name removed] decision, including the District of Columbia Court in [name removed] v. Washington Metropolitan Area Transit Authority. The [name removed] court assets that a statement made in the context of a disability application does not preclude an ADA claim brought by a worker for illegal discrimination because the ADA and the Social Security Act differ in their statutory intent. AIDS advocates state that the [name removed] decision places a plaintiff in the position of having to choose between asserting a legal right or maintaining an income. Alan Epstein, who represented [name removed], is pleased by the criticism but explains that [name removed], who died this summer, will not be vindicated.

  12. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures

    PubMed Central

    Krasavin, A. V.; Ginzburg, P.; Wurtz, G. A.; Zayats, A. V.

    2016-01-01

    Structured plasmonic metals are widely employed for achieving nonlinear functionalities at the nanoscale due to their ability to confine and enhance electromagnetic fields and strong, inherent nonlinearity. Optical nonlinearities in centrosymmetric metals are dominated by conduction electron dynamics, which at the nanoscale can be significantly affected by the nonlocal effects. Here we show that nonlocal corrections, being usually small in the linear optical response, define nonlinear properties of plasmonic nanostructures. Using a full non-perturbative time-domain hydrodynamic description of electron plasma under femtosecond excitation, we numerically investigate harmonic generation in metallic Archimedean nanospirals, revealing the interplay between geometric and nonlocal effects. The quantum pressure term in the nonlinear hydrodynamic model results in the emergence of fractional nonlinear harmonics leading to broadband coherent white-light generation. The described effects present a novel class of nonlinear phenomena in metallic nanostructures determined by nonlocality of the electron response. PMID:27157982

  13. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures.

    PubMed

    Krasavin, A V; Ginzburg, P; Wurtz, G A; Zayats, A V

    2016-05-09

    Structured plasmonic metals are widely employed for achieving nonlinear functionalities at the nanoscale due to their ability to confine and enhance electromagnetic fields and strong, inherent nonlinearity. Optical nonlinearities in centrosymmetric metals are dominated by conduction electron dynamics, which at the nanoscale can be significantly affected by the nonlocal effects. Here we show that nonlocal corrections, being usually small in the linear optical response, define nonlinear properties of plasmonic nanostructures. Using a full non-perturbative time-domain hydrodynamic description of electron plasma under femtosecond excitation, we numerically investigate harmonic generation in metallic Archimedean nanospirals, revealing the interplay between geometric and nonlocal effects. The quantum pressure term in the nonlinear hydrodynamic model results in the emergence of fractional nonlinear harmonics leading to broadband coherent white-light generation. The described effects present a novel class of nonlinear phenomena in metallic nanostructures determined by nonlocality of the electron response.

  14. Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Krasavin, A. V.; Ginzburg, P.; Wurtz, G. A.; Zayats, A. V.

    2016-05-01

    Structured plasmonic metals are widely employed for achieving nonlinear functionalities at the nanoscale due to their ability to confine and enhance electromagnetic fields and strong, inherent nonlinearity. Optical nonlinearities in centrosymmetric metals are dominated by conduction electron dynamics, which at the nanoscale can be significantly affected by the nonlocal effects. Here we show that nonlocal corrections, being usually small in the linear optical response, define nonlinear properties of plasmonic nanostructures. Using a full non-perturbative time-domain hydrodynamic description of electron plasma under femtosecond excitation, we numerically investigate harmonic generation in metallic Archimedean nanospirals, revealing the interplay between geometric and nonlocal effects. The quantum pressure term in the nonlinear hydrodynamic model results in the emergence of fractional nonlinear harmonics leading to broadband coherent white-light generation. The described effects present a novel class of nonlinear phenomena in metallic nanostructures determined by nonlocality of the electron response.

  15. Spectrum of second-harmonic radiation generated from incoherent light

    SciTech Connect

    Stabinis, A.; Pyragaite, V.; Tamosauskas, G.; Piskarskas, A.

    2011-10-15

    We report on the development of the theory of second-harmonic generation by an incoherent pump with broad angular and frequency spectra. We show that spatial as well as temporal walk-off effects in a nonlinear crystal result in angular dispersion of the second-harmonic radiation. We demonstrate that the acceptance angle in second-harmonic generation by incoherent light is caused by the width of the pump angular spectrum and the resulting angular dispersion of second-harmonic radiation but does not depend on crystal length. In this case the frequency spectrum of second-harmonic radiation is determined by its angular dispersion and the pump angular spectrum. The theory is supported by an experiment in which a LiIO{sub 3} crystal was pumped by a tungsten halogen lamp.

  16. PREFACE: 3rd International Conference of Mechanical Engineering Research (ICMER 2015)

    NASA Astrophysics Data System (ADS)

    Mamat, Riazalman; Rahman, Mustafizur; Mohd. Zuki Nik Mohamed, Nik; Che Ghani, Saiful Anwar; Harun, Wan Sharuzi Wan

    2015-12-01

    The 3rd ICMER2015 is the continuity of the NCMER2010. The year 2010 represents a significant milestone in the history for Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP) Malaysia with the organization of the first and second national level conferences (1st and 2nd NCMER) at UMP on May 26-27 and Dec 3-4 2010. The Faculty then changed the name from National Conference on Mechanical Engineering Research (NCMER) to International Conference on Mechanical Engineering Research (ICMER) in 2011 and this year, 2015 is our 3rd ICMER. These proceedings contain the selected scientific manuscripts submitted to the conference. It is with great pleasure to welcome you to the "International Conference on Mechanical Engineering Research (ICMER2015)" that is held at Zenith Hotel, Kuantan, Malaysia. The call for papers attracted submissions of over two hundred abstracts from twelve different countries including Japan, Iran, China, Kuwait, Indonesia, Norway, Philippines, Morocco, Germany, UAE and more. The scientific papers published in these proceedings have been revised and approved by the technical committee of the 3rd ICMER2015. All of the papers exhibit clear, concise, and precise expositions that appeal to a broad international readership interested in mechanical engineering, combustion, metallurgy, materials science as well as in manufacturing and biomechanics. The reports present original ideas or results of general significance supported by clear reasoning and compelling evidence, and employ methods, theories and practices relevant to the research. The authors clearly state the questions and the significance of their research to theory and practice, describe how the research contributes to new knowledge, and provide tables and figures that meaningfully add to the narrative. In this edition of ICMER representatives attending are from academia, industry, governmental and private sectors. The plenary and invited speakers will present, discuss, promote and

  17. 77 FR 56637 - FirstLight Hydro Generating Company; Notice of Authorization for Continued Project Operation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    .... 2662-000] FirstLight Hydro Generating Company; Notice of Authorization for Continued Project Operation On August 30, 2007, the FirstLight Hydro Generating Company, licensee for the Scotland Hydroelectric... annual license for Project No. 2662 [[Page 56638

  18. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis

    2014-09-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  19. A two-pulse technique for extracting 3rd harmonic from ultrasound contrast agent echo signal.

    PubMed

    Song, Jae-hee; Kim, Sang-min; Song, Tai-kyong

    2008-01-01

    Multi-pulse techniques like CPS (contrast pulse sequence) and TPS (triplet pulse sequence) are the most popular methods for separating the 3rd harmonic signals from received signal. Those two methods, however, transmit a pulse at least three times along each scanline with different phase and amplitude, which results in the frame rate reduction. In this paper, we propose a technique using two pulses whose phase difference is 90 degrees and a simple digital filter. The second harmonic signal is eliminated by summing two received signals as their phase difference becomes 180 degrees and then the fundamental signals are eliminated by using a digital filter. Computer simulations are performed for different values of signal bandwidths and filter specifications. The results show the maximum error is -35.5 dB compared to TPS.

  20. Defining a new vision for the retinoblastoma gene: report from the 3rd International Rb Meeting.

    PubMed

    Rubin, Seth M; Sage, Julien

    2013-11-21

    The retinoblastoma tumor suppressor (Rb) pathway is mutated in most, if not all human tumors. In the G0/G1 phase, Rb and its family members p107 and p130 inhibit the E2F family of transcription factors. In response to mitogenic signals, Cyclin-dependent kinases (CDKs) phosphorylate Rb family members, which results in the disruption of complexes between Rb and E2F family members and in the transcription of genes essential for S phase progression. Beyond this role in early cell cycle decisions, Rb family members regulate DNA replication and mitosis, chromatin structure, metabolism, cellular differentiation, and cell death. While the RB pathway has been extensively studied in the past three decades, new investigations continue to provide novel insights into basic mechanisms of cancer development and, beyond cancer, help better understand fundamental cellular processes, from plants to mammals. This meeting report summarizes research presented at the recently held 3rd International Rb Meeting.

  1. Passive solar progress: a simplified guide to the 3rd national passive solar conference

    SciTech Connect

    Miller, H.; Howell, Y.; Richards, D.

    1980-10-01

    Some of the concepts and practices that have come to be known as passive solar heating and cooling are introduced, and a current picture of the field is presented. Much of the material presented is derived from papers given at the 3rd National Passive Solar Conference held in San Jose, California in January 1979 and sponsored by the US Department of Energy. Extracts and data from these papers have been integrated in the text with explanatory and descriptive material. In this way, it is attempted to present technical information in an introductory context. Topics include design considerations, passive and hybrid systems and applications, sizing methods and performance prediction, and implementation issues. A glossary is included. (WHK)

  2. [Methodology for an appreciative, dynamic and collaborative process: 3rd Canary Islands (Spain) Health Plan].

    PubMed

    O'Shanahan Juan, José Joaquín; Hernández Rodríguez, Miguel Ángel; Del Otero Sanz, Laura; Henríquez Suárez, José Andrés; Mahtani Chugani, Vinita

    The need for new approaches to strategic planning by incorporating the perspectives of professionals and inhabitants has led to a new model for the 3rd Canary Islands (Spain) Health Plan (IIIPSC). A dual-phase participatory process using qualitative techniques is proposed: 1) local phase: a quantitative and qualitative study based on training and a research-action-participation initiative; and 2) insular phase: health conferences with face-to-face discussion of results in each health area (island) and proposals for action. The process prioritises problems and establishes a specific action plan for each island through initiatives that are considered to be viable, grouped by themes and weighted according to the potential impact on priority problems. This process of interaction may help to guide planning model changes and health policy decision-making, and was included in the IIIPSC Project for its parliamentary procedure.

  3. John D. Rockefeller 3rd, statesman and founder of the Population Council.

    PubMed

    Dunlop, J

    2000-01-01

    This article presents a profile of John D. Rockefeller 3rd, statesman and founder of the Population Council. It is noted that Rockefeller took a broad view of population control as a means to address poverty and economic development rather than as an end in itself. In 1952 he initiated the convocation of the Conference on Population Problems held in Williamsburg, Virginia. The discussion focused on food supply, industrial development, depletion of natural resources, and political instability resulting from unchecked population growth. In 1967, Rockefeller initiated, lobbied for, and finally achieved a World Leaders' Statement signed by 30 heads of state including US President Lyndon Johnson. The document drew attention to population growth as a world problem and engendered political support for family planning as a solution. After 3 years the Commission on Population Growth and the American Future was established, and Rockefeller was made its chairman. Several issues were debated, including more safer fertility control and the legalization of abortion.

  4. Food: The Chemistry of Its Components, 3rd Edition (by T. P. Coultate)

    NASA Astrophysics Data System (ADS)

    Carandang, Rachelle; Ziegler, Greg

    1998-02-01

    Food: The Chemistry of Its Components, 3rd edition, by T. P. Coultate, is an excellent textbook in food chemistry for undergraduates. It is a concise version of the very detailed Food Chemistry by Fennema and similar to, but with advantages over, Mechanism and Theory in Food Chemistry by Wong and Principles of Food Chemistry by Deman. The book assumes knowledge of biochemistry and basic principles in organic chemistry, but presents very practical examples that allow the student to see the obvious link between theory and practice. The examples are described almost as if the author is performing a demonstration in a classvery vivid to the imagination. This is important because students are expected in the future to perform and put into practice their knowledge of food chemistry.

  5. Retrospective Dosimetry of Vver 440 Reactor Pressure Vessel at the 3RD Unit of Dukovany Npp

    NASA Astrophysics Data System (ADS)

    Marek, M.; Viererbl, L.; Sus, F.; Klupak, V.; Rataj, J.; Hogel, J.

    2009-08-01

    Reactor pressure vessel (RPV) residual lifetime of the Czech VVER-440 is currently monitored under Surveillance Specimens Programs (SSP) focused on reactor pressure vessel materials. Neutron fluence in the samples and its distribution in the RPV are determined by a combination of calculation results and the experimental data coming from the reactor dosimetry measurements both in the specimen containers and in the reactor cavity. The direct experimental assessment of the neutron flux density incident onto RPV and neutron fluence for the entire period of nuclear power plant unit operation can be based on the evaluation of the samples taken from the inner RPV cladding. The Retrospective Dosimetry was also used at Dukovany NPP at its 3rd unit after the 18th cycle. The paper describes methodology, experimental setup for sample extraction, measurement of activities, and the determination of the neutron flux and fluence averaged over the samples.

  6. FOREWORD: 3rd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2013)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2013-10-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 3rd International Workshop on New Computational Methods for Inverse Problems, NCMIP 2013 (http://www.farman.ens-cachan.fr/NCMIP_2013.html). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 22 May 2013, at the initiative of Institut Farman. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 (http://www.farman.ens-cachan.fr/NCMIP_2012.html). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational

  7. A Next Generation Light Source Facility at LBNL

    SciTech Connect

    Corlett, J.N.; Austin, B.; Baptiste, K.M.; Byrd, J.M.; Denes, P.; Donahue, R.; Doolittle, L.; Falcone, R.W.; Filippetto, D.; Fournier, S.; Li, D.; Padmore, H.A.; Papadopoulos, C.; Pappas, C.; Penn, G.; Placidi, M.; Prestemon, S.; Prosnitz, D.; Qiang, J.; Ratti, A.; Reinsch, M.; Sannibale, F.; Schlueter, R.; Schoenlein, R.W.; Staples, J.W.; Vecchione, T.; Venturini, M.; Wells, R.; Wilcox, R.; Wurtele, J.; Charman, A.; Kur, E.; Zholents, A.A.

    2011-03-23

    The Next Generation Light Source (NGLS) is a design concept, under development at LBNL, for a multibeamline soft x-ray FEL array powered by a ~;;2 GeV superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. The CW superconducting linear accelerator is supplied by a high-brightness, highrepetition- rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for EEHG, HGHG, SASE, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format, with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds.

  8. Light bulb heat exchanger for magnetohydrodynamic generator applications - Preliminary evaluation

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Hwang, C. C.; Seikel, G. R.

    1974-01-01

    The light-bulb heat-exchanger concept is investigated as a possible means of using a combustion heat source to supply energy to an inert gas MHD power generator system. In this concept, combustion gases flow through a central passage which consists of a duct with transparent walls through which heat is transferred by radiation to a radiation receiver which in turn heats the inert gas by convection. The effects of combustion-gas emissivity, transparent-wall-transmissivity, radiation-receiver emissivity, and the use of fins in the inert gas coolant passage are studied. The results indicate that inert gas outlet temperatures of 2500 K are possible for combustion temperatures of 3200 K and that sufficient energy can be transferred from the combustion gas to reduce its temperature to approximately 2000 K. At this temperature more conventional heat exchangers can be used.

  9. Blue light generation using periodically poled nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Shiner, David

    2013-05-01

    We have studied blue light generation using SHG of IR light. We have used single pass waveguides and bulk crystals with buildup cavities. The nonlinear crystals used were periodically poled Lithium Niobate (LN) and Potassium Titanyl Phosphate (KTP). Each of these approaches had limitations with regards to the maximum power handling and the stability of operation. Currently we are working on a different crystal in a new buildup cavity to circumvent some of the previous difficulties resulting from photorefractive damage and excessive heating due to blue absorption. Our initial measurements show that Lithium Tantalite (LT) has higher photorefractive threshold and much lower blue absorption (2% vs 15% for 20 mm crystal length). The new buildup cavity incorporates a more convenient commercial piezo mirror translator for feedback control. The buildup cavity can be operated with a minimum of 6 V as opposed to the 1000 V previously. We are exploring the use of a single DSP (digital signal processor) to perform all the locking and electronic control functions of the cavity. We are studying the coupling and propagation properties of the IR beams more carefully to minimize cavity and coupling losses, particularly due to front wave distortion caused by mirrors and lenses used in the setup. To optimize our cavity and to make the best and simplest choice of optical elements possible, different commercial (off the shelf) lenses and mirrors have been evaluated experimentally in our setup. This work is supported by NSF grant PHY-1068868.

  10. White light generation from Dy3+ doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Damak, Kamel; Yousef, El Sayed; Rüssel, Christian; Maâlej, Ramzi

    2014-02-01

    This paper reports on the spectral results of Dy3+ (1.0 mol%) ions-doped TeO2-ZnO-PbO-PbF2-Na2O (TZPPN) glass. Raman spectrum measurements, differential thermal analysis (DTA) profiles of this rare-earth ion-doped glass were carried out. From the DTA thermogram, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures were evaluated. Direct and indirect optical band gaps were calculated based on the glasses UV absorption spectra. From the absorption spectra, Judd-Ofelt (J-O) intensity parameters, Ωk, were calculated. Using J-O intensity parameters, several radiative properties such as spontaneous transition probabilities (AR), radiative branching ratios (βR) and radiative lifetimes (τR) were determined for the excitation level 4F9/2. From the emission spectra, a strong yellow emission at 574 nm (4F9/2→6H13/2) was observed and it also showed a combination of blue and red emission bands for this glass. The stimulated emission cross-section σ(λp) was also evaluated for the 4F9/2→6HJ (J=11/2, 13/2, and 15/2) transitions. This study indicates that 1 mol% Dy2O3-doped tellurite glass can be considered for white light generation with the excitation of blue light (454 nm).

  11. Light absorption properties of laboratory generated tar ball particles

    NASA Astrophysics Data System (ADS)

    Hoffer, A.; Tóth, A.; Nyirő-Kósa, I.; Pósfai, M.; Gelencsér, A.

    2015-06-01

    Tar balls (TBs) are a specific particle type which is abundant in the global troposphere, in particular in biomass smoke plumes. These particles belong to the family of atmospheric brown carbon (BrC) which can absorb light in the visible range of the solar spectrum. Albeit TBs are typically present as individual particles in biomass smoke plumes, their absorption properties have been only indirectly inferred from field observations or calculations based on their electron energy-loss spectra. This is because in biomass smoke TBs coexist with various other particle types (e.g. organic particles with inorganic inclusions and soot, the latter is emitted mainly during flaming conditions) from which they cannot be physically separated; thus, a direct experimental determination of their absorption properties is not feasible. Very recently we have demonstrated that TBs can be generated in the laboratory from droplets of wood tar that resemble atmospheric TBs in all of their observed properties. As a follow-up study we have installed on-line instruments to our laboratory set-up generating pure TB particles to measure the absorption and scattering, as well as size distribution of the particles. In addition, samples were collected for transmission electron microscopy (TEM) and total carbon (TC) analysis. The effects of experimental parameters were also studied. The mass absorption coefficients of the laboratory generated TBs were found to be in the range of 0.8-3.0 m2 g-1 at 550 nm, with absorption Ångström exponents (AAE) between 2.7 and 3.4 (average 2.9) in the wavelength range 467-652 nm. The refractive index of TBs as derived from Mie calculations was about 1.84-0.21i at 550 nm. In the brown carbon continuum these values fall closer to those of soot than to other light-absorbing species such as humic-like substances (HULIS). Considering the abundance of TBs in biomass smoke and the global magnitude of biomass burning emissions, these findings may have substantial

  12. Light absorption properties of laboratory-generated tar ball particles

    NASA Astrophysics Data System (ADS)

    Hoffer, A.; Tóth, A.; Nyirő-Kósa, I.; Pósfai, M.; Gelencsér, A.

    2016-01-01

    Tar balls (TBs) are a specific particle type that is abundant in the global troposphere, in particular in biomass smoke plumes. These particles belong to the family of atmospheric brown carbon (BrC), which can absorb light in the visible range of the solar spectrum. Albeit TBs are typically present as individual particles in biomass smoke plumes, their absorption properties have been only indirectly inferred from field observations or calculations based on their electron energy-loss spectra. This is because in biomass smoke TBs coexist with various other particle types (e.g., organic particles with inorganic inclusions and soot, the latter emitted mainly during flaming conditions) from which they cannot be physically separated; thus, a direct experimental determination of their absorption properties is not feasible. Very recently we have demonstrated that TBs can be generated in the laboratory from droplets of wood tar that resemble atmospheric TBs in all of their observed properties. As a follow-up study, we have installed on-line instruments to our laboratory set-up, which generate pure TB particles to measure the absorption and scattering, as well as the size distribution of the particles. In addition, samples were collected for transmission electron microscopy (TEM) and total carbon (TC) analysis. The effects of experimental parameters were also studied. The mass absorption coefficients of the laboratory-generated TBs were found to be in the range of 0.8-3.0 m2 g-1 at 550 nm, with absorption Ångström exponents (AAE) between 2.7 and 3.4 (average 2.9) in the wavelength range 467-652 nm. The refractive index of TBs as derived from Mie calculations was about 1.84 - 0.21i at 550 nm. In the brown carbon continuum, these values fall closer to those of soot than to other light-absorbing species such as humic-like substances (HULIS). Considering the abundance of TBs in biomass smoke and the global magnitude of biomass burning emissions, these findings may have

  13. Coherent interference effects and squeezed light generation in optomechanical systems

    NASA Astrophysics Data System (ADS)

    Qu, Kenan

    My Ph.D. dissertation is on the fundamental effects in optomechanical systems (OMS) and their important applications. The OMS are based on the possibility of the mechanical motion produced by few photons incident on the mechanical device. This dissertation presents several applications of the OMS in the area of storage of light in long-lived phonons, single mode optomechanical Ramsey interferometry, and generation of large amount of squeezing in the output radiation. The long-lived phonons can be monitored and controlled via optical means as was experimentally demonstrated. To show this, I develop the theory of transient electromagnetically induced transparency (EIT). For further applications like state transfer, especially over very different frequency regimes, I consider double-cavity OMS, where the two cavities can correspond to different spectral domains, yet the state transfer is possible via phonons. The state transfer is based on a new effect, electromagnetically induced absorption (EIA), where one uses a second control field from the other cavity to produce an absorption peak inside the EIT window. All these involve the interference of various path ways via which a final state is reached. The following chapter shows how Fano-like interference can arise in OMS. A Fano asymmetry parameter for OMS was defined. The last two chapters deal with the question if OMS can be efficient generators of squeezed light. I show by blue and red tuning the two cavities in a double-cavity OMS, one can generate effectively a two-mode parametric interaction which yields two-mode squeezed output with the squeezing magnitude of the order of 10dB. This requires a bath temperature of 10mK. Such temperatures obtained by using Helium dilution refrigerator are routinely used with superconducting OMS. The major part of this dissertation is devoted to the dispersive optomechanical interaction. However, the interaction can also be dissipative, where the mechanical displacement modulates

  14. The ALS — A third-generation light source

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Schlachter, A. S.

    1990-05-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in April 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 11 long straight sections available for insertion devices (undulators and wigglers). Undulators will generate high-brightness soft-X-ray and ultraviolet (XUV) radiation; wigglers will extend the spectrum generated into the hard-X-ray region, but at a lower brightness. Up to 48 bending-magnet ports will also be available. Engineering design has begun on a complement of three undulators with periods of 8.0, 5.0, and 3.9 cm. Among them, the photon-energy range from 5.4 eV to 2.5 keV will be covered when the first, third, and fifth undulator harmonics are used. Also being designed is a wiggler with a critical energy of 3.1 keV. Undulator beam lines will be based on high-resolution spherical-grating monochromators. A Call for Proposals has been issued for those who wish to participate in the design, development, commissioning, and operation of the initial complement of the ALS experimental facilities (insertion devices, beam lines, and experimental stations) as members of a participating research team. The deadline for receipt of proposals was August 15, 1989. Proposals are expected to reflect the Letters of Interest received from potential participating research teams (PRTs) during the previous year.

  15. EDITORIAL: Photonica 2011: 3rd International School and Conference on Photonics Photonica 2011: 3rd International School and Conference on Photonics

    NASA Astrophysics Data System (ADS)

    Petrović, Jovana; Stepić, Milutin; Hadžievski, Ljupčo

    2012-04-01

    Photonics is a rapidly growing discipline of physics that investigates properties of light and its interaction with matter and develops devices based on these properties. Due to both the fundamental and applied nature of photonics research, it pervades many branches of modern technology: quantum mechanics, material science, electronics, telecommunications, biology, medicine, material processing, etc. The borders between these subjects are being erased, generating new research areas such as silicon photonics, biophotonics and quantum photonics. Diverse branches of photonics are united in a common effort to further miniaturize photonic devices, integrate them with existing technologies and develop new technologies. The International School and Conference on Photonics—Photonica—is a biennial forum for the education of young scientists, exchanging new knowledge and ideas, and fostering collaboration between scientists working in photonic science and technology. Conference topics cover a broad range of research activities in optical materials, metamaterials and plasmonics, nonlinear optics, lasers, laser spectroscopy, biophotonics, optoelectronics, optocommunications, photonic crystals, holography, quantum optics and related topics in atomic physics. The aim of the organizers is to provide a platform for discussing new developments, concepts and future trends of various disciplines of photonics by bringing together researchers from academia, government and industrial laboratories. The educational element of Photonica—a series of tutorials and keynote talks—enables students and young researchers to better understand the fundamentals and their use on a route to applications, and informs both young and experienced scientists of new directions of research. The introductory lectures that are directly related to the state-of-the-art are followed by presentations and discussions on recent results during oral and vibrant poster presentations. This Topical Issue is

  16. Comparison of the large scale structure of the ISM in the 2nd and 3rd Galactic Quadrants

    NASA Astrophysics Data System (ADS)

    Könyves, V.; Kiss, Cs.

    2002-05-01

    In this paper we are questing the large scale structure of the interstellar medium (ISM) using IRAS/ISSA 60 and 100 mum maps in the 3rd Galactic Quadrant (GQ). Here we identified 41 loop-like intensity enhancements and analysed their far-infrared (FIR) properties. We found major differences in the distribution and characteristics of these features when comparing the results of the 2nd and the 3rd GQs. This discrepancy can be satisfactorily explained by basic differences of the structure of the ISM in these two Galactic Quadrants.

  17. Plasma-Based Studies on 4th Generation Light Sources

    SciTech Connect

    Lee, R W; Baldis, H A; Cauble, R C; Landen, O L; Wark, J S; Ng, A; Rose, S J; Lewis, C; Riley, D; Gauthier, J-C; Audebert, P

    2000-11-28

    The construction of a short pulse tunable x-ray laser source will be a watershed for plasma-based and warm dense matter research. The areas we will discuss below can be separated broadly into warn dense matter (WDM) research, laser probing of near solid density plasmas, and laser-plasma spectroscopy of ions in plasmas. The area of WDM refers to that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid. Warm dense matter, therefore, defines a region between solids and plasmas, a regime that is found in planetary interiors, cool dense stars, and in every plasma device where one starts from a solid, e.g., laser-solid matter produced plasma as well as all inertial fusion schemes. The study of dense plasmas has been severely hampered by the fact that laser-based methods have been unavailable. The single most useful diagnostic of local plasma conditions, e.g., the temperature (T{sub e}), the density (n{sub e}), and the ionization (Z), has been Thomson scattering. However, due to the fact that visible light will not propagate at electron densities, n{sub e}, {ge} 10{sup 22} cm{sup -3} implies dense plasmas can not be probed. The 4th generation sources, LCLS and Tesla will remove these restrictions. Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at redistribution of radiation. However. the possibilities end for plasmas with n{sub e} {ge} 10{sup 22} since light propagation through the medium is severely altered by the plasma. The entire field of high Z plasma kinetics from laser produced plasma will then be available to study with the tunable source.

  18. Generating Coherent Phonons and Spin Excitations with Ultrafast Light Pulses

    NASA Astrophysics Data System (ADS)

    Merlin, Roberto

    2006-03-01

    Recent work on the generation of coherent low-lying excitations by ultrafast laser pulses will be reviewed, emphasizing the microscopic mechanisms of light-matter interaction. The topics covered include long-lived phonons in ZnO [C. Aku-Leh, J. Zhao, R. Merlin, J. Men'endez and M. Cardona, Phys. Rev.B 71, 205211 (2005)], squeezed magnons [J. Zhao, A. V. Bragas, D. J. Lockwood and R. Merlin, Phys. Rev. Lett. 93, 107203 (2004)], spin- and charge-density fluctuations [J. M. Bao et al., Phys. Rev. Lett. 92, 236601 (2004)] and cyclotron resonance [J. K. Wahlstrand, D. M. Wang, P. Jacobs, J. M. Bao, R. Merlin, K. W. West and L. N. Pfeiffer, AIP Conference Proceedings 772 (2005), p. 1313] in GaAs quantum wells. In addition, unpublished results on surface -avoiding phonons in GaAs-AlAs superlattices [M. Trigo et al., unpublished] and magnons in ferromagnetic Ga1-xMnxAs [D. M. Wang et al., unpublished] will be discussed. It will also be shown that frequencies can be measured using pump-probe techniques with a precision comparable to that of Brillouin scattering. It is now widely accepted that stimulated Raman scattering (SRS) is (often but not always) the mechanism responsible for the coherent coupling. Results will be presented showing that SRS is described by two separate tensors, one of which accounts for the excitation-induced modulation of the susceptibility, and the other one for the dependence of the amplitude of the oscillation on the light intensity [T. E. Stevens, J. Kuhl and R. Merlin, Phys. Rev. B 65, 144304 (2002)]. These tensors have the same real component, associated with impulsive coherent generation, but different imaginary parts. If the imaginary term dominates, that is, for strongly absorbing substances, the mechanism for two-band processes becomes displacive in nature, as in the DECP (displacive excitation of coherent phonons) model. It will be argued that DECP is not a separate mechanism, but a particular case of SRS. In the final part of the talk, an

  19. Monolithic LED arrays, next generation smart lighting sources

    NASA Astrophysics Data System (ADS)

    Lagrange, Alexandre; Bono, Hubert; Templier, François

    2016-03-01

    LED have become the main light sources of the future as they open the path for intelligent use of light in time, intensity and color. In many usages, strong energy economy is done by adjusting these properties. The smart lighting has three dimensions, energy efficiency brought by GaN blue emitting LEDs, integration of electronics, sensors, microprocessors in the lighting system and development of new functionalities and services provided by the light. Monolithic LED arrays allow two major innovations, the spatial control of light emission and the adjustment of the electrical properties of the source.

  20. Effect on Physical Activity of a Randomized Afterschool Intervention for Inner City Children in 3rd to 5th Grade

    PubMed Central

    Crouter, Scott E.; de Ferranti, Sarah D.; Whiteley, Jessica; Steltz, Sarah K.; Osganian, Stavroula K.; Feldman, Henry A.; Hayman, Laura L.

    2015-01-01

    Background Less than 45% of U.S. children meet the 60 min.d-1 physical activity (PA) guideline. Structured after-school PA programing is one approach to help increase activity levels. This study aimed to evaluate the feasibility and short-term impact of a supervised after-school PA and nutrition education program on activity levels. Methods Forty-two 3rd-5th graders from an inner-city school in Boston, MA were randomly assigned to a 10-wk after-school program of either: 1) weekly nutrition education, or 2) weekly nutrition education plus supervised PA 3 d.wk-1 at a community-based center. At baseline and follow-up, PA was measured using accelerometry and fitness (VO2max) was estimated using the PACER 15-m shuttle run. Additional measures obtained were non-fasting finger stick total cholesterol (TC) and glucose levels, waist circumference (WC), body mass index (BMI), percent body fat (%BF), and blood pressure (BP). Values are presented as mean±SE, unless noted otherwise. Results Thirty-six participants completed the study (mean±SD; age 9.7±0.9 years). Participants attended >80% of the sessions. After adjusting for accelerometer wear time and other design factors, light and moderate-to-vigorous PA (MVPA) increased in the nutrition+PA group (+21.5±14.5 and +8.6±8.0 min.d-1, respectively) and decreased in the nutrition only group (-35.2±16.3 and -16.0±9.0 min.d-1, respectively); mean difference between groups of 56.8±21.7 min.d-1 (light PA, p = 0.01) and 24.5±12.0 min.d-1 (MVPA, p = 0.04). Time spent in sedentary behaviors declined in the nutrition+PA group (-14.8±20.7 min.d-1) and increased in the nutrition only group (+55.4±23.2 min.d-1); mean difference between groups of -70.2±30.9 min.d-1 (p = 0.02). Neither group showed changes in TC, BP, WC, %BF, BMI percentile, or fitness (p>0.05). Conclusions The supervised afterschool community-based nutrition and PA program was well accepted and had high attendance. The changes in light PA and MVPA has potential

  1. The Power of PreK-3rd: How a Small Foundation Helped Push Washington State to the Forefront of the PreK-3rd Movement. FCD Case Study

    ERIC Educational Resources Information Center

    Nyhan, Paul

    2011-01-01

    The New School Foundation was not born from a commission, legislative mandate, research project, think tank, or even the mind of a leading education scholar. One of Washington state's pioneering PreK-3rd initiatives began as the brainchild of a wealthy Seattle businessman, Stuart Sloan, 20 years ago. The New School Foundation and its ideas were…

  2. Geysers Characteristics before and after Landslide of June 3-rd, 2007 (Geysers Valley, Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Droznin, V. A.; Kiryukhin, A. V.; Muraviev, J. D.

    2007-12-01

    Since 1990 cycling characteristics of five geysers (Maly, Bolshoy, Shel, Velican, Troynoy) were contentiously monitoring using automatic telemetric system (V A Drosnin, http://www.ch0103.emsd.iks.ru/ ). The most powerful geyser Velikan erupted steam clouds at 300 m height. 1:20 UTC June 3-rd, 2007 lower basin of the Geysers Valley was in a few minutes buried under 10 mln m3 of mud, debris, and blocks of rocks. Some indications were found, that landslide triggered by steam eruption in the upstream area of Vodopadny creek. As a result of this three famous geysers (Pervenets, Sakharny,Troynoy) located at lower elevations were sealed under 10-30 m thick caprock as well as Vodopadny hot creek, a rock dumb trap Geysernaya river and lifted water into 20 m deep lake, which flooded three famous geysers (Conus, Bolshoy and Maly) terminating their cycling activity. Nevertheless Bolshoy and Maly activity continues in a form of discharge of water circulated in the former geysers channels and a clear plume at a lake surface above exits observed. Shortly after landslide continuous monitoring of the cycling characteristics of the upper basin geysers, including Velikan and lake level, accomplished by temperature loggers - restarted. There are some indications time periods of the geysers cycling decrease.

  3. PREFACE: 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Webb, Jeff; Ding, Jun

    2015-05-01

    The 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015) was held at the Sheraton Kuta, Bali, Indonesia, from 28 - 29 March 2015. The MOIME 2015 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. MOIME 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that relate to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program, as well as the invited and plenary speakers. This year, we received 99 papers and after rigorous review, 24 papers were accepted. The participants come from eight countries. There were four parallel sessions and two invited speakers. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of MOIME 2015. The Editors of the MOIME 2015 Proceedings Dr. Ford Lumban Gaol Jeff Webb, Ph.D Prof. Jun DING, Ph.D

  4. The 3rd international intercomparison on EPR tooth dosimetry: Part 1, general analysis.

    PubMed

    Wieser, A; Debuyst, R; Fattibene, P; Meghzifene, A; Onori, S; Bayankin, S N; Blackwell, B; Brik, A; Bugay, A; Chumak, V; Ciesielski, B; Hoshi, M; Imata, H; Ivannikov, A; Ivanov, D; Junczewska, M; Miyazawa, C; Pass, B; Penkowski, M; Pivovarov, S; Romanyukha, A; Romanyukha, L; Schauer, D; Scherbina, O; Schultka, K; Shames, A; Sholom, S; Skinner, A; Skvortsov, V; Stepanenko, V; Tielewuhan, E; Toyoda, S; Trompier, F

    2005-02-01

    The objective of the 3rd International Intercomparison on Electron Paramagnetic Resonance (EPR) Tooth Dosimetry was the evaluation of laboratories performing tooth enamel dosimetry below 300 mGy. Participants had to reconstruct the absorbed dose in tooth enamel from 11 molars, which were cut into two halves. One half of each tooth was irradiated in a 60Co beam to doses in the ranges of 30-100 mGy (5 samples), 100-300 mGy (5 samples), and 300-900 mGy (1 sample). Fourteen international laboratories participated in this intercomparison programme. A first analysis of the results and an overview of the essential features of methods applied in different laboratories are presented. The relative standard deviation of results of all methods was better than 27% for applied doses in the range of 79-704 mGy. In the analysis of the unirradiated tooth halves 8% of the samples were identified as outliers with additional absorbed dose above background dose.

  5. The 3^rd International Conference on Women in Physics: Global Perspectives, Common Concerns, Worldwide Views

    NASA Astrophysics Data System (ADS)

    Zastavker, Yevgeniya V.

    2009-03-01

    The 3^rd International Conference on Women in Physics (ICWIP), held in Seoul, Korea, in October 2008, brought together 300 participants from 57 countries, including a diverse 22-member U.S. Delegation, for a 3-day summit of stimulating discussions, thought-provoking presentations, inspirational posters, and networking. Held under the auspices of the Working Group on Women in Physics of the International Union of Pure and Applied Physics (IUPAP), this meeting built on the successes of the 1^st (Paris, 2002) and 2^nd (Rio de Janeiro, 2005) Conferences and further clarified the importance of diversifying the field of physics worldwide. Although considerable progress has been made since 2002, it was clear that the global scientific workforce is still under-utilizing a large percentage of the available female talent pool. If human society is to benefit to its fullest from various contributions that the field of physics can offer in addressing global issues of economic crisis, energy, environment, water, health, poverty, and hunger, women of all races and nationalities need to become fully included and engaged in the national and international physical community. To address these and many other issues, the ICWIP unanimously approved a five-part resolution to IUPAP recommending actions to promote the recruitment, retention, and advancement of women in physics and related fields.

  6. X-ray holographic microscopy with zone plates applied to biological samples in the water window using 3rd harmonic radiation from the free-electron laser FLASH.

    PubMed

    Gorniak, T; Heine, R; Mancuso, A P; Staier, F; Christophis, C; Pettitt, M E; Sakdinawat, A; Treusch, R; Guerassimova, N; Feldhaus, J; Gutt, C; Grübel, G; Eisebitt, S; Beyer, A; Gölzhäuser, A; Weckert, E; Grunze, M; Vartanyants, I A; Rosenhahn, A

    2011-06-06

    The imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome resolution limits set by radiation damage. One current challenge is to match both the desired energy and the intensity of the light source. We present the first images of dehydrated biological material acquired with 3rd harmonic radiation from FLASH by digital in-line zone plate holography as one step towards the vision of imaging hydrated biological material with photons in the water window. We also demonstrate the first application of ultrathin molecular sheets as suitable substrates for future free-electron laser experiments with biological samples in the form of a rat fibroblast cell and marine biofouling bacteria Cobetia marina.

  7. Test Review: C. Keith Conners "Conners 3rd Edition" Toronto, Ontario, Canada--Multi-Health Systems, 2008

    ERIC Educational Resources Information Center

    Kao, Grace S.; Thomas, Hillary M.

    2010-01-01

    "Conners 3rd Edition" is the most updated version of a series of measures for assessing attention deficit hyperactivity disorder (ADHD) and common comorbid problems/disorders in children and adolescents ranging from 6 to 18 years of age. Related problems that the test helps assess include executive dysfunction, learning problems, aggression, and…

  8. 3rd Annual PIALA Conference Saipan--Collecting, Preserving & Sharing Information in Micronesia. Conference Proceedings. October 13-15, 1993.

    ERIC Educational Resources Information Center

    Edmundson, Margaret, Ed.

    1993-01-01

    This PIALA 1993 Proceedings contains many of the papers presented at the 3rd annual conference of the Pacific Islands Association of Libraries and Archives. This publication is the first time papers from this Micronesian regional library and archives conference have ever been published. The conference addressed various topics of interest to…

  9. Exemplary Institute. Proceedings of the Annual Conference (3rd, Albuquerque, New Mexico, February 22-24, 1998).

    ERIC Educational Resources Information Center

    Native American Scholarship Fund, Inc., Albuquerque, NM.

