Science.gov

Sample records for 3rd interplanetary network

  1. BACODINE/3rd Interplanetary Network burst localization

    SciTech Connect

    Hurley, K.; Barthelmy, S.; Butterworth, P.; Cline, T.; Sommer, M.; Boer, M.; Niel, M.; Kouveliotou, C.; Fishman, G.; Meegan, C.

    1996-08-01

    Even with only two widely separated spacecraft (Ulysses and GRO), 3rd Interplanetary Network (IPN) localizations can reduce the areas of BATSE error circles by two orders of magnitude. Therefore it is useful to disseminate them as quickly as possible following BATSE bursts. We have implemented a system which transmits the light curves of BACODINE/BATSE bursts directly by e-mail to UC Berkeley immediately after detection. An automatic e-mail parser at Berkeley watches for these notices, determines the Ulysses crossing time window, and initiates a search for the burst data on the JPL computer as they are received. In ideal cases, it is possible to retrieve the Ulysses data within a few hours of a burst, generate an annulus of arrival directions, and e-mail it out to the astronomical community by local nightfall. Human operators remain in this loop, but we are developing a fully automated routine which should remove them, at least for intense events, and reduce turn-around times to an absolute minimum. We explain the current operations, the data types used, and the speed/accuracy tradeoffs.

  2. Rapid, Precise Gamma-Ray Burst Localizations with the 3rd Interplanetary Network

    NASA Astrophysics Data System (ADS)

    Hurley, K.; Cline, T.; Trombka, J.; Barthelmy, S.; Mazets, E.; Golenetskii, S.; Kippen, R. M.; Kouveliotou, C.; Feroci, M.; Frontera, F.; Guidorzi, C.

    2000-05-01

    The interplanetary network now has the Ulysses and Near Earth Asteroid Rendezvous (NEAR) spacecraft as its most distant points, and Konus-Wind, BATSE, and the BeppoSAX GRBM as near-Earth points. In this configuration, the IPN triangulates about one GRB per week. The error box sizes are 20 square arcminutes and larger, and the delays are in the 10 hours and longer range. As of March 2000, 14 GRB error boxes have been circulated, resulting in 3 counterpart detections and two spectroscopic redshift determinations. By the time this paper is presented, we expect these numbers to roughly double. We discuss the IPN operations and introduce a service for notifying people via pager and cell phone of an impending GRB localization, prior to the actual issuance of a Global Coordinates Network message. We also compare the IPN detection rate, delay, and error box size with those of other missions, both in operation today (e.g. BeppoSAX) and to be launched in the near future (e.g. HETE-II). We are grateful for support under JPL Contract 958056, NASA grants NAG 5-7810 and NAG 5-3585, and under the NEAR participating scientist program.

  3. CFDP for Interplanetary Overlay Network

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    The CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol for Interplanetary Overlay Network (CFDP-ION) is an implementation of CFDP that uses IO' s DTN (delay tolerant networking) implementation as its UT (unit-data transfer) layer. Because the DTN protocols effect automatic, reliable transmission via multiple relays, CFDP-ION need only satisfy the requirements for Class 1 ("unacknowledged") CFDP. This keeps the implementation small, but without loss of capability. This innovation minimizes processing resources by using zero-copy objects for file data transmission. It runs without modification in VxWorks, Linux, Solaris, and OS/X. As such, this innovation can be used without modification in both flight and ground systems. Integration with DTN enables the CFDP implementation itself to be very simple; therefore, very small. Use of ION infrastructure minimizes consumption of storage and processing resources while maximizing safety.

  4. The interplanetary gamma ray burst network

    NASA Astrophysics Data System (ADS)

    Cline, T.

    The Interplanetary Gamma-Ray Burst Network (IPN) is providing gamma-ray burst (GRB) alerts and localizations at the maximum rate anticipated before the launch of the Swift mission. The arc-minute source precision of the IPN is again permitting searches for GRB afterglows in the radio and optical regimes with delays of only hours up to 2 days. The successful addition of the Mars Odyssey mission has compensated for the loss of the asteroid mission NEAR, to reconstitute a fully long- baseline interplanetary network, with Ulysses at > 5 AU and Konus-Wind and HETE-2 near the Earth. In addition to making unassisted GRB localizations that enable a renewed supply of counterpart observations, the Mars/Ulysses/Wind IPN is confirming and reinforcing GRB source localizations with HETE-2. It has also confirmed and reinforced localizations with the BeppoSAX mission before the BeppoSAX termination in May and has detected and localized both SGRs and an unusual hard x-ray transient that is neither an SGR nor a GRB. This IPN is expected to operate until at least 2004.

  5. The Interplanetary Overlay Networking Protocol Accelerator

    NASA Technical Reports Server (NTRS)

    Pang, Jackson; Torgerson, Jordan L.; Clare, Loren P.

    2008-01-01

    A document describes the Interplanetary Overlay Networking Protocol Accelerator (IONAC) an electronic apparatus, now under development, for relaying data at high rates in spacecraft and interplanetary radio-communication systems utilizing a delay-tolerant networking protocol. The protocol includes provisions for transmission and reception of data in bundles (essentially, messages), transfer of custody of a bundle to a recipient relay station at each step of a relay, and return receipts. Because of limitations on energy resources available for such relays, data rates attainable in a conventional software implementation of the protocol are lower than those needed, at any given reasonable energy-consumption rate. Therefore, a main goal in developing the IONAC is to reduce the energy consumption by an order of magnitude and the data-throughput capability by two orders of magnitude. The IONAC prototype is a field-programmable gate array that serves as a reconfigurable hybrid (hardware/ firmware) system for implementation of the protocol. The prototype can decode 108,000 bundles per second and encode 100,000 bundles per second. It includes a bundle-cache static randomaccess memory that enables maintenance of a throughput of 2.7Gb/s, and an Ethernet convergence layer that supports a duplex throughput of 1Gb/s.

  6. Interplanetary Overlay Network Bundle Protocol Implementation

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.

  7. "Elderly Deafblindness." Proceedings of the European Conference of Deafblind International's Acquired Deafblindness Network (3rd, Marcelli di Numana, Italy, October 2-7, 1998).

    ERIC Educational Resources Information Center

    Deafblind International, London (England).

    This text includes all of the plenary presentations from the 3rd European Conference of Deafblind International's Acquired Deafblindness Network. This international conference was the first to focus specifically on older people with dual sensory impairment. Presentations addressed the awareness of the needs of older people with deafblind or dual…

  8. Proceedings of the Conference: Universities in World Network of Information and Communication (3rd, Dubrovnik, May 20-23, 1980).

    ERIC Educational Resources Information Center

    Soucek, Branko, Ed.

    1980-01-01

    The study, exploration, and debate of relations between universities, world information systems, and communication networks seeking to establish a sustainable system to handle recent developments in information and communication, utilizing universities as focal points, was continued at this third annual conference attended by 31 information…

  9. The Interplanetary Network Response to LIGO GW150914

    NASA Astrophysics Data System (ADS)

    Hurley, K.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Boynton, W.; Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.; Rau, A.; von Kienlin, A.; Zhang, X.; Connaughton, V.; Meegan, C.; Cline, T.; Gehrels, N.

    2016-09-01

    We have performed a blind search for a gamma-ray transient of arbitrary duration and energy spectrum around the time of the LIGO gravitational-wave event GW150914 with the six-spacecraft interplanetary network (IPN). Four gamma-ray bursts were detected between 30 hr prior to the event and 6.1 hr after it, but none could convincingly be associated with GW150914. No other transients were detected down to limiting 15–150 keV fluences of roughly 5 ×10‑8–5 × 10‑7 erg cm‑2. We discuss the search strategies and temporal coverage of the IPN on the day of the event and compare the spatial coverage to the region where GW150914 originated. We also report the negative result of a targeted search for the Fermi-GBM event reported in conjunction with GW150914.

  10. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  11. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  12. Comprehensive risk reduction in patients with atrial fibrillation: emerging diagnostic and therapeutic options—a report from the 3rd Atrial Fibrillation Competence NETwork/European Heart Rhythm Association consensus conference

    PubMed Central

    Kirchhof, Paulus; Lip, Gregory Y.H.; Van Gelder, Isabelle C.; Bax, Jeroen; Hylek, Elaine; Kaab, Stefan; Schotten, Ulrich; Wegscheider, Karl; Boriani, Giuseppe; Brandes, Axel; Ezekowitz, Michael; Diener, Hans; Haegeli, Laurent; Heidbuchel, Hein; Lane, Deirdre; Mont, Luis; Willems, Stephan; Dorian, Paul; Aunes-Jansson, Maria; Blomstrom-Lundqvist, Carina; Borentain, Maria; Breitenstein, Stefanie; Brueckmann, Martina; Cater, Nilo; Clemens, Andreas; Dobrev, Dobromir; Dubner, Sergio; Edvardsson, Nils G.; Friberg, Leif; Goette, Andreas; Gulizia, Michele; Hatala, Robert; Horwood, Jenny; Szumowski, Lukas; Kappenberger, Lukas; Kautzner, Josef; Leute, Angelika; Lobban, Trudie; Meyer, Ralf; Millerhagen, Jay; Morgan, John; Muenzel, Felix; Nabauer, Michael; Baertels, Christoph; Oeff, Michael; Paar, Dieter; Polifka, Juergen; Ravens, Ursula; Rosin, Ludger; Stegink, W.; Steinbeck, Gerhard; Vardas, Panos; Vincent, Alphons; Walter, Maureen; Breithardt, Günter; Camm, A. John

    2012-01-01

    While management of atrial fibrillation (AF) patients is improved by guideline-conform application of anticoagulant therapy, rate control, rhythm control, and therapy of accompanying heart disease, the morbidity and mortality associated with AF remain unacceptably high. This paper describes the proceedings of the 3rd Atrial Fibrillation NETwork (AFNET)/European Heart Rhythm Association (EHRA) consensus conference that convened over 60 scientists and representatives from industry to jointly discuss emerging therapeutic and diagnostic improvements to achieve better management of AF patients. The paper covers four chapters: (i) risk factors and risk markers for AF; (ii) pathophysiological classification of AF; (iii) relevance of monitored AF duration for AF-related outcomes; and (iv) perspectives and needs for implementing better antithrombotic therapy. Relevant published literature for each section is covered, and suggestions for the improvement of management in each area are put forward. Combined, the propositions formulate a perspective to implement comprehensive management in AF. PMID:21791573

  13. Comprehensive risk reduction in patients with atrial fibrillation: emerging diagnostic and therapeutic options--a report from the 3rd Atrial Fibrillation Competence NETwork/European Heart Rhythm Association consensus conference.

    PubMed

    Kirchhof, Paulus; Lip, Gregory Y H; Van Gelder, Isabelle C; Bax, Jeroen; Hylek, Elaine; Kaab, Stefan; Schotten, Ulrich; Wegscheider, Karl; Boriani, Giuseppe; Brandes, Axel; Ezekowitz, Michael; Diener, Hans; Haegeli, Laurent; Heidbuchel, Hein; Lane, Deirdre; Mont, Luis; Willems, Stephan; Dorian, Paul; Aunes-Jansson, Maria; Blomstrom-Lundqvist, Carina; Borentain, Maria; Breitenstein, Stefanie; Brueckmann, Martina; Cater, Nilo; Clemens, Andreas; Dobrev, Dobromir; Dubner, Sergio; Edvardsson, Nils G; Friberg, Leif; Goette, Andreas; Gulizia, Michele; Hatala, Robert; Horwood, Jenny; Szumowski, Lukas; Kappenberger, Lukas; Kautzner, Josef; Leute, Angelika; Lobban, Trudie; Meyer, Ralf; Millerhagen, Jay; Morgan, John; Muenzel, Felix; Nabauer, Michael; Baertels, Christoph; Oeff, Michael; Paar, Dieter; Polifka, Juergen; Ravens, Ursula; Rosin, Ludger; Stegink, W; Steinbeck, Gerhard; Vardas, Panos; Vincent, Alphons; Walter, Maureen; Breithardt, Günter; Camm, A John

    2012-01-01

    While management of atrial fibrillation (AF) patients is improved by guideline-conform application of anticoagulant therapy, rate control, rhythm control, and therapy of accompanying heart disease, the morbidity and mortality associated with AF remain unacceptably high. This paper describes the proceedings of the 3rd Atrial Fibrillation NETwork (AFNET)/European Heart Rhythm Association (EHRA) consensus conference that convened over 60 scientists and representatives from industry to jointly discuss emerging therapeutic and diagnostic improvements to achieve better management of AF patients. The paper covers four chapters: (i) risk factors and risk markers for AF; (ii) pathophysiological classification of AF; (iii) relevance of monitored AF duration for AF-related outcomes; and (iv) perspectives and needs for implementing better antithrombotic therapy. Relevant published literature for each section is covered, and suggestions for the improvement of management in each area are put forward. Combined, the propositions formulate a perspective to implement comprehensive management in AF. PMID:21791573

  14. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.

  15. The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Webb, W. A.

    1978-01-01

    The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.

  16. Next-Generation Ground Network Architecture for Communications and Tracking of Interplanetary Smallsats

    NASA Astrophysics Data System (ADS)

    Cheung, K.-M.; Abraham, D.; Arroyo, B.; Basilio, E.; Babuscia, A.; Duncan, C.; Lee, D.; Oudrhiri, K.; Pham, T.; Staehle, R.; Waldherr, S.; Welz, G.; Wyatt, J.; Lanucara, M.; Malphrus, B.; Bellardo, J.; Puig-Suari, J.; Corpino, S.

    2015-08-01

    As small spacecraft venture out of Earth orbit, they will encounter challenges not experienced or addressed by the numerous low Earth orbit (LEO) CubeSat and smallsat missions staged to date. The LEO CubeSats typically use low-cost, proven CubeSat radios, antennas, and university ground stations with small apertures. As more ambitious yet cost-constrained space mission concepts to the Moon and beyond are being developed, CubeSats and smallsats have the potential to provide a more affordable platform for exploring deep space and performing the associated science. Some of the challenges that have, so far, slowed the proliferation of small interplanetary spacecraft are those of communications and navigation. Unlike Earth-orbiting spacecraft that navigate via government services such as North American Aerospace Defense Command's (NORAD's) tracking elements or the Global Positioning Satellite (GPS) system, interplanetary spacecraft would have to operate in a fundamentally different manner that allows the deep-space communications link to provide both command/telemetry and the radiometric data needed for navigation. Another challenge occurs when smallsat and CubeSat missions would involve multiple spacecraft that require near-simultaneous communication and/or navigation, but have a very limited number of ground antenna assets, as well as available spectrum, to support their links. To address these challenges, the Jet Propulsion Laboratory (JPL) and the Deep Space Network (DSN) it operates for NASA are pursuing the following efforts: (1) Developing a CubeSat-compatible, DSN-compatible transponder -- Iris -- which a commercial vendor can then make available as a product line. (2) Developing CubeSat-compatible high-gain antennas -- deployable reflectors, reflectarrays, and inflatable antennas. (3) Streamlining access and utilization processes for DSN and related services such as the Advanced Multi-Mission Operations System (AMMOS). (4) Developing methodologies for tracking

  17. Integrated RF/Optical Interplanetary Networking Preliminary Explorations and Empirical Results

    NASA Technical Reports Server (NTRS)

    Raible, Daniel E.; Hylton, Alan G.

    2012-01-01

    Over the last decade interplanetary telecommunication capabilities have been significantly expanded--specifically in support of the Mars exploration rover and lander missions. NASA is continuing to drive advances in new, high payoff optical communications technologies to enhance the network to Gbps performance from Mars, and the transition from technology demonstration to operational system is examined through a hybrid RF/optical approach. Such a system combines the best features of RF and optical communications considering availability and performance to realize a dual band trunk line operating within characteristic constraints. Disconnection due to planetary obscuration and solar conjunction, link delays, timing, ground terminal mission congestion and scheduling policy along with space and atmospheric weather disruptions all imply the need for network protocol solutions to ultimately manage the physical layer in a transparent manner to the end user. Delay Tolerant Networking (DTN) is an approach under evaluation which addresses these challenges. A multi-hop multi-path hybrid RF and optical test bed has been constructed to emulate the integrated deep space network and to support protocol and hardware refinement. Initial experimental results characterize several of these challenges and evaluate the effectiveness of DTN as a solution to mitigate them.

  18. Structures IVHM for 3rd Generation RLVs

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.

    2000-01-01

    The primary goal of a Structures Integrated Vehicle Health Management (IVHM) system for 3rd generation Reusable Launch Vehicles (RLV) is to provide near 100% structural sensing coverage and thus eliminate both routine, and especially unplanned, inspections which are costly and time consuming. To meet this goal, significant advances in sensing and measurement system technology, data systems architectures, and structures based analysis methodology will be required to enable the needed large numbers of sensors with little weight penalty. This program will leverage X-33, 2nd Gen RLV, Shuttle, and Aviation Safety SIVHM system development experience to address this goal.

  19. The Interplanetary Network Supplement to the Fermi GBM Catalog - An AO-2 and AO-3 Guest Investigator Project

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Briggs, M.; Connaughton, V.; Meegan, C.; von Kienlin, A.; Rau, A.; Zhang, X.; Golenetskii, S.; Aptekar, R.; Mazets, E.; Pal'shin, V.; Fredericks, D.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H. A.; Mitrofanov, I. G.; Golovin, D.; Litvak, M. L.; Sanin, A. B.; Boynton, W.; Fellows, C.; Harshman, K.; Starr, R.; Goldsten, J.

    2012-01-01

    In the first two years of operation of the Fermi GBM, the 9-spacecraft Interplanetary Network (IPN) detected 158 GBM bursts with one or two distant spacecraft, and triangulated them to annuli or error boxes. Combining the IPN and GBM localizations leads to error boxes which are up to 4 orders of magnitude smaller than those of the GBM alone. These localizations comprise the IPN supplement to the GBM catalog, and they support a wide range of scientific investigations.

  20. Investigation of primordial black hole bursts using interplanetary network gamma-ray bursts

    DOE PAGESBeta

    Ukwatta, Tilan Niranjan; Hurley, Kevin; MacGibbon, Jane H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'Shin, V. D.; Goldsten, J.; Boynton, W.; et al

    2016-07-25

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected bymore » the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Furthermore, assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.« less

  1. Investigation of Primordial Black Hole Bursts Using Interplanetary Network Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Ukwatta, T. N.; Hurley, K.; MacGibbon, J. H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'shin, V. D.; Goldsten, J.; Boynton, W.; Kozyrev, A. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Connaughton, V.; Yamaoka, K.; Ohno, M.; Ohmori, N.; Feroci, M.; Frontera, F.; Guidorzi, C.; Cline, T.; Gehrels, N.; Krimm, H. A.; McTiernan, J.

    2016-07-01

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  2. Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.

    PubMed

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Leonor, I; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Aptekar, R L; Atteia, J L; Cline, T; Connaughton, V; Frederiks, D D; Golenetskii, S V; Hurley, K; Krimm, H A; Marisaldi, M; Pal'shin, V D; Palmer, D; Svinkin, D S; Terada, Y; von Kienlin, A

    2014-07-01

    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors. PMID:25032916

  3. Average Spatial Distribution of Cosmic Rays behind the Interplanetary Shock—Global Muon Detector Network Observations

    NASA Astrophysics Data System (ADS)

    Kozai, M.; Munakata, K.; Kato, C.; Kuwabara, T.; Rockenbach, M.; Dal Lago, A.; Schuch, N. J.; Braga, C. R.; Mendonça, R. R. S.; Jassar, H. K. Al; Sharma, M. M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.; Tokumaru, M.

    2016-07-01

    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east-west asymmetry is more prominent in GMDN data responding to ˜60 GV GCRs than in NM data responding to ˜10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic-y component of the density gradient, G y , shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G z shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G z changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.

  4. THE INTERPLANETARY NETWORK SUPPLEMENT TO THE FERMI GBM CATALOG OF COSMIC GAMMA-RAY BURSTS

    SciTech Connect

    Hurley, K.; Pal'shin, V. D.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Svinkin, D. S.; Briggs, M. S.; Connaughton, V.; Meegan, C.; Goldsten, J.; Boynton, W.; Fellows, C.; Harshman, K.; Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.; and others

    2013-08-15

    We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least one other instrument in the nine-spacecraft IPN. Of the 427, the localizations of 149 could be improved by arrival time analysis (or {sup t}riangulation{sup )}. For any given burst observed by the GBM and one other distant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies between about 0.'4 and 32 Degree-Sign , depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. We find that the IPN localizations intersect the 1{sigma} GBM error circles in only 52% of the cases, if no systematic uncertainty is assumed for the latter. If a 6 Degree-Sign systematic uncertainty is assumed and added in quadrature, the two localization samples agree about 87% of the time, as would be expected. If we then multiply the resulting error radii by a factor of three, the two samples agree in slightly over 98% of the cases, providing a good estimate of the GBM 3{sigma} error radius. The IPN 3{sigma} error boxes have areas between about 1 arcmin{sup 2} and 110 deg{sup 2}, and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two bursts in the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrial gamma flash, and in the other, its origin was given as ''uncertain''. We also discuss the sensitivity and calibration of the IPN.

  5. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by the Interplanetary Network

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackbum, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.; Slutsky, J.; Cline, T.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.

    2014-01-01

    We present the results of a search for gravitational waves associated with 223 gamma ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(exp-2) solar mass c(exp 2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  6. Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.

    PubMed

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Leonor, I; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Aptekar, R L; Atteia, J L; Cline, T; Connaughton, V; Frederiks, D D; Golenetskii, S V; Hurley, K; Krimm, H A; Marisaldi, M; Pal'shin, V D; Palmer, D; Svinkin, D S; Terada, Y; von Kienlin, A

    2014-07-01

    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  7. Search for Gravitational Waves Associated with γ-ray Bursts Detected by the Interplanetary Network

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Augustus, H.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Croce, R. P.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Ha, J.; Hall, E. D.; Hamilton, W.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Holt, K.; Hopkins, P.; Horrom, T.; Hoske, D.; Hosken, D. J.; Hough, J.; Howell, E. J.

    2014-07-01

    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10-2M⊙c2 at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  8. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.

    2006-01-01

    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  9. Interplanetary trajectories

    NASA Astrophysics Data System (ADS)

    Bernard, J.

    Methods of solving the equations of motion of an interplanetary probe are presented. The notion of sphere of influence is defined. Solving the three body problem by the Jacobi method, and the method of juxtapositioned cones are discussed. The conditions for leaving a planet, and interplanetary transfer are explained. Hohmann's transfer method is outlined. Launch window, maneuvers on approaching a planet, and gravity assist are considered.

  10. Limits to the burster repetition rate as deduced from the 2nd catalog of the interplanetary network

    NASA Technical Reports Server (NTRS)

    Atteia, J. L.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Evans, W. D.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.; Cline, T. L.

    1985-01-01

    The burster repetition rate is an important parameter in many gamma ray burst models. The localizations of the interplanetary network, which have a relatively small combined surface area, may be used to estimate the average repetition rate. The method consists of (1) estimating the number of random overlaps between error boxes expected in the catalog and comparing this number to that actually observed; (2) modeling the response of the detectors in the network, so that the probability of detecting a burst can be estimated; and (3) simulating the arrival of bursts at the network assuming that burster repetition is governed by a Poisson process. The application of this method for many different burster luminosity functions shows that (1) the lower limit to the burster repetition rate depends strongly upon the assumed luminosity function; (2) the best lower limit to the repetition period obtainable from the data of the network is about 100 months; and (3) that a luminosity function for all bursters similar to that of the 1979 Mar 5 burster is inconsistent with the data.

  11. Risk assessment of the extreme interplanetary shock of 23 July 2012 on low-latitude power networks

    NASA Astrophysics Data System (ADS)

    Zhang, J. J.; Wang, C.; Sun, T. R.; Liu, Y. D.

    2016-03-01

    Geomagnetic sudden commencements (SCs), characterized by a rapid enhancement in the rate of change of the geomagnetic field perturbation (dB/dt), are considered to be an important source of large geomagnetically induced currents (GICs) in middle- and low-latitude power grids. In this study, the extreme interplanetary shock of 23 July 2012 is simulated under the assumption that it had hit the Earth with the result indicating the shock-caused SC would be 123 nT. Based on statistics, the occurrence frequency of SCs with amplitudes larger than the simulated one is estimated to be approximately 0.2% during the past 147 years on the Earth. During this extreme event, the simulation indicates that dB/dt, which is usually used as a proxy for GICs, at a dayside low-latitude substation would exceed 100 nT/min; this is very large for low-latitude regions. We then assess the GIC threat level based on the simulated geomagnetic perturbations by using the method proposed by Marshall et al. (2011). The results indicate that the risk remains at "low" level for the low-latitude power network on a global perspective. However, the GIC risk may reach "moderate" or even "high" levels for some equatorial power networks due to the influence of the equatorial electrojet. Results of this study feature substantial implications for risk management, planning, and design of low-latitude electric power networks.

  12. WNN 92; Proceedings of the 3rd Workshop on Neural Networks: Academic/Industrial/NASA/Defense, Auburn Univ., AL, Feb. 10-12, 1992 and South Shore Harbour, TX, Nov. 4-6, 1992

    NASA Technical Reports Server (NTRS)

    Padgett, Mary L. (Editor)

    1993-01-01

    The present conference discusses such neural networks (NN) related topics as their current development status, NN architectures, NN learning rules, NN optimization methods, NN temporal models, NN control methods, NN pattern recognition systems and applications, biological and biomedical applications of NNs, VLSI design techniques for NNs, NN systems simulation, fuzzy logic, and genetic algorithms. Attention is given to missileborne integrated NNs, adaptive-mixture NNs, implementable learning rules, an NN simulator for travelling salesman problem solutions, similarity-based forecasting, NN control of hypersonic aircraft takeoff, NN control of the Space Shuttle Arm, an adaptive NN robot manipulator controller, a synthetic approach to digital filtering, NNs for speech analysis, adaptive spline networks, an anticipatory fuzzy logic controller, and encoding operations for fuzzy associative memories.

  13. PREFACE: 3rd International Congress on Mechanical Metrology (CIMMEC2014)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    From October 14th to 16th 2014, The Brazilian National Institute of Metrology, Quality, and Technology (Inmetro) and the Brazilian Society of Metrology (SBM) organized the 3rd International Congress on Mechanical Metrology (3rd CIMMEC). The 3rd CIMMEC was held in the city of Gramado, Rio Grande do Sul, Brazil. Anticipating the interest and enthusiasm of the technical-scientific community, the Organizing Institutions invite people and organizations to participate in this important congress, reiterating the commitment to organize an event according to highest international standards. This event has been conceived to integrate people and organizations from Brazil and abroad in the discussion of advanced themes in metrology. Manufacturers and dealers of measuring equipment and standards, as well as of auxiliary accessories and bibliographic material, had the chance to promote their products and services in stands at the Fair, which has taken place alongside the Congress. The 3rd CIMMEC consisted of five Keynote Speeches and 116 regular papers. Among the regular papers, the 25 most outstanding ones, comprising a high quality content on Mechanical Metrology, were selected to be published in this issue of Journal of Physics: Conference Series. It is our great pleasure to present this volume of Journal of Physics: Conference Series to the scientific community to promote further research in Mechanical Metrology and related areas. We believe that this volume will be both an excellent source of scientific material in the fast evolving fields that were covered by CIMMEC 2014.

  14. The Ups and Downs of 3rd Grade

    ERIC Educational Resources Information Center

    Felton, Kelsey Augst; Akos, Patrick

    2011-01-01

    The transition from 2nd to 3rd grade has received little notice in education research--yet the authors' experience in elementary school counseling convinced them that most students undergo a seismic shift during this period. Third grade is not only the first year students will encounter standardized end-of-grade tests, but also a year in which…

  15. THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BURST AND TRANSIENT SOURCE EXPERIMENT 5B CATALOG OF COSMIC GAMMA-RAY BURSTS

    SciTech Connect

    Hurley, K.; Briggs, M. S.; Kippen, R. M.; Kouveliotou, C.; Fishman, G.; Cline, T.; Trombka, J.; McClanahan, T.; Boynton, W.; Starr, R.; McNutt, R.; Boer, M.

    2011-09-01

    We present Interplanetary Network localization information for 343 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) between the end of the 4th BATSE catalog and the end of the Compton Gamma-Ray Observatory (CGRO) mission, obtained by analyzing the arrival times of these bursts at the Ulysses, Near Earth Asteroid Rendezvous (NEAR), and CGRO spacecraft. For any given burst observed by CGRO and one other spacecraft, arrival time analysis (or 'triangulation') results in an annulus of possible arrival directions whose half-width varies between 11 arcsec and 21{sup 0}, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the area of a factor of 20. When all three spacecraft observe a burst, the result is an error box whose area varies between 1 and 48,000 arcmin{sup 2}, resulting in an average reduction of the BATSE error circle area of a factor of 87.

  16. 75 FR 55313 - Record of Decision (ROD) for Conversion of the 3rd Armored Cavalry Regiment (3rd ACR) to a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... 3rd ACR at Fort Hood is being selected because the unit will have maximum time to convert and train... required for an SBCT, and has adequate maneuver space to accommodate SBCT training. The 3rd ACR will...

  17. The 3rd Annual Controlled Structures Technology Symposium

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of presentations at the Controlled Structures Technology (CST) MIT Space Engineering Research Center 3rd Annual Symposium are included. Topics covered include optical interferometer testbed; active impedence matching of complex structural systems; application of CST to adaptive optics; middeck 0-G dynamics Experiment (MODE); inhibiting multiple mode vibration in controlled flexible systems; the middeck active control experiment (MACE); robust control for uncertain structures; cost averaging techniques for robust structural control; and intelligent structures technology.

  18. Precipitation Model Validation in 3rd Generation Aeroturbine Disc Alloys

    NASA Technical Reports Server (NTRS)

    Olson, G. B.; Jou, H.-J.; Jung, J.; Sebastian, J. T.; Misra, A.; Locci, I.; Hull, D.

    2008-01-01

    In support of application of the DARPA-AIM methodology to the accelerated hybrid thermal process optimization of 3rd generation aeroturbine disc alloys with quantified uncertainty, equilibrium and diffusion couple experiments have identified available fundamental thermodynamic and mobility databases of sufficient accuracy. Using coherent interfacial energies quantified by Single-Sensor DTA nucleation undercooling measurements, PrecipiCalc(TM) simulations of nonisothermal precipitation in both supersolvus and subsolvus treated samples show good agreement with measured gamma particle sizes and compositions. Observed longterm isothermal coarsening behavior defines requirements for further refinement of elastic misfit energy and treatment of the parallel evolution of incoherent precipitation at grain boundaries.

  19. Microstructure Modeling of 3rd Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.

  20. Designing a 3rd generation, authenticatable attribute measurement system

    SciTech Connect

    Thron, Jonathan; Karpius, Peter; Santi, Peter; Smith, Morag; Vo, Duc; Williams, Richard

    2009-01-01

    Attribute measurement systems (AMS) are designed to measure potentially sensitive items containing Special Nuclear Materials to determine if the items possess attributes which fall within an agreed-upon range. Such systems could be used in a treaty to inspect and verify the identity of items in storage without revealing any sensitive information associated with the item. An AMS needs to satisfy two constraints: the host party needs to be sure that none of their sensitive information is released, while the inspecting party wants to have confidence that the limited amount of information they see accurately reflects the properties of the item being measured. The former involves 'certifying' the system and the latter 'authenticating' it. Previous work into designing and building AMS systems have focused more on the questions of certifiability than on the questions of authentication - although a few approaches have been investigated. The next step is to build a 3rd generation AMS which (1) makes the appropriate measurements, (2) can be certified, and (3) can be authenticated (the three generations). This paper will discuss the ideas, options, and process of producing a design for a 3rd generation AMS.

  1. The development of 3rd generation IR detectors at AIM

    NASA Astrophysics Data System (ADS)

    Ziegler, J.; Eich, D.; Mahlein, M.; Schallenberg, T.; Scheibner, R.; Wendler, J.; Wenisch, J.; Wollrab, R.; Daumer, V.; Rehm, R.; Rutz, F.; Walther, M.

    2011-06-01

    3rd generation IR modules - dual-color (DC), dual-band (DB), and large format two-dimensional arrays - require sophisticated production technologies such as molecular beam epitaxy (MBE) as well as new array processing techniques, which can satisfy the rising demand for increasingly complex device structures and low cost detectors. AIM will extend its future portfolio by high performance devices which make use of these techniques. The DC MW / MW detectors are based on antimonide type-II superlattices (produced by MBE at Fraunhofer IAF, Freiburg) in the 384x288 format with a 40 μm pitch. For AIM, the technology of choice for MW / LW DB FPAs is MCT MBE on CdZnTe substrates, which has been developed in cooperation with IAF, Freiburg. 640x512, 20 μm pitch Focal Plane Arrays (FPAs) have been processed at AIM. The growth of MW MCT MBE layers on alternate substrates is challenging, but essential for competitive fabrication of large two-dimensional arrays such as megapixel (MW 1280x1024, 15 μm pitch) FPAs. This paper will present the development status and latest results of the above-mentioned 3rd Gen FPAs and Integrated Detector Cooler Assemblies (IDCAs).

  2. 3rd grade English language learners making sense of sound

    NASA Astrophysics Data System (ADS)

    Suarez, Enrique; Otero, Valerie

    2013-01-01

    Despite the extensive body of research that supports scientific inquiry and argumentation as cornerstones of physics learning, these strategies continue to be virtually absent in most classrooms, especially those that involve students who are learning English as a second language. This study presents results from an investigation of 3rd grade students' discourse about how length and tension affect the sound produced by a string. These students came from a variety of language backgrounds, and all were learning English as a second language. Our results demonstrate varying levels, and uses, of experiential, imaginative, and mechanistic reasoning strategies. Using specific examples from students' discourse, we will demonstrate some of the productive aspects of working within multiple language frameworks for making sense of physics. Conjectures will be made about how to utilize physics as a context for English Language Learners to further conceptual understanding, while developing their competence in the English language.

  3. 3rd annual symposium of chemical and pharmaceutical structure analysis.

    PubMed

    Weng, Naidong; Zheng, Jenny; Lee, Mike

    2012-08-01

    The 3rd Annual Symposium on Chemical and Pharmaceutical Structure Analysis was once again held in Shanghai, where a rich history of 'East meets West' continued. This meeting is dedicated to bringing together scientists from pharmaceutical companies, academic institutes, CROs and instrument vendors to discuss current challenges and opportunities on the forefront of pharmaceutical research and development. The diversified symposia and roundtables are highly interactive events where scientists share their experiences and visions in a collegial setting. The symposium highlighted speakers and sessions that provided first-hand experiences as well as the latest guidance and industrial/regulatory thinking, which was reflected by the theme of this year's meeting 'From Bench to Decision Making - from Basics to Application.' In addition to the highly successful Young Scientist Excellence Award, new events were featured at this year's meeting, such as the Executive Roundtable and the inaugural Innovator Award.

  4. Results from the UK 3rd generation programme: Albion

    NASA Astrophysics Data System (ADS)

    McEwen, R. K.; Axcell, C.; Knowles, P.; Hoade, K. P.; Wilson, M.; Dennis, P. N. J.; Backhouse, P.; Gordon, N. T.

    2008-10-01

    Following the development of 1st Generation systems in the 1970s, thermal imaging has been in service with the UK armed forces for over 25 years and has proven itself to be a battle winning technology. More recently the wider accessibility to similar technologies within opposing forces has reduced the military advantage provided by these 1st Generation systems and a clear requirement has been identified by the UK MOD for thermal imaging sensors providing increased detection, recognition and identification (DRI) ranges together with a simplified logistical deployment burden and reduced through-life costs. In late 2005, the UK MOD initiated a programme known as "Albion" to develop high performance 3rd Generation single waveband infrared detectors to meet this requirement. At the same time, under a separate programme supporting higher risk technology, a dual waveband infrared detector was also developed. The development phase of the Albion programme has now been completed and prototype detectors are now available and have been integrated into demonstration thermal imaging cameras. The Albion programme has now progressed into the second phase, incorporating both single and dual waveband devices, focussing on low rate initial production (LRIP) and qualification of the devices for military applications. All of the detectors have been fabricated using cadmium mercury telluride material (CMT), grown by metal organic vapour phase epitaxy (MOVPE) on low cost, gallium arsenide (GaAs) substrates and bump bonded to the silicon read out circuit (ROIC). This paper discusses the design features of the 3rd Generation detectors developed in the UK together with the results obtained from the prototype devices both in the laboratory and when integrated into field deployable thermal imaging cameras.

  5. Beyond 3rd generation MCT: SXGA QWIP (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Crawford, Stewart; Skivington, Tracey; Craig, Robert; Haining, Andrew; Costard, Eric; Belhaire, Eric; Bois, Philippe

    2005-05-01

    Successful past experience of implementing long wave MCT 1st and 2nd Generation thermal imagers has demonstrated to THALES Optronics that MCT presents difficult challenges when correcting non-uniformity errors caused by rapidly changing detector element gain and offset drifts. These problems become even more demanding when the move is made from long linear arrays to focal plane arrays due to the significantly larger number of detector elements. Relaxation of these demands would make a significant impact on the price/performance trade which inevitably occurs in a camera development. In recognition of the need to offer UK MOD best value, THALES Optronics has initiated a programme to achieve a SXGA resolution camera and is working with UK MOD, over a two year period, to investigate whether an alternative technology can maintain the high resolution required whilst achieving a downward step change in price. The selected technology is 3rd Generation Gallium Arsenide long wave Quantum Well Infra-red Photodiode (QWIP) chosen because initial indications are that drift rates are orders of magnitude slower than MCT. The programme involves studies to determine effects of defect clusters, bimodalism, non-uniformity correction levels and higher than normal operating temperatures on achieving acceptable performance, including logistics, in user scenarios whilst maximising detector yield. Development of demonstrator IR camera hardware (technology readiness level 6/7) based on a THALES Research & Technology QWIP array is also part of the programme.