    This proceedings contains presentations and workshop summaries from the 3rd Annual Exemplary Institute for educators of Native American students. Presentations include: "Quality in Learning: Romancing the Journey" (quality management at Mount Edgecumbe High School, Alaska) (Todd Bergman); "Creating a School-wide Literacy Climate" (Sig Boloz); "How…

  10. Predicting 3rd Grade and 10th Grade FCAT Success for 2007-08. Research Brief. Volume 0702

    ERIC Educational Resources Information Center

    Froman, Terry; Rubiera, Vilma

    2008-01-01

    For the past few years the Florida School Code has set the Florida Comprehensive Assessment Test (FCAT) performance requirements for promotion of 3rd graders and graduation for 10 graders. Grade 3 students who do not score at level 2 or higher on the FCAT SSS Reading must be retained unless exempted for special circumstances. Grade 10 students…

  11. Predicting 3rd Grade and 10th Grade FCAT Success for 2006-07. Research Brief. Volume 0601

    ERIC Educational Resources Information Center

    Froman, Terry; Rubiera, Vilma

    2006-01-01

    For the past few years the Florida School Code has set the Florida Comprehensive Assessment Test (FCAT) performance requirements for promotion of 3rd graders and graduation for 10th graders. Grade 3 students who do not score at level 2 or higher on the FCAT SSS Reading must be retained unless exempted for special circumstances. Grade 10 students…

  12. Iowa Acceleration Scale Manual: A Guide for Whole-Grade Acceleration K-8. (3rd Edition, Manual)

    ERIC Educational Resources Information Center

    Assouline, Susan G.; Colangelo, Nicholas; Lupkowski-Shoplik, Ann; Forstadt, Leslie; Lipscomb, Jonathon

    2009-01-01

    Feedback from years of nationwide use has resulted in a 3rd Edition of this unique, systematic, and objective guide to considering and implementing academic acceleration. Developed and tested by the Belin-Blank Center at the University of Iowa, the IAS ensures that acceleration decisions are systematic, thoughtful, well reasoned, and defensible.…

  13. Constancy and Variability: Dialogic Literacy Events as Sites for Improvisation in Two 3rd-Grade Classrooms

    ERIC Educational Resources Information Center

    Jordan, Michelle E.; Santori, Diane

    2015-01-01

    This multisite study investigates dialogic literacy events that revolved around narrative and informational texts in two 3rd-grade classrooms. The authors offer a metaphor of musical improvisation to contemplate dialogic literacy events as part of the repertoire of teaching and learning experiences. In literacy learning, where there is much…

  14. A Program Evaluation of ClassScape Used in 3rd Grade Classes in a Rural County in North Carolina

    ERIC Educational Resources Information Center

    Rogers, Misha Neely

    2012-01-01

    The research study will examine the impact of using the ClassScape program and targeted interventions on 3rd grade reading levels of performance. The conceptual and theoretical framework for the study suggests the need to connect formative, benchmark, and summative assessments in North Carolina. Furthermore, the review of the literature will…

  15. Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental Origins of Health and Disease (DOHaD) focuses on the earliest stages of human development, and provides a novel paradigm to complement other strategies for lifelong prevention of common chronic health conditions. The 3rd International Congress on DOHaD, held in 2005, retained the most ...

  16. Visual Arts Teaching in Kindergarten through 3rd-Grade Classrooms in the UAE: Teacher Profiles, Perceptions, and Practices

    ERIC Educational Resources Information Center

    Buldu, Mehmet; Shaban, Mohamed S.

    2010-01-01

    This study portrayed a picture of kindergarten through 3rd-grade teachers who teach visual arts, their perceptions of the value of visual arts, their visual arts teaching practices, visual arts experiences provided to young learners in school, and major factors and/or influences that affect their teaching of visual arts. The sample for this study…

  17. Next Generation Luminaires: Recognizing Innovative, Energy-Efficient Commercial Lighting Luminaires

    SciTech Connect

    2013-04-01

    Fact sheet that describes the Next Generation Luminaires SSL lighting design competition, which recognizes excellence in technical innovation and design of high-quality, energy-efficient commercial lighting, both indoor and outdoor.

  18. Suppression of white light generation (supercontinuum) in biological media: a pilot study using human salivary proteins

    NASA Astrophysics Data System (ADS)

    Santhosh, C.; Dharmadhikari, A. K.; Alti, K.; Dharmadhikari, J. A.; Mathur, D.

    2007-02-01

    Propagation of ultrashort pulses of intense, infrared light through transparent medium gives rise to a visually spectacular phenomenon known as supercontinuum (white light) generation wherein the spectrum of transmitted light is very considerably broader than that of the incident light. We have studied the propagation of ultrafast (<45 fs) pulses of intense infrared light through biological media (water, and water doped with salivary proteins) which reveal that white light generation is severely suppressed in the presence of a major salivary protein, α-amylase.

  19. Essential surgery: key messages from Disease Control Priorities, 3rd edition.

    PubMed

    Mock, Charles N; Donkor, Peter; Gawande, Atul; Jamison, Dean T; Kruk, Margaret E; Debas, Haile T

    2015-05-30

    The World Bank will publish the nine volumes of Disease Control Priorities, 3rd edition, in 2015-16. Volume 1--Essential Surgery--identifies 44 surgical procedures as essential on the basis that they address substantial needs, are cost effective, and are feasible to implement. This report summarises and critically assesses the volume's five key findings. First, provision of essential surgical procedures would avert about 1·5 million deaths a year, or 6-7% of all avertable deaths in low-income and middle-income countries. Second, essential surgical procedures rank among the most cost effective of all health interventions. The surgical platform of the first-level hospital delivers 28 of the 44 essential procedures, making investment in this platform also highly cost effective. Third, measures to expand access to surgery, such as task sharing, have been shown to be safe and effective while countries make long-term investments in building surgical and anaesthesia workforces. Because emergency procedures constitute 23 of the 28 procedures provided at first-level hospitals, expansion of access requires that such facilities be widely geographically diffused. Fourth, substantial disparities remain in the safety of surgical care, driven by high perioperative mortality rates including anaesthesia-related deaths in low-income and middle-income countries. Feasible measures, such as WHO's Surgical Safety Checklist, have led to improvements in safety and quality. Fifth, the large burden of surgical disorders, cost-effectiveness of essential surgery, and strong public demand for surgical services suggest that universal coverage of essential surgery should be financed early on the path to universal health coverage. We point to estimates that full coverage of the component of universal coverage of essential surgery applicable to first-level hospitals would require just over US$3 billion annually of additional spending and yield a benefit-cost ratio of more than 10:1. It would

  20. A collaborative study to establish the 3rd International Standard for tissue plasminogen activator.

    PubMed

    Sands, Dawn; Whitton, Colin M; Merton, R Elizabeth; Longstaff, Colin

    2002-08-01

    An international collaborative study was organised to replace the 2nd International Standard (IS) for tissue plasminogen activator (tPA). The 2nd IS for tPA (86/670) was used to calibrate the replacement Standard, which was selected from two candidate materials included in the collaborative study. Participants were provided with five sets of four samples (A, B, C, D) and asked to use sample A (2nd IS, 86/670, 850 IU/ml) to determine the activity of B (86/624, approximately 850 IU/ml), C and D (coded duplicates of the same material, 98/714 approximately 11,000 IU/ml). A total of 14 laboratories returned results from Europe, USA, Japan and Australia, providing data from 60 independent assays. Four laboratories used a reference method based on a published monograph from the European Pharmacopoeia for Alteplase for Injection, 1998, and the remaining 10 used their own method. Fibrin was used as promoter of tPA activity by 12 out of the 14 laboratories, the remaining two used kits where fibrinogen fragments were the promoter. Data from this collaborative study and the previous study to establish the 2nd IS for tPA show that tPA from melanoma cells and recombinant tPA from CHO cells are both suitable materials as International Standards. It was agreed that sample C, D, recombinant tPA, 98/714, be established as the 3rd International Standard for tPA with a potency of 10,000 IU per ampoule, calculated as the mean value from laboratories using fibrin as a promoter of tPA activity. The standard was established by WHO in November 2000.

  1. 3rd hand smoking; heterogeneous oxidation of nicotine and secondary aerosol formation in the indoor environment

    NASA Astrophysics Data System (ADS)

    Petrick, Lauren; Dubowski, Yael

    2010-05-01

    Tobacco smoking is well known as a significant source of primary indoor air pollutants. However, only recently has it been recognized that the impact of Tobacco smoking may continue even after the cigarette has been extinguished (i.e., third hand smoke) due to the effect of indoor surfaces. These surfaces may affect the fate of tobacco smoke in the form of secondary reactions and pollutants, including secondary organic aerosol (SOA) formation. Fourier Transform Infrared spectrometry with Attenuated Total Reflection (FTIR-ATR) in tandem with a Scanning Mobility Particle Sizing (SMPS) system was used to monitor the ozonation of cellulose sorbed nicotine and resulting SOA formation. SOA formation began at onset of ozone introduction ([O3] = 60 ± 5 ppb) with a size distribution of dp ≤ 25 nm, and was determined to be a result of heterogeneous reaction (opposed to homogeneous). SOA yield from reacted surface nicotine was on the order of 10 %. Simultaneous to SOA monitoring, FTIR-ATR spectra showed surface changes in the nicotine film as the reaction progressed, revealing a pseudo first-order surface reaction rate of 0.0026 ± 0.0008 min-1. Identified surface oxidation products included: cotinine, myosmine, methylnicotinamide and nicotyrine. Surface reaction rate was found to be partially inhibited at high relative humidity. Given the toxicity of some of the identified products (e.g., cotinine has shown potential mutagenicity and teratogenicity) and that small particles may contribute to adverse health effects, the present study indicates that exposure to 3rd hand smoke ozonation products may pose additional health risks.

  2. Catalysis in the 3rd Dimension: How Organic Molecules May be Formed

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Catalysis is often little more than a word to phenomenologically describe the fact that a reaction follows a pat1 that leads to products of an unexpected kind or of unexpected yield. Low activation energy barriers for intermediates are recognized as the most likely cause why a system deviates from the thermodynamic pull towards minimizing its free energy and ends up in a metastable state. Seldom is the mechanism known. This i: particularly true for heterogeneous catalysis under hydrothermal conditions with minerals as catalysts. It is commonly assumed that catalytic action takes place across solid-fluid interfaces and that, on the atomic level, interfaces are just 2-dimensional contacts. This makes it difficult to understand, for instance, the assembly of long-chain carboxylic (fatty) acids. 3y studying single crystals that grew from a melt in the presence of H2O and CO2, we can show: (1) that numerals take up the fluid components into solid solution, (2) that some-thing happens converting them to -educedH and C, (3) that C atoms segregate into dislocations and tie C-C bonds. The products are medium-to-long chain Cn protomolecules, with some C-H attached, pre-assembled in the dislocations. Upon solvent extraction, these proto-molecules turn into carboxylic and dicarboxylic acids. This observation suggests that, in a very elementary step, catalysis under hydrothermal conditions leading to fatty acids involves the pre-assembly of Cn entities in the interface that is not 2-D but extends into the 3rd dimension, with dislocations as synthesis sites.

  3. PREFACE: 3rd International Youth Conference "Interdisciplinary Problems of Nanotechnology, Biomedicine and Nanotoxicology" (Nanobiotech 2015)

    NASA Astrophysics Data System (ADS)

    Refsnes, Magne, Prof; Gusev, Alexander, Dr; Godymchuk, Anna, Dr; Bogdan, Anna

    2015-11-01

    The 3rd International Youth Conference "Interdisciplinary Problems of Nanotechnology, Biomedicine and Nanotoxicology" (Nanobiotech2015) was held on 21-22 May 2015 in Tambov, Russia, and was jointly organized by Tambov Derzhavin State University (Russia), the Norwegian Institute of Public Health (Norway), the National University of Science and Technology MISiS (Russia), Tomsk Polytechnic University (Russia) and Tomsk State University. The conference gathered experienced and young researchers, post-docs and students, working in the fieldof nanotechnologies, nanomedicine, nano(eco)toxicology and risk assessment of nanomaterials, in order to facilitate the aggregation and sharing of interests and results for better collaboration and visibility of activity. The goal of Nanobiotech2015 was to bring researchers and practitioners together to share the latest knowledge on nanotechnology-specific risks to occupational and environmental health and assessing how to reduce these potential risks. The main objective of the conference is to identify, systematize and solve current scientific problems inthe sphere of nanobiotechnologies, nanomedicine and nanotoxicology, in order to join forces todetermine prospective areas and compose working groups of interested co-workers for carrying out interdisciplinary research projects. The topics of Nanobiotech2015 were: (1) Nanotechnologies in pharmaceutics and medicine; (2) Sources and mechanisms of nanoparticle release into the environment; (3) Ecological and biological effects of nanoparticles; (4) (Eco)toxicology of nanomaterials; (5) Methods for detection of nanoparticles in the environment and in biological objects; and (6) Physico-chemical properties of nanoparticles in the environment. We want to thank the Organizing Committee, the universities and sponsors supporting the conference,and everyone who contributed to the organization of this meeting, for their contribution towards the conference and for their contributions to these

  4. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema

    Siminovittch, Micheal

    2016-07-12

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  5. Knowledge and institutional requirements to promote land degradation neutrality in drylands - An analysis of the outcomes of the 3rd UNCCD scientific conference

    NASA Astrophysics Data System (ADS)

    Akhtar-Schuster, Mariam; Safriel, Uriel; Abraham, Elena; de Vente, Joris; Essahli, Wafa; Escadafal, Richard; Stringer, Lindsay

    2015-04-01

    Achieving land degradation neutrality (LDN) through sustainable land management (SLM) targets the maintenance or restoration of the productivity of land, and therefore has to include decision-makers, knowledge generators and knowledge holders at the different relevant geographic scales. In order to enhance the implementation of the Convention, the Conference of the Parties (COP) of the United Nations Convention to Combat Desertification therefore decided that each future session of its Committee on Science and Technology (CST) would be organized in a predominantly scientific and technical conference-style format. This contribution will outline the major outcomes of UNCCD's 3rd scientific conference that will be held in Cancún, Mexico, from 9 to 12 March 2015, on addressing desertification, land degradation and drought issues (DLDD) for poverty reduction and sustainable development. The conference follows an exceptional new round table conference format that will allow the various stakeholders to discuss scientific as well as the contribution of traditional knowledge and practices in combating land degradation. This format should provide two-way communication and enable deeper insight into the availability and contribution of all forms of knowledge for achieving LDN through the assessment of: • the vulnerability of lands to DLDD and climate change and the adaptive capacities of socio-ecosystems; • best examples of adapted, knowledge-based practices and technologies; • monitoring and assessment methods to evaluate the effectiveness of adaptation practices and technologies. The outcomes of UNCCD's 3rd scientific conference will serve as a basis for discussing: • contributions of science to diagnose the status of land; • research gaps that need to be addressed to achieve LDN for poverty reduction; • additional institutional requirements to optimally bridge knowledge generation, knowledge maintenance and knowledge implementation at the science

  6. Light generation via quantum interaction of electrons with periodic nanostructures

    NASA Astrophysics Data System (ADS)

    Tsesses, Shai; Bartal, Guy; Kaminer, Ido

    2017-01-01

    The Smith-Purcell effect is a hallmark of light-matter interactions in periodic structures, resulting in light emission with distinct spectral and angular distribution. We find yet undiscovered effects in Smith-Purcell radiation that arise due to the quantum nature of light and matter, through an approach based on exact energy and momentum conservation. The effects include emission cutoff, convergence of emission orders, and a possible second photoemission process, appearing predominantly in structures with nanoscale periodicities (a few tens of nanometers or less), accessible by recent nanofabrication advances. We further present ways to manipulate the effects by varying the geometry or by accounting for a refractive index. Our derivation emphasizes the fundamental relation between Smith-Purcell radiation and Čerenkov radiation, and paves the way to alternative kinds of light sources wherein nonrelativistic electrons create Smith-Purcell radiation in nanoscale, on-chip devices. Finally, the path towards experimental realizations of these effects is discussed.

  7. Building monument materials during the 3rd-4rd millennium (Portugal)

    NASA Astrophysics Data System (ADS)

    Moita, Patricia; Pedro, Jorge; Boaventura, Rui; Mataloto, Rui; Maximo, Jaime; Almeida, Luís; Nogueira, Pedro

    2014-05-01

    Dolmens are the most conspicuous remains of the populations of the 4th and first half of 3rd millennia BCE. These tombs are impressive not only for their monumentality, but also because of the socioeconomic investment they represent for those Neolithic communities, namely from the Central-South of Portugal, who built them. Although dolmens have been studied for their funerary content and typologies, an interdisciplinary approach toward the geological characterization and sourcing of stones used in these constructions has not received enough attention from researchers. With MEGAGEO project a multidisciplinary group of geologist and archaeologists intends to assess the relationship between the distribution of dolmens in Central-South Portugal, their source materials, and the geological landscape. GIS will map the information gathered and will be used to analyse these relationships. The selection of the areas, with distinctive geologies (limestone vs granite), will allow to verify if human patterns of behaviour regarding the selection of megaliths are similar or different regionally. Geologically the first target area (Freixo, Alentejo) is dominated by a small intrusion of gabbro mingled/mixed within a granodioritic intrusion both related with variscan orogeny. Granodiorite exhibit several enclaves of igneous and metamorphic nature attesting the interaction between both igneous rocks as well with enclosing gneisses. Despite Alentejo region have a reduced number of outcrops the granodiorite provides rounded to tabular metric blocks. The gabbro is very coarse grained, sometimes with a cumulate texture, and their fracturing and weathering provide very fresh tabular blocks. The five studied dolmens (Quinta do Freixo #1 to #5) are implanted in a large granodioritic intrusion, around the gabbroic rocks, within an area of approximately 9km2. The medium grained granodiorite is ubiquity in all the dolmens slabs and occasionally it can be observed features of mixing and

  8. PREFACE: 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"

    NASA Astrophysics Data System (ADS)

    Yamada, Taiichi; Kanada-En'yo, Yoshiko

    2014-12-01

    The 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3) was held at KGU Kannai Media Center, Kanto Gakuin University, Yokohama, Japan, from May 26 to 30, 2014. Yokohama is the second largest city in Japan, about 25 km southeast of Tokyo. The first workshop of the series was held in Strasbourg, France, in 2008 and the second one was in Brussels, Belgium, in 2010. The purpose of SOTANCP3 was to discuss the present status and future perspectives of the nuclear cluster physics. The following nine topics were selected in order to cover most of the scientific programme and highlight an area where new ideas have emerged over recent years: (1) Cluster structures and many-body correlations in stable and unstable nuclei (2) Clustering aspects of nuclear reactions and resonances (3) Alpha condensates and analogy with condensed matter approaches (4) Role of tensor force in cluster physics and ab initio approaches (5) Clustering in hypernuclei (6) Nuclear fission, superheavy nuclei, and cluster decay (7) Cluster physics and nuclear astrophysics (8) Clustering in nuclear matter and neutron stars (9) Clustering in hadron and atomic physics There were 122 participants, including 53 from 17 foreign countries. In addition to invited talks, we had many talks selected from contributed papers. There were plenary, parallel, and poster sessions. Poster contributions were also presented as four-minute talks in parallel sessions. This proceedings contains the papers presented in invited and selected talks together with those presented in poster sessions. We would like to express our gratitude to the members of the International Advisory Committee and those of the Organizing Committee for their efforts which made this workshop successful. In particular we would like to present our great thanks to Drs. Y. Funaki, W. Horiuchi, N. Itagaki, M. Kimura, T. Myo, and T. Yoshida. We would like also to thank the following organizations for their sponsors: RCNP

  9. ic-cmtp3: 3rd International Conference on Competitive Materials and Technology Processes

    NASA Astrophysics Data System (ADS)

    2016-04-01

    Competitiveness is one of the most important factors in our lives and it plays a key role in the efficiency both of organizations and societies. The more scientifically advanced and prepared organizations develop more competitive materials with better physical, chemical, and biological properties, and the leading companies apply more competitive equipment and technological processes. The aims of the 3rd International Conference on Competitive Materials and Technology Processes (ic-cmtp3), and the 1st International Symposium on Innovative Carbons and Carbon Based Materials (is-icbm1) and the 1st International Symposium on Innovative Construction Materials (is-icm1) organized alongside are the following: —Promote new methods and results of scientific research in the fields of material, biological, environmental and technological sciences; —Exchange information between the theoretical and applied sciences as well as technical and technological implementations; —Promote communication and collaboration between the scientists, researchers and engineers of different nations, countries and continents. Among the major fields of interest are advanced and innovative materials with competitive characteristics, including mechanical, physical, chemical, biological, medical and thermal, properties and extreme dynamic strength. Their crystalline, nano - and micro-structures, phase transformations as well as details of their technological processes, tests and measurements are also in the focus of the ic-cmtp3 conference and the is-scbm1 and is-icm1 symposia. Multidisciplinary applications of material science and the technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industries, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance with the program of the ic-cmtp3 conference and is-icbm1 and is-icm1 symposia we have received more

  10. PREFACE: 3rd International Workshop on Statistical Physics and Mathematics for Complex Systems (SPMCS 2012)

    NASA Astrophysics Data System (ADS)

    Tayurskii, Dmitrii; Abe, Sumiyoshi; Alexandre Wang, Q.

    2012-11-01

    The 3rd International Workshop on Statistical Physics and Mathematics for Complex Systems (SPMCS2012) was held between 25-30 August at Kazan (Volga Region) Federal University, Kazan, Russian Federation. This workshop was jointly organized by Kazan Federal University and Institut Supérieur des Matériaux et Mécaniques Avancées (ISMANS), France. The series of SPMCS workshops was created in 2008 with the aim to be an interdisciplinary incubator for the worldwide exchange of innovative ideas and information about the latest results. The first workshop was held at ISMANS, Le Mans (France) in 2008, and the third at Huazhong Normal University, Wuhan (China) in 2010. At SPMCS2012, we wished to bring together a broad community of researchers from the different branches of the rapidly developing complexity science to discuss the fundamental theoretical challenges (geometry/topology, number theory, statistical physics, dynamical systems, etc) as well as experimental and applied aspects of many practical problems (condensed matter, disordered systems, financial markets, chemistry, biology, geoscience, etc). The program of SPMCS2012 was prepared based on three categories: (i) physical and mathematical studies (quantum mechanics, generalized nonequilibrium thermodynamics, nonlinear dynamics, condensed matter physics, nanoscience); (ii) natural complex systems (physical, geophysical, chemical and biological); (iii) social, economical, political agent systems and man-made complex systems. The conference attracted 64 participants from 10 countries. There were 10 invited lectures, 12 invited talks and 28 regular oral talks in the morning and afternoon sessions. The book of Abstracts is available from the conference website (http://www.ksu.ru/conf/spmcs2012/?id=3). A round table was also held, the topic of which was 'Recent and Anticipated Future Progress in Science of Complexity', discussing a variety of questions and opinions important for the understanding of the concept of

  11. A Feasibility Study on Generation of Acoustic Waves Utilizing Evanescent Light

    NASA Astrophysics Data System (ADS)

    Matsuya, I.; Matozaki, K.; Kosugi, A.; Ihara, I.

    2014-06-01

    A new approach of generating acoustic waves utilizing evanescent light is presented. The evanescent light is a non-propagating electromagnetic wave that exhibits exponential decay with distance from the surface at which the total internal reflection of light is formed. In this research, the evanescent light during total internal reflection at prism surface is utilized for generating acoustic waves in aluminium and the feasibility for ultrasonic measurements is discussed. Pulsed Nd:YAG laser with 0.36 J/cm2 power density is used and the incident angle during the total internal reflection is arranged to be 69.0° for generating the evanescent light. It has been demonstrated that the amplitude of the acoustic waves by means of evanescent light is about 1/14 as large as the one generated by the conventional pulsed laser. This reveals the possibility of using a laser ultrasonic technique with near-field optics.

  12. Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders.

    PubMed

    Meyer, M L; Salimpoor, V N; Wu, S S; Geary, D C; Menon, V

    2010-04-01

    The contribution of the three core components of working memory (WM) to the development of mathematical skills in young children is poorly understood. The relation between specific WM components and Numerical Operations, which emphasize computation and fact retrieval, and Mathematical Reasoning, which emphasizes verbal problem solving abilities in 48 2nd and 50 3rd graders was assessed using standardized WM and mathematical achievement measures. For 2nd graders, the central executive and phonological components predicted Mathematical Reasoning skills; whereas the visuo-spatial component predicted both Mathematical Reasoning and Numerical Operations skills in 3rd graders. This pattern suggests that the central executive and phonological loop facilitate performance during early stages of mathematical learning whereas visuo-spatial representations play an increasingly important role during later stages. We propose that these changes reflect a shift from prefrontal to parietal cortical functions during mathematical skill acquisition. Implications for learning and individual differences are discussed.

  13. Plant chromatin warms up in Madrid: meeting summary of the 3rd European Workshop on Plant Chromatin 2013, Madrid, Spain.

    PubMed

    Jarillo, José A; Gaudin, Valérie; Hennig, Lars; Köhler, Claudia; Piñeiro, Manuel

    2014-04-01

    The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC.

  14. Micro-Structured Materials for Generation of Coherent Light and Optical Signal Processing

    DTIC Science & Technology

    2008-12-22

    within a laser linewidth of 1 GHz (matched to the doppler broadened bandwidth of the sodium layer) to provide enough return light to the wavefront...AND SUBTITLE Micro-Structured Materials for Generation of Coherent Light And Optical Signal Processing 5a. CONTRACT NUMBER 5b. GRANT NUMBER...2008 3. TITLE OF PROPOSAL: Micro-Structured Matenals for Generation of Coherent Light And Optical Signal Processing 4. LIST OF MANUSCRIPTS

  15. Proceedings of the 3rd IDA-CIISS Workshop: Challenges and Opportunities of Common Security and the Business of Defense

    DTIC Science & Technology

    2009-01-01

    Workshop: Challenges and Opportunities of Common Security and the Business of Defense Stephen J. Balut, IDA Project Leader Larry D. Welch, IDA David L...3693 Proceedings of the 3rd IDA-CIISS Workshop: Challenges and Opportunities of Common Security and the Business of Defense Stephen J. Balut, IDA...Welch on “ Challenges and Opportunities of Common Security for the United States and China.” Also included are presentations by Senior Colonel Jiang

  16. Generation of an incident focused light pulse in FDTD.

    PubMed

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2008-11-10

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

  17. Does 3rd Age + 3rd World = 3rd Class?

    ERIC Educational Resources Information Center

    Tout, Ken

    1992-01-01

    Demographic changes, migration, and industrialization are having drastic effects on older adults in developing nations. Local programs such as Pro Vida in Colombia, supported by Help Age International, rely on the support of volunteers to improve the quality of life for elderly people. (SK)

  18. A global drought climatology for the 3rd edition of the World Atlas of Desertification (WAD)

    NASA Astrophysics Data System (ADS)

    Spinoni, Jonathan; Carrao, Hugo; Naumann, Gustavo; Antofie, Tiberiu; Barbosa, Paulo; Vogt, Jürgen

    2013-04-01

    A new version of the World Atlas of Desertification (WAD) is being compiled in the framework of cooperation between the Joint Research Centre (JRC) of the European Commission and the United Nations Environment Programme (UNEP). This initiative aims at mapping the global land degradation and desertification, as well as introducing the reader with complex interactions of geo-physical, socio-economic, and political aspects that affect the environmental sustainability. Recurrent extreme events resulting from climate change, such as more severe droughts, combined with non-adapted land use practices can affect the resilience of ecosystems tipping them into a less productive state. Thus, to describe the effects of climatological hazards on land degradation and desertification processes, we computed a World drought climatology that will be part of the 3rd edition of the WAD and will replace and update to 2010 the results presented in the 2nd edition in 1997. This paper presents the methodology used to compute three parameters included in the WAD drought climatology, i.e. drought frequency, intensity and duration, and discusses their spatio-temporal patterns both at global and continental scales. Because drought is mainly driven and triggered by a rainfall deficit, we chose the Standardized Precipitation Index (SPI) as the drought indicator to estimate our climatological parameters. The SPI is a statistical precipitation-based drought indicator widely used in drought-related studies. We calculated the SPI on three different accumulation periods: 3 months (SPI-3), 6 months (SPI-6), and 12 months (SPI-12), in order to take into account meteorological, agricultural, and hydrological drought-related features. Each quantity has been calculated on a monthly basis using the baseline period between January 1951 and December 2010. As data input, we used the Full Data Reanalysis Version 6.0 (0.5˚x0.5˚) of gridded monthly precipitation provided by the Global Precipitation

  19. PREFACE: 3rd Workshop on Theory, Modelling and Computational Methods for Semiconductors (TMCSIII)

    NASA Astrophysics Data System (ADS)

    Califano, Marco; Migliorato, Max; Probert, Matt

    2012-05-01

    These conference proceedings contain the written papers of the contributions presented at the 3rd International Conference on Theory, Modelling and Computational Methods for Semiconductor materials and nanostructures. The conference was held at the School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK on 18-20 January 2012. The previous conferences in this series took place in 2010 at St William's College, York and in 2008 at the University of Manchester, UK. The development of high-speed computer architectures is finally allowing the routine use of accurate methods for calculating the structural, thermodynamic, vibrational, optical and electronic properties of semiconductors and their hetero- and nano-structures. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in semiconductor science and technology, where there is substantial potential for time-saving in R&D. Theoretical approaches represented in this meeting included: Density Functional Theory, Tight Binding, Semiempirical Pseudopotential Methods, Effective Mass Models, Empirical Potential Methods and Multiscale Approaches. Topics included, but were not limited to: Optical and Transport Properties of Quantum Nanostructures including Colloids and Nanotubes, Plasmonics, Magnetic Semiconductors, Graphene, Lasers, Photonic Structures, Photovoltaic and Electronic Devices. This workshop ran for three days, with the objective of bringing together UK and international leading experts in the theoretical modelling of Group IV, III-V and II-VI semiconductors, as well as students, postdocs and early-career researchers. The first day focused on providing an introduction and overview of this vast field, aimed particularly at students, with several lectures given by recognised experts in various theoretical approaches. The following two days showcased some of the best theoretical research carried out in the UK in this field, with several

  20. White-light generation control with crossing beams of femtosecond laser pulses.

    PubMed

    Kolomenskii, A A; Strohaber, J; Kaya, N; Kaya, G; Sokolov, A V; Schuessler, H A

    2016-01-11

    We investigated the variations in generated white-light when crossing two femtosecond laser beams in a Kerr medium. By changing the relative delay of two interacting intense femtosecond laser pulses, we show that white-light generation can be enhanced or suppressed. With a decrease of the relative delay an enhancement of the white-light output was observed, which at even smaller delays was reverted to a suppression of white-light generation. Under choosen conditions, the level of suppression resulted in a white-light output lower than the initial level corresponding to large delays, when the pulses do not overlap in time. The enhancement of the white-light generation takes place in the pulse that is lagging. We found that the effect of the interaction of the beams depends on their relative orientation of polarization and increases when the polarizations are changed from perpendicular to parallel. The observed effects are explained by noting that at intermediate delays, the perturbations introduced in the path of the lagging beam lead to a shortening of the length of filament formation and enhancement of the white-light generation, whereas at small delays the stronger interaction and mutual rescattering reduces the intensity in the central part of the beams, suppressing filamentation and white-light generation.

  1. Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes

    SciTech Connect

    Gordon, Kelly L.; Gilbride, Theresa L.

    2008-05-22

    This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

  2. Generation of isolated asymmetric umbilics in light's polarization

    NASA Astrophysics Data System (ADS)

    Galvez, Enrique J.; Rojec, Brett L.; Kumar, Vijay; Viswanathan, Nirmal K.

    2014-03-01

    Polarization-singularity C points, a form of line singularities, are the vectorial counterparts of the optical vortices of spatial modes and fundamental optical features of polarization-spatial modes. Their generation in tailored beams has been limited to so-called "lemon" and "star" C points that contain symmetric dislocations in state-of-polarization patterns. In this Rapid Communication we present the theory and laboratory measurements of two complementary methods to generate isolated asymmetric C points in tailored beams, of which symmetric lemon and star patterns are limiting cases; and we report on the generation of so-called "monstar" patterns, an asymmetric C point with characteristics of both lemons and stars.

  3. PREFACE: 3rd International Symposium on Laser Ultrasonics and Advanced Sensing

    NASA Astrophysics Data System (ADS)

    2014-06-01

    Based on the use of laser as a coherent and intense light source, the photo-acoustics originated from the discovery made by Alexander Graham Bell was extended to laser-ultrasonics (LU), and it has been applied to wide area of ultrasonics, optics, material characterization and nondestructive inspection. In 1996, a research group for LU was started in the Japanese Society for Nondestructive Inspection (JSNDI), and researches on LU and related topics such as noncontact measurements and elastic wave theories were discussed. Similar activities were pursued also in North America and in Europe. The international symposium on LU was started in Montreal, Canada in 2008 by Jean Pierre Monchalin in order to offer a forum for involved with basic researches and industrial applications of LU. In the second symposium in Bordeaux, France nearly 120 papers were presented. It is our honor to have organized the third symposium, LU2013 on 25-28 June in Yokohama, Japan. The articles published here provide a sample of achievements presented there. In LU2013, we focused on the laser generation and/or detection of acoustic waves, application to nondestructive testing, ultrafast-optoacoustics and innovative instruments. Research achievements in biomedical applications, advanced sensing including noncontact, micro/nanoscale or nonlinear measurements, as well as theory and simulation of ultrasound were also included, considering the interdisciplinary nature of this field. We enjoyed very excellent and informative 3 plenary talks, 11 invited talks, 81 oral and 41 poster presentations with 168 attendees. According to requests, we organized a post deadline poster session to give an opportunity to present recent achievements after the deadline. Contributions of the participants, the scientific and organizing committees are highly appreciated. The conference tour was a dinner cruise to the Tokyo bay, and we hope this experience will remain as a pleasant memory in attendees. As decided in the

  4. Cylindrical plasmas generated by an annular beam of ultraviolet light

    SciTech Connect

    Thomas, D. M.; Allen, J. E.

    2015-07-15

    We investigate a cylindrical plasma system with ionization, by an annular beam of ultraviolet light, taking place only in the cylinder's outer region. In the steady state, both the outer and inner regions contain a plasma, with that in the inner region being uniform and field-free. At the interface between the two regions, there is an infinitesimal jump in ion density, the magnitude approaching zero in the quasi-neutral (λ{sub D} → 0) limit. The system offers the possibility of producing a uniform stationary plasma in the laboratory, hitherto obtained only with thermally produced alkali plasmas.

  5. The Generation of Lighting in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey; Desch, S. J.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    The process that melted and formed the chondrules, mm-sized glassy beads within meteorites, has not been conclusively identified. Origin by lightning in the solar nebula is consistent with many features of chondrules, but no viable model of lightning has yet been advanced. We present a model demonstrating how lightning could be generated in the solar nebula which differs from previous models in three important aspects. First, we identify a new', powerful charging mechanism that is based on the differences in contact potentials between particles of different composition, a form of triboelectric charging. In the presence of fine silicate grains and fine iron metal grains, large silicate particles (the chondrules) can acquire charges of +10(exp 5) e. Second, we assume that the chondrule precursor particles are selectively concentrated in clumps 1 - 100 km in size by the turbulent concentration mechanism described by Cuzzi et al. (1996). The concentration of these highly charged particles into clumps, in a background of negatively charged metal grains, is what generates the strong electric fields. Third, we make refinements in the estimates of the breakdown electric field and the ionization rate. We calculate that electric fields large enough to trigger breakdown easily could have existed over regions large enough (approx. 100km) to generate very large discharges of electrical energy (approx. 10(exp 16)erg). The discharges would have been sufficiently energetic and frequent to have formed the chondrules. We place constraints on the generation of lightning and conclude that it could not be generated if the abundance of Al-26 in chondrules was as high as the level in the CAls. This conclusion is consistent with isotopic analyses of chondrules. This possibly implies that Al-26 was non-uniformly distributed in the solar nebula or that the chondrules formed several Myr after the CAIs.

  6. Hydroxyl radical generation by a light-dependent Fenton reaction.

    PubMed

    Van der Zee, J; Krootjes, B B; Chignell, C F; Dubbelman, T M; Van Steveninck, J

    1993-02-01

    Illumination of Fe3+, with light of a wavelength varying from 250 to 450 nm, in the presence of the iron chelators ethylenediamine N,N,N',N'-tetraacetic acid (EDTA), ethyleneglycol-bis-(beta-aminoethylether)N,N,N',N'-tetraacet ic acid (EGTA), diethylenetriamine-N,N,N',N',N'-pentaacetic acid (DTPA), or citrate resulted in the reduction of Fe3+ to Fe2+. Fe2+ formation was measured by the formation of its complex with bathophenanthroline disulfonic acid. In all cases Fe2+ formation was completely dependent on the presence of the iron chelator and on the wavelength used for illumination. A correlation was found between the absorption spectrum of the iron-chelator complex and the amount of Fe3+ reduced, suggesting that the absorption of light induced an electron transfer from the chelator to the iron ion. Exposure to oxygen, either during or after illumination, resulted in degradation of the chelator molecule. Illumination of the Fe(3+)-chelator complexes in the presence of H2O2 resulted in the formation of hydroxyl radicals, which could be determined by the formation of the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-hydroxyl radical adduct, using electron spin resonance spectroscopy. Formation of the spin adduct was inhibited by addition of catalase, mannitol, ethanol, or formate, whereas superoxide dismutase had no effect.

  7. Generation of blue light by sum-frequency generation of a spectrally combined broad-area diode laser array.

    PubMed

    Zhu, Zhanda; Jiang, Menghua; Yu, Haoyang; Hui, Yongling; Lei, Hong; Li, Qiang

    2016-10-15

    We present the first demonstration of a spectrally beam combined diode laser array with subsequent sum-frequency generation (SFG). The combined beam of the diode laser array with 19 emitters has the same beam quality as a single emitter, and the wavelength of each emitter is different. The blue light is generated by sum-frequency mixing of pairs of emitters in the diode laser array. About 93 mW of blue light power is produced using a PPLN crystal. Compared with the SFG of two emitters, this approach can increase the number of lasers participating in nonlinear frequency conversion. Thus, it can enhance the available power.

  8. GHG PSD Permit: Cheyenne Light, Fuel & Power / Black Hills Power, Inc. – Cheyenne Prairie Generating Station

    EPA Pesticide Factsheets

    This page contains the final PSD permit for the Cheyenne Light, Fuel & Power / Black Hills Power, Inc. Cheyenne Prairie Generating Station, located in Laramie, Wyoming, and operated by Black Hills Service Company.

  9. Generation of high-power laser light with Gigahertz splitting.

    PubMed

    Unks, B E; Proite, N A; Yavuz, D D

    2007-08-01

    We demonstrate the generation of two high-power laser beams whose frequencies are separated by the ground state hyperfine transition frequency in (87)Rb. The system uses a single master diode laser appropriately shifted by high frequency acousto-optic modulators and amplified by semiconductor tapered amplifiers. This produces two 1 W laser beams with a frequency spacing of 6.834 GHz and a relative frequency stability of 1 Hz. We discuss possible applications of this apparatus, including electromagnetically induced transparency-like effects and ultrafast qubit rotations.

  10. Modular approach to achieving the next-generation X-ray light source

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Milton, S. V.; Freund, H. P.

    2001-12-01

    A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.

  11. 3rd Quarter Transportation Report FY2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis B.

    2015-07-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments.

  12. Tunnelling of the 3rd kind: A test of the effective non-locality of quantum field theory

    NASA Astrophysics Data System (ADS)

    Gardiner, Simon A.; Gies, Holger; Jaeckel, Joerg; Wallace, Chris J.

    2013-03-01

    Integrating out virtual quantum fluctuations in an originally local quantum field theory results in an effective theory which is non-local. In this letter we argue that tunnelling of the 3rd kind —where particles traverse a barrier by splitting into a pair of virtual particles which recombine only after a finite distance— provides a direct test of this non-locality. We sketch a quantum-optical setup to test this effect, and investigate observable effects in a simple toy model.

  13. Hydrogen storage and generation using light metal hydrides

    SciTech Connect

    Lynch, F.; Mork, B.J.; Wilkes, J.S.

    1998-07-01

    The storage of hydrogen for use in fuel cells employed as portable electric power sources is important. For many applications pressurized gas or cryogenic liquid storage is not acceptable from weight or safety standpoints. This is particularly true for moderate power systems in the 50--200 watt range. A potentially attractive technology for providing hydrogen for moderately sized fuel cell-based electric power supplies is chemical hydrides. In general, chemical hydrides are materials that store hydrogen that may be released by chemical reactions. The authors report here the use of light metal hydrides, such as lithium aluminum tetrahydride and trilithium aluminum hexahydride to store hydrogen in a very dense form; about four times the density of liquid hydrogen. The hydrogen can be released by reaction with simple chemical reagents, such as water or ammonia, at approximately atmospheric pressure and at modest temperatures. The reaction rate may be controlled to provide hydrogen at a rate appropriate to that needed by a fuel cell operating at the power levels mentioned above. Usually hydrogen is the sole gaseous product, along with several solid products.

  14. Optical pumping experiments on next-generation light sources

    NASA Astrophysics Data System (ADS)

    Moon, Stephen J.; Fournier, Kevin B.; Scott, H.; Chung, H.-K.; Lee, R. W.

    2004-11-01

    Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at the redistribution of radiation. However, the possibilities for optical lasers end for plasmas with ne > 1022 cm-3 as light propagation is severely altered by the plasma. The construction of the Tesla Test Facility (TTF) at DESY (Deutsche Elektronen-Synchrotron), a short pulse tunable free electron laser in the vacuum-ultraviolet and soft X-ray regime (VUV FEL), based on the SASE (self amplified spontaneous emission) process, will provide a major advance in the capability for dense plasma-related research. This source will provide 1013 photons in a 200 fs duration pulse that is tunable from ~6 nm to 100 nm. Since an VUV FEL will not have the limitation associated with optical lasers the entire field of high density plasmas kinetics in laser produced plasma will then be available to study with the tunable source. Thus, one will be able to use this and other FEL x-ray sources to pump individual transitions creating enhanced population in the excited states that can be easily monitored. We show two case studies illuminating different aspects of plasma spectroscopy.

  15. Optical Pumping Experiments on Next Generation Light Sources

    SciTech Connect

    Moon, S J; Fournier, K B; Scott, H; Chung, H K; Lee, R W

    2004-07-29

    Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at the redistribution of radiation. However, the possibilities for optical lasers end for plasmas with n{sub e}>10{sup 22}cm{sup -3} as light propagation is severely altered by the plasma. The construction of the Tesla Test Facility(TTF) at DESY(Deutsche Elektronen-Synchrotron), a short pulse tunable free electron laser in the vacuum-ultraviolet and soft X-ray regime (VUV FEL), based on the SASE(self amplified spontaneous emission) process, will provide a major advance in the capability for dense plasma-related research. This source will provide 10{sup 13} photons in a 200 fs duration pulse that is tunable from {approx} 6nm to 100nm. Since an VUV FEL will not have the limitation associated with optical lasers the entire field of high density plasmas kinetics in laser produced plasma will then be available to study with tunable source. Thus, one will be able to use this and other FEL x-ray sources to pump individual transitions creating enhanced population in the excited states that can easily be monitored. We show two case studies illuminating different aspects of plasma spectroscopy.

  16. Fundamental Scaling of Microplasmas and Tunable UV Light Generation.

    SciTech Connect

    Manginell, Ronald P.; Sillerud, Colin Halliday; Hopkins, Matthew M.; Yee, Benjamin Tong; Moorman, Matthew W.; Schwindt, Peter; Anderson, John Moses; Pfeifer, Nathaniel Bryant

    2016-11-01

    The temporal evolution of spectral lines from microplasma devices (MD) was studied, including impurity transitions. Long-wavelength emission diminishes more rapidly than deep UV with decreasing pulse width and RF operation. Thus, switching from DC to short pulsed or RF operation, UV emissions can be suppressed, allowing for real-time tuning of the ionization energy of a microplasma photo-ionization source, which is useful for chemical and atomic physics. Scaling allows MD to operate near atmospheric pressure where excimer states are efficiently created and emit down to 65 nm; laser emissions fall off below 200 nm, making MD light sources attractive for deep UV use. A first fully-kinetic three-dimensional model was developed that explicitly calculates electron-energy distribution function. This, and non-continuum effects, were studied with the model and how they are impacted by geometry and transient or DC operation. Finally, a global non-dimensional model was developed to help explain general trends MD physics.

  17. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    PubMed

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage.

  18. High-order harmonic generation enhanced by XUV light

    SciTech Connect

    Buth, Christian; Kohler, Markus C.; Ullrich, Joachim; Keitel, Christoph H.

    2012-03-19

    The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d {yields} 4p resonance in the ion. We assume an 800 nm laser with an intensity of about 10{sup 14} Wcm{sup 2} and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 10{sup 13}-10{sup 16} Wcm{sup 2}. Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-based spectroscopy involving core orbitals.

  19. Comparison of the bonding strengths of second- and third-generation light-emitting diode light-curing units

    PubMed Central

    Lee, Hee-Min; Kim, Sang-Cheol; Kang, Kyung-Hwa

    2016-01-01

    Objective With the introduction of third-generation light-emitting diodes (LEDs) in dental practice, it is necessary to compare their bracket-bonding effects, safety, and efficacy with those of the second-generation units. Methods In this study, 80 extracted human premolars were randomly divided into eight groups of 10 samples each. Metal or polycrystalline ceramic brackets were bonded on the teeth using second- or third-generation LED light-curing units (LCUs), according to the manufacturers’ instructions. The shear bond strengths were measured using the universal testing machine, and the adhesive remnant index (ARI) was scored by assessing the residual resin on the surfaces of debonded teeth using a scanning electron microscope. In addition, curing times were also measured. Results The shear bond strengths in all experimental groups were higher than the acceptable clinical shear bond strengths, regardless of the curing unit used. In both LED LCU groups, all ceramic bracket groups showed significantly higher shear bond strengths than did the metal bracket groups except the plasma emulation group which showed no significant difference. When comparing units within the same bracket type, no differences in shear bond strength were observed between the second- and third-generation unit groups. Additionally, no significant differences were observed among the groups for the ARI. Conclusions The bracket-bonding effects and ARIs of second- and third-generation LED LCUs showed few differences, and most were without statistical significance; however, the curing time was shorter for the second-generation unit. PMID:27896210

  20. Improved method for recovery of organic solids from diluted swine manure in 3rd generation treatment system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid-liquid separation of the raw manure increases the capacity of decision making and opportunities for treatment. The high-rate separation up-front using flocculants allows recovery of most of the organic compounds, which can be used for manufacture of high-quality compost materials. However, t...

  1. What is waveform library? Advances in EPG science made possible by the 3rd generation AC-DC universal monitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Until recently, most Electrical Penetration Graph (EPG) studies have emphasized small-bodied sternorrhynchans, auchenorrhynchans, and thrips. EPG holds the potential to significantly improve research on a wider array of species, such as large heteropterans and blood-sucking vectors of medical/veteri...

  2. Light-generated oligonucleotide arrays for rapid DNA sequence analysis.

    PubMed Central

    Pease, A C; Solas, D; Sullivan, E J; Cronin, M T; Holmes, C P; Fodor, S P

    1994-01-01

    In many areas of molecular biology there is a need to rapidly extract and analyze genetic information; however, current technologies for DNA sequence analysis are slow and labor intensive. We report here how modern photolithographic techniques can be used to facilitate sequence analysis by generating miniaturized arrays of densely packed oligonucleotide probes. These probe arrays, or DNA chips, can then be applied to parallel DNA hybridization analysis, directly yielding sequence information. In a preliminary experiment, a 1.28 x 1.28 cm array of 256 different octanucleotides was produced in 16 chemical reaction cycles, requiring 4 hr to complete. The hybridization pattern of fluorescently labeled oligonucleotide targets was then detected by epifluorescence microscopy. The fluorescence signals from complementary probes were 5-35 times stronger than those with single or double base-pair hybridization mismatches, demonstrating specificity in the identification of complementary sequences. This method should prove to be a powerful tool for rapid investigations in human genetics and diagnostics, pathogen detection, and DNA molecular recognition. Images PMID:8197176

  3. The ENCCA-WP7/EuroSarc/EEC/PROVABES/EURAMOS 3rd European Bone Sarcoma Networking Meeting/Joint Workshop of EU Bone Sarcoma Translational Research Networks; Vienna, Austria, September 24-25, 2015. Workshop Report.

    PubMed

    Kager, Leo; Whelan, Jeremy; Dirksen, Uta; Hassan, Bass; Anninga, Jakob; Bennister, Lindsey; Bovée, Judith V M G; Brennan, Bernadette; Broto, Javier M; Brugières, Laurence; Cleton-Jansen, Anne-Marie; Copland, Christopher; Dutour, Aurélie; Fagioli, Franca; Ferrari, Stefano; Fiocco, Marta; Fleuren, Emmy; Gaspar, Nathalie; Gelderblom, Hans; Gerrand, Craig; Gerß, Joachim; Gonzato, Ornella; van der Graaf, Winette; Hecker-Nolting, Stefanie; Herrero-Martín, David; Klco-Brosius, Stephanie; Kovar, Heinrich; Ladenstein, Ruth; Lancia, Carlo; LeDeley, Marie-Cecile; McCabe, Martin G; Metzler, Markus; Myklebost, Ola; Nathrath, Michaela; Picci, Piero; Potratz, Jenny; Redini, Françoise; Richter, Günther H S; Reinke, Denise; Rutkowski, Piotr; Scotlandi, Katia; Strauss, Sandra; Thomas, David; Tirado, Oscar M; Tirode, Franck; Vassal, Gilles; Bielack, Stefan S

    2016-01-01

    This report summarizes the results of the 3rd Joint ENCCA-WP7, EuroSarc, EEC, PROVABES, and EURAMOS European Bone Sarcoma Network Meeting, which was held at the Children's Cancer Research Institute in Vienna, Austria on September 24-25, 2015. The joint bone sarcoma network meetings bring together European bone sarcoma researchers to present and discuss current knowledge on bone sarcoma biology, genetics, immunology, as well as results from preclinical investigations and clinical trials, to generate novel hypotheses for collaborative biological and clinical investigations. The ultimate goal is to further improve therapy and outcome in patients with bone sarcomas.

  4. Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.

    PubMed

    Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei

    2013-09-18

    The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.

  5. Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity.

    PubMed

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-09-22

    Traditional methods for generating a light carrying orbital angular momentum (OAM) include the use of holographic diffraction gratings, vortex phase plates and spatial light modulators. Here we report a new method for highly efficient second-harmonic generation (SHG) of a light with OAM. By properly aligning an external cavity that contains a quasi-phase matching nonlinear crystal and pumping it with a light carrying OAM, mode matching between the pump light and the cavity's higher order Laguerre-Gaussian (LG) mode is achieved, SHG with a conversion efficiency of up to 10.3% is obtained. We have demonstrated for the first time that the cavity can stably operate at its higher order LG mode similar to that of a Gaussian mode. The second harmonic generated light has an OAM value that is double with respected to the OAM value of the pump light. The parameters that affect the beam quality and conversion efficiency are discussed in detail. Our work opens a brand new field in laser optics and makes the first step toward high efficiency processing using a light carrying OAM.

  6. Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS

    PubMed Central

    Ishii, Tomohiro; Sato, Koji; Kakumoto, Toshiyuki; Miura, Shigenori; Touhara, Kazushige; Takeuchi, Shoji; Nakata, Takao

    2015-01-01

    Ca2+ signals are highly regulated in a spatiotemporal manner in numerous cellular physiological events. Here we report a genetically engineered blue light-activated Ca2+ channel switch (BACCS), as an optogenetic tool for generating Ca2+ signals. BACCS opens Ca2+-selective ORAI ion channels in response to light. A BACCS variant, dmBACCS2, combined with Drosophila Orai, elevates the Ca2+ concentration more rapidly, such that Ca2+ elevation in mammalian cells is observed within 1 s on light exposure. Using BACCSs, we successfully control cellular events including NFAT-mediated gene expression. In the mouse olfactory system, BACCS mediates light-dependent electrophysiological responses. Furthermore, we generate BACCS mutants, which exhibit fast and slow recovery of intracellular Ca2+. Thus, BACCSs are a useful optogenetic tool for generating temporally various intracellular Ca2+ signals with a large dynamic range, and will be applicable to both in vitro and in vivo studies. PMID:26282514

  7. 75 FR 34776 - Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... COMMISSION Florida Power & Light Company; Turkey Point Nuclear Generating Plant, Units 3 and 4; Environmental... licensee), for operation of the Turkey Point Nuclear Generating Plant, Units 3 and 4, located in Florida... consider approval of an exemption for Turkey Point, Units 3 and 4, from certain requirements of 10 CFR...

  8. A comparative study of two generation partial light intensity imager based on liquid crystal

    NASA Astrophysics Data System (ADS)

    Tang, Yuanhe; Yang, Xusan; Gao, Haiyang; Wu, Yong; Wang, Shuiwei; Cao, Xiangang; Jia, Wanli

    2013-06-01

    Two generations of prototype partial light intensity imager (PLII) based on liquid crystal (LC) are designed and implemented to achieve imaging of objects with strong light illuminations. They can both realize object imaging by controlling each pixel of the LC for a strong light intensity of larger than 2.2×105lx. There are two ways to control the LC's transmission. One way is to adjust the applied voltage to the LC selected (Sony LCX029AMT) that realizes an adjutable light transmission of 1.28-25.60%. Another way is to change the angle of polarization of either the polarizer or analyzer and obtain a range of the light transmission of 3.35-17.73%. The 1st generation of PLII uses a closed feedback loop to control the imaging system with one CCD which requires two frames of image to realize the image gating function. The 2nd generation is an upgraded version that employs two CCDs to improve the real-time imaging performance. While the 1st generation has a lower cost and smaller volume than the 2nd generation does, the 2nd generation has a capability to more easily realize image gating at a video frequency which only requires one single image frame because of the use of two CCDs. The modulate transfer function (MTF) of the two PLII systems using the two transmission control methods is 0.586 and 0.480 respectively.

  9. Effect of loss on slow-light-enhanced second-harmonic generation in periodic nanostructures.

    PubMed

    Saravi, Sina; Quintero-Bermudez, Rafael; Setzpfandt, Frank; Asger Mortensen, N; Pertsch, Thomas

    2016-07-01

    We theoretically analyze the dependence of second-harmonic generation efficiency on the group index in periodic optical waveguides with loss. We investigate different possible scenarios of using slow light to enhance the efficiency of this process and show that in some cases there exists a maximally achievable efficiency reached for finite values of the group index at the point of phase-matching. Furthermore, we identify situations for which slow light, surprisingly, does not enhance the second-harmonic generation efficiency. Our results are corroborated by rigorous nonlinear simulations of second-harmonic generation in periodic nanobeam waveguides with loss.

  10. Spectral and spatial characteristics of third-harmonic generation in conical light beams

    SciTech Connect

    Peet, V.E.; Shchemeljov, S.V.

    2003-01-01

    Generation of resonance-enhanced third harmonic in Bessel and other conical beams is analyzed from a simple picture, where the fundamental light field is decomposed into elementary configurations of crossed plain-wave sub-beams. We show that the overall harmonic output can be derived as a superposition of all partial harmonic components driven by elementary configurations of the fundamental field. Good agreement with experimental observations has been obtained in simulation of spectral and spatial characteristics of the generated third harmonic. Some peculiarities of harmonic generation in conical light fields are discussed.

  11. Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle.

    PubMed

    Qin, Zong; Wang, Kai; Chen, Fei; Luo, Xiaobing; Liu, Sheng

    2010-08-02

    In this research, the condition for uniform lighting generated by array of LEDs with large view angle was studied. The luminous intensity distribution of LED is not monotone decreasing with view angle. A LED with freeform lens was designed as an example for analysis. In a system based on LEDs designed in house with a thickness of 20mm and rectangular arrangement, the condition for uniform lighting was derived and the analytical results demonstrated that the uniformity was not decreasing monotonously with the increasing of LED-to-LED spacing. The illuminance uniformities were calculated with Monte Carlo ray tracing simulations and the uniformity was found to increase with the increasing of certain LED-to-LED spacings anomalously. Another type of large view angle LED and different arrangements were discussed in addition. Both analysis and simulation results showed that the method is available for LED array lighting system design on the basis of large view angle LED..

  12. International Conference on Future Energy Concepts, 3rd, London, England, January 27-30, 1981, Proceedings

    NASA Astrophysics Data System (ADS)

    Electric cars are considered along with questions regarding solar energy as alternative or complementary energy concept, aspects of high temperature heat storage, wind turbine response and system integration, the development of the coal fired combined cycle and gas turbine cycle for power generation, the performance characteristics of a variable speed heat pump, and the economics of satellite solar power system operation. Attention is also given to the generation and transmission of electricity from wave energy schemes, the effect of building construction on the value of solar radiation to reduce heat needs, the performance optimization of photovoltaic converters using a microprocessor, power transmission from offshore wind generation systems, and the properties of the polyol fuel cell. Other subjects explored are related to the performance of a Wells turbine for use in a wave energy system, the combustion of low-grade fuels in a fluidized bed, coal gasification for combined cycle power generation, the cost of power recovery from waste heat, and energy from biomass.

  13. Simultaneous generation and focus of radially polarized light with metal-dielectric grating metasurface

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Zhang, Zuojun; Song, Maowen; He, Anguo; Yu, Honglin

    2017-01-01

    Simultaneous manipulation of light polarization and phase possesses great significance for modern optical technologies. Here we propose metal-dielectric gratings capable of tailoring the polarization and phase of light based on polarization filtering with the polarization extinction ratio exceeding 10 dB and the transmittance higher than 65%. The standard radially polarized (RP) light with axially symmetric polarization distribution can be generated by using arrayed grating with gradient phase under the illumination of circularly polarized (CP) light. Besides, a RP metasurface lens with high numerical aperture is presented, which can convert the CP light into the focused radially polarized light at wavelength of 632.8 nm. This compact and efficient approach would have potential applications in beam manipulation, super-resolution imaging and integrated optics system.

  14. Spatio-temporal control of femtosecond laser filamentation and white-light generation

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Kaya, G.; Strohaber, J.; Kolomenskii, A.; Schuessler, H.

    2017-02-01

    Several possibilities are investigated to control spatio-temporal characteristics of the femtosecond filamentation process and the resulting white-light generation. We controlled the development of self-focusing, and resulting locations of filaments producing white-light in water by changing the transverse spatial phase of an initial Gaussian beam with a computer generated holographic technique and a spatial light modulator. We studied intense femtosecond filamentation and propagation of femtosecond pulses with different transverse modes in water. The filament propagation length was found to increase with Bessel-Gaussian modes of the beams, when more lateral lobes were used, under the conditions of the same peak intensity, pulse duration, and size of the central peak of the incident beam. We also investigated variations of white-light generation when the delay between the two pulses was varied. With a decrease of the relative delay, an enhancement of white-light output was observed, which at near-zero delays was reverted to a suppression of white-light generation.

  15. Specimen Examinations for Merchant Marine Engineer Licenses (2nd and 3rd Assistant).

    DTIC Science & Technology

    1978-02-01

    valves being not fully seated. D. moisture entrained in the steam . 5. Double helically cut gears are used for main reduction and pinion gears to A...A faulty coil in the solenoid valve -21- EXAMINATION SPECIFICATIONS SECOND ASSISTANT ENGINEER SUBJECT STEAM MOTOR I. Boilers, Fuel Oil & Combustion...engine back pressure. C. increase engine cycle efficiency. D. increase turbocharger efficiency. 2. A common method of varying the steam generating rate

  16. Principles and Applications of Imaging Radar, Manual of Remote Sensing, 3rd Edition, Volume 2

    NASA Astrophysics Data System (ADS)

    Moran, M. Susan

    Aerial photographs and digital images from orbiting optical scanners are a daily source of information for the general public through newspapers, television, magazines, and posters. Such images are just as prevalent in scientific journal literature. In the last 6 months, more than half of the weekly issues of Eos published an image acquired by a remote digital sensor. As a result, most geoscientists are familiar with the characteristics and even the acronyms of the current satellites and their optical sensors, common detector filters, and image presentation. In many cases, this familiarity has bred contempt. This is so because the limitations of optical sensors (imaging in the visible and infrared portions of the electromagnetic spectrum) can be quite formidable. Images of the surface cannot be acquired through clouds, and image quality is impaired with low-light conditions (such as at polar regions), atmospheric scattering and absorption, and variations in sun/sensor/surface geometry.

  17. Generation of bright broadband-squeezed light and broadband quantum interferometry

    NASA Astrophysics Data System (ADS)

    Xie, Daruo

    Generation of bright broadband squeezed light is of great interest from the viewpoint of experimental and applied physics. Squeezed states of the light field can be used for ultrasensitive interferometry measurements. Broadband light squeezing also can find a direct application as classical channel capacity enhancement in broadband coherent optical communication. A degenerate (type-I) optical parametric amplifier (OPA), which is based on a periodically poled nonlinear crystal, has been built for research in quantum optics, to provide a source of broadband squeezed light. Through parametric down-conversion process in the nonlinear crystal, energy of pump light was converted to OPA's output 1064 nm light, and the output light is phase-quadrature broadband squeezed. Moreover, the OPA has been operated in the state of a free-running emitter with no servo loops for cavity length control and phase control to verify the intrinsic stability of the OPA. Sensitivity enhancement of optical interferometry has been observed by homodyne detection measurements with the OPO-generated broadband squeezed light as an input beam. This experiment is also a demonstration of the increase of the classical channel capacity beyond that of a coherent state in coherent optical communication.

  18. Attosecond Lighthouses: How To Use Spatiotemporally Coupled Light Fields To Generate Isolated Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Vincenti, H.; Quéré, F.

    2012-03-01

    Under the effect of even simple optical components, the spatial properties of femtosecond laser beams can vary over the duration of the light pulse. We show how using such spatiotemporally coupled light fields in high harmonic generation experiments (e.g., in gases or dense plasmas) enables the production of attosecond lighthouses, i.e., sources emitting a collection of angularly well-separated light beams, each consisting of an isolated attosecond pulse. This general effect opens the way to a new generation of light sources, particularly suitable for attosecond pump-probe experiments, and provides a new tool for ultrafast metrology, for instance, giving direct access to fluctuations of the carrier-envelope relative phase of even the most intense ultrashort lasers.

  19. Nanocrystal-based hybrid white light generation with tunable colour parameters

    NASA Astrophysics Data System (ADS)

    Nizamoglu, S.; Demir, H. V.

    2007-09-01

    We present the hybridization of CdSe/ZnS core shell nanocrystals (NCs) on InGaN/GaN based blue/near-UV LEDs to generate light widely tunable across the visible spectral range and especially within the white region of the CIE (1931) chromaticity diagram. We report on the design, growth, fabrication and characterization of these hybrid NC-LEDs. In 26 NC-LED samples, we experimentally show the effect of the NC concentration and NC film thickness on tuning the colour properties of the generated light (tristimulus coordinates, colour rendering index and correlated temperature) and further compare layer by layer assembly and blending of NCs for integration in LEDs. With greatly tunable colour properties, these hybrid white light sources hold promise for future lighting and display applications.

  20. 3rd congress on applied synthetic biology in Europe (Costa da Caparica, Portugal, February 2016).

    PubMed

    Cueva, Miguel

    2017-03-25

    The third meeting organised by the European Federation of Biotechnology (EFB) on advances in Applied Synthetic Biotechnology in Europe (ASBE) was held in Costa da Caparica, Portugal, in February 2016. Abundant novel applications in synthetic biology were described in the six sessions of the meeting, which was divided into technology and tools for synthetic biology (I, II and III), bionanoscience, biosynthetic pathways and enzyme synthetic biology, and metabolic engineering and chemical manufacturing. The meeting presented numerous methods for the development of novel synthetic strains, synthetic biological tools and synthetic biology applications. With the aid of synthetic biology, production costs of chemicals, metabolites and food products are expected to decrease, by generating sustainable biochemical production of such resources. Also, such synthetic biological advances could be applied for medical purposes, as in pharmaceuticals and for biosensors. Recurrent, linked themes throughout the meeting were the shortage of resources, the world's transition into a bioeconomy, and how synthetic biology is helping tackle these issues through cutting-edge technologies. While there are still limitations in synthetic biology research, innovation is propelling the development of technology, the standardisation of synthetic biological tools and the use of suitable host organisms. These developments are laying a foundation to providing a future where cutting-edge research could generate potential solutions to society's pressing issues, thus incentivising a transition into a bioeconomy.

  1. Use of 2nd and 3rd Level Correlation Analysis for Studying Degradation in Polycrystalline Thin-Film Solar Cells

    SciTech Connect

    Albin, D. S.; del Cueto, J. A.; Demtsu, S. H.; Bansal, S.

    2011-03-01

    The correlation of stress-induced changes in the performance of laboratory-made CdTe solar cells with various 2nd and 3rd level metrics is discussed. The overall behavior of aggregated data showing how cell efficiency changes as a function of open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) is explained using a two-diode, PSpice model in which degradation is simulated by systematically changing model parameters. FF shows the highest correlation with performance during stress, and is subsequently shown to be most affected by shunt resistance, recombination and in some cases voltage-dependent collection. Large decreases in Jsc as well as increasing rates of Voc degradation are related to voltage-dependent collection effects and catastrophic shunting respectively. Large decreases in Voc in the absence of catastrophic shunting are attributed to increased recombination. The relevance of capacitance-derived data correlated with both Voc and FF is discussed.

  2. THE 3rd SCHIZOPHRENIA INTERNATIONAL RESEARCH SOCIETY CONFERENCE, 14-18 APRIL 2012, FLORENCE, ITALY: SUMMARIES OF ORAL SESSIONS

    PubMed Central

    Abbs, Brandon; Achalia, Rashmin M; Adelufosi, Adegoke O; Aktener, Ahmet Yiğit; Beveridge, Natalie J; Bhakta, Savita G; Blackman, Rachael K; Bora, Emre; Byun, MS; Cabanis, Maurice; Carrion, Ricardo; Castellani, Christina A; Chow, Tze Jen; Dmitrzak-Weglarz, M; Gayer-Anderson, Charlotte; Gomes, Felipe V; Haut, Kristen; Hori, Hiroaki; Kantrowitz, Joshua T; Kishimoto, Taishiro; Lee, Frankie HF; Lin, Ashleigh; Palaniyappan, Lena; Quan, Meina; Rubio, Maria D; Ruiz de Azúa, Sonia; Sahoo, Saddichha; Strauss, Gregory P; Szczepankiewicz, Aleksandra; Thompson, Andrew D; Trotta, Antonella; Tully, Laura M; Uchida, Hiroyuki; Velthorst, Eva; Young, Jared W; O’Shea, Anne; DeLisi, Lynn E.

    2013-01-01

    The 3rd Schizophrenia International Research Society Conference was held in Florence, Italy, April 14-18, 2012.and this year had as its emphasis, “The Globalization of Research”. Student travel awardees served as rapporteurs for each oral session and focused their summaries on the most significant findings that emerged and the discussions that followed. The following report is a composite of these summaries. We hope that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research. PMID:22910407

  3. 3rd Tech DeltaSphere-3000 Laser 3D Scene Digitizer infrared laser scanner hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-02-01

    A laser hazard analysis and safety assessment was performed for the 3rd Tech model DeltaSphere-3000{reg_sign} Laser 3D Scene Digitizer, infrared laser scanner model based on the 2000 version of the American National Standard Institute's Standard Z136.1, for the Safe Use of Lasers. The portable scanner system is used in the Robotic Manufacturing Science and Engineering Laboratory (RMSEL). This scanning system had been proposed to be a demonstrator for a new application. The manufacture lists the Nominal Ocular Hazard Distance (NOHD) as less than 2 meters. It was necessary that SNL validate this NOHD prior to its use as a demonstrator involving the general public. A formal laser hazard analysis is presented for the typical mode of operation for the current configuration as well as a possible modified mode and alternative configuration.

  4. Polymer Chemistry: An Introduction,3rd Edition (by Malcolm P. Stevens)

    NASA Astrophysics Data System (ADS)

    Krause, Reviewed By Sonja

    2000-01-01

    permeation chromatograph. Modern GPCs do not have siphons because they are low-volume, high-pressure instruments; also, modern viscosity and light-scattering GPC detectors allow the determination of the true molecular weight distribution on many samples. None of this is mentioned. In section 3.6, the author's use of the fringed micelle model for crystalline polymers is obsolete and his discussion of spherulites is obscure. The single page on X-ray, electron, and neutron scattering gives very little insight into the unique features of each technique and the unique properties of polymers that can be studied by each technique. On some earlier pages, light scattering is discussed without showing that it can be used to study the radius of gyration.

  5. Palaeocommunity dynamics across the Lower to Middle Miocene 3rd order sequence boundary of the Central Paratethys

    NASA Astrophysics Data System (ADS)

    Zuschin, Martin; Harzhauser, Mathias; Mandic, Oleg

    2010-05-01

    The 3rd order sequence boundary from the Lower to the Middle Miocene of the Paratethys is characterized by a well-known major change of the molluscan fauna. This change was mainly studied based on regional species lists, which suggest a transition from low-diversity Karpatian (Upper Burdigalian) to highly diverse Badenian (Langhian and Lower Serravallian) assemblages. Here, we present quantitative data from 4 Karpatian and 6 Badenian localities to capture the anatomy of this faunal transition by comparing species-abundance patterns of local assemblages. 223 bulk samples, comprising more than 65,000 shells, were taken from shell beds; all molluscs > 1mm were studied quantitatively and sorted into 496 species. Independent sources (e.g., palaeogeographic position of localities and environmental data from foraminifera) suggest a water depth ranging from the intertidal to several tens of meters for the studied assemblages. Ordination methods indicate that benthic assemblages in the study area developed along the same depth-related environmental gradient across the 3rd order sequence boundary. Due to strong facies shifts at the boundary, the Karpatian faunas are mostly preserved in nearshore settings, but the Badenian faunas range from intertidal to shelf depth. Statistical analyses indicate that differences between the total of Karpatian and the total of Badenian assemblages are smaller than any differences among individual localities. The striking differences among the studied localities are most likely due to heterogeneous environments present on the Lower and Middle Miocene shelf of the Central Paratethys. Clearly, the immigration of several thermophilic molluscan families and superfamilies (e.g., Strombidae, Tonnoidea, Isognomonidae, and Carditidae) reflects climatic changes at the onset of the Langhian transgression. Our quantitative approach, however, favours the strong facies shift at the Lower / Middle Miocene boundary as the main reason for the pretended faunal

  6. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.

    PubMed

    Matsuda, Nobuyuki; Takesue, Hiroki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya

    2013-04-08

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  7. 75 FR 55317 - FirstLight Hydro Generating Company; City of Norwich Department of Public Utilities; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... Energy Regulatory Commission FirstLight Hydro Generating Company; City of Norwich Department of Public... Schedule for Licensing and Deadline for Submission of Final Amendments September 2, 2010. Take notice that...--FirstLight Hydro Generating Company (FirstLight); and Competitor--City of Norwich Department of...

  8. Rocketdyne - J-2 Saturn V 2nd and 3rd Stage Engine. Chapter 2, Appendix D

    NASA Technical Reports Server (NTRS)

    Coffman, Paul

    2009-01-01

    The J-2 engine was unique in many respects. Technology was not nearly as well-developed in oxygen/hydrogen engines at the start of the J-2 project. As a result, it experienced a number of "teething" problems. It was used in two stages on the Saturn V vehicle in the Apollo Program, as well as on the later Skylab and Apollo/Soyuz programs. In the Apollo Program, it was used on the S-II stage, which was the second stage of the Saturn V vehicle. There were five J-2 engines at the back end of the S-II Stage. In the S-IV-B stage, it was a single engine, but that single engine had to restart. The Apollo mission called for the entire vehicle to reach orbital velocity in low Earth orbit after the first firing of the Saturn-IV-B stage and, subsequently, to fire a second time to go on to the moon. The engine had to be man-rated (worthy of transporting humans). It had to have a high thrust rate and performance associated with oxygen/hydrogen engines, although there were some compromises there. It had to gimbal for thrust vector control. It was an open-cycle gas generator engine delivering up to 230,000 pounds of thrust.

  9. Early acute antibody-mediated rejection of a negative flow crossmatch 3rd kidney transplant with exclusive disparity at HLA-DP.

    PubMed

    Mierzejewska, Beata; Schroder, Paul M; Baum, Caitlin E; Blair, Annette; Smith, Connie; Duquesnoy, Rene J; Marrari, Marilyn; Gohara, Amira; Malhotra, Deepak; Kaw, Dinkar; Liwski, Robert; Rees, Michael A; Stepkowski, Stanislaw

    2014-08-01

    Donor-specific alloantibodies (DSA) to HLA-DP may cause antibody-mediated rejection (AMR), especially in re-transplants. We describe the immunization history of a patient who received 3 kidney transplants; the 3rd kidney was completely matched except at DPA1 and DPB1. Prior to the 3rd transplant, single antigen bead analysis (SAB) showed DSA reactivity against DPA1 shared by the 1st and 3rd donors, but B and T flow crossmatch (FXM) results were negative. Within 11 days the 3rd transplant underwent acute C4d+ AMR which coincided with the presence of complement (C1q)-binding IgG1 DSA against donor DPA1 and DPB1. Using HLAMatchmaker and SAB, we provide evidence that eplet (epitope) spreading on DPA1 and eplet sharing on differing DPB1 alleles of the 1st and 3rd transplants was associated with AMR. Since weak DSA to DPA1/DPB1 may induce acute AMR with negative FXM, donor DPA1/DPB1 high resolution typing should be considered in sensitized patients with DP-directed DSA.

  10. Generation of two-mode bright squeezed light using a noise-suppressed amplified diode laser.

    PubMed

    Zhang, Yun; Hayasaka, Kazuhiro; Kasai, Katsuyuki

    2006-12-25

    We present the generation of nonclassical state using an amplified diode laser as a light source. The intensity noise of an amplified diode laser was significantly suppressed and reached the shot noise limit at 15 MHz using both a filter cavity and resonant optical feedback. Frequency doubling efficiency of 66% and up to 120 mW output power of green has been achieved in cw second-harmonic generation from 1080 nm to 540 nm. Bright two-mode amplitude-squeezed state was generated from a type-II nondegenerate optical parametric amplifier pumped by generated green light. The measured noise reduction is 2.1+/-0.2 dB below the shot-noise level.

  11. Myocardial dysplasia in a 3rd-trimester fetus. An ultrasound and pathologic study.

    PubMed Central

    Paladini, D; Russo, M; Palmieri, S; Pacileo, G; Caruso, G; Ianniruberto, A; Martinelli, P; Calabrò, R

    1997-01-01

    Arrested myocardial development, often described as spongiosum heart, has been reported in association with obstructive semilunar valve disease and, much more rarely, as a primary disease in adolescents and adults. To our knowledge, this condition has never been diagnosed in utero. We describe the echocardiographic and pathoanatomic findings of the 1st case of myocardial dysplasia detected in utero by ultrasound. A 28-year-old woman, gravida 2, para 1, was referred to our unit at 34 weeks of gestation due to severe fetal hydrops. On echocardiography, we observed gross fetal cardiomegaly (particularly of the septal and ventricular myocardium), an unusually bright myocardial echostructure, thick trabeculations in both ventricular chambers, and severe loss of myocardial contraction. There were normal ventriculoarterial connections and no signs of obstructive semilunar valve disease. After fetal death, necropsy confirmed the presence of spongiosum heart and the diagnosis of myocardial dysplasia--which term best describes this disorder in its various temporal expressions. Because this condition has never before been observed prenatally, no consideration has been given to intrauterine management. We recommend that fetal cardiac function be monitored echocardiographically whenever a pregnant patient has a positive family history of this disease. There is a possibility that the life of the affected fetus might be prolonged beyond the gestational period by avoiding intrauterine cardiac decompensation, through early delivery. We recommend further that the parents of these children be advised of the risks associated with future pregnancies. Little is known about the pattern of inheritance of myocardial dysplasia, but the disorder appears to be familial. Therefore, the possibility that it may recur within the same generation must be taken into account. Images PMID:9068140

  12. Light Mediated Generation of Silver Nanoparticles by Spinach Thylakoids/Chloroplasts

    PubMed Central

    Shabnam, Nisha; Sharmila, P.; Kim, Hyunook; Pardha-Saradhi, P.

    2016-01-01

    The unique potential of chloroplasts/thylakoids to harness light energy to transport electrons from H2O to various entities was exploited for reduction of Ag+ to generate nanoparticles (NPs). Spinach thylakoids/chloroplasts turned AgNO3 solutions brown in light, but not in dark. Besides showing Ag-NPs specific surface plasmon resonance band, these brown solutions showed presence of 5–30 nm crystalline NPs composed of Ag. Powder X-ray diffraction (PXRD) analysis revealed that Ag-NPs were biphasic composed of face-centered cubic Ag0 and cubic Ag2O. X-ray photoelectron spectroscopy (XPS) data further corroborated the presence of Ag2O in Ag-NPs. Limited formation of Ag-NPs in dark and increased generation of Ag0/Ag2O–NPs with increase in light intensity (photon flux density) by thylakoids/chloroplasts, established the role of light-harvesting photosynthetic machinery in generation of Ag0/Ag2O-NPs. Potential of thylakoids/chloroplasts to generate Ag-NPs from Ag+ on exposure to red and blue wavelength regions of visible light of electromagnetic spectrum, further confirmed the involvement of photosynthetic electron transport in reduction of Ag+ and generation of Ag-NPs. While light energy mediated photosynthetic electron transport donates energized electrons extracted from H2O to Ag+ to form Ag0-NPs, O2 released as a by-product during photolysis of H2O oxidizes Ag0 to form Ag2O-NPs. Our findings furnish a novel, simple, economic and green method that can be exploited for commercial production of Ag0/Ag2O-NPs. PMID:27936248

  13. 76 FR 8724 - First Light Hydro Generating Company; Notice of Application Accepted for Filing, Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Request: First Light Hydro Generating Company proposes to add a solar array (encompassing approximately 10 acres of land) as a non-project use of project lands at the Northfield Pump Storage Project (P-2485-059). The applicant states that the proposed 2MW utility grade photovoltaic solar array will provide...

  14. Ultraviolet Light Generation and Transport in the Final Optics Assembly of the National Ignition Facility

    SciTech Connect

    Wegner, P.; Hackel, L.; Feit, M.; Parham, T.; Kozlowski, M.; Whitman, P.

    2015-02-12

    The design of the National Ignition Facility (NIF) includes a Final Optics Assembly (FOA) subsystem for ultraviolet (UV) light generation and transport for each of the 192 beamlines. Analytical and experimental work has been done to help understand and predict the performance of FOA.

  15. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator.

    PubMed

    Ostrovsky, Andrey S; Rickenstorff-Parrao, Carolina; Arrizón, Víctor

    2013-02-15

    We introduce the concept of the perfect optical vortex whose dark hollow radius does not depend on the topological charge. It is shown analytically and experimentally that such a vortex can be approximately generated in the Fourier transforming optical system with a computer-controlled liquid-crystal spatial light modulator.

  16. Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

    PubMed Central

    Kovalyuk, Vadim; Hennrich, Frank; Kappes, Manfred M; Goltsman, Gregory N; Pernice, Wolfram H P; Krupke, Ralph

    2017-01-01

    Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources. PMID:28144563

  17. FOREWORD: 3rd Symposium on Large TPCs for Low Energy Event Detection

    NASA Astrophysics Data System (ADS)

    Irastorza, Igor G.; Colas, Paul; Gorodetzky, Phillippe

    2007-05-01

    The Third International Symposium on large TPCs for low-energy rare-event detection was held at Carré des sciences, Poincaré auditorium, 25 rue de la Montagne Ste Geneviève in Paris on 11 12 December 2006. This prestigious location belonging to the Ministry of Research is hosted in the former Ecole Polytechnique. The meeting, held in Paris every two years, gathers a significant community of physicists involved in rare event detection. Its purpose is an extensive discussion of present and future projects using large TPCs for low energy, low background detection of rare events (low-energy neutrinos, dark matter, solar axions). The use of a new generation of Micro-Pattern Gaseous Detectors (MPGD) appears to be a promising way to reach this goal. The program this year was enriched by a new session devoted to the detection challenge of polarized gamma rays, relevant novel experimental techniques and the impact on particle physics, astrophysics and astronomy. A very particular feature of this conference is the large variety of talks ranging from purely theoretical to purely experimental subjects including novel technological aspects. This allows discussion and exchange of useful information and new ideas that are emerging to address particle physics experimental challenges. The scientific highlights at the Symposium came on many fronts: Status of low-energy neutrino physics and double-beta decay New ideas on double-beta decay experiments Gamma ray polarization measurement combining high-precision TPCs with MPGD read-out Dark Matter challenges in both axion and WIMP search with new emerging ideas for detection improvements Progress in gaseous and liquid TPCs for rare event detection Georges Charpak opened the meeting with a talk on gaseous detectors for applications in the bio-medical field. He also underlined the importance of new MPGD detectors for both physics and applications. There were about 100 registered participants at the symposium. The successful

  18. PREFACE: 3rd Italian-Pakistani Workshop on Relativistic Astrophysics (IPWRA2011)

    NASA Astrophysics Data System (ADS)

    De Paolis, Francesco; Siddiqui, Azad A.

    2012-03-01

    The Third Italian-Pakistani Workshop on Relativistic Astrophysics was held at the Rectorate of the University of Salento in Lecce on June 20-22, 2011. It follows the first two editions of this Workshop held at the Department of Physics of the University of Salento on 20-22 June 2007 and at ICRA (International Center for Relativistic Astrophysics) in Pescara on 8-10 July 2009. The Proceedings of the first two editions of this Workshop have been published in two special issues of Nuovo Cimento B [1] and General Relativity and Gravitation [2], respectively. The workshop series, whose aim is that of discussing the different aspects (both theoretical and observational) of Relativistic Astrophysics, follows the signature, in 2006, of an agreement between the University of Salento, Italy and the National University of Sciences and Technology (NUST), Pakistan, and aims at promoting scientific and academic cooperation between the parties. The organizing committee of this Workshop has decided to dedicate the present workshop's edition to the celebration of the 65th birthday of the founder of this series of meetings, Prof. Asghar Qadir, one of the greatest Pakistani scientists of any time and a renowned world expert in the theory of general relativity. Many of the Workshop's participants have either been students or collaborators of Asghar Qadir, or both. In Pakistan the words Relativity and Asghar Qadir are synonymous. It would not be entirely wrong to say that anybody who has anything to do with relativity in Pakistan is either his student or a student of one of his students. Asghar Qadir has inspired generations of researchers and teachers, and continues to be a source of inspiration for hard work and dedication. He is a mentor of Pakistani scientists and the equivalent in Pakistan of what John Archibald Wheeler has been in the US. Qadir and Wheeler An autographed picture of John Archibald Wheeler with a young Asghar Qadir Asghar had the rare privilege of being introduced

  19. Non-destructive measurement of demineralization and remineralization in the occlusal pits and fissures of extracted 3rd molars with PS-OCT

    NASA Astrophysics Data System (ADS)

    Lee, Chulsung; Hsu, Dennis J.; Le, Michael H.; Darling, Cynthia L.; Fried, Daniel

    2009-02-01

    Previous studies have demonstrated that Polarization Sensitive Optical Coherence Tomography (PS-OCT) can be used to image the remineralization of early artificial caries lesion on smooth enamel surfaces of human and bovine teeth. However, most new dental decay is found in the pits and fissures of the occlusal surfaces of posterior dentition and it is in these high risk areas where the performance of new caries imaging devices need to be investigated. The purpose of this study was to demonstrate that PS-OCT can be used to measure the subsequent remineralization of artificial lesions produced in the pits and fissures of extracted 3rd molars. A PS-OCT system operating at 1310-nm was used to acquire polarization resolved images of occlusal surfaces exposed to a demineralizing solution at pH-4.5 followed by a fluoride containing remineralizing solution at pH-7.0 containing 2-ppm fluoride. The integrated reflectivity was calculated to a depth of 200-µm in the entire lesion area using an automated image processing algorithm. Although a well-defined surface zone was clearly resolved in only a few of the samples that underwent remineralization, the PS-OCT measurements indicated a significant (p<0.05) reduction in the integrated reflectivity between the severity of the lesions that were exposed to the remineralization solution and those that were not. The lesion depth and mineral loss were also measured with polarized light microscopy and transverse microradiography after sectioning the teeth. These results show that PS-OCT can be used to non-destructively monitor the remineralization potential of anti-caries agents in the important pits and fissures of the occlusal surface.