  6. Development of the 3rd Generation ECR ion source

    SciTech Connect

    Lyneis, C.M.; Xie, Z.Q.; Taylor, C.E.

    1997-09-01

    The LBNL 3rd Generation ECR ion source has progressed from a concept to the fabrication of a full scale prototype superconducting magnet structure. This new ECR ion source will combine the recent ECR ion source techniques that significantly enhance the production of high charge state ions. The design includes a plasma chamber made from aluminum to provide additional cold electrons, three separate microwave feeds to allow multiple-frequency plasma heating (at 10, 14 and 18 GHz or at 6, 10 and 14 GHz) and very high magnetic mirror fields. The design calls for mirror fields of 4 T at injection and 3 T at extraction and for a radial field strength at the wall of 2.4 T. The prototype superconducting magnet structure which consists of three solenoid coils and six race track coils with iron poles forming the sextupole has been tested in a vertical dewar. After training, the sextupole magnet reached 105% of its design current with the solenoids off. With the solenoids operating at approximately 70% of their full design field, the sextuple coils operated at 95% of the design value which corresponds to a sextupole field strength at the plasma wall of more than 2.1 T.

  7. 80. GENERAL VIEW TO NORTH ON 3RD AVENUE EL AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. GENERAL VIEW TO NORTH ON 3RD AVENUE EL AT GUN HILL STATION. 7TH AVENUE EL EXPRESS IS VISIBLE ABOVE THE 3RD AVENUE EL WHICH JOINED ONTO THE SAME STRUCTURE AT GUN HILL ROAD. NOTE: GUN HILL ROAD IS THE NORTH TERMINUS OF THE 3RD AVENUE ELEVATED. TRAINS DID NOT CARRY PASSENGERS BEYOND THIS POINT, ALTHOUGH THE 3RD AVENUE TRACK DID EXTEND FURTHER NORTH FOR SWITCHING PURPOSES AND INTO THE YARDS. - Interborough Rapid Transit Company, Third Avenue Elevated Line, Borough of the Bronx, New York County, NY

  8. Design of the 3rd generation ECR ion source

    SciTech Connect

    Lyneis, C.M.; Xie, Z.Q.; Taylor, C.E.

    1997-02-01

    Development of the 3rd Generation ECR ion source has progressed from a concept described in the last ECR Ion Source Workshop to the fabrication of a full scale prototype superconducting magnet structure. The prototype consists of three solenoid coils and six race track coils with iron poles forming the sextupole. The design calls for mirror fields of 4 T at injection and 3 T at extraction and for a radial field strength at the wall of 2.4 T. The prototype magnet will be tested this spring in an existing vertical cryostat to determine its operating characteristics including maximum operating values, training characteristics and to study the interaction between the solenoid and sextupole coils. Design of the ECR plasma chamber includes aluminum walls to provide an enhanced source of cold electrons, up to three separate microwave feeds to allow simultaneous heating of the plasma electrons at 10, 14 and 18 GHz or at 6, 10 and 14 GHz. Water cooling of the plasma chamber walls and the injection and extraction plates is planned so that up to 10 kW of microwave power can be used without excessive heating of the chamber components. Experience with the AECR-U at LBNL shows that increasing the magnetic fields and using two frequency heating allows operation at lower neutral pressures and higher microwave power density. Both of these conditions are needed to produce very high charge states from elements with masses greater than xenon and the resulting higher energy, more intense heavy beams from the 88-Inch Cyclotron would provide new research opportunities.

  9. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  10. PREFACE: 3rd International Symposium ''Optics and its Applications''

    NASA Astrophysics Data System (ADS)

    Calvo, M. L.; Dolganova, I. N.; Gevorgyan, N.; Guzman, A.; Papoyan, A.; Sarkisyan, H.; Yurchenko, S.

    2016-01-01

    The SPIE.FOCUS Armenia: 3rd International Symposium ''Optics and its Applications'' (OPTICS-2015) http://rau.am/optics2015/ was held in Yerevan, Armenia, in the period October 1 - 5, 2015. The symposium was organized by the International Society for Optics and Photonics (SPIE), the Armenian SPIE student chapter with collaboration of the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-PYRKAL, and the Yerevan State University (YSU). The Symposium was co-organized by the SPIE & OSA student chapters of BMSTU, the Armenian OSA student chapter, and the SPIE student chapters of Lund University and Wroclaw University of Technology. The symposium OPTICS-2015 was dedicated to the International Year of Light and Light-Based Technologies. OPTICS-2015 was devoted to modern topics and optical technologies such as: optical properties of nanostructures, silicon photonics, quantum optics, singular optics & its applications, laser spectroscopy, strong field optics, biomedical optics, nonlinear & ultrafast optics, photonics & fiber optics, and mathematical methods in optics. OPTICS-2015 was attended by 100 scientists and students representing 17 countries: Armenia, China, Czech Republic, France, Georgia, Germany, India, Iran, Italy, Latvia, Mexico, Poland, Russia, Saudi Arabia, Sweden, Ukraine, and USA. Such a broad international community confirmed the important mission of science to be a uniting force between different countries, religions, and nations. We hope that OPTICS-2015 inspired and motivated students and young scientists to work in optics and in science in general. The present volume of Journal of Physics: Conference Series includes proceedings of the symposium covering various aspects of modern problems in optics. We are grateful to all people who were involved in the organization process. We gratefully acknowledge support from

  11. PREFACE: 3rd International Congress on Ceramics (ICC3)

    NASA Astrophysics Data System (ADS)

    Niihara, Koichi; Ohji, Tatsuki; Sakka, Yoshio

    2011-10-01

    Early in 2005, the American Ceramic Society, the European Ceramic Society and the Ceramic Society of Japan announced a collaborative effort to provide leadership for the global ceramics community that would facilitate the use of ceramic and glass materials. That effort resulted in an agreement to organize a new biennial series of the International Congress on Ceramics, convened by the International Ceramic Federation (ICF). In order to share ideas and visions of the future for ceramic and glass materials, the 1st International Congress on Ceramics (ICC1) was held in Canada, 2006, under the organization of the American Ceramic Society, and the 2nd Congress (ICC2) was held in Italy, 2008, hosted by the European Ceramic Society. Organized by the Ceramic Society of Japan, the 3rd Congress (ICC3) was held in Osaka, Japan, 14-18 November 2010. Incorporating the 23rd Fall Meeting of the Ceramic Society of Japan and the 20th Iketani Conference, ICC3 was also co-organized by the Iketani Science and Technology Foundation, and was endorsed and supported by ICF, Asia-Oceania Ceramic Federation (AOCF) as well as many other organizations. Following the style of the previous two successful Congresses, the program was designed to advance ceramic and glass technologies to the next generation through discussion of the most recent advances and future perspectives, and to engage the worldwide ceramics community in a collective effort to expand the use of these materials in both conventional as well as new and exciting applications. ICC3 consisted of 22 voluntarily organized symposia in the most topical and essential themes of ceramic and glass materials, including Characterization, design and processing technologies Electro, magnetic and optical ceramics and devices Energy and environment related ceramics and systems Bio-ceramics and bio-technologies Ceramics for advanced industry and safety society Innovation in traditional ceramics It also contained the Plenary Session and the

  12. Autonomous interplanetary constellation design

    NASA Astrophysics Data System (ADS)

    Chow, Cornelius Channing, II

    According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design

  13. The 1991 3rd NASA Symposium on VLSI Design

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.

    1991-01-01

    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2.

  14. 1. WEST SIDE AND ENTRY, FROM ACROSS 3RD STREET, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WEST SIDE AND ENTRY, FROM ACROSS 3RD STREET, LOOKING EAST. - Oakland Naval Supply Center, Administration Building-Dental Annex-Dispensary, Between E & F Streets, East of Third Street, Oakland, Alameda County, CA

  15. The outcomes of therapeutic decision in lower 3rd rectal cancer patients.

    PubMed

    Chen, Chien-Hsin; Wei, Po-Li; Hsieh, Mao-Chih; Lin, En-Kwang; Chiou, Jeng-Fong; Lu, Yen-Jung; Wu, Szu-Yuan

    2016-09-01

    To investigate the outcomes of the selective neoadjuvant concurrent chemoradiotherapy (CCRT) in lower 3rd rectal cancer patients in different groups (with or without neoadjuvant CCRT), especially in survival rate, local recurrence rate, and sphincter preservation rate.From January 1999 to December 2012, 69 consecutive patients who had histologically proven adenocarcinoma of lower 3rd rectum, defined preoperatively as lower tumor margin within 7 cm from the anal verge as measured by rigid sigmoidoscopy, received total mesorectum excision (TME). Our inclusion criteria of neoadjuvant CCRT are lower 3rd rectal cancer, stage II/III, and large (diameter >5 cm or >1/2 of circumference). Neoadjuvant concurrent CCRT had begun to apply lower 3rd rectal cancer patients or not. The radiation techniques of neoadjuvant CCRT for lower 3rd rectal cancer patients were all conventional fraction intensity modulated radiotherapy (IMRT) and concurrent fluoropyrimidine chemotherapy.Five-year overall survival rate, disease-free survival rate, and local recurrence rate for lower 3rd rectal cancer patients in group I were 51%, 45%, and 25%, respectively. On the contrary, 5-year overall survival rate, disease-free survival rate, and local recurrence rate for lower rectal cancer patients in group II were 70%, 70%, and 3%, respectively. The 5-year sphincter sparing rate was increased from 38.2% to 100% after the beginning of neoadjuvant CCRT. Analyzing local recurrence, overall survival rate, disease-specific survival rate, and sphincter sparing rate in group II were statistically significant superior to group I.Five-year overall survival rate, disease-free survival rate, and sphincter sparing rate for lower 3rd rectal cancer patients were improved after the addition of neoadjuvant CCRT. No unacceptable toxicity was noted after conventional fraction IMRT and concurrent fluoropyrimidine chemotherapy. Our study showed neoadjuvant CCRT could be valuable for lower 3rd rectal cancer patients

  16. The 3^rd International Conference on Women in Physics: Global Perspectives, Common Concerns, Worldwide Views

    NASA Astrophysics Data System (ADS)

    Zastavker, Yevgeniya V.

    2009-03-01

    The 3^rd International Conference on Women in Physics (ICWIP), held in Seoul, Korea, in October 2008, brought together 300 participants from 57 countries, including a diverse 22-member U.S. Delegation, for a 3-day summit of stimulating discussions, thought-provoking presentations, inspirational posters, and networking. Held under the auspices of the Working Group on Women in Physics of the International Union of Pure and Applied Physics (IUPAP), this meeting built on the successes of the 1^st (Paris, 2002) and 2^nd (Rio de Janeiro, 2005) Conferences and further clarified the importance of diversifying the field of physics worldwide. Although considerable progress has been made since 2002, it was clear that the global scientific workforce is still under-utilizing a large percentage of the available female talent pool. If human society is to benefit to its fullest from various contributions that the field of physics can offer in addressing global issues of economic crisis, energy, environment, water, health, poverty, and hunger, women of all races and nationalities need to become fully included and engaged in the national and international physical community. To address these and many other issues, the ICWIP unanimously approved a five-part resolution to IUPAP recommending actions to promote the recruitment, retention, and advancement of women in physics and related fields.

  17. Resurgence of duckweed research and applications: report from the 3rd International Duckweed Conference.

    PubMed

    Appenroth, Klaus-J; Sree, K Sowjanya; Fakhoorian, Tamra; Lam, Eric

    2015-12-01

    Duckweed, flowering plants in the Lemnaceae family, comprises the smallest angiosperms in the plant kingdom. They have some of the fastest biomass accumulation rates reported to date for plants and have the demonstrated ability to thrive on wastewater rich in dissolved organic compounds and thus could help to remediated polluted water resources and prevents eutrophication. With a high quality genome sequence now available and increased commercial interest worldwide to develop duckweed biomass for renewables such as protein and fuel, the 3rd International Duckweed Conference convened at Kyoto, Japan, in July of 2015, to update the community of duckweed researchers and developers on the progress in the field. In addition to sharing results and ideas, the conference also provided ample opportunities for new-comers as well as established workers in the field to network and create new aliances. We hope this meeting summary will also help to disseminate the key advances and observations that have been presented in this conference to the broader plant biology community in order to encourage increased cross-fertilization of ideas and technologies. PMID:26506824

  18. Resurgence of duckweed research and applications: report from the 3rd International Duckweed Conference.

    PubMed

    Appenroth, Klaus-J; Sree, K Sowjanya; Fakhoorian, Tamra; Lam, Eric

    2015-12-01

    Duckweed, flowering plants in the Lemnaceae family, comprises the smallest angiosperms in the plant kingdom. They have some of the fastest biomass accumulation rates reported to date for plants and have the demonstrated ability to thrive on wastewater rich in dissolved organic compounds and thus could help to remediated polluted water resources and prevents eutrophication. With a high quality genome sequence now available and increased commercial interest worldwide to develop duckweed biomass for renewables such as protein and fuel, the 3rd International Duckweed Conference convened at Kyoto, Japan, in July of 2015, to update the community of duckweed researchers and developers on the progress in the field. In addition to sharing results and ideas, the conference also provided ample opportunities for new-comers as well as established workers in the field to network and create new aliances. We hope this meeting summary will also help to disseminate the key advances and observations that have been presented in this conference to the broader plant biology community in order to encourage increased cross-fertilization of ideas and technologies.

  19. Survey of K-3rd-Grade Teachers' Knowledge of Ear Infections and Willingness to Participate in Prevention Programs

    ERIC Educational Resources Information Center

    Danhauer, Jeffrey L.; Johnson, Carole E.; Caudle, Abby T.

    2011-01-01

    Purpose: Ear infections are prevalent in kindergarten through 3rd-grade (K-3rd) children and can affect their performance at school. Chewing gum, when administered by parents and teachers, can help prevent ear infections in children. This pilot study surveyed K-3rd-grade teachers in the Santa Barbara School Districts to assess their knowledge…

  20. Super dual auroral radar network radar imaging of dayside high-latitude convection under northward interplanetary magnetic field: Toward resolving the distorted two-cell versus multicell controversy

    NASA Astrophysics Data System (ADS)

    Greenwald, R. A.; Bristow, W. A.; Sofko, G. J.; Senior, C.; Cerisier, J.-C.; Szabo, A.

    1995-10-01

    Data from the Kapuskasing and Saskatoon radars of the evolving Super Dual Auroral Radar Network (SuperDARN) HF radar network have been analyzed to study the two-dimensional structure and dynamics of dayside high-latitude ionospheric convection under northward interplanetary magnetic field (IMF) conditions. A period extending from 1600 to 2030 UT (~0900-1330 MLT) on January 10, 1994, was examined. During this interval, magnetic field data were available from the IMP 8 satellite and indicated moderately stable northward IMF conditions. For the first few hours of observation the By component of the IMF was positive, reasonably steady, and approximately twice the magnitude of Bz. During this interval, the high-latitude convection images obtained with the SuperDARN radars were very similar to the distorted two-cell convection maps for positive By as presented by Heppner and Maynard (1987). At ~1840 UT, a decrease in By in association with an increase in Bz, led to an extended period with By~Bz. During this second interval the convection patterns were highly variable and even chaotic. Finally, a sharp decrease in the By component at 1914 UT, probably in association with a rotational discontinuity in the solar wind, led to an extended period with By<

  1. Collaborative study for the establishment of the 3rd international standard for neomycin.

    PubMed

    Rautmann, G; Daas, A; Buchheit, K-H

    2013-01-01

    An international collaborative study was organised to establish the World Health Organization (WHO) 3(rd) International Standard (IS) for neomycin. Ten laboratories from different countries participated in the collaborative study. The potency of the candidate material, a freeze-dried preparation, was estimated by microbiological assays with sensitive micro-organisms. To ensure continuity between consecutive batches, the 2(nd) IS for neomycin was used as a standard. Based on the results of the study, the 3(rd) IS for neomycin was adopted at the meeting of the WHO Expert Committee on Biological Standardization (ECBS) in 2012 with an assigned potency of 19,050 IU per vial. The 3(rd) IS for neomycin is available from the European Directorate for the Quality of Medicines & HealthCare (EDQM).

  2. Interplanetary Proton Model: JPL 1991

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Spitale, G.; Wang, J.

    1993-01-01

    This study was carried out to increase the acuracy and energy range of predictive models of interplanetary proton fluences. Such an estimate is often needed when spacecraft spend a signigicant amount of time in the interplanetary environmnet.

  3. Radiographic findings on 3rd molars removed in 20-year-old men.

    PubMed

    Rajasuo, Ari; Peltola, Jaakko; Ventä, Irja; Murtomaa, Heikki

    2003-10-01

    In this study we assess radiographic findings characteristic of mandibular 3rd molars that had required either routine or surgical extraction. X-ray findings relating to acute pericoronitis were also examined. The material was collected by investigating patient records and rotational panoramic radiographs of 20-year-old Finnish male conscripts (n = 738) treated during military service because of 3rd-molar-related problems. The follicle around the crown of mandibular 3rd molars with acute pericoronitis was enlarged in 19% of cases and in 13% of chronic symptom-free pericoronitis cases (not statistically significant difference). Mandibular 3rd molars extracted surgically were more often mesially inclined than those extracted routinely (61% vs. 23%; P < 0.001), partially or totally intrabony impacted (92% vs. 66%; P < 0.001) and deep situated (on average 4.2 mm vs. 2.5 mm under the occlusal plane). Surgical extraction was also associated with the roots completely developed [92% vs. 84% of the teeth routinely extracted, odds ratio (OR) 2.6, 95% confidence interval (CI) 1.2-5.5] and with the absence of radiographic pericoronitis [around 27% vs. 39% of the teeth routinely extracted (OR 0.5, 95% CI 0.3-0.8)]. In 86% of cases the space between 2nd molar and ramus of the mandible was narrower than the 3rd molar extracted surgically, whereas this was 62% in routine extraction cases (P < 0.001). We conclude that there are some typical 3rd-molar findings in rotational panoramic radiographs that show a need for surgical extraction.

  4. Radiographic findings on 3rd molars removed in 20-year-old men.

    PubMed

    Rajasuo, Ari; Peltola, Jaakko; Ventä, Irja; Murtomaa, Heikki

    2003-10-01

    In this study we assess radiographic findings characteristic of mandibular 3rd molars that had required either routine or surgical extraction. X-ray findings relating to acute pericoronitis were also examined. The material was collected by investigating patient records and rotational panoramic radiographs of 20-year-old Finnish male conscripts (n = 738) treated during military service because of 3rd-molar-related problems. The follicle around the crown of mandibular 3rd molars with acute pericoronitis was enlarged in 19% of cases and in 13% of chronic symptom-free pericoronitis cases (not statistically significant difference). Mandibular 3rd molars extracted surgically were more often mesially inclined than those extracted routinely (61% vs. 23%; P < 0.001), partially or totally intrabony impacted (92% vs. 66%; P < 0.001) and deep situated (on average 4.2 mm vs. 2.5 mm under the occlusal plane). Surgical extraction was also associated with the roots completely developed [92% vs. 84% of the teeth routinely extracted, odds ratio (OR) 2.6, 95% confidence interval (CI) 1.2-5.5] and with the absence of radiographic pericoronitis [around 27% vs. 39% of the teeth routinely extracted (OR 0.5, 95% CI 0.3-0.8)]. In 86% of cases the space between 2nd molar and ramus of the mandible was narrower than the 3rd molar extracted surgically, whereas this was 62% in routine extraction cases (P < 0.001). We conclude that there are some typical 3rd-molar findings in rotational panoramic radiographs that show a need for surgical extraction. PMID:14763776

  5. 16. 3RD FLOOR, J.M. LEHMANN CO. FIVEROLL TOILET SOAP MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. 3RD FLOOR, J.M. LEHMANN CO. FIVE-ROLL TOILET SOAP MILL INSTALLED 1950, TO WEST; BUCKET CONVEYOR AT RIGHT MOVED WASTE FROM 2ND FLOOR SOAP PRESSES TO 5TH FLOOR RE-MANUFACTURE - Colgate & Company Jersey City Plant, Building No. B-14, 54-58 Grand Street, Jersey City, Hudson County, NJ

  6. 75 FR 34450 - Filing Dates for the Indiana Special Election in the 3rd Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION Filing Dates for the Indiana Special Election in the 3rd Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Indiana has scheduled a...

  7. Colorectal cancer in inflammatory bowel disease: results of the 3rd ECCO pathogenesis scientific workshop (I).

    PubMed

    Sebastian, Shaji; Hernández, Vincent; Myrelid, Pär; Kariv, Revital; Tsianos, Epameinondas; Toruner, Murat; Marti-Gallostra, Marc; Spinelli, Antonino; van der Meulen-de Jong, Andrea E; Yuksel, Elif Sarıtas; Gasche, Christoph; Ardizzone, Sandro; Danese, Silvio

    2014-01-01

    Epidemiological studies demonstrate an increased risk of colorectal cancer in patients with inflammatory bowel disease (IBD). A detailed literature review was conducted on epidemiology, risk factors, pathophysiology, chemoprevention and outcomes of colorectal cancer (CRC) in IBD as part of the 3rd ECCO scientific pathogenesis workshop.

  8. PreK-3rd: What Is the Price Tag? Policy to Action Brief. No. 2

    ERIC Educational Resources Information Center

    Shore, Rima

    2009-01-01

    In an era of intense fiscal pressures, educators are focusing on those investments most likely to lift student achievement. They are also trying to make more strategic use of existing resources. To achieve these goals, a growing number of policymakers are considering integrated PreK-3rd approaches. Increasingly, they are recognizing that the first…

  9. Evaluation of the "Respect Not Risk" Firearm Safety Lesson for 3rd-Graders

    ERIC Educational Resources Information Center

    Liller, Karen D.; Perrin, Karen; Nearns, Jodi; Pesce, Karen; Crane, Nancy B.; Gonzalez, Robin R.

    2003-01-01

    The purpose of this study was to evaluate the MORE HEALTH "Respect Not Risk" Firearm Safety Lesson for 3rd-graders in Pinellas County, Florida. Six schools representative of various socioeconomic levels were selected as the test sites. Qualitative and quantitative data were collected. A total of 433 matched pretests/posttests were used to…

  10. Prediction of High School Dropout or Graduation from 3rd Grade Data.

    ERIC Educational Resources Information Center

    Lloyd, Dee Norman; Bleach, Gail

    Measures of background characteristics, school performance, and tested achievement were analyzed for four race-by-sex samples of 3rd graders who were known to have later become high school dropouts or graduates. Results showed that as early as five to eight years before leaving school, dropouts differed significantly from graduates in age, tested…

  11. Using Food as a Tool to Teach Science to 3rd Grade Students in Appalachian Ohio

    ERIC Educational Resources Information Center

    Duffrin, Melani W.; Hovland, Jana; Carraway-Stage, Virginia; McLeod, Sara; Duffrin, Christopher; Phillips, Sharon; Rivera, David; Saum, Diana; Johanson, George; Graham, Annette; Lee, Tammy; Bosse, Michael; Berryman, Darlene

    2010-01-01

    The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. In 2007 to 2008, a foods curriculum developed by professionals in nutrition and education was implemented in 10 3rd-grade classrooms in Appalachian Ohio; teachers in these…

  12. The Effect of Book Blogging on the Motivation of 3rd-Grade Students

    ERIC Educational Resources Information Center

    Swanson, Kristen N.; Legutko, Robert S.

    2008-01-01

    A Web 2.0 technology was implemented during reading instruction in one 3rd-grade classroom in suburban southeastern Pennsylvania. Trained preservice teachers provided feedback to students via the World Wide Web to enhance their performance and social connections. Motivation scores were measured before and after the intervention was implemented. A…

  13. Current Research in European Vocational Education and Human Resource Development. Proceedings of the Programme Presented By the Research Network on Vocational Education and Training (VETNET) at the European Conference of Educational Research (ECER) (3rd, Edinburgh, Scotland, September 20-23, 2000).

    ERIC Educational Resources Information Center

    Manning, Sabine, Ed.; Raffe, David, Ed.

    These 24 papers represent the proceedings of a program presented by the research network on vocational education and training (VET). They include "School-Arranged or Market-Governed Workplace Training?" (Ulla Arnell-Gustafsson); "Prospects for Mutual Learning and Transnational Transfer of Innovative Practice in European VET" (Alan Brown, Jens…

  14. Interplanetary medium data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Unresolved questions on the physics of solar wind and its effects on magnetospheric processes and cosmic ray propagation were addressed with hourly averaged interplanetary plasma and magnetic field data. This composite data set is described with its content and extent, sources, limits of validity, and the mutual consistency studies and normalizations to which the input data were subjected. Hourly averaged parameters were presented in the form of digital listings and 27-day plots. The listings are contained in a separately bound appendix.

  15. Foundational Skills to Support Reading for Understanding in Kindergarten through 3rd Grade. Educator's Practice Guide. NCEE 2016-4008

    ERIC Educational Resources Information Center

    Foorman, Barbara; Beyler, Nicholas; Borradaile, Kelley; Coyne, Michael; Denton, Carolyn A.; Dimino, Joseph; Furgeson, Joshua; Hayes, Lynda; Henke, Juliette; Justice, Laura; Keating, Betsy; Lewis, Warnick; Sattar, Samina; Streke, Andrei; Wagner, Richard; Wissel, Sarah

    2016-01-01

    The goal of this practice guide is to offer educators specific, evidence-based recommendations for teaching foundational reading skills to students in kindergarten through 3rd grade. This guide is a companion to the existing practice guide, "Improving Reading Comprehension in Kindergarten Through 3rd Grade", and as a set, these guides…

  16. Conference report: the 3rd Global CRO Council for Bioanalysis at the International Reid Bioanalytical Forum.

    PubMed

    Breda, Massimo; Garofolo, Fabio; Caturla, Maria Cruz; Couerbe, Philippe; Maltas, John; White, Peter; Struwe, Petra; Sangster, Timothy; Riches, Suzanne; Hillier, Jim; Garofolo, Wei; Zimmerman, Thomas; Pawula, Maria; Collins, Eileen; Schoutsen, Dick; Wieling, Jaap; Green, Rachel; Houghton, Richard; Jeanbaptiste, Bernard; Claassen, Quinton; Harter, Tammy; Seymour, Mark

    2011-12-01

    The 3rd Global CRO Council Closed Forum was held on the 3rd and 4th July 2011 in Guildford, United Kingdom, in conjunction with the 19th International Reid Bioanalytical Forum. In attendance were 21 senior-level representatives from 19 CROs on behalf of nine European countries and, for many of the attendees, this occasion was the first time that they had participated in a GCC meeting. Therefore, this closed forum was an opportunity to increase awareness of the aim of the GCC and how it works, share information about bioanalytical regulations and audit findings from different agencies, their policies and procedures and also to discuss some topics of interest and aim to develop ideas and provide recommendations for bioanalytical practices at future GCC meetings in Europe.

  17. 3rd Workshop on Semantic Ambient Media Experience (SAME) - In Conjunction with AmI-2010

    NASA Astrophysics Data System (ADS)

    Lugmayr, Artur; Stockleben, Bjoern; Kaario, Juha; Pogorelc, Bogdan; Risse, Thomas

    The SAME workshop takes place for the 3rd time in 2010, and it's theme in this year was creating the business value-creation, vision, media theories and technology for ambient media. SAME differs from other workshops due to its interactive and creative touch and going beyond simple powerpoint presentations. Several results will be published by AMEA - the AMbient Media Association (www.ambientmediaassociation.org.

  18. Higher order modes of a 3rd harmonic cavity with an increased end-cup iris

    SciTech Connect

    T. Khabibouline; N. Solyak; R. Wanzenberg

    2003-05-19

    The cavity design for a 3rd harmonic cavity for the TTF 2 photoinjector has been revised to increase the coupling between the main coupler and the cavity cells. The iris radius of the end cup of the cavity has been increased to accomplish a better coupling. The basic rf-parameters and the higher order modes of the modified design are summarized in this report.

  19. Insights from the 3rd World Congress on Integrated Computational Materials Engineering

    NASA Astrophysics Data System (ADS)

    Howe, D.; Goodlet, B.; Weaver, J.; Spanos, G.

    2016-05-01

    The 3rd World Congress on Integrated Computational Materials Engineering (ICME) was a forum for presenting the "state-of-the-art" in the ICME discipline, as well as for charting a path for future community efforts. The event concluded with in an interactive panel-led discussion that addressed such topics as integrating efforts between experimental and computational scientists, uncertainty quantification, and identifying the greatest challenges for future workforce preparation. This article is a summary of this discussion and the thoughts presented.

  20. 13. Photocopy of 1920 drawing titled: BUILDING 78, 3RD FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of 1920 drawing titled: BUILDING 78, 3RD FLOOR BALCONY AND FIRE ESCAPES, including plans for skylight and North Elevation. HABS photograph is an 8x10' contact print made from a high contrast negative of an enlargement made from microfiche. Original is in the collection of Department of Public Works, Puget Sound Naval Shipyard, Bremerton, WA. - Puget Sound Naval Shipyard, Administration Building, Farragut Avenue, Bremerton, Kitsap County, WA

  1. The Goodrich 3rd generation DB-110 system: successful flight test on the F-16 aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Davis; Iyengar, Mrinal; Maver, Larry; Dyer, Gavin; Francis, John

    2007-04-01

    The 3rd Generation Goodrich DB-110 system provides users with a three (3) field-of-view high performance Airborne Reconnaissance capability that incorporates a dual-band day and nighttime imaging sensor, a real time recording and a real time data transmission capability to support long range, medium range, and short range standoff and over-flight mission scenarios, all within a single pod. Goodrich developed their 3rd Generation Airborne Reconnaissance Pod for operation on a range of aircraft types including F-16, F-15, F-18, Euro-fighter and older aircraft such as the F-4, F-111, Mirage and Tornado. This system upgrades the existing, operationally proven, 2nd generation DB-110 design with enhancements in sensor resolution, flight envelope and other performance improvements. Goodrich recently flight tested their 3rd Generation Reconnaissance System on a Block 52 F-16 aircraft with first flight success and excellent results. This paper presents key highlights of the system and presents imaging results from flight test.

  2. Using Photographs to Probe Students' Understanding of Physical Concepts: The Case of Newton's 3rd Law

    NASA Astrophysics Data System (ADS)

    Eshach, Haim

    2010-08-01

    The starting point of the present research is the following question: since we live in an age that makes increasing use of visual representations of all sorts, is not the visual representation a learner constructs a window into his/her understanding of what is or is not being learned? Following this direction of inquiry, the present preliminary study introduces and evaluates a novel technique for pinpointing learners’ misconceptions, namely, one that has learners create and interpret their own photographs (CIP). 27 high-school students and 26 pre-service teacher trainees were asked to assume the role of textbook designers and create a display—photograph plus attached verbal explanation—which, in their opinion, best depicted Newton’s 3rd law. Subsequent analysis of the participants’ photographs yielded the following six misconception categories: 3rd law not depicted; 3rd law depicts a sequence of events; tendency to introduce irrelevant entities in explanations; the word ‘reaction’ used colloquially; tendency to restrict the application of the third law to dynamic situations; and informal explanations in which the word “force” is absent. The findings indicate that, indeed, the CIP method can be effectively employed to elicit, detect, and investigate learners’ misconceptions. The CIP method joins the growing efforts to utilize the yet relatively untapped potential of visual tools for science education purposes.

  3. FOREWORD: 3rd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2013)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2013-10-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 3rd International Workshop on New Computational Methods for Inverse Problems, NCMIP 2013 (http://www.farman.ens-cachan.fr/NCMIP_2013.html). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 22 May 2013, at the initiative of Institut Farman. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 (http://www.farman.ens-cachan.fr/NCMIP_2012.html). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational

  4. Interplanetary magnetic holes - Theory

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Lemaire, J. F.

    1978-01-01

    Magnetic holes in the interplanetary medium are explained as stationary nonpropagating equilibrium structures in which there are field-aligned enhancements of the plasma density and/or temperature. Magnetic antiholes are considered to be associated with depressions in the plasma pressure. In this model the observed changes in the magnetic field intensity and direction are due to diamagnetic currents that are carried by ions which drift in a sheath as the result of gradients in the magnetic field and in the plasma pressure within the sheath. The thickness of the sheaths that we consider is approximately a few ion Larmor radii. An electric field is normal to the magnetic field in the sheath. Solutions of Vlasov's equation and Maxwell's equations are presented which account for several types of magnetic holes, including 'null sheets,' that have been observed.

  5. Interplanetary magnetic holes: Theory

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Lemaire, J. F.

    1978-01-01

    Magnetic holes in the interplanetary medium are explained as stationary, non-propagating, equilibrium structures in which there are field-aligned enhancements of the plasma density and/or temperature. Magnetic anti-holes are considered to be associated with depressions in the plasma pressure. In this model, the observed changes in the magnetic field intensity and direction are due to diamagnetic currents that are carried by ions which drift in a sheath as the result of gradients in the magnetic field and in the plasma pressure within the sheath. The thickness of the sheaths considered is approximately a few ion Larmor radii. An electric field is normal to the magnetic field in the sheath. Solutions of Vlasov's equation and Maxwell's equations are presented which account for several types of magnetic holes, including null-sheets, that were observed.

  6. [Modern surgical treatment of breast cancer. 3rd Breast Cancer Consensus Conference].

    PubMed

    Lázár, György; Bursics, Attila; Farsang, Zoltán; Harsányi, László; Kósa, Csaba; Maráz, Róbert; Mátrai, Zoltán; Paszt, Attila; Pavlovics, Gábor; Tamás, Róbert

    2016-09-01

    Therapy for breast cancer today is characterised by ever more precise diagnostic methods and ever more effective oncological treatments, a trend which will certainly continue into the future. Breast preservation and the application of oncoplastic principles are increasingly popular. A sentinel lymph node biopsy in the surgical treatment of the axilla is primary, with the indication for axillary block dissection (ABD) narrowing and radiation therapy becoming an alternative to ABD in certain cases. This publication summarises our recommendations on the surgical treatment of breast cancer based on the content of the 3rd Breast Cancer Consensus Conference and considering the latest international studies and professional recommendations. PMID:27644928

  7. Preface to Special Topic: Invited Papers of the 3rd International Conference on Ultrafast Structural Dynamics

    PubMed Central

    Johnson, S. L.

    2016-01-01

    The ability to visualize the real-time dynamics of atomic, magnetic, and electronic structure is widely recognized in many fields as a key element underpinning many important processes in chemistry, materials science, and biology. The need for an improved understanding of such processes becomes acute as energy conversion processes on fast time scales become increasingly relevant to problems in science and technology. This special issue, containing invited papers from participants at the 3rd International Conference on Ultrafast Structural Dynamics held June 10–12, 2015 in Zurich, Switzerland, discusses several recent developments in this area. PMID:27191008

  8. NURSING EMERGING. ANA Nursing: Scope and Standards of Practice, (2015) 3rd Edition.

    PubMed

    Mariano, Carla

    2016-04-01

    AHNA Past-President Carla Mariano recently had the privilege of serving on the American Nurses Association's (ANA) Nursing Scope and Standards Revision Workgroup. Representing the specialty practice of holistic nursing, Carla's presence within this workgroup contributed greatly to the inclusion of holistic principles and values throughout the new 2015 Nursing: Scope and Standards of Practice, 3rd edition, the foundational document that informs and guides professional nursing practice within the United States. This is a significant step forward for holistic nursing and an indicator of our growing influence as specialty practice. PMID:27305802

  9. Preface to Special Topic: Invited Papers of the 3rd International Conference on Ultrafast Structural Dynamics.

    PubMed

    Johnson, S L

    2016-03-01

    The ability to visualize the real-time dynamics of atomic, magnetic, and electronic structure is widely recognized in many fields as a key element underpinning many important processes in chemistry, materials science, and biology. The need for an improved understanding of such processes becomes acute as energy conversion processes on fast time scales become increasingly relevant to problems in science and technology. This special issue, containing invited papers from participants at the 3rd International Conference on Ultrafast Structural Dynamics held June 10-12, 2015 in Zurich, Switzerland, discusses several recent developments in this area. PMID:27191008

  10. Overview of the 3rd isirv-Antiviral Group Conference – advances in clinical management

    PubMed Central

    Hurt, Aeron C; Hui, David S; Hay, Alan; Hayden, Frederick G

    2015-01-01

    This review highlights the main points which emerged from the presentations and discussions at the 3rd isirv-Antiviral Group Conference - advances in clinical management. The conference covered emerging and potentially pandemic influenza viruses and discussed novel/pre-licensure therapeutics and currently approved antivirals and vaccines for the control of influenza. Current data on approved and novel treatments for non-influenza respiratory viruses such as MERS-CoV, respiratory syncytial virus (RSV) and rhinoviruses and the challenges of treating immunocompromised patients with respiratory infections was highlighted. PMID:25399715

  11. Extreme and Local 3rd Harmonic Response of Niobium (Nb) Superconductor

    NASA Astrophysics Data System (ADS)

    Oripov, Bakhrom; Tai, Tamin; Anlage, Steven

    Superconducting Radio Frequency (SRF) cavities are being widely used in new generation particle accelerators. These SRF cavities are based on bulk Nb. Based on the needs of the SRF community to identify defects on Nb surfaces, a novel near-field magnetic microwave microscope was successfully built using a magnetic writer from a conventional magnetic recording hard-disk drive1. This magnetic writer can create an RF magnetic field, localized and strong enough to drive Nb into the vortex state. This probe enables us to locate defects through scanning and mapping of the local electrodynamic response in the multi-GHz frequency range. Recent measurements have shown that 3rd harmonic nonlinear response is far more sensitive to variations in input power and temperature then linear response, thus we mainly study the 3rd harmonic response. Moreover, the superconductor is usually the only source for nonlinear response in our setup, thus there is less chance of having noise or background signal. Understanding the mechanism responsible for this non-linear response is important for improving the performance of SRF cavities. Besides Nb we also study various other superconductors such as MgB2 and the cuprate Bi-Sr-Ca-Cu-O (BSCCO) for potential applications in SRF cavities. This work is funded by US Department of Energy through Grant # DE-SC0012036T and CNAM.

  12. Treatment of 3rd molar-induced periodontal defects with guided tissue regeneration.

    PubMed

    Oxford, G E; Quintero, G; Stuller, C B; Gher, M E

    1997-07-01

    Recent reports provide evidence of increased attachment levels when using guided tissue regeneration (GTR) techniques for the treatment of periodontal defects. Periodontal defects frequently occur at the distal aspect of mandibular 2nd molars which are next to mesioangular impacted 3rd molars that have oral communication. The purpose of this study was to determine whether the use of GTR can enhance probing attachment levels (PALs) following extraction of mesioangular impacted third molars. 12 patients with bilateral soft tissue impacted mandibular 3rd molars entered this split mouth study. After extractions, the previously exposed distal root surface of the 2nd molars were debrided. The defects on the randomly selected experimental sites were covered with expanded polytetraflouro-ethylene (e-PTFE) membrane and the tissue was replaced to cover the membrane. Membranes were removed after 6 weeks. Control sites were treated identically except no membrane was placed. GI, P1I, PD, PAL and BOP records were obtained at 0, 3 and 6 months. The use of barrier material did not provide statistically-significant differences in PAL when comparing experimental versus control sites. Nevertheless, PAL gain was consistently greater at 3 and 6 months when GTR techniques were used in sites with deep impactions. PMID:9226386

  13. Laboratory studies of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1986-01-01

    Interplanetary dust particles (IDPs) are a form of primitive extraterrestrial material. In spite of the formidable experimental problems in working with particles that are too small to be seen with the naked eye, it has proven possible to obtain considerable information concerning their properties and possible origins. Dust particles collected in the stratosphere were reviewed. These particles are the best available samples of interplanetary dust and were studied using a variety of analytical techniques.

  14. PREFACE: 3rd International Conference of Mechanical Engineering Research (ICMER 2015)

    NASA Astrophysics Data System (ADS)

    Mamat, Riazalman; Rahman, Mustafizur; Mohd. Zuki Nik Mohamed, Nik; Che Ghani, Saiful Anwar; Harun, Wan Sharuzi Wan

    2015-12-01

    The 3rd ICMER2015 is the continuity of the NCMER2010. The year 2010 represents a significant milestone in the history for Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP) Malaysia with the organization of the first and second national level conferences (1st and 2nd NCMER) at UMP on May 26-27 and Dec 3-4 2010. The Faculty then changed the name from National Conference on Mechanical Engineering Research (NCMER) to International Conference on Mechanical Engineering Research (ICMER) in 2011 and this year, 2015 is our 3rd ICMER. These proceedings contain the selected scientific manuscripts submitted to the conference. It is with great pleasure to welcome you to the "International Conference on Mechanical Engineering Research (ICMER2015)" that is held at Zenith Hotel, Kuantan, Malaysia. The call for papers attracted submissions of over two hundred abstracts from twelve different countries including Japan, Iran, China, Kuwait, Indonesia, Norway, Philippines, Morocco, Germany, UAE and more. The scientific papers published in these proceedings have been revised and approved by the technical committee of the 3rd ICMER2015. All of the papers exhibit clear, concise, and precise expositions that appeal to a broad international readership interested in mechanical engineering, combustion, metallurgy, materials science as well as in manufacturing and biomechanics. The reports present original ideas or results of general significance supported by clear reasoning and compelling evidence, and employ methods, theories and practices relevant to the research. The authors clearly state the questions and the significance of their research to theory and practice, describe how the research contributes to new knowledge, and provide tables and figures that meaningfully add to the narrative. In this edition of ICMER representatives attending are from academia, industry, governmental and private sectors. The plenary and invited speakers will present, discuss, promote and

  15. Malaria and Fetal Growth Alterations in the 3rd Trimester of Pregnancy: A Longitudinal Ultrasound Study

    PubMed Central

    Schmiegelow, Christentze; Minja, Daniel; Oesterholt, Mayke; Pehrson, Caroline; Suhrs, Hannah Elena; Boström, Stéphanie; Lemnge, Martha; Magistrado, Pamela; Rasch, Vibeke; Nielsen, Birgitte Bruun; Lusingu, John; Theander, Thor G.

    2013-01-01

    Background Pregnancy associated malaria is associated with decreased birth weight, but in-utero evaluation of fetal growth alterations is rarely performed. The objective of this study was to investigate malaria induced changes in fetal growth during the 3rd trimester using trans-abdominal ultrasound. Methods An observational study of 876 pregnant women (398 primi- and secundigravidae and 478 multigravidae) was conducted in Tanzania. Fetal growth was monitored with ultrasound and screening for malaria was performed regularly. Birth weight and fetal weight were converted to z-scores, and fetal growth evaluated as fetal weight gain from the 26th week of pregnancy. Results Malaria infection only affected birth weight and fetal growth among primi- and secundigravid women. Forty-eight of the 398 primi- and secundigravid women had malaria during pregnancy causing a reduction in the newborns z-score of −0.50 (95% CI: −0.86, −0.13, P = 0.008, multiple linear regression). Fifty-eight percent (28/48) of the primi- and secundigravidae had malaria in the first half of pregnancy, but an effect on fetal growth was observed in the 3rd trimester with an OR of 4.89 for the fetal growth rate belonging to the lowest 25% in the population (95%CI: 2.03–11.79, P<0.001, multiple logistic regression). At an individual level, among the primi- and secundigravidae, 27% experienced alterations of fetal growth immediately after exposure but only for a short interval, 27% only late in pregnancy, 16.2% persistently from exposure until the end of pregnancy, and 29.7% had no alterations of fetal growth. Conclusions The effect of malaria infections was observed during the 3rd trimester, despite infections occurring much earlier in pregnancy, and different mechanisms might operate leading to different patterns of growth alterations. This study highlights the need for protection against malaria throughout pregnancy and the recognition that observed changes in fetal growth might be a

  16. Meeting Report: 3rd International Workshop on Insulin & Cancer Heidelberg, Germany, October 30-31, 2010

    PubMed Central

    2010-01-01

    The 3rd International Workshop on Insulin & Cancer was held on October 30-31, 2010 at the German Cancer Research Centre in Heidelberg/Germany. The topics followed-up the discussions of the previous workshops: possible differences in mitogenicity between natural insulin and genetically engineered insulin derivatives (insulin analogues), as shown by laboratory studies and epidemiologic studies alike; molecular studies on the links between metabolic and mitogenic effects of insulin, and of hyperinsulinaemia in particular; epidemiologic evidence of interferences between insulin and other hormones, particularly sex hormones, and obesity-associated cancer; the involvement of inflammatory cytokines produced by fat tissue in obesity-associated cancer; aspects of drug-design (binding drugs to albumin) and, last but not least, detection and investigation of circulating cancer cells. PMID:21176129

  17. Meeting report: 3rd international workshop on insulin & cancer heidelberg, Germany, october 30-31, 2010.

    PubMed

    Chantelau, Ernst; Mayer, Doris

    2010-01-01

    The 3rd International Workshop on Insulin & Cancer was held on October 30-31, 2010 at the German Cancer Research Centre in Heidelberg/Germany. The topics followed-up the discussions of the previous workshops: possible differences in mitogenicity between natural insulin and genetically engineered insulin derivatives (insulin analogues), as shown by laboratory studies and epidemiologic studies alike; molecular studies on the links between metabolic and mitogenic effects of insulin, and of hyperinsulinaemia in particular; epidemiologic evidence of interferences between insulin and other hormones, particularly sex hormones, and obesity-associated cancer; the involvement of inflammatory cytokines produced by fat tissue in obesity-associated cancer; aspects of drug-design (binding drugs to albumin) and, last but not least, detection and investigation of circulating cancer cells.

  18. Passive solar progress: a simplified guide to the 3rd national passive solar conference

    SciTech Connect

    Miller, H.; Howell, Y.; Richards, D.

    1980-10-01

    Some of the concepts and practices that have come to be known as passive solar heating and cooling are introduced, and a current picture of the field is presented. Much of the material presented is derived from papers given at the 3rd National Passive Solar Conference held in San Jose, California in January 1979 and sponsored by the US Department of Energy. Extracts and data from these papers have been integrated in the text with explanatory and descriptive material. In this way, it is attempted to present technical information in an introductory context. Topics include design considerations, passive and hybrid systems and applications, sizing methods and performance prediction, and implementation issues. A glossary is included. (WHK)

  19. Dental health in antique population of Vinkovci - Cibalae in Croatia (3rd-5th century).

    PubMed

    Peko, Dunja; Vodanović, Marin

    2016-08-01

    Roman city Cibalae (Vinkovci) - the birthplace of Roman emperors Valentinian I and Valens was a very well developed urban ares in the late antique what was evidenced by numerous archaeological findings. The aim of this paper is to get insight in dental health of antique population of Cibalae. One hundred individuals with 2041 teeth dated to 3rd - 5th century AD have been analyzed for caries, antemortem tooth loss, periapical diseases and tooth wear. Prevalence of antemortem tooth loss was 4.3% in males, 5.2% in females. Prevalence of caries per tooth was 8.4% in males, 7.0% in females. Compared to other Croatian antique sites, ancient inhabitants of Roman Cibalae had rather good dental health with low caries prevalence and no gender differences. Statistically significant difference was found between males in females in the prevalence of periapical lesions and degree of tooth wear. Periapical lesions were found only in males. PMID:27598951

  20. John D. Rockefeller 3rd, statesman and founder of the Population Council.

    PubMed

    Dunlop, J

    2000-01-01

    This article presents a profile of John D. Rockefeller 3rd, statesman and founder of the Population Council. It is noted that Rockefeller took a broad view of population control as a means to address poverty and economic development rather than as an end in itself. In 1952 he initiated the convocation of the Conference on Population Problems held in Williamsburg, Virginia. The discussion focused on food supply, industrial development, depletion of natural resources, and political instability resulting from unchecked population growth. In 1967, Rockefeller initiated, lobbied for, and finally achieved a World Leaders' Statement signed by 30 heads of state including US President Lyndon Johnson. The document drew attention to population growth as a world problem and engendered political support for family planning as a solution. After 3 years the Commission on Population Growth and the American Future was established, and Rockefeller was made its chairman. Several issues were debated, including more safer fertility control and the legalization of abortion.

  1. Food: The Chemistry of Its Components, 3rd Edition (by T. P. Coultate)

    NASA Astrophysics Data System (ADS)

    Carandang, Rachelle; Ziegler, Greg

    1998-02-01

    Food: The Chemistry of Its Components, 3rd edition, by T. P. Coultate, is an excellent textbook in food chemistry for undergraduates. It is a concise version of the very detailed Food Chemistry by Fennema and similar to, but with advantages over, Mechanism and Theory in Food Chemistry by Wong and Principles of Food Chemistry by Deman. The book assumes knowledge of biochemistry and basic principles in organic chemistry, but presents very practical examples that allow the student to see the obvious link between theory and practice. The examples are described almost as if the author is performing a demonstration in a classvery vivid to the imagination. This is important because students are expected in the future to perform and put into practice their knowledge of food chemistry.

  2. PREFACE: 3rd International Symposium on Functional Materials 2009 (ISFM 2009) 3rd International Symposium on Functional Materials 2009 (ISFM 2009)

    NASA Astrophysics Data System (ADS)

    Kiwon, Kim; Li, Lu; Taehyun, Nam; Jouhyeon, Ahn

    2010-05-01

    The 3rd International Symposium on Functional Materials 2009 (ISFM 2009) and its preconference, Advances in Functional Materials 2009 (AFM 2009), were successfully held in the Republic of Korea from 15-18 June 2009 and in the People's Republic of China from 8-12 June 2009, respectively. The two conferences attracted over 300 oral and poster presentations from over 12 countries including Australia, Canada, China, Germany, Japan, India, Israel, Korea, The Netherlands, Thailand, the UK and the USA. In the two conferences, eight keynote lectures were delivered by S Miyazaki, S A Akbar, D J Singh, C Suryanarayana, M~Greenblatt, H Zhang, T Sato and J Ding. This topical issue of Physica Scripta contains papers presented at the ISFM 2009 and AFM 2009. Keyan Li from Dalian University, People's Republic of China, presents some empirical formulae to estimate the elastic moduli of rocksalt-, zincblende- and chalcopyrite-structured crystals, on the basis of electronegativities of bonded atoms in the crystallographic frame. Min-Jung Kim from Hanyang University, Korea, reports on the preparation and characterization of carboxyl functionalization of magnetite nanoparticles for oligonucleotide immobilization. F Yan from the National University of Singapore studies the fabrication of Bi(Fe0.5Sc0.5)O3-PbTiO3 (BSF-PT) thin films by pulsed laser deposition, and the enhanced magnetic moment with respect to BiFeO3-PbTiO3. Dong-Gil Lee from Pusan National University, Korea, reports on the sterilization of enteropathogenic Escherichia coli using nanofiber TiO2 films prepared by the electrostatic spray method. Sang-Eun Park from the Korea Institute of Science and Technology reports on the study of encapsulated Fe3O4 nanoparticles with a silica thin layer with a reversible capacity of about 363 mAhg-1. Other researchers report on many other exiting achievements in the fields of ferromagnetic materials, magneto-optical materials, thermoelectric materials, shape memory materials, fuel-cell and

  3. FOREWORD: 3rd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2013)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2013-10-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 3rd International Workshop on New Computational Methods for Inverse Problems, NCMIP 2013 (http://www.farman.ens-cachan.fr/NCMIP_2013.html). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 22 May 2013, at the initiative of Institut Farman. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 (http://www.farman.ens-cachan.fr/NCMIP_2012.html). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational

  4. Interplanetary Microlaser Transponders

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1999-01-01

    The feasibility of an asynchronous (i.e. independently firing) interplanetary laser transponder, capable of ranging between Earth and Mars and using the automated SLR2000 Satellite Laser Ranging (SLR) system as an Earth base station, has been suggested. Since that time, we have received a small amount of discretionary funding to further explore the transponder concept and to develop and test an engineering breadboard. Candidate operational scenarios for acquiring and tracking the opposite laser terminal over interplanetary distances have been developed, and breadboard engineering parameters were chosen to reflect the requirements of an Earth-Mars link Laboratory tests have been devised to simulate the Earth- Mars link between two independent SLR2000 transceivers and to demonstrate the transfer of range and time in single photon mode. The present paper reviews the concept of the asynchronous microlaser transponder, the transponder breadboard design, an operational scenario recently developed for an asteroid rendezvous, and the laboratory test setup. The optical head of the transponder breadboard fits within a cylinder roughly 15 cm in diameter and 32 cm in length and is mounted in a commercial two axis gimbal driven by two computer-controlled stepper motors which allows the receiver optical axis to be centered on a simulated Earth image. The optical head is built around a small optical bench which supports a 14.7 cm diameter refractive telescope, a prototype 2 kHz SLR2000 microlaser transmitter, a quadrant microchannel plate photomultiplier (MCP/PMT), a CCD array camera, spatial and spectral filters, assorted lenses and mirrors, and protective covers and sun shields. The microlaser is end-pumped by a fiber-coupled diode laser array. An annular mirror is employed as a passive transmit/receive (T/R) switch in an aperture-sharing arrangement wherein the transmitted beam passes through the central hole and illuminates only the central 2.5 cm of the common telescope

  5. Simulation of robustness of a new e-beam column with the 3 rd-order imaging technique

    NASA Astrophysics Data System (ADS)

    Takeya, K.; Fuse, T.; Kinoshita, H.; Parker, N. William

    2008-03-01

    We are now investigating a new concept column with the 3 rd-order imaging technique, in order to obtain fine resolution and high current density beams for electron beam direct writing (EBDW) suitable for below 32nm technology nodes. From the first experimental verification, it is found that the 3 rd-order imaging has a benefit of increasing the beam current compared with conventional Gaussian beam without any beam blurring. However, in order to realize such a column which can work stably in the sub 32nm technology node generations, it is important to clarify how robust the 3 rd-order imaging is against the mechanical tolerances in column manufacturing. This paper describes the tolerance analysis for errors of column manufacturing by simulation. The column has an electron gun with small virtual source and two (Gun and Main) lenses. A patterned beam defining aperture, which enables the 3 rd-order imaging, is set between the 1 st and the 2 nd lenses. The influences of errors such as concentricity, offset and tilt between optical parts on the beam shape, beam current density distribution, and beam edge acuity on a wafer is analyzed for this column. According to these results, the 3 rd-order imaging appears to have sufficiently large allowance compared to the error budget for column manufacturing required in the sub 32nm technology node patterning.

  6. TEC obtained from 3rd Stokes parameter for improved quality of SMOS salinity retrieval

    NASA Astrophysics Data System (ADS)

    Vergely, Jean-Luc; Waldteufel, Philippe; Boutin, Jacqueline; Yin, Xiaobin; Spurgeon, Paul

    2014-05-01

    While SMOS was designed with full polarimetric capability, the 3rd Stokes parameter information has not been introduced so far in the data processing. The analysis reported in the present contribution proposes to estimate from this information the total ionospheric electron content (TEC). Indeed the Faraday effect generated by the ionospheric electrons on the path from Earth to satellite is believed to be responsible for large uncertainties in the evening half-orbits (circa 06 PM local time) when the ionospheric content is close to its diurnal maximum. It is shown that the 3rd Stokes parameter exhibits a maximal sensitivity to TEC in a restricted area located at the front of the SMOS 2D field of view. However, since the Faraday angle depends on the scalar product between line-of-sight and magnetic field vectors, a latitudinal zone is found where this sensitivity vanishes. This zone occurs around 15° N a latitude nearly invariant with longitude around the Earth. Accordingly it is possible, when carrying out the TEC estimation over a descending half-orbit, to isolate over this "blind zone" the so-called "Ocean Target Transformation" parameter, which aims at correcting for pixel dependent biases. TEC maps obtained in this way compare favorably with maps built from GPS measurements, which have been introduced so far in the SMOS processing chain as auxiliary data. The space resolution is somewhat improved, allowing a better selection of the relevant electron content in zones exhibiting large horizontal TEC gradients. In a latter step, based on the TEC maps, it becomes possible to recompute the OTT correction for those brightness temperature components to be used as input in the salinity retrieval. Then the additional information impacts the salinity retrieval both directly (as the quality of the TEC auxiliary data is improved) and indirectly (as the empirical OTT correction is no longer contaminated by spurious Faraday rotation effects). The respective contributions of

  7. The Power of PreK-3rd: How a Small Foundation Helped Push Washington State to the Forefront of the PreK-3rd Movement. FCD Case Study

    ERIC Educational Resources Information Center

    Nyhan, Paul

    2011-01-01

    The New School Foundation was not born from a commission, legislative mandate, research project, think tank, or even the mind of a leading education scholar. One of Washington state's pioneering PreK-3rd initiatives began as the brainchild of a wealthy Seattle businessman, Stuart Sloan, 20 years ago. The New School Foundation and its ideas were…

  8. Interplanetary shock waves associated with solar flares

    NASA Technical Reports Server (NTRS)

    Chao, J. K.; Sakurai, K.

    1974-01-01

    The interaction of the earth's magnetic field with the solar wind is discussed with emphasis on the influence of solar flares. The geomagnetic storms are considerered to be the result of the arrival of shock wave generated by solar flares in interplanetary space. Basic processes in the solar atmosphere and interplanetary space, and hydromagnetic disturbances associated with the solar flares are discussed along with observational and theoretical problems of interplanetary shock waves. The origin of interplanetary shock waves is also discussed.

  9. From challenges to solutions. European Bioanalysis Forum 3rd Annual Open Symposium, Hesperia Towers, Barcelona, Spain, 1-3 December 2010.

    PubMed

    Abbott, Richard W; Gordon, Ben; van Amsterdam, Peter; Lausecker, Berthold; Brudny-Kloeppel, Margarete; Smeraglia, John; Romero, Fernando; Globig, Susanne; Golob, Michaela; Knutsson, Magnus; Herling, Christian; Vieser, Eva; Timmerman, Philip

    2011-04-01

    The European Bioanalysis Forum is a bioanalytical nonprofit organization comprised of European pharmaceutical companies (27 members to date) and currently expanding to include CROs as well. The European Bioanalysis Forum provides a broad European bioanalytical network for the discussion of scientific, technological and regulatory topics of bioanalytical interest. The 3rd Annual Open Symposium was again much anticipated after the two previous successful meetings. The symposium included sessions on thinking outside the 'commodity' box, bioanalytical challenges with blood, global harmonization, assay platforms, dried blood spots, immunogenicity, matrix effects, anomalous results, biomarkers and two plenary technology sessions hosted by the Platinum sponsors. Experts and key opinion leaders were invited as guest speakers. A total of 424 delegates registered from 113 companies representing a large percentage of the European bioanalytical community. In addition to 48 oral presentations, 88 posters were presented and there was a vendor exposition of 40 companies.

  10. Effects of notetaking instruction on 3rd grade student's science learning and notetaking behavior

    NASA Astrophysics Data System (ADS)

    Lee, Pai-Lin

    The research examined effects of notetaking instruction on elementary-aged students' ability to recall science information and notetaking behavior. Classes of 3rd grade students were randomly assigned to three treatment conditions, strategic notetaking, partial strategic notetaking, and control, for 4 training sessions. The effects of the notetaking instruction were measured by their performances on a test on science information taught during the training, a long-term free recall of the information, and number of information units recalled with or without cues. Students' prior science achievement was used to group students into two levels (high vs. low) and functioned as another independent variable in analysis. Results indicated significant treatment effect on cued and non-cued recall of the information units in favor of the strategy instruction groups. Students with higher prior achievement in science performed better on cued recall and long-term free recall of information. The results suggest that students as young as at the third grade can be instructed to develop the ability of notetaking that promotes their learning.

  11. Measuring the cascade rate in anisotropic turbulence through 3rd order structure functions.

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Landi, Simone; Hellinger, Petr

    2014-05-01

    We employ the Von-Karman-Howart-Yaglom-Politano-Poquet (KHYPP)law, to compute the cascade rate by means of 3rd order structure functions in homogeneous, forced, DNS at high resolution. We consider first the isotropic case (no guide field) and verify that the cascade rate is consistent with the dissipation rate. Then we consider an anisotropic case (with guide field) for which the isotropic KHYPP law does not apply. We compute the parallel and perpendicular cascade rates and find that the latter basically accounts for the total dissipation rate, as expected for anisotropic turbulence. Also, the cascade rate derived from the isotropic law is found to be a good approximation for the total cascade rate. Recent works have shown that the hypothesis of stationary turbulence must be probably relaxed in the solar wind. We present preliminary results on the measure of the cascade rate in the expanding solar wind, obtained with DNS of MHD turbulence in the expanding box model. Such model incorporates the basic physic of expansion thus inducing anisotropies driven by both the magnetic field and expansion, along with an energy decrease due to the conservation of linear invariants (angular momentum and magnetic flux). The correction due to non-stationary conditions is found to be important and to become negligible only at small scales, thus suggesting that solar wind measurements over- estimate the actual cascade rate.

  12. Measurement and correction of the 3rd order resonance in the Tevatron

    SciTech Connect

    Schmidt, F.; Alexahin, Y.; Lebedev, V.; Still, D.; Valishev, A.; /Fermilab

    2006-06-01

    At Fermilab Tevatron BPM system has been recently upgraded resulting much better accuracy of beam position measurements and improvements of data acquisition for turn-by-turn measurements. That allows one to record the beam position at each turn for 8000 turns for all BPMs (118 in each plane) with accuracy of about 10-20 {micro}m. In the last decade a harmonic analysis tool has been developed at CERN that allows relating each FFT line derived from the BPM data with a particular non-linear resonance in the machine. In fact, one can even detect the longitudinal position of the sources of these resonances. Experiments have been performed at the Tevatron in which beams have been kicked to various amplitudes to analyze the 3rd order resonance. It was possible to address this rather large resonance to some regular machine sextupoles. An alternative sextupole scheme allowed the suppression of this resonance by a good factor of 2. Lastly, the experimental data are compared with model calculations.

  13. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  14. Geysers Characteristics before and after Landslide of June 3-rd, 2007 (Geysers Valley, Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Droznin, V. A.; Kiryukhin, A. V.; Muraviev, J. D.

    2007-12-01

    Since 1990 cycling characteristics of five geysers (Maly, Bolshoy, Shel, Velican, Troynoy) were contentiously monitoring using automatic telemetric system (V A Drosnin, http://www.ch0103.emsd.iks.ru/ ). The most powerful geyser Velikan erupted steam clouds at 300 m height. 1:20 UTC June 3-rd, 2007 lower basin of the Geysers Valley was in a few minutes buried under 10 mln m3 of mud, debris, and blocks of rocks. Some indications were found, that landslide triggered by steam eruption in the upstream area of Vodopadny creek. As a result of this three famous geysers (Pervenets, Sakharny,Troynoy) located at lower elevations were sealed under 10-30 m thick caprock as well as Vodopadny hot creek, a rock dumb trap Geysernaya river and lifted water into 20 m deep lake, which flooded three famous geysers (Conus, Bolshoy and Maly) terminating their cycling activity. Nevertheless Bolshoy and Maly activity continues in a form of discharge of water circulated in the former geysers channels and a clear plume at a lake surface above exits observed. Shortly after landslide continuous monitoring of the cycling characteristics of the upper basin geysers, including Velikan and lake level, accomplished by temperature loggers - restarted. There are some indications time periods of the geysers cycling decrease.

  15. Visual, Critical, and Scientific Thinking Dispositions in a 3rd Grade Science Classroom

    NASA Astrophysics Data System (ADS)

    Foss, Stacy

    Many American students leave school without the required 21st century critical thinking skills. This qualitative case study, based on the theoretical concepts of Facione, Arheim, and Vygotsky, explored the development of thinking dispositions through the arts in science on the development of scientific thinking skills when used as a conceptual thinking routine in a rural 3rd grade classroom. Research questions examined the disposition to think critically through the arts in science and focused on the perceptions and experiences of 25 students with the Visual Thinking Strategy (VTS) process. Data were collected from classroom observations (n = 10), student interviews (n = 25), teacher interviews ( n = 1), a focus group discussion (n = 3), and artifacts of student work (n = 25); these data included perceptions of VTS, school culture, and classroom characteristics. An inductive analysis of qualitative data resulted in several emergent themes regarding disposition development and students generating questions while increasing affective motivation. The most prevalent dispositions were open-mindedness, the truth-seeking disposition, the analytical disposition, and the systematicity disposition. The findings about the teachers indicated that VTS questions in science supported "gradual release of responsibility", the internalization of process skills and vocabulary, and argumentation. This case study offers descriptive research that links visual arts inquiry and the development of critical thinking dispositions in science at the elementary level. A science curriculum could be developed, that emphasizes the development of thinking dispositions through the arts in science, which in turn, could impact the professional development of teachers and learning outcomes for students.

  16. PREFACE: 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Webb, Jeff; Ding, Jun

    2015-05-01

    The 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015) was held at the Sheraton Kuta, Bali, Indonesia, from 28 - 29 March 2015. The MOIME 2015 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. MOIME 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that relate to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program, as well as the invited and plenary speakers. This year, we received 99 papers and after rigorous review, 24 papers were accepted. The participants come from eight countries. There were four parallel sessions and two invited speakers. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of MOIME 2015. The Editors of the MOIME 2015 Proceedings Dr. Ford Lumban Gaol Jeff Webb, Ph.D Prof. Jun DING, Ph.D

  17. Exploiting stem cell therapy: the 3rd meeting of stem cell research Italy.

    PubMed

    Di Bernardo, Giovanni; Piva, Roberta; Giordano, Antonio; Galderisi, Umberto

    2013-04-01

    The study of stem cells is one of the most exciting areas of contemporary biomedical research. During the 3rd Joint Meeting of Stem Cell Research Italy (June 2012, Ferrara, Italy), scientists from different multidisciplinary areas explored new frontiers of basic and applied stem cell research with key lectures and oral presentations. There was a public debate on ethics during the opening ceremony, specifically on the limits and potentialities of adult and embryonic stem cells. Some scientists presented basic research data showing evolutionary aspects, which could be of interest in understanding specific biological phenomena. Others focused on "dangerous liaisons" between gene transfer vectors and the human genome. Some speakers provided insight into current stem cell therapies, such as those involving human epithelial stem cells for treatment of skin diseases. Other researchers presented data on close-to-therapy findings, such as the use of mesenchymal stem cells in brain repair. Of note, during the meeting, spotlights were focused on major issues that have to be considered for GMP stem cell production for cell therapy. In "Meet the Expert" sessions, specialists presented innovative technologies such as a next-generation sequencing system. Finally, the meeting provided an excellent opportunity for young scientists to show their findings, and to discuss with each other and with internationally recognized experts.

  18. Microstructure of the Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1972-01-01

    High time resolution measurements of the interplanetary magnetic field and plasma reveal a complex microstructure which includes hydromagnetic wave and discontinuities. The identification of hydromagnetic waves and discontinuities, their statistical properties, their relation to large-scale structure, and their relative contribution to power spectra are discussed.

  19. Interplanetary Trajectories, Encke Method (ITEM)

    NASA Technical Reports Server (NTRS)

    Whitlock, F. H.; Wolfe, H.; Lefton, L.; Levine, N.

    1972-01-01

    Modified program has been developed using improved variation of Encke method which avoids accumulation of round-off errors and avoids numerical ambiguities arising from near-circular orbits of low inclination. Variety of interplanetary trajectory problems can be computed with maximum accuracy and efficiency.

  20. Constancy and Variability: Dialogic Literacy Events as Sites for Improvisation in Two 3rd-Grade Classrooms

    ERIC Educational Resources Information Center

    Jordan, Michelle E.; Santori, Diane

    2015-01-01

    This multisite study investigates dialogic literacy events that revolved around narrative and informational texts in two 3rd-grade classrooms. The authors offer a metaphor of musical improvisation to contemplate dialogic literacy events as part of the repertoire of teaching and learning experiences. In literacy learning, where there is much…

  1. Test Review: C. Keith Conners "Conners 3rd Edition" Toronto, Ontario, Canada--Multi-Health Systems, 2008

    ERIC Educational Resources Information Center

    Kao, Grace S.; Thomas, Hillary M.

    2010-01-01

    "Conners 3rd Edition" is the most updated version of a series of measures for assessing attention deficit hyperactivity disorder (ADHD) and common comorbid problems/disorders in children and adolescents ranging from 6 to 18 years of age. Related problems that the test helps assess include executive dysfunction, learning problems, aggression, and…

  2. Predicting 3rd Grade and 10th Grade FCAT Success for 2006-07. Research Brief. Volume 0601

    ERIC Educational Resources Information Center

    Froman, Terry; Rubiera, Vilma

    2006-01-01

    For the past few years the Florida School Code has set the Florida Comprehensive Assessment Test (FCAT) performance requirements for promotion of 3rd graders and graduation for 10th graders. Grade 3 students who do not score at level 2 or higher on the FCAT SSS Reading must be retained unless exempted for special circumstances. Grade 10 students…

  3. Predicting 3rd Grade and 10th Grade FCAT Success for 2007-08. Research Brief. Volume 0702

    ERIC Educational Resources Information Center

    Froman, Terry; Rubiera, Vilma

    2008-01-01

    For the past few years the Florida School Code has set the Florida Comprehensive Assessment Test (FCAT) performance requirements for promotion of 3rd graders and graduation for 10 graders. Grade 3 students who do not score at level 2 or higher on the FCAT SSS Reading must be retained unless exempted for special circumstances. Grade 10 students…

  4. The Lived Experiences of 3rd Generation and beyond U.S.-Born Mexican Heritage College Students: A Qualitative Study

    ERIC Educational Resources Information Center

    Galvan, Richard

    2011-01-01

    The purpose of this study was to describe the psychosocial and identity challenges of 3rd generation and beyond U.S.-born (3GAB-USB) Mexican heritage college students. Alvarez (1973) has written about the psychosocial impact "hybridity" can have on a U.S.- born (USB) Mexican individual who incorporates two distinct cultures (American and Mexican)…

  5. Iron metabolism in African American women during the 2nd and 3rd trimester of a high-risk pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine iron metabolism during the 2nd and 3rd trimester in African American women classified as a high-risk pregnancy. Design: Longitudinal. Setting: Large, university-based, urban Midwestern medical center. Participants: Convenience sample of 47 African American women classified a...

  6. Iowa Acceleration Scale Manual: A Guide for Whole-Grade Acceleration K-8. (3rd Edition, Manual)

    ERIC Educational Resources Information Center

    Assouline, Susan G.; Colangelo, Nicholas; Lupkowski-Shoplik, Ann; Forstadt, Leslie; Lipscomb, Jonathon

    2009-01-01

    Feedback from years of nationwide use has resulted in a 3rd Edition of this unique, systematic, and objective guide to considering and implementing academic acceleration. Developed and tested by the Belin-Blank Center at the University of Iowa, the IAS ensures that acceleration decisions are systematic, thoughtful, well reasoned, and defensible.…

  7. A Program Evaluation of ClassScape Used in 3rd Grade Classes in a Rural County in North Carolina

    ERIC Educational Resources Information Center

    Rogers, Misha Neely

    2012-01-01

    The research study will examine the impact of using the ClassScape program and targeted interventions on 3rd grade reading levels of performance. The conceptual and theoretical framework for the study suggests the need to connect formative, benchmark, and summative assessments in North Carolina. Furthermore, the review of the literature will…

  8. 3rd Annual PIALA Conference Saipan--Collecting, Preserving & Sharing Information in Micronesia. Conference Proceedings. October 13-15, 1993.

    ERIC Educational Resources Information Center

    Edmundson, Margaret, Ed.

    1993-01-01

    This PIALA 1993 Proceedings contains many of the papers presented at the 3rd annual conference of the Pacific Islands Association of Libraries and Archives. This publication is the first time papers from this Micronesian regional library and archives conference have ever been published. The conference addressed various topics of interest to…

  9. Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    2003-12-01

    micrometeorites) containing layer silicates indicative of parent-body aqueous alteration and the more distant anhydrous P and D asteroids exhibiting no evidence of (aqueous) alteration (Gradie and Tedesco, 1982). This gradation in spectral properties presumably extends several hundred AU out to the Kuiper belt, the source region of most short-period comets, where the distinction between comets and outer asteroids may simply be one of the orbital parameters ( Luu, 1993; Brownlee, 1994; Jessberger et al., 2001). The mineralogy and petrography of meteorites provides direct confirmation of aqueous alteration, melting, fractionation, and thermal metamorphism among the inner asteroids ( Zolensky and McSween, 1988; Farinella et al., 1993; Brearley and Jones, 1998). Because the most common grains in the ISM (silicates and carbonaceous matter) are not as refractory as those found in meteorites, it is unlikely that they have survived in significant quantities in meteorites. Despite a prolonged search, not a single presolar silicate grain has yet been identified in any meteorite.Interplanetary dust particles (IDPs) are the smallest and most fine-grained meteoritic objects available for laboratory investigation (Figure 1). In contrast to meteorites, IDPs are derived from a broad range of dust-producing bodies extending from the inner main belt of the asteroids to the Kuiper belt (Flynn, 1996, 1990; Dermott et al., 1994; Liou et al., 1996). After release from their asteroidal or cometary parent bodies the orbits of IDPs evolve by Poynting-Robertson (PR) drag (the combined influence of light pressure and radiation drag) ( Dermott et al., 2001). Irrespective of the location of their parent bodies nearly all IDPs under the influence of PR drag can eventually reach Earth-crossing orbits. IDPs are collected in the stratosphere at 20-25 km altitude using NASA ER2 aircraft ( Sandford, 1987; Warren and Zolensky, 1994). Laboratory measurements of implanted rare gases, solar flare tracks ( Figure 2

  10. PREFACE: 3rd International Youth Conference "Interdisciplinary Problems of Nanotechnology, Biomedicine and Nanotoxicology" (Nanobiotech 2015)

    NASA Astrophysics Data System (ADS)

    Refsnes, Magne, Prof; Gusev, Alexander, Dr; Godymchuk, Anna, Dr; Bogdan, Anna

    2015-11-01

    The 3rd International Youth Conference "Interdisciplinary Problems of Nanotechnology, Biomedicine and Nanotoxicology" (Nanobiotech2015) was held on 21-22 May 2015 in Tambov, Russia, and was jointly organized by Tambov Derzhavin State University (Russia), the Norwegian Institute of Public Health (Norway), the National University of Science and Technology MISiS (Russia), Tomsk Polytechnic University (Russia) and Tomsk State University. The conference gathered experienced and young researchers, post-docs and students, working in the fieldof nanotechnologies, nanomedicine, nano(eco)toxicology and risk assessment of nanomaterials, in order to facilitate the aggregation and sharing of interests and results for better collaboration and visibility of activity. The goal of Nanobiotech2015 was to bring researchers and practitioners together to share the latest knowledge on nanotechnology-specific risks to occupational and environmental health and assessing how to reduce these potential risks. The main objective of the conference is to identify, systematize and solve current scientific problems inthe sphere of nanobiotechnologies, nanomedicine and nanotoxicology, in order to join forces todetermine prospective areas and compose working groups of interested co-workers for carrying out interdisciplinary research projects. The topics of Nanobiotech2015 were: (1) Nanotechnologies in pharmaceutics and medicine; (2) Sources and mechanisms of nanoparticle release into the environment; (3) Ecological and biological effects of nanoparticles; (4) (Eco)toxicology of nanomaterials; (5) Methods for detection of nanoparticles in the environment and in biological objects; and (6) Physico-chemical properties of nanoparticles in the environment. We want to thank the Organizing Committee, the universities and sponsors supporting the conference,and everyone who contributed to the organization of this meeting, for their contribution towards the conference and for their contributions to these

  11. 3rd hand smoking; heterogeneous oxidation of nicotine and secondary aerosol formation in the indoor environment

    NASA Astrophysics Data System (ADS)

    Petrick, Lauren; Dubowski, Yael

    2010-05-01

    Tobacco smoking is well known as a significant source of primary indoor air pollutants. However, only recently has it been recognized that the impact of Tobacco smoking may continue even after the cigarette has been extinguished (i.e., third hand smoke) due to the effect of indoor surfaces. These surfaces may affect the fate of tobacco smoke in the form of secondary reactions and pollutants, including secondary organic aerosol (SOA) formation. Fourier Transform Infrared spectrometry with Attenuated Total Reflection (FTIR-ATR) in tandem with a Scanning Mobility Particle Sizing (SMPS) system was used to monitor the ozonation of cellulose sorbed nicotine and resulting SOA formation. SOA formation began at onset of ozone introduction ([O3] = 60 ± 5 ppb) with a size distribution of dp ≤ 25 nm, and was determined to be a result of heterogeneous reaction (opposed to homogeneous). SOA yield from reacted surface nicotine was on the order of 10 %. Simultaneous to SOA monitoring, FTIR-ATR spectra showed surface changes in the nicotine film as the reaction progressed, revealing a pseudo first-order surface reaction rate of 0.0026 ± 0.0008 min-1. Identified surface oxidation products included: cotinine, myosmine, methylnicotinamide and nicotyrine. Surface reaction rate was found to be partially inhibited at high relative humidity. Given the toxicity of some of the identified products (e.g., cotinine has shown potential mutagenicity and teratogenicity) and that small particles may contribute to adverse health effects, the present study indicates that exposure to 3rd hand smoke ozonation products may pose additional health risks.