  20. First-generation hybrid solar lighting collector system development and operating experience

    NASA Astrophysics Data System (ADS)

    Beshears, David; Earl, D. D.; Muhs, Jeff; Maxey, L. Curt; Capps, Gary; Stellern, Scott; Bayless, David; Switzer, Shyler

    2004-01-01

    Research is underway at Oak Ridge National Laboratory (ORNL) that could lead to entirely new, highly energy-efficient ways of lighting buildings using the power of sunlight. In addition to providing light, the hybrid lighting system will convert sunlight to electricity much more efficiently than conventional solar technologies using thermo-photovoltaic cells. In commercial buildings today, lighting consumes more electric energy than any other building end-use. It accounts for more than a third of all electricity consumed for commercial use in the United States. Typically, less than 25% of that energy actually produces light; the rest generates heat that increases the need for air-conditioning. ORNL is developing a system to reduce the energy required for lighting and the air-conditioning loads associated with it, while generating power for other uses. The system uses roof-mounted concentrators to collect and separate the visible and infrared portions of sunlight. The visible portion is distributed through large-diameter optical fibers to hybrid luminaires. (Hybrid luminaires are lighting fixtures that contain both electric lamps and fiber optics for direct sunlight distribution.) When sunlight is plentiful, the fiber optics in the luminaries, provide all or most of the light needed in an area. Unlike conventional electric lamps, they produce little heat. During times of little or no sunlight, sensor-controlled electric lamps will operate to maintain the desired illumination level. A second use of the hybrid lighting collector system is to provide sunlight for enhanced practical photosynthesis carbon dioxide mitigation. In this project the hybrid lighting collector system is being used to provide sunlight to a lab-scale photobioreactor for growing algae that is being used for CO2 mitigation. The end goal of this project is to provide a photobioreactor that can be used to mitigate CO2 in fossil fuel fire power plants. This paper will discuss the development and

  1. Graphene-based materials for hydrogen generation from light-driven water splitting.

    PubMed

    Xie, Guancai; Zhang, Kai; Guo, Beidou; Liu, Qian; Fang, Liang; Gong, Jian Ru

    2013-07-26

    Hydrogen production from solar water splitting has been considered as an ultimate solution to the energy and environmental issues. Over the past few years, graphene has made great contribution to improving the light-driven hydrogen generation performance. This article provides a comprehensive overview of the recent research progress on graphene-based materials for hydrogen evolution from light-driven water splitting. It begins with a brief introduction of the current status and basic principles of hydrogen generation from solar water splitting, and tailoring properties of graphene for application in this area. Then, the roles of graphene in hydrogen generation reaction, including an electron acceptor and transporter, a cocatalyst, a photocatalyst, and a photosensitizer, are elaborated respectively. After that, the comparison between graphene and other carbon materials in solar water splitting is made. Last, this review is concluded with remarks on some challenges and perspectives in this emerging field.

  2. Efficient blue light generation using periodically poled stoichiometric lithium tantalate via resonant frequency doubling

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Jadhav, Shilpa; Shiner, David

    2014-05-01

    Convenient high power blue diode lasers with single frequency operation are still under developments and are not as well developed and cost effective as IR laser sources. Harmonic generation of IR lasers provide a viable alternative source of blue and UV light. Magnesium oxide doped periodically poled Stoichiometric Lithium Tantalate (PPMgO:SLT) has been reported to have the lowest blue, IR and blue induced IR absorption (BLIIRA) among ferroelectric crystals such as Lithium Niobate (PPLN) and Potassium Titanyl Phosphate (PPKTP). All these properties, along with higher thermal conductivity, make this crystal an excellent candidate for efficient blue light generation using second harmonic generation (SHG) in a resonant buildup cavity. Efficient resonant doubling is very sensitive to various cavity and crystal loss mechanisms. Recently we obtained 400 mW of blue light at 486 nm with net conversion efficiency of 77% using a 515 mW fiber grating stabilized IR source. Sources of conversion loss have been identified and evaluated with various methods in our investigation. These include reflection, scattering, absorption, and polarization rotation of IR light in the crystal, as well as mode mismatching and spherical aberration due to focusing lenses. The locking and electronic control functions of the cavity are automated using an internally mounted single chip microcontroller with embedded DSP (digital signal processor). Work is supported by NSF grant.

  3. Enhanced third harmonic generation using the surface states of light in periodic photonic structures

    NASA Astrophysics Data System (ADS)

    Zaytsev, Kirill I.; Gorelik, Vladimir S.; Katyba, Gleb M.; Yurchenko, Stanislav O.

    2014-10-01

    Third harmonic generation enhancement in periodic photonic structures was experimentally observed and theoretically interpreted. Nonlinear optical effects in opal globular photonic crystals (PC) have been studied under the femtosecond laser pumping. Strong dependence of the third harmonic generation efficiency on the ratio between the central pumping wavelength and the spectral location of the PC band gaps was found. Numerical simulations based on the finite difference time-domain technique for the solution of the Maxwell's equations were applied for investigations of the observed phenomenon origin. The simulation results have shown that the origin of the efficient nonlinear conversion is related with the surface state of electromagnetic field in PC. Interacting with the PC surface the light wavefront distorts coherently, and the effect of structure light focusing appears. Coherent wavefront distortion leads to the strong optical field localization, hence the light intensity within the certain PC regions increases. In case of the band gap pumping dramatic light redistribution appears; very sharp peaks of light intensity emerge in the region of the quartz globules, which leads to the high-efficient PC pumping.

  4. Characterizing edge-generated stray light sources for TPF Coronagraph pupil masks

    NASA Astrophysics Data System (ADS)

    Ceperley, Daniel; Neureuther, Andrew; Lieber, Michael; Kasdin, Jeremy

    2005-08-01

    The edge generated stray-light from corner boundary conditions, interactions with the lower mask structure, and surface plasmon polaritons that may limit Terrestrial Planet Finder Coronagraph performance are characterized. Previously a number of stray light sources, unaccounted for by the ideal thin mask theory used to design the pupil-plane masks, were identified. In this paper we illustrate and quantify the most important outstanding stray-light sources in the near-field in order to improve the model of pupil-plane mask transmission used by the Integrated Telescope Model. Corner spikes, caused by the need to bring the ideal top-hat field into compliance with the boundary conditions set forth by Maxwell's equations, form the strongest source of stray-light, accounting for up to a 1λ shift in the effective opening width per edge. Undercutting mask edges by 20° reduces this source of stray-light by more than a factor of five. Interactions between light and the lower mask structure, a secondary effect, account for only a few percent of the stray-light in the TE polarization but account for up to 50% of the stray-light in the TM polarization due to surface plasmon polaritons. Surface plasmon polaritons, surface waves that run for tens of microns and radiate at corners, form the final stray-light source. On thin masks they may account for up to a 1λ shift in the effective opening width; however, their effects can be easily mitigated by choosing a poor surface plasmon material, such as Chrome. The results presented here are being used to facilitate end-to-end system modeling through the Integrated Telescope Model.

  5. Virtual viewpoint generation for three-dimensional display based on the compressive light field

    NASA Astrophysics Data System (ADS)

    Meng, Qiao; Sang, Xinzhu; Chen, Duo; Guo, Nan; Yan, Binbin; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Virtual view-point generation is one of the key technologies the three-dimensional (3D) display, which renders the new scene image perspective with the existing viewpoints. The three-dimensional scene information can be effectively recovered at different viewing angles to allow users to switch between different views. However, in the process of multiple viewpoints matching, when N free viewpoints are received, we need to match N viewpoints each other, namely matching C 2N = N(N-1)/2 times, and even in the process of matching different baselines errors can occur. To address the problem of great complexity of the traditional virtual view point generation process, a novel and rapid virtual view point generation algorithm is presented in this paper, and actual light field information is used rather than the geometric information. Moreover, for better making the data actual meaning, we mainly use nonnegative tensor factorization(NTF). A tensor representation is introduced for virtual multilayer displays. The light field emitted by an N-layer, M-frame display is represented by a sparse set of non-zero elements restricted to a plane within an Nth-order, rank-M tensor. The tensor representation allows for optimal decomposition of a light field into time-multiplexed, light-attenuating layers using NTF. Finally, the compressive light field of multilayer displays information synthesis is used to obtain virtual view-point by multiple multiplication. Experimental results show that the approach not only the original light field is restored with the high image quality, whose PSNR is 25.6dB, but also the deficiency of traditional matching is made up and any viewpoint can obtained from N free viewpoints.

  6. Light generation at the anomalous dispersion high energy range of a nonlinear opal film.

    PubMed

    Botey, Muriel; Maymó, Marc; Molinos-Gómez, Alberto; Dorado, Luis; Depine, Ricardo A; Lozano, Gabriel; Mihi, Agustín; Míguez, Hernán; Martorell, Jordi

    2009-07-20

    We study experimentally and theoretically light propagation and generation at the high energy range of a close-packed fcc photonic crystal of polystyrene spheres coated with a nonlinear material. We observe an enhancement of the second harmonic generation of light that may be explained on the basis of amplification effects arising from propagation at anomalous group velocities. Theoretical calculations are performed to support this assumption. The vector KKR method we use allows us to determine, from the linear response of the crystal, the behavior of the group velocity in our finite photonic structures when losses introduced by absorption or scattering by defects are taken into account assuming a nonzero imaginary part for the dielectric constant. In such structures, we predict large variations of the group velocity for wavelengths on the order or smaller than the lattice constant of the structure, where an anomalous group velocity behavior is associated with the flat bands of the photonic band structure. We find that a direct relation may be established between the group velocity reduction and the enhancement of a light generation processes such as the second harmonic generation we consider. However, frequencies for which the enhancement is found, in the finite photonic crystals we use, do not necessarily coincide with the frequencies of flat high energy bands.

  7. The 3rd Canadian Symposium on Hepatitis C Virus: Expanding care in the interferon-free era

    PubMed Central

    MacParland, Sonya A; Bilodeau, Marc; Grebely, Jason; Bruneau, Julie; Cooper, Curtis; Klein, Marina; Sagan, Selena M; Choucha, Norma; Balfour, Louise; Bialystok, Frank; Krajden, Mel; Raven, Jennifer; Roberts, Eve; Russell, Rodney; Houghton, Michael; Tyrrell, D Lorne; Feld, Jordan J

    2014-01-01

    Hepatitis C virus (HCV) currently infects approximately 250,000 individuals in Canada and causes more years of life lost than any other infectious disease in the country. In August 2011, new therapies were approved by Health Canada that have achieved higher response rates among those treated, but are poorly tolerated. By 2014/2015, short-course, well-tolerated treatments with cure rates >95% will be available. However, treatment uptake is poor due to structural, financial, geographical, cultural and social barriers. As such, ‘Barriers to access to HCV care in Canada’ is a crucial topic that must be addressed to decrease HCV disease burden and potentially eliminate HCV in Canada. Understanding how to better care for HCV-infected individuals requires integration across multiple disciplines including researchers, clinical services and policy makers to address the major populations affected by HCV including people who inject drugs, baby boomers, immigrants and Aboriginal and/or First Nations people. In 2012, the National CIHR Research Training Program in Hepatitis C organized the 1st Canadian Symposium on Hepatitis C Virus (CSHCV) in Montreal, Quebec. The 2nd CSHCV was held in 2013 in Victoria, British Columbia. Both symposia were highly successful, attracting leading international faculty with excellent attendance leading to dialogue and knowledge translation among attendees of diverse backgrounds. The current article summarizes the 3rd CSHCV, held February 2014, in Toronto, Ontario. PMID:25314353

  8. Altered differential hemocyte count in 3rd instar larvae of Drosophila melanogaster as a response to chronic exposure of Acephate

    PubMed Central

    Rajak, Prem; Dutta, Moumita

    2015-01-01

    Acephate, an organophosphate (OP) pesticide, was used to investigate the effects of its chronic exposure on hemocyte abundance in a non-target dipteran insect Drosophila melanogaster. For this purpose, six graded concentrations ranging from 1 to 6 μg/ml were selected, which are below the reported residual values (up to 14 μg/ml) of the chemical. 1st instar larvae were fed with these concentrations up to the 3rd instar stage and accordingly hemolymph smears from these larvae were prepared for differential hemocyte count. Three types of cells are found in Drosophila hemolymph, namely, plasmatocytes, lamellocytes and crystal cells. Plasmatocyte count was found to decrease with successive increase in treatment concentrations. Crystal cells showed an increasing trend in their number. Though the number of lamellocytes was very low, a bimodal response was noticed. Lamellocyte number was found to increase with the initial three concentrations, followed by a dose dependent reduction in their number. As hemocytes are directly linked to the immune system of fruit flies, fluctuations in normal titer of these cells may affect insect immunity. Hemocytes share homologies in their origin and mode of action with the immune cells of higher organisms including man. Thus the present findings suggest that immune cells of humans and other organisms may be affected adversely under chronic exposure to Acephate. PMID:27486365

  9. Organizational Support for the 3rd Summer Institute on Complex Plasmas, July 30 – August 8, 2012

    SciTech Connect

    Lopez, Jose L.

    2012-07-01

    This grant provided partial funds for American graduate students to attend the 3rd Graduate Summer Institute on Complex Plasmas, which was held from July 30 to August 8, 2012 at Seton Hall University in South Orange, New Jersey. The Graduate Summer Institute is a topical series of instructional workshops held bi-annually on the emerging field of complex plasmas that is jointly organized through a collaboration between American and German-European Union plasmas researchers. This specialized program brings together many of the world's leading researchers in the specialized area of complex plasmas, who freely provide instructional lectures and tutorials on the most recent research and discoveries done in this branch of plasma science. The partial funds provided by this grant helped support the travel and accommodation expenses of the participating American students and tutorial instructors. Partial funds further supported the travel and accommodation of three renown American plasma researchers that provided educational tutorials to the thirty-eight participating students from the United States, Europe, and Asia. The organized program afforded a unique opportunity for the participating American graduate students to learn about and engage more deeply in an area of plasma science that is not studied in any of the graduate educational curriculums provided by universities in the United States of America. The educational experience offered by this program provided the necessary knowledge needed by future American plasma researchers to keep the national plasma research effort on the cutting-edge and keep the national plasma community as a global leader.

  10. Amazon forest structure generates diurnal and seasonal variability in light utilization

    NASA Astrophysics Data System (ADS)

    Morton, Douglas C.; Rubio, Jérémy; Cook, Bruce D.; Gastellu-Etchegorry, Jean-Philippe; Longo, Marcos; Choi, Hyeungu; Hunter, Maria; Keller, Michael

    2016-04-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART) model to simulate leaf absorption of photosynthetically active radiation (lAPAR) for an Amazon forest. The 3-D model scene was developed from airborne lidar data, and local measurements of leaf reflectance, aerosols, and PAR were used to model lAPAR under direct and diffuse illumination conditions. Simulated lAPAR under clear-sky and cloudy conditions was corrected for light saturation effects to estimate light utilization, the fraction of lAPAR available for photosynthesis. Although the fraction of incoming PAR absorbed by leaves was consistent throughout the year (0.80-0.82), light utilization varied seasonally (0.67-0.74), with minimum values during the Amazon dry season. Shadowing and light saturation effects moderated potential gains in forest productivity from increasing PAR during dry-season months when the diffuse fraction from clouds and aerosols was low. Comparisons between DART and other models highlighted the role of 3-D forest structure to account for seasonal changes in light utilization. Our findings highlight how directional illumination and forest 3-D structure combine to influence diurnal and seasonal variability in light utilization, independent of further changes in leaf area, leaf age, or environmental controls on canopy photosynthesis. Changing illumination geometry constitutes an alternative biophysical explanation for observed seasonality in Amazon forest productivity without changes in canopy phenology.

  11. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  12. The Relationship between Perceived and Ideal Body Size and Body Mass Index in 3rd-Grade Low Socioeconomic Hispanic Children

    ERIC Educational Resources Information Center

    Fisher, Allison; Lange, Mary Anne; Young-Cureton, Virginia; Canham, Daryl

    2005-01-01

    Very little is known about body satisfaction among minority children. This study examined the relationship between perceived and actual body size and Body Mass Index among 43 low-socioeconomic Hispanic 3rd-graders. Researchers measured participants' Body Mass Index; students self-reported Perceived Ideal Self Image and Perceived Actual Self Image…

  13. Midwest Child-Parent Center (CPC) PreK-3rd Grade School Reform Model: Impacts on Child and Family Outcomes over Time

    ERIC Educational Resources Information Center

    Gaylor, Erika; Spiker, Donna; Wei, Xin; Lease, Erin; Reynolds, Arthur

    2015-01-01

    This presentation reports on the goals and preliminary outcomes of the Child-Parent Centers (CPC) Expansion Project, which is a PreK to 3rd grade school reform model aimed at improving the short- and long-term outcomes of participating children and families. The model provides continuous education and family support services to schools serving a…

  14. "Elderly Deafblindness." Proceedings of the European Conference of Deafblind International's Acquired Deafblindness Network (3rd, Marcelli di Numana, Italy, October 2-7, 1998).

    ERIC Educational Resources Information Center

    Deafblind International, London (England).

    This text includes all of the plenary presentations from the 3rd European Conference of Deafblind International's Acquired Deafblindness Network. This international conference was the first to focus specifically on older people with dual sensory impairment. Presentations addressed the awareness of the needs of older people with deafblind or dual…

  15. Towards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2

    NASA Astrophysics Data System (ADS)

    Kim, Kwanghyun; Kim, Myeong-Jong; Kim, Sun-I.; Jang, Ji-Hyun

    2013-11-01

    We report pronounced enhancement of photoelectrochemical hydrogen generation of a quantum dot-sensitized hybrid-TiO2 (QD/H-TiO2) electrode that is composed of a mesoporous TiO2 layer sandwiched by a double sided energy harvesting layer consisting of a surface-textured TiO2 inverse opals layer on the bottom and a patterned mesoporous TiO2 layer on the top. CdSe/H-TiO2 exhibits a maximum photocurrent density of ~16.2 mA/cm2, which is 35% higher than that of the optimized control sample (CdSe/P25), achieved by matching of the bandgap of quantum dot-sensitization with the wavelength where light harvesting of H-TiO2 is observed. Furthermore, CdSe/H-TiO2 under filtered exposure conditions recorded current density of ~14.2 mA/cm2, the greatest value in the visible range. The excellent performance of the quantum dot-sensitized H-TiO2 suggests that alteration of the photoelectrodes to suitable nanostructures with excellent light absorption may offer optimal strategies for attaining maximum efficiency in a variety of photoconversion systems.

  16. Towards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2

    PubMed Central

    Kim, Kwanghyun; Kim, Myeong-Jong; Kim, Sun-I; Jang, Ji-Hyun

    2013-01-01

    We report pronounced enhancement of photoelectrochemical hydrogen generation of a quantum dot-sensitized hybrid-TiO2 (QD/H-TiO2) electrode that is composed of a mesoporous TiO2 layer sandwiched by a double sided energy harvesting layer consisting of a surface-textured TiO2 inverse opals layer on the bottom and a patterned mesoporous TiO2 layer on the top. CdSe/H-TiO2 exhibits a maximum photocurrent density of ~16.2 mA/cm2, which is 35% higher than that of the optimized control sample (CdSe/P25), achieved by matching of the bandgap of quantum dot-sensitization with the wavelength where light harvesting of H-TiO2 is observed. Furthermore, CdSe/H-TiO2 under filtered exposure conditions recorded current density of ~14.2 mA/cm2, the greatest value in the visible range. The excellent performance of the quantum dot-sensitized H-TiO2 suggests that alteration of the photoelectrodes to suitable nanostructures with excellent light absorption may offer optimal strategies for attaining maximum efficiency in a variety of photoconversion systems. PMID:24270426

  17. Generation of extended light-sheets for single and multi-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Purnapatra, Subhajit B.; Pratim Mondal, Partha

    2013-07-01

    We theoretically propose and computationally demonstrate the generation of extended light-sheet for fluorescence microscopy. This is made possible by the introduction of a specially designed double-window spatial filter that allows the light to pass through the periphery and center of a cylindrical lens. When illuminated with a plane wave, the proposed filter results in an extended depth-of-focus along with side-lobes which are due to other interferences in the transverse focal plane. Computational studies show a maximum extension of light-sheet by 3.38 times for single photon excitation and 3.68 times for multiphoton excitation as compared to state-of-art single plane illumination microscopy system. This technique may facilitate the study of large biological specimens (such as Zebrafish embryo and tissue) with high spatial resolution and reduced photobleaching.

  18. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier

    NASA Astrophysics Data System (ADS)

    Bonifacio, R.; De Salvo Souza, L.; Pierini, P.; Scharlemann, E. T.

    1990-10-01

    FEL operation at short wavelengths is limited by electron-beam quality, by the availability of mirrors for oscillators and by the availability of input sources for FEL amplifiers. It is possible to use an FEL amplifier as a resonant-frequency tripling device, generating light and strong bunching at the third harmonic of a conventional input source in an initial wiggler section, then using a second wiggler section resonant at the tripled frequency to amplify the short-wavelength light. Neither mirrors nor a short-wavelength input source are required, and some relaxation of the electron-beam quality appears to be possible. We illustrate the scheme with a one-dimensional model and then with NUTMEG simulations of an 80 nm FEL amplifier initiated by a 240 nm input signal, in which an efficiency of the electron-beam power conversion to 80 nm light of nearly 10-4 was obtained.

  19. PREFACE: Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Granados, Xavier; Sánchez, Àlvar; López-López, Josep

    2012-10-01

    The development of superconducting applications and superconducting engineering requires the support of consistent tools which can provide models for obtaining a good understanding of the behaviour of the systems and predict novel features. These models aim to compute the behaviour of the superconducting systems, design superconducting devices and systems, and understand and test the behavior of the superconducting parts. 50 years ago, in 1962, Charles Bean provided the superconducting community with a model efficient enough to allow the computation of the response of a superconductor to external magnetic fields and currents flowing through in an understandable way: the so called critical-state model. Since then, in addition to the pioneering critical-state approach, other tools have been devised for designing operative superconducting systems, allowing integration of the superconducting design in nearly standard electromagnetic computer-aided design systems by modelling the superconducting parts with consideration of time-dependent processes. In April 2012, Barcelona hosted the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors (HTS), the third in a series of workshops started in Lausanne in 2010 and followed by Cambridge in 2011. The workshop reflected the state-of-the-art and the new initiatives of HTS modelling, considering mathematical, physical and technological aspects within a wide and interdisciplinary scope. Superconductor Science and Technology is now publishing a selection of papers from the workshop which have been selected for their high quality. The selection comprises seven papers covering mathematical, physical and technological topics which contribute to an improvement in the development of procedures, understanding of phenomena and development of applications. We hope that they provide a perspective on the relevance and growth that the modelling of HTS superconductors has achieved in the past 25 years.

  20. Discontinuous space variant sub-wavelength structures for generating radially polarized light in visible region

    NASA Astrophysics Data System (ADS)

    Ghadyani, Z.; Dmitriev, S.; Lindlein, N.; Leuchs, G.; Rusina, O.; Harder, I.

    2011-08-01

    A discontinuous space variant sub-wavelength dielectric grating is designed and fabricated for generating radially polarized light in visible region (l = 632.8 nm). The design is based on sub-wavelength silicon nitride structures introducing a retardation of p/2 by form birefringence, with space variant orientation of the optical axis. The pattern is divided into concentric ring segments with constant structural parameters, therefore reducing electron-beam writing time significantly. The design avoids the technological challenges encountered in the generation of a continuous space variant grating while maintaining good quality of the resulting polarization mode.

  1. The Anomalous Effect of Interface Traps on Generation Current in Lightly Doped Drain nMOSFET's

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-Hua; Gao, Hai-Xia; Cao, Yan-Rong; Chen, Hai-Feng; Hao, Yue

    2010-05-01

    The anomalous phenomenon of generation current IGD in the lightly doped drain (LDD) nMOSFET measured under the drain bias VD-step mode is reported. We propose an assumption of activated (A) and frozen (F) traps for the VD-step mode: The A traps contributes to IGD while the F process can make them lose the roles as generation centers. The A and F regions can form the F-A region. The comparison of the F and A regions decides the role of the F-A region. The experiments confirm the assumption.

  2. Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber.

    PubMed

    Barkey, Brian; Bailey, Matt; Liou, Kuo-Nan; Hallett, John

    2002-09-20

    Angular scattering properties of ice crystal particles generated in a laboratory cloud chamber are measured with a lightweight polar nephelometer with a diode laser beam. This cloud chamber produces distinct plate and hollow column ice crystal types for light-scattering experiments and provides a controlled test bed for comparison with results computed from theory. Ice clouds composed predominantly of plates and hollow columns generated noticeable 22 degrees and 46 degrees halo patterns, which are predicted from geometric ray-tracing calculations. With the measured ice crystal shape and size distribution, the angular scattering patterns computed from geometrical optics with a significant contribution by rough surfaces closely match those observed from the nephelometer.

  3. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide.

    PubMed

    Xiong, C; Monat, Christelle; Clark, Alex S; Grillet, Christian; Marshall, Graham D; Steel, M J; Li, Juntao; O'Faolain, Liam; Krauss, Thomas F; Rarity, John G; Eggleton, Benjamin J

    2011-09-01

    We report the generation of correlated photon pairs in the telecom C-band at room temperature from a dispersion-engineered silicon photonic crystal waveguide. The spontaneous four-wave mixing process producing the photon pairs is enhanced by slow-light propagation enabling an active device length of less than 100 μm. With a coincidence to accidental ratio of 12.8 at a pair generation rate of 0.006 per pulse, this ultracompact photon pair source paves the way toward scalable quantum information processing realized on-chip.

  4. HIGH BRIGHTNESS ELECTRON GUNS FOR NEXT-GENERATION LIGHT SOURCES AND ACCELERATORS.

    SciTech Connect

    BLUEM,H.P.; BEN-ZVI,I.; SRINIVASAN-RAO,T.; ET AL.

    2004-07-05

    Next-generation light sources and accelerators are being proposed that set unique requirements for the electron source parameters. No single source is suitable for the diverse applications, which have operating characteristics ranging from high-average-current, quasi-CW, to high-peak-current, single-pulse electron beams. Advanced Energy Systems, in collaboration with our various partners, is developing a variety of electron gun concepts for these important applications.

  5. 76 FR 26284 - FirstLight Hydro Generating Company, City of Norwich Dept. of Public Utilities; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FirstLight Hydro Generating Company, City of Norwich Dept. of Public... will meet with FirstLight Hydro Generating Company and the City of Norwich Dept. of Public Utilities...

  6. Spectral, noise and correlation properties of intense squeezed light generated by a coupling in two laser fields

    NASA Technical Reports Server (NTRS)

    Kryuchkyan, Gagik YU.; Kheruntsyan, Karen V.

    1994-01-01

    Two schemes of four-wave mixing oscillators with nondegenerate pumps are proposed for above-threehold generation of squeezed light with nonzero mean-field amplitudes. Noise and correlation properties and optical spectra of squeezed-light beams generated in these schemes are discussed.

  7. When should orthostatic blood pressure changes be evaluated in elderly: 1st, 3rd or 5th minute?

    PubMed

    Soysal, Pinar; Aydin, Ali Ekrem; Koc Okudur, Saadet; Isik, Ahmet Turan

    2016-01-01

    Detection of orthostatic hypotension (OH) is very important in geriatric practice, since OH is associated with mortality, ischemic stroke, falls, cognitive failure and depression. It was aimed to determine the most appropriate time for measuring blood pressure in transition from supine to upright position in order to diagnose OH in elderly. Comprehensive geriatric assessment (CGA) including Head up Tilt Table (HUT) test was performed in 407 geriatric patients. Orthostatic changes were assessed separately for the 1st, 3rd and 5th minutes (HUT1, HUT3 and HUT5, respectively) taking the data in supine position as the basis. The mean age, recurrent falls, presence of dementia and Parkinson's disease, number of drugs, alpha-blocker and anti-dementia drug use, and fasting blood glucose levels were significantly higher in the patients with versus without OH; whereas, albumin and 25-hydroxy vitamin D levels were significantly lower (p<0.05). However, different from HUT3 and HUT5, Charlson Comorbidity Index and the prevalence of diabetes mellitus were higher, the use of antidiabetics, antipsychotics, benzodiazepine, opioid and levodopa were more common (p<0.05). Statistical significance of the number of drugs and fasting blood glucose level was prominent in HUT1 as compared to HUT3 (p<0.01, p<0.05). Comparison of the patients that had OH only in HUT1, HUT3or HUT5 revealed no difference in terms of CGA parameters. These results suggests that orthostatic blood pressure changes determined at the 1st minute might be more important for geriatric practice. Moreover, 1st minute measurement might be more convenient in the elderly as it requires shorter time in practice.

  8. Differences in risk factors for 2nd and 3rd degree hypospadias in the National Birth Defects Prevention Study

    PubMed Central

    in 't Woud, Sander Groen; van Rooij, Iris A.L.M.; van Gelder, Marleen M.H.J.; Olney, Richard S.; Carmichael, Suzan L.; Roeleveld, Nel; Reefhuis, Jennita

    2015-01-01

    Background Hypospadias is a frequent birth defect with three phenotypic subtypes. With data from the National Birth Defects Prevention Study, a large, multi-state, population-based, case-control study, we compared risk factors for second and third degree hypospadias. Methods A wide variety of data on maternal and pregnancy-related risk factors for isolated second and third degree hypospadias was collected via computer-assisted telephone interviews to identify potential etiological differences between the two phenotypes. Logistic regression was used to calculate odds ratios including a random effect by study center. Results In total, 1547 second degree cases, 389 third degree cases, and 5183 male controls were included in our study. Third degree cases were more likely to have a non-Hispanic black or Asian/Pacific Islander mother, be delivered preterm, have a low birth weight, be small for gestational age, and be conceived with fertility treatments than second degree cases and controls. Associations with both second and third degree hypospadias were observed for maternal age, family history, parity, plurality, and hypertension during pregnancy. Risk estimates were generally higher for third degree hypospadias except for family history. Conclusions Most risk factors were associated with both or neither phenotype. Therefore, it is likely that the underlying mechanism is at least partly similar for both phenotypes. However, some associations were different between 2nd and 3rd degree hypospadias, and went in opposite directions for second and third degree hypospadias for Asian/Pacific Islander mothers. Effect estimates for subtypes of hypospadias may be over- or underestimated in studies without stratification by phenotype. PMID:25181604

  9. [Level of smoking of 3rd and 4th grade students studying health and related factors: follow-up study].

    PubMed

    Göktalay, Tuğba; Cengiz Özyurt, Beyhan; Sakar Coşkun, Ayşin; Celik, Pinar

    2011-01-01

    The levels of smoking of 1st and 2nd year students at Faculty of Medicine and Manisa School of Health at Celal Bayar University were investigated in 2006-2007. This study is carried out in order to see if there is a change in the same students' level of smoking while they are in 3rd and 4th year. In addition, the study aimed to examine the factors affecting the level of use and attitudes towards the law effectuated in July 19, 2009. This is a follow-up study with 80.42% return rate. A 26-item structured questionnaire was administered. The participants filled out the questionnaires under supervision of the researchers in their classrooms. The University Institutional Review Board approved the study. The total of participants (263) of the follow-up study included 189 female and 74 male. The rate of experimenting with smoking was 49% with the mean age of 15.7 (SD= 4.01 years). The mean age of experimenting with smoking was the earliest on male students studying at faculty of medicine. The level of smoking was found to be the most on females, studying at faculty of medicine and staying at the dormitory, with smoking parents (p< 0.05). The most important reason to begin smoking was curiosity (55.2%) while bad breath and yellowing of teeth were the reasons to quit (91.7%). 83.3% of the students thought that the law will be effective on quit smoking. The level of both experimenting and use of smoking has been increased over time. It is suggested that medical students' awareness about the danger of smoking should be raised at earlier grades. In addition, lectures should be offered to students at School of Health and they should be encouraged to unite in order to fight with smoking.

  10. Oxygen suppresses light-driven anodic current generation by a mixed phototrophic culture.

    PubMed

    Darus, Libertus; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano

    2014-12-02

    This paper describes the detrimental effect of photosynthetically evolved oxygen on anodic current generation in the presence of riboflavin upon illumination of a mixed phototrophic culture enriched from a freshwater pond at +0.6 V vs standard hydrogen electrode. In the presence of riboflavin, the phototrophic biomass in the anodic compartment produced an electrical current in response to light/dark cycles (12 h/12 h) over 12 months of operation, generating a maximum current density of 17.5 mA x m(-2) during the dark phase, whereas a much lower current of approximately 2 mA x m(-2) was generated during illumination. We found that the low current generation under light exposure was caused by high rates of reoxidation of reduced riboflavin by oxygen produced during photosynthesis. Quantification of biomass by fluorescence in situ hybridization images suggested that green algae were predominant in both the anode-based biofilm (55.1%) and the anolyte suspension (87.9%) with the remaining biovolume accounted for by bacteria. Genus-level sequencing analysis revealed that bacteria were dominated by cyanobacterium Leptolyngbia (∼35%), while the prevailing algae were Dictyosphaerium, Coelastrum, and Auxenochlorella. This study offers a key comprehension of mediator sensitivity to reoxidation by dissolved oxygen for improvement of microbial solar cell performance.

  11. Characterization of material ablation driven by laser generated intense extreme ultraviolet light

    SciTech Connect

    Tanaka, Nozomi Masuda, Masaya; Deguchi, Ryo; Murakami, Masakatsu; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi

    2015-09-14

    We present a comparative study on the hydrodynamic behaviour of plasmas generated by material ablation by the irradiation of nanosecond extreme ultraviolet (EUV or XUV) or infrared laser pulses on solid samples. It was clarified that the difference in the photon energy deposition and following material heating mechanism between these two lights result in the difference in the plasma parameters and plasma expansion characteristics. Silicon plate was ablated by either focused intense EUV pulse (λ = 9–25 nm, 10 ns) or laser pulse (λ = 1064 nm, 10 ns), both with an intensity of ∼10{sup 9 }W/cm{sup 2}. Both the angular distributions and energy spectra of the expanding ions revealed that the photoionized plasma generated by the EUV light differs significantly from that produced by the laser. The laser-generated plasma undergoes spherical expansion, whereas the EUV-generated plasma undergoes planar expansion in a comparatively narrow angular range. It is presumed that the EUV radiation is transmitted through the expanding plasma and directly photoionizes the samples in the solid phase, consequently forming a high-density and high-pressure plasma. Due to a steep pressure gradient along the direction of the target normal, the EUV plasma expands straightforward resulting in the narrower angular distribution observed.

  12. Ultrafast laser parallel microdrilling using multiple annular beams generated by a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Kuang, Zheng; Perrie, Walter; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff

    2014-03-01

    Ultrafast laser parallel microdrilling using diffractive multiple annular beam patterns is demonstrated in this paper. The annular beam was generated by diffractive axicon computer generated holograms (CGHs) using a spatial light modulator. The diameter of the annular beam can be easily adjusted by varying the radius of the smallest ring in the axicon. Multiple annular beams with arbitrary arrangement and multiple annular beam arrays were generated by superimposing an axicon CGH onto a grating and lenses algorithm calculated multi-beam CGH and a binary Dammann grating CGH, respectively. Microholes were drilled through a 0.03 mm thick stainless steel foil using the multiple annular beams. By avoiding huge laser output attenuation and mechanical annular scanning, the processing is ˜200 times faster than the normal single beam processing.

  13. The ARC-EN-CIEL French 4th Generation Light Source

    SciTech Connect

    Bruni, C.; Couprie, M. E.; Chubar, O.; Loulergue, A.; Nahon, L.; Carre, B.; Garzella, D.; Labat, M.; Lambert, G.; Monot, P.; Jablonka, M.; Meot, F.; Ortega, J. M.; Nutarelli, D.

    2007-01-19

    ARC-EN-CIEL (Accelerator-Radiation Complex for Enhanced Coherent Intense Extended Light) proposal is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with a high repetition rate (1 kHz). The FEL uses High Harmonics Generation in gases in a High Gain Harmonic Generation scheme, leading to a rather compact solution. The radiation extends down to 0.8 nm with the non-linear harmonics and reproduces the good longitudinal and transverse coherence of the harmonics generated in gas. Optional beam loops, foreseen to increase the beam current or the energy, will accommodate infrared CSR source, femtosecond undulator sources in the VUV and X-ray ranges, and a FEL oscillator in the 10 nm range. An important synergy is expected between accelerator and laser communities, in particular for electron plasma acceleration tests.

  14. Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces.

    PubMed

    Zeng, Jinwei; Li, Ling; Yang, Xiaodong; Gao, Jie

    2016-05-11

    Nanoscale compact optical vortex generators promise substantially significant prospects in modern optics and photonics, leading to many advances in sensing, imaging, quantum communication, and optical manipulation. However, conventional vortex generators often suffer from bulky size, low vortex mode purity in the converted beam, or limited operation bandwidth. Here, we design and demonstrate gradient-rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range. Our proposed design has the potential for realizing miniaturized on-chip OAM-multiplexers, as well as enabling new types of metasurface devices for the manipulation of complex structured light beams.

  15. Generation of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators

    NASA Astrophysics Data System (ADS)

    Hyde, Milo W.; Bose-Pillai, Santasri; Voelz, David G.; Xiao, Xifeng

    2016-12-01

    A simple and flexible optical system for generating electromagnetic or vector partially coherent sources or beams is presented. The alternative design controls field amplitude (beam shape), coherence, and polarization using only spatial light modulators. This improvement makes the apparatus simpler to construct and significantly increases the flexibility of vector partially coherent source generators by allowing many different types of sources to be produced without changing the physical setup. The system's layout and theoretical foundations are thoroughly discussed. The utility and flexibility of the proposed system are demonstrated by producing a vector Schell-model and non-Schell-model source. The experimental results are compared to theoretical predictions to validate the design. Lastly, design aspects, which must be considered when building a vector partially coherent source generator for a specific application, are discussed.

  16. Ebastine in the light of CONGA recommendations for the development of third-generation antihistamines.

    PubMed

    Rico, S; Antonijoan, Rm; Barbanoj, Mj

    2009-08-31

    In 2003 a consensus group on new-generation antihistamines (CONGA) defined the characteristics required for a third-generation H(1) antihistamine as there had been much controversy about this issue since the early 1990s. One of the antihistamines that had been claimed to belong to such a group is the second-generation antihistamine, ebastine. The objective of this review is to analyze the pharmacology of ebastine, in light of the CONGA recommendations for the development of new-generation antihistamines: (1) anti-inflammatory properties, (2) potency, efficacy and effectiveness, (3) lack of cardiotoxicity, (4) lack of drug interactions, (5) lack of CNS effects, and (6) pharmacological approach. Ebastine seems to have anti-inflammatory properties that help to ameliorate nasal congestion, though this has not yet been conclusively demonstrated. Its pharmacological-therapeutic profile does not differ greatly from that of other second-generation antihistamines. Its cardiac safety has been widely assessed and no cardiac toxicity has been found at therapeutic doses despite initial concerns. The risk of potentially relevant drug interactions has been investigated and ruled out. Ebastine does not produce sedation at therapeutic doses and drug interaction studies with classical CNS depressants have not demonstrated a synergistic effect. Pharmacologically, ebastine is an H(1) inverse agonist. Perhaps the answer to the quest for new-generation antihistamines lies not only in H(1) but in a combined approach with other histamine receptors.

  17. Ebastine in the light of CONGA recommendations for the development of third-generation antihistamines

    PubMed Central

    Rico, S; Antonijoan, RM; Barbanoj, MJ

    2009-01-01

    In 2003 a consensus group on new-generation antihistamines (CONGA) defined the characteristics required for a third-generation H1 antihistamine as there had been much controversy about this issue since the early 1990s. One of the antihistamines that had been claimed to belong to such a group is the second-generation antihistamine, ebastine. The objective of this review is to analyze the pharmacology of ebastine, in light of the CONGA recommendations for the development of new-generation antihistamines: (1) anti-inflammatory properties, (2) potency, efficacy and effectiveness, (3) lack of cardiotoxicity, (4) lack of drug interactions, (5) lack of CNS effects, and (6) pharmacological approach. Ebastine seems to have anti-inflammatory properties that help to ameliorate nasal congestion, though this has not yet been conclusively demonstrated. Its pharmacological–therapeutic profile does not differ greatly from that of other second-generation antihistamines. Its cardiac safety has been widely assessed and no cardiac toxicity has been found at therapeutic doses despite initial concerns. The risk of potentially relevant drug interactions has been investigated and ruled out. Ebastine does not produce sedation at therapeutic doses and drug interaction studies with classical CNS depressants have not demonstrated a synergistic effect. Pharmacologically, ebastine is an H1 inverse agonist. Perhaps the answer to the quest for new-generation antihistamines lies not only in H1 but in a combined approach with other histamine receptors. PMID:21437146

  18. Generating the Nighttime Light of the Human Settlements by Identifying Periodic Components from DMSP/OLS Satellite Imagery.

    PubMed

    Letu, Husi; Hara, Masanao; Tana, Gegen; Bao, Yuhai; Nishio, Fumihiko

    2015-09-01

    Nighttime lights of the human settlements (hereafter, "stable lights") are seen as a valuable proxy of social economic activity and greenhouse gas emissions at the subnational level. In this study, we propose an improved method to generate the stable lights from Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) daily nighttime light data for 1999. The study area includes Japan, China, India, and other 10 countries in East Asia. A noise reduction filter (NRF) was employed to generate a stable light from DMSP/OLS time-series daily nighttime light data. It was found that noise from amplitude of the 1-year periodic component is included in the stable light. To remove the amplitude of the 1-year periodic component noise included in the stable light, the NRF method was improved to extract the periodic component. Then, new stable light was generated by removing the amplitude of the 1-year periodic component using the improved NRF method. The resulting stable light was evaluated by comparing it with the conventional nighttime stable light provided by the National Oceanic and Atmosphere Administration/National Geophysical Data Center (NOAA/NGDC). It is indicated that DNs of the NOAA stable light image are lower than those of the new stable light image. This might be attributable to the influence of attenuation effects from thin warm water clouds. However, due to overglow effect of the thin cloud, light area in new stable light is larger than NOAA stable light. Furthermore, the cumulative digital numbers (CDNs) and number of light area pixels (NLAP) of the generated stable light and NOAA/NGDC stable light were applied to estimate socioeconomic variables of population, electric power consumption, gross domestic product, and CO2 emissions from fossil fuel consumption. It is shown that the correlations of the population and CO2FF with new stable light data are higher than those in NOAA stable light data; correlations of the EPC and GDP with NOAA

  19. Light-emitting nanocomposite CdS-polymer electrospun fibres via in situ nanoparticle generation

    NASA Astrophysics Data System (ADS)

    di Benedetto, Francesca; Camposeo, Andrea; Persano, Luana; Laera, Anna Maria; Piscopiello, Emanuela; Cingolani, Roberto; Tapfer, Leander; Pisignano, Dario

    2011-10-01

    We report on the simple, in situ generation of CdS nanocrystals inside electrospun polymer fibres by thermal decomposition of a cadmium thiolate precursor, leading to nanocomposite light-emitting fibres. The modifications induced in the precursor by the thermal decomposition are investigated by a morphological, structural and spectroscopic analysis of the resulting nanocomposite fibres. This approach allows us to overcome nanofabrication difficulties related to disfavoured micro- or nanofluidic molecular flow as given by the direct incorporation of particles in the electrospinning solution. This method therefore enables the synthesis of luminescent, CdS-based composite fibres with emission peaked in the visible range, suitable as building blocks for nanophotonic devices based on light-emitting nanomaterials.