  12. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  13. Interplanetary Disturbances Affecting Space Weather

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, Robert F.

    2014-01-01

    The Sun somehow accelerates the solar wind, an incessant stream of plasma originating in coronal holes and some, as yet unidentified, regions. Occasionally, coronal, and possibly sub-photospheric structures, conspire to energize a spectacular eruption from the Sun which we call a coronal mass ejection (CME). These can leave the Sun at very high speeds and travel through the interplanetary medium, resulting in a large-scale disturbance of the ambient background plasma. These interplanetary CMEs (ICMEs) can drive shocks which in turn accelerate particles, but also have a distinct intrinsic magnetic structure which is capable of disturbing the Earth's magnetic field and causing significant geomagnetic effects. They also affect other planets, so they can and do contribute to space weather throughout the heliosphere. This paper presents a historical review of early space weather studies, a modern-day example, and discusses space weather throughout the heliosphere.

  14. Interplanetary Dust Particles and Asrobiology

    NASA Astrophysics Data System (ADS)

    Molster, F. J.

    2004-07-01

    Interplanetary Dust Particles are amongst the most pristine materials of the Solar System that can be studied gore on Earth. The study of these primitive particles gives a lot of information about the evolution or our solar system and about the delivery of (pre-)biothic material on Earth. Although the sample size of IDP's is small, typically 10-9 gram, this does not prevent the study of them and several techniques are available. At the moment the possibilities fro detailed astrobiology research are limited. But with the present day evolution of the different instruments, the time for detailed astrobiology research are limited. But with the present day evolution of the different instruments, the time for detailed astrobiology research of interplanetary dust particles is near.

  15. Interplanetary medium data book, appendix

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Computer generated listings of hourly average interplanetary plasma and magnetic field parameters are given. Parameters include proton temperature, proton density, bulk speed, an identifier of the source of the plasma data for the hour, average magnetic field magnitude and cartesian components of the magnetic field. Also included are longitude and latitude angles of the vector made up of the average field components, a vector standard deviation, and an identifier of the source of magnetic field data.

  16. Helium in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Helium and neon were extracted from fragments of individual stratosphere-collected interplanetary dust particles (IDP's) by subjecting them to increasing temperature by applying short-duration pulses of power in increasing amounts to the ovens containing the fragments. The experiment was designed to see whether differences in release temperatures could be observed which might provide clues as to the asteroidal or cometary origin of the particles. Variations were observed which show promise for elucidating the problem.

  17. The Interplanetary Exchange of Photosynthesis

    NASA Astrophysics Data System (ADS)

    Cockell, Charles S.

    2008-02-01

    Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

  18. The interplanetary exchange of photosynthesis.

    PubMed

    Cockell, Charles S

    2008-02-01

    Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

  19. ic-cmtp3: 3rd International Conference on Competitive Materials and Technology Processes

    NASA Astrophysics Data System (ADS)

    2016-04-01

    Competitiveness is one of the most important factors in our lives and it plays a key role in the efficiency both of organizations and societies. The more scientifically advanced and prepared organizations develop more competitive materials with better physical, chemical, and biological properties, and the leading companies apply more competitive equipment and technological processes. The aims of the 3rd International Conference on Competitive Materials and Technology Processes (ic-cmtp3), and the 1st International Symposium on Innovative Carbons and Carbon Based Materials (is-icbm1) and the 1st International Symposium on Innovative Construction Materials (is-icm1) organized alongside are the following: —Promote new methods and results of scientific research in the fields of material, biological, environmental and technological sciences; —Exchange information between the theoretical and applied sciences as well as technical and technological implementations; —Promote communication and collaboration between the scientists, researchers and engineers of different nations, countries and continents. Among the major fields of interest are advanced and innovative materials with competitive characteristics, including mechanical, physical, chemical, biological, medical and thermal, properties and extreme dynamic strength. Their crystalline, nano - and micro-structures, phase transformations as well as details of their technological processes, tests and measurements are also in the focus of the ic-cmtp3 conference and the is-scbm1 and is-icm1 symposia. Multidisciplinary applications of material science and the technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industries, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance with the program of the ic-cmtp3 conference and is-icbm1 and is-icm1 symposia we have received more

  20. PREFACE: 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"

    NASA Astrophysics Data System (ADS)

    Yamada, Taiichi; Kanada-En'yo, Yoshiko

    2014-12-01

    The 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3) was held at KGU Kannai Media Center, Kanto Gakuin University, Yokohama, Japan, from May 26 to 30, 2014. Yokohama is the second largest city in Japan, about 25 km southeast of Tokyo. The first workshop of the series was held in Strasbourg, France, in 2008 and the second one was in Brussels, Belgium, in 2010. The purpose of SOTANCP3 was to discuss the present status and future perspectives of the nuclear cluster physics. The following nine topics were selected in order to cover most of the scientific programme and highlight an area where new ideas have emerged over recent years: (1) Cluster structures and many-body correlations in stable and unstable nuclei (2) Clustering aspects of nuclear reactions and resonances (3) Alpha condensates and analogy with condensed matter approaches (4) Role of tensor force in cluster physics and ab initio approaches (5) Clustering in hypernuclei (6) Nuclear fission, superheavy nuclei, and cluster decay (7) Cluster physics and nuclear astrophysics (8) Clustering in nuclear matter and neutron stars (9) Clustering in hadron and atomic physics There were 122 participants, including 53 from 17 foreign countries. In addition to invited talks, we had many talks selected from contributed papers. There were plenary, parallel, and poster sessions. Poster contributions were also presented as four-minute talks in parallel sessions. This proceedings contains the papers presented in invited and selected talks together with those presented in poster sessions. We would like to express our gratitude to the members of the International Advisory Committee and those of the Organizing Committee for their efforts which made this workshop successful. In particular we would like to present our great thanks to Drs. Y. Funaki, W. Horiuchi, N. Itagaki, M. Kimura, T. Myo, and T. Yoshida. We would like also to thank the following organizations for their sponsors: RCNP

  1. PREFACE: 3rd International Workshop on Statistical Physics and Mathematics for Complex Systems (SPMCS 2012)

    NASA Astrophysics Data System (ADS)

    Tayurskii, Dmitrii; Abe, Sumiyoshi; Alexandre Wang, Q.

    2012-11-01

    The 3rd International Workshop on Statistical Physics and Mathematics for Complex Systems (SPMCS2012) was held between 25-30 August at Kazan (Volga Region) Federal University, Kazan, Russian Federation. This workshop was jointly organized by Kazan Federal University and Institut Supérieur des Matériaux et Mécaniques Avancées (ISMANS), France. The series of SPMCS workshops was created in 2008 with the aim to be an interdisciplinary incubator for the worldwide exchange of innovative ideas and information about the latest results. The first workshop was held at ISMANS, Le Mans (France) in 2008, and the third at Huazhong Normal University, Wuhan (China) in 2010. At SPMCS2012, we wished to bring together a broad community of researchers from the different branches of the rapidly developing complexity science to discuss the fundamental theoretical challenges (geometry/topology, number theory, statistical physics, dynamical systems, etc) as well as experimental and applied aspects of many practical problems (condensed matter, disordered systems, financial markets, chemistry, biology, geoscience, etc). The program of SPMCS2012 was prepared based on three categories: (i) physical and mathematical studies (quantum mechanics, generalized nonequilibrium thermodynamics, nonlinear dynamics, condensed matter physics, nanoscience); (ii) natural complex systems (physical, geophysical, chemical and biological); (iii) social, economical, political agent systems and man-made complex systems. The conference attracted 64 participants from 10 countries. There were 10 invited lectures, 12 invited talks and 28 regular oral talks in the morning and afternoon sessions. The book of Abstracts is available from the conference website (http://www.ksu.ru/conf/spmcs2012/?id=3). A round table was also held, the topic of which was 'Recent and Anticipated Future Progress in Science of Complexity', discussing a variety of questions and opinions important for the understanding of the concept of

  2. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member

  3. Building monument materials during the 3rd-4rd millennium (Portugal)

    NASA Astrophysics Data System (ADS)

    Moita, Patricia; Pedro, Jorge; Boaventura, Rui; Mataloto, Rui; Maximo, Jaime; Almeida, Luís; Nogueira, Pedro

    2014-05-01

    Dolmens are the most conspicuous remains of the populations of the 4th and first half of 3rd millennia BCE. These tombs are impressive not only for their monumentality, but also because of the socioeconomic investment they represent for those Neolithic communities, namely from the Central-South of Portugal, who built them. Although dolmens have been studied for their funerary content and typologies, an interdisciplinary approach toward the geological characterization and sourcing of stones used in these constructions has not received enough attention from researchers. With MEGAGEO project a multidisciplinary group of geologist and archaeologists intends to assess the relationship between the distribution of dolmens in Central-South Portugal, their source materials, and the geological landscape. GIS will map the information gathered and will be used to analyse these relationships. The selection of the areas, with distinctive geologies (limestone vs granite), will allow to verify if human patterns of behaviour regarding the selection of megaliths are similar or different regionally. Geologically the first target area (Freixo, Alentejo) is dominated by a small intrusion of gabbro mingled/mixed within a granodioritic intrusion both related with variscan orogeny. Granodiorite exhibit several enclaves of igneous and metamorphic nature attesting the interaction between both igneous rocks as well with enclosing gneisses. Despite Alentejo region have a reduced number of outcrops the granodiorite provides rounded to tabular metric blocks. The gabbro is very coarse grained, sometimes with a cumulate texture, and their fracturing and weathering provide very fresh tabular blocks. The five studied dolmens (Quinta do Freixo #1 to #5) are implanted in a large granodioritic intrusion, around the gabbroic rocks, within an area of approximately 9km2. The medium grained granodiorite is ubiquity in all the dolmens slabs and occasionally it can be observed features of mixing and

  4. Additional circular intercostal space created by bifurcation of the left 3rd rib and its costal cartilage: a case report

    PubMed Central

    2013-01-01

    Introduction In the thorax there are normally 11 pairs of intercostal spaces: the spaces between adjacent ribs. The intercostal spaces contain intercostal muscles, intercostal nerves and vessels. Case presentation During a routine dissection for undergraduate medical students, we observed a variation involving the left 3rd rib and 3rd costal cartilage in the cadaver of a man of Indian ethnicity aged about 65 years. The left 3rd rib and its costal cartilage were bifurcated at their costochondral junction enclosing a small circular additional intercostal space. Muscle tissue covered by deep fascia was present in this circular intercostal space. The muscle in the circular intercostal space received its nerve supply from a branch of the 2nd intercostal nerve. Conclusions Knowledge of such variations is helpful to surgeons operating on the anterior thoracic wall involving ribs and intercostal spaces. Knowing the possibility of the presence of an additional space between normal intercostal spaces can guide a surgeon through to a successful surgery. PMID:23298541

  5. The effect of surgical technique on lingual nerve damage during lower 3rd molar removal by dental students.

    PubMed

    Robinson, P P; Loescher, A R; Smith, K G

    1999-05-01

    We have previously shown that avoidance of lingual flap retraction with a Howarth periosteal elevator during lower 3rd molar removal, reduces the incidence of lingual nerve damage. In that study, the surgery was undertaken by qualified staff and we have now assessed the effect of revising the method taught to our junior undergraduate dental students. We evaluated the outcome of surgery undertaken by 2 consecutive years of students, each group being taught 1 of the 2 methods. A total of 200 patients requiring lower 3rd molar removal under local anaesthesia were included in the study. In year 1, the surgery included elevation of a lingual flap and insertion of a Howarth elevator adjacent to the lingual plate; in year 2 this part of the procedure was avoided by using a purely buccal approach. There were no significant differences between the levels of tooth eruption and types of impaction of the teeth removed in each year. Lingual sensory disturbance occurred in 3 patients in the 'flap' group (3.3%) and in 1 patient (0.9%) in the 'no flap' group. As this incidence is not significantly different in the 2 groups (P < 0.4), we conclude that avoidance of lingual retraction by students undertaking lower 3rd molar removal does not appear to place the lingual nerve at greater risk. In view of the results of our previous study, we therefore advocate this method for use in undergraduate dental education. PMID:10530161

  6. Does 3rd Age + 3rd World = 3rd Class?

    ERIC Educational Resources Information Center

    Tout, Ken

    1992-01-01

    Demographic changes, migration, and industrialization are having drastic effects on older adults in developing nations. Local programs such as Pro Vida in Colombia, supported by Help Age International, rely on the support of volunteers to improve the quality of life for elderly people. (SK)

  7. PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-07-01

    The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo International Symposium, and jointly with MANA Workshop on Materials Processing by External Stimulation, and JSPS CORE Program of Construction of the World Center on Electromagnetic Processing of Materials. At the end of MAP3 it was decided that the next MAP4 will be held in Atlanta, USA in 2010. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. MAP3 focused on the magnetic field interactions involved in the study and processing of materials in all disciplines ranging from physics to chemistry and biology: Magnetic field effects on chemical, physical, and biological phenomena Magnetic field effects on electrochemical phenomena Magnetic field effects on thermodynamic phenomena Magnetic field effects on hydrodynamic phenomena Magnetic field effects on crystal growth Magnetic processing of materials Diamagnetic levitation Magneto-Archimedes effect Spin chemistry Application of magnetic fields to analytical chemistry Magnetic orientation Control of structure by magnetic fields Magnetic separation and purification Magnetic field-induced phase transitions Materials properties in high magnetic fields Development of NMR and MRI Medical application of magnetic fields Novel magnetic phenomena Physical property measurement by Magnetic fields High magnetic field generation> MAP3 consisted of 84 presentations including 16 invited talks. This volume of Journal of Physics: Conference Series contains the proceeding of MAP3 with 34 papers that provide a scientific record of the topics covered by the conference with the special topics (13 papers) in

  8. PREFACE: 3rd Workshop on Theory, Modelling and Computational Methods for Semiconductors (TMCSIII)

    NASA Astrophysics Data System (ADS)

    Califano, Marco; Migliorato, Max; Probert, Matt

    2012-05-01

    These conference proceedings contain the written papers of the contributions presented at the 3rd International Conference on Theory, Modelling and Computational Methods for Semiconductor materials and nanostructures. The conference was held at the School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK on 18-20 January 2012. The previous conferences in this series took place in 2010 at St William's College, York and in 2008 at the University of Manchester, UK. The development of high-speed computer architectures is finally allowing the routine use of accurate methods for calculating the structural, thermodynamic, vibrational, optical and electronic properties of semiconductors and their hetero- and nano-structures. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in semiconductor science and technology, where there is substantial potential for time-saving in R&D. Theoretical approaches represented in this meeting included: Density Functional Theory, Tight Binding, Semiempirical Pseudopotential Methods, Effective Mass Models, Empirical Potential Methods and Multiscale Approaches. Topics included, but were not limited to: Optical and Transport Properties of Quantum Nanostructures including Colloids and Nanotubes, Plasmonics, Magnetic Semiconductors, Graphene, Lasers, Photonic Structures, Photovoltaic and Electronic Devices. This workshop ran for three days, with the objective of bringing together UK and international leading experts in the theoretical modelling of Group IV, III-V and II-VI semiconductors, as well as students, postdocs and early-career researchers. The first day focused on providing an introduction and overview of this vast field, aimed particularly at students, with several lectures given by recognised experts in various theoretical approaches. The following two days showcased some of the best theoretical research carried out in the UK in this field, with several

  9. Multipoint study of interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, Xochitl; Kajdic, Primoz; Russell, Christopher T.; Aguilar-Rodriguez, Ernesto; Jian, Lan K.; Luhmann, Janet G.

    2016-04-01

    Interplanetary (IP) shocks are driven in the heliosphere by Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs). These shocks perturb the solar wind plasma, and play an active role in the acceleration of ions to suprathermal energies. Shock fronts evolve as they move from the Sun. Their surfaces can be far from uniform and be modulated by changes in the ambient solar wind (magnetic field orientation, flow velocity), shocks rippling, and perturbations upstream and downstream from the shocks, i.e., electromagnetic waves. In this work we use multipoint observations from STEREO, WIND, and MESSENGER missions to study shock characteristics at different helio-longitudes and determine the properties of the waves near them. We also determine shock longitudinal extensions and foreshock sizes. The variations of geometry along the shock surface can result in different extensions of the wave and ion foreshocks ahead of the shocks, and in different wave modes upstream and downtream of the shocks. We find that the ion foreshock can extend up to 0.2 AU ahead of the shock, and that the upstream region with modified solar wind/waves can be very asymmetric.

  10. Magnetic Storms and Associated Interplanetary Phenomena

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Gonzalez, W. D.

    1996-01-01

    The physical mechanism for energy transfer from the solar wind to the magnetosphere is magnetic reconnection between the interplanetary field and the Earth's field. From Intro: It is the purpose of this paper to review the sources of such interplanetary magnetic fields distinguishing between the solar maximum and the declining phases of the solar cycle.

  11. Tunnelling of the 3rd kind: A test of the effective non-locality of quantum field theory

    NASA Astrophysics Data System (ADS)

    Gardiner, Simon A.; Gies, Holger; Jaeckel, Joerg; Wallace, Chris J.

    2013-03-01

    Integrating out virtual quantum fluctuations in an originally local quantum field theory results in an effective theory which is non-local. In this letter we argue that tunnelling of the 3rd kind —where particles traverse a barrier by splitting into a pair of virtual particles which recombine only after a finite distance— provides a direct test of this non-locality. We sketch a quantum-optical setup to test this effect, and investigate observable effects in a simple toy model.

  12. Gavel to Gavel: A Guide to the Televised Proceedings of Congress. 3rd Edition.

    ERIC Educational Resources Information Center

    Green, Alan

    C-SPAN is a non-profit public service television network created by the U.S. cable television industry to provide viewers live gavel-to-gavel access to the proceedings of the U.S. House of Representatives and the U.S. Senate, and to other forums where public policy is discussed, debated, and decided. This guide presents a brief history of how…

  13. Magnetic sails and interplanetary travel

    SciTech Connect

    Zubrin, R.M.; Andrews, D.G.

    1989-01-01

    A new concept, the magnetic sail, or 'magsail' is proposed which propels spacecraft by using the magnetic field generated by a loop of superconducting cable to deflect interplanetary or interstellar plasma winds. The performance of such a device is evaluated using both a plasma particle model and a fluid model, and the results of a series of investigations are presented. It is found that a magsail sailing on the solar wind at a radius of one astronautical unit can attain accelerations on the order of 0.01 m/sec squared, much greater than that available from a conventional solar lightsail, and also greater than the acceleration due to the sun's gravitational attraction. A net tangential force, or 'lift' can also be generated. Lift to drag ratios of about 0.3 appear attainable. Equations are derived whereby orbital transfers using magsail propulsion can be calculated analytically.

  14. Infrared emission from interplanetary dust

    SciTech Connect

    Temi, P.; De Bernardis, P.; Masi, S.; Moreno, G.; Salama, A.

    1989-02-01

    Standard models of the interplanetary dust emission fail to account satisfactorily for IR observations. A new model of the dust, based on very simple assumptions on the grain structure (spherical and homogeneous) and chemical composition (astronomical silicates, graphite, blackbodies) is developed. Updated values of the refractive indexes have been included in the analysis. The predictions of the model (absolute values of the fluxes, spectral shape, elongation dependence of the emission) have then been compared with all the available IR observations performed by the ARGO (balloon-borne experiment by University of Rome), AFGL and Zodiacal Infrared Project (ZIP) (rocket experiments by Air Force Geophysics Laboratory, Bedford, Mass.), and IRAS satellite. Good agreement is found when homogeneous data sets from single experiments (e.g., ZIP and ARGO) are considered separately. 19 references.

  15. Remote sensing of interplanetary shocks using a scintillation method

    SciTech Connect

    Hewish, A.

    1987-05-01

    Energetic interplanetary disturbances originating at the Sun cause geomagnetic storms when they reach the Earth. The disturbances affect radio-communications, damage electrical power grid networks, increase the atmospheric density and drag on satellites, and are accompanied by showers of energetic particles which present radiation hazards to manned spacecraft. This paper describes a new ground-based method for locating and tracking transients in interplanetary space long before they reach the Earth. Continuous observations of transients during a two year period near support maximum have demonstrated the potential of the technique for predicting geomagnetic storms and given new information on the zones of the solar disk from which transients originate. The latter contradicts some widely held theories in solar-terrestrial physics and shows that a major revision of ideas is needed. Contrary to expectations, it has been found that open-magnetic field regions known as coronal holes are the dominant sources of the most powerful interplanetary shocks. This result conflicts with the solar flare theory of geomagnetic storms.

  16. Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: preparation, in vitro and in vivo evaluation.

    PubMed

    He, Zhijian; Schulz, Anita; Wan, Xiaomeng; Seitz, Joshua; Bludau, Herdis; Alakhova, Daria Y; Darr, David B; Perou, Charles M; Jordan, Rainer; Ojima, Iwao; Kabanov, Alexander V; Luxenhofer, Robert

    2015-06-28

    The clinically and commercially successful taxanes, paclitaxel and docetaxel suffer from two major drawbacks, namely their very low aqueous solubility and the risk of developing resistance. Here, we present a method that overcomes both drawbacks in a very simple manner. We formulated 3rd generation taxoids, able to avoid common drug resistance mechanisms with doubly amphiphilic poly(2-oxazoline)s (POx), a safe and highly efficient polymer for the formulation of extremely hydrophobic drugs. We found excellent solubilization of different 3rd generation taxoids irrespective of the drug's chemical structures with essentially quantitative drug loading and final drug to polymer ratios around unity. The small, highly loaded micelles with a hydrodynamic diameter of less than 100nm are excellently suited for parenteral administration. Moreover, a selected formulation with the taxoid SB-T-1214 is about one to two orders of magnitude more active in vitro than paclitaxel in the multidrug resistant breast cancer cell line LCC6-MDR. In contrast, in wild-type LCC6, no difference was observed. Using a q4d×4 dosing regimen, we also found that POx/SB-T-1214 significantly inhibits the growth of LCC6-MDR orthotropic tumors, outperforming commercial paclitaxel drug Taxol and Cremophor EL formulated SB-T-1214.

  17. Montpellier Infectious Diseases - Pôle Rabelais (MID) 3rd annual meeting (2014).

    PubMed

    Besteiro, Sébastien; Blanc-Potard, Anne; Bonazzi, Matteo; Briant, Laurence; Chazal, Nathalie; Cornillot, Emmanuel; Lentini, Gaëlle; Matkovic, Roy; Sanosyan, Armen; Tuaillon, Edouard; Van de Perre, Philippe

    2015-06-01

    For the third time, teams belonging to the "Montpellier Infectious Diseases" network in the Rabelais BioHealth Cluster held their annual meeting on the 27th and 28th of November in Montpellier, France. While the 2012 meeting was focused on the cooperation between the local force tasks in biomedical and medical chemistry and presented the interdisciplinary research programs designed to fight against virus, bacteria and parasites, the 2014 edition of the meeting was focused on the translational research in infectious diseases and highlighted the bench-to-clinic strategies designed by academic and private research groups in the Montpellier area.

  18. Interplanetary Field Enhancements: The Interaction between Solar Wind and Interplanetary Dusty Plasma Released by Interplanetary Collisions

    NASA Astrophysics Data System (ADS)

    Lai, Hairong

    Interplanetary field enhancements (IFEs) are unique large-scale structures in the solar wind. During IFEs, the magnetic-field strength is significantly enhanced with little perturbation in the solar-wind plasma. Early studies showed that IFEs move at nearly the solar-wind speed and some IFEs detected at 0.72AU by Pioneer Venus Orbiter (PVO) are associated with material co-orbiting with asteroid Oljato. To explain the observed IFE features, we develop and test an IFE formation hypothesis: IFEs result from interactions between the solar wind and clouds of nanoscale charged dust particles released in interplanetary collisions. This hypothesis predicts that the magnetic field drapes and the solar wind slows down in the upstream. Meanwhile the observed IFE occurrence rate should be comparable with the detectable interplanetary collision rate. Based on this hypothesis, we can use the IFE occurrence to determine the spatial distribution and temporal variation of interplanetary objects which produce IFEs. To test the hypothesis, we perform a systematic survey of IFEs in the magnetic-field data from many spacecraft. Our datasets cover from 1970s to present and from inner than 0.3AU to outer than 5 AU. In total, more than 470 IFEs are identified and their occurrences show clustering features in both space and time. We use multi-spacecraft simultaneous observations to reconstruct the magnetic-field geometry and find that the magnetic field drapes in the upstream region. The results of a superposed epoch study show that the solar wind slows down in the upstream and there is a plasma depletion region near the IFE centers. In addition, the solar-wind slowdown and plasma depletion feature are more significant in larger IFEs. The mass contained in IFEs can be estimated by balancing the solar-wind pressure force exerted on the IFEs against the solar gravity. The solar-wind slowdown resultant from the estimated mass is consistent with the result in superposed epoch study. The

  19. Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.

    1977-01-01

    A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.

  20. Operating CFDP in the Interplanetary Internet

    NASA Technical Reports Server (NTRS)

    Burleigh, S.

    2002-01-01

    This paper examines the design elements of CCSDS File Delivery Protocol and Interplanetary Internet technologies that will simplify their integration and discusses the resulting new capabilities, such as efficient transmission of large files via multiple relay satellites operating in parallel.

  1. Hypersonic Interplanetary Flight: Aero Gravity Assist

    NASA Technical Reports Server (NTRS)

    Bowers, Al; Banks, Dan; Randolph, Jim

    2006-01-01

    The use of aero-gravity assist during hypersonic interplanetary flights is highlighted. Specifically, the use of large versus small planet for gravity asssist maneuvers, aero-gravity assist trajectories, launch opportunities and planetary waverider performance are addressed.

  2. Earth's Volcanoes and their Eruptions; the 3rd edition of the Smithsonian Institution's Volcanoes of the World

    NASA Astrophysics Data System (ADS)

    Siebert, L.; Simkin, T.; Kimberly, P.

    2010-12-01

    The 3rd edition of the Smithsonian Institution’s Volcanoes of the World incorporates data on the world’s volcanoes and their eruptions compiled since 1968 by the Institution’s Global Volcanism Program (GVP). Published this Fall jointly by the Smithsonian and the University of California Press, it supplements data from the 1994 2nd edition and includes new data on the number of people living in proximity to volcanoes, the dominant rock lithologies at each volcano, Holocene caldera-forming eruptions, and preliminary lists of Pleistocene volcanoes and large-volume Pleistocene eruptions. The 3rd edition contains data on nearly 1550 volcanoes of known or possible Holocene age, including chronologies, characteristics, and magnitudes for >10,400 Holocene eruptions. The standard 20 eruptive characteristics of the IAVCEI volcano catalog series have been modified to include dated vertical edifice collapse events due to magma chamber evacuation following large-volume explosive eruptions or mafic lava effusion, and lateral sector collapse. Data from previous editions of Volcanoes of the World are also supplemented by listings of up to the 5 most dominant lithologies at each volcano, along with data on population living within 5, 10, 30, and 100 km radii of each volcano or volcanic field. Population data indicate that the most populated regions also contain the most frequently active volcanoes. Eruption data document lava and tephra volumes and Volcanic Explosivity Index (VEI) assignments for >7800 eruptions. Interpretation of VRF data has led to documentation of global eruption rates and the power law relationship between magnitude and frequency of volcanic eruptions. Data with volcanic hazards implications include those on fatalities and evacuations and the rate at which eruptions reach their climax. In recognition of the hazards implications of potential resumption of activity at pre-Holocene volcanoes, the 3rd edition includes very preliminary lists of Pleistocene

  3. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The facilities, programming system, and monitor and control system for the deep space network are described. Ongoing planetary and interplanetary flight projects are reviewed, along with tracking and ground-based navigation, communications, and network and facility engineering.

  4. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  5. 3rd Tech DeltaSphere-3000 Laser 3D Scene Digitizer infrared laser scanner hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-02-01

    A laser hazard analysis and safety assessment was performed for the 3rd Tech model DeltaSphere-3000{reg_sign} Laser 3D Scene Digitizer, infrared laser scanner model based on the 2000 version of the American National Standard Institute's Standard Z136.1, for the Safe Use of Lasers. The portable scanner system is used in the Robotic Manufacturing Science and Engineering Laboratory (RMSEL). This scanning system had been proposed to be a demonstrator for a new application. The manufacture lists the Nominal Ocular Hazard Distance (NOHD) as less than 2 meters. It was necessary that SNL validate this NOHD prior to its use as a demonstrator involving the general public. A formal laser hazard analysis is presented for the typical mode of operation for the current configuration as well as a possible modified mode and alternative configuration.

  6. THE 3rd SCHIZOPHRENIA INTERNATIONAL RESEARCH SOCIETY CONFERENCE, 14-18 APRIL 2012, FLORENCE, ITALY: SUMMARIES OF ORAL SESSIONS

    PubMed Central

    Abbs, Brandon; Achalia, Rashmin M; Adelufosi, Adegoke O; Aktener, Ahmet Yiğit; Beveridge, Natalie J; Bhakta, Savita G; Blackman, Rachael K; Bora, Emre; Byun, MS; Cabanis, Maurice; Carrion, Ricardo; Castellani, Christina A; Chow, Tze Jen; Dmitrzak-Weglarz, M; Gayer-Anderson, Charlotte; Gomes, Felipe V; Haut, Kristen; Hori, Hiroaki; Kantrowitz, Joshua T; Kishimoto, Taishiro; Lee, Frankie HF; Lin, Ashleigh; Palaniyappan, Lena; Quan, Meina; Rubio, Maria D; Ruiz de Azúa, Sonia; Sahoo, Saddichha; Strauss, Gregory P; Szczepankiewicz, Aleksandra; Thompson, Andrew D; Trotta, Antonella; Tully, Laura M; Uchida, Hiroyuki; Velthorst, Eva; Young, Jared W; O’Shea, Anne; DeLisi, Lynn E.

    2013-01-01

    The 3rd Schizophrenia International Research Society Conference was held in Florence, Italy, April 14-18, 2012.and this year had as its emphasis, “The Globalization of Research”. Student travel awardees served as rapporteurs for each oral session and focused their summaries on the most significant findings that emerged and the discussions that followed. The following report is a composite of these summaries. We hope that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research. PMID:22910407

  7. Use of 2nd and 3rd Level Correlation Analysis for Studying Degradation in Polycrystalline Thin-Film Solar Cells

    SciTech Connect

    Albin, D. S.; del Cueto, J. A.; Demtsu, S. H.; Bansal, S.

    2011-03-01

    The correlation of stress-induced changes in the performance of laboratory-made CdTe solar cells with various 2nd and 3rd level metrics is discussed. The overall behavior of aggregated data showing how cell efficiency changes as a function of open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) is explained using a two-diode, PSpice model in which degradation is simulated by systematically changing model parameters. FF shows the highest correlation with performance during stress, and is subsequently shown to be most affected by shunt resistance, recombination and in some cases voltage-dependent collection. Large decreases in Jsc as well as increasing rates of Voc degradation are related to voltage-dependent collection effects and catastrophic shunting respectively. Large decreases in Voc in the absence of catastrophic shunting are attributed to increased recombination. The relevance of capacitance-derived data correlated with both Voc and FF is discussed.

  8. New interplanetary proton fluence model

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1990-01-01

    A new predictive engineering model for the interplanetary fluence of protons with above 10 MeV and above 30 MeV is described. The data set used is a combination of observations made from the earth's surface and from above the atmosphere between 1956 and 1963 and observations made from spacecraft in the vicinity of earth between 1963 and 1985. The data cover a time period three times as long as the period used in earlier models. With the use of this data set the distinction between 'ordinary proton events' and 'anomalously large events' made in earlier work disappears. This permitted the use of statistical analysis methods developed for 'ordinary events' on the entire data set. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. At energies above 30 MeV, the old and new models agree. In contrast to earlier models, the results do not depend critically on the fluence from any one event and are independent of sunspot number. Mission probability curves derived from the fluence distribution are presented.

  9. Interplanetary sector boundaries, 1971 - 1973

    NASA Technical Reports Server (NTRS)

    Klein, L.; Burlaga, L. F.

    1979-01-01

    Eighteen interplanetary sector boundary crossings observed at 1 AU by the magnetometer on the IMP-6 spacecraft are discussed. The events were examined on many different time scales ranging from days on either side of the boundary to high resolution measurements of 12.5 vectors per second. Two categories of boundaries were found, one group being relatively thin and the other being thick. In many cases the field vector rotated in a plane from one polarity to the other. Only two of the transitions were null sheets. Using the minimum variance analysis to determine the normals to the plane of rotation, and assuming that this is the same as the normal to the sector boundary surface, it was found that the normals were close to the ecliptic plane. An analysis of tangential discontinuities contained in 4-day periods about the events showed that their orientations were generally not related to the orientations of the sector boundary surface, but rather their characteristics were about the same as those for discontinuities outside the sector boundaries.

  10. Interplanetary round trip mission design

    NASA Astrophysics Data System (ADS)

    Wertz, James R.

    2004-08-01

    This paper defines the basic constraints for interplanetary round trip travel or, equivalently, for round trip travel from and to a natural or artificial satellite, such as round trips from the International Space Station to another satellite and back. While the constraints are straightforward, they do not seem to have been discussed previously in the literature, perhaps because round trip travel has not been a realistic option for most missions. We call the location that we are leaving and returning to the home planet or satellite and the spacecraft which makes the round trip the traveler. In round trip space travel, the traveler and the home planet must begin and end at the same true anomaly. Consequently, the fundamental constraint for mission design is as follows: Over the duration of the mission the difference in the change in true anomaly for the home planet and the change in true anomaly for the traveler must be an integral number of revolutions. This fundamental constraint implies a number of interesting properties for round trip travel to other locations in the solar system. For example: For Hohmann minimum energy transfers, going to nearby objects takes longer than going to some which are further. The shortest Hohmann round trip to a destination further from the Sun is a 2-yr trip to a heliocentric distance of 2.2 AU, i.e., 1.2 AU outward from the Earth. Increasing the transfer velocity has only a very small effect on total trip time, except at discrete "jumps" where the total trip time can change by a year or more. One way to reduce the round trip time is to go beyond the target planet and visit the target "on the way back". Some scenarios that go above a Δ V threshold can dramatically reduce the total round trip time, i.e., a reduction in round trip time for a Mars mission from the traditional 2.5 yr to less than 6 months. This paper discusses the general constraint equations and the resulting implications for round trip mission design. These equations

  11. International Launch Vehicle Selection for Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  12. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  13. Mars Science Laboratory Interplanetary Navigation Performance

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Kruizinga, Gerhard; Wong, Mau

    2013-01-01

    The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission.