  20. Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses

    SciTech Connect

    Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu; Satoh, Takuya; Stupakiewicz, Andrzej; Maziewski, Andrzej

    2014-07-28

    A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed for excitation fluences higher than 100 mJ/cm{sup 2}.

  1. Quasi one-dimensional light beam generated by a graded-index microsphere.

    PubMed

    Kong, Soon-Cheol; Taflove, Allen; Backman, Vadim

    2009-03-02

    An optically illuminated micron-scale dielectric sphere can generate a photonic nanojet - a nonresonant propagating beam phenomenon of high amplitude, narrow waist, and substantial sensitivity to the presence of nanometer-scale particles and geometric features located within the beam. Via three-dimensional finite-difference time-domain computational electrodynamics modeling of illuminated graded-index microspheres, we have found that the useful length of a photonic nanojet can be increased by an order-of-magnitude to approximately 20 wavelengths. This is effectively a quasi one-dimensional light beam which may be useful for optical detection of natural or artificially introduced nanostructures deeply embedded within biological cells. Of particular interest in this regard is a potential application to visible-light detection of nanometer-scale anomalies within biological cells indicative of early-stage cancer.

  2. Quasi one-dimensional light beam generated by a graded-index microsphere

    PubMed Central

    Kong, Soon-Cheol; Taflove, Allen; Backman, Vadim

    2009-01-01

    An optically illuminated micron-scale dielectric sphere can generate a photonic nanojet – a nonresonant propagating beam phenomenon of high amplitude, narrow waist, and substantial sensitivity to the presence of nanometer-scale particles and geometric features located within the beam. Via three-dimensional finite-difference time-domain computational electrodynamics modeling of illuminated graded-index microspheres, we have found that the useful length of a photonic nanojet can be increased by an order-of-magnitude to approximately 20 wavelengths. This is effectively a quasi one-dimensional light beam which may be useful for optical detection of natural or artificially introduced nanostructures deeply embedded within biological cells. Of particular interest in this regard is a potential application to visible-light detection of nanometer-scale anomalies within biological cells indicative of early-stage cancer. PMID:19259213

  3. 30 CFR 72.502 - Requirements for nonpermissible light-duty diesel-powered equipment other than generators and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel-powered equipment other than generators and compressors. 72.502 Section 72.502 Mineral Resources... Requirements for nonpermissible light-duty diesel-powered equipment other than generators and compressors. (a... chapter), other than generators and compressors, introduced into an underground area of an...

  4. 30 CFR 72.502 - Requirements for nonpermissible light-duty diesel-powered equipment other than generators and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel-powered equipment other than generators and compressors. 72.502 Section 72.502 Mineral Resources... Requirements for nonpermissible light-duty diesel-powered equipment other than generators and compressors. (a... chapter), other than generators and compressors, introduced into an underground area of an...

  5. 30 CFR 72.502 - Requirements for nonpermissible light-duty diesel-powered equipment other than generators and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesel-powered equipment other than generators and compressors. 72.502 Section 72.502 Mineral Resources... Requirements for nonpermissible light-duty diesel-powered equipment other than generators and compressors. (a... chapter), other than generators and compressors, introduced into an underground area of an...

  6. 30 CFR 72.502 - Requirements for nonpermissible light-duty diesel-powered equipment other than generators and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel-powered equipment other than generators and compressors. 72.502 Section 72.502 Mineral Resources... Requirements for nonpermissible light-duty diesel-powered equipment other than generators and compressors. (a... chapter), other than generators and compressors, introduced into an underground area of an...

  7. 30 CFR 72.502 - Requirements for nonpermissible light-duty diesel-powered equipment other than generators and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesel-powered equipment other than generators and compressors. 72.502 Section 72.502 Mineral Resources... Requirements for nonpermissible light-duty diesel-powered equipment other than generators and compressors. (a... chapter), other than generators and compressors, introduced into an underground area of an...

  8. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.

    PubMed

    Wang, X; Shih, K; Li, X Y

    2010-01-01

    A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H(2) generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x=0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1 g L(-1). The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmol g(-1) L(-1) h(-1) and a quantum yield of 16.1% under visible light (165 W Xe lamp, lambda>420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.

  9. PREFACE: 3rd International Conference on Geological, Geographical, Aerospace and Earth Science 2015 (AeroEarth 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2016-02-01

    The 3rd International Conferences on Geological, Geographical, Aerospaces and Earth Sciences 2015 (AeroEarth 2015), was held at The DoubleTree Hilton, Jakarta, Indonesia during 26 - 27 September 2015. The 1st AeoroEarth was held succefully in Jakarta in 2013. The success continued to The 2nd AeroEarth 2014 that was held in Kuta Bali, Indonesia. The publications were published by EES IOP in http://iopscience.iop.org/1755-1315/19/1 and http://iopscience.iop.org/1755-1315/23/1 respectively. The AeroEarth 2015 conference aims to bring together researchers, engineers and scientists from around the world. Through research and development, Earth's scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. The theme of AeroEarth 2015 is ''Earth and Aerospace Sciences : Challenges and Opportunities'' Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 78 papers and after rigorous review, 18 papers were accepted. The participants

  10. In vitro cultivation of Hysterothylacium aduncum (Nematoda: Anisakidae) from 3rd-stage larvae to egg-laying adults.

    PubMed

    Iglesias, L; Valero, A; Gálvez, L; Benítez, R; Adroher, F J

    2002-11-01

    This is the first demonstration of the in vitro development of the 3rd-stage larvae (L3) of Hysterothylacium aduncum to the adult. This was achieved in a semi-defined medium that is easy to prepare and to reproduce. The L3, collected from the peritoneal cavity of horse mackerel (Trachurus trachurus), were individually inoculated into RPMI-1640 medium +20% heat-inactivated fetal bovine serum (IFBS). It has been demonstrated that the optimum temperature for development is around 13 degrees C and is stimulated by the presence of 5% CO2 in the growth atmosphere, increasing the percentage moulting to the 4th larval stage (L4) by 1.9-fold (from 44 to 82%) and the average survival of the nematodes by 1.6 times (from 60 to 96 days). When the larvae were grown at different pHs, optimum development occurred at pH 4.0. Under these conditions, all the larvae moulted to the L4 and more than two-thirds transformed to the adult stage--in which 25-30% of the females laid eggs--and reached an average survival of over 4 months. When this medium was supplemented with 1% (w/v) of commercial pepsin, all the larvae reached the adult stage, at least 45% of the females oviposited, laying around 12-fold more eggs per female than in the medium without pepsin. The mean size of the eggs (non-fertilized) obtained was 56.8 x 47.6 microm. The mean length of the adult males obtained was between 3.2 and 5.2 cm and the females were between 3.0 and 6.5 cm. The adult specimens were morphologically identified as Hysterothylacium aducum aduncum. This culture medium (RPMI-1640+20% (v/v) IFBS+1 commercial pepsin, at pH 4.0, 13 degrees C and 5% CO2 in air) could facilitate the identification of at least some of the larvae of the genus Hysterothylacium--and perhaps other anisakids--for which the specific identification and the biological study of these parasites is often difficult.

  11. PREFACE: 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2015-06-01

    The 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015), was held at The Westin Resort Nusa Dua, Bali on 31 January - 1 February 2015. The ScieTech 2015 conference is aimed to bring together researchers, engineers and scientists from around the world. ScieTech 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics. As we already know that science and technology have brought tremendous benefits for human civilization. People are becoming healthier, wealthier, better educated, more peaceful, increasingly connected, and living longer. Of course, science and technology provide many answers to global challenges, but we will face more complex problems in the next decade due to increasing world population, limitation of energy, and climate change. Therefore, researchers should be more active in conducting research that enables collaboration between one and the others. Interdisciplinary cooperation is absolutely necessary in order to create a smart system for solving the global problems. We need a global and general long-term view of the future with long-range goals for solving complex problems in next decade. Therefore the conference was held to be a forum for researchers from different disciplines to start collaborating and conducting research that provides a solution to the global issues. The theme of ScieTech 2015 was ''The interdisciplinary Application between Mathematics, Chemistry and Physics to enhance the Quality of Life''. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting conference program as well as the invited and plenary speakers. This year, we received 197 papers and after rigorous review, 59 papers were accepted. The participants came from 19

  12. The Automatic Light Curves Generated by Danish 1.54m Telescope

    NASA Astrophysics Data System (ADS)

    Skoda, Petr

    2015-12-01

    We present the Ondřejov Southern Photometry Survey, being conducted at the Danish 1.54m telescope in remote observing mode by several groups of Czech stellar astronomers. The automatic astrometry and photometry pipelines run on every CCD frame combined with sophisticated parallelized cross-matching and clustering algorithms result in an on-the-fly generation of light curves of every single object in the field. To allow powerful querying and visualization of current database of more than half billion of measurements, the technology of Virtual Observatory is used, combining IVOA protocols and powerful visualization tools as Aladin, TOPCAT and SPLAT-VO.

  13. Multimode nonclassical light generation through the optical-parametric-oscillator threshold

    SciTech Connect

    Chalopin, B.; Scazza, F.; Fabre, C.; Treps, N.

    2010-06-15

    We show that an optical parametric oscillator which is simultaneously resonant for several modes, either spatial or temporal, generates both below and above threshold a multimode nonclassical state of light consisting of squeezed vacuum states in all the nonoscillating modes. We confirm this prediction by an experiment dealing with the degenerate TEM{sub 01} and TEM{sub 10} modes. We show the conservation of nonclassical properties when the threshold is crossed. The experiment is made possible by the implementation of a new method to lock the relative phase of the pump and the injected beam.

  14. Biological activity of photoproducts of merocyanine 540 generated by laser-light activation

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.; Chanh, Tran C.; Pervaiz, Shazib; Harriman, Anthony; Matthews, James Lester

    1992-08-01

    Controlled exposure of photoactive compounds to light prior to their use in biological targets results in the formation of heretofore unknown photoproducts. This process of photoproduct generation, termed "preactivation," renders the photactive compound capable of systemic use without further dependence on light. Preactivation of mercyanin 540 (MC540) and several other photoactive compounds is achievable by exposure to CW and pulse laser radiation. The singlet oxygen generated at excited states attacks the dye molucule itself, resulting in the formation of biologically active photoproducts. For preactivated MC540 (photoproducts of MC540) generated by exposure to argon laser light (514 nm) and light from free-electron laser, we have demonstrated its effectiveness in selective killing of certain types of cultured tumor cells as well as human immunodeficiency virus type 1 (HIV-1) with very low, if any, damage to normal cells and tisues. For example, approximately 90% of the Burkitt's lymphoma Daudi cells and HL-60 leukemic cells are killed by preactivated MC540 at a concentration of 120 μg/ml. A two-hour treatment of cultured cells with buthionine sulfoxamine followed by the treatement with preactivated MC540 reults in 99.99% inhibition of clonogenic tumor stem cell growth. We also have demonstrated that preactivated MC540 is very effective in killing cell-free and cell-associated HIV-1. It also is very effective in killing HIV-1 and simian immunodeficiency virus (SIV) in virus-infected blood in vitro as determined by reverse transcriptase, P24, P17, core antigen expression and synctium formation. Treatment of HIV-1 with preactivated MC540 renders the treated HIV-1 incapable of binding to CD4 target molecules on T cells as determined by immunofluorescence and radioimmunoprecipitation assays. In vivo toxicology studies show that preactivated MC540 is very well tolerated and does not produce any signs of adverse reaction at the therapeutic doses, as determined by

  15. Short X-ray pulses from third-generation light sources.

    PubMed

    Stepanov, A G; Hauri, C P

    2016-01-01

    High-brightness X-ray radiation produced by third-generation synchrotron light sources (TGLS) has been used for numerous time-resolved investigations in many different scientific fields. The typical time duration of X-ray pulses delivered by these large-scale machines is about 50-100 ps. A growing number of time-resolved studies would benefit from X-ray pulses with two or three orders of magnitude shorter duration. Here, techniques explored in the past for shorter X-ray pulse emission at TGLS are reviewed and the perspective towards the realisation of picosecond and sub-picosecond X-ray pulses are discussed.

  16. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles

    PubMed Central

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D.; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J.

    2013-01-01

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator. PMID:23836642

  17. Rogue-wave-like statistics in ultrafast white-light continuum generation in sapphire.

    PubMed

    Majus, D; Jukna, V; Pileckis, E; Valiulis, G; Dubietis, A

    2011-08-15

    We experimentally study the statistics of the white-light continuum generated by focusing of 130 fs, 800 nm pulses in a sapphire plate and show that the statistical distributions of the spectral intensity of the blue-shifted continuum components obey the extreme-value statistics. This rogue-wave-like behavior is detected only within a narrow input-pulse energy interval. By the use of numerical simulations, we show that the observed rogue-wave-like behavior is associated with pulse splitting and build-up of intense trailing pulse. The extreme events are thereafter suppressed by the intensity clamping.

  18. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses

    NASA Astrophysics Data System (ADS)

    Lara-Astiaso, M.; Silva, R. E. F.; Gubaydullin, A.; Rivière, P.; Meier, C.; Martín, F.

    2016-08-01

    One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.

  19. Tunable VUV light generation for resonance ionization mass spectrometry of Krypton

    NASA Astrophysics Data System (ADS)

    Strashnov, I.; Blagburn, D. J.; Thonnard, N.; Gilmour, J. D.

    2009-03-01

    Tunable coherent VUV radiation from 115.8 to 116.9 nm has been produced by non-linear four-wave sum frequency mixing in a xenon-argon mixture. 116.5 nm light generated by this means has been used as the first step in a three color, doubly resonant ionization scheme for Kr. In the process of validating the system the xenon refractive index per atom (STP) at 116.5 nm has been determined to be (n(Xe) - 1)/NXe = -6.8(±0.8) × 10-23 cm3.

  20. The Advanced Light Source: A third-generation Synchrotron Radiation Source

    SciTech Connect

    Robinson, Arthur L.

    2002-08-14

    The Advanced Light Source (ALS) at the E.O. Lawrence Berkeley National Laboratory (Berkeley Lab) of the University of California is a ''third-generation'' synchrotron radiation source optimized for highest brightness at ultraviolet and soft x-ray photon energies. It also provides world-class performance at hard x-ray photon energies. Berkeley Lab operates the ALS for the United States Department of Energy as a national user facility that is available 24 hours/day around the year for research by scientists from industrial, academic, and government laboratories primarily from the United States but also from abroad.

  1. Black-light continuum generation in a silica-core photonic crystal fiber.

    PubMed

    Sylvestre, T; Ragueh, A R; Lee, M W; Stiller, B; Fanjoux, G; Barviau, B; Mussot, A; Kudlinski, A

    2012-01-15

    We report the observation of a broadband continuum spanning from 350 to 470 nm in the black-light region of the electromagnetic spectrum as a result of picosecond pumping a solid-core silica photonic crystal fiber at 355 nm. This was achieved despite strong absorption and a large normal dispersion of silica glass in the UV. Further investigations reveal that the continuum generation results from the interplay of intermodally phase-matched four-wave mixing and cascaded Raman scattering. We also discuss the main limitations in terms of bandwidth and power due to temporal walk-off, fiber absorption, and the photo darkening effect, and we suggest simple solutions.

  2. Light-RCV: a lightweight read coverage viewer for next generation sequencing data

    PubMed Central

    2015-01-01

    Background Next-generation sequencing (NGS) technologies has brought an unprecedented amount of genomic data for analysis. Unlike array-based profiling technologies, NGS can reveal the expression profile across a transcript at the base level. Such a base-level read coverage provides further insights for alternative mRNA splicing, single-nucleotide polymorphism (SNP), novel transcript discovery, etc. However, to our best knowledge, none of existing NGS viewers can timely visualize genome-wide base-level read coverages in an interactive environment. Results This study proposes an efficient visualization pipeline and implements a lightweight read coverage viewer, Light-RCV, with the proposed pipeline. Light-RCV consists of four featured designs on the path from raw NGS data to the final visualized read coverage: i) read coverage construction algorithm, ii) multi-resolution profiles, iii) two-stage architecture and iv) storage format. With these designs, Light-RCV achieves a < 0.5s response time on any scale of genomic ranges, including whole chromosomes. Finally, a case study was performed to demonstrate the importance of visualizing base-level read coverage and the value of Light-RCV. Conclusions Compared with multi-functional genome viewers such as Artemis, Savant, Tablet and Integrative Genomics Viewer (IGV), Light-RCV is designed only for visualization. Therefore, it does not provide advanced analyses. However, its backend technology provides an efficient kernel of base-level visualization that can be easily embedded to other viewers. This viewer is the first to provide timely visualization of genome-wide read coverage at the base level in an interactive environment. The software is available for free at http://lightrcv.ee.ncku.edu.tw. PMID:26680734

  3. A Low Distortion 3rd-Order Continuous-Time Delta-Sigma Modulator for a Worldwide Digital TV-Receiver

    NASA Astrophysics Data System (ADS)

    Obata, Koji; Matsukawa, Kazuo; Mitani, Yosuke; Takayama, Masao; Tokunaga, Yusuke; Sakiyama, Shiro; Dosho, Shiro

    This paper presents a low distortion 3rd-order continuous-time delta-sigma modulator for a worldwide digital TV-receiver whose peak SNDR is 69.8dB and SNR is 70.2dB under 1V power supply. To enhance SNDR performance, the mechanisms to occur harmonic distortions at feedback current-steering DAC and flash ADC have been analyzed. A low power tuning system using RC-relaxation oscillator has been developed in order to achieve high yield against PVT variations. A 3rd-order modulator with modified single opamp resonator contributes to cost reduction by realizing a very compact circuit. Reduction schemes of the distortions enabled the modulator to achieve FOM of 0.18pJ/conv-step.

  4. Single-layer and multilayer mirrors for current and next-generation light sources

    NASA Astrophysics Data System (ADS)

    Störmer, Michael; Horstmann, Christian; Häussler, Dietrich; Spiecker, Erdmann; Siewert, Frank; Scholze, Frank; Hertlein, Frank; Jäger, Wolfgang; Bormann, Rüdiger

    2008-08-01

    Current and next-generation light sources, for instance third generation synchrotron sources, FLASH and the future project X-FEL require single-layer and multilayer mirrors with an active optical length of more than one meter. At the GKSS research centre, a new sputtering system for the deposition of single-layer and multilayers has been installed. This new system is able to manufacture mirrors with a maximum deposition length of 1.5m. In this paper we are going to present the first results of this challenging system. The mirror properties are investigated by means of X-ray reflectometry, transmission electron microscopy and interference microscopy. The performance of the mirrors is analyzed, considering X-ray reflectivity, film thickness, micro-roughness and the uniformity of these properties over the whole deposition length. The results will be discussed and compared with former results.

  5. INSTRUMENTS AND METHODS OF INVESTIGATION: Generation of squeezed (sub-Poissonian) light by a multimode laser

    NASA Astrophysics Data System (ADS)

    Kozlovskii, A. V.

    2007-12-01

    Theoretical and experimental results of investigations into the quantum noise of multimode laser radiation are considered. The feasibility of generating light with a photon-number-squeezed (sub-Poissonian) photon distribution by a multimode laser with a homogeneously broadened line is analyzed. The conditions of noisy and noiseless (regular) pumping are considered. Photon-number fluctuations of the net laser radiation summed over all generated modes are calculated in the approximation of equidistant equal modes, as are photon-number fluctuations in an individual mode inside and outside the resonator. Output-radiation noise spectra and photon-number fluctuations are calculated for solid-state (neodymium glass, Nd:YAG) and semiconductor lasers. Theoretical results are compared with a number of experimental data obtained for semiconductor lasers in recent years.

  6. The temperature field and heat transfer in the porthole of the Space Shuttle - Outer surface under the 3rd kind nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Tan, Heping; Yu, Qizheng; Zhang, Jizhou

    In this paper, the transient combined heat transfer in the silicon glass porthole of Space Shuttle is studied by control volume method, ray tracing method and spectral band model. The temperature field in the silicon glass and heat flux entering the space cabin are given under the 3rd kind nonlinear boundary condition. The computational results show, if the radiation in the silicon glass is omitted, the errors for temperature fields are not too evident, but for heat flux are quite large.

  7. Multi-point laser spark generation for internal combustion engines using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lyon, Elliott; Kuang, Zheng; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff

    2014-11-01

    This paper reports on a technique demonstrating for the first time successful multi-point laser-induced spark generation, which is variable in three dimensions and derived from a single laser beam. Previous work on laser ignition of internal combustion engines found that simultaneously igniting in more than one location resulted in more stable and faster combustion - a key potential advantage over conventional spark ignition. However, previous approaches could only generate secondary foci at fixed locations. The work reported here is an experimental technique for multi-point laser ignition, in which several sparks with arbitrary spatial location in three dimensions are created by variable diffraction of a pulsed single laser beam source and transmission through an optical plug. The diffractive multi-beam arrays and patterns are generated using a spatial light modulator on which computer generated holograms are displayed. A gratings and lenses algorithm is used to accurately modulate the phase of the input laser beam and create multi-beam output. The underpinning theory, experimental arrangement and results obtained are presented and discussed.

  8. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    PubMed Central

    Beltran, Nohra E.; Garcia, Laura E.; Garcia-Lorenzana, Mario

    2013-01-01

    The gastric mucosa ischemic tissular damage plays an important role in critical care patients' outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine). The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10%) for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (P < 0.01). Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia. PMID:23841094

  9. Organic Polymer Dots as Photocatalysts for Visible Light-Driven Hydrogen Generation.

    PubMed

    Wang, Lei; Fernández-Terán, Ricardo; Zhang, Lei; Fernandes, Daniel L A; Tian, Lei; Chen, Hong; Tian, Haining

    2016-09-26

    For the first time, organic semiconducting polymer dots (Pdots) based on poly[(9,9'-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3} thiadiazole)] (PFBT) and polystyrene grafting with carboxyl-group-functionalized ethylene oxide (PS-PEG-COOH) are introduced as a photocatalyst towards visible-light-driven hydrogen generation in a completely organic solvent-free system. With these organic Pdots as the photocatalyst, an impressive initial rate constant of 8.3 mmol h(-1)  g(-1) was obtained for visible-light-driven hydrogen production, which is 5-orders of magnitude higher than that of pristine PFBT polymer under the same catalytic conditions. Detailed kinetics studies suggest that the productive electron transfer quench of the excited state of Pdots by an electron donor is about 40 %. More importantly, we also found that the Pdots can tolerate oxygen during catalysis, which is crucial for further application of this material for light-driven water splitting.

  10. Simultaneous Filtered and Unfiltered Light Scattering Measurements in Laser Generated Air Sparks

    NASA Astrophysics Data System (ADS)

    Limbach, Christopher; Miles, Richard

    2013-09-01

    Elastic laser light scattering may be used to measure the thermofluidic properties of gases and plasmas, including but not limited to density, temperature and velocity. Most of this information is contained within the spectra of the scattered radiation. This may be measured directly through dispersion or indirectly, by passing the light through an atomic or molecular vapor filter with known absorption features. In this work, filtered and unfiltered laser light scattering is used to diagnose air sparks generated by a 1064 nm Q-switched laser. The probe laser consists of a second Q-switched Nd:YAG laser frequency doubled to 532 nm. Simultaneous unfiltered and filtered images of the scattering are captured by a Princeton Instruments ICCD camera by using a 50 mm diameter concave re-imaging mirror. The filter consists of a well-characterized molecular Iodine cell. In the shock wave formed by the laser spark, spatially resolved measurements of density, temperature and radial velocity are extracted and compared with theory and models. Measurements in the spark core probe the ion feature of the electron Thomson scattering, from which ne and T can be extracted with the assumption Te =Ti . Partial funding was provided by General Electric Global Research Center: Niskayuna, New York. The first author is also supported by a National Defense Science and Engineering Graduate Fellowship.

  11. Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter.

    PubMed

    Song, Hoon; Sung, Geeyoung; Choi, Sujin; Won, Kanghee; Lee, Hong-Seok; Kim, Hwi

    2012-12-31

    We propose an optical system for synthesizing double-phase complex computer-generated holograms using a phase-only spatial light modulator and a phase grating filter. Two separated areas of the phase-only spatial light modulator are optically superposed by 4-f configuration with an optimally designed grating filter to synthesize arbitrary complex optical field distributions. The tolerances related to misalignment factors are analyzed, and the optimal synthesis method of double-phase computer-generated holograms is described.

  12. 75 FR 9591 - FirstLight Hydro Generating Company; Notice of Application for Amendment of License and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... Federal Energy Regulatory Commission FirstLight Hydro Generating Company; Notice of Application for Amendment of License and Soliciting Comments, Motions To Intervene, and Protests February 24, 2010. Take.... c. Date Filed: June 30, 2009 and supplemented on December 4, 2009. d. Applicant: FirstLight...

  13. 75 FR 4426 - Florida Power and Light Company; Turkey Point Nuclear Generating Units 3 and 4; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... COMMISSION Florida Power and Light Company; Turkey Point Nuclear Generating Units 3 and 4; Environmental... to Florida Power and Light Company (the licensee), for operation of the Turkey Point Units 3 and 4... the beltline region of the Turkey Point Units 3 and 4 reactor pressure vessels. Environmental...

  14. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    NASA Astrophysics Data System (ADS)

    Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.

    2016-08-01

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  15. Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source.

    PubMed

    Yokoyama, Hiroyuki; Tsubokawa, Hiroshi; Guo, Hengchang; Shikata, Jun-ichi; Sato, Ki-ichi; Takashima, Keijiro; Kashiwagi, Kaori; Saito, Naoaki; Taniguchi, Hirokazu; Ito, Hiromasa

    2007-01-01

    We developed a novel scheme for two-photon fluorescence bioimaging. We generated supercontinuum (SC) light at wavelengths of 600 to 1200 nm with 774-nm light pulses from a compact turn-key semiconductor laser picosecond light pulse source that we developed. The supercontinuum light was sliced at around 1030- and 920-nm wavelengths and was amplified to kW-peak-power level using laboratory-made low-nonlinear-effects optical fiber amplifiers. We successfully demonstrated two-photon fluorescence bioimaging of mouse brain neurons containing green fluorescent protein (GFP).

  16. Calculation method for computer-generated holograms with cylindrical basic object light by using a graphics processing unit.

    PubMed

    Sakata, Hironobu; Hosoyachi, Kouhei; Yang, Chan-Young; Sakamoto, Yuji

    2011-12-01

    It takes an enormous amount of time to calculate a computer-generated hologram (CGH). A fast calculation method for a CGH using precalculated object light has been proposed in which the light waves of an arbitrary object are calculated using transform calculations of the precalculated object light. However, this method requires a huge amount of memory. This paper proposes the use of a method that uses a cylindrical basic object light to reduce the memory requirement. Furthermore, it is accelerated by using a graphics processing unit (GPU). Experimental results show that the calculation speed on a GPU is about 65 times faster than that on a CPU.

  17. Efficient white-light continuum generation in transparent solid media using ˜250 fs, 1053 nm laser pulses

    NASA Astrophysics Data System (ADS)

    Imran, T.; Figueira, G.

    2010-04-01

    We report white-light continuum generation in solid-state media (fused silica and sapphire) using seed pulses centered at 1053 nm and at a repetition rate of 10 Hz. We have investigated the influence of different parameters, such as changing the focal position and the energy of the incident pulse within the medium to obtain optimal white-light continuum. Preliminary results indicate that for intense laser pulses, waist position inside the media and input energy are crucial for high efficiency white-light continuum generation over the wavelength range 400-1100 nm. It was also found that pulses centered at 1053 nm generate a flatter spectrum, with higher white-light continuum efficiency. Such a flat response over a broad bandwidth in the continuum has the potential to be efficiently compressed to shorter durations.

  18. Non-mydriatic confocal retinal imaging using a digital light projector

    NASA Astrophysics Data System (ADS)

    Muller, Matthew S.; Green, Jason J.; Baskaran, Karthikeyan; Ingling, Allen W.; Clendenon, Jeffrey L.; Gast, Thomas J.; Elsner, Ann E.

    2015-03-01

    A digital light projector is implemented as an integrated illumination source and scanning element in a confocal nonmydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). To simulate scanning, a series of illumination lines are rapidly projected on the retina. The backscattered light is imaged onto a 2-dimensional rolling shutter CMOS sensor. By temporally and spatially overlapping the illumination lines with the rolling shutter, confocal imaging is achieved. This approach enables a low cost, flexible, and robust design with a small footprint. The 3rd generation DLO technical design is presented, using a DLP LightCrafter 4500 and USB3.0 CMOS sensor. Specific improvements over previous work include the use of yellow illumination, filtered from the broad green LED spectrum, to obtain strong blood absorption and high contrast images while reducing pupil constriction and patient discomfort.

  19. Visible-Light-Initiated Thiol-Michael Addition Polymerizations with Coumarin-Based Photobase Generators: Another Photoclick Reaction Strategy.

    PubMed

    Zhang, Xinpeng; Xi, Weixian; Wang, Chen; Podgórski, Maciej; Bowman, Christopher N

    2016-02-16

    An efficient visible-light-sensitive photobase generator for thiol-Michael addition reactions was synthesized and evaluated. This highly reactive catalyst was designed by protecting a strong base (tetramethyl guanidine, TMG) with a visible-light-responsive group which was a coumarin derivative. The coumarin-coupled TMG was shown to exhibit extraordinary catalytic activity toward initiation of the thiol-Michael reaction, including thiol-Michael addition-based polymerization, upon visible-light irradiation, leading to a stoichiometric reaction of both thiol and vinyl functional groups. Owing to its features, this visible-light photobase generator enables homogeneous network formation in thiol-Michael polymerizations and also has the potential to be exploited in other visible-light-induced, base-catalyzed thiol-click processes such as thiol-isocynate and thiol-epoxy network-forming reactions.

  20. Generation of Antibunched Light by Excited Molecules in a Microcavity Trap

    NASA Technical Reports Server (NTRS)

    DeMartini, F.; DiGiuseppe, G.; Marrocco, M.

    1996-01-01

    The active microcavity is adopted as an efficient source of non-classical light. By this device, excited by a mode-locked laser at a rate of 100 MHz, single-photons are generated over a single field mode with a nonclassical sub-poissonian distribution. The process of adiabatic recycling within a multi-step Franck-Condon molecular optical-pumping mechanism, characterized in our case by a quantum efficiency very close to one, implies a pump self-regularization process leading to a striking n-squeezing effect. By a replication of the basic single-atom excitation process a beam of quantum photon (Fock states) can be created. The new process represents a significant advance in the modern fields of basic quantum-mechanical investigation, quantum communication and quantum cryptography.

  1. Generation of broadband entangled light through cascading nondegenerate optical parametric amplifiers

    SciTech Connect

    He Wenping; Li Fuli

    2007-07-15

    We consider a system consisting of N nondegenerate optical parametric amplifiers (NOPAs) operating below threshold and linked with each other in a cascading way, each taking the output subharmonic fields from the previous one as the input fields. The entanglement properties of the subharmonic fields from these cascading nondegenerate optical parametric amplifiers (CNOPAs) are investigated. We find that, if the input subharmonic fields of the first NOPA in the cascading line are in the vacuum state, the output fields from the later NOPAs exhibit excellent broadband entanglement, and the entanglement frequency band is broadened notably with increased number of cascading NOPAs. We also discuss the application of the entangled light generated from the CNOPAs to broadband teleportation, and find that the maximum width of the fidelity spectrum of teleportation of broadband coherent states can be greatly broadened.

  2. Red, blue, and green laser-light generation from the NYAB nonlinear crystal

    NASA Astrophysics Data System (ADS)

    Jaque Garcia, Daniel; Capmany, Juan; Sole, Jose G.

    1999-11-01

    Continuous wave red, green, and blue laser light are generated under IR-pumping crystals of Nd3+:YAl3(BO3)4 by a Ti:sapphire laser. The red (669-nm) and green (532-nm) radiations are obtained by self-frequency doubling of the fundamental laser lines at 1338 nm (4F3/2 yields 4I13/2 channel) and 1062 nm (4F3/2 yields 4I11/2 channel), respectively. Blue laser radiation (458 nm) is achieved by self-sum-frequency mixing of the main laser line at 1062 nm and the pumping radiation at 807 nm. The main spectroscopic and nonlinear properties of this crystal are included. In addition, a simple model devoted to optimizing the blue radiation is provided.

  3. On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity.

    PubMed

    Erogbogbo, Folarin; Lin, Tao; Tucciarone, Phillip M; LaJoie, Krystal M; Lai, Larry; Patki, Gauri D; Prasad, Paras N; Swihart, Mark T

    2013-02-13

    We demonstrate that nanosize silicon (~10 nm diameter) reacts with water to generate hydrogen 1000 times faster than bulk silicon, 100 times faster than previously reported Si structures, and 6 times faster than competing metal formulations. The H(2) production rate using 10 nm Si is 150 times that obtained using 100 nm particles, dramatically exceeding the expected effect of increased surface to volume ratio. We attribute this to a change in the etching dynamics at the nanoscale from anisotropic etching of larger silicon to effectively isotropic etching of 10 nm silicon. These results imply that nanosilicon could provide a practical approach for on-demand hydrogen production without addition of heat, light, or electrical energy.

  4. Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier.

    PubMed

    Schneider, K; Bruckmeier, R; Hansen, H; Schiller, S; Mlynek, J

    1996-09-01

    Continuous-wave amplitude-squeezed light at 1064 nm has been generated with excellent long-term stability by use of a dual-port type I degenerate optical parametric amplifier pumped by a frequency-doubled Nd:YAG laser. A seed wave at 1064 nm is resonantly injected through the low-transmission cavity port, whereas the parametrically deamplified and squeezed output wave is extracted from the high-transmission port. Amplitude noise reduction of as much as 4.3 dB is observed directly at an output power of 0.15 mW. Stable noise suppression exceeding 3.8 dB is obtained for several hours by phase locking of the pump wave. The longterm stability and simplicity make this device suitable for sub-shot-noise metrology.

  5. White-light emission from solid carbon in aqueous solution during hydrogen generation induced by nanosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Akimoto, Ikuko; Yamamoto, Shota; Maeda, Kosuke

    2016-07-01

    We previously discovered a novel method of hydrogen generation from high-grade charcoal in an aqueous solution using nanosecond laser pulse irradiation. In this paper, white-light emission during this reaction is reported: A broad spectrum over the visible range is observed above a threshold excitation energy density. The white-light emission is a simultaneous product of the hydrogen generation reaction and is attributed to blackbody radiation in accordance with Planck's Law at a temperature above 3800 K. Consequently, we propose that hydrogen generation induced by laser irradiation proceeds similarly to classical coal gasification, which features reactions at high pressure and high temperature.

  6. Visible light carrier generation in co-doped epitaxial titanate films

    SciTech Connect

    Comes, Ryan B. Kaspar, Tiffany C.; Chambers, Scott A.; Smolin, Sergey Y.; Baxter, Jason B.; Gao, Ran; Apgar, Brent A.; Martin, Lane W.; Bowden, Mark E.

    2015-03-02

    Perovskite titanates such as SrTiO{sub 3} (STO) exhibit a wide range of important functional properties, including ferroelectricity and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications; however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr, we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr{sup 3+} dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to 2.4–2.7 eV depending on doping levels. Transient reflectance spectroscopy measurements are in agreement with the observations from ellipsometry and confirm that optically generated carriers are present for longer than 2 ns. Finally, through photoelectrochemical methylene blue degradation measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.

  7. Visible light carrier generation in co-doped epitaxial titanate films

    SciTech Connect

    Comes, Ryan B.; Smolin, Sergey Y.; Kaspar, Tiffany C.; Gao, Ran; Apgar, Brent A.; Martin, Lane W.; Bowden, Mark E.; Baxter, Jason; Chambers, Scott A.

    2015-03-02

    Perovskite titanates such as SrTiO3 (STO) exhibit a wide range of important functional properties, including high electron mobility, ferroelectricity—which may be valuable in photovoltaic applications—and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications, however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr3+ dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to between 2.4 and 2.7 eV depending on doping levels. Transient reflectance measurements confirm that optically generated carriers have a recombination lifetime comparable to that of STO and are in agreement with the observations from ellipsometry. Finally, through photoelectrochemical yield measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.

  8. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-07-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90 %). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize product yields and to identify side products. The present work demonstrates that UV-LED arrays are a viable alternative to current Hg lamp setups.

  9. Performance of a ruthenium beam separator used to separate soft x rays from light generated by a high-order harmonic light source.

    PubMed

    Ichimaru, Satoshi; Hatayama, Masatoshi; Ohchi, Tadayuki; Gullikson, Eric M; Oku, Satoshi

    2016-02-10

    We describe the design and fabrication of a ruthenium beam separator used to simultaneously attenuate infrared light and reflect soft x rays. Measurements in the infrared and soft x-ray regions showed the beam separator to have a reflectivity of 50%-85% in the wavelength region from 6 to 10 nm at a grazing incidence angle of 7.5 deg and 4.3% at 800 nm and the same angle of grazing incidence, indicating that the amount of attenuation is 0.05-0.09. These results show that this beam separator could provide an effective means for separating IR light from soft x rays in light generated by high-order harmonic generation sources.

  10. Visible Light Photocatalysis for the Generation and Use of Reactive Azolyl and Polyfluoroaryl Intermediates.

    PubMed

    Arora, Amandeep; Weaver, Jimmie D

    2016-10-18

    Photocatalysis offers several mechanistically unique pathways that are not rivaled by mainstream catalysis. Primarily, the ability to convert photochemical energy into single electron oxidation and reduction events provides a new dimension for chemists to consider when choosing how to activate a molecule or approach a complex synthesis. Since most organic molecules do not absorb light in the visible region, they are impervious to direct visible light photochemistry, which provides an opportunity for photocatalysis in which a visible light absorbing compound can serve as a mediator. In this Account, we discuss the consequences of catalyst mediated, photoinduced electron transfer to several classes of reducible arenes. While the bulk of the work discussed within this Account utilizes iridium-based photocatalysts, in principle the chemistry is not limited to this class of photocatalyst, and the principles should be more general. Instead, this Account focuses largely on the consequences of single electron transfer to poly- and perfluorinated arenes and 2-halo azoles. Electron transfer converts these stable molecules into reactive intermediates whose behavior often depends entirely on the identity of the halogen that undergoes substitution. The result is both diverse chemistry and an alternative way of thinking about the chemical reactivity of these motifs. Specifically, we discuss our efforts and those of others to develop strategies for the generation of radicals or radical anions from perfluoroarenes and azoles and the behavior of these intermediates as implied by reactions in which they participate. The divergent pathway is illustrated by 2-bromoazoles, which yield azolyl radicals and can be utilized for addition to π-bonds, while use of the 2-chloroazole substrate leads to an entirely different reaction profile. Under the appropriate reaction conditions, the reactive and transient intermediates are useful coupling partners and often provide unrivaled access to new

  11. An enantioselective synthetic route toward second-generation light-driven rotary molecular motors.

    PubMed

    Pijper, Thomas C; Pijper, Dirk; Pollard, Michael M; Dumur, Frédéric; Davey, Stephen G; Meetsma, Auke; Feringa, Ben L

    2010-02-05

    Controlling the unidirectional rotary process of second-generation molecular motors demands access to these motors in their enantiomerically pure form. In this paper, we describe an enantioselective route to three new second-generation light-driven molecular motors. Their synthesis starts with the preparation of an optically active alpha-methoxy-substituted upper-half ketone involving an enzymatic resolution. The subsequent conversion of this ketone to the corresponding hydrazone by treatment with hydrazine led to full racemization. However, conversion to a TBDMS-protected hydrazone by treatment with bis-TBDMS hydrazine, prepared according to a new procedure, proceeds with nearly full retention of the stereochemical integrity. Oxidation of the TBDMS-protected hydrazone and subsequent coupling to a lower-half thioketone followed by recrystallization provided the molecular motors with >99% ee. As these are the first molecular motors that have a methoxy substituent at the stereogenic center, the photochemical and thermal isomerization steps involved in the rotary cycle of one of these new molecules were studied in detail with various spectroscopic techniques.

  12. Light

    NASA Astrophysics Data System (ADS)

    Vernon, C. G.

    2016-09-01

    Preface; 1. Historical; 2. Waves and wave-motion; 3. The behaviour of ripples; 4. The behaviour of light; 5. Refraction through glass blocks and prisms; 6. The imprinting of curvatures; 7. Simple mathematical treatment; 8. More advanced mathematical treatment; 9. The velocity of light; 10. The spectrum and colour; 11. Geometrical optics; 12. The eye and optical instruments; 13. Sources of light; 14. Interference, diffraction and polarisation; 15. Suggestions for class experiments; Index.

  13. High resolution three-dimensional (256 to the 3rd) spatio-temporal measurements of the conserved scalar field in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Dahm, Werner J. A.; Buch, Kenneth A.

    Results from highly resolved three-dimensional spatio-temporal measurements of the conserved scalar field zeta(x,t) in a turbulent shear flow. Each of these experiments consists of 256 to the 3rd individual point measurements of the local instantaneous conserved scalar value in the flow. The spatial and temporal resolution of these measurements reach beyond the local Kolmogorov scale and resolve the local strain-limited molecular diffusion scale in the flow. The results clearly show molecular mixing occurring in thin strained laminar diffusion layers in a turbulent flow.

  14. Efficacy studies of Vectobac 12as and Teknar HP-D larvicides against 3rd-instar Ochlerotatus taeniorhynchus and Culex quinquefasciatus in small plot field studies.

    PubMed

    Floore, T G; Petersen, J L; Shaffer, K R

    2004-12-01

    Efficacy studies were conducted with VectoBac 12AS and Teknar HP-D larvicides against 3rd-instar Ochlerotatus taeniorhynchus and Culex quinquefasciatus in small field test plots. The products were obtained off the shelf from distributors and had different lot numbers. They were evaluated over a 2-year period in spring 2002 and 2003. Application rates were 0.29, 0.58, and 1.10 liter/ha and evaluations were made 24 and 48 h after treatment. Both products performed well in these studies, with VectoBac 12AS being more effective at the 0.29 liter/ha rate.

  15. Agricultural biology in the 3rd millennium: nutritional food security & specialty crops through sustainable agriculture and biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food security and agricultural sustainability are of prime concern in the world today in light of the increasing trends in population growth in most parts of the globe excepting Europe. The need to develop capacity to produce more to feed more people is complicated since the arable land is decreasin...

  16. Hydrogen peroxide generated by NADPH oxidase is involved in high blue-light-induced chloroplast avoidance movements in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Xing, Da; Zhang, Lingrui

    2009-08-01

    One of the most important functions of blue light is to induce chloroplast movements by reducing the damage to photosynthetic machinery under excess light. Hydrogen peroxide (H2O2), generated by various environmental stimuli, can act as a signaling molecule that regulates a number of developmental processes and environmental responses. To investigate whether H2O2 is involved in high blue light-induced chloroplast avoidance movements, we use luminescence spectrometer to observe H2O2 generation with the assistance of the fluorescence probe dichlorofluorescin diacetate (H2DCF-DA). After treatment with high blue light, a large quantity of H2O2 indicated by the fluorescence intensity of DCF is produced in a dose-dependent manner in leaf strip of Arabidopsis. Enzymatic assay shows that the activity of NADPH oxidase, which is a major site for H2O2 generation, also rapidly increases in treated strips. Exogenously applied H2O2 can promote the high blue light-induced chloroplast movements. Moreover, high blue light-induced H2O2 generation can be abolished completely by addition of exogenous catalase (CAT), and partly by diphenylene iodonium (DPI) and dichlorophenyl dimethylurea (DCMU), which are an NADPH oxidase inhibitor and a blocker of electron transport chain. And subsequent chloroplast movements can be abolished by CAT and DPI, but not by DCMU. These results presented here suggested that high blue light can induce oxidative burst, and NADPH oxidase as a major producer for H2O2 is involved in blue light-induced chloroplast avoidance movements.

  17. Collaborative study for the establishment of the WHO 3(rd) International Standard for Endotoxin, the Ph. Eur. endotoxin biological reference preparation batch 5 and the USP Reference Standard for Endotoxin Lot H0K354.

    PubMed

    Findlay, L; Desai, T; Heath, A; Poole, S; Crivellone, M; Hauck, W; Ambrose, M; Morris, T; Daas, A; Rautmann, G; Buchheit, K H; Spieser, J M; Terao, E

    2015-01-01

    An international collaborative study was organised jointly by the World Health Organization (WHO)/National Institute for Biological Standards and Control (NIBSC), the United States Pharmacopeia (USP) and the European Directorate for the Quality of Medicines & HealthCare (EDQM/Council of Europe) for the establishment of harmonised replacement endotoxin standards for these 3 organisations. Thirty-five laboratories worldwide, including Official Medicines Control Laboratories (OMCLs) and manufacturers enrolled in the study. Three candidate preparations (10/178, 10/190 and 10/196) were produced with the same material and same formulation as the current reference standards with the objective of generating a new (3(rd)) International Standard (IS) with the same potency (10 000 IU/vial) as the current (2(nd)) IS, as well as new European Pharmacopoeia (Ph. Eur.). and USP standards. The suitability of the candidate preparations to act as the reference standard in assays for endotoxin performed according to compendial methods was evaluated. Their potency was calibrated against the WHO 2(nd) IS for Endotoxin (94/580). Gelation and photometric methods produced similar results for each of the candidate preparations. The overall potency estimates for the 3 batches were comparable. Given the intrinsic assay precision, the observed differences between the batches may be considered unimportant for the intended use of these materials. Overall, these results were in line with those generated for the establishment of the current preparations of reference standards. Accelerated degradation testing of vials stored at elevated temperatures supported the long-term stability of the 3 candidate preparations. It was agreed between the 3 organisations that batch 10/178 be shared between WHO and EDQM and that batches 10/190 and 10/196 be allocated to USP, with a common assigned value of 10 000 IU/vial. This value maintains the continuity of the global harmonisation of reference materials and

  18. Light Harvesting and White-Light Generation in a Composite of Carbon Dots and Dye-Encapsulated BSA-Protein-Capped Gold Nanoclusters.

    PubMed

    Barman, Monoj Kumar; Paramanik, Bipattaran; Bain, Dipankar; Patra, Amitava

    2016-08-08

    Several strategies have been adopted to design an artificial light-harvesting system in which light energy is captured by peripheral chromophores and it is subsequently transferred to the core via energy transfer. A composite of carbon dots and dye-encapsulated BSA-protein-capped gold nanoclusters (AuNCs) has been developed for efficient light harvesting and white light generation. Carbon dots (C-dots) act as donor and AuNCs capped with BSA protein act as acceptor. Analysis reveals that energy transfer increases from 63 % to 83 % in presence of coumarin dye (C153), which enhances the cascade energy transfer from carbon dots to AuNCs. Bright white light emission with a quantum yield of 19 % under the 375 nm excitation wavelength is achieved by changing the ratio of components. Interesting findings reveal that the efficient energy transfer in carbon-dot-metal-cluster nanocomposites may open up new possibilities in designing artificial light harvesting systems for future applications.

  19. Interaction between hollow needles - electric field, light emission and ozone generation study in multineedle to plate electrical discharge

    NASA Astrophysics Data System (ADS)

    Kriha, Vitezslav

    2004-09-01

    Multi hollow needle to plate electrical discharges in air are studied as ozone sources. Dependence of ozone concentration as an function of applied voltage, discharge current, mutual hollow needles position and electrical connection, working gas flow rate, distances between needles tips and plate electrode, visible light emission was measured experimentally in these systems. Electric field was numerically modeled. Light emission and electrical field distributions were compared. Coming from light emission and electric field a model of energy density spatial distribution was built. This model was finally compared with ozone generation.

  20. Optimum projection pattern generation for grey-level coded structured light illumination systems

    NASA Astrophysics Data System (ADS)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben

    2017-04-01

    Structured light illumination (SLI) systems are well-established optical inspection techniques for noncontact 3D surface measurements. A common technique is multi-frequency sinusoidal SLI that obtains the phase map at various fringe periods in order to estimate the absolute phase, and hence, the 3D surface information. Nevertheless, multi-frequency SLI systems employ multiple measurement planes (e.g. four phase shifted frames) to obtain the phase at a given fringe period. It is therefore an age old challenge to obtain the absolute surface information using fewer measurement frames. Grey level (GL) coding techniques have been developed as an attempt to reduce the number of planes needed, because a spatio-temporal GL sequence employing p discrete grey-levels and m frames has the potential to unwrap up to pm fringes. Nevertheless, one major disadvantage of GL based SLI techniques is that there are often errors near the border of each stripe, because an ideal stepwise intensity change cannot be measured. If the step-change in intensity is a single discrete grey-level unit, this problem can usually be overcome by applying an appropriate threshold. However, severe errors occur if the intensity change at the border of the stripe exceeds several discrete grey-level units. In this work, an optimum GL based technique is presented that generates a series of projection patterns with a minimal gradient in the intensity. It is shown that when using this technique, the errors near the border of the stripes can be significantly reduced. This improvement is achieved with the choice generated patterns, and does not involve additional hardware or special post-processing techniques. The performance of that method is validated using both simulations and experiments. The reported technique is generic, works with an arbitrary number of frames, and can employ an arbitrary number of grey-levels.

  1. CarF Mediates Signaling by Singlet Oxygen, Generated via Photoexcited Protoporphyrin IX, in Myxococcus xanthus Light-Induced Carotenogenesis

    PubMed Central

    Galbis-Martínez, Marisa; Padmanabhan, S.; Murillo, Francisco J.

    2012-01-01

    Blue light triggers carotenogenesis in the nonphototrophic bacterium Myxococcus xanthus by inducing inactivation of an anti-σ factor, CarR, and the consequent liberation of the cognate extracytoplasmic function (ECF) σ factor, CarQ. CarF, the protein implicated earliest in the response to light, does not resemble any known photoreceptor. It interacts physically with CarR and is required for its light-driven inactivation, but the mechanism is unknown. Blue-light sensing in M. xanthus has been attributed to the heme precursor protoporphyrin IX (PPIX), which can generate the highly reactive singlet oxygen species (1O2) by energy transfer to oxygen. However, 1O2 involvement in M. xanthus light-induced carotenogenesis remains to be established. Here, we present genetic evidence of the involvement of PPIX as well as 1O2 in light-induced carotenogenesis in M. xanthus and of how these are linked to CarF in the signal transduction pathway. Response to light was examined in carF-bearing and carF-deficient M. xanthus strains lacking endogenous PPIX due to deletion of hemB or accumulating PPIX due to deletion of hemH (hemB and hemH are early- and late-acting heme biosynthesis genes, respectively). This demonstrated that light induction of the CarQ-dependent promoter, PQRS, correlated directly with cellular PPIX levels. Furthermore, we show that PQRS activation is triggered by 1O2 and is inhibited by exogenously supplied hemin and that CarF is essential for the action of 1O2. Thus, our findings indicate that blue light interaction with PPIX generates 1O2, which must be transmitted via CarF to trigger the transcriptional response underlying light-induced carotenogenesis in M. xanthus. PMID:22267513

  2. Synthesis of fluorescent core-shell nanomaterials and strategies to generate white light

    SciTech Connect

    Singh, Amandeep; Kaur, Ramanjot; Pandey, O. P.; Wei, Xueyong; Sharma, Manoj E-mail: manojsharma@bilkent.edu.tr

    2015-07-28

    In this work, cadmium free core-shell ZnS:X/ZnS (X = Mn, Cu) nanoparticles have been synthesized and used for white light generation. First, the doping concentration of Manganese (Mn) was varied from 1% to 4% to optimize the dopant related emission and its optimal value was found to be 1%. Then, ZnS shell was grown over ZnS:Mn(1%) core to passivate the surface defects. Similarly, the optimal concentration of Copper (Cu) was found to be 0.8% in the range varied from 0.6% to 1.2%. In order to obtain an emission in the whole visible spectrum, dual doping of Mn and Cu was done in the core and the shell, respectively. A solid-solid mixing in different ratios of separately doped quantum dots (QDs) emitting in the blue green and the orange region was performed. Results show that the optimum mixture of QDs excited at 300 nm gives Commission Internationale del'Éclairage color coordinates of (0.35, 0.36), high color rendering index of 88, and correlated color temperature of 4704 K with minimum self-absorption.

  3. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    SciTech Connect

    Djidjou, T. K.; Basel, Tek; Rogachev, A.; Chen, Ying; Shinar, J.

    2015-03-21

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25–0.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.

  4. Dynamic Stark effect, light emission, and entanglement generation in a laser-driven quantum optical system

    NASA Astrophysics Data System (ADS)

    Pagel, D.; Alvermann, A.; Fehske, H.

    2017-01-01

    We calculate the emission spectra, the Glauber g(2 ) function, and the entanglement of formation for two-level emitters coupled to a single cavity mode and subject to an external laser excitation. To evaluate these quantities we couple the system to environmental degrees of freedom, which leads to dissipative dynamics. Because of the periodic time dependence of the system Hamiltonian, the coefficients of the Markovian master equation are constant only if Floquet states are used as the computational basis. Studying the emission spectra, we show that the dynamic Stark effect first appears in second order of the laser intensity. For the Glauber function, we find clearly distinguished parameter regimes of super- and sub-Poissonian light emission and explain the additional features appearing for finite laser intensity in terms of the quasienergy spectrum of the driven emitter-cavity system. Finally, we analyze the temperature and emitter-cavity-coupling regimes where entanglement among the emitters is generated and show that the laser excitation leads to a decrease of entanglement.

  5. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator.

    PubMed

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-20

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200 mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230 fs, which is caused by the spatial-temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.

  6. Generation of 3-D surface maps in waste storage silos using a structured light source

    NASA Technical Reports Server (NTRS)

    Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.

    1992-01-01

    Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.

  7. Synthesis of fluorescent core-shell nanomaterials and strategies to generate white light

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Kaur, Ramanjot; Pandey, O. P.; Wei, Xueyong; Sharma, Manoj

    2015-07-01

    In this work, cadmium free core-shell ZnS:X/ZnS (X = Mn, Cu) nanoparticles have been synthesized and used for white light generation. First, the doping concentration of Manganese (Mn) was varied from 1% to 4% to optimize the dopant related emission and its optimal value was found to be 1%. Then, ZnS shell was grown over ZnS:Mn(1%) core to passivate the surface defects. Similarly, the optimal concentration of Copper (Cu) was found to be 0.8% in the range varied from 0.6% to 1.2%. In order to obtain an emission in the whole visible spectrum, dual doping of Mn and Cu was done in the core and the shell, respectively. A solid-solid mixing in different ratios of separately doped quantum dots (QDs) emitting in the blue green and the orange region was performed. Results show that the optimum mixture of QDs excited at 300 nm gives Commission Internationale del'Éclairage color coordinates of (0.35, 0.36), high color rendering index of 88, and correlated color temperature of 4704 K with minimum self-absorption.

  8. Method to generate high efficient devices which emit high quality light for illumination

    DOEpatents

    Krummacher, Benjamin C.; Mathai, Mathew; Choong, Vi-En; Choulis, Stelios A.

    2009-06-30

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  9. Femtosecond timing distribution and control for next generation accelerators and light sources

    SciTech Connect

    Chen, Li -Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even attosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objective of the work described in this proposal is to set up an optical timing distribution system based on mode locked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the

  10. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, 3rd quarter, 1994

    SciTech Connect

    Wehner, S.; Smith, V.; Cole, R.; Brugman, B.; Vogt, J.

    1994-10-18

    The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Texaco Exploration and Production Inc`s. (TEPI) long-term plans are to implement a full-scale miscible CO{sub 2} project in the CVU. However, the current market precludes acceleration of such a capital intensive project. The DOE partnership provides some relief to the associated R and D risks, allowing TEPI to evaluate a proven Gulf-coast sandstone technology in a waterflooded carbonate environment. Technical progress is described on the following studies: Porosity and permeability relationships; Initial water saturation and oil-water contact; Geostatistical realization; and Parametric simulation.

  11. Post waterflood CO{sub 2} miscible flood in light oil, fluvial-dominated deltaic reservoirs. 3rd Quarterly report, April 1, 1994--June 30, 1994

    SciTech Connect

    Not Available

    1994-07-15

    Production from the Port Neches CO{sub 2} continue to improve. five wells responded to CO{sub 2} injection and currently are flowing with the exception of well No. 6, which has been placed on gas lift to draw the CO{sub 2} to the vicinity. Current production is about 400 BOPD from the five producing wells. Total CO{sub 2} injection is averaging 10 MMCFD, including 4 MMCFD purchased from Cardox and 6 MMCFD of recycled gas. Reservoir pressure increased from 2697 psi in May, to 2890 psi in June due to over-injection. An additional water injection pump was installed to handle the increasing volume of produced water. Also a workover was performed on Well No. 33 to take out the gas lift valves and eliminate communication. Two papers were presented at the SPE/DOE symposium that was held in Tulsa this April. The screening model has been released to the DOE and was made public during the month of May.

  12. [Viktor Emil v. Gebsattel and Maria v. Stach. New light on two participants of the 3rd psychoanalytical congress at Weimar (1911)].

    PubMed

    von Minden, Stephan

    2011-01-01

    Starting from the famous group photo of the Weimar congress, the article focuses on two of the participants portrayed who up to now have remained more or less unidentified, providing an outline of their lives. While v. Gebsattel was just about to start his career as psychotherapist in 1911, the feminist journalist v. Stach seems to have withdrawn into private life.

  13. A Bifunctional Photosensitizer for Enhanced Fractional Photodynamic Therapy: Singlet Oxygen Generation in the Presence and Absence of Light.

    PubMed

    Turan, Ilke Simsek; Yildiz, Deniz; Turksoy, Abdurrahman; Gunaydin, Gurcan; Akkaya, Engin U

    2016-02-18

    The photosensitized generation of singlet oxygen within tumor tissues during photodynamic therapy (PDT) is self-limiting, as the already low oxygen concentrations within tumors is further diminished during the process. In certain applications, to minimize photoinduced hypoxia the light is introduced intermittently (fractional PDT) to allow time for the replenishment of cellular oxygen. This condition extends the time required for effective therapy. Herein, we demonstrated that a photosensitizer with an additional 2-pyridone module for trapping singlet oxygen would be useful in fractional PDT. Thus, in the light cycle, the endoperoxide of 2-pyridone is generated along with singlet oxygen. In the dark cycle, the endoperoxide undergoes thermal cycloreversion to produce singlet oxygen, regenerating the 2-pyridone module. As a result, the photodynamic process can continue in the dark as well as in the light cycles. Cell-culture studies validated this working principle in vitro.

  14. 1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser.

    PubMed

    Jensen, Ole Bjarlin; Andersen, Peter E; Sumpf, Bernd; Hasler, Karl-Heinz; Erbert, Götz; Petersen, Paul Michael

    2009-04-13

    More than 1.5 W of green light at 531 nm is generated by single-pass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments.

  15. 3rd Annual Earth System Grid Federation and 3rd Annual Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Face-to-Face Meeting Report December 2013

    SciTech Connect

    Williams, Dean N.

    2014-02-21

    The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed and simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.

  16. Multi-watt power blue light generation by intracavity sum- frequency-mixing in KTiOPO4 crystal.

    PubMed

    Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Zhenqiang, Chen

    2008-03-03

    In this paper, a high power blue laser at 447 nm was obtained by intracavity sum-frequency-mixing of a diode-side-pumped Q-switched Nd:YAlO(3)(Nd:YAP) laser operating at 1341.4 nm. A type-I critical phase matching LiB(3)O(5) (LBO) crystal and type-II critical phase matching KTiOPO(4) (KTP) crystal were used for second harmonic generation and third harmonic generation, respectively. The phase matching condition of the KTP crystal was researched. The results show that the KTP has superiority in intracavity sum-frequency-mixing blue light generation. 4.76 W blue light output was achieved at 4.6 kHz with the pulse width of 190ns. The fluctuation of output power was better than 3% at the output power of 4.76 W during half an hour.

  17. Observation of propagating femtosecond light pulse train generated by an integrated array illuminator as a spatially and temporally continuous motion picture.

    PubMed

    Yamagiwa, Masatomo; Komatsu, Aya; Awatsuji, Yasuhiro; Kubota, Toshihiro

    2005-05-02

    We observed a propagating femtosecond light pulse train generated by an integrated array illuminator as a spatially and temporally continuous motion picture. To observe the light pulse train propagating in air, light-in-flight holography is applied. The integrated array illuminator is an optical device for generating an ultrashort light pulse train from a single ultrashort pulse. The experimentally obtained pulse width and pulse interval were 130 fs and 19.7 ps, respectively. A back-propagating femtosecond light pulse train, which is the -2 order diffracted light pulse from the array illuminator and which is difficult to observe using conventional methods, was observed.

  18. Quantum yield measurements of light-induced H₂ generation in a photosystem I-[FeFe]-H₂ase nanoconstruct.

    PubMed

    Applegate, Amanda M; Lubner, Carolyn E; Knörzer, Philipp; Happe, Thomas; Golbeck, John H

    2016-01-01

    The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSI(C13G)-1,8-octanedithiol-[FeFe]-H2ase(C97G) (PSI-H2ase) nanoconstruct. The theoretical quantum yield for the PSI-H2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI-H2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10-0.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7-10 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSI(C13G)-1,8-octanedithiol-PSIC13G (PSI-PSI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI-PSI conjugates as well as in producing PSI-H2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI-H2ase nanoconstructs from the unproductive PSI-PSI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI-H2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation.

  19. Adaptive and Effortful Control and Academic Self-efficacy Beliefs on Achievement: A Longitudinal Study of 1st through 3rd Graders

    PubMed Central

    Liew, Jeffrey; McTigue, Erin; Barrois, Lisa; Hughes, Jan

    2009-01-01

    The linkages between self-regulatory processes and achievement were examined across three years in 733 children beginning at 1st grade (M = 6.57 years, SD = .39 at 1st grade) who were identified as lower achieving in literacy. Accounting for consistencies in measures (from one year prior) and for influences of child’s age, gender, IQ, ethnicity and economic adversity on achievement, results indicate that adaptive/effortful control at 1st grade contributed to both academic self-efficacy beliefs at 2nd grade, and reading (but not math) achievement at 3rd grade. Although academic self-efficacy did not partially mediate the linkage between adaptive/effortful control and achievement, academic self-efficacy beliefs were positively correlated with reading and math. Results support the notion that early efforts to promote children’s self-regulatory skills would enhance future academic self-beliefs and achievement, particularly in literacy. PMID:19169387

  20. Variations in the geomagnetic field strength in the 5th 3rd centuries BC in the eastern Mediterranean (according to narrowly dated ceramics)

    NASA Astrophysics Data System (ADS)

    Nachasova, I. E.; Burakov, K. S.; Il'Ina, T. A.

    2008-06-01

    The magnetization of ceramics from the eastern Mediterranean dated within a short period (mostly shorter than ±20 years) has been studied, which made it possible to specify the geomagnetic field variations on the time interval 5th 3rd centuries BC. The 11-year time series of the geomagnetic field strength values has been constructed. The field strength changes have been considered, which indicated that the centennial variation with a characteristic time of ˜130 years (according to the obtained data) is observed on this time interval as well as during the last two millennia. The ceramic material from the Mayskaya Gora archeological site (Taman), the preparation succession of which was established based on the shape of pottery but the problem of absolute dating was not solved, has been dated.

  1. Analysis of Salmonella enterica with reduced susceptibility to the 3rd generation cephalosporin, ceftriaxone, isolated from US cattle during 2000-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past decade enteric bacteria in Europe, Africa and Asia have become increasingly resistant to cephalosporin antimicrobials. This is largely due to the spread of genes encoding extended-spectrum ß-lactamase (ESBL) enzymes which can inactivate many cephalosporins. Recently these resistance me...

  2. Increased rate of depression and psychosomatic symptoms in Jewish migrants from the post-Soviet-Union to Germany in the 3rd generation after the Shoa.

    PubMed

    Ullmann, E; Barthel, A; Licinio, J; Petrowski, K; Bornstein, S R; Strauß, B

    2013-03-12

    The mental health status of persons with Jewish background living in Germany is discussed with special regard to social exclusion like anti-Semitism and overprotective parental rearing behavior, as a transmissional factor of the KZ-Syndrome. These stressors are considered in the context of a higher risk for depression/fear and psychosomatic disorders and also abnormal cortisol levels. The present sample (N=89) is derived from the Jewish population currently living in the German region of Saxony aged between 17-36 years that emigrated from the post-Soviet-Union areas. The mean age was 22.9 years. Two questionnaires to detect psychosomatic symptoms (Giessen complaint list (GBB)-24, hospital anxiety and depression scale) and one questionnaire addressing parental rearing behavior (FEE) were employed. Comparisons were drawn with normative data from the literature about the German residential population. In addition, questions were asked concerning the experience of anti-Semitism in Germany and in the post-Soviet-Union areas. A higher prevalence of depression/fear (10.3% versus 18.2%) and psychosomatic symptoms (M=14.03 versus 17.8; t=2.42; P<0.05) was observed in Jewish migrants to Germany as compared with non-Jewish German residents. Furthermore, anti-Semitic experiences in Germany correlated positively with depression (r=0.293; P<0.01) and fear (r=0.254; P<0.05). The anti-Semitic experiences in the post-Soviet-Union areas also correlated positively with limb pain (r=0.41, P<0.01), fatigue symptoms (r=0.296, P<0.01) and psychocardial symptoms (r=0.219, P<0.05). It was also confirmed that the male respondents recalled a controlling and overprotecting maternal rearing behavior more frequently than the German standard random sample (M=15.39 versus 18.6; t=2.68; P<0.01). The latter also correlated significantly positive with epigastric pain (r=0.349; P<0.01). The present results show that depression, fear and psychosomatic problems are common in Jewish residents with a background of migration from the post-Soviet-Union areas to Germany. Apart from the transgenerational passing of psychological traumata and the Holocaust experiences, other stressors like anti-Semitism, control and overprotection as parental rearing measures appear to be important factors specifically contributing to the pathogenesis of the attributed symptoms.

  3. Towards 3rd generation organic tandem solar cells with 20% efficiency: Accelerated discovery and rational design of carbon-based photovoltaic materials through massive distributed volunteer computing

    SciTech Connect

    Aspuru-Guzik, Alan

    2016-11-04

    Clean, affordable, and renewable energy sources are urgently needed to satisfy the 10s of terawatts (TW) energy need of human beings. Solar cells are one promising choice to replace traditional energy sources. Our broad efforts have expanded the knowledge of possible donor materials for organic photovoltaics, while increasing access of our results to the world through the Clean Energy Project database (www.molecularspace.org). Machine learning techniques, including Gaussian Processes have been used to calibrate frontier molecular orbital energies, and OPV bulk properties (open-circuit voltage, percent conversion efficiencies, and short-circuit current). This grant allowed us to delve into the solid-state properties of OPVs (charge-carrier dynamics). One particular example allowed us to predict charge-carrier dynamics and make predictions about future hydrogen-bonded materials.

  4. 1st, 2nd and 3rd Generation Implementations of an eLearning Design: Re-Use from Postgraduate Law to Block/Online Engineering Course

    ERIC Educational Resources Information Center

    Lambert, Sarah; Brewer, Chris

    2007-01-01

    In order to meet the demands of postgraduate students who were time poor and unable to regularly attend face-to-face classes, one lecturer in the Faculty Law at the University of Wollongong (UOW) sought the assistance of a Learning Designer to redesign the Postgraduate Practical Legal Training (PLT) program into a flexible blended learning format,…

  5. Real Time In Situ Observations of Equiaxed Dendrite Coherency in Al-Cu Alloys Using High-Brilliance, 3rd Generation Synchrotron Sources

    NASA Technical Reports Server (NTRS)

    Murphy, Andrew G.; Browne, David J.; Mirihanage, Wajira U.; Mathiesen, Ragnvald H.

    2012-01-01

    In the last decade synchrotron X-ray sources have fast become the tool of choice for performing in-situ high resolution imaging during alloy solidification. This paper presents the results of an experimental campaign carried out at the European Synchrotron Radiation Facility, using a Bridgman furnace, to monitor phenomena during solidification of Al-Cu alloys - specifically the onset of equiaxed dendrite coherency. Conventional experimental methods for determining coherency involve measuring the change in viscosity or measuring the change in thermal conductivity across the solidifying melt Conflicts arise when comparing the results of these experimental techniques to find a relationship between cooling rate and coherency fraction. It has been shown that the ratio of average velocity to the average grain diameter has an inversely proportional relationship to coherency fraction. In-situ observation therefore makes it possible to measure these values directly from acquired images sequences and make comparisons with published results.

  6. Increased rate of depression and psychosomatic symptoms in Jewish migrants from the post-Soviet-Union to Germany in the 3rd generation after the Shoa

    PubMed Central

    Ullmann, E; Barthel, A; Licinio, J; Petrowski, K; Bornstein, S R; Strauß, B

    2013-01-01

    The mental health status of persons with Jewish background living in Germany is discussed with special regard to social exclusion like anti-Semitism and overprotective parental rearing behavior, as a transmissional factor of the KZ-Syndrome. These stressors are considered in the context of a higher risk for depression/fear and psychosomatic disorders and also abnormal cortisol levels. The present sample (N=89) is derived from the Jewish population currently living in the German region of Saxony aged between 17–36 years that emigrated from the post-Soviet-Union areas. The mean age was 22.9 years. Two questionnaires to detect psychosomatic symptoms (Giessen complaint list (GBB)-24, hospital anxiety and depression scale) and one questionnaire addressing parental rearing behavior (FEE) were employed. Comparisons were drawn with normative data from the literature about the German residential population. In addition, questions were asked concerning the experience of anti-Semitism in Germany and in the post-Soviet-Union areas. A higher prevalence of depression/fear (10.3% versus 18.2%) and psychosomatic symptoms (M=14.03 versus 17.8; t=2.42; P<0.05) was observed in Jewish migrants to Germany as compared with non-Jewish German residents. Furthermore, anti-Semitic experiences in Germany correlated positively with depression (r=0.293; P<0.01) and fear (r=0.254; P<0.05). The anti-Semitic experiences in the post-Soviet-Union areas also correlated positively with limb pain (r=0.41, P<0.01), fatigue symptoms (r=0.296, P<0.01) and psychocardial symptoms (r=0.219, P<0.05). It was also confirmed that the male respondents recalled a controlling and overprotecting maternal rearing behavior more frequently than the German standard random sample (M=15.39 versus 18.6; t=2.68; P<0.01). The latter also correlated significantly positive with epigastric pain (r=0.349; P<0.01). The present results show that depression, fear and psychosomatic problems are common in Jewish residents with a background of migration from the post-Soviet-Union areas to Germany. Apart from the transgenerational passing of psychological traumata and the Holocaust experiences, other stressors like anti-Semitism, control and overprotection as parental rearing measures appear to be important factors specifically contributing to the pathogenesis of the attributed symptoms. PMID:23481628

  7. Limbic system development underlies the emergence of classical fear conditioning during the 3rd and 4th weeks of life in the rat

    PubMed Central

    Deal, Alex L.; Erickson, Kristen J.; Shiers, Stephanie I.; Burman, Michael A.

    2016-01-01

    Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the 3rd or 4th weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the 3rd and 4th weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. PMID:26820587

  8. Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light.

    PubMed

    Malyshev, A Y; Roshchin, M V; Smirnova, G R; Dolgikh, D A; Balaban, P M; Ostrovsky, M A

    2017-02-15

    Optogenetics is a powerful technique in neuroscience that provided a great success in studying the brain functions during the last decade. Progress of optogenetics crucially depends on development of new molecular tools. Light-activated cation-conducting channelrhodopsin2 was widely used for excitation of cells since the emergence of optogenetics. In 2015 a family of natural light activated chloride channels GtACR was identified which appeared to be a very promising tool for using in optogenetics experiments as a cell silencer. Here we examined properties of GtACR2 channel expressed in the rat layer 2/3 pyramidal neurons by means of in utero electroporation. We have found that despite strong inhibition the light stimulation of GtACR2-positive neurons can surprisingly lead to generation of action potentials, presumably initiated in the axonal terminals. Thus, when using the GtACR2 in optogenetics experiments, its ability to induce action potentials should be taken into account. Our results also open an interesting possibility of using the GtACR2 both as cell silencer and cell activator in the same experiment varying the pattern of light stimulation.

  9. White light generation using CdSe/ZnS core shell nanocrystals hybridized with InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Nizamoglu, S.; Ozel, T.; Sari, E.; Demir, H. V.

    2007-02-01

    We introduce white light generation using CdSe/ZnS core-shell nanocrystals of single, dual, triple and quadruple combinations hybridized with InGaN/GaN LEDs. Such hybridization of different nanocrystal combinations provides the ability to conveniently adjust white light parameters including the tristimulus coordinates (x,y), correlated colour temperature (Tc) and colour rending index (Ra). We present the design, growth, fabrication and characterization of our white hybrid nanocrystal-LEDs that incorporate combinations of (1) yellow nanocrystals (λPL = 580 nm) on a blue LED (λEL = 440 nm) with (x,y) = (0.37,0.25), Tc = 2692 K and Ra = 14.69; (2) cyan and red nanocrystals (λPL = 500 and 620 nm) on a blue LED (λEL = 440 nm) with (x,y) = (0.37,0.28), Tc = 3246 K and Ra = 19.65; (3) green, yellow and red nanocrystals (λPL = 540, 580 and 620 nm) on a blue LED (λEL = 452 nm) with (x,y) = (0.30,0.28), Tc = 7521 K and Ra = 40.95; and (4) cyan, green, yellow and red nanocrystals (λPL = 500, 540, 580 and 620 nm) on a blue LED (λEL = 452 nm) with (x,y) = (0.24,0.33), Tc = 11 171 K and Ra = 71.07. These hybrid white light sources hold promise for future lighting and display applications with their highly adjustable properties.

  10. Self-Phase-Matched Second-Harmonic and White-Light Generation in a Biaxial Zinc Tungstate Single Crystal

    PubMed Central

    Osewski, Pawel; Belardini, Alessandro; Petronijevic, Emilija; Centini, Marco; Leahu, Grigore; Diduszko, Ryszard; Pawlak, Dorota A.; Sibilia, Concita

    2017-01-01

    Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities. PMID:28338074

  11. Self-Phase-Matched Second-Harmonic and White-Light Generation in a Biaxial Zinc Tungstate Single Crystal

    NASA Astrophysics Data System (ADS)

    Osewski, Pawel; Belardini, Alessandro; Petronijevic, Emilija; Centini, Marco; Leahu, Grigore; Diduszko, Ryszard; Pawlak, Dorota A.; Sibilia, Concita

    2017-03-01

    Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities.

  12. Field-programmable gate array based arbitrary signal generator and oscilloscope for use in slow light and storage of light experiments

    NASA Astrophysics Data System (ADS)

    Nikolić, Stanko N.; Batić, Viktor; Panić, Bratimir; Jelenković, Branislav M.

    2013-06-01

    We present a field-programmable gate array (FPGA) based device that simultaneously generates two arbitrary analog voltage signals with the maximum sample rate of 1.25 MHz and acquires two analog voltage signals with the maximum sample rate of 2.5 MHz. All signals are synchronized with internal FPGA clock. The personal computer application developed for controlling and communicating with FPGA chip provides the shaping of the output signals by mathematical expressions and real-time monitoring of the input signals. The main advantages of FPGA based digital-to-analog and analog-to-digital cards are high speed, rapid reconfigurability, friendly user interface, and low cost. We use this module in slow light and storage of light experiments performed in Rb buffer gas cell.

  13. Field-programmable gate array based arbitrary signal generator and oscilloscope for use in slow light and storage of light experiments.

    PubMed

    Nikolić, Stanko N; Batić, Viktor; Panić, Bratimir; Jelenković, Branislav M

    2013-06-01

    We present a field-programmable gate array (FPGA) based device that simultaneously generates two arbitrary analog voltage signals with the maximum sample rate of 1.25 MHz and acquires two analog voltage signals with the maximum sample rate of 2.5 MHz. All signals are synchronized with internal FPGA clock. The personal computer application developed for controlling and communicating with FPGA chip provides the shaping of the output signals by mathematical expressions and real-time monitoring of the input signals. The main advantages of FPGA based digital-to-analog and analog-to-digital cards are high speed, rapid reconfigurability, friendly user interface, and low cost. We use this module in slow light and storage of light experiments performed in Rb buffer gas cell.

  14. Statistical properties of squeezed beams of light generated in parametric interactions

    NASA Technical Reports Server (NTRS)

    Vyas, Reeta

    1992-01-01

    Fluctuation properties of squeezed photon beams generated in three wave mixing processes such as second harmonic generation, degenerate and nondegenerate parametric oscillations, and homodyne detection are studied in terms of photon sequences recorded by a photodetector.

  15. Propagation of the light generated by quasi-homogeneous sources through quasi-homogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chen, Yan-Ru; Zhao, Qi; Zhou, Mu-Chun; Xu, Shi-Xue

    2010-01-01

    The spectral density of the quasi-homogeneous (QH) light has been known when it scatters on QH media or propagates in free space. The case that QH sources are surrounded by QH media is proposed in this paper. Under the paraxial approximation, the spectral density of the QH light propagating through QH media is derived. A modified scaling law for the propagation of the QH light through QH media is also obtained. This law also holds true in the far field beyond the paraxial approximation.

  16. Generating High-Brightness Light Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Adams, R.G.; Bailey, J.E.; Cuneno, M.E.; Desjarlais, M.P.; Filuk, A.B.; Hanson, D.L.; Johnson, D.J.; Mehlohorn, T.A.; Menge, P.R.; Olson, C.L.; Pointon, T.D. Slutz, S.A.; Vesey, R.A.; Welch, D.R.; Wenger, D.F.

    1998-10-22

    Light ion beams may be the best option for an Inertial Fusion Energy (IFE) driver from the standpoint of ei%ciency, standoff, rep-rate operation and cost. This approach uses high-energy-density pulsed power to efficiently accelerate ions in one or two stages at fields of 0.5 to 1.0 GV/m to produce a medium energy (30 MeV), high-current (1 MA) beam of light ions, such as lithium. Ion beams provide the ability for medium distance transport (4 m) of the ions to the target, and standofl of the driver from high- yield implosions. Rep-rate operation of' high current ion sources has ako been demonstrated for industrial applications and couId be applied to IFE. Although (hese factors make light ions the best Iong-teml pulsed- power approach to IFE, light-ion research is being suspended this year in favor of a Z-pinch-driven approach which has the best opport lnity to most-rapidly achieve the U.S. Department of Energy sponsor's goal of high-yield fusion. This paper will summarize the status and most recent results of the light-ion beam program at Sandia National Laboratories (SNL), and document the prospects of light ions for future IFE driver development.

  17. Doppler shift generated by a moving diffraction grating under incidence by polychromatic diffuse light.

    PubMed

    Dossou, Kokou B

    2016-05-20

    We consider the spectral response of moving diffraction gratings, in which the incident light extends over a broad angular range and where the diffracted light is observed from a specific angle. We show that the dispersion relation between the frequency perceived by an observer who is looking at a moving grating and the incident frequency can exhibit some unique features, such as a flat band (i.e., a local minimum). An observer can see the light diffracted into a nonspecular diffraction order from a multitude of incident light rays, and the angle of incidence of each ray is frequency dependent; as a consequence, when the grating is moving, each incident ray experiences a Doppler shift in frequency that depends on its angle of incidence. We find that remarkable features appear near a Wood anomaly where the angle of incidence, for a given diffraction angle, can change very quickly with frequency. This means that light of multiple frequencies and incident from multiple angles can be mixed by the motion of the grating into the same diffracted ray and their frequencies can be compressed into a narrower range. The existence of a flat band means that a moving grating can be used as a device to increase the intensity of the perceived diffracted light due to spectral compression. The properties of a grating in motion in sunlight can also be relevant to the study of naturally occurring gratings which are typically in oscillatory motion.

  18. Far-infrared-light shadowgraphy for high extraction efficiency of extreme ultraviolet light from a CO2-laser-generated tin plasma

    NASA Astrophysics Data System (ADS)

    Matsukuma, Hiraku; Hosoda, Tatsuya; Suzuki, Yosuke; Yogo, Akifumi; Yanagida, Tatsuya; Kodama, Takeshi; Nishimura, Hiroaki

    2016-08-01

    The two-color, double-pulse method is an efficient scheme to generate extreme ultraviolet light for fabricating the next generation semiconductor microchips. In this method, a Nd:YAG laser pulse is used to expand a several-tens-of-micrometers-scale tin droplet, and a CO2 laser pulse is subsequently directed at the expanded tin vapor after an appropriate delay time. We propose the use of shadowgraphy with a CO2 laser probe-pulse scheme to optimize the CO2 main-drive laser. The distribution of absorption coefficients is derived from the experiment, and the results are converted to a practical absorption rate for the CO2 main-drive laser.

  19. Miniature light bulb reconstructible and large-sized computer-generated holograms recorded with an image setter

    NASA Astrophysics Data System (ADS)

    Kajiki, Yoshinori; Ueda, Hiroaki; Tanaka, Kazuyuki; Okamoto, Hideki; Shimizu, Eiji

    1995-07-01

    Visualization of 3D information or 3D displays are important subjects. We have been researching 3D displays using computer-generated holograms (CGHs). We set our sights on making large and high quality 3D displays. In this paper we present an approach to making large CGHs relatively easily, and at low cost, which are binary Fresnel holograms and are recorded by using a high resolution laser printer (an image setter). By using the image setter it is possible to draw large CGH patterns very easily. Furthermore, we found it was possible to reconstruct CGHs with light-emitting diodes or miniature light bulbs. Making good use of this advantage we propose a method of making larger 3D displays by the multiple comstruction using plural light sources and CGHs.

  20. Enhancement of second harmonic generation in NaNO{sub 2}-infiltrated opal photonic crystal using structural light focusing

    SciTech Connect

    Zaytsev, Kirill I. Yurchenko, Stanislav O.

    2014-08-04

    Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO{sub 2}-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulations of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.

  1. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  2. Enhancement of second harmonic generation in NaNO2-infiltrated opal photonic crystal using structural light focusing

    NASA Astrophysics Data System (ADS)

    Zaytsev, Kirill I.; Yurchenko, Stanislav O.

    2014-08-01

    Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO2-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulations of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.

  3. Visible light photoredox catalysis: generation and addition of N-aryltetrahydroisoquinoline-derived α-amino radicals to Michael acceptors.