  14. Organizational Support for the 3rd Summer Institute on Complex Plasmas, July 30 – August 8, 2012

    SciTech Connect

    Lopez, Jose L.

    2012-07-01

    This grant provided partial funds for American graduate students to attend the 3rd Graduate Summer Institute on Complex Plasmas, which was held from July 30 to August 8, 2012 at Seton Hall University in South Orange, New Jersey. The Graduate Summer Institute is a topical series of instructional workshops held bi-annually on the emerging field of complex plasmas that is jointly organized through a collaboration between American and German-European Union plasmas researchers. This specialized program brings together many of the world's leading researchers in the specialized area of complex plasmas, who freely provide instructional lectures and tutorials on the most recent research and discoveries done in this branch of plasma science. The partial funds provided by this grant helped support the travel and accommodation expenses of the participating American students and tutorial instructors. Partial funds further supported the travel and accommodation of three renown American plasma researchers that provided educational tutorials to the thirty-eight participating students from the United States, Europe, and Asia. The organized program afforded a unique opportunity for the participating American graduate students to learn about and engage more deeply in an area of plasma science that is not studied in any of the graduate educational curriculums provided by universities in the United States of America. The educational experience offered by this program provided the necessary knowledge needed by future American plasma researchers to keep the national plasma research effort on the cutting-edge and keep the national plasma community as a global leader.

  15. Development of Partially-Coherent Wavefront Propagation Simulation Methods for 3rd and 4th Generation Synchrotron Radiation Sources.

    SciTech Connect

    Chubar O.; Berman, L; Chu, Y.S.; Fluerasu, A.; Hulbert, S.; Idir, M.; Kaznatcheev, K.; Shapiro, D.; Baltser, J.

    2012-04-04

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, is of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using 'Synchrotron Radiation Workshop' (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.

  16. The 3rd Canadian Symposium on Hepatitis C Virus: Expanding care in the interferon-free era

    PubMed Central

    MacParland, Sonya A; Bilodeau, Marc; Grebely, Jason; Bruneau, Julie; Cooper, Curtis; Klein, Marina; Sagan, Selena M; Choucha, Norma; Balfour, Louise; Bialystok, Frank; Krajden, Mel; Raven, Jennifer; Roberts, Eve; Russell, Rodney; Houghton, Michael; Tyrrell, D Lorne; Feld, Jordan J

    2014-01-01

    Hepatitis C virus (HCV) currently infects approximately 250,000 individuals in Canada and causes more years of life lost than any other infectious disease in the country. In August 2011, new therapies were approved by Health Canada that have achieved higher response rates among those treated, but are poorly tolerated. By 2014/2015, short-course, well-tolerated treatments with cure rates >95% will be available. However, treatment uptake is poor due to structural, financial, geographical, cultural and social barriers. As such, ‘Barriers to access to HCV care in Canada’ is a crucial topic that must be addressed to decrease HCV disease burden and potentially eliminate HCV in Canada. Understanding how to better care for HCV-infected individuals requires integration across multiple disciplines including researchers, clinical services and policy makers to address the major populations affected by HCV including people who inject drugs, baby boomers, immigrants and Aboriginal and/or First Nations people. In 2012, the National CIHR Research Training Program in Hepatitis C organized the 1st Canadian Symposium on Hepatitis C Virus (CSHCV) in Montreal, Quebec. The 2nd CSHCV was held in 2013 in Victoria, British Columbia. Both symposia were highly successful, attracting leading international faculty with excellent attendance leading to dialogue and knowledge translation among attendees of diverse backgrounds. The current article summarizes the 3rd CSHCV, held February 2014, in Toronto, Ontario. PMID:25314353

  17. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis

    2014-09-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  18. Evaluation of a model of dissertation supervision for 3rd year B.Sc. undergraduate nursing students.

    PubMed

    Scholefield, Donna; Cox, Georgina

    2016-03-01

    All English universities now offer an all degree undergraduate nursing programme. Many currently use an individual supervision model to support final year dissertation students, but with increased numbers and limited resources new models of supervision are needed. This study evaluated a mixed (group and individual) model of dissertation supervision to determine its effectiveness for a large group of undergraduate nursing students. A sample of 3rd year students and their supervisors were selected from one large university. An evaluation survey was conducted using anonymous internet-based questionnaires and focus groups. The data was analysed using Survey Monkey, SPSS and thematic analysis. A 51% (n = 56/110) response rate (students) and 65% (n = 24/37) for supervisors was obtained. The majority of students and supervisors were satisfied with the new model. There was a mixed response to the group workshops and supervision groups. Three themes emerged from the qualitative data: engaging with the process, motivation to supervise and valuing the process. The supervision process is a struggle but both parties gained considerably from going through the process. In conclusion, a mixed model of supervision together with a range of other learning resources can be an effective approach in supporting students through the dissertation process. PMID:26700648

  19. Evaluation of a model of dissertation supervision for 3rd year B.Sc. undergraduate nursing students.

    PubMed

    Scholefield, Donna; Cox, Georgina

    2016-03-01

    All English universities now offer an all degree undergraduate nursing programme. Many currently use an individual supervision model to support final year dissertation students, but with increased numbers and limited resources new models of supervision are needed. This study evaluated a mixed (group and individual) model of dissertation supervision to determine its effectiveness for a large group of undergraduate nursing students. A sample of 3rd year students and their supervisors were selected from one large university. An evaluation survey was conducted using anonymous internet-based questionnaires and focus groups. The data was analysed using Survey Monkey, SPSS and thematic analysis. A 51% (n = 56/110) response rate (students) and 65% (n = 24/37) for supervisors was obtained. The majority of students and supervisors were satisfied with the new model. There was a mixed response to the group workshops and supervision groups. Three themes emerged from the qualitative data: engaging with the process, motivation to supervise and valuing the process. The supervision process is a struggle but both parties gained considerably from going through the process. In conclusion, a mixed model of supervision together with a range of other learning resources can be an effective approach in supporting students through the dissertation process.

  20. To keep the catch – that is the question: a personal account of the 3rd Annual EULAR Congress, Stockholm

    PubMed Central

    Wollheim, Frank A

    2002-01-01

    The 3rd Annual EULAR Congress, held in Stockholm on 12–15 June 2002, had a turnout of 8300 delegates, almost identical to last year's record attendance level in Prague. The venue was close to ideal, allowing ample space for poster sessions in the exhibition hall. The manned poster sessions were well attended, even on the last day of the Congress. The numerous invited speakers represented the world's elite, allowing the staging of excellent state-of-the-art podium sessions. The aim of attracting the young scientific community was partly achieved, but individual delegates' dependence on industry sponsorship poses potential problems. The organization was a big improvement compared to that of the two previous congresses. Approximately 1800 abstracts were submitted, an increase of 50%, resulting in a higher quality of accepted abstracts. The satellite symposia held every morning and late afternoon were well attended; thus, industry exposure of new products, both in podium sessions and at the exhibitions, was well accommodated. The Annual EULAR Congress consolidates its position as one of the two most important annual congresses of rheumatology, but EULAR economy and commercial aspects are still too dominant in relation to science. PMID:12223107

  1. Effects of using relaxation breathing training to reduce music performance anxiety in 3rd to 6th graders.

    PubMed

    Su, Yu-Huei; Luh, Jer-Junn; Chen, Hsin-I; Lin, Chao-Chen; Liao, Miin-Jiun; Chen, Heng-Shuen

    2010-06-01

    The current study examined the effects of applying relaxation breathing training (RBT) as a means to reduce music performance anxiety (MPA) in young, talented musicians. A group of 59 young musicians from 3rd to 6th grade participated in this study, and all of them started RBT twice a week for 2 months prior to the examination. Four tests--2 mos, 1 mos, half an hour and 5 min before the examination--were conducted to examine the level of MPA after the application of RBT. Results show that the degree of MPA 5 min before the trial was lower than the degree of performance anxiety half an hour before the jury (t = -3.683, p < 0.01), which indicated that the RBT was associated with a decrease in MPA. Although a series of RBT exercises was applied, results indicated that when approaching the date of examination, the degree of performance anxiety still increased and reached its maximum half an hour before the jury. The recommendation for future studies is to combine the application of RBT with other methods to expand its effect in reducing MPA.

  2. Changing motor patterns of the 3rd axillary muscle activities associated with longitudinal control in freely flying hawkmoths.

    PubMed

    Ando, Noriyasu; Kanzaki, Ryohei

    2004-02-01

    The 3rd axillary muscles (3AXMs) in the mesothorax in hawkmoths are direct flight muscles and pull forewings back along to the body axis. The 3AXMs are regarded as steering muscles because of their changeable activities during turning flight under tethered conditions. We investigated activities of the upper unit of the 3AXMs during free flight with a micro-telemetry device and captured body and wing movements by high-speed cameras. The 3AXM was activated with 1 to 3 spikes per each wingbeat cycle but sometimes ceased to fire. The phase of the onset of the activities was, even though it was variable, close to the phase of the elevator muscle activities. Therefore the upper unit of the 3AXM activities would affect upstroke properties phasically including wing retractions. We focused on longitudinal flight control and identified a correlation between the phase of the 3AXM and body pitch angle, which is important kinematical parameter for longitudinal control in insect flight. The phasic changes of the 3AXM activities would support quick changes in longitudinal control. PMID:14993822

  3. InAs/GaSb type II superlattices for advanced 2nd and 3rd generation detectors

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Rehm, Robert; Schmitz, Johannes; Fleissner, Joachim; Rutz, Frank; Kirste, Lutz; Scheibner, Ralf; Wendler, Joachim; Ziegler, Johann

    2010-01-01

    InAs/GaSb short-period superlattices (SL) based on GaSb, InAs and AlSb have proven their great potential for high performance infrared detectors. Lots of interest is currently focused on the development of short-period InAs/GaSb SLs for advanced 2nd and 3rd generation infrared detectors between 3 - 30 μm. For the fabrication of mono- and bispectral thermal imaging systems in the mid-wavelength infrared region (MWIR) a manufacturable technology for high responsivity thermal imaging systems has been developed. InAs/GaSb short-period superlattices can be fabricated with up to 1000 periods in the intrinsic region without revealing diffusion limited behavior. This enables the fabrication of InAs/GaSb SL camera systems with high responsivity comparable to state of the art CdHgTe and InSb detectors. The material system is also ideally suited for the fabrication of dual-color MWIR/MWIR InAs/GaSb SL camera systems with high quantum efficiency for missile approach warning systems with simultaneous and spatially coincident detection in both spectral channels.

  4. Altered differential hemocyte count in 3rd instar larvae of Drosophila melanogaster as a response to chronic exposure of Acephate

    PubMed Central

    Rajak, Prem; Dutta, Moumita

    2015-01-01

    Acephate, an organophosphate (OP) pesticide, was used to investigate the effects of its chronic exposure on hemocyte abundance in a non-target dipteran insect Drosophila melanogaster. For this purpose, six graded concentrations ranging from 1 to 6 μg/ml were selected, which are below the reported residual values (up to 14 μg/ml) of the chemical. 1st instar larvae were fed with these concentrations up to the 3rd instar stage and accordingly hemolymph smears from these larvae were prepared for differential hemocyte count. Three types of cells are found in Drosophila hemolymph, namely, plasmatocytes, lamellocytes and crystal cells. Plasmatocyte count was found to decrease with successive increase in treatment concentrations. Crystal cells showed an increasing trend in their number. Though the number of lamellocytes was very low, a bimodal response was noticed. Lamellocyte number was found to increase with the initial three concentrations, followed by a dose dependent reduction in their number. As hemocytes are directly linked to the immune system of fruit flies, fluctuations in normal titer of these cells may affect insect immunity. Hemocytes share homologies in their origin and mode of action with the immune cells of higher organisms including man. Thus the present findings suggest that immune cells of humans and other organisms may be affected adversely under chronic exposure to Acephate. PMID:27486365

  5. The Relationship between Perceived and Ideal Body Size and Body Mass Index in 3rd-Grade Low Socioeconomic Hispanic Children

    ERIC Educational Resources Information Center

    Fisher, Allison; Lange, Mary Anne; Young-Cureton, Virginia; Canham, Daryl

    2005-01-01

    Very little is known about body satisfaction among minority children. This study examined the relationship between perceived and actual body size and Body Mass Index among 43 low-socioeconomic Hispanic 3rd-graders. Researchers measured participants' Body Mass Index; students self-reported Perceived Ideal Self Image and Perceived Actual Self Image…

  6. Implications of Technology for Teaching and Learning. Annual Professional Education Seminar of Central States Colleges and Universities (3rd, November, 1967).

    ERIC Educational Resources Information Center

    Woodruff, Asahel; Froyen, Len

    This report of the proceedings of the 3rd Annual Professional Education Seminar of the Central States Colleges and Universities centers upon the implications of technology for teaching and learning and contains addresses delivered, including "Some Concerns Related to Technology in Education," by Len Froyen; and "Implications of Technology for…

  7. Midwest Child-Parent Center (CPC) PreK-3rd Grade School Reform Model: Impacts on Child and Family Outcomes over Time

    ERIC Educational Resources Information Center

    Gaylor, Erika; Spiker, Donna; Wei, Xin; Lease, Erin; Reynolds, Arthur

    2015-01-01

    This presentation reports on the goals and preliminary outcomes of the Child-Parent Centers (CPC) Expansion Project, which is a PreK to 3rd grade school reform model aimed at improving the short- and long-term outcomes of participating children and families. The model provides continuous education and family support services to schools serving a…

  8. Hummingbird: Dramatically Reducing Interplanetary Mission Cost

    NASA Astrophysics Data System (ADS)

    Wertz, J. R.; Van Allen, R. E.; Sarzi-Amade, N.; Shao, A.; Taylor, C.

    2012-06-01

    The Hummingbird interplanetary spacecraft has an available delta V of 2 to 4 km/sec and a recurring cost of 2 to 3 million, depending on the payload and configuration. The baseline telescope has a resolution of 30 cm at a distance of 100 km.

  9. Interplanetary monitoring platform engineering history and achievements

    NASA Technical Reports Server (NTRS)

    Butler, P. M.

    1980-01-01

    In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.

  10. [Level of smoking of 3rd and 4th grade students studying health and related factors: follow-up study].

    PubMed

    Göktalay, Tuğba; Cengiz Özyurt, Beyhan; Sakar Coşkun, Ayşin; Celik, Pinar

    2011-01-01

    The levels of smoking of 1st and 2nd year students at Faculty of Medicine and Manisa School of Health at Celal Bayar University were investigated in 2006-2007. This study is carried out in order to see if there is a change in the same students' level of smoking while they are in 3rd and 4th year. In addition, the study aimed to examine the factors affecting the level of use and attitudes towards the law effectuated in July 19, 2009. This is a follow-up study with 80.42% return rate. A 26-item structured questionnaire was administered. The participants filled out the questionnaires under supervision of the researchers in their classrooms. The University Institutional Review Board approved the study. The total of participants (263) of the follow-up study included 189 female and 74 male. The rate of experimenting with smoking was 49% with the mean age of 15.7 (SD= 4.01 years). The mean age of experimenting with smoking was the earliest on male students studying at faculty of medicine. The level of smoking was found to be the most on females, studying at faculty of medicine and staying at the dormitory, with smoking parents (p< 0.05). The most important reason to begin smoking was curiosity (55.2%) while bad breath and yellowing of teeth were the reasons to quit (91.7%). 83.3% of the students thought that the law will be effective on quit smoking. The level of both experimenting and use of smoking has been increased over time. It is suggested that medical students' awareness about the danger of smoking should be raised at earlier grades. In addition, lectures should be offered to students at School of Health and they should be encouraged to unite in order to fight with smoking.

  11. Classification of biliary tract cancers established by the Japanese Society of Hepato-Biliary-Pancreatic Surgery: 3(rd) English edition.

    PubMed

    Miyazaki, Masaru; Ohtsuka, Masayuki; Miyakawa, Shuichi; Nagino, Masato; Yamamoto, Masakazu; Kokudo, Norihiro; Sano, Keiji; Endo, Itaru; Unno, Michiaki; Chijiiwa, Kazuo; Horiguchi, Akihiko; Kinoshita, Hisafumi; Oka, Masaaki; Kubota, Keiichi; Sugiyama, Masanori; Uemoto, Shinji; Shimada, Mitsuo; Suzuki, Yasuyuki; Inui, Kazuo; Tazuma, Susumu; Furuse, Junji; Yanagisawa, Akio; Nakanuma, Yasuni; Kijima, Hiroshi; Takada, Tadahiro

    2015-03-01

    The 3(rd) English edition of the Japanese classification of biliary tract cancers was released approximately 10 years after the 5(th) Japanese edition and the 2(nd) English edition. Since the first Japanese edition was published in 1981, the Japanese classification has been in extensive use, particularly among Japanese surgeons and pathologists, because the cancer status and clinical outcomes in surgically resected cases have been the main objects of interest. However, recent advances in the diagnosis, management and research of the disease prompted the revision of the classification that can be used by not only surgeons and pathologists but also by all clinicians and researchers, for the evaluation of current disease status, the determination of current appropriate treatment, and the future development of medical practice for biliary tract cancers. Furthermore, during the past 10 years, globalization has advanced rapidly, and therefore, internationalization of the classification was an important issue to revise the Japanese original staging system, which would facilitate to compare the disease information among institutions worldwide. In order to achieve these objectives, the new Japanese classification of the biliary tract cancers principally adopted the 7(th) edition of staging system developed by the International Union Against Cancer (UICC) and the American Joint Committee on Cancer (AJCC). However, because there are some points pending in these systems, several distinctive points were also included for the purpose of collection of information for the future optimization of the staging system. Free mobile application of the new Japanese classification of the biliary tract cancers is available via http://www.jshbps.jp/en/classification/cbt15.html. PMID:25691463

  12. [Level of smoking of 3rd and 4th grade students studying health and related factors: follow-up study].

    PubMed

    Göktalay, Tuğba; Cengiz Özyurt, Beyhan; Sakar Coşkun, Ayşin; Celik, Pinar

    2011-01-01

    The levels of smoking of 1st and 2nd year students at Faculty of Medicine and Manisa School of Health at Celal Bayar University were investigated in 2006-2007. This study is carried out in order to see if there is a change in the same students' level of smoking while they are in 3rd and 4th year. In addition, the study aimed to examine the factors affecting the level of use and attitudes towards the law effectuated in July 19, 2009. This is a follow-up study with 80.42% return rate. A 26-item structured questionnaire was administered. The participants filled out the questionnaires under supervision of the researchers in their classrooms. The University Institutional Review Board approved the study. The total of participants (263) of the follow-up study included 189 female and 74 male. The rate of experimenting with smoking was 49% with the mean age of 15.7 (SD= 4.01 years). The mean age of experimenting with smoking was the earliest on male students studying at faculty of medicine. The level of smoking was found to be the most on females, studying at faculty of medicine and staying at the dormitory, with smoking parents (p< 0.05). The most important reason to begin smoking was curiosity (55.2%) while bad breath and yellowing of teeth were the reasons to quit (91.7%). 83.3% of the students thought that the law will be effective on quit smoking. The level of both experimenting and use of smoking has been increased over time. It is suggested that medical students' awareness about the danger of smoking should be raised at earlier grades. In addition, lectures should be offered to students at School of Health and they should be encouraged to unite in order to fight with smoking. PMID:22233305

  13. Electrocradiographic Qrs Axis, Q Wave and T-wave Changes in 2nd and 3rd Trimester of Normal Pregnancy

    PubMed Central

    S., Chandrasekharappa; Brid, S.V

    2014-01-01

    Background: Pregnancy although a physiological phenomena affects all the functions of the maternal body and brings about remarkable changes in the cardiovascular system. The cardiovascular changes and many of the physiological adaptations of normal pregnancy alter the physical findings thus, sometimes misleading the diagnosis of heart disease. Pregnancy also brings about various changes in the electrocardiogram, further confusing with that of heart disease. This study is undertaken to highlight the effect of normal pregnancy on the QRS axis, Q wave and T-wave of the Electrocardiogram and thereby helps us to distinguish it from that of pathological changes. Objectives: To study the effect of normal pregnancy on the QRS axis, Q wave and T-wave in the electrocardiogram and to compare with that of normal non pregnant women. Materials and Methods: Fifty normal pregnant women in 2nd and 3rd trimester each between 20– 35 y of age and 50 normal non pregnant women of the same age group were selected for the study. A 12 lead ECG was recorded by using ECG machine with special emphasis on QRS axis, Q wave and T-wave changes and all the parameters were analysed. Results: The ECG changes observed in our study include, deviation of QRS axis towards left as pregnancy advanced, significant increased incidence of occurrence of prominent Q waves in lead II, III and avF in pregnant group (p < 0.05 ) and, T-wave abnormalities like flat and inverted T-waves in lead III, V1 – V3 were more frequent in pregnant group ( p<0.05 ) than in non pregnant group. Conclusion:Normal pregnancy brings about various changes in ECG. These changes during pregnancy should be interpretated with caution by the physicians. It is necessary to understand the normal physiological changes which in turn help us in better management of those with cardiac disease. PMID:25386425

  14. Classification of biliary tract cancers established by the Japanese Society of Hepato-Biliary-Pancreatic Surgery: 3(rd) English edition.

    PubMed

    Miyazaki, Masaru; Ohtsuka, Masayuki; Miyakawa, Shuichi; Nagino, Masato; Yamamoto, Masakazu; Kokudo, Norihiro; Sano, Keiji; Endo, Itaru; Unno, Michiaki; Chijiiwa, Kazuo; Horiguchi, Akihiko; Kinoshita, Hisafumi; Oka, Masaaki; Kubota, Keiichi; Sugiyama, Masanori; Uemoto, Shinji; Shimada, Mitsuo; Suzuki, Yasuyuki; Inui, Kazuo; Tazuma, Susumu; Furuse, Junji; Yanagisawa, Akio; Nakanuma, Yasuni; Kijima, Hiroshi; Takada, Tadahiro

    2015-03-01

    The 3(rd) English edition of the Japanese classification of biliary tract cancers was released approximately 10 years after the 5(th) Japanese edition and the 2(nd) English edition. Since the first Japanese edition was published in 1981, the Japanese classification has been in extensive use, particularly among Japanese surgeons and pathologists, because the cancer status and clinical outcomes in surgically resected cases have been the main objects of interest. However, recent advances in the diagnosis, management and research of the disease prompted the revision of the classification that can be used by not only surgeons and pathologists but also by all clinicians and researchers, for the evaluation of current disease status, the determination of current appropriate treatment, and the future development of medical practice for biliary tract cancers. Furthermore, during the past 10 years, globalization has advanced rapidly, and therefore, internationalization of the classification was an important issue to revise the Japanese original staging system, which would facilitate to compare the disease information among institutions worldwide. In order to achieve these objectives, the new Japanese classification of the biliary tract cancers principally adopted the 7(th) edition of staging system developed by the International Union Against Cancer (UICC) and the American Joint Committee on Cancer (AJCC). However, because there are some points pending in these systems, several distinctive points were also included for the purpose of collection of information for the future optimization of the staging system. Free mobile application of the new Japanese classification of the biliary tract cancers is available via http://www.jshbps.jp/en/classification/cbt15.html.

  15. In vitro cultivation of Hysterothylacium aduncum (Nematoda: Anisakidae) from 3rd-stage larvae to egg-laying adults.

    PubMed

    Iglesias, L; Valero, A; Gálvez, L; Benítez, R; Adroher, F J

    2002-11-01

    This is the first demonstration of the in vitro development of the 3rd-stage larvae (L3) of Hysterothylacium aduncum to the adult. This was achieved in a semi-defined medium that is easy to prepare and to reproduce. The L3, collected from the peritoneal cavity of horse mackerel (Trachurus trachurus), were individually inoculated into RPMI-1640 medium +20% heat-inactivated fetal bovine serum (IFBS). It has been demonstrated that the optimum temperature for development is around 13 degrees C and is stimulated by the presence of 5% CO2 in the growth atmosphere, increasing the percentage moulting to the 4th larval stage (L4) by 1.9-fold (from 44 to 82%) and the average survival of the nematodes by 1.6 times (from 60 to 96 days). When the larvae were grown at different pHs, optimum development occurred at pH 4.0. Under these conditions, all the larvae moulted to the L4 and more than two-thirds transformed to the adult stage--in which 25-30% of the females laid eggs--and reached an average survival of over 4 months. When this medium was supplemented with 1% (w/v) of commercial pepsin, all the larvae reached the adult stage, at least 45% of the females oviposited, laying around 12-fold more eggs per female than in the medium without pepsin. The mean size of the eggs (non-fertilized) obtained was 56.8 x 47.6 microm. The mean length of the adult males obtained was between 3.2 and 5.2 cm and the females were between 3.0 and 6.5 cm. The adult specimens were morphologically identified as Hysterothylacium aducum aduncum. This culture medium (RPMI-1640+20% (v/v) IFBS+1 commercial pepsin, at pH 4.0, 13 degrees C and 5% CO2 in air) could facilitate the identification of at least some of the larvae of the genus Hysterothylacium--and perhaps other anisakids--for which the specific identification and the biological study of these parasites is often difficult. PMID:12458831

  16. PREFACE: 3rd International Conference on Geological, Geographical, Aerospace and Earth Science 2015 (AeroEarth 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2016-02-01

    The 3rd International Conferences on Geological, Geographical, Aerospaces and Earth Sciences 2015 (AeroEarth 2015), was held at The DoubleTree Hilton, Jakarta, Indonesia during 26 - 27 September 2015. The 1st AeoroEarth was held succefully in Jakarta in 2013. The success continued to The 2nd AeroEarth 2014 that was held in Kuta Bali, Indonesia. The publications were published by EES IOP in http://iopscience.iop.org/1755-1315/19/1 and http://iopscience.iop.org/1755-1315/23/1 respectively. The AeroEarth 2015 conference aims to bring together researchers, engineers and scientists from around the world. Through research and development, Earth's scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. The theme of AeroEarth 2015 is ''Earth and Aerospace Sciences : Challenges and Opportunities'' Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 78 papers and after rigorous review, 18 papers were accepted. The participants

  17. Effect on Physical Activity of a Randomized Afterschool Intervention for Inner City Children in 3rd to 5th Grade

    PubMed Central

    Crouter, Scott E.; de Ferranti, Sarah D.; Whiteley, Jessica; Steltz, Sarah K.; Osganian, Stavroula K.; Feldman, Henry A.; Hayman, Laura L.

    2015-01-01

    Background Less than 45% of U.S. children meet the 60 min.d-1 physical activity (PA) guideline. Structured after-school PA programing is one approach to help increase activity levels. This study aimed to evaluate the feasibility and short-term impact of a supervised after-school PA and nutrition education program on activity levels. Methods Forty-two 3rd-5th graders from an inner-city school in Boston, MA were randomly assigned to a 10-wk after-school program of either: 1) weekly nutrition education, or 2) weekly nutrition education plus supervised PA 3 d.wk-1 at a community-based center. At baseline and follow-up, PA was measured using accelerometry and fitness (VO2max) was estimated using the PACER 15-m shuttle run. Additional measures obtained were non-fasting finger stick total cholesterol (TC) and glucose levels, waist circumference (WC), body mass index (BMI), percent body fat (%BF), and blood pressure (BP). Values are presented as mean±SE, unless noted otherwise. Results Thirty-six participants completed the study (mean±SD; age 9.7±0.9 years). Participants attended >80% of the sessions. After adjusting for accelerometer wear time and other design factors, light and moderate-to-vigorous PA (MVPA) increased in the nutrition+PA group (+21.5±14.5 and +8.6±8.0 min.d-1, respectively) and decreased in the nutrition only group (-35.2±16.3 and -16.0±9.0 min.d-1, respectively); mean difference between groups of 56.8±21.7 min.d-1 (light PA, p = 0.01) and 24.5±12.0 min.d-1 (MVPA, p = 0.04). Time spent in sedentary behaviors declined in the nutrition+PA group (-14.8±20.7 min.d-1) and increased in the nutrition only group (+55.4±23.2 min.d-1); mean difference between groups of -70.2±30.9 min.d-1 (p = 0.02). Neither group showed changes in TC, BP, WC, %BF, BMI percentile, or fitness (p>0.05). Conclusions The supervised afterschool community-based nutrition and PA program was well accepted and had high attendance. The changes in light PA and MVPA has potential

  18. PREFACE: 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2015-06-01

    The 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015), was held at The Westin Resort Nusa Dua, Bali on 31 January - 1 February 2015. The ScieTech 2015 conference is aimed to bring together researchers, engineers and scientists from around the world. ScieTech 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics. As we already know that science and technology have brought tremendous benefits for human civilization. People are becoming healthier, wealthier, better educated, more peaceful, increasingly connected, and living longer. Of course, science and technology provide many answers to global challenges, but we will face more complex problems in the next decade due to increasing world population, limitation of energy, and climate change. Therefore, researchers should be more active in conducting research that enables collaboration between one and the others. Interdisciplinary cooperation is absolutely necessary in order to create a smart system for solving the global problems. We need a global and general long-term view of the future with long-range goals for solving complex problems in next decade. Therefore the conference was held to be a forum for researchers from different disciplines to start collaborating and conducting research that provides a solution to the global issues. The theme of ScieTech 2015 was ''The interdisciplinary Application between Mathematics, Chemistry and Physics to enhance the Quality of Life''. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting conference program as well as the invited and plenary speakers. This year, we received 197 papers and after rigorous review, 59 papers were accepted. The participants came from 19

  19. Tin in a chondritic interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1989-01-01

    Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.

  20. Multi-Spacecraft Observations of Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Tokar, R. L.; Skoug, R. M.; Szabo, A.

    1999-01-01

    Using multi-spacecraft observations primarily from ACE and WIND and from IMP 8 and Geotail when available, the 3-dimensional structure of interplanetary shocks on the hundred Earth radii scale will be discussed. The complete magnetic field, and solar wind ion and electron data sets were used to fit the shocks with a full non-linear least squares fitting "Rankine-Hugoniot" technique yielding the local shock surface normals and speeds with associated uncertainties. Multi-spacecraft results reveal that on the distance scale of ACE's L1 halo orbit the shocks deviate from a simple planar geometry. This result has important consequences for the prediction of the exact arrival times of interplanetary shocks at the Earth's magnetosphere, and hence, on the reliability of space weather predictions. It also has implications on the coherence scale of solar wind structures and their evolution from the Sun to Earth.

  1. Raman spectra of seven interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Xu, Yin-Lin; Yu, Min; Fan, Chang-Yun

    1992-01-01

    The Raman shift spectra of seven interplanetary dust particles, U2034(F10), U2034(F8), U2022(B1), W7074 18, W7074 C15, W7074 C3 and W7074 A7, were measured with a Spex-1403 Raman spectrograph. The exciting radiations were the 488 nm and 514 nm line of a 5W argon ion laser. All seven spectra exhibit the 1350 and 1600 Delta/cm arbon bands, implying that the Interplanetary dust particles were coated with hydrocarbon and incompletely crystallized carbon, the part of which may be the residue of hydrocarbon contents in the particles after water loss by the heating during their entry into the earth's atmosphere. A weak band structure in the 520-610/cm range could be caused by cyclosilicates, and a weak band at 2900/cm is tentatively identified as due to hydrocarbon molecules.

  2. Do interplanetary Alfven waves cause auroral activity?

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron; Goldstein, Melvyn L.

    1990-01-01

    A recent theory holds that high-intensity, long-duration, continuous auroral activity (HILDCAA) is caused by interplanetary Alfven waves propagating outward from the sun. A survey of Alfvenic intervals in over a year of ISEE 3 data shows that while Alfvenic intervals often accompany HILDCAAs, the reverse is often not true. There are many Alfvenic intervals during which auroral activity (measured by high values of the AE index) is very low, as well as times of high auroral activity that are not highly Alfvenic. This analysis supports the common conclusion that large AE values are associated with a southward interplanetary field of sufficient strength and duration. This field configuration is independent of the presence of Alfven waves (whether solar generated or not) and is expected to occur at random intervals in the large-amplitude stochastic fluctuations in the solar wind.

  3. Software Risk Identification for Interplanetary Probes

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert J.; Papadopoulos, Periklis E.

    2005-01-01

    The need for a systematic and effective software risk identification methodology is critical for interplanetary probes that are using increasingly complex and critical software. Several probe failures are examined that suggest more attention and resources need to be dedicated to identifying software risks. The direct causes of these failures can often be traced to systemic problems in all phases of the software engineering process. These failures have lead to the development of a practical methodology to identify risks for interplanetary probes. The proposed methodology is based upon the tailoring of the Software Engineering Institute's (SEI) method of taxonomy-based risk identification. The use of this methodology will ensure a more consistent and complete identification of software risks in these probes.

  4. Dusty Plasma Effects in the Interplanetary Medium?

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Belheouane, Soraya

    Cosmic dust particles exist in a variety of compositions and sizes in the interplanetary medium. There is little direct information on the composition, but those interplanetary dust particles that are collected in the upper Earth’s atmosphere and can be studied in the laboratory typically have an irregular, sometimes porous structure on scales <100 nm. They contain magnesium-rich silicates and silicon carbide, iron-nickel and iron-sulfur compounds, calcium- and aluminum oxides, and chemical compounds that contain a large mass fraction of carbon (e.g. carbonaceous species). A fraction of the dust originates from comets, but because of their bulk material temperature of about 280 K near 1 AU, most icy compounds have disappeared. The dust particles are embedded in the solar wind, a hot plasma with at 1 AU kinetic temperatures around 100 000 K and flow direction nearly radial outward from the Sun at supersonic bulk velocities around 400 km/s. Since the dust particles carry an electric surface charge they are subject to electromagnetic forces and the nanodust particles are efficiently accelerated to velocities of order of solar wind speed. The acceleration of the nanodust is similar, but not identical to the formation of pick-up ions. The S/WAVES radio wave instrument on STEREO measured a flux of nanodust at 1 AU [1]. The nanodust probably forms in the region inward of 1 AU and is accelerated by the solar wind as discussed. We also discuss the different paths of dust - plasma interactions in the interplanetary medium and their observations with space experiments. Comparing these interactions we show that the interplanetary medium near 1 AU can in many cases be described as “dust in plasma" rather than "dusty plasma”. [1] S. Belheouane, N. Meyer-Vernet, K. Issautier, G. Le Chat, A. Zaslavsky, Y. Zouganelis, I. Mann, A. Czechowski: Dynamics of nanoparticles detected at 1 AU by S/WAVES onboard STEREO spacecraft, in this session.

  5. Preliminary performance analysis of an interplanetary navigation system using asteroid based beacons

    NASA Technical Reports Server (NTRS)

    Jee, J. Rodney; Khatib, Ahmad R.; Muellerschoen, Ronald J.; Williams, Bobby G.; Vincent, Mark A.

    1988-01-01

    A futuristic interplanetary navigation system using transmitters placed on selected asteroids is introduced. This network of space beacons is seen as a needed alternative to the overly burdened Deep Space Network. Covariance analyses on the potential performance of these space beacons located on a candidate constellation of eight real asteroids are initiated. Simplified analytic calculations are performed to determine limiting accuracies attainable with the network for geometric positioning. More sophisticated computer simulations are also performed to determine potential accuracies using long arcs of range and Doppler data from the beacons. The results from these computations show promise for this navigation system.

  6. Discovery of nuclear tracks in interplanetary dust

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Brownlee, D. E.

    1984-01-01

    Prior to capture by the Earth's atmosphere individual interplanetary dust particles (IDP's) have allegedly spent up to 10 to the 5th power years as discrete bodies within the interplanetary medium. Observation of tracks in IDP's in the form of solar flare tracks would provide hitherto unknown data about micrometeorites such as: (1) whether an IDP existed in space as an individual particle or as part of a larger meteroid; (2) the degree to which a particle was heated during the trauma of atmospheric entry; (3) residence time of an IDP within the interplanetary medium; and (4) possible hints as to the pre-accretional exposure of component mineral grains to solar or galactic irradiation. Using transmission electron microscopy tracks in several micrometeorites have been successfully identified. All of the studied particles had been retrieved from the stratosphere by U-2 aircraft. Three pristine IDP's (between 5 and 15 micro m diameter) have so far been searched for solar flare tracks, and they have been found in the two smaller particles U2-20B11 (11 micro m) and U2-20B37 (8 micro m).

  7. Integrated shielding systems for manned interplanetary spaceflight

    NASA Astrophysics Data System (ADS)

    George, Jeffrey A.

    1992-01-01

    The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.

  8. Internet Librarian '99. Proceedings of the Internet Librarian Conference (3rd, San Diego, California, November 8-10, 1999).

    ERIC Educational Resources Information Center

    Nixon, Carol, Comp.; Burmood, Jennifer, Comp.

    These Proceedings of the Third Internet Librarian Conference include the following papers: (1) "Networking the Network: What Information Technology Fluency Can Do for You" (Jose Aguinaga, Kitty Little, and C.D. McLean); (2) "Moving Out of HTML into Database Solutions for the Web" (Kristin Antelman); (3) "Creating Your Own Virtual Depository…

  9. Delay-Tolerant Networking for Space Flight Operations: Design and Development

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    2008-01-01

    Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. The Internet protocols are not well suited for operation of a network over interplanetary distances; a Delay-Tolerant Networking (DTN) architecture has been proposed instead. DTN is now a rapidly growing research field, but most implementations are mainly aimed at supporting applications of DTN technology to terrestrial networking problems. Those implementations are not necessarily suitable for deployment in an interplanetary network. Interplanetary Overlay Network (ION) is an implementation of the DTN architecture that is specifically designed for use in resource-constrained embedded systems, such as interplanetary robotic spacecraft.