    PubMed

    Kohls, Paul; Jadhav, Deepak; Pandey, Ganesh; Reiser, Oliver

    2012-02-03

    The photoredox-catalyzed coupling of N-aryltetrahydroisoquinoline and Michael acceptors was achieved using Ru(bpy)(3)Cl(2) or [Ir(ppy)(2)(dtb-bpy)]PF(6) in combination with irradiation at 455 nm generated by a blue LED, demonstrating the trapping of visible light generated α-amino radicals. While intermolecular reactions lead to products formed by a conjugate addition, in intramolecular variants further dehydrogenation occurs, leading directly to 5,6-dihydroindolo[2,1-a]tetrahydroisoquinolines, which are relevant as potential immunosuppressive agents.

  4. A laboratory model of post-Newtonian gravity with high power lasers and 4th generation light sources

    NASA Astrophysics Data System (ADS)

    Gregori, G.; Levy, M. C.; Wadud, M. A.; Crowley, B. J. B.; Bingham, R.

    2016-04-01

    Using the post-Newtonian formalism of gravity, we attempt to calculate the x-ray Thomson scattering cross section of electrons that are accelerated in the field of a high intensity optical laser. We show that our results are consistent with previous calculations, suggesting that the combination of high power laser and 4th generation light sources may become a powerful platform to test models exploring high order corrections to the Newtonian gravity.

  5. The generation of short-wave UV light in cells under the action of ultrashort pulses of intense visible radiation

    NASA Astrophysics Data System (ADS)

    Kovarsky, V. A.; Philipp, B. S.; Kovarsky, E. V.

    1997-02-01

    The action of intense laser pulses ( λ = 0.53 μm) on E.coli cells is considered (the cells are transparent in this range). The transformation of laser radiation into UV light due to the high-harmonics generation on the protein molecules (the dipole moment is 100-1000 D) leads to the appearance of thymine dimers in bacterial DNA and results in a lethal effect for strains of E.coli which are highly sensitive to UV radiation.

  6. BEAM DYNAMICS STUDIES OF A HIGH-REPETITION RATE LINAC-DRIVER FOR A 4TH GENERATION LIGHT SOURCE

    SciTech Connect

    Ventturini, M.; Corlett, J.; Emma, P.; Papadopoulos, C.; Penn, G.; Placidi, M.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Sun, C.; Wells, R.

    2012-05-18

    We present recent progress toward the design of a super-conducting linac driver for a high-repetition rate FEL-based soft x-ray light source. The machine is designed to accept beams generated by the APEX photo-cathode gun operating with MHz-range repetition rate and deliver them to an array of SASE and seeded FEL beamlines. We review the current baseline design and report results of beam dynamics studies.

  7. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity

    PubMed Central

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M; Deng, Wei

    2017-01-01

    We developed light-triggered liposomes incorporating 3–5 nm hydrophobic gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized for varying the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of hydrogenated soy l-α-phosphatidylcholine:1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(hexanoylamine):gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of gold-loaded liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox-loaded liposomes were applied to human colorectal cancer cells (HCT116) and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity compared with the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may serve as improved agents in photodynamic therapy and chemotherapy. PMID:28203076

  8. DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION

    SciTech Connect

    Professor Richard Eisenberg

    2012-07-18

    The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved

  9. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  10. Development of Optical Crystals for High Power and Tunable Visible and Infrared Light Generation

    DTIC Science & Technology

    2015-02-11

    and third order optical nonlinearities which are essential for second harmonic generation, optical parametric oscillation, optical switching, and...essential for second harmonic generation, optical parametric oscillation, optical switching, and wavelength conversion. In spite of being known and...compounds including LiInSe2 have been extensively studied for non-linear optical applications such as second harmonic generation.[1][2][3] We report on

  11. Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation.

    PubMed

    Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N

    2009-06-08

    1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.

  12. Highly efficient visible light-induced O₂ generation by self-assembled nanohybrids of inorganic nanosheets and polyoxometalate nanoclusters.

    PubMed

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, In Young; Lee, Jang Mee; Hwang, Seong-Ju

    2013-01-01

    Unusually high photocatalytic activity of visible light-induced O₂ generation can be achieved by electrostatically-derived self-assembly between exfoliated Zn-Cr-LDH 2D nanosheets and POM 0D nanoclusters (W₇O₂₄⁶⁻ and V₁₀O₂₈⁶⁻) acting as an electron acceptor. This self-assembly can provide a high flexibility in the control of the chemical composition and pore structure of the resulting LDH-based nanohybrids. The hybridization with POM nanoclusters remarkably enhances the photocatalytic activity of the pristine Zn-Cr-LDH, which is attributable to the formation of porous structure and depression of charge recombination. Of prime interest is that the excellent photocatalytic activity of the as-prepared Zn-Cr-LDH-POM nanohybrid for visible light-induced O₂ generation can be further enhanced by calcination at 200 °C, leading to the very high apparent quantum yield of ∼75.2% at 420 nm. The present findings clearly demonstrate that the self-assembly of LDH-POM is fairly powerful in synthesizing novel LDH-based porous nanohybrid photocatalyst for visible light-induced O₂ generation.

  13. Highly Efficient Visible Light-Induced O2 Generation by Self-Assembled Nanohybrids of Inorganic Nanosheets and Polyoxometalate Nanoclusters

    PubMed Central

    Gunjakar, Jayavant L.; Kim, Tae Woo; Kim, In Young; Lee, Jang Mee; Hwang, Seong-Ju

    2013-01-01

    Unusually high photocatalytic activity of visible light-induced O2 generation can be achieved by electrostatically-derived self-assembly between exfoliated Zn-Cr-LDH 2D nanosheets and POM 0D nanoclusters (W7O246− and V10O286−) acting as an electron acceptor. This self-assembly can provide a high flexibility in the control of the chemical composition and pore structure of the resulting LDH-based nanohybrids. The hybridization with POM nanoclusters remarkably enhances the photocatalytic activity of the pristine Zn-Cr-LDH, which is attributable to the formation of porous structure and depression of charge recombination. Of prime interest is that the excellent photocatalytic activity of the as-prepared Zn-Cr-LDH-POM nanohybrid for visible light-induced O2 generation can be further enhanced by calcination at 200 °C, leading to the very high apparent quantum yield of ∼75.2% at 420 nm. The present findings clearly demonstrate that the self-assembly of LDH–POM is fairly powerful in synthesizing novel LDH-based porous nanohybrid photocatalyst for visible light-induced O2 generation. PMID:23801108

  14. Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue

    NASA Astrophysics Data System (ADS)

    Lyndby, Niclas H.; Kühl, Michael; Wangpraseurt, Daniel

    2016-05-01

    Green fluorescent protein (GFP)-like pigments have been proposed to have beneficial effects on coral photobiology. Here, we investigated the relationships between green fluorescence, coral heating and tissue optics for the massive coral Dipsastraea sp. (previously Favia sp.). We used microsensors to measure tissue scalar irradiance and temperature along with hyperspectral imaging and combined imaging of variable chlorophyll fluorescence and green fluorescence. Green fluorescence correlated positively with coral heating and scalar irradiance enhancement at the tissue surface. Coral tissue heating saturated for maximal levels of green fluorescence. The action spectrum of coral surface heating revealed that heating was highest under red (peaking at 680 nm) irradiance. Scalar irradiance enhancement in coral tissue was highest when illuminated with blue light, but up to 62% (for the case of highest green fluorescence) of this photon enhancement was due to green fluorescence emission. We suggest that GFP-like pigments scatter the incident radiation, which enhances light absorption and heating of the coral. However, heating saturates, because intense light scattering reduces the vertical penetration depth through the tissue eventually leading to reduced light absorption at high fluorescent pigment density. We conclude that fluorescent pigments can have a central role in modulating coral light absorption and heating.

  15. Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue

    PubMed Central

    Lyndby, Niclas H.; Kühl, Michael; Wangpraseurt, Daniel

    2016-01-01

    Green fluorescent protein (GFP)-like pigments have been proposed to have beneficial effects on coral photobiology. Here, we investigated the relationships between green fluorescence, coral heating and tissue optics for the massive coral Dipsastraea sp. (previously Favia sp.). We used microsensors to measure tissue scalar irradiance and temperature along with hyperspectral imaging and combined imaging of variable chlorophyll fluorescence and green fluorescence. Green fluorescence correlated positively with coral heating and scalar irradiance enhancement at the tissue surface. Coral tissue heating saturated for maximal levels of green fluorescence. The action spectrum of coral surface heating revealed that heating was highest under red (peaking at 680 nm) irradiance. Scalar irradiance enhancement in coral tissue was highest when illuminated with blue light, but up to 62% (for the case of highest green fluorescence) of this photon enhancement was due to green fluorescence emission. We suggest that GFP-like pigments scatter the incident radiation, which enhances light absorption and heating of the coral. However, heating saturates, because intense light scattering reduces the vertical penetration depth through the tissue eventually leading to reduced light absorption at high fluorescent pigment density. We conclude that fluorescent pigments can have a central role in modulating coral light absorption and heating. PMID:27225857

  16. A light-assisted biomass fuel cell for renewable electricity generation from wastewater.

    PubMed

    Chamousis, Rachel L; Osterloh, Frank E

    2012-08-01

    A solar-energy-driven biomass fuel cell for the production of electricity from wastewater using only air and light as additional resources is described. The device consists of a photoelectrochemical cell that contains a nanostructured titanium dioxide or tungsten trioxide film as photoanode and a platinum air electrode as cathode, in separate compartments. The TiO(2) or WO(3) films are fabricated from TiO(2) nanocrystals or from sodium tungstate solutions on top of fluorine-doped tin dioxide. Devices were tested with electrolyte only, synthetic wastewater, or with aqueous glucose solution, under irradiation with sunlight, broad spectral illumination, and monochromatic light. Measured light conversion efficiencies were between 0.007 % and 1.7 %, depending on conditions. The highest efficiency (1.7 %) and power output (0.73 mW cm(-2)) are determined for TiO(2) electrodes under 395 nm illumination. In contrast to TiO(2), the WO(3) electrodes are active under visible light (>440 nm), but the IPCE value is low (2 %). Apart from limited visible-light absorption, the overall performance of the device is limited by the substrate concentration in the water and by transport resistance through the cell.

  17. Low-Level Radio Frequency System Development for the National Synchrotron Light Source II

    SciTech Connect

    Ma,H.; Rose, J.

    2009-05-04

    The National Synchrotron Light Source-II (NSLS-II) is a new ultra-bright 3GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. The position and timing specifications of the ultra-bright photon beam imposes a set of stringent requirements on the performance of radio frequency (RF) control. In addition, commissioning and staged installation of damping wigglers and insertion devices requires the flexibility of handling varying beam conditions. To meet these requirements, a digital implementation of the LLRF is chosen, and digital serial links are planned for the system integration. The first prototype of the controller front-end hardware has been built, and is currently being tested.

  18. [Light-induced control of polymerization shrinkage of dental composites by generating temporary hardness gradients].

    PubMed

    Sommer, A P; Gente, M

    1999-10-01

    Irradiation of light-curing dental filling materials in a single direction results in a temporary hardness gradient in the direction of the irradiation. The photoactivated polymerisation process begins at the site of the highest light intensity. In the simplest possible model, the polymerizing composites irradiated in a single direction shows three adjacent co-existing phases: an almost hardened, a gelled and a still plastic phase. As long as all three phases are present, any shrinking of the contracting phases can be compensated by the plastic phase. A knowledge of the distribution of these phases and their spatial and temporal modulation by the selection of suitable curing light parameters provides simple techniques for reducing shrinkage gaps around voluminous fillings in large dental cavities.

  19. A Kinesthetic Learning Approach to Earth Science for 3rd and 4th Grade Students on the Pajarito Plateau, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.

    2010-12-01

    Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We

  20. Band-gap nonlinear optical generation: The structure of internal optical field and the structural light focusing

    SciTech Connect

    Zaytsev, Kirill I. Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O.; Gorelik, Vladimir S.

    2014-06-07

    A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.

  1. Weyl semimetal generated from Dirac semimetal using off-resonant light

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Qi, Fenghua; Tang, Chi Pui

    2016-12-01

    We propose a simple realization of a three-dimensional Weyl semimetal phase using off-resonant circularly polarized light in the three dimensional Dirac semimetals. Using both analytical and numerical methods, we show that a fourfold degenerate Dirac node can be further evolved into two Weyl nodes in the context of low energy Hamiltonian. The distance between the two Weyl nodes in momentum space can be controlled by the intensity and frequency of the light. Meanwhile, because this distance is proportional to the relatively large Fermi velocity, the typical character of the Weyl semimetal, such as surface Fermi arc, can be observed obviously.

  2. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers.

    PubMed

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2012-09-15

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5-3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept can be expanded combining multiple diode lasers to increase the power even further.

  3. Energy transfer and colour tunability in UV light induced Tm(3+)/Tb(3+)/Eu(3+): ZnB glasses generating white light emission.

    PubMed

    Naresh, V; Gupta, Kiran; Parthasaradhi Reddy, C; Ham, Byoung S

    2017-03-15

    A promising energy transfer (Tm(3+)→Tb(3+)→Eu(3+)) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm(3+)/Tb(3+)/Eu(3+) ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(-II)]y centres in the ZnB glass matrix. At 360nm (UV) excitation, triply doped Tm(3+)/Tb(3+)/Eu(3+): ZnB glasses simultaneously shown their characteristic emission bands in blue (454nm: (1)D2→(3)F4), green (547nm: (5)D4→(7)F5) and red (616nm: (5)D0→(7)F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb(3+) in ET from Tm(3+)→Eu(3+) was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb(3+), Eu(3+)) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.

  4. Energy transfer and colour tunability in UV light induced Tm3 +/Tb3 +/Eu3 +: ZnB glasses generating white light emission

    NASA Astrophysics Data System (ADS)

    Naresh, V.; Gupta, Kiran; Parthasaradhi Reddy, C.; Ham, Byoung S.

    2017-03-01

    A promising energy transfer (Tm3 + → Tb3 + → Eu3 +) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm3 +/Tb3 +/Eu3 + ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(- II)]y centres in the ZnB glass matrix. At 360 nm (UV) excitation, triply doped Tm3 +/Tb3 +/Eu3 +: ZnB glasses simultaneously shown their characteristic emission bands in blue (454 nm: 1D2 → 3F4), green (547 nm: 5D4 → 7F5) and red (616 nm: 5D0 → 7F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb3 + in ET from Tm3 + → Eu3 + was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb3 +, Eu3 +) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.

  5. The Safety of Artemisinin Derivatives for the Treatment of Malaria in the 2nd or 3rd Trimester of Pregnancy: A Systematic Review and Meta-Analysis

    PubMed Central

    van Eijk, Anna Maria; Sevene, Esperanca; Dellicour, Stephanie; Weiss, Noel S.; Emerson, Scott; Steketee, Richard; ter Kuile, Feiko O.; Stergachis, Andy

    2016-01-01

    Given the high morbidity for mother and fetus associated with malaria in pregnancy, safe and efficacious drugs are needed for treatment. Artemisinin derivatives are the most effective antimalarials, but are associated with teratogenic and embryotoxic effects in animal models when used in early pregnancy. However, several organ systems are still under development later in pregnancy. We conducted a systematic review and meta-analysis of the occurrence of adverse pregnancy outcomes among women treated with artemisinins monotherapy or as artemisinin-based combination therapy during the 2nd or 3rd trimesters relative to pregnant women who received non-artemisinin antimalarials or none at all. Pooled odds ratio (POR) were calculated using Mantel-Haenszel fixed effects model with a 0.5 continuity correction for zero events. Eligible studies were identified through Medline, Embase, and the Malaria in Pregnancy Consortium Library. Twenty studies (11 cohort studies and 9 randomized controlled trials) contributed to the analysis, with 3,707 women receiving an artemisinin, 1,951 a non-artemisinin antimalarial, and 13,714 no antimalarial. The PORs (95% confidence interval (CI)) for stillbirth, fetal loss, and congenital anomalies when comparing artemisinin versus quinine were 0.49 (95% CI 0.24–0.97, I2 = 0%, 3 studies); 0.58 (95% CI 0.31–1.16, I2 = 0%, 6 studies); and 1.00 (95% CI 0.27–3.75, I2 = 0%, 3 studies), respectively. The PORs comparing artemisinin users to pregnant women who received no antimalarial were 1.13 (95% CI 0.77–1.66, I2 = 86.7%, 3 studies); 1.10 (95% CI 0.79–1.54, I2 = 0%, 4 studies); and 0.79 (95% CI 0.37–1.67, I2 = 0%, 3 studies) for miscarriage, stillbirth and congenital anomalies respectively. Treatment with artemisinin in 2nd and 3rd trimester was not associated with increased risks of congenital malformations or miscarriage and may be was associated with a reduced risk of stillbirths compared to quinine. This study updates the reviews

  6. Veterinary Microbiology, 3rd Edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary Microbiology, Third Edition is organized into four sections and begins with an updated and expanded introductory section on infectious disease pathogenesis, diagnosis and clinical management. The second section covers bacterial and fungal pathogens, and the third section describes viral d...

  7. One-Time Password Generation and Two-Factor Authentication Using Molecules and Light.

    PubMed

    Naren, Gaowa; Li, Shiming; Andréasson, Joakim

    2017-03-02

    Herein, we report the first example of one-time password (OTP) generation and two-factor authentication (2FA) using a molecular approach. OTPs are passwords that are valid for one entry only. For the next login session, a new, different password is generated. This brings the advantage that any undesired recording of a password will not risk the security of the authentication process. Our molecular realization of the OTP generator is based on a photochromic molecular triad where the optical input required to set the triad to the fluorescent form differs depending on the initial isomeric state.

  8. Generation of ultrashort coherent vacuum ultraviolet pulses using electron storage rings: a new bright light source for experiments.

    PubMed

    De Ninno, G; Allaria, E; Coreno, M; Curbis, F; Danailov, M B; Karantzoulis, E; Locatelli, A; Menteş, T O; Nino, M A; Spezzani, C; Trovò, M

    2008-08-01

    We demonstrate for the first time that seeded harmonic generation on electron storage rings can produce coherent optical pulses in the vacuum ultraviolet spectral range. The experiment is performed at Elettra, where coherent pulses are generated at 132 nm, with a duration of about 100 fs. The light source has a repetition rate of 1 kHz and adjustable polarization; it is very bright, with a peak power several orders of magnitude above that of spontaneous synchrotron radiation. Owing to high stability, the source is used in a test photoemission electron microscopy experiment. We anticipate that seeded harmonic generation on storage rings can lead to unprecedented developments in time-resolved femtosecond spectroscopy and microscopy.

  9. Generation of single frequency blue light by highly efficient harmonic generation of IR laser diodes in resonance build-up cavities using nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Danekar, Koustubh; Aflakian, Nafiseh; Shiner, David

    2012-06-01

    Blue and UV lasers have a wide variety of applications, including atomic spectroscopy. We are particularly interested in 486 nm and 243 nm for hydrogen spectroscopy. Blue and UV laser diodes are at the early stages of development. At this time, harmonic generations (HG) is a viable technique to produce blue and UV light with well developed fiber coupled IR laser diodes. We recently reported a polarization maintaining (PM) fiber to fiber conversion efficiency of 71 percent overall. We used a PPKTP (Periodically Poled Potassium Titanyl Phosphate) crystal in an external build-up cavity. The 600 mW of blue at 486 nm was generated from second HG of a 972 nm PM fiber coupled laser diode [1]. PPKTP presents blue absorption (BA) and blue light induced IR absorption (BLIIRA) which cause thermal instability and inefficiency in the buildup cavity. Another crystal, PPSLT (Periodically Poled Lithium Tantalite) promises less BA and less BLIIRA. Our latest results for producing 486 nm using PPSLT and comparison with PPKTP will be presented. [4pt] [1] Koustrubh Danekar, Ali Khademian, and David Shiner, Opt. Lett. 36, 294 (2011)

  10. Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

    SciTech Connect

    McKittrick, Joanna

    2013-09-30

    1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three

  11. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark regimes for over 330 generations.

    PubMed

    Shindey, Radhika; Varma, Vishwanath; Nikhil, K L; Sharma, Vijay Kumar

    2017-02-03

    Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes - constant light (LL), light-dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.

  12. Stable isotope and trace element studies on gladiators and contemporary Romans from Ephesus (Turkey, 2nd and 3rd Ct. AD)--mplications for differences in diet.

    PubMed

    Lösch, Sandra; Moghaddam, Negahnaz; Grossschmidt, Karl; Risser, Daniele U; Kanz, Fabian

    2014-01-01

    The gladiator cemetery discovered in Ephesus (Turkey) in 1993 dates to the 2nd and 3rd century AD. The aim of this study is to reconstruct diverse diet, social stratification, and migration of the inhabitants of Roman Ephesus and the distinct group of gladiators. Stable carbon, nitrogen, and sulphur isotope analysis were applied, and inorganic bone elements (strontium, calcium) were determined. In total, 53 individuals, including 22 gladiators, were analysed. All individuals consumed C3 plants like wheat and barley as staple food. A few individuals show indication of consumption of C4 plants. The δ13C values of one female from the gladiator cemetery and one gladiator differ from all other individuals. Their δ34S values indicate that they probably migrated from another geographical region or consumed different foods. The δ15N values are relatively low in comparison to other sites from Roman times. A probable cause for the depletion of 15N in Ephesus could be the frequent consumption of legumes. The Sr/Ca-ratios of the gladiators were significantly higher than the values of the contemporary Roman inhabitants. Since the Sr/Ca-ratio reflects the main Ca-supplier in the diet, the elevated values of the gladiators might suggest a frequent use of a plant ash beverage, as mentioned in ancient texts.

  13. Stable Isotope and Trace Element Studies on Gladiators and Contemporary Romans from Ephesus (Turkey, 2nd and 3rd Ct. AD) - Implications for Differences in Diet

    PubMed Central

    Lösch, Sandra; Moghaddam, Negahnaz; Grossschmidt, Karl; Risser, Daniele U.; Kanz, Fabian

    2014-01-01

    The gladiator cemetery discovered in Ephesus (Turkey) in 1993 dates to the 2nd and 3rd century AD. The aim of this study is to reconstruct diverse diet, social stratification, and migration of the inhabitants of Roman Ephesus and the distinct group of gladiators. Stable carbon, nitrogen, and sulphur isotope analysis were applied, and inorganic bone elements (strontium, calcium) were determined. In total, 53 individuals, including 22 gladiators, were analysed. All individuals consumed C3 plants like wheat and barley as staple food. A few individuals show indication of consumption of C4 plants. The δ13C values of one female from the gladiator cemetery and one gladiator differ from all other individuals. Their δ34S values indicate that they probably migrated from another geographical region or consumed different foods. The δ15N values are relatively low in comparison to other sites from Roman times. A probable cause for the depletion of 15N in Ephesus could be the frequent consumption of legumes. The Sr/Ca-ratios of the gladiators were significantly higher than the values of the contemporary Roman inhabitants. Since the Sr/Ca-ratio reflects the main Ca-supplier in the diet, the elevated values of the gladiators might suggest a frequent use of a plant ash beverage, as mentioned in ancient texts. PMID:25333366

  14. Trends in the nature of provision in ophthalmology services and resources and barriers to education in ophthalmic nursing: 3rd National UK survey.

    PubMed

    Czuber-Dochan, Wladyslawa J; Waterman, Christine G; Waterman, Heather A

    2006-04-01

    Over the last decade in the United Kingdom (UK), the roles of nurses have become increasingly specialised to support a more efficient and effective health service. In ophthalmology, the changes are most visible in the growing number of patients being treated as day case and the greater nursing contribution to patient outcomes. To support this change there is a continuing need for educational institutions to create opportunities to meet the training needs of nurses working in both specialised areas and at the advance level of practice. This article reports on a 3rd national survey the aims of which were to investigate trends in the nature and provision of ophthalmic services and the resources and barriers to education in ophthalmic nursing. The results demonstrate that over the three surveys there has been a significant increase of pre-operative assessment units and a significant decrease of designated ophthalmic wards. Between the second and third survey, the results indicate fewer difficulties with funding but there has been an increase of respondents stating a lack of training institutions offering ophthalmic courses. The survey shows that at a time when nurses need to acquire ophthalmic nursing skills and knowledge there appear to be fewer opportunities for them to access ophthalmic courses.

  15. Evidence of human-induced morphodynamic changes along the Campania coastal areas (southern Italy) since the 3rd-4th cent. AD

    NASA Astrophysics Data System (ADS)

    Russo Ermolli, Elda; Romano, Paola; Liuzza, Viviana; Amato, Vincenzo; Ruello, Maria Rosaria; Di Donato, Valentino

    2014-05-01

    Campania has always offered suitable climatic and physiographic conditions for human settlements since prehistoric times. In particular, many Graeco-Roman towns developed along its coasts starting from the 7th-6th cent. BC. In the last decade, geoarchaelogical surveys have been carried out in the archaeological excavations of Neapolis, Paestum and Elea-Velia allowing the main steps of the landscape evolution around these towns to be defined in detail. The greek town of Neapolis rose in the late 6th cent. BC [1] on a terrace overlooking a low-relief rocky coast surrounded by volcanic hills. Port activities developed in a protected bay facing the town from the 4th-2nd cent. BC up to the 4th cent. AD, as testified by the discovery of structures and shipwrecks [2, 3, 4]. Starting from the 3rd cent. AD a spit bar formed at the bay entrance causing the progressive establishment of a lagoon which was gradually filled up by alluvial inputs and completely closed in the 5th cent. AD. During the same period, episodes of increased alluvial inputs were also recorded further west along the coast, where a narrow sandy beach formed at the cliff toe. The greek town of Poseidonia, renamed Paestum by the Romans, was founded in the 540 BC on a travertine terrace facing the sandy littoral of a prograding coastal plain [5]. In front of the main town door, a coastal lagoon developed thanks to the growth of a dune ridge and was probably used for harbor activities [5]. After this period the shoreline shifted seawards, another dune ridge formed and the back-ridge depression was filled with fluvial-marshy deposits, slowly drying up. Phases of travertine deposition, which characterized the SE sector of the plain all along the Holocene, were recorded in the northern and southern quarters of the town in historical times and were connected to the abandonment of the town in the early Medieval times. The greek colony of Elea-Velia was located on top of a siliciclastic promontory where the ruins of

  16. The origin of anomalous 3rd neighbor exchange in 2D triangular magnets (NiGa2S4 and others)

    NASA Astrophysics Data System (ADS)

    Mazin, Igor

    2008-03-01

    2D magnetic materials with triangular lattices have been attracting much interest. Among them one finds the parent compound of an exotic superconductor, NaxCoO2.yH2O, A-type antiferromagnets like NaNiO2, in-plane antiferromagnetism (LiCrO2), spin-liquid type materials (NiGa2S4), charge-order (AgNiO2). The main structural motif in all of them is the AB2 plane, where A is a transition metal and B is oxygen or sulfur. Experiments and calculations inevitably find anomalously strong 3rd neighbor exchange coupling in all these triangular planes, despite different band fillings and different magnetic ground states. I will explain why this happens, why this effect is so universal, and why it can be understood entirely on a one-electron level. I will use as an example NiGa2S4, with a reference to NaxCoO2 as well.

  17. Sunphotometric Measurement of Columnar H2O and Aerosol Optical Depth During the 3rd Water Vapor IOP in Fall 2000 at the SGP ARM Site

    NASA Technical Reports Server (NTRS)

    Schmid, B; Eilers, J. A.; McIntosh, D. M.; Longo, K.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Braun, J.; Rocken, C.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    We conducted ground-based measurements with the Ames Airborne Tracking 6-channel Sunphotometer (AATS-6) during the 3rd Water Vapor IOP (WVIOP3), September 18 - October 8, 2000 at the SGP ARM site. For this deployment our primary result was columnar water vapor (CWV) obtained from continuous solar transmittance measurements in the 0.94-micron band. In addition, we simultaneously measured aerosol optical depth (AOD) at 380, 450, 525, 864 and 1020 nm. During the IOP, preliminary results of CWV and AOD were displayed in real-time. The result files were made available to other investigators by noon of the next day. During WVIOP3 those data were shown on the daily intercomparison plots on the IOP web-site. Our preliminary results for CWV fell within the spread of values obtained from other techniques. After conclusion of WVIOP3, AATS-6 was shipped directly to Mauna Loa, Hawaii for post-mission calibration. The updated calibration, a cloud screening technique for AOD, along with other mostly cosmetic changes were applied to the WVIOP3 data set and released as version 0.1. The resulting changes in CWV are small, the changes in AOD and Angstrom parameter are more noticeable. Data version 0.1 was successfully submitted to the ARM External Data Center. In the poster we will show data examples for both CWV and AOD. We will also compare our CWV results with those obtained from a GPS (Global Positioning System) slant path method.

  18. Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes

    PubMed Central

    Moura, André L.; Carreño, Sandra J. M.; Pincheira, Pablo I. R.; Fabris, Zanine V.; Maia, Lauro J. Q.; Gomes, Anderson S. L.; de Araújo, Cid B.

    2016-01-01

    Ultraviolet and blue light were obtained by nonlinear frequency conversion in a random laser (RL) based on Nd0.10Y0.90Al3(BO3)4 nanocrystalline powder. RL operation at 1062 nm, due to the 4F3/2 → 4I11/2 transition of neodymium ions (Nd3+), was achieved by exciting the Nd3+ with a tunable beam from 680 to 920 nm covering the ground state absorption transitions to the 4F9/2, (4F7/2,4S3/2), (4F5/2,2H9/2), and 4F3/2 states. Light from 340 to 460 nm was obtained via the second-harmonic generation of the excitation beam while tunable blue light, from 417 to 486 nm, was generated by self-sum-frequency mixing between the excitation beam and the RL emission. PMID:27250647

  19. Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes

    NASA Astrophysics Data System (ADS)

    Moura, André L.; Carreño, Sandra J. M.; Pincheira, Pablo I. R.; Fabris, Zanine V.; Maia, Lauro J. Q.; Gomes, Anderson S. L.; de Araújo, Cid B.

    2016-06-01

    Ultraviolet and blue light were obtained by nonlinear frequency conversion in a random laser (RL) based on Nd0.10Y0.90Al3(BO3)4 nanocrystalline powder. RL operation at 1062 nm, due to the 4F3/2 → 4I11/2 transition of neodymium ions (Nd3+), was achieved by exciting the Nd3+ with a tunable beam from 680 to 920 nm covering the ground state absorption transitions to the 4F9/2, (4F7/2,4S3/2), (4F5/2,2H9/2), and 4F3/2 states. Light from 340 to 460 nm was obtained via the second-harmonic generation of the excitation beam while tunable blue light, from 417 to 486 nm, was generated by self-sum-frequency mixing between the excitation beam and the RL emission.

  20. Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals

    PubMed Central

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    Light beams with extraordinary spatial structures, such as the Airy beam (AB), the Bessel-Gaussian beam (BGB) and the Laguerre-Gaussian beam (LGB), are widely studied and applied in many optical scenarios. We report on preparation of light beams with controllable spatial structures through sum frequency generation (SFG) using two Gaussian pump beams in a quasi-phase matching (QPM) crystal. The spatial structures, including multi-ring-like BGB, donut-like LGB, and super-Gaussian-like beams, can be controlled periodically via crystal phase mismatching by tuning the pump frequency or crystal temperature. This phenomenon has not been reported or discussed previously. Additionally, we present numerical simulations of the phenomenon, which agree very well with the experimental observations. Our findings give further insight into the SFG process in QPM crystals, provide a new way to generate light with unusual spatial structures, and may find applications in the fields of laser optics, all-optical switching, and optical manipulation and trapping. PMID:25007780

  1. Anisotropic Expansion of the Universe and Generation of Quantum Interference in Light Propagation

    NASA Astrophysics Data System (ADS)

    Fanizza, G.; Tedesco, L.

    2016-04-01

    We investigate the electrodynamic in a Bianchi type I cosmological model. This scenario reveals the possibility that photons, during their traveling, can make quantum interference. This effect is only due to the presence of two different axes of expansion in the cosmic evolution. In other word, it is possible to conclude that a purely metrical - or, equivalently, gravitational - phenomenon gives rise up to a quantum effect that manifests itself in the light propagation.

  2. Two-Photon Coherent State Light - Its Generation and Potential Applications

    DTIC Science & Technology

    1984-05-31

    SQL) on position sensing in a gravity-wave detecting interferometer . ..... .. - 14- RESEARCH SUMMARY A highly stabilized laser produces a light beam...Dolinar work [20]. Phase-Sensina Interferometry The performance of phase-sensing interferometers employin.: TCS and homo- dyne detection were analyzed...11], [12] and compared to the performance of systems employing direct detection [22]. Standard differenced direct-detection Michelson and Mach-Zehnder

  3. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation.

    PubMed

    Chowdhury, Pankaj; Gomaa, Hassan; Ray, Ajay K

    2015-02-01

    In this paper, we have studied Eosin Y-sensitized sacrificial hydrogen generation with triethanolamine as electron donor in UV, visible, and solar light irradiation. Aeroxide TiO2 was loaded with platinum metal via solar photo-deposition method to reduce the electron hole recombination process. Photocatalytic sacrificial hydrogen generation was influenced by several factors such as platinum loading (wt%) on TiO2, solution pH, Eosin Y to Pt/TiO2 mass ratio, triethanolamine concentration, and light (UV, visible and solar) intensities. Detailed reaction mechanisms in visible and solar light irradiation were established. Oxidation of triethanolamine and formaldehyde formation was correlated with hydrogen generation in both visible and solar lights. Hydrogen generation kinetics followed a Langmuir-type isotherm with reaction rate constant and adsorption constant of 6.77×10(-6) mol min(-1) and 14.45 M(-1), respectively. Sacrificial hydrogen generation and charge recombination processes were studied as a function of light intensities. Apparent quantum yields (QYs) were compared for UV, visible, and solar light at four different light intensities. Highest QYs were attained at lower light intensity because of trivial charge recombination. At 30 mW cm(-2) we achieved QYs of 10.82%, 12.23% and 11.33% in UV, visible and solar light respectively.

  4. A Simple Model for the Light Curve Generated by a Shoemaker-Levy 9 Impact

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Mordecai-Mark, Mac Low

    1995-01-01

    The impact of a typical Shoemaker-Levy 9 fragment produced three light peaks as seen from Earth. The first peak is related to the entry of the fragment into the Jovian atmosphere. The second peak occurs when the exploding fireball rises above Jupiter's limb into direct view from Earth. The third peak, much the brightest, occurs when the ejecta plume falls back on the atmosphere. By contrast, Galileo, which had a direct view of the impacts, saw two peaks, one at entry, and one at plumefall. Here we present a simple, highly idealized model of a ballistic plume, which we then use to fit the observed light curve of the R impact as recorded at Mauna Kea and Mount Palomar. From the light curve we find that the nominal R fragment had diameter 450-500 m and mass approx. 2-3 x 10(exp 13) g. The uncertainty in the mass is probably about a factor of 3, with a smaller event more likely than a larger one.

  5. Light Harvesting and Photocurrent Generation in a Conjugated Polymer Nanoparticle-Reduced Graphene Oxide Composite.

    PubMed

    Patra, Amitava; Ghosh, Arnab; Jana, Bikash; Maiti, Sourav; Bera, Rajesh; Ghosh, Hiren

    2017-03-14

    Polymer - graphene nanocomposites are promising candidates towards light harvesting systems such as photocatalysis, photovoltaics; where significant charge separation occurs due to photoinduced electron transfer. Much attention has been paid to use reduced graphene oxide (r-GO) as template for anchoring various nanomaterials due to its efficient electron accepting and transport property. Here, we have prepared Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) nanoparticles from MEH-PPV polymer and investigate the change in photophysical properties due to formation of polymer nanoparticles from molecular state by using steady state and time resolved spectroscopy. Nanocomposites were designed by adding hexadecylamine (HDA) functionalized positively charged MEH-PPV PNP with negatively charged r-GO solution. Ultrafast femtosecond up-conversion and Transient absorption spectroscopy unequivocally confirms the electron transfer process from excited state of MEH-PPV PNP to r-GO at the interface of nanocomposite. Analysis reveals that the charge separation time is found to be pulse width limited (<100fs). Due to charge separation in these nanocomposites, an increment (2.6 fold) of photocurrent under visible light illumination is obtained. The fundamental understanding of the charge transfer dynamics open up new possibilities to design efficient light harvesting system based on inorganic-organic hybrid system.

  6. White light generation in Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass

    NASA Astrophysics Data System (ADS)

    Meza-Rocha, A. N.; Lozada-Morales, R.; Speghini, A.; Bettinelli, M.; Caldiño, U.

    2016-01-01

    A spectroscopic investigation of Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass focused on generation of white light is performed through photoluminescence spectra and decay time measurements. The white light emission obtained in the glass phosphor shows excitation wavelength dependent tunable tonality: neutral white (0.385, 0.441) of 4250 K and warm white (0.417, 0.412) of 3429 K, upon 445 and 322 nm excitations, respectively. A quantum yield of 26.1 ± 1.2% is attained upon Dy3+ excitation at 445 nm. The white luminescence is due mainly to terbium 5D4 → 7F5, dysprosium 4F9/2 → 6H15/2,13/2 and europium 5D0 → 7F2 transitions. It is demonstrated that non-radiative energy transfers Dy3+ to Tb3+ and Eu3+, and Tb3+ to Eu3+, take place in the glass phosphor excited at 445 or 322 nm. Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass, excited by AlGaN (322 nm) or InGaN (445 nm) LEDs, could then be appropriated for solid state lighting technology as neutral or warm white light phosphors.

  7. Does 3rd age plus 3rd world equal 3rd class?

    PubMed

    Tout, K

    1992-04-01

    The patterns of care of the aged population are being influenced by demographic changes, migration, and industrialization in developing countries. There is no longer a secure place for the elders in the community as chiefs, sages, or useful members of the household. In very large mega-cities the aged living in an extended family are more prone to psychological problems than in a lone living situation. There are many variations in the degree of abandonment or loss of dignity, which are described in examples from Vilcabamba, Potosi, Lima, and Belize. For example in Belize, there are no cities to migrate to so people leave to seek their fortunes in the US or the UK. Solutions are possible within the community. The experiences of HelpAge International are reported for Pro Vida, Colombia; India; and Sri Lanka. In Colombia efforts were made to acquire a bakery so that the elderly could be employed in bread baking, donating loaves to institutions, and selling half the loaves on the street. Other projects involved improving living conditions for lone old people in shanty towns and training social workers. The institutional aim was to concentrate on a locale. Attention was given to providing instruction in classrooms to enlighten youth about the needs of the elderly. HelpAge in India concentrated on eye problems of the elderly in remote areas through awareness and fundraising campaigns. HelpAge Sri Lanka has set up seminars and training programs which have been models for similar programs in Thailand. Shared experience with the problems of aged beggars suggests that funding must come from nongovernmental agencies. The cultivation and sale of herbs by the elderly was promoted in Vilcabamba; in Jamaica a memory bank was established for preserving cultural traditions. Abandoned industries have been revived. The needs of the organizers, who are primarily volunteers, are organization skills. Governments can supplement meager funds by enhancing traditional life, by removing obstacles to foreign aid, and by avoiding spending on prestige projects and questionable projects imported from Western countries. Reinforcement of families and of local community groups is needed.

  8. Metabolic engineering of E.coli for the production of a precursor to artemisinin, an anti-malarial drug [Chapter 25 in Manual of Industrial Microbiology and Biotechnology, 3rd edition

    SciTech Connect

    Petzold, Christopher; Keasling, Jay

    2011-07-18

    This document is Chapter 25 in the Manual of Industrial Microbiology and Biotechnology, 3rd edition. Topics covered include: Incorporation of Amorpha-4,11-Diene Biosynthetic Pathway into E. coli; Amorpha-4,11-Diene Pathway Optimization; "-Omics" Analyses for Increased Amorpha-4,11-Diene Production; Biosynthetic Oxidation of Amorpha-4,11-Diene.

  9. Spatiotemporal light bullets and supercontinuum generation in β-BBO crystal with competing quadratic and cubic nonlinearities.

    PubMed

    Šuminas, R; Tamošauskas, G; Valiulis, G; Dubietis, A

    2016-05-01

    We experimentally study filamentation and supercontinuum generation in a birefringent medium [beta-barium borate (β-BBO) crystal] pumped by intense 90 fs, 1.8 μm laser pulses whose carrier wavelength falls in the range of anomalous group velocity dispersion of the crystal. We demonstrate that the competition between the intrinsic cubic and cascaded-quadratic nonlinearities may serve as a useful tool for controlling the self-action effects via phase matching condition. In particular, we found that spectral superbroadening of the ordinary polarization is linked to three-dimensional self-focusing and formation of self-compressed spatiotemporal light bullets that could be accessed within a certain range of either positive or negative phase mismatch. In the extraordinary polarization, we detect giant spectral shifts of the second harmonic radiation, which are attributed to a light bullet-induced self-phase matching.

  10. Testing quantum mechanics in non-Minkowski space-time with high power lasers and 4th generation light sources

    PubMed Central

    Crowley, B. J. B.; Bingham, R.; Evans, R. G.; Gericke, D. O.; Landen, O. L.; Murphy, C. D.; Norreys, P. A.; Rose, S. J.; Tschentscher, Th; Wang, C. H.-T; Wark, J. S.; Gregori, G.

    2012-01-01

    A common misperception of quantum gravity is that it requires accessing energies up to the Planck scale of 1019 GeV, which is unattainable from any conceivable particle collider. Thanks to the development of ultra-high intensity optical lasers, very large accelerations can be now the reached at their focal spot, thus mimicking, by virtue of the equivalence principle, a non Minkowski space-time. Here we derive a semiclassical extension of quantum mechanics that applies to different metrics, but under the assumption of weak gravity. We use our results to show that Thomson scattering of photons by uniformly accelerated electrons predicts an observable effect depending upon acceleration and local metric. In the laboratory frame, a broadening of the Thomson scattered x ray light from a fourth generation light source can be used to detect the modification of the metric associated to electrons accelerated in the field of a high power optical laser. PMID:22768381

  11. Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer

    NASA Astrophysics Data System (ADS)

    Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong

    2016-09-01

    Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.

  12. Generation of supercontinuum light in micro-structured fiber and polarization study at different wavelengths

    NASA Astrophysics Data System (ADS)

    Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-García, J. C.; Jáuregui-Vázquez, D.; Sierra-Hernández, J. M.; Rojas-Laguna, R.; Mata-Chavez, R. I.; Samano-Aguilar, L. F.

    2016-09-01

    In this work, we study the changes of polarization at different wavelengths in a supercontinuum source generated through a microchip laser in the IR spectrum. We use a microchip laser pulsed as pumped source, 1064 nm of wavelength, and a photonic crystal fiber by generated a supercontinuum spectrum. We twist the fiber to the purpose to induce birefringence and study the changes of the state of polarization, and through bandpass filters we observe a single wavelength of the broad spectrum obtained. Besides, ellipticity study for different filters and its relation with the supercontinuum results is discussed.

  13. Second-harmonic generation of light at 245 nm in a lithium tetraborate whispering gallery resonator.

    PubMed

    Fürst, Josef U; Buse, Karsten; Breunig, Ingo; Becker, Petra; Liebertz, Josef; Bohatý, Ladislav

    2015-05-01

    A millimeter-sized, monolithic whispering gallery resonator made of a lithium tetraborate, Li2B4O7, crystal was employed for doubly resonant second-harmonic generation with a continuous-wave laser source at 490 nm. An intrinsic quality factor of 2×10(8) was observed at the pump wavelength. A conversion efficiency of 2.2% was attained with 5.9 mW of mode-matched pump power. In the lithium tetraborate resonator, it is feasible to achieve phase-matching of second-harmonic generation for pump wavelengths between 486 and 506 nm.

  14. Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light

    SciTech Connect

    Piskarskas, A.; Pyragaite, V.; Stabinis, A.

    2010-11-15

    It is revealed that the generation of a coherent wave by frequency conversion of incoherent waves is a characteristic feature of three-wave interaction in a nonlinear medium when angular dispersion of input waves is properly chosen. In this case the combining action of the pairs of spectral components of incoherent waves may result in the cumulative driving of a single plane monochromatic wave in up-conversion and down-conversion processes. As a fundamental result we point out an enhancement of the spectral radiance of the generated wave in comparison with incoherent waves.

  15. Optical imaging of Cerenkov light generation from positron-emitting radiotracers

    PubMed Central

    Robertson, R; Germanos, M S; Li, C; Mitchell, G S; Cherry, S R; Silva, M D

    2009-01-01

    Radiotracers labeled with high-energy positron-emitters, such as those commonly used for positron emission tomography (PET) studies, emit visible light immediately following decay in a medium. This phenomenon, not previously described for these imaging tracers, is consistent with Cerenkov radiation and has several potential applications, especially for in vivo molecular imaging studies. Herein we detail a new molecular imaging tool, Cerenkov Luminescence Imaging, the experiments conducted that support our interpretation of the source of the signal, and proof-of-concept in vivo studies that set the foundation for future application of this new method. PMID:19636082

  16. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    SciTech Connect

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  17. Human detection based on the generation of a background image by using a far-infrared light camera.

    PubMed

    Jeon, Eun Som; Choi, Jong-Suk; Lee, Ji Hoon; Shin, Kwang Yong; Kim, Yeong Gon; Le, Toan Thanh; Park, Kang Ryoung

    2015-03-19

    The need for computer vision-based human detection has increased in fields, such as security, intelligent surveillance and monitoring systems. However, performance enhancement of human detection based on visible light cameras is limited, because of factors, such as nonuniform illumination, shadows and low external light in the evening and night. Consequently, human detection based on thermal (far-infrared light) cameras has been considered as an alternative. However, its performance is influenced by the factors, such as low image resolution, low contrast and the large noises of thermal images. It is also affected by the high temperature of backgrounds during the day. To solve these problems, we propose a new method for detecting human areas in thermal camera images. Compared to previous works, the proposed research is novel in the following four aspects. One background image is generated by median and average filtering. Additional filtering procedures based on maximum gray level, size filtering and region erasing are applied to remove the human areas from the background image. Secondly, candidate human regions in the input image are located by combining the pixel and edge difference images between the input and background images. The thresholds for the difference images are adaptively determined based on the brightness of the generated background image. Noise components are removed by component labeling, a morphological operation and size filtering. Third, detected areas that may have more than two human regions are merged or separated based on the information in the horizontal and vertical histograms of the detected area. This procedure is adaptively operated based on the brightness of the generated background image. Fourth, a further procedure for the separation and removal of the candidate human regions is performed based on the size and ratio of the height to width information of the candidate regions considering the camera viewing direction and perspective

  18. Human Detection Based on the Generation of a Background Image by Using a Far-Infrared Light Camera

    PubMed Central

    Jeon, Eun Som; Choi, Jong-Suk; Lee, Ji Hoon; Shin, Kwang Yong; Kim, Yeong Gon; Le, Toan Thanh; Park, Kang Ryoung

    2015-01-01

    The need for computer vision-based human detection has increased in fields, such as security, intelligent surveillance and monitoring systems. However, performance enhancement of human detection based on visible light cameras is limited, because of factors, such as nonuniform illumination, shadows and low external light in the evening and night. Consequently, human detection based on thermal (far-infrared light) cameras has been considered as an alternative. However, its performance is influenced by the factors, such as low image resolution, low contrast and the large noises of thermal images. It is also affected by the high temperature of backgrounds during the day. To solve these problems, we propose a new method for detecting human areas in thermal camera images. Compared to previous works, the proposed research is novel in the following four aspects. One background image is generated by median and average filtering. Additional filtering procedures based on maximum gray level, size filtering and region erasing are applied to remove the human areas from the background image. Secondly, candidate human regions in the input image are located by combining the pixel and edge difference images between the input and background images. The thresholds for the difference images are adaptively determined based on the brightness of the generated background image. Noise components are removed by component labeling, a morphological operation and size filtering. Third, detected areas that may have more than two human regions are merged or separated based on the information in the horizontal and vertical histograms of the detected area. This procedure is adaptively operated based on the brightness of the generated background image. Fourth, a further procedure for the separation and removal of the candidate human regions is performed based on the size and ratio of the height to width information of the candidate regions considering the camera viewing direction and perspective

  19. Second-harmonic generation of light at 544 and 272 nm from an ytterbium-doped distributed-feedback fiber laser.

    PubMed

    Herskind, Peter; Lindballe, Jens; Clausen, Christoph; Sørensen, Jens Lykke; Drewsen, Michael

    2007-02-01

    We report external cavity second-harmonic generation of light at 544 and 272 nm based on an ytterbium-doped distributed-feedback fiber laser. The nonlinear crystal used to generate light at 544 nm is LiNbO3, and the maximum output of the cavity is 845 mW, corresponding to a conversion efficiency of 55%. In a second frequency-doubling step, using a beta-BaBa2O4 crystal, we generate up to 115 mW of light at 272 nm with a conversion efficiency of 14%.

  20. Numerical evaluation of multilayer holographic data storage with a varifocal lens generated with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Nobukawa, Teruyoshi; Nomura, Takanori

    2015-08-01

    A multilayer recording using a varifocal lens generated with a phase-only spatial light modulator (SLM) is proposed. A phase-only SLM is used for not only improving interference efficiency between signal and reference beams but also shifting a focus plane along an optical axis. A focus plane can be shifted by adding a spherical phase to a phase modulation pattern displayed on a phase-only SLM. A focal shift with adding a spherical phase was numerically confirmed. In addition, shift selectivity and recording performance of the proposed multilayer recording method were numerically evaluated in coaxial holographic data storage.

  1. Decreasing lateral diffusion of photo-generated carriers for light-addressable potentiometric array by using meshed working electrode

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Liu, ShiBin; Yin, ShiMin; Liang, JinTao

    2016-09-01

    Lateral diffusion of photon-generated carriers is a critical factor affecting the signal stability and spatial resolution of light-addressable potentiometric sensor (LAPS) array. LAPS with meshed working electrode for rejecting lateral diffusion is presented. Simulation shows that using meshed working electrode can resist the lateral distribution. In an experiment, the inhibition of lateral distribution and the signal stability was studied. Results showed, using the meshed working electrode, the ability to reject the lateral distribution and the signal stability is obviously enhanced. Research in this paper may help to enhance spatial resolution and detection stability of LAPS.

  2. Generation of flower high-order Poincaré sphere laser beams from a spatial light modulator

    PubMed Central

    Lu, T. H.; Huang, T. D.; Wang, J. G.; Wang, L. W.; Alfano, R. R.

    2016-01-01

    We propose and experimentally demonstrate a new complex laser beam with inhomogeneous polarization distributions mapping onto high-order Poincaré spheres (HOPSs). The complex laser mode is achieved by superposition of Laguerre-Gaussian modes and manifests exotic flower-like localization on intensity and phase profiles. A simple optical system is used to generate a polarization-variant distribution on the complex laser mode by superposition of orthogonal circular polarizations with opposite topological charges. Numerical analyses of the polarization distribution are consistent with the experimental results. The novel flower HOPS beams can act as a new light source for photonic applications. PMID:28000779

  3. Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator

    NASA Technical Reports Server (NTRS)

    Mok, Fai; Psaltis, Demetri; Diep, Joseph; Liu, Hua-Kuang

    1986-01-01

    The usefulness of an inexpensive liquid-crystal television) (LCTV) as a spatial light modulator for coherent-optical processing in the writing and reconstruction of a single computer-generated hologram has been demonstrated. The thickness nonuniformities of the LCTV screen were examined in a Mach-Zehnder interferometer, and the phase distortions were successfully removed using a technique in which the LCTV screen was submerged in a liquid gate filled with an index-matching nonconductive mineral oil with refractive index of about 1.45.

  4. Generation of flower high-order Poincaré sphere laser beams from a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lu, T. H.; Huang, T. D.; Wang, J. G.; Wang, L. W.; Alfano, R. R.

    2016-12-01

    We propose and experimentally demonstrate a new complex laser beam with inhomogeneous polarization distributions mapping onto high-order Poincaré spheres (HOPSs). The complex laser mode is achieved by superposition of Laguerre-Gaussian modes and manifests exotic flower-like localization on intensity and phase profiles. A simple optical system is used to generate a polarization-variant distribution on the complex laser mode by superposition of orthogonal circular polarizations with opposite topological charges. Numerical analyses of the polarization distribution are consistent with the experimental results. The novel flower HOPS beams can act as a new light source for photonic applications.

  5. Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator.

    PubMed

    Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z

    2012-09-01

    We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability.

  6. Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator

    PubMed Central

    Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben

    2013-01-01

    We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability. PMID:24307756

  7. Optical four-wave mixing and generation of squeezed light in an optomechanical cavity driven by a bichromatic field

    NASA Astrophysics Data System (ADS)

    Garcés, Rafael; de Valcárcel, Germán. J.

    2014-05-01

    We show that an optomechanical cavity pumped by a bichromatic light beam can generate a signal whose frequency lies halfway between the two driving frequencies. This process can be understood as a degenerate four-wave mixing, in which two pump photons (one from each frequency) are combined to yield two identical signal photons. This process takes place between a lower and an upper threshold in terms of the pump intensity, which depend on the pump frequency difference. Close to the signal oscillation threshold a clear noise reduction in one of its quadratures is shown numerically.

  8. Conditions for invariant spectrum of light generated by scattering of partially coherent wave from quasi-homogeneous medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2016-02-01

    Within the first-order Born approximation, the spectrum of light generated by the scattering of a partially coherent wave from a quasi-homogeneous (QH) medium is derived. In particular, the partially coherent incident wave is produced by Young's pinholes. It is shown that the spectrum of the scattered field is identical to the spectrum of incident plane waves if the Fourier transform of the normalized correlation coefficient (NCC) of the scattering potential satisfies a certain scaling law. The scaling law is valid when the medium size is sufficiently small compared with the space between Young' pinholes. Furthermore, comparisons are made between our conditions with the previous results.

  9. Improving proliferation resistance of high breeding gain generation 4 reactors using blankets composed of light water reactor waste

    SciTech Connect

    Hellesen, C.; Grape, S.; Haakanson, A.; Jacobson Svaerd, S.; Jansson, P.

    2013-07-01

    Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)

  10. Nano-CdS by polymer-inorganic solid-state reaction: Visible light pristine photocatalyst for hydrogen generation

    SciTech Connect

    Kanade, K.G.; Baeg, Jin-OoK . E-mail: jobaeg@krict.re.kr; Mulik, U.P.; Amalnerkar, D.P.; Kale, B.B. . E-mail: kbbb1@yahoo.com

    2006-12-14

    We have explored the possibility of using environmentally stable nano-CdS embedded in thermally stable polymer matrix as an efficient photocatalyst for the hydrogen generation by photodecomposition of hydrogen sulphide under visible light irradiation. Initially, we restricted our attempt to the usage of nano-CdS synthesized by novel polymer-inorganic solid-state reaction between cadmium iodide and polyphenylene sulphide (PPS). The structural study revealed the formation of nanocrystallites of CdS with the particle size ranging from 6 to 28 nm entrapped in modified (cyclized) PPS matrix. A quantum yield of 19.7% for the H{sub 2} generation was accomplished with CdS-PPS nanocomposite in pristine state, which appears to be superior in comparison to that of the conventional Pt loaded CdS. We believe that this straightforward approach can be extended to synthesise other nano-metal sulphides in polymer network for photocatalytic and allied applications.

  11. Three-dimensional rendering of computer-generated holograms acquired from point-clouds on light field displays

    NASA Astrophysics Data System (ADS)

    Symeonidou, Athanasia; Blinder, David; Ceulemans, Beerend; Munteanu, Adrian; Schelkens, Peter

    2016-09-01

    Holograms, either optically acquired or simulated numerically from 3D datasets, such as point clouds, have special rendering requirements for display. Evaluating the quality of hologram generation techniques is not straightforward, since high-quality holographic display technologies are still immature, In this paper we present a framework for three-dimensional rendering of colour computer-generated holograms (CGHs) acquired from point-clouds, on high-end light field displays. This allows for the rendering of holographic content with horizontal parallax and wide viewing angle. We deploy prior work, namely a fast CGH method that inherently handles occlusion problems to acquire high quality colour holograms from point clouds. Our experiments showed that rendering holograms with the proposed framework provides 3D effect with depth disparity and horizontal-only with wide viewing angle. Therefore, it allows for the evaluation of CGH techniques regarding functional properties such as depth cues and efficient occlusion handling.

  12. Control of long electron quantum paths in high-order harmonic generation by phase-stabilized light pulses

    SciTech Connect

    Sansone, G.; Benedetti, E.; Caumes, J.-P.; Stagira, S.; Vozzi, C.; De Silvestri, S.; Nisoli, M.

    2006-05-15

    In this work we report on the first experimental demonstration of selection of the long electron quantum paths in the process of high-order harmonic generation by phase-stabilized multiple-cycle light pulses. A complete experimental investigation of the role of intensity and carrier-envelope phase of the driving pulses on the spectral characteristics of the long quantum paths is performed. Simulations based on the nonadiabatic saddle-point method and on a complete nonadiabatic three-dimensional model reproduce the main features of the experimental results. The use of phase-stabilized driving pulses allows one to control, on an attosecond temporal scale, the spectral and temporal characteristics associated with the electron quantum paths involved in the harmonic generation process.

  13. Slower carriers limit charge generation in organic semiconductor light-harvesting systems

    PubMed Central

    Stolterfoht, Martin; Armin, Ardalan; Shoaee, Safa; Kassal, Ivan; Burn, Paul; Meredith, Paul

    2016-01-01

    Blends of electron-donating and -accepting organic semiconductors are widely used as photoactive materials in next-generation solar cells and photodetectors. The yield of free charges in these systems is often determined by the separation of interfacial electron–hole pairs, which is expected to depend on the ability of the faster carrier to escape the Coulomb potential. Here we show, by measuring geminate and non-geminate losses and key transport parameters in a series of bulk-heterojunction solar cells, that the charge-generation yield increases with increasing slower carrier mobility. This is in direct contrast with the well-established Braun model where the dissociation rate is proportional to the mobility sum, and recent models that underscore the importance of fullerene aggregation for coherent electron propagation. The behaviour is attributed to the restriction of opposite charges to different phases, and to an entropic contribution that favours the joint separation of both charge carriers. PMID:27324720

  14. Attosecond dynamics of light-induced resonant hole transfer in high-order-harmonic generation

    NASA Astrophysics Data System (ADS)

    You, Jhih-An; Dahlström, Jan Marcus; Rohringer, Nina

    2017-02-01

    We present a study of high-order-harmonic generation (HHG) assisted by extreme ultraviolet (XUV) attosecond pulses, which can lead to the excitation of inner-shell electrons and the generation of a second HHG plateau. With the treatment of a one-dimensional model of krypton, based on time-dependent configuration interaction singles (TDCIS) of an effective two-electron system, we show that the XUV-assisted HHG spectrum reveals the duration of the semiclassical electron trajectories. The results are interpreted by the strong-field approximation (SFA) and the importance of the hole transfer during the tunneling process is emphasized. Finally, coherent population transfer between the inner and outer holes with attosecond pulse trains is discussed.

  15. Kinetic Modeling Sheds Light on the Mode of Action of Recombinant Factor VIIa on Thrombin Generation

    DTIC Science & Technology

    2011-01-01

    numerical model to generate activated factor VII (FVIIa) titration curves in the cases of normal blood composition, hemophilia A and B blood, blood...as a hemostatic agent for patients with hemophilia , congenital FVII deficiency, and Glanzmann’s thrombocytopenia [3]. Following its initial approval...normal blood composition, hemophilia A and B blood, blood lacking factor VII, blood lacking tissue factor pathway inhibitor, and diluted blood. We

  16. Time delay generation at high frequency using SOA based slow and fast light.

    PubMed

    Berger, Perrine; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi

    2011-10-24

    We show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of the intrinsic limitation of the carrier lifetime, leading to the generation of time delays at any high frequencies in a single SOA device. The linear dependence of the RF phase shift with respect to the RF frequency is theoretically predicted and experimentally evidenced at 16 and 35 GHz.

  17. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    SciTech Connect

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  18. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB.

    PubMed

    Mehmet, Moritz; Ast, Stefan; Eberle, Tobias; Steinlechner, Sebastian; Vahlbruch, Henning; Schnabel, Roman

    2011-12-05

    Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope.

  19. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

    PubMed Central

    Vyas, Vijay S.; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V.

    2015-01-01

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications. PMID:26419805

  20. Generation of photocurrent by visible-light irradiation of conjugated dawson polyoxophosphovanadotungstate-porphyrin copolymers.

    PubMed

    Azcarate, Iban; Huo, Zhaohui; Farha, Rana; Goldmann, Michel; Xu, Hualong; Hasenknopf, Bernold; Lacôte, Emmanuel; Ruhlmann, Laurent

    2015-05-26

    Four hybrid polyoxometalate-porphyrin copolymer films were obtained by the electrooxidation of zinc octaethylporphyrin in the presence of four different Dawson-type polyoxometalates bearing two pyridyl groups (POM(py)2) with various spacers. The POM monomers were designed around 1,3,5-trisubstituted benzene rings. Two of the substituents of the benzene ring are linked to the pyridyl groups, and the third is connected to the POM subunit. The four monomers vary in the relative positions of the nitrogen atoms of the pyridine rings or in the distance from the carbonyl group. The monomers were fully characterized by (1)H, (31)P, and (13)C NMR spectroscopy, electrospray mass spectrometry, IR and UV/Vis spectroscopy, and electrochemistry. The copolymers were characterized by UV/Vis spectroscopy, X-ray photoelectron spectroscopy, electrochemistry, and AFM. Their photovoltaic performance under visible light irradiation was investigated by photocurrent transient measurements under visible illumination.

  1. Coherent EUV light from high-order harmonic generation: Enhancement and applications to lensless diffractive imaging

    NASA Astrophysics Data System (ADS)

    Paul, Ariel J.

    2007-12-01

    The first half of this thesis presents the first demonstration of quasi-phase matching in the coherent high-order harmonic conversion of ultrafast laser pulses into the EUV region of the spectrum. To achieve this quasi-phase matching, a novel method of fabricating hollow waveguides with a modulated inner diameter was developed. This technique lead to significant enhancements of EUV flux at wavelengths shorter than were previously accessible by known phase-matching techniques. In the second half of this thesis, the first tabletop demonstration of lensless diffractive imaging with EUV light is presented using HHG in a gas-filled hollow waveguide to provide coherent illumination. This tabletop microscope shows a spatial resolution of ˜ 200 nm and a large depth of field. Furthermore, the technique is easily scalable to shorter wavelengths of interest to biological imaging.

  2. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

    NASA Astrophysics Data System (ADS)

    Vyas, Vijay S.; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V.

    2015-09-01

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications.

  3. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation.

    PubMed

    Vyas, Vijay S; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V

    2015-09-30

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications.

  4. Accuracy Based Generation of Thermodynamic Properties for Light Water in RELAP5-3D

    SciTech Connect

    Cliff B. Davis

    2010-09-01

    RELAP5-3D interpolates to obtain thermodynamic properties for use in its internal calculations. The accuracy of the interpolation was determined for the original steam tables currently used by the code. This accuracy evaluation showed that the original steam tables are generally detailed enough to allow reasonably accurate interpolations in most areas needed for typical analyses of nuclear reactors cooled by light water. However, there were some regions in which the original steam tables were judged to not provide acceptable accurate results. Revised steam tables were created that used a finer thermodynamic mesh between 4 and 21 MPa and 530 and 640 K. The revised steam tables solved most of the problems observed with the original steam tables. The accuracies of the original and revised steam tables were compared throughout the thermodynamic grid.

  5. Optical Tweezers Array and Nimble Tweezers Probe Generated by Spatial- Light Modulator

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Jassemnejad, Baha; Seibel, Robin E.; Weiland, Kenneth E.

    2003-01-01

    An optical tweezers is being developed at the NASA Glenn Research Center as a visiblelight interface between ubiquitous laser technologies and the interrogation, visualization, manufacture, control, and energization of nanostructures such as silicon carbide (SiC) nanotubes. The tweezers uses one or more focused laser beams to hold micrometer-sized particles called tools (sometimes called tips in atomic-force-microscope terminology). A strongly focused laser beam has an associated light-pressure gradient that is strong enough to pull small particles to the focus, in spite of the oppositely directed scattering force; "optical tweezers" is the common term for this effect. The objective is to use the tools to create carefully shaped secondary traps to hold and assemble nanostructures that may contain from tens to hundreds of atoms. The interaction between a tool and the nanostructures is to be monitored optically as is done with scanning probe microscopes. One of the initial efforts has been to create, shape, and control multiple tweezers beams. To this end, a programmable spatial-light modulator (SLM) has been used to modify the phase of a laser beam at up to 480 by 480 points. One program creates multiple, independently controllable tweezer beams whose shapes can be tailored by making the SLM an adaptive mirror in an interferometer (ref. 1). The beams leave the SLM at different angles, and an optical Fourier transform maps these beams to different positions in the focal plane of a microscope objective. The following figure shows two arrays of multiple beams created in this manner. The patterns displayed above the beam array control the intensity-to-phase transformation required in programming the SLM. Three of the seven beams displayed can be used as independently controllable beams.

  6. Stellar Occultations by Large TNOs on 2012: The February 3rd by (208996) 2003 AZ84, and the February 17th by (50000) Quaoar

    NASA Astrophysics Data System (ADS)

    Braga Ribas, Felipe; Sicardy, B.; Ortiz, J. L.; Duffard, R.; Camargo, J. I. B.; Lecacheux, J.; Colas, F.; Vachier, F.; Tanga, P.; Sposetti, S.; Brosch, N.; Kaspi, S.; Manulis, I.; Baug, T.; Chandrasekhar, T.; Ganesh, S.; Jain, J.; Mohan, V.; Sharma, A.; Garcia-Lozano, R.; Klotz, A.; Frappa, E.; Jehin, E.; Assafin, M.; Vieira Martins, R.; Behrend, R.; Roques, F.; Widemann, T.; Morales, N.; Thirouin, A.; Mahasena, P.; Benkhaldoun, Z.; Daassou, A.; Rinner, C.; Ofek, E. O.

    2012-10-01

    On February 2012, two stellar occultation's by large Trans-neptunian Objects (TNO's) were observed by our group. On the 3rd, an event by (208996) 2003 AZ84 was recorded from Mont Abu Observatory and IUCAA Girawali Observatory in India and from Weizmann Observatory in Israel. On the 17th, a stellar occultation by (50000) Quaoar was observed from south France and Switzerland. Both occultations are the second observed by our group for each object, and will be used to improve the results obtained on the previous events. The occultation by 2003 AZ84 is the first multi-chord event recorded for this object. From the single chord event on January 8th 2011, Braga-Ribas et al. 2011 obtained a lower limit of 573 +/- 21 km. From the 2012 occultation the longest chord has a size of 662 +/- 50 km. The other chords will permit to determine the size and shape of the TNO, and derive other physical parameters, such as the geometric albedo. The Quaoar occultation was observed from south of France (Observatoire de la Côte d'Azur, TAROT telescope and Valensole) and from Gnosca, Switzerland. Unfortunately, all three sites in France are almost at the same Quaoar's latitude, so in practice, we have two chords that can be used to fit Quaoar's limb. The resulting fit will be compared with the results obtained by Braga-Ribas et al. 2011. Braga-Ribas F., Sicardy B., et al. 2011, EPSC-DPS2011, 1060.Ribas F., Sicardy B., et al. 2011, EPSC-DPS2011, 1060.

  7. Degradation of organic dyes by Si/SiOx core-shell nanowires: Spontaneous generation of superoxides without light irradiation.

    PubMed

    Cao, Yu; Gu, Xiaoyu; Yu, Hongkun; Zeng, Wei; Liu, Xiang; Jiang, Suhua; Li, Yuesheng

    2016-02-01

    Recently, silicon nanowires (SiNWs) have been proven to be highly active in the photocatalysis of dye degradation. However, the unstable hydrogen-terminated surface and the need for constant light irradiation hinder their extensive use. In this work, a stable silica shell was intentionally formed on the surface of SiNWs to produce Si/SiOx core-shell silicon nanowires (S-SiNWs). Light-illuminated or not, S-SiNWs showed almost identical degradation ability for the degradation of indigo carmine (IC) in both conditions, which meant neither hydrogen termination nor light irradiation was a prerequisite for the degradation activity of S-SiNWs. UV/Vis spectroscopy and liquid chromatography/mass spectrometry showed that IC was converted into isatin sulfonic acid in this process. Quenching studies and electron paramagnetic resonance spectroscopy revealed that this bleaching ability was highly dependent on superoxides. A possible mechanism was accordingly suggested. In addition, the recently discovered reductase-like activity of SiNWs can be explained by the superoxides generation.

  8. Efficient Light-driven Long Distance Charge Separation and H2 Generation in Semiconductor Quantum Rods and Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Lian, Tianquan

    Quantum confined semiconductor nanocrystals (0D quantum dots, 1D quantum rods and 2D quantum platlets) have been intensively investigated as light harvesting and charge separation materials for photovoltaic and photocatalytic applications. The efficiency of these semiconductor nanocrystal-based devices depends on many fundamental processes, including light harvesting, carrier relaxation, exciton localization and transport, charge separation and charge recombination. The competition between these processes determines the overall solar energy conversion (solar to electricity or fuel) efficiency. Semiconductor nano-heterostructures, combining two or more material components, offer unique opportunities to control their charge separation properties by tailoring their compositions, dimensions and spatial arrangement. Further integration of catalysts (heterogeneous or homogeneous) to these materials form multifunctional nano-heterostructures. Using 0D, 1D and 2D CdSe/CdS/Pt heterostructures as model systems, we directly probe the above-mentioned fundamental exciton and carrier processes by transient absorption and time-resolved fluorescence spectroscopy. We are examining how to control these fundamental processes through the design of heterostructures to achieve long-lived charge separation and efficient H2 generation. In this talk, we will discuss a new model for exciton dissociation by charge transfer in quantum dots (i.e. Auger assisted electron transfer), mechanism of 1D and 2D exciton transport and dissociation in nanorods, and key factors limiting H2 generation efficiency in CdSe/CdS/Pt nanorod heterostructures.

  9. Retrieving squeezing from classically noisy light in second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Ralph, T. C.; White, A. G.

    1995-05-01

    We report the results of a study of the quantum noise properties of a squeezing system involving a three-level laser pumping two similar second-harmonic-generating crystals. We show that squeezing that has been obscured by intensity and phase noise from the pump laser may be retrieved by difference detection of both second-harmonic outputs. Similarly, the squeezed vacuum formed by combining the two outputs on a 50/50 beam splitter will be squeezed at frequencies that are classically noisy in the individual beams.

  10. Generation-X: An X-ray observatory designed to observe first light objects

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Cameron, R. A.; Brissenden, R. J.; Elvis, M. S.; Fabbiano, G.; Gorenstein, P.; Reid, P. B.; Schwartz, D. A.; Bautz, M. W.; Figueroa-Feliciano, E.; Petre, R.; White, N. E.; Zhang, W. W.

    2006-03-01

    The new cosmological frontier will be the study of the very first stars, galaxies and black holes in the early Universe. These objects are invisible to the current generation of X-ray telescopes, such as Chandra. In response, the Generation-X ("Gen-X") Vision Mission has been proposed as a future X-ray observatory which will be capable of detecting the earliest objects. X-ray imaging and spectroscopy of such faint objects demands a large collecting area and high angular resolution. The Gen-X mission plans 100 m 2 collecting area at 1 keV (1000× that of Chandra), and with an angular resolution of 0.1″. The Gen-X mission will operate at Sun-Earth L2, and might involve four 8 m diameter telescopes or even a single 20 m diameter telescope. To achieve the required effective area with reasonable mass, very lightweight grazing incidence X-ray optics must be developed, having an areal density 100× lower than in Chandra, with mirrors as thin as 0.1 mm requiring active on-orbit figure control. The suite of available detectors for Gen-X should include a large-area high resolution imager, a cryogenic imaging spectrometer, and a grating spectrometer. We discuss use of Gen-X to observe the birth of the first black holes, stars and galaxies, and trace their cosmic evolution.

  11. Light Harvesting Proteins for Solar Fuel Generation in Bioengineered Photoelectrochemical Cells

    PubMed Central

    Ihssen, Julian; Braun, Artur; Faccio, Greta; Gajda-Schrantz, Krisztina; Thöny-Meyer, Linda

    2014-01-01

    The sun is the primary energy source of our planet and potentially can supply all societies with more than just their basic energy needs. Demand of electric energy can be satisfied with photovoltaics, however the global demand for fuels is even higher. The direct way to produce the solar fuel hydrogen is by water splitting in photoelectrochemical (PEC) cells, an artificial mimic of photosynthesis. There is currently strong resurging interest for solar fuels produced by PEC cells, but some fundamental technological problems need to be solved to make PEC water splitting an economic, competitive alternative. One of the problems is to provide a low cost, high performing water oxidizing and oxygen evolving photoanode in an environmentally benign setting. Hematite, α-Fe2O3, satisfies many requirements for a good PEC photoanode, but its efficiency is insufficient in its pristine form. A promising strategy for enhancing photocurrent density takes advantage of photosynthetic proteins. In this paper we give an overview of how electrode surfaces in general and hematite photoanodes in particular can be functionalized with light harvesting proteins. Specifically, we demonstrate how low-cost biomaterials such as cyanobacterial phycocyanin and enzymatically produced melanin increase the overall performance of virtually no-cost metal oxide photoanodes in a PEC system. The implementation of biomaterials changes the overall nature of the photoanode assembly in a way that aggressive alkaline electrolytes such as concentrated KOH are not required anymore. Rather, a more environmentally benign and pH neutral electrolyte can be used. PMID:24678669

  12. High Brightness Electron Guns for Next-Generation Light Sources and Accelerators

    SciTech Connect

    H. Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; I. Ben-Zvi; T. Srinivasan-Rao; P. Colestock; D.C. Nguyen; R.L. Wood; L. Young; D. Janssen; J. Lewellen; G. Neil; H.L. Phillips; J.P. Preble

    2004-07-01

    Advanced Energy Systems continues to develop advanced electron gun and injector concepts. Several of these projects have been previously described, but the progress and status of each will be updated. The project closest to completion is an all superconducting RF (SRF) gun, being developed in collaboration with the Brookhaven National Laboratory, that uses the niobium of the cavity wall itself as the photocathode material. This gun has been fabricated and will shortly be tested with beam. The cavity string for a closely-coupled DC gun and SRF cavity injector that is expected to provide beam quality sufficient for proposed ERL light sources and FELs will be assembled at the Jefferson Laboratory later this year. We are also collaboration with Los Alamos on a prototype CW normal-conducting RF gun with similar performance, that will undergo thermal testing in late 2004. Another CW SRF gun project that uses a high quantum efficiency photocathode, similar to the FZ-Rossendorf approach, has just begun. Finally, we will present the RF design and cold test results for a fully axisymmetric, ultra-high-brightness x-band RF gun.

  13. Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells.

    PubMed

    Ihssen, Julian; Braun, Artur; Faccio, Greta; Gajda-Schrantz, Krisztina; Thöny-Meyer, Linda

    2014-01-01

    The sun is the primary energy source of our planet and potentially can supply all societies with more than just their basic energy needs. Demand of electric energy can be satisfied with photovoltaics, however the global demand for fuels is even higher. The direct way to produce the solar fuel hydrogen is by water splitting in photoelectrochemical (PEC) cells, an artificial mimic of photosynthesis. There is currently strong resurging interest for solar fuels produced by PEC cells, but some fundamental technological problems need to be solved to make PEC water splitting an economic, competitive alternative. One of the problems is to provide a low cost, high performing water oxidizing and oxygen evolving photoanode in an environmentally benign setting. Hematite, α-Fe2O3, satisfies many requirements for a good PEC photoanode, but its efficiency is insufficient in its pristine form. A promising strategy for enhancing photocurrent density takes advantage of photosynthetic proteins. In this paper we give an overview of how electrode surfaces in general and hematite photoanodes in particular can be functionalized with light harvesting proteins. Specifically, we demonstrate how low-cost biomaterials such as cyanobacterial phycocyanin and enzymatically produced melanin increase the overall performance of virtually no-cost metal oxide photoanodes in a PEC system. The implementation of biomaterials changes the overall nature of the photoanode assembly in a way that aggressive alkaline electrolytes such as concentrated KOH are not required anymore. Rather, a more environmentally benign and pH neutral electrolyte can be used.

  14. Quantum teleportation of laser-generated photons with an entangled-light-emitting diode.

    PubMed

    Stevenson, R M; Nilsson, J; Bennett, A J; Skiba-Szymanska, J; Farrer, I; Ritchie, D A; Shields, A J

    2013-01-01

    Quantum teleportation can transfer information between physical systems, which is essential for engineering quantum networks. Of the many technologies being investigated to host quantum bits, photons have obvious advantages as 'pure' quantum information carriers, but their bandwidth and energy is determined by the quantum system that generates them. Here we show that photons from fundamentally different sources can be used in the optical quantum teleportation protocol. The sources we describe have bandwidth differing by a factor over 100, but we still observe teleportation with average fidelity of 0.77, beating the quantum limit by 10 standard deviations. Furthermore, the dissimilar nature of our sources exposes physics hidden in previous experiments, which we also predict numerically. These phenomena include converting qubits from Poissonian to Fock statistics, quantum interference, beats and teleportation for spectrally non-degenerate photons, and acquisition of evolving character following teleportation of a qubit.

  15. Light sources generating self-splitting beams and their propagation in non-Kolmogorov turbulence.

    PubMed

    Mei, Zhangrong

    2014-06-02

    A class of random sources producing far fields self-splitting intensity profiles with variable spacing between the x and y directions is introduced. The beam conditions for ensuring the sources to generate a beam are derived. Based on the derived analytical expression, the evolution behavior of the beams produced by these families of sources in free space and turbulence atmospheric are explored and comparatively analyzed. By changing the modulation parameters n and m, the degree of coherence of Gaussian Schell-model source in the x and y directions are modulated respectively, and then the number of splitting beams and the spacing between splitting beams can be adjusted. It is illustrated that the self-splitting intensity profile is stable when beams propagate in free space, but they eventually transformed into a Gaussian profiles when it passes at sufficiently large distances from its source through the turbulent atmosphere.

  16. Photocatalytic hydrogen generation over lanthanum doped TiO2 under UV light irradiation.

    PubMed

    Liu, Y; Xie, L; Li, Y; Qu, J L; Zheng, J; Li, X G

    2009-02-01

    TiO2 nanoparticles doped with different amount of lanthanum were obtained by sol-gel approach and followed annealing at different temperature. The crystal size of TiO2 doped with lanthanum was smaller than that of pure TiO2. Photocatalytic activity of TiO2 doped with lanthanum for water splitting into H2 was investigated. The photocatalytic activity of TiO2 doped with lanthanum for water splitting into H2 is higher than that of pure TiO2. It was found that the optimal photocatalyst was TiO2 doped with 2 wt% lanthanum and calcined at 600 degrees C for 4 h which had hydrogen generation rate 700.6 micromol h(-1).

  17. Excited states, generation of light, and photoprocesses in series of complex N, O, S polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Obukhov, Alexandr E.

    1995-01-01

    The photophysical properties of some new and also some known complex organic molecules emission and generated radiations in the wavelength interval 340 - 560 nm have been studied in a wide range of organic solvent. Specifically, these molecules are based on phenyl, furyl-, thienyl-oxazoles and oxadiazoles to compile a quasihomological series. Using the measured values of the extinction (epsilonabs(nu )), the fluorescence quantum yields ((gamma) ), and the fluorescence lifetime ((tau) ), we calculated rate constants for radiative decay (Kfl), and intercombination conversion (KST), along with the cross sections for absorption ((sigma) 13max), and stimulated emission ((sigma) 31osc). We also found the longest pump-pulse rise time (tlp) for which generate of oscillations active molecules. A broad spectrum of singlet and triplet electronic states using the semiempirical SCF MO LCAO method (Parr-Pariser-Pople, PPP/CI, a model approximation of (pi) - electrons) and the complete and incomplete neglecting of differential overlap (CNDO/S-CI and INDO/S-CI, sp-electronic basis). In this paper, the photophysical parameters (gamma) , (tau) , (sigma) 31osc, (sigma) 3S*, (sigma) 2T*, tlp, Kfl, KST, Elp (the threshold of the pump energy density) in the quasi-gomologicals series of complex active molecules are treated as depending on the structural factors in different ways. The physical mechanism responsible for the improvement in the photophysical properties of the mono-, three- and pentacyclic phenyl-, furyl-, and thienylbisoxazoles and oxadiazoles is established. The improvement is observed in the case when the separation of the bands of emission ((sigma) 31osc) and induced absorption on the S1* yields Sn* ((sigma) 3S*) and T1 yields Tn ((sigma) 2T*) transitions is maximum.

  18. Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: effects of ozone, light and temperature

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Camredon, M.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Temime-Roussel, B.; Monod, A.; Aumont, B.; Doussin, J. F.

    2015-01-01

    A series of experiments was conducted in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber to investigate the evolution of the physical and chemical properties of secondary organic aerosols (SOAs) during different forcings. The present experiments represent a first attempt to comprehensively investigate the influence of oxidative processing, photochemistry, and diurnal temperature cycling upon SOA properties. SOAs generated from the ozonolysis of α-pinene were exposed under dry conditions (< 1% relative humidity) to (1) elevated ozone concentrations, (2) light (under controlled temperature conditions) or (3) light and heat (6 °C light-induced temperature increase), and the resultant changes in SOA optical properties (i.e. absorption and scattering), hygroscopicity and chemical composition were measured using a suite of instrumentation interfaced to the CESAM chamber. The complex refractive index (CRI) was derived from integrated nephelometer measurements of 525 nm wavelength, using Mie scattering calculations and measured number size distributions. The particle size growth factor (GF) was measured with a hygroscopic tandem differential mobility analyzer (H-TDMA). An aerosol mass spectrometer (AMS) was used for the determination of the f44 / f43 and O : C ratio of the particles bulk. No change in SOA size or chemical composition was observed during O3 and light exposure at constant temperature; in addition, GF and CRI of the SOA remained constant with forcing. On the contrary, illumination of SOAs in the absence of temperature control led to an increase in the real part of the CRI from 1.35 (±0.03) to 1.49 (±0.03), an increase of the GF from 1.04 (±0.02) to 1.14 (±0.02) and an increase of the f44 / f43 ratio from 1.73 (±0.03) to 2.23 (±0.03). The simulation of the experiments using the master chemical mechanism (MCM) and the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere

  19. Role of nonlinear refraction in the generation of terahertz field pulses by light fields

    SciTech Connect

    Zabolotskii, A. A.

    2013-07-15

    The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equations is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.

  20. Optical element for full spectral purity from IR-generated EUV light sources

    NASA Astrophysics Data System (ADS)

    van den Boogaard, A. J. R.; Louis, E.; van Goor, F. A.; Bijkerk, F.

    2009-03-01

    Laser produced plasma (LLP) sources are generally considered attractive for high power EUV production in next generation lithography equipment. Such plasmas are most efficiently excited by the relatively long, infrared wavelengths of CO2-lasers, but a significant part of the rotational-vibrational excitation lines of the CO2 radiation will be backscattered by the plasma's critical density surface and consequently will be present as parasitic radiation in the spectrum of such sources. Since most optical elements in the EUV collecting and imaging train have a high reflection coefficient for IR radiation, undesirable heating phenomena at the resist level are likely to occur. In this study a completely new principle is employed to obtain full separation of EUV and IR radiation from the source by a single optical component. While the application of a transmission filter would come at the expense of EUV throughput, this technique potentially enables wavelength separation without loosing reflectance compared to a conventional Mo/Si multilayer coated element. As a result this method provides full spectral purity from the source without loss in EUV throughput. Detailed calculations on the principal of functioning are presented.