  10. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Friis-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    In order to infer the interplanetary sector polarity from polar geomagnetic field diurnal variations, measurements were carried out at Godhavn and Thule (Denmark) Geomagnetic Observatories. The inferred interplanetary sector polarity was compared with the polarity observed at the same time by Explorer 33 and 35 magnetometers. It is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar cap geomagnetic fields.

  11. Contributions to global earth sciences integration. A special issue on the 3rd Young Earth Scientists Congress

    NASA Astrophysics Data System (ADS)

    Cónsole-Gonella, Carlos; Yidana, Sandow Mark

    2016-10-01

    The Young Earth Scientists (YES) Network is an association of early-career geoscientists who are primarily under the age of 35 years from universities, geoscience organizations and companies from across the world (http://www.networkyes.org)

  12. Magnetic Reconnection in Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Fermo, R. L.; Opher, M.; Drake, J. F.

    2014-12-01

    Magnetic reconnection is a ubiquitous phenomenon in many varied space and astrophysical plasmas, and as such plays an important role in the dynamics of interplanetary coronal mass ejections (ICMEs). It is widely regarded that reconnection is instrumental in the formation and ejection of the initial CME flux rope, but reconnection also continues to affect the dynamics as it propagates through the interplanetary medium. For example, reconnection on the leading edge of the ICME, by which it interacts with the interplanetary medium, leads to flux erosion. However, recent in situ observations by Gosling et al. found signatures of reconnection exhausts in the interior. In light of this data, we consider the stability properties of systems with this flux rope geometry with regard to their minimum energy Taylor state. Variations from this state will result in the magnetic field relaxing back towards the minimum energy state, subject to the constraints that the toroidal flux and magnetic helicity remain invariant. In reversed field pinches, this relaxation is mediated by reconnection in the interior of the system, as has been shown theoretically and experimentally. By treating the ICME flux rope in a similar fashion, we show analytically that the the elongation of the flux tube cross section in the latitudinal direction will result in a departure from the Taylor state. The resulting relaxation of the magnetic field causes reconnection to commence in the interior of the ICME, in agreement with the observations of Gosling et al. We present MHD simulations in which reconnection initiates at a number of rational surfaces, and ultimately produces a stochastic magnetic field. If the time scales for this process are shorter than the propagation time to 1 AU, this result explains why many ICME flux ropes no longer exhibit the smooth, helical flux structure characteristic of a magnetic cloud.

  13. Polarization of the Interplanetary Dust Medium

    NASA Astrophysics Data System (ADS)

    Lasue, J.; Levasseur-Regourd, A. C.; Hadamcik, E.

    2015-12-01

    The interplanetary dust cloud is visible through its scattered light (the zodiacal light) at visible wavelengths. Brightness observations lead to equilibrium temperature and albedo of the particles and their variation as a function of the heliocentric distance. The light scattered by this optically thin medium is linearly polarized with negative values of the degree of linear polarization, PQ, in the backscattering region. We will review the zodiacal light photopolarimetric observations from the whole line-of-sight integrated values to the local values retrieved by inversion. Whenever available, the local PQ variation as a function of the phase angle presents a phase curve with a small negative branch and large positive branch similar to comets or asteroids. PQ does not seem to show a wavelength variation. The maximum of polarization decreases with decreasing heliocentric distance. A circular polarization signal may be present in parts of the sky. Both numerical simulations and laboratory experiments of light scattering by irregular particles have been performed to constrain the interplanetary dust properties based on their polarimetric signature. These studies indicate that mixtures of low-absorption (Mg-silicates) and high-absorption (carbonaceous) particles can explain the intensity and polarimetric observations of the zodiacal cloud. The variations with the heliocentric distance may be due to decreasing carbonaceous content of the dust cloud. Such models would favor a significant proportion of aggregates and absorbing particles in the interplanetary dust medium, indicative of a major cometary dust contribution. The exact origin (asteroidal, cometary, interstellar) and physical properties of the dust particles contributing to the zodiacal cloud is still debated and will be more constrained with future observations. New high-resolution systems will monitor the zodiacal light from the ground and new results are expected from upcoming space missions.

  14. Finite Time Shock Acceleration at Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Channok, C.; Ruffolo, D.; Desai, M. I.; Mason, G. M.

    2004-05-01

    Observations of energetic ion acceleration at interplanetary shocks sometimes indicate a spectral rollover at ˜ 0.1 to 1 MeV nucl-1. This rollover is not well explained by finite shock width or thickness effects. At the same time, a typical timescale of diffusive shock acceleration is several days, implying that the process of shock acceleration at an interplanetary shock near Earth usually gives only a mild increase in energy to an existing seed particle population. This is consistent with a recent analysis of ACE observations that argues for a seed population at substantially higher energies than the solar wind. Therefore an explanation of typical spectra of interplanetary shock-accelerated ions requires a theory of finite-time shock acceleration, which for long times (or an unusually fast acceleration timescale) tends to the steady-state result of a power-law spectrum. We present analytic and numerical models of finite-time shock acceleration. For a given injection momentum p0, after a very short time there is only a small boost in momentum, at intermediate times the spectrum is a power law with a hump and steep cutoff at a critical momentum, and at longer times the critical momentum increases and the spectrum approaches the steady-state power law. The composition dependence of the critical momentum is different from that obtained for other cutoff mechanisms. The results are compared with observed spectra. Work in Thailand was supported by the Commission for Higher Education, the Rachadapisek Sompoj Fund of Chulalongkorn University, and the Thailand Research Fund. Work at the University of Maryland was supported by NASA contract NAS5-30927 and NASA grant PC 251428.

  15. Discovery of nuclear tracks in interplanetary dust

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Brownlee, D. E.; Fraundorf, P.

    1984-01-01

    Nuclear tracks have been identified in interplanetary dust particles (IDP's) collected from the stratosphere. The presence of tracks unambiguously confirms the extraterrestrial nature of IDP's, and the high track densities (10 to the 10th to 10 to the 11th per square centimeter) suggest an exposure age of approximately 10,000 years within the inner solar system. Tracks also provide an upper temperature limit for the heating of IDP's during atmospheric entry, thereby making it possible to distinguish between pristine and thermally modified micrometeorites.

  16. Interplanetary exploration-A challenge for photovoltaics

    NASA Technical Reports Server (NTRS)

    Stella, P. M.

    1985-01-01

    Future U.S. interplanetary missions will be less complex and costly than past missions such as Voyager and the soon to be launched, Galileo. This is required to achieve a balanced exploration program that can be sustained within the context of a limited budget. Radioisotope thermoelectric generators (RTGs) have served as the power source for missions beyond the orbit of Mars. It is indicated that the cost to the user of these power sources will significantly increase. Solar arrays can provide a low cost alternative for a number of missions. Potential missions are identified along with concerns for implementation, and some array configurations under present investigation are reviewed.

  17. Interplanetary coronal mass ejections and their geomagnetic consequences during solar cycle 24

    NASA Astrophysics Data System (ADS)

    Maris Muntean, Georgeta; Mierla, Marilena; Besliu-Ionescu, Diana; Lacatus, Dana; Razvan Paraschiv, Alin

    Geomagnetic storms are known to be of great importance to life on Earth through their impact on telecommunications, electric power networks and much more. Our study will analyse in detail two months of solar and geomagnetic activity in March 2012 and, March 2013. There is an ICME (Interplanetary Coronal Mass Ejection) recorded on March 9, 2012 listed in the Richardson and Cane catalogue, correlated with a Halo CME (Coronal Mass Ejection) from March 7. An intense geomagnetic storm (minimum Dst = -131 nT) was registered on March 9, 2012. Out of the two ICMEs recorded on the 17th and 20th March 2013, only the first was clearly associated with a Halo CME from March, 15. March, 17 is a day of intense geomagnetic storm (minimum Dst = -132 nT). We will focus on these events, such that the interaction between ICMEs and interplanetary magnetic field from the Sun to the Earth can be thoroughly described.

  18. [Use of imaging methods in the current screening, diagnostics and treatment of breast cancer - Professional guidelines. 3rd Breast Cancer Consensus Meeting].

    PubMed

    Forrai, Gábor; Ambrózay, Éva; Bidlek, Mária; Borbély, Katalin; Kovács, Eszter; Lengyel, Zsolt; Ormándi, Katalin; Péntek, Zoltán; Riedl, Erika; Sebõ, Éva; Szabó, Éva

    2016-09-01

    Breast radiologists and nuclear medical specialists have refreshed their previous statement text during the 3rd Hungarian Breast Cancer Consensus Meeting. They suggest taking into consideration this actual protocol for the screening, diagnostics and treatment of breast tumors, from now on. This recommendation includes the description of the newest technologies, the recent results of scientific research, as well as the role of imaging methods in the therapeutic processes and the follow-up. Suggestions for improvement of the Hungarian current practice and other related issues as forensic medicine, media connections, regulations, and reimbursement are also detailed. The statement text has been cross-checked with the related medical disciplines. PMID:27579719

  19. UNISIST Working Group on Technology of Systems Interconnection. Meeting (3rd, Quezon City, Philippines, October 17-20, 1983).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Paris (France). General Information Programme.

    Participants in the meeting summarized in this report advised and made recommendations on appropriate activities and programs conducive to the development of cooperative networks and the exchange of information and experience in science and technology in the Asia Pacific Region. Invited in their personal capacity as experts, the 14 participants…

  20. Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III)

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael (Editor); Rash, James (Editor); Truszkowski, Walt (Editor); Rouff, Christopher (Editor)

    2004-01-01

    These preceedings contain 18 papers and 4 poster presentation, covering topics such as: multi-agent systems, agent-based control, formalism, norms, as well as physical and biological models of agent-based systems. Some applications presented in the proceedings include systems analysis, software engineering, computer networks and robot control.

  1. Radio Tracking of Solar Energetic Particles through Interplanetary Space.

    PubMed

    Fainberg, J; Evans, L G; Stone, R G

    1972-11-17

    Energetic particles ejected from the sun generate radio waves as they travel out through the interplanetary medium. Satellite observations of this emission at long radio wavelengths provide a means of investigating properties of the interplanetary medium, including the gross magnetic field configuration over distances of 1 astronomical unit. Results of such observations are illustrated.

  2. Effect of non-erupted 3rd molars on distal roots and supporting structures of approximal teeth. A radiographic survey of 202 cases.

    PubMed

    Nemcovsky, C E; Libfeld, H; Zubery, Y

    1996-09-01

    Root resorption of 2nd molars in proximity to non-erupted 3rd molars has been widely reported. The purpose of this study was to determine the prevalence of root resorption in second molars adjacent to non-erupted third molars. Its association to age and gender of the patient, location and inclination of the non-erupted third molar and to distal bone support of the 2nd molars was analyzed. A radiographic survey of 202 periapical radiographs taken in patients with clinically missing third molars was conducted. 3 examiners independently evaluated the radiographs and only those cases where at least 2 observers agreed were included in this report. Statistical analysis was performed on 186 radiographs. Associations were analyzed with the Pearson chi 2 test. Radiographic evidence of root resorption was found in 45 2nd molars (24.2%) of which 12 (6.5%) showed moderate to complete root resorption. Non-erupted tooth apical position and mesio-inclination of 60 degrees or more relative to the distal root of the second molar were significantly associated with root resorption (p = 0.01368 and p = 0.0194, respectively). Resorption was positively associated with age of patient (p = 0.00606). These results may support early extraction of impacted 3rd molars especially in cases with a mesio-angulation of 60 degrees or more and an apical location in proximity to the distal root of the 2nd molar. PMID:8891930

  3. Interplanetary meteoroid debris in LDEF metal craters

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Horz, F.; Bradley, J.

    1992-01-01

    The extraterrestrial meteoroid residue found lining craters in the Long Duration Exposure Facility (LDEF) aluminum and gold targets is highly variable in both quantity and type. In typical craters only a minor amount of residue is found and for these craters it is evident that most of the impacting projectile was ejected during crater formation. Less than 10 percent of the craters greater than 100 microns contain abundant residue consistent with survival of a major fraction of the projectile. In these cases the residue can be seen optically as a dark liner and it can easily be analyzed by SEM-EDX techniques. Because they are rare, the craters with abundant residue must be a biased sampling of the meteoroids reaching the earth. Factors that favor residue retention are low impact velocity and material properties such as high melting point. In general, the SEM-EDX observations of crater residues are consistent with the properties of chondritic meteorites and interplanetary dust particles collected in the stratosphere. Except for impacts by particles dominated by single minerals such as FeS and olivine, most of the residue compositions are in broad agreement with the major element compositions of chondrites. In most cases the residue is a thin liner on the crater floor and these craters are difficult to quantitatively analyze by EDX techniques because the electron beam excites both residue and underlying metal substrate. In favorable cases, the liner is thick and composed of vesicular glass with imbedded FeNi, sulfide and silicate grains. In the best cases of meteoroid preservation, the crater is lined with large numbers of unmelted mineral grains. The projectiles fragmented into micron sized pieces but the fragments survived without melting. In one case, the grains contain linear defects that appear to be solar flare tracks. Solar flare tracks are common properties of small interplanetary particles and their preservation during impact implies that the fragments were

  4. Investigation of interplanetary dust from out-of-ecliptic space probes. [astronomical models of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Fechtig, H.; Giese, R. H.; Hanner, M. S.; Zook, H. A.

    1976-01-01

    Measurements of interplanetary dust via zodiacal light observations and direct detection are discussed for an out-of-ecliptic space probe. Particle fluxes and zodiacal light brightnesses were predicted for three models of the dust distribution. These models predict that most of the information will be obtained at space probe distances less than 1 A.U. from the ecliptic plane. Joint interpretation of the direct particle measurements and the zodiacal light data can yield the best knowledge of the three-dimensional particle dynamics, spatial distribution, and physical characteristics of the interplanetary dust. Such measurements are important for an understanding of the origin and role of the dust in relation to meteoroids, asteroids, and comets, as well as the interaction of the dust with solar forces.

  5. Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III

    2012-01-01

    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves.

  6. Suprathermal ions upstream from interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.; Russell, C. T.

    1984-01-01

    Low energy (10 eV-30 keV) observations of suprathermal ions ahead of outward propagating interplanetary shock waves (ISQ) are reported. The data were taken with the fast plasma experiment on ISEE 1 and 2 during 17 events. Structure was more evident in the suprathermal ion distribution in the earth bow shock region than in the upstream region. Isotropic distributions were only observed ahead of ISW, although field alignment, kidney-bean distributions, ion shells in velocity space and bunches of gyrating ions were not. The data suggest that the solar wind ions are accelerated to suprathermal energies in the vicinity of the shocks, which feature low and subcritical Mach numbers at 1 AU.

  7. Suprathermal ions upstream from interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Gosling, J. T.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.; Russell, C. T.

    1984-07-01

    Low energy (10 eV-30 keV) observations of suprathermal ions ahead of outward propagating interplanetary shock waves (ISQ) are reported. The data were taken with the fast plasma experiment on ISEE 1 and 2 during 17 events. Structure was more evident in the suprathermal ion distribution in the earth bow shock region than in the upstream region. Isotropic distributions were only observed ahead of ISW, although field alignment, kidney-bean distributions, ion shells in velocity space and bunches of gyrating ions were not. The data suggest that the solar wind ions are accelerated to suprathermal energies in the vicinity of the shocks, which feature low and subcritical Mach numbers at 1 AU.

  8. Rotational bursting of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Paddack, S. J.; Rhee, J. W.

    1976-01-01

    Rotationally induced bursting of interplanetary dust particles by a windmill effect stemming from solar radiation pressure, and eventual elimination of the particles from the solar system, is discussed. A life span on the order of 100,000 years for stony meteoritic material or tektite glass with radii of about 1 cm is arrived at for this process. A life span of a million years is computed for particles containing Fe, Ni, or Al with spin damping effects taken into cognizance. This depletion mechanism operates at a rate two orders of magnitude greater than that of the Poynting-Robertson effect in the case of nonmetallic particles and one order of magnitude greater in the case of metallic particles.

  9. Interplanetary space transport using inertial fusion propulsion

    SciTech Connect

    Orth, C.D.

    1998-04-20

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts.

  10. Interplanetary Particle Environment. Proceedings of a Conference

    NASA Technical Reports Server (NTRS)

    Feynman, Joan (Editor); Gabriel, Stephen (Editor)

    1988-01-01

    A workshop entitled the Interplanetary Charged Particle Environment was held at the Jet Propulsion Laboratory (JPL) on March 16 and 17, 1987. The purpose of the Workshop was to define the environment that will be seen by spacecraft operating in the 1990s. It focused on those particles that are involved in single event upset, latch-up, total dose and displacement damage in spacecraft microelectronic parts. Several problems specific to Magellan were also discussed because of the sensitivity of some electronic parts to single-event phenomena. Scientists and engineers representing over a dozen institutions took part in the meeting. The workshop consisted of two major activities, reviews of the current state of knowledge and the formation of working groups and the drafting of their reports.

  11. Laser-fusion rocket for interplanetary propulsion

    SciTech Connect

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  12. Solar Sources of ``Driverless'' Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Mäkelä, P.; Xie, H.; Akiyama, S.; Yashiro, S.

    2010-03-01

    We identify the solar sources of a large number of interplanetary (IP) shocks that do not have a discernible driver as observed by spacecraft along the Sun-Earth line. At the Sun, these ``driverless'' shocks are associated with fast and wide CMEs. Most of the CMEs were also driving shocks near the Sun, as evidenced by the association of IP type II radio bursts. Thus, all these shocks are driven by CMEs and they are not blast waves. Normally limb CMEs produce driverless shocks at 1 AU. But some disk-center CMEs also result in driverless shocks because of deflection by nearby coronal holes. We estimate the angular deflection to be in the range 20°-60°. We also compared the influence of nearby coronal holes on a set of CMEs that resulted in magnetic clouds. The influence is nearly three times larger in the case of driverless shocks, confirming the large deflection required.

  13. MAGNETOHYDRODYNAMIC SIMULATIONS OF INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect

    Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Török, Tibor; Riley, Pete; Mikić, Zoran E-mail: cdowns@predsci.com E-mail: tibor@predsci.com E-mail: mikic@predsci.com

    2013-11-01

    We describe a new MHD model for the propagation of interplanetary coronal mass ejections (ICMEs) in the solar wind. Accurately following the propagation of ICMEs is important for determining space weather conditions. Our model solves the MHD equations in spherical coordinates from a lower boundary above the critical point to Earth and beyond. On this spherical surface, we prescribe the magnetic field, velocity, density, and temperature calculated typically directly from a coronal MHD model as time-dependent boundary conditions. However, any model that can provide such quantities either in the inertial or rotating frame of the Sun is suitable. We present two validations of the technique employed in our new model and a more realistic simulation of the propagation of an ICME from the Sun to Earth.

  14. Interplanetary approach optical navigation with applications

    NASA Technical Reports Server (NTRS)

    Jerath, N.

    1978-01-01

    The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.

  15. Suprathermal protons in the interplanetary solar wind

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Lazarus, A. J.

    1976-01-01

    Using the Mariner 5 solar wind plasma and magnetic field data, we present observations of field-aligned suprathermal proton velocity distributions having pronounced high-energy shoulders. These observations, similar to the interpenetrating stream observations of Feldman et al. (1974), are clear evidence that such proton distributions are interplanetary rather than bow shock associated phenomena. Large Alfven speed is found to be a requirement for the occurrence of suprathermal proton distribution; further, we find the proportion of particles in the shoulder to be limited by the magnitude of the Alfven speed. It is suggested that this last result could indicate that the proton thermal anisotropy is limited at times by wave-particle interactions

  16. IPShocks: Database of Interplanetary Shock Waves

    NASA Astrophysics Data System (ADS)

    Isavnin, Alexey; Lumme, Erkka; Kilpua, Emilia; Lotti, Mikko; Andreeova, Katerina; Koskinen, Hannu; Nikbakhsh, Shabnam

    2016-04-01

    Fast collisionless shocks are one of the key interplanetary structures, which have also paramount role for solar-terrestrial physics. In particular, coronal mass ejection driven shocks accelerate particles to high energies and turbulent post-shock flows may drive intense geomagnetic storms. We present comprehensive Heliospheric Shock Database (ipshocks.fi) developed and hosted at University of Helsinki. The database contains currently over 2000 fast forward and fast reverse shocks observed by Wind, ACE, STEREO, Helios, Ulysses and Cluster spacecraft. In addition, the database has search and sort tools based on the spacecraft, time range, and several key shock parameters (e.g., shock type, shock strength, shock angle), data plots for each shock and data download options. These features allow easy access to shocks and quick statistical analyses. All current shocks are identified visually and analysed using the same procedure.

  17. Fine-scale characteristics of interplanetary sector

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Neubauer, F. M.; Barnstoff, H.

    1980-01-01

    The structure of the interplanetary sector boundaries observed by Helios 1 within sector transition regions was studied. Such regions consist of intermediate (nonspiral) average field orientations in some cases, as well as a number of large angle directional discontinuities (DD's) on the fine scale (time scales 1 hour). Such DD's are found to be more similar to tangential than rotational discontinuities, to be oriented on average more nearly perpendicular than parallel to the ecliptic plane to be accompanied usually by a large dip ( 80%) in B and, with a most probable thickness of 3 x 10 to the 4th power km, significantly thicker previously studied. It is hypothesized that the observed structures represent multiple traversals of the global heliospheric current sheet due to local fluctuations in the position of the sheet. There is evidence that such fluctuations are sometimes produced by wavelike motions or surface corrugations of scale length 0.05 - 0.1 AU superimposed on the large scale structure.

  18. Interplanetary diffusion coefficients for cosmic rays

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.; Stone, E. C.; Vogt, R. E.

    1974-01-01

    Information on the cosmic-ray diffusion coefficient, kappa, derived from near-earth observations of the solar modulation of galactic electron fluxes and from the near-earth power spectra of the interplanetary magnetic field, has been used to study the heliocentric radial dependence of kappa, and to derive limits on the spatial extent of the solar modulation region. Representing kappa, as a separable function of radius r and rigidity, and assumming kappa(r) proportional to r to the n-th power, we can place a limit on the power law exponent, n not greater than 1.2. The distance of the modulation boundary is a function of n, and, e.g., for n = 0, falls into the range of 6-25 AU.

  19. Stardust Abundance Variations among Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Walker, Robert M.

    2009-01-01

    Presolar grain abundances reflect the degree of processing primitive materials have experienced. This is evidenced by the wide range of silicate stardust abundances among primitive meteorites (10 to 300 ppm) [1], attributable to parent body hydrothermal processing. Stardust abundance variations are also pronounced in anhydrous interplanetary dust particles (CPIDPs), that have not experienced parent body processing (300 to > 10,000 ppm) [2-4]. The large range in stardust abundances among CP IDPs thus reflect nebular processing. Here we present results of a systematic search for stardust among cluster CP IDPs. Our goals are to establish mineralogical trends among IDPs with different stardust abundances. This may shed light into the nature of isotopically normal presolar grains (GEMS grains?; 5) if their abundances vary similarly to that of isotopically exotic stardust grains.

  20. Interplanetary Coronal Mass Ejections detected by HAWC

    NASA Astrophysics Data System (ADS)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  1. Fractal structure of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Klein, L. W.

    1985-01-01

    Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.

  2. Infrared Spectroscopy of Anhydrous Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Flynn, G. J.

    2003-01-01

    Infrared (IR) spectroscopy is the primary means of mineralogical analysis of materials outside our solar system. The identity and properties of circumstellar grains are inferred from spectral comparisons between astronomical observations and laboratory data from natural and synthetic materials. These comparisons have been facilitated by the Infrared Space Observatory (ISO), which obtained IR spectra from numerous astrophysical objects over a wide spectral range (out to 50/cm) where crystalline silicates and other phases have distinct features. The anhydrous interplanetary dust particles (IDPs) are particularly important comparison materials because some IDPs contain carbonaceous material with non-solar D/H and N-15/N-14 ratios and amorphous and crystalline silicates with non-solar 0- isotopic ratios, demonstrating that these IDPs contain preserved interstellar material. Here, we report on micro- Fourier transform (FT) IR spectrometry of IDPs, focusing on the inorganic components of primitive IDPs (FTIR spectra from the organic/carbonacecous materials in IDPs are described elsewhere).

  3. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  4. 3rd Annual Earth System Grid Federation and 3rd Annual Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Face-to-Face Meeting Report December 2013

    SciTech Connect

    Williams, Dean N.

    2014-02-21

    The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed and simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.

  5. German Society for Immunology and Australasian Society for Immunology joint Workshop 3(rd) -4(th) December 2015 - Meeting report.

    PubMed

    Kurts, Christian; Gottschalk, Catherine; Bedoui, Sammy; Heinzel, Susanne; Godfrey, Dale; Enders, Anselm

    2016-02-01

    The German Society for Immunology (DGfI) and the Australasian Society for Immunology (ASI) hosted the first DGfI-ASI joint workshop from December 3-4, 2015 in Canberra, Australia. A delegation of 15 distinguished German immunologists discussed the workshop topic "immune regulation in infections and immune mediated diseases" with the aim to establish new German-Australasian collaborations, discuss new concepts in the field of immune regulation and build a scientific network to create more utilizable resources for excellent (trans-border) immunological research. The workshop was associated with the 45(th) Annual Scientific Meeting of the ASI held from Nov 29-Dec 3, 2015, opening up even more opportunities for finding new collaboration partners. A return meeting will be linked to the annual DGfI meeting that will take place in 2017 in Erlangen.

  6. Scintillation of spacecraft radio signals on the interplanetary plasma

    NASA Astrophysics Data System (ADS)

    Molera Calves, Guifre; Pogrebenko, Sergei; Cimo, Giuseppe; Duev, Dmitry; Bocanegra, Tatiana

    2015-04-01

    Observations of planetary spacecraft radio signals within the solar system give a unique opportunity to study the temporal and spatial behaviour of the signal's phase fluctuations caused by its propagation through the interplanetary plasma and the Earth's ionosphere. The phase scintillation of the telemetry signal of the European Space Agency's (ESA) Venus Express (VEX) and Mars Express (MEX) spacecraft was observed at X-band with a number of radio telescopes of the European VLBI Network (EVN) in the period 2008-15, within the scope of Planetary Radio Interferometry and Doppler Experiment (PRIDE) project. It was found that the phase scintillation spectra follow a Kolmogorov distribution with nearly constant spectral index of -2.42 for a full range of Venus orbital phases, from superior to inferior conjunctions and back. The solar wind plasma dominates the scintillation index and Doppler noise along the orbit from superior conjunction to the greatest elongation. Here, I will present the latest results of these observations, while approaching the inferior conjunction, where the Earth ionosphere starts to dominate, and also at the superior conjunction. Empirical coefficients for both contributions were estimated and compared for VEX and MEX.

  7. Collaborative Wideband Compressed Signal Detection in Interplanetary Internet

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Zhang, Gengxin; Bian, Dongming; Gou, Liang; Zhang, Wei

    2014-07-01

    As the development of autonomous radio in deep space network, it is possible to actualize communication between explorers, aircrafts, rovers and satellites, e.g. from different countries, adopting different signal modes. The first mission to enforce the autonomous radio is to detect signals of the explorer autonomously without disturbing the original communication. This paper develops a collaborative wideband compressed signal detection approach for InterPlaNetary (IPN) Internet where there exist sparse active signals in the deep space environment. Compressed sensing (CS) can be utilized by exploiting the sparsity of IPN Internet communication signal, whose useful frequency support occupies only a small portion of an entirely wide spectrum. An estimate of the signal spectrum can be obtained by using reconstruction algorithms. Against deep space shadowing and channel fading, multiple satellites collaboratively sense and make a final decision according to certain fusion rule to gain spatial diversity. A couple of novel discrete cosine transform (DCT) and walsh-hadamard transform (WHT) based compressed spectrum detection methods are proposed which significantly improve the performance of spectrum recovery and signal detection. Finally, extensive simulation results are presented to show the effectiveness of our proposed collaborative scheme for signal detection in IPN Internet. Compared with the conventional discrete fourier transform (DFT) based method, our DCT and WHT based methods reduce computational complexity, decrease processing time, save energy and enhance probability of detection.

  8. The use of x-ray pulsar-based navigation method for interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  9. Gravity-Assist Trajectories for Interplanetary and Solar Exploration at the Applied Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Dunham, D. W.; Farquhar, R. W.

    2005-05-01

    This presentation will describe gravity assist trajectory techniques that have been, and will be used by past, current, and future space missions of the Johns Hopkins University's Applied Physics Laboratory (APL), and some background about those techniques. The paper does not describe the long history of low Earth-orbiting missions at APL, and briefly covers past missions, including the Near Earth Asteroid Rendezvous and Advanced Composition Explorer missions. The emphasis will be on dynamically interesting interplanetary and solar physics missions that APL is currently operating, or soon will be operating. APL's MESSENGER spacecraft was successfully launched on 2004 August 3rd, during the third launch opportunity of that year (the 2nd back-up opportunity). The spacecraft has completed three trajectory correction maneuvers that successfully removed launch injection errors and all systems are functioning normally in preparation for the Earth swingby on 2005 August 2nd. After that, the spacecraft must execute five large deep space maneuvers (DSM's), two Venus flybys, and 3 Mercury flybys before it can insert into orbit about the closest major planet in 2011. Two launches will occur early next year, New Horizons, the first New Frontiers Mission that will use a Jupiter gravity assist to reach the intriguing Pluto-Charon system, and the Solar Terrestrial Relations Observatories (STEREO), twin spacecraft that will be launched with one Delta rocket that will use lunar swingbys to enter heliocentric orbits that will drift in opposite directions away from the Earth. The STEREO spacecraft will obtain three-dimensional information about coronal mass ejections and other solar phenomena that might affect the Earth. Orbits similar to STEREO's might be used for other solar studies in the future. We thankfully acknowledge the support of NASA contracts for these missions.

  10. [Pathological diagnosis, work-up and reporting of breast cancer. Recommendations of the 3rd Hungarian Consensus Conference on Breast Cancer].

    PubMed

    Cserni, Gábor; Kulka, Janina; Francz, Monika; Járay, Balázs; Kálmán, Endre; Kovács, Ilona; Krenács, Tibor; Udvarhelyi, Nóra; Vass, László

    2016-09-01

    There have been relevant changes in the diagnosis and treatment of breast cancer to implement the updating of the 2010 recommendations made during the 2nd national consensus conference on the disease. Following a wide interdisciplinary consultation, the present recommendations have been finalized after their public discussion at the 3rd Hungarian Consensus Conference on Breast Cancer. The recommendations cover non-operative and intraoperative diagnostics, the work-up of operative specimens, the determination of prognostic and predictive markers and the content of the cytology and histology reports. Furthermore, it touches some special issues such as the current status of multigene molecular markers, the role of pathologists in clinical trials and prerequisites for their involvement, some relevant points about the future. PMID:27579721

  11. Reflections: Surgical Education-the Times they are a-Changin': Lessons Learned from the 3rd MAYMET-ESO Joint Meeting.

    PubMed

    Tarkowski, Radoslaw; Vetto, John T

    2015-09-01

    Technical skills are not sufficient for successful surgical care. Non-technical skills such as team work, decision-making in cancer treatment, communication with the patient, ethical challenges, situation awareness, and communication in the operating room are mandatory for favorable outcomes. Although formally taught in other high-demand disciplines, such skills were traditionally rarely discussed in surgical oncology. The 3rd MAYMET-ESO Joint Meeting "Professionalism for Breast Surgeons" held in Istanbul, Turkey, 5 October 2013 was dedicated to the development of non-technical skills in the everyday activity of breast surgeons. We briefly discuss information from this very interesting and inspiring educational event and how it relates to more recent changes in surgical oncology education. PMID:25903052

  12. Deuterium beam acceleration with 3rd harmonic ion cyclotron resonance heating in Joint European Torus: Sawtooth stabilization and Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Gassner, T.; Schoepf, K.; Sharapov, S. E.; Kiptily, V. G.; Pinches, S. D.; Hellesen, C.; Eriksson, J.; JET-EFDA contributors

    2012-03-01

    Experiments on accelerating NBI-produced deuterium (D) beam ions from their injection energy of ˜110 keV up to the MeV energy range with 3rd harmonic ion cyclotron resonance heating were performed on the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)]. A renewed set of nuclear diagnostics was used for analysing fast D ions during sawtooth stabilization, monster sawtooth crashes, and during excitation of Alfvén eigenmodes (AEs) residing inside the q = 1 radius. The measurements and modeling of the fast ions with the nonlinear HAGIS code [S. D. Pinches et al., Comput. Phys. Commun. 111, 133 (1998)] show that monster sawtooth crashes are strongly facilitated by the AE-induced re-distribution of the fast D ions from inside the q = 1 radius to the plasma edge.

  13. Knowledge and institutional requirements to promote land degradation neutrality in drylands - An analysis of the outcomes of the 3rd UNCCD scientific conference

    NASA Astrophysics Data System (ADS)

    Akhtar-Schuster, Mariam; Safriel, Uriel; Abraham, Elena; de Vente, Joris; Essahli, Wafa; Escadafal, Richard; Stringer, Lindsay

    2015-04-01

    Achieving land degradation neutrality (LDN) through sustainable land management (SLM) targets the maintenance or restoration of the productivity of land, and therefore has to include decision-makers, knowledge generators and knowledge holders at the different relevant geographic scales. In order to enhance the implementation of the Convention, the Conference of the Parties (COP) of the United Nations Convention to Combat Desertification therefore decided that each future session of its Committee on Science and Technology (CST) would be organized in a predominantly scientific and technical conference-style format. This contribution will outline the major outcomes of UNCCD's 3rd scientific conference that will be held in Cancún, Mexico, from 9 to 12 March 2015, on addressing desertification, land degradation and drought issues (DLDD) for poverty reduction and sustainable development. The conference follows an exceptional new round table conference format that will allow the various stakeholders to discuss scientific as well as the contribution of traditional knowledge and practices in combating land degradation. This format should provide two-way communication and enable deeper insight into the availability and contribution of all forms of knowledge for achieving LDN through the assessment of: • the vulnerability of lands to DLDD and climate change and the adaptive capacities of socio-ecosystems; • best examples of adapted, knowledge-based practices and technologies; • monitoring and assessment methods to evaluate the effectiveness of adaptation practices and technologies. The outcomes of UNCCD's 3rd scientific conference will serve as a basis for discussing: • contributions of science to diagnose the status of land; • research gaps that need to be addressed to achieve LDN for poverty reduction; • additional institutional requirements to optimally bridge knowledge generation, knowledge maintenance and knowledge implementation at the science

  14. Limbic system development underlies the emergence of classical fear conditioning during the 3rd and 4th weeks of life in the rat

    PubMed Central

    Deal, Alex L.; Erickson, Kristen J.; Shiers, Stephanie I.; Burman, Michael A.

    2016-01-01

    Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the 3rd or 4th weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the 3rd and 4th weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. PMID:26820587

  15. Nano-Diamonds in Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Dai, Z. R.; Joswiak, D. J.; Bradley, J. P.; Brownlee, D. E.; Hill, H. G. M.

    2001-01-01

    In-situ acid etching of ultramicrotomed thin sections has lead to the identification of nano-diamonds in interplanetary dust particles. Additional information is contained in the original extended abstract.

  16. Interplanetary Migration of Eucaryotic Cell, Spore of Schizosaccharomyces Pombe

    NASA Astrophysics Data System (ADS)

    Hayashi, N.; Nosaka, J.; Ando, R.; Hashimoto, H.; Yokobori, S.; Narumi, I.; Nakagawa, K.; Yamagishi, A.; Tohda, H.

    2013-11-01

    The Tanpopo mission to examine possible interplanetary migration of microbes is progressing. Spore of Schizosaccharomyces pombe are considered as the exposed samples. In this paper, results of preliminary experiments for the exposure are shown.

  17. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Eriss-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    With the use of a prediction technique it is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar geomagnetic field.

  18. Numerical simulations of solar disturbances and their interplanetary consequences

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Wu, S. T.; Detman, T. R.

    1990-01-01

    Time-dependent MHD numerical simulations are used to study responses of the solar atmosphere and interplanetary medium to simulated solar disturbances. A number of 2D and 3D examples of coronal mass ejection (CME) simulations and some current controversies concerning the basic processes of CME initiation are discussed. Footpoint shearing motion is tested to determine whether it can provide a reasonable mechanism for CME development from arch filament configurations. Possible interplanetary consequences to CME-like disturbances are demonstrated by using 3D simulations to determine the dynamic response of the solar wind to a plasmoid injection from an eruptive filament or prominence. The possibility that a plasmoid may be generated in the interplanetary medium by a solar-generated shock that propagates through a heliospheric current sheet is discussed. Application of the 3D model for the interpretation of interplanetary scintillation observations is addressed.

  19. High Amplitude Events in relation to Interplanetary disturbances

    NASA Astrophysics Data System (ADS)

    Mishra, Rajesh Kumar; Agarwal Mishra, Rekha

    2012-07-01

    The Sun emits the variable solar wind which interacts with the very local interstellar medium to form the heliosphere. Hence variations in solar activity strongly influence interplanetary space, from the Sun's surface out to the edge of the heliosphere. Superimposed on the solar wind are mass ejections from the Sun and/or its corona which, disturb the interplanetary medium - hence the name "interplanetary disturbances". Interplanetary disturbances are the sources of large-scale particle acceleration, of disturbances in the Earth's magnetosphere, of modulations of galactic cosmic rays in short, they are the prime focus for space weather studies. The investigation deals with the study of cosmic ray intensity, solar wind plasma and interplanetary magnetic field parameters variation due to interplanetary disturbances (magnetic clouds) during an unusual class of days i.e. high amplitude anisotropic wave train events. The high amplitude anisotropic wave train events in cosmic ray intensity has been identified using the data of ground based Goose Bay neutron monitor and studied during the period 1981-94. Even though, the occurrence of high amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds. But the possibility of occurrence of these events cannot be overlooked during the periods of interplanetary magnetic cloud events. It is observed that solar wind velocity remains higher (> 300) than normal and interplanetary magnetic field B remains lower than normal on the onset of interplanetary magnetic cloud during the passage of these events. It is also noted from the superposed epoch analysis of cosmic ray intensity and geomagnetic activity for high amplitude anisotropic wave train events during the onset of interplanetary magnetic clouds that the increase in cosmic ray intensity and decrease in geomagnetic activity start not at the onset of magnetic clouds but after few days. The north south component of IMF (Bz), IMF (B), proton

  20. Shielding Structures for Interplanetary Human Mission

    NASA Astrophysics Data System (ADS)

    Tracino, Emanuele; Lobascio, Cesare

    2012-07-01

    Since the end of Apollo missions, human spaceflight has been limited to the Low Earth Orbit (LEO), inside the protective magnetic field of the Earth, because astronauts are, to the largest degree, protected from the harsh radiation environment of the interplanetary space. However, this situation will change when space exploration missions beyond LEO will become the real challenge of the human exploration program. The feasibility of these missions in the solar system is thus strongly connected to the capability to mitigate the radiation-induced biological effects on the crew during the journey and the permanence on the intended planet surface. Inside the International Space Station (ISS), the volumes in which the crew spends most of the time, namely the crew quarters are the only parts that implement dedicated additional radiation shielding made of polyethylene tiles designed for mitigating SPE effects. Furthermore, specific radiation shielding materials are often added to the described configuration to shield crew quarters or the entire habitat example of these materials are polyethylene, liquid hydrogen, etc. but, increasing the size of the exploration vehicles to bring humans beyond LEO, and without the magnetosphere protection, such approach is unsustainable because the mass involved is a huge limiting factor with the actual launcher engine technology. Moreover, shielding against GCR with materials that have a low probability of nuclear interactions and in parallel a high ionizing energy loss is not always the best solution. In particular there is the risk to increase the LET of ions arriving at the spacecraft shell, increasing their Radio-Biological Effectiveness. Besides, the production of secondary nuclei by projectile and target fragmentation is an important issue when performing an engineering assessment of materials to be used for radiation shielding. The goal of this work is to analyze different shielding solutions to increase as much as possible the

  1. The interplanetary and solar magnetic field sector structures, 1962 - 1968

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1972-01-01

    The interplanetary magnetic field sector structure was observed from late 1962 through 1968. During this time it has been possible to study the manner in which the sector pattern and its relation to the photospheric magnetic field configuration changes from solar minimum to solar maximum. Observations were also made relating sector boundaries to specific regions on the solar disk. These and other observations related to the solar origin of the interplanetary field are briefly reviewed.

  2. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Deep Space Network (DSN) is the largest and most sensitive scientific telecommunications and radio navigation network in the world. Its principal responsibilities are to support unmanned interplanetary spacecraft missions and to support radio and radar astronomy observations in the exploration of the solar system and the universe. The DSN facilities and capabilities as of January 1988 are described.

  3. Global Magnetospheric Response to an Interplanetary Shock: THEMIS Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Sibeck, David G.; Zong, Q.-G.; McFadden, James P.; Larson, Davin; Glassmeier, K.-H.; Angelopoulos, V.

    2011-01-01

    We investigate the global response of geospace plasma environment to an interplanetary shock at approx. 0224 UT on May 28, 2008 from multiple THEMIS spacecraft observations in the magnetosheath (THEMIS B and C) and the mid-afternoon (THEMIS A) and dusk magnetosphere (THEMIS D and E). The interaction of the transmitted interplanetary shock with the magnetosphere has global effects. Consequently, it can affect geospace plasma significantly. After interacting with the bow shock, the interplanetary shock transmitted a fast shock and a discontinuity which propagated through the magnetosheath toward the Earth at speeds of 300 km/s and 137 km/s respectively. THEMIS A observations indicate that the plasmaspheric plume changed significantly by the interplanetary shock impact. The plasmaspheric plume density increased rapidly from 10 to 100/ cubic cm in 4 min and the ion distribution changed from isotropic to strongly anisotropic distribution. Electromagnetic ion cyclotron (EMIC) waves observed by THEMIS A are most likely excited by the anisotropic ion distributions caused by the interplanetary shock impact. To our best knowledge, this is the first direct observation of the plasmaspheric plume response to an interplanetary shock's impact. THEMIS A, but not D or E, observed a plasmaspheric plume in the dayside magnetosphere. Multiple spacecraft observations indicate that the dawn-side edge of the plasmaspheric plume was located between THEMIS A and D (or E).

  4. The effect of the neutral sheet structure of the interplanetary magnetic field on cosmic ray distribution in space

    NASA Technical Reports Server (NTRS)

    Alania, M. V.; Aslamazashvili, R. G.; Bochorishvili, T.; Djapiashvili, T. V.; Tkemaladze, V. S.

    1985-01-01

    Results of the numerical solution of the anistoropic diffusion equation are presented. The modulation depth of galactic cosmic rays is defined by the degree of curvature of the neutral current sheet in the heliosphere. The effect of the regular interplanetary magnetic field (IMF) on cosmic ray anisotropy in the period of solar activity minimum (in 1976) is analyzed by the data of the neutron super-monitors of the world network, and the heliolatitudinal gradient and cosmic ray diffusion coefficient are defined.

  5. Rapporteur paper for sessions MG1, MG3 and MG4: Modulation theory, interplanetary propagation and interplanetary acceleration

    NASA Technical Reports Server (NTRS)

    Jones, F. C.

    1983-01-01

    Theories and reported results from investigations of cosmic ray modulation and acceleration are summarized. Aspects considered include microscopic or fundamental theory; gradient and curvature drifts in modulation; and interplanetary acceleration of shocks and particles.

  6. Volatiles in interplanetary dust particles and aerogels

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Harmetz, C. P.

    1991-01-01

    Volatiles measured in 25 interplanetary dust particles (IDPs) are a mixture of both indigenous materials and contaminants associated with the collection and processing of the ODPs prior to analysis. Most IDPs have been collected in the stratosphere using a silicone oil/freon mixture (20:1 ratio) coated on collector plates. Studies have shown that silicone oil, freon and hexane residues remain with the ODPs, despite attempts to clean the IDPs. Analysis of the IDPs with the LMMS-technique produces spectra with a mixture of indigeneous and contaminants components. The contamination signal can be identified and removed; however, the contamination signal may obscure some of the indigeneous component's signal. Employing spectra stripping techniques, the indigenous volatile constituents associated with the IDPs can be identified. Volatiles are similar to those measured in CI or CM carbonaceous chondrites. Collection of IDPs in low-Earth orbit utilizing a Cosmic Dust Collection Facility attached to Space Station Freedom has been proposed. The low-density material aerogel has been proposed as a collection substrate for IDPs. Our studies have concentrated on identifying volatile contaminants that are associated with aerogel. We have found that solvents used for the preparation of aerogel remain in aerogel and methods must be developed for removing the entrapped solvents before aerogels can be used for an IDP collection substrate.

  7. The sun and interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Smith, Edward J.

    1991-01-01

    The interplanetary magnetic field (IMF) serves as a link between the sun, the response of the earth to solar activity and variations in galactic cosmic radiation. The IMF originates as a solar-coronal magnetic field that is transported into space by the solar wind. The close connection between solar magnetic fields and the origin and structure of the solar wind is described. The solar wind forms the heliosphere, a cavity containing the magnetized solar plasma from which the interstellar plasma and field are excluded. The entry of galactic cosmic rays into the heliosphere and their strong interaction with the IMF are discussed, this topic being of primary importance to the production and temporal variations of radiogenic elements. The profound influence of the IMF on geomagnetic activity and the aurora is discussed within the context of merging or reconnection with the planetary field. The physical connection is thus established between solar magnetic fields, magnetic storms and aurora. The state of the solar wind and IMF during the Maunder minimum is considered and an explanation for the (relative) absence of sunspots and aurora is proposed. The mechanism is an interruption of the oscillatory solar dynamo, a consequent reduction in the heating of the corona, a cessation of the supersonic solar wind and a weakening or absence of southward-directed magnetic fields in the vicinity of the earth.

  8. Origins and Dynamics of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    2005-01-01

    This is a final report for research supported by the National Aeronautics and Space Administration issued through the Office of Space Science Planetary Geology and Geophysics Program, covering all relevant activities during its 3-year period of funding from 02/01/2002 through to 01/31/2005. The ongoing aim of the research supported through this grant, and now through a successor award, is to investigate the origin of interplanetary dust particles (IDPs) and their dynamical and collisional evolution, in order to: (1) understand the provenance of zodiacal cloud particles and their transport from their source regions to the inner solar system; (2) produce detailed models of the zodiacal cloud and its constituent components; (3) determine the origin of the dust particles accreted by the Earth; (4) ascertain the level of temporal variations in the dust environment of the inner solar system and the accretion rate of IDPs by the Earth, and evaluate potential effects on global climate; and to (5) exploit this research as a basis for interpreting the structure observed in exozodiacal clouds that may result from the collisional evolution of planetesimals and the presence of unseen planets.

  9. Solar Asymmetry and the Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Georgieva, Katya; Kirov, Boian; Javaraiah, Javaraiah

    The way in which solar activity affects a number of terrestrial phenomena has been shown to depend on solar activity asymmetry. An important mediator between the Sun and the Earth is the interplanetary magnetic field (IMF) which is an extension of the large-scale coronal field. The behavior of the B coefficient of the solar differential rotation is particularly important with relation to the dynamo theory of the solar magnetic field. We use Bn and Bs coefficients of solar differential rotation in the Northern and Southern solar hemispheres respectively derived by Mt Wilson Doppler shift measurements of photospheric line for 1967-1994 and from the Greenwich Photoheliospheric Results from 1881 to 1976 and compare them to the IMF parameters at Earth's orbit measured directly since the beginning of the satellite era and for the earlier period - to the aa index of geomagnetic activity related to the IMF. In the period 1881-1912 more active is the Southern solar hemisphere in 1913-1966 - the Northern hemisphere and since 1967 - again the Southern hemisphere. We show that in all three periods the dominant periodicity in the IMF is the dominant periodicity of the differential rotation of the more active solar hemisphere.

  10. Distributions of the interplanetary magnetic field revisited

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Ruzmaikin, Alexander

    1994-01-01

    The adequacy of the power spectrum to characterize the variations of a parameter depends on whether or not the parameter has a Gaussian distribution. We here perform very simple tests of Gaussianity on the distribution. We here perform very simple tests of Gaussianity on the distributions of the magnitudes of the interplanetary magnetic field, and on the distributions of the components; that is, we find the first four cumulants of the distributions (mean, variance, skewness, and kurtosis) and their solar cycle variations. We find, consistent with other recent analyses, that the traditional distributions of the 1-hour averaged magnitude are not distributed normally or lognomally as has often been assumed and the 1-hour averaged z component is found to have a nonzero kurtosis. Thus the power spectrum is insufficient to completely characterize these variations and polyspectra are needed. We have isolated variations in the 1/f frequency region of the spectrum and show that the distributions of the magnitudes have nonzero skewness and kurtosis, the magnitudes are not distributed lognormally, and the distributions of the components have nonzero kurtosis. Thus higher-order spectra are again needed for a full characterization.

  11. Interplanetary proton fluence model - JPL 1991

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Spitale, G.; Wang, J.; Gabriel, S.

    1993-01-01

    We describe an updated predictive engineering model for the interplanetary fluence of protons with energies respectively greater than 1, 4, 10, 30, and 60 MeV. This has been the first opportunity to derive a model from a data set that has been collected in space over a long enough period of time to produce a valid sample of solar proton events. The model provides a quantitative basis for estimating the exposures to solar protons of spacecraft during missions of varying length and of surfaces and atmospheres of solar system objects. The data sets contain several major proton events comparable to the 1972 event. For the cases of the over 10 and over 30 MeV particles, the fluences are somewhat lower than in our earlier model No over 1, over 4, and over 60 MeV proton fluence models have been published in the literature previously. We present our results in a convenient graphical form which may be used to calculate the 1 AU fluence expected at a given confidence level as a function of the length of the exposure. A method of extending this estimate to other heliocentric distances is described.

  12. On fragmentation of meteoroids in interplanetary space

    NASA Astrophysics Data System (ADS)

    Porubčan, V.; Tóth, J.; Yano, H.

    2002-10-01

    A possible fragmentation of meteoroids in interplanetary space inferred from grouping of particles in meteor streams is discussed. There is a conviction maintained by many observers that meteors within the streams are observed to be clustered in pairs or larger groups more frequently than one could expect from random distribution. The rate of dispersive effects indicates that the lifetime of any such a group of meteoroids is very limited. Therefore, if real, the pairs or groups must be due to recent fragmentation of larger meteoroids. Analyses based on visual observations of meteor streams lead to contradictory results. More conclusive are analyses based on radio measurements, which present a negative result concerning the permanent meteor showers with the stream structures at their middle and late evolutionary stages, and an indication of a positive result for younger dense stream structures of recent origin. Analysis of the 1969 Leonid display obtained by the Springhill high-power radar shows that about 10% of the population around the shower maximum is associated in close groups, within a distance up to of about 10 km and confined to an effective stream width comparable to the diameter of the Earth. The recent Leonid returns with the storm in 1999 provided a possibility to verify a non-random grouping of particles within this young filament of the stream. The analysis and results based on TV observations of the storm are presented and discussed.

  13. Radioisotopic heater units warm an interplanetary spacecraft

    SciTech Connect

    Franco-Ferreira, E.A.; Rinehart, G.H.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA`s last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini`s 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn`s atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft.

  14. Inward electrostatic precipitation of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.

    1993-01-01

    An inward precipitator collects particles initially dispersed in a gas throughout either a cylindrical or spherical chamber onto a small central planchet. The instrument is effective for particle diameters greater than about 1 micron. One use is the collection of interplanetary dust particles (IDPs) which are stopped in a noble gas (xenon) by drag and ablation after perforating the wall of a thin-walled spacecraft-mounted chamber. First, the particles are positively charged for several seconds by the corona production of positive xenon ions from inward facing needles placed on the chamber wall. Then an electric field causes the particles to migrate toward the center of the instrument and onto the planchet. The collection time (on the order of hours for a 1 m radius spherical chamber) is greatly reduced by the use of optimally located screens which reapportion the electric field. Some of the electric field lines terminate on the wires of the screens so a fraction of the total number of particles in the chamber is lost. The operation of the instrument is demonstrated by experiments which show the migration of carbon soot particles with radius of approximately 1 micron in a 5 cm diameter cylindrical chamber with a single field enhancing screen toward a 3.2 mm central collection rod.

  15. Optimizing interplanetary trajectories with deep space maneuvers

    NASA Astrophysics Data System (ADS)

    Navagh, John

    1993-09-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  16. Impact Angle Control of Interplanetary Shock Geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Oliveira, D.; Raeder, J.

    2014-12-01

    We use OpenGGCM global MHD simulations to study the nightside magnetospheric/ magnetotail/ ionospheric responses to interplanetary (IP) fast foward shocks. Three cases are presented in this study: two inclined oblique shocks, hereafter IOS-1 and IOS-2, where the latter has a Mach number twice stronger than the former. Both shocks have impact angles of 30o in relation to the Sun-Earth line. Lastly, we choose a frontal perpendicular shock, FPS, whose shock normal is along th Sun-Earth line, with the same Mach number as IOS-1. We find that, in the IOS-1 case, due to the north-south asymmetry, the magnetotail is deflected southward, leading to a mild compression. The geomagnetic activity observed in the nightside ionosphere is then weak. On the other hand, in the head-on case, the FPS compresses the magnetotail on both sides symmetrically. This compression triggers a substorm allowing a larger amount of stored energy in the magnetotail to be released to the nightside ionosphere, resulting in a larger geomagnetic activity there. By comparing IOS-2 and FPS, we find that, despite the IOS-2 having a larger Mach number, the FPS leads to larger geomagnetic responses in the ionosphere nightside. As a result, we conclude that IP shocks with similar upstream conditions, such as magnetic field, speed, density, and even Mach number, can be differently geoeffective, depending on their shock normal orientation.

  17. Impact angle control of interplanetary shock geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Oliveira, D. M.; Raeder, J.

    2014-10-01

    We use Open Geospace General Circulation Model global MHD simulations to study the nightside magnetospheric, magnetotail, and ionospheric responses to interplanetary (IP) fast forward shocks. Three cases are presented in this study: two inclined oblique shocks, hereafter IOS-1 and IOS-2, where the latter has a Mach number twice stronger than the former. Both shocks have impact angles of 30° in relation to the Sun-Earth line. Lastly, we choose a frontal perpendicular shock, FPS, whose shock normal is along the Sun-Earth line, with the same Mach number as IOS-1. We find that, in the IOS-1 case, due to the north-south asymmetry, the magnetotail is deflected southward, leading to a mild compression. The geomagnetic activity observed in the nightside ionosphere is then weak. On the other hand, in the head-on case, the FPS compresses the magnetotail from both sides symmetrically. This compression triggers a substorm allowing a larger amount of stored energy in the magnetotail to be released to the nightside ionosphere, resulting in stronger geomagnetic activity. By comparing IOS-2 and FPS, we find that, despite the IOS-2 having a larger Mach number, the FPS leads to a larger geomagnetic response in the nightside ionosphere. As a result, we conclude that IP shocks with similar upstream conditions, such as magnetic field, speed, density, and Mach number, can have different geoeffectiveness, depending on their shock normal orientation.

  18. A Kinesthetic Learning Approach to Earth Science for 3rd and 4th Grade Students on the Pajarito Plateau, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.

    2010-12-01

    Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We

  19. STEREO database of interplanetary Langmuir electric waveforms

    NASA Astrophysics Data System (ADS)

    Briand, C.; Henri, P.; Génot, V.; Lormant, N.; Dufourg, N.; Cecconi, B.; Nguyen, Q. N.; Goetz, K.

    2016-02-01

    This paper describes a database of electric waveforms that is available at the Centre de Données de la Physique des Plasmas (CDPP, http://cdpp.eu/). This database is specifically dedicated to waveforms of Langmuir/Z-mode waves. These waves occur in numerous kinetic processes involving electrons in space plasmas. Statistical analysis from a large data set of such waves is then of interest, e.g., to study the relaxation of high-velocity electron beams generated at interplanetary shock fronts, in current sheets and magnetic reconnection region, the transfer of energy between high and low frequencies, the generation of electromagnetic waves. The Langmuir waveforms were recorded by the Time Domain Sampler (TDS) of the WAVES radio instrument on board the STEREO mission. In this paper, we detail the criteria used to identify the Langmuir/Z-mode waves among the whole set of waveforms of the STEREO spacecraft. A database covering the November 2006 to August 2014 period is provided. It includes electric waveforms expressed in the normalized frame (B,B × Vsw,B × (B × Vsw)) with B and Vsw the local magnetic field and solar wind velocity vectors, and the local magnetic field in the variance frame, in an interval of ±1.5 min around the time of the Langmuir event. Quicklooks are also provided that display the three components of the electric waveforms together with the spectrum of E∥, together with the magnitude and components of the magnetic field in the 3 min interval, in the variance frame. Finally, the distribution of the Langmuir/Z-mode waves peak amplitude is also analyzed.

  20. LDEF Interplanetary Dust Experiment (IDE) results

    NASA Technical Reports Server (NTRS)

    Oliver, John P.; Singer, S. F.; Weinberg, J. L.; Simon, C. G.; Cooke, W. J.; Kassel, P. C.; Kinard, W. H.; Mulholland, J. D.; Wortman, J. J.

    1995-01-01

    The Interplanetary Dust Experiment (IDE) provided high time resolution detection of microparticle impacts on the Long Duration Exposure Facility satellite. Particles, in the diameter range from 0.2 microns to several hundred microns, were detected impacting on six orthogonal surfaces of the gravity-gradient stabilized LDEF spacecraft. The total sensitive surface area was about one square meter, distributed between LDEF rows 3 (Wake or West), 6 (South), 9 (Ram or East), 12 (North), as well as the Space and Earth ends of LDEF. The time of each impact is known to an accuracy that corresponds to better than one degree in orbital longitude. Because LDEF was gravity-gradient stabilized and magnetically damped, the direction of the normal to each detector panel is precisely known for each impact. The 11 1/2 month tape-recorded data set represents the most extensive record gathered of the number, orbital location, and incidence direction for microparticle impacts in low Earth orbit. Perhaps the most striking result from IDE was the discovery that microparticle impacts, especially on the Ram, South, and North surfaces, were highly episodic. Most such impacts occurred in localized regions of the orbit for dozens or even hundreds of orbits in what we have termed Multiple Orbit Event Sequences (MOES). In addition, more than a dozen intense and short-lived 'spikes' were seen in which impact fluxes exceeded the background by several orders of magnitude. These events were distributed in a highly non-uniform fashion in time and terrestrial longitude and latitude.

  1. Medusa: Nuclear explosive propulsion for interplanetary travel

    NASA Astrophysics Data System (ADS)

    Solem, Johndale C.

    1993-01-01

    Because of the deleterious effects of galactic cosmic radiation, solar flares, zero gravity and psychological stress, there is strong motivation to develop high-specific-impulse and high-thrust spacecraft for rapid transport of astronauts between planets. A novel spacecraft design is presented using a large lightweight sail (spinnaker) driven by pressure pulses from a series of nuclear explosions. The spacecraft appears to be a singularly competent and economical vehicle for high-speed interplanetary travel. The mass of the spinnaker is theoretically independent of the size of its canopy or the length of its tethers. Consequently, the canopy can be made very large to minimize radiation damage from the nuclear explosions and the tethers can be made very long to mitigate radiation hazard to the crew. The pressure from the nuclear explosion imparts a large impulsive acceleration to the lightweight spinnaker, which must be translated to a small smooth acceleration of the space capsule either by using the elasticity of the tethers or a servo winch in the space capsule, or a combination of the two. If elasticity alone is used, the maximum acceleration suffered by the space capsule is inversely propotional to the tether length. The use of very long tethers allows the spacecraft to achieve high velocities without using an exceedingly large number of bombs, a feature unavailable to previous forms of nuclear-explosive propulsion. Should the political questions connected with an unconventional use of nuclear explosives be favorably resolved, the proposal will be a good candidate for propulsion in the Mars mission.

  2. Interplanetary navigation using a continental baseline large antenna arrays

    NASA Technical Reports Server (NTRS)

    Haeberle, Dennis W.; Spencer, David B.; Ely, Todd A.

    2004-01-01

    Navigation is a key component of interplanetary missions and must continue to be precise with the changing landscape of antenna design. Improvements for the Deep Space Network (DSN) may include the use of antenna arrays to simulate the power of a larger single antenna at much lower operating and construction costs. Therefore, it is necessary to test the performance of arrayed antennas from a navigational point-of-view. This initial investigation focuses on the performance of arrayed antennas from a navigational point-of-view. This initial investigation focuses on the performance of delta one-way range measurements using a shorter baseline with more data collection then current systems use. With all other parameter equal, the longer the baseline, the better the accuracy for navigation making the number of data packets very important. This trade study compares baseline distances ranging from 1 to 1000km with an in use baseline, looking at a due east baseline, a due north baseline at 45 degrees East of North. The precision of the baseline systems can be found through a simulated created for this purpose using the Jet Propulsion Lab based Monte navigation and mission design tool. The simulation combines the delta one-way range measurements with two-range and two-way Doppler measurements and puts the measurements through a Kalman filter to determine an orbit solution. Noise is added along with initial errors to give the simulation realism. This study is an important step towards the assessment of the utility of arrays for navigational purposes. The preliminary results have showed a decrease in reliability as the baseline is shortened but the larger continental baselines show comparable results t that of the current Goldstone to Canberra.

  3. Lunar and Planetary Science XXXV: Interplanetary Dust and Aerogel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: Isotopically Primitive Interplanetary Dust Particles of Cometary Origin: Evidence from Nitrogen Isotopic Compositions. The Solar Nebula s First Accretionary Particles (FAPs) Are They Preserved in Collected Interplanetary Dust Samples? On the Origin of GEMS. An Analytical SuperSTEM for Extraterrestrial Materials Research. Sub-Micrometer Scale Minor Element Mapping in Interplanetary Dust Particles: A Test for Stratospheric Contamination. First Report of Taenite in an Asteroidal Interplanetary Dust Particle: Flash-heating Simulates Nebular Dust Evolution. FTIR Analyses of IDPs: Comparison with the InfraRed Spectra of the Interstellar Medium. Mineralogical Study of Hydrated IDPs: X-Ray Diffraction and Transmission Electron Microscopy. Focused Ion Beam Recovery and Analysis of Interplanetary Dust Particles (IDPs) and Stardust Analogues. Technique for Concentration of Carbonaceous Material from Aerogel Collectors Using HF-Vapor Etching. Synchrotron X-Ray Analysis of Captured Particle Residue in Aerogel. In-Situ Analyses of Earth Orbital Grains Trapped in Aerogel, Using Synchrotron X-Ray Microfluorescence Techniques. Igneous Rims on Micrometeorites and the Sizes of Chondrules in Main Belt Asteroids.

  4. Veterinary Microbiology, 3rd Edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary Microbiology, Third Edition is organized into four sections and begins with an updated and expanded introductory section on infectious disease pathogenesis, diagnosis and clinical management. The second section covers bacterial and fungal pathogens, and the third section describes viral d...

  5. Stable Isotope and Trace Element Studies on Gladiators and Contemporary Romans from Ephesus (Turkey, 2nd and 3rd Ct. AD) - Implications for Differences in Diet

    PubMed Central

    Lösch, Sandra; Moghaddam, Negahnaz; Grossschmidt, Karl; Risser, Daniele U.; Kanz, Fabian

    2014-01-01

    The gladiator cemetery discovered in Ephesus (Turkey) in 1993 dates to the 2nd and 3rd century AD. The aim of this study is to reconstruct diverse diet, social stratification, and migration of the inhabitants of Roman Ephesus and the distinct group of gladiators. Stable carbon, nitrogen, and sulphur isotope analysis were applied, and inorganic bone elements (strontium, calcium) were determined. In total, 53 individuals, including 22 gladiators, were analysed. All individuals consumed C3 plants like wheat and barley as staple food. A few individuals show indication of consumption of C4 plants. The δ13C values of one female from the gladiator cemetery and one gladiator differ from all other individuals. Their δ34S values indicate that they probably migrated from another geographical region or consumed different foods. The δ15N values are relatively low in comparison to other sites from Roman times. A probable cause for the depletion of 15N in Ephesus could be the frequent consumption of legumes. The Sr/Ca-ratios of the gladiators were significantly higher than the values of the contemporary Roman inhabitants. Since the Sr/Ca-ratio reflects the main Ca-supplier in the diet, the elevated values of the gladiators might suggest a frequent use of a plant ash beverage, as mentioned in ancient texts. PMID:25333366

  6. Sunphotometric Measurement of Columnar H2O and Aerosol Optical Depth During the 3rd Water Vapor IOP in Fall 2000 at the SGP ARM Site

    NASA Technical Reports Server (NTRS)

    Schmid, B; Eilers, J. A.; McIntosh, D. M.; Longo, K.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Braun, J.; Rocken, C.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    We conducted ground-based measurements with the Ames Airborne Tracking 6-channel Sunphotometer (AATS-6) during the 3rd Water Vapor IOP (WVIOP3), September 18 - October 8, 2000 at the SGP ARM site. For this deployment our primary result was columnar water vapor (CWV) obtained from continuous solar transmittance measurements in the 0.94-micron band. In addition, we simultaneously measured aerosol optical depth (AOD) at 380, 450, 525, 864 and 1020 nm. During the IOP, preliminary results of CWV and AOD were displayed in real-time. The result files were made available to other investigators by noon of the next day. During WVIOP3 those data were shown on the daily intercomparison plots on the IOP web-site. Our preliminary results for CWV fell within the spread of values obtained from other techniques. After conclusion of WVIOP3, AATS-6 was shipped directly to Mauna Loa, Hawaii for post-mission calibration. The updated calibration, a cloud screening technique for AOD, along with other mostly cosmetic changes were applied to the WVIOP3 data set and released as version 0.1. The resulting changes in CWV are small, the changes in AOD and Angstrom parameter are more noticeable. Data version 0.1 was successfully submitted to the ARM External Data Center. In the poster we will show data examples for both CWV and AOD. We will also compare our CWV results with those obtained from a GPS (Global Positioning System) slant path method.

  7. Evidence of human-induced morphodynamic changes along the Campania coastal areas (southern Italy) since the 3rd-4th cent. AD

    NASA Astrophysics Data System (ADS)

    Russo Ermolli, Elda; Romano, Paola; Liuzza, Viviana; Amato, Vincenzo; Ruello, Maria Rosaria; Di Donato, Valentino

    2014-05-01

    Campania has always offered suitable climatic and physiographic conditions for human settlements since prehistoric times. In particular, many Graeco-Roman towns developed along its coasts starting from the 7th-6th cent. BC. In the last decade, geoarchaelogical surveys have been carried out in the archaeological excavations of Neapolis, Paestum and Elea-Velia allowing the main steps of the landscape evolution around these towns to be defined in detail. The greek town of Neapolis rose in the late 6th cent. BC [1] on a terrace overlooking a low-relief rocky coast surrounded by volcanic hills. Port activities developed in a protected bay facing the town from the 4th-2nd cent. BC up to the 4th cent. AD, as testified by the discovery of structures and shipwrecks [2, 3, 4]. Starting from the 3rd cent. AD a spit bar formed at the bay entrance causing the progressive establishment of a lagoon which was gradually filled up by alluvial inputs and completely closed in the 5th cent. AD. During the same period, episodes of increased alluvial inputs were also recorded further west along the coast, where a narrow sandy beach formed at the cliff toe. The greek town of Poseidonia, renamed Paestum by the Romans, was founded in the 540 BC on a travertine terrace facing the sandy littoral of a prograding coastal plain [5]. In front of the main town door, a coastal lagoon developed thanks to the growth of a dune ridge and was probably used for harbor activities [5]. After this period the shoreline shifted seawards, another dune ridge formed and the back-ridge depression was filled with fluvial-marshy deposits, slowly drying up. Phases of travertine deposition, which characterized the SE sector of the plain all along the Holocene, were recorded in the northern and southern quarters of the town in historical times and were connected to the abandonment of the town in the early Medieval times. The greek colony of Elea-Velia was located on top of a siliciclastic promontory where the ruins of

  8. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells

    SciTech Connect

    Kua, J.; Goddard, W.A. III

    1999-12-01

    Using first principles quantum mechanics [nonlocal density functional theory (B3LYP)], the authors calculated the 13 most likely intermediate species for methanol oxidation on clusters of all 2nd and 3rd row Group VIII transition metals for all three likely binding sites (top, bridge, and cap). This comprehensive set of binding energies and structures allows a detailed analysis of possible reaction mechanisms and how they change for different metals. This illustrates the role in which modern quantum chemical methods can be used to provide data for combinatorial strategies for discovering and designing new catalysts. Methanol dehydrogenation is most facile on Pt, with the hydrogens preferentially stripped off the carbon end. However, water dehydrogenation is most facile on Ru. These results support the bifunctional mechanism for methanol oxidation on Pt-Ru alloys in direct methanol fuel cells (DMFCs). Pure Os is capable of performing both functionalities without cocatalyst. It is suggested that pure Os be examined as a potential catalyst for low overpotential, highly dispersed catalyst DMFCs. Pathways to form the second C-O bond differ between the pure metals (Pt and Os) in which (CO){sub ads} is probably activated by (OH){sub ads} and the Pt-Ru binary system in which (COH){sub ads} is probably activated by O{sub ads}. For all cases formation of (COOH){sub ads} is an important precursor to the final dehydrogenation to desorb CO{sub 2} from the surface.

  9. Interplanetary gas. XXV - A solar wind and interplanetary magnetic field interpretation of cometary light outbursts

    NASA Technical Reports Server (NTRS)

    Niedner, M. B., Jr.

    1980-01-01

    Possible relationships of cometary brightness outbursts with the solar wind and interplanetary magnetic field are examined. Two types of outburst are distinguished: those which involve a significant brightening of both the head and the tail in a comet with a conspicuous plasma tail (Class I), and those involving the brightening of the central condensation of a previously faint comet with no detectable plasma tail (Class II). Class I bursts, as exemplified by Comet Morehouse 1908c, are attributed to the generation in the head of enhanced amounts of ions and their injection into the tail shortly before it disconnects, with ionization provided by sector boundary crossings. Class II events, as exhibited by Comet P/Tuttle-Giacobini-Kresak 1973b, are interpreted as the result of the bombardment of the nucleus by disturbed solar wind near corotated high-speed streams and sector boundaries, leading to highly exothermic chemical reactions.

  10. Whistler Waves Associated with Weak Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.

    2012-01-01

    We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 < Beta < 10). We have compared the waves properties upstream and downstream of the shocks. In the upstream region the waves are mainly circularly polarized, and in most of the cases (approx. 75%) they propagate almost parallel to the ambient magnetic field (<30 deg.). In contrast, the propagation angle with respect to the shock normal varies in a broad range of values (20 deg. to 90 deg.), suggesting that they are not phase standing. We find that the whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to

  11. Conceptual Design For Interplanetary Spaceship Discovery

    NASA Astrophysics Data System (ADS)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  12. Interplanetary Shocks Lacking Type 2 Radio Bursts

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Maekela, P.; Akiyama, S.; Yashiro, S.; Kaiser, M. L.; Howard, R. A.; Bougeret, J.-L.

    2010-01-01

    We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks (approximately 34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed approximately 535 km/s) and only approximately 40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km/s and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration approximately +6.8 m/s (exp 2)), while those associated with RL shocks were decelerating (average acceleration approximately 3.5 m/s (exp 2)). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is

  13. INTERPLANETARY SHOCKS LACKING TYPE II RADIO BURSTS

    SciTech Connect

    Gopalswamy, N.; Kaiser, M. L.; Xie, H.; Maekelae, P.; Akiyama, S.; Yashiro, S.; Howard, R. A.; Bougeret, J.-L.

    2010-02-20

    We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks ({approx}34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed {approx}535 km s{sup -1}) and only {approx}40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km s{sup -1} and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration {approx}+6.8 m s{sup -2}), while those associated with RL shocks were decelerating (average acceleration {approx}-3.5 m s{sup -2}). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is predominant

  14. Water and organics in interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Bradley, John P.

    2015-08-01

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at ~90 km altitude and settle to the Earth’s surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earth’s surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend ~104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.Affiliations:a University of Hawaii at Manoa, Hawaii Institute of Geophysics and Planetology, 1680 East-West Road, Honolulu, HI 96822, USA.b National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.c Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.d Department of Materials Science & Engineering, University of California

  15. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities

  16. Interplanetary magnetic field effects on high latitude ionospheric convection

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1985-01-01

    Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.

  17. Association between interplanetary shock waves and delayed solar particle events.

    NASA Technical Reports Server (NTRS)

    Datlowe, D.

    1972-01-01

    In studying the propagation of energetic charged particles from a large solar flare, we can no longer regard the interplanetary medium as remaining in a steady state; disturbances in the flow of solar wind from these flares may have great effects on the observed fluxes of charged particles. Delayed particle events, also known as 'energetic storm particle' events, may exhibit an increase by an order of magnitude or greater in the flux of protons above 10 MeV over a period of the order of 6 hours. These events are seen in association with the passage of an interplanetary shock past the earth. It is proposed that the particles are accelerated locally at the time of the passage of the interplanetary blast wave.

  18. Towards a new model of the interplanetary meteoroid environment

    NASA Astrophysics Data System (ADS)

    Dikarev, Valeri; Jehn, Rüdiger; Grün, Eberhard

    Improved models of the interplanetary meteoroid environment enjoy the interest of both spacecraft engineers and dust researchers. The engineers need it for risk assessments for their spacecraft instruments. Modelling dynamical and collisional evolution of interplanetary dust should lead to a match with observations, and an empirical model can be a good mediator between physical models and sparse observational data. Our current effort is directed towards the construction of a new model of the interplanetary meteoroid environment based on a number of observational data sets including in-situ dust flux measurements onboard spacecraft, radar meteor surveys and thermal emission of zodiacal dust. In contrast to earlier models, we use long-term particle dynamics to define populations for the new model. Based on these populations, we have constructed a prototype model which reasonably fits in-situ impact counts by Galileo and Ulysses dust experiments.

  19. Metabolic engineering of E.coli for the production of a precursor to artemisinin, an anti-malarial drug [Chapter 25 in Manual of Industrial Microbiology and Biotechnology, 3rd edition

    SciTech Connect

    Petzold, Christopher; Keasling, Jay

    2011-07-18

    This document is Chapter 25 in the Manual of Industrial Microbiology and Biotechnology, 3rd edition. Topics covered include: Incorporation of Amorpha-4,11-Diene Biosynthetic Pathway into E. coli; Amorpha-4,11-Diene Pathway Optimization; "-Omics" Analyses for Increased Amorpha-4,11-Diene Production; Biosynthetic Oxidation of Amorpha-4,11-Diene.

  20. Optical spectroscopy of interplanetary dust collected in the earth's stratosphere

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Shirck, J.; Walker, R. M.; Freeman, J. J.

    1980-01-01

    Optical absorption spectra of interplanetary dust particles 2-30 microns in size collected in the atmosphere at an altitude of 20 km by inertial impactors mounted on NASA U-2 aircraft are reported. Fourier transform absorption spectroscopy of crushed samples of the particles reveals a broad feature in the region 1300-800 kaysers which has also been found in meteorite and cometary dust spectra, and a weak iron crystal field absorption band at approximately 9800 kaysers, as is observed in meteorites. Work is currently in progress to separate the various components of the interplanetary dust particles in order to evaluate separately their contributions to the absorption.

  1. Small comets - Implications for interplanetary Lyman-alpha

    NASA Astrophysics Data System (ADS)

    Donahue, T. M.

    1987-03-01

    It is noted that, due to the large amounts of hydrogen that would be generated in interplanetary space by the numerous small comets proposed by Frank et al. (1986), inhibition of water vapor by a factor of 3 x 10 to the -9th by very thick dust mantles would be necessary to prevent excitation of a detectable interplanetary Lyman-alpha glow. A forbiddingly large influx of dust would result from these cometesimals, with a carbon influx 350 times larger than the rate of burial of fresh carbon in sediments. Other optical problems associated with these cometesimals are considered.

  2. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  3. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  4. Ancient micronauts: interplanetary transport of microbes by cosmic impacts.

    PubMed

    Nicholson, Wayne L

    2009-06-01

    Recent developments in microbiology, geophysics and planetary sciences raise the possibility that the planets in our solar system might not be biologically isolated. Hence, the possibility of lithopanspermia (the interplanetary transport of microbial passengers inside rocks) is presently being re-evaluated, with implications for the origin and evolution of life on Earth and within our solar system. Here, I summarize our current understanding of the physics of impacts, space transport of meteorites, and the potentiality of microorganisms to undergo and survive interplanetary transfer. PMID:19464895

  5. The deep space network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  6. A novel amperometric alcohol biosensor developed in a 3rd generation bioelectrode platform using peroxidase coupled ferrocene activated alcohol oxidase as biorecognition system.

    PubMed

    Chinnadayyala, Somasekhar R; Kakoti, Ankana; Santhosh, Mallesh; Goswami, Pranab

    2014-05-15

    Alcohol oxidase (AOx) with a two-fold increase in efficiency (Kcat/Km) was achieved by physical entrapment of the activator ferrocene in the protein matrix through a simple microwave based partial unfolding technique and was used to develop a 3rd generation biosensor for improved detection of alcohol in liquid samples. The ferrocene molecules were stably entrapped in the AOx protein matrix in a molar ratio of ~3:1 through electrostatic interaction with the Trp residues involved in the functional activity of the enzyme as demonstrated by advanced analytical techniques. The sensor was fabricated by immobilizing ferrocene entrapped alcohol oxidase (FcAOx) and sol-gel chitosan film coated horseradish peroxidase (HRP) on a multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode through layer-by-layer technique. The bioelectrode reactions involved the formation of H2O2 by FcAOx biocatalysis of substrate alcohol followed by HRP-catalyzed reduction of the liberated H2O2 through MWCNT supported direct electron transfer mechanism. The amperometric biosensor exhibited a linear response to alcohol in the range of 5.0 × 10(-6) to 30 × 10(-4)mol L(-1) with a detection limit of 2.3 × 10(-6) mol L(-1), and a sensitivity of 150 µA mM(-1) cm(-2). The biosensor response was steady for 28 successive measurements completed in a period of 5h and retained ~90% of the original response even after four weeks when stored at 4 °C. The biosensor was successfully applied for the determination of alcohol in commercial samples and its performance was validated by comparing with the data obtained by GC analyses of the samples.

  7. Non-destructive measurement of demineralization and remineralization in the occlusal pits and fissures of extracted 3rd molars with PS-OCT

    NASA Astrophysics Data System (ADS)

    Lee, Chulsung; Hsu, Dennis J.; Le, Michael H.; Darling, Cynthia L.; Fried, Daniel

    2009-02-01

    Previous studies have demonstrated that Polarization Sensitive Optical Coherence Tomography (PS-OCT) can be used to image the remineralization of early artificial caries lesion on smooth enamel surfaces of human and bovine teeth. However, most new dental decay is found in the pits and fissures of the occlusal surfaces of posterior dentition and it is in these high risk areas where the performance of new caries imaging devices need to be investigated. The purpose of this study was to demonstrate that PS-OCT can be used to measure the subsequent remineralization of artificial lesions produced in the pits and fissures of extracted 3rd molars. A PS-OCT system operating at 1310-nm was used to acquire polarization resolved images of occlusal surfaces exposed to a demineralizing solution at pH-4.5 followed by a fluoride containing remineralizing solution at pH-7.0 containing 2-ppm fluoride. The integrated reflectivity was calculated to a depth of 200-µm in the entire lesion area using an automated image processing algorithm. Although a well-defined surface zone was clearly resolved in only a few of the samples that underwent remineralization, the PS-OCT measurements indicated a significant (p<0.05) reduction in the integrated reflectivity between the severity of the lesions that were exposed to the remineralization solution and those that were not. The lesion depth and mineral loss were also measured with polarized light microscopy and transverse microradiography after sectioning the teeth. These results show that PS-OCT can be used to non-destructively monitor the remineralization potential of anti-caries agents in the important pits and fissures of the occlusal surface.

  8. Medical school curriculum characteristics associated with intentions and frequency of tobacco dependence treatment among 3rd year U.S. medical students

    PubMed Central

    Hayes, Rashelle B.; Geller, Alan C.; Crawford, Sybil L.; Jolicoeur, Denise; Churchill, Linda C.; Okuyemi, Kola; David, Sean P.; Adams, Michael; Waugh, Jonathan; Allen, Sharon S.; Leone, Frank T.; Fauver, Randy; Leung, Katherine; Liu, Qin; Ockene, Judith K.

    2015-01-01

    Objective Physicians play a critical role in addressing tobacco dependence, yet report limited training. Tobacco dependence treatment curricula for medical students could improve performance in this area. This study identified student and medical school tobacco treatment curricula characteristics associated with intentions and use of the 5As for tobacco treatment among 3rd year U.S. medical students. Methods Third year medical students (N=1065, 49.3% male) from 10 U.S. medical schools completed a survey in 2009-2010 assessing student characteristics, including demographics, tobacco treatment knowledge, and self-efficacy. Tobacco curricula characteristics assessed included amount and type of classroom instruction, frequency of tobacco treatment observation, instruction, and perception of preceptors as role models. Results Greater tobacco treatment knowledge, self-efficacy, and curriculum-specific variables were associated with 5A intentions, while younger age, tobacco treatment self-efficacy, intentions, and each curriculum-specific variable was associated with greater 5A behaviors. When controlling for important student variables, greater frequency of receiving 5A instruction (OR = 1.07; 95%CI 1.01-1.12) and perception of preceptors as excellent role models in tobacco treatment (OR = 1.35; 95%CI 1.04-1.75) were significant curriculum predictors of 5A intentions. Greater 5A instruction (B = .06 (.03); p< .05) and observation of tobacco treatment (B= .35 (.02); p< .001) were significant curriculum predictors of greater 5A behaviors. Conclusions Greater exposure to tobacco treatment teaching during medical school is associated with both greater intentions to use and practice tobacco 5As. Clerkship preceptors, or those physicians who provide training to medical students, may be particularly influential when they personally model and instruct students in tobacco dependence treatment. PMID:25572623

  9. A psychometric study of the Bayley Scales of Infant and Toddler Development - 3rd Edition for term and preterm Taiwanese infants.

    PubMed

    Yu, Yen-Ting; Hsieh, Wu-Shiun; Hsu, Chyong-Hsin; Chen, Li-Chiou; Lee, Wang-Tso; Chiu, Nan-Chang; Wu, Ying-Chin; Jeng, Suh-Fang

    2013-11-01

    The Bayley Scales of Infant and Toddler Development - 3rd Edition (Bayley-III) was updated to enhance its usefulness for contemporary child developmental assessment. However, recent data in Western countries have implicated the overestimation of child development by the new instrument. This study aimed to investigate the psychometric features of the Bayley-III for term and preterm infants in Taiwan. Forty-seven term infants and 167 preterm infants were prospectively examined with the Bayley Scales of Infant Development - 2nd Edition (BSID-II) and the Bayley-III at 6, 12, 18, and 24 months of age (corrected for prematurity). The psychometric properties examined included reliability, construct validity, and known-group validity. The intra- and inter-rater reliabilities of the Bayley-III were good to excellent. The correlations between the BSID-II and Bayley-III raw scores were good to excellent for the cognitive and motor items and low to excellent for the language items. Term infants achieved higher composite scores than preterm infants on all of the Bayley-III scales (p<0.05). However, their rates of developmental delay were lower than the previously established prevalence estimates. The Bayley-III cut-off composite score was adjusted 10-20, 1-13, and 12-24 points higher than 70 for optimal prediction of cognitive, language, and motor delay, respectively, as defined by the BSID-II index score<70. The Bayley-III is a reliable instrument that extends its previous edition, especially in early language assessment. However, the upward adjustment of its cut-off score is recommended for the accurate identification of developmental delay in term and preterm Taiwanese infants. PMID:24029804

  10. Autonomous structural health monitoring technique for interplanetary drilling applications using laser Doppler velocimeters

    NASA Astrophysics Data System (ADS)

    Statham, Shannon M.

    The research work presented in this thesis is devoted to the formulation and field testing of a dynamics-based structural health monitoring system for an interplanetary subsurface exploration drill system. Structural health monitoring is the process of detecting damage or other types of defects in structural and mechanical systems that have the potential to adversely affect the current or future performance of these systems. Interplanetary exploration missions, specifically to Mars, involve operations to search for water and other signs of extant or past life. Such missions require advanced robotic systems that are more susceptible to structural and mechanical failures, which motivates a need for structural health monitoring techniques relevant to interplanetary exploration systems. Strict design requirements for interplanetary exploration missions create unique research problems and challenges compared with structural health monitoring procedures and techniques developed to date. These challenges include implementing sensors and devices that will not interfere with the drilling operation, producing "real-time" diagnostics of the drilling condition, and developing an automation procedure for complete autonomous operations. The first research area involves modal analysis experiments to understand the dynamic characteristics of interplanetary drill structural systems in operation. These experiments also validate the use of Laser Doppler Velocimeter sensors in real-time structural health monitoring and prove the drill motor system adequately excites the drill for dynamic measurements and modal analysis while the drill is in operation. The second research area involves the development of modal analysis procedures for rotating structures using a Chebyshev signal filter to remove harmonic component and other noise from the rotating drill signal. This filter is necessary to accurately analyze the condition of the rotating drill auger tube while in operation. The third

  11. CLIpSAT for Interplanetary Missions: Common Low-cost Interplanetary Spacecraft with Autonomy Technologies

    NASA Astrophysics Data System (ADS)

    Grasso, C.

    2015-10-01

    Blue Sun Enterprises, Inc. is creating a common deep space bus capable of a wide variety of Mars, asteroid, and comet science missions, observational missions in and near GEO, and interplanetary delivery missions. The spacecraft are modular and highly autonomous, featuring a common core and optional expansion for variable-sized science or commercial payloads. Initial spacecraft designs are targeted for Mars atmospheric science, a Phobos sample return mission, geosynchronous reconnaissance, and en-masse delivery of payloads using packetized propulsion modules. By combining design, build, and operations processes for these missions, the cost and effort for creating the bus is shared across a variety of initial missions, reducing overall costs. A CLIpSAT can be delivered to different orbits and still be able to reach interplanetary targets like Mars due to up to 14.5 km/sec of delta-V provided by its high-ISP Xenon ion thruster(s). A 6U version of the spacecraft form fits PPOD-standard deployment systems, with up to 9 km/s of delta-V. A larger 12-U (with the addition of an expansion module) enables higher overall delta-V, and has the ability to jettison the expansion module and return to the Earth-Moon system from Mars orbit with the main spacecraft. CLIpSAT utilizes radiation-hardened electronics and RF equipment, 140+ We of power at earth (60 We at Mars), a compact navigation camera that doubles as a science imager, and communications of 2000 bps from Mars to the DSN via X-band. This bus could form the cornerstone of a large number asteroid survey projects, comet intercept missions, and planetary observation missions. The TugBot architecture uses groups of CLIpSATs attached to payloads lacking innate high-delta-V propulsion. The TugBots use coordinated trajectory following by each individual spacecraft to move the payload to the desired orbit - for example, a defense asset might be moved from GEO to lunar transfer orbit in order to protect and hide it, then returned

  12. Observations and analysis of phase scintillation of spacecraft signal on the interplanetary plasma

    NASA Astrophysics Data System (ADS)

    Molera Calvés, G.; Pogrebenko, S. V.; Cimò, G.; Duev, D. A.; Bocanegra-Bahamón, T. M.; Wagner, J. F.; Kallunki, J.; de Vicente, P.; Kronschnabl, G.; Haas, R.; Quick, J.; Maccaferri, G.; Colucci, G.; Wang, W. H.; Yang, W. J.; Hao, L. F.

    2014-04-01

    Aims: The phase scintillation of the European Space Agency's Venus Express (VEX) spacecraft telemetry signal was observed at X-band (λ = 3.6 cm) with a number of radio telescopes of the European Very Long Baseline Interferometry (VLBI) Network in the period 2009-2013. Methods: We found a phase fluctuation spectrum along the Venus orbit with a nearly constant spectral index of -2.42 ± 0.25 over the full range of solar elongation angles from 0° to 45°, which is consistent with Kolmogorov turbulence. Radio astronomical observations of spacecraft signals within the solar system give a unique opportunity to study the temporal behaviour of the signal's phase fluctuations caused by its propagation through the interplanetary plasma and the Earth's ionosphere. This gives complementary data to the classical interplanetary scintillation (IPS) study based on observations of the flux variability of distant natural radio sources. Results: We present here our technique and the results on IPS. We compare these with the total electron content for the line of sight through the solar wind. Finally, we evaluate the applicability of the presented technique to phase-referencing VLBI and Doppler observations of currently operational and prospective space missions.

  13. 3-D model of ICME in the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  14. Towards an interplanetary internet: a proposed strategy for standardization

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    2002-01-01

    This paper reviews the current set of standard data communications capabilities that exist to support advanced missions, discusses the architectural concepts for the future Interplanetary Internet, and suggests how a standardized set of space communications protocols that can grow to support future scenarios where human intelligence is widely distributed across the Solar System.

  15. Interplanetary density models as inferred from solar Type III bursts

    NASA Astrophysics Data System (ADS)

    Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert

    2016-04-01

    We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.

  16. Applications of presently planned interplanetary missions to testing gravitational theories

    NASA Technical Reports Server (NTRS)

    Friedman, L. D.

    1971-01-01

    A summary of the probable interplanetary missions for the 1970's is presented, which may prove useful in testing the general theory of relativity. Mission characteristics are discussed, as well as instrumentation. This last includes a low-level accelerometer and S-/X-band transponders and antennas.

  17. The interplanetary magnetic structure that guides solar relativistic particles

    NASA Astrophysics Data System (ADS)

    Masson, S.; Démoulin, P.; Dasso, S.; Klein, K.-L.

    2012-02-01

    Context. Relating in-situ measurements of relativistic solar particles to their parent activity in the corona requires understanding the magnetic structures that guide them from their acceleration site to the Earth. Relativistic particle events are observed at times of high solar activity, when transient magnetic structures such as interplanetary coronal mass ejections (ICMEs) often shape the interplanetary magnetic field (IMF). They may introduce interplanetary paths that are longer than nominal, and magnetic connections rooted far from the nominal Parker spiral. Aims: We present a detailed study of the IMF configurations during ten relativistic solar particle events of the 23rd activity cycle to elucidate the actual IMF configuration that guides the particles to the Earth, where they are measured by neutron monitors. Methods: We used magnetic field (MAG) and plasma parameter measurements (SWEPAM) from the ACE spacecraft and determined the interplanetary path lengths of energetic particles through a modified version of the velocity dispersion analysis based on energetic particle measurements with SoHO/ERNE. Results: We find that the majority (7/10) of the events is detected in the vicinity of an ICME. Their interplanetary path lengths are found to be longer (1.5-2.6 AU) than those of the two events propagating in the slow solar wind (1.3 AU). The longest apparent path length is found in an event within the fast solar wind, probably caused by enhanced pitch angle scattering. The derived path lengths imply that the first energetic and relativistic protons are released at the Sun at the same time as electron beam emitting type III radio bursts. Conclusions: The timing of the first high-energy particle arrival on Earth is mainly determined by the type of IMF in which the particles propagate. Initial arrival times are as expected from Parker's model in the slow solar wind, and significantly longer in or near transient structures such as ICMEs.

  18. Angular distribution of cosmic rays in the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Fedorov, Yu. I.

    2001-08-01

    Cosmic ray propagation in the interplanetary medium is considered on the basis of kinetic equation describing the scattering of charged particles by magnetic irregularities and their focusing by regular interplanetary magnetic field. The relationship between cosmic ray distribution function and parameters of particle scattering in the interplanetary medium is investigated. Obtained results are applied to the analyses of solar proton events and galactic cosmic ray anisotropy. 1 COSMIC RAY DISTRIBUTION FUNCTION Angular distribution of energetic charged particles contains valuable information about particle scattering in the heliosphere and the geometry of interplanetary magnetic field (IMF) (Bieber and Pomerantz, 1983; Beeck and Wibberenz,1986; Wibberenz and Green, 1988; Hatzky and Wibberenz, 1997). In the present paper the relationship between the distribution function of cosmic rays (CR) and parameters of particle scattering is investigated. The kinetic equation describing CR propagation in the interplanetary medium, can be written as (Earl,1981; Toptygin,1985) ∂f ∂t + vµ ∂f ∂z + v 2ζ (1 - µ2 ) ∂f ∂µ - ∂ ∂µ Dµµ ∂f ∂µ = Q, (1) where f is CR distribution function, Dµµ is the diffusion coefficient in angular space, µ = cos θ and θ is the pitch angle, ς is the focusing length, and z is a coordinate directed along regular magnetic field. The particle source is included in the right hand side of Eq(1). One can present the distribution function as a superposition of isotropic f0 and anisotropic δf(µ) components f(z, µ, t) = 1 2 f0(z, t) + δf(z, µ, t). (2) Assuming that the particle source Q is isotropic and subtracting from Eq.(1) averaged over µ equation, we obtain

  19. ICOM2012: 3rd International Conference on the Physics of Optical Materials and Devices (Belgrade, Serbia, 2-6 September 2012)

    NASA Astrophysics Data System (ADS)

    Dramićanin, Miroslav D.; Antić, Željka; Viana, Bruno

    2013-11-01

    The 3rd International Conference on the Physics of Optical Materials and Devices (ICOM2012) was held in Belgrade (Serbia) from 2 to 6 September 2012 (figure 1). The conference was organized by the Vinča Institute of Nuclear Sciences, University of Belgrade (Serbia) and the Laboratoire de Chimie de la Matière Condensée de Paris (France), and supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia and Optical Society of America. ICOM2012 was a follow-up to the two previous, successful ICOM conferences held in Herceg Novi in 2006 and 2009. The conference aimed at providing a forum for scientists in optical materials to debate on: • Luminescent materials and nanomaterials • Hybrid optical materials (organic/inorganic) • Characterization techniques of optical materials • Luminescence mechanisms and energy transfers • Theory and modeling of optical processes • Ultrafast-laser processing of materials • Optical sensors • Medical imaging • Advanced optical materials in photovoltaics and biophotonics • Photothermal and photoacoustic spectroscopy and phenomena The conference stressed the value of a fundamental scientific understanding of optical materials. A particular accent was put on wide band-gap materials in crystalline, glass and nanocrystalline forms. The applications mainly involved lasers, scintillators and phosphors. Rare earth and transition metal ions introduced as dopants in various hosts were considered, and their impact on the optical properties were detailed in several presentations. This volume contains selected contributions of speakers and participants of the ICOM2012 conference. The conference provided a unique opportunity for about 200 scientists from 32 countries to discuss recent progress in the field of optical materials. During the three and half days, 21 invited talks and 52 contributed lectures were given, with a special event in memory of our dear colleague Professor Dr Tsoltan

  20. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose

    PubMed Central

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    Objectives To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. Methods 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Results Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Conclusion Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels. PMID:26288186

  1. Thirty Years of Interplanetary Background Data: A Global View

    NASA Astrophysics Data System (ADS)

    Quémerais, Eric; Sandel, Bill R.; Izmodenov, Vladislav V.; Gladstone, G. Randall

    This chapter compares results of models of the interplanetary background, such as the one presented in Chap.1, to different datasets obtained in the outer heliosphere (Voyager-UVS, Alice New-Horizons) and in the inner heliosphere (SWAN-SOHO, STIS-HST). The aim of this work is to combine these datasets and the models and to derive calibration factors that give a coherent picture of the various instruments and the interplanetary background. These datasets do not overlap and the models are used to bridge the gaps in distance or in time. In the case of Voyager 1 and 2 UVS instruments, the calibration factors derived here are significantly different from the values published by Hall (Ultraviolet resonance radiation and the structure of the heliosphere. Dissertation, University of Arizona, 1992).

  2. Infrared spectroscopy of interplanetary dust in the laboratory

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Freeman, J. J.

    1981-01-01

    A mount containing three crushed chondritic interplanetary dust particles (IDPs) collected in the earth's stratosphere and subjected to infrared spectroscopic measurements shows features near 1000 and 500/cm, suggesting crystalline pyroxene rather than crystalline olivine, amorphous olivine, or meteoritic clay minerals. Chondritic IDP structural diversity and atmospheric heating effects must be considered when comparing this spectrum with interplanetary and cometary dust astrophysical spectra. TEM and infrared observations of one member of the rare subset of IDPs resembling hydrated carbonaceous chondrite matrix material shows a close infrared spectrum resemblance between 4000 and 400/cm to the C2 meteorite Murchison. TEM observations suggest that this class of particles may be used as an atmospheric entry heating-process thermometer.

  3. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray H11

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray H11 The Interplanetary Dust Experiment hardware has a thin brown stain on the exposed surfaces. A deeper brown stain, probably from the material underneath the small electrical cover plate of the detector frame, can be seen in the upper right corner of some of the detectors. Stain that was seen on the solar sensor base plate in the flight photograph cannot be seen because of reflected light. The colors seen in the detector's mirror like surface are reflections of the surrounding area. A dark spot seen on a detector in the third row from the top in the flight photograph, was not found in a postflight inspection. A close inspection of this photograph does reveal several impact damage locations.

  4. Modeling solar wind with boundary conditions from interplanetary scintillations

    SciTech Connect

    Manoharan, P.; Kim, T.; Pogorelov, N. V.; Arge, C. N.

    2015-09-30

    Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AU to 1 AU with the boundary conditions based on both Ooty and WSA data.

  5. Fractal signatures in analogs of interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Katyal, Nisha; Banerjee, Varsha; Puri, Sanjay

    2014-10-01

    Interplanetary dust particles (IDPs) are an important constituent of the earths stratosphere, interstellar and interplanetary medium, cometary comae and tails, etc. Their physical and optical characteristics are significantly influenced by the morphology of silicate aggregates which form the core in IDPs. In this paper we reinterpret scattering data from laboratory analogs of cosmic silicate aggregates created by Volten et al. (2007) [1] to extract their morphological features. By evaluating the structure factor, we find that the aggregates are mass fractals with a mass fractal dimension dm≃1.75. The same fractal dimension also characterizes clusters obtained from diffusion limited aggregation (DLA). This suggests that the analogs are formed by an irreversible aggregation of stochastically transported silicate particles.

  6. Origin of Interplanetary Dust through Optical Properties of Zodiacal Light

    NASA Astrophysics Data System (ADS)

    Yang, Hongu; Ishiguro, Masateru

    2015-11-01

    This study investigates the origin of interplanetary dust particles (IDPs) through the optical properties, albedo and spectral gradient, of zodiacal light. The optical properties were compared with those of potential parent bodies in the solar system, which include D-type (as analogs of cometary nuclei), C-type, S-type, X-type, and B-type asteroids. We applied Bayesian inference to the mixture model composed of the distribution of these sources, and found that >90% of the IDPs originate from comets (or their spectral analogs, D-type asteroids). Although some classes of asteroids (C-type, X-type, and B-type) may make a moderate contribution, ordinary chondrite-like particles from S-type asteroids occupy a negligible fraction of the interplanetary dust cloud complex. The overall optical properties of the zodiacal light were similar to those of chondritic porous IDPs, supporting the dominance of cometary particles in the zodiacal cloud.

  7. Study of Travelling Interplanetary Phenomena (STIP) workshop travel

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1986-01-01

    Thirty six abstracts are provided from the SCOSTEP/STIP Symposium on Retrospective Analyses and Future Coordinated Intervals held in Switzerland on June 10 to 12, 1985. Six American scientists participated in the symposium and their abstracts are also included. The titles of their papers are: (1) An analysis of near surface and coronal activity during STIP interval 12, by T. E. Gergely; (2) Helios images of STIP intervals 6, B. V. Jackson; (3) Results from the analysis of solar and interplanetary observations during STIP interval 7, S. R. Kane; (4) STIP interval 19, E. Cliver; (5) Hydrodynamic buoyancy force in the solar atmosphere, T. Yeh; and (6) A combined MHD modes for the energy and momentum transport from solar surface to interplanetary space, S. T. Wu.

  8. Development of coronal mass ejections and association with interplanetary events

    NASA Technical Reports Server (NTRS)

    Pick, M.; Maia, D.; Howard, R.; Thompson, B.; Lanzerotti, L. J. L.; Bothmer, V.; Lamy, P.

    1997-01-01

    Results are presented on the development of two coronal mass ejections (CMEs) obtained by comparing the observations of the large angle spectroscopic coronagraph (LASCO) and the extreme ultraviolet imaging telescope (EIT) instrument onboard the SOHO with those of the Nancay radioheliograph. The radioheliograph provides images at five levels in the corona. An excellent spatial association is found between the position and extent of the type 4 radio sources and the CMEs seen by LASCO. One result is the existence for these two events of discrete successive phases in their development. For these events, Ulysses and SOHO missions measured interplanetary particles of coronal origin. The coronal acceleration site was attempted to be identified, as well as the path of these particles from the corona to the interplanetary medium.

  9. Interplanetary shock waves and the structure of solar wind disturbances

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.

    1972-01-01

    Observations and theoretical models of interplanetary shock waves are reviewed, with emphasis on the large-scale characteristics of the associated solar wind disturbances and on the relationship of these disturbances to solar activity. The sum of observational knowledge indicates that shock waves propagate through the solar wind along a broad, roughly spherical front, ahead of plasma and magnetic field ejected from solar flares. Typically, the shock front reaches 1 AU about two days after its flare origin, and is of intermediate strength. Not all large flares produce observable interplanetary shock waves; the best indicator of shock production appears to be the generation of both type 2 and type 4 radio bursts by a flare. Theoretical models of shock propagation in the solar wind can account for the typically observed shock strength, transit time, and shape.

  10. LDEF (Flight), AO201 : Interplanetary Dust Experiment, Tray C09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO201 : Interplanetary Dust Experiment, Tray C09 The flight photograph was taken during the LDEF retrieval and provides an on-orbit view of the C09 integrated tray. When comparing this photograph with the prelaunch photograph, very little difference can be seen. A brown stain is visible around some of the fasteners and on mounting plates. The stain has been attributed to outgassing and contamination from the LDEF and experiment related materials being flown. When compared to the prelaunch photograph, the C09 integrated tray seems to be in excellent condition. The Interplanetary Dust Experiment appears to have a thin brown stain around some of the fasteners and also a small rectangular stain, in the center, along the bottom edge of the detector mounting plate. The IDE seems to be in excellent condition with all hardware intact. The colors seen in the detectors is a reflection of the Orbiter's white cargo bay liner.

  11. On the limitations of geomagnetic measures of interplanetary magnetic polarity

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Rosenberg, R. L.

    1974-01-01

    The maximum attainable accuracy in inferring the interplanetary magnetic polarity from polar cap magnetograms is about 88%. This is achieved in practice, when high-latitude polar cap stations are used during local summer months, and the signature in the ground records is strong. An attempt by Svalgaard (1972) to use this effect to infer an index of interplanetary magnetic polarity back to 1926 has not been so successful. Furthermore, some of the properties of the index have changed with time. Prior to 1963, the inferred polarities are strongly dependent on geomagnetic activity, while after this time they are not. Thus, this index should not be used to separate solar-magnetic from solar-activity effects prior to 1963.

  12. Studies of the interplanetary magnetic field: IMP's to Voyager

    NASA Technical Reports Server (NTRS)

    Ness, Norman F.

    1987-01-01

    During the last two decades, spacecraft projects and individual experiments for which Frank McDonald was a leader have contributed very significantly to the current understanding of the structure of interplanetary space and the correlation between solar and interplanetary disturbances. Studies on the IMP, HELIOS, and Pioneer spin-stabilized spacecraft and the larger attitude-stabilized Voyager spacecraft have provided data sets from which the modern view of the heliosphere has evolved. That concept in which the inner solar system is shown to be dominated by individual streams associated with specific source regions on the Sun is illustrated. As these high-speed streams overtake the preexisting solar plasma, they coalesce and modify the characteristics so that at larger heliocentric distances, these disturbances appear as radially propagating concentric shells of compressed magnetic fields and enhanced fluctuations

  13. Interplanetary medium data book: Supplement 3A, 1977-1985

    NASA Technical Reports Server (NTRS)

    Couzens, David A.; King, Joseph H.

    1986-01-01

    Supplement 3 of the Interplanetary Medium Data Book contains a detailed discussion of a data set compilation of hourly averaged interplanetary plasma and magnetic field parameters. The discussion addresses data sources, systematic and random differences, time shifting of ISEE 3 data, and plasma normalizations. Supplement 3 also contains solar rotation plots of field and plasma parameters. Supplement 3A contains computer-generated listings of selected parameters from the composite data set. These parameters are bulk speed (km/sec), density (per cu cm), temperature (in units of 1000 K) and the IMF parameters: average magnitude, latitude and longitude angles of the vector made up of the average GSE components, GSM Cartesian components, and the vector standard deviation. The units of field magnitude, components, and standard deviation are gammas, while the units of field direction angles and degrees.

  14. The effects of Interplanetary Shocks on Energetic Storm Particle Events

    NASA Astrophysics Data System (ADS)

    Preisser, L.; Blanco-Cano, X.; Kajdic, P.

    2015-12-01

    Solar Energetic particles (SEPs) travel across the interplanetary medium with energies of the order of MeV. These events can be classified as impulsive or gradual depending on some characteristics of the flux spectra profile. Impulsive events are commonly associated to flares, and gradual SEPs are commonly associated to Interplanetary Coronal Mass Ejection (ICME) driving shocks. The physical process by which these particles are accelerated is not completely understood. A subset of gradual SEP events, known as Energetic Storm Particle (ESP) show flux enhancements near the time of shock crossing. In this work we use STEREO plasma and magnetic field data from 2011-2014 to study ESP characteristics and relate them to the parameters of the associated shock. We also study the properties of the waves observed upstream and downstream of the shocks.

  15. Type 2 radio bursts, interplanetary shocks and energetic particle events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.

    1982-01-01

    Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies which indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.

  16. Modeling solar wind with boundary conditions from interplanetary scintillations

    DOE PAGESBeta

    Manoharan, P.; Kim, T.; Pogorelov, N. V.; Arge, C. N.; Manoharan, P. K.

    2015-09-30

    Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AUmore » to 1 AU with the boundary conditions based on both Ooty and WSA data.« less

  17. The solar origins of two high-latitude interplanetary disturbances

    SciTech Connect

    Hudson, H.S.; Acton, L.W.; Alexander, D.; Harvey, K.L.; Kurokawa, H.; Kahler, S.; Lemen, J.R. ||||

    1995-06-01

    Two extremely similar interplanetary forward/reverse shock events, with bidirectional electron streaming were detected by Ulysses in 1994. Ground-based and Yohkoh/SXT observations show two strikingly different solar events that could be associated with them: an LDE flare on 20 Feb. 1994, and a extremely large-scale eruptive event on 14 April 1994. Both events resulted in geomagnetic storms and presumably were associated with coronal mass ejections. The sharply contrasting nature of these solar events argues against an energetic causal relationship between them and the bidirectional streaming events observed by Ulysses during its S polar passage. The authors suggest instead that for each pair of events. a common solar trigger may have caused independent instabilities leading to the solar and interplanetary phenomena.

  18. Identification of configuration and boundaries of interplanetary magnetic clouds

    NASA Astrophysics Data System (ADS)

    Feng, H. Q.; Wu, D. J.; Chao, J. K.

    2006-07-01

    To study interplanetary magnetic clouds (IMCs), it is important to find their configurations and boundaries from the observed magnetic field data. This paper presents a novel method of identifying the configuration and boundaries of IMCs, wherein the interplanetary magnetic field data, which are measured in the Geocentric Solar Ecliptic (GSE) coordinate system, are converted into an IMC natural coordinate system that can more clearly display the configuration and boundaries of the IMC as a flux tube. The establishment of the natural coordinate system is based on the idea that the IMC is a flux rope with approximately constant α force-free field configuration. We also apply this method to analyze four IMCs observed by the Wind spacecraft. Two of them are identified as having the flux rope configuration lying in the ecliptic plane, and the other two are flux ropes vertical to the ecliptic plane. The results demonstrate that our method can work well for real IMCs.

  19. Crossing the Intercultural Borders into 3rd Space Culture(s): Implications for Teacher Education in the Twenty-First Century

    ERIC Educational Resources Information Center

    Dooly, Melinda Ann

    2011-01-01

    This article looks at a year-long network-based exchange between two groups of student-teachers in Spain and the USA, who were involved in various network-based collaborative activities as part of their teaching education. Their online interaction was facilitated through diverse communicative modes such as Skype, Moodle, Voicethread and Second…

  20. Advanced planning activity. [for interplanetary flight and space exploration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Selected mission concepts for interplanetary exploration through 1985 were examined, including: (1) Jupiter orbiter performance characteristics; (2) solar electric propulsion missions to Mercury, Venus, Neptune, and Uranus; (3) space shuttle planetary missions; (4) Pioneer entry probes to Saturn and Uranus; (5) rendezvous with Comet Kohoutek and Comet Encke; (6) space tug capabilities; and (7) a Pioneer mission to Mars in 1979. Mission options, limitations, and performance predictions are assessed, along with probable configurational, boost, and propulsion requirements.

  1. Workshop on the Analysis of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E. (Editor)

    1994-01-01

    Great progress has been made in the analysis of interplanetary dust particles (IDP's) over the past few years. This workshop provided a forum for the discussion of the following topics: observation and modeling of dust in the solar system, mineralogy and petrography of IDP's, processing of IDP's in the solar system and terrestrial atmosphere, comparison of IDP's to meteorites and micrometeorites, composition of IDP's, classification, and collection of IDP's.

  2. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  3. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  4. Pioneer 10 studies of interplanetary shocks at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Wolfe, J. H.

    1979-01-01

    Pioneer 10 Ames plasma analyzer data collected in the 6.1 to 12.6 AU range of heliocentric distances (November 1974 to April 1977) have been examined for interplanetary shock waves. Eighteen shock signatures have been identified, with four of these being of the reverse type and the remainder the forward type. Sonic Mach numbers in the range from 3 to 10 are estimated for these events.

  5. Active shielding for long duration interplanetary manned missions

    NASA Astrophysics Data System (ADS)

    Spillantini, Piero

    2010-04-01

    For long duration interplanetary manned missions the protection of astronauts from cosmic radiation is an unavoidable problem that has been considered by many space agencies. In Europe, during 2002-2004, the European Space Agency supported two research programs on this thematic: one was the constitution of a dedicated study group (on the thematic 'Shielding from cosmic radiation for interplanetary missions: active and passive methods') in the framework of the 'life and physical sciences' report, and the other an industrial study concerning the 'radiation exposure and mission strategies for interplanetary manned missions to Moon and Mars'. Both programs concluded that, outside the protection of the magnetosphere and in the presence of the most intense and energetic solar events, the protection cannot rely solely on the mechanical structures of the spacecraft, but a temporary shelter must be provided. Because of the limited mass budget, the shelter should be based on the use of superconducting magnetic systems. For long duration missions the astronauts must be protected from the much more energetic galactic cosmic rays during the whole mission period. This requires the protection of a large habitat where they could live and work, and not the temporary protection of a small volume shelter. With passive absorbers unable to play any significant role, the use of active shielding is mandatory. The possibilities offered by superconducting magnets are discussed, and recommendations are made about the needed R&D. The technical developments that have occurred in the meanwhile and the evolving panorama of possible near future interplanetary missions, require revising the pioneering studies of the last decades and the adoption of a strategy that considers long lasting human permanence in 'deep' space, moreover not only for a relatively small number of dedicated astronauts but also for citizens conducting there 'normal' activities.

  6. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  7. Associations between coronal mass ejections and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Howard, R. A.; Koomen, M. J.; Michels, D. J.; Schwenn, R.; Muhlhauser, K. H.; Rosenbauer, H.

    1983-01-01

    Nearly continuous complementary coronal observations and interplanetary plasma measurements for the years 1979-1982 are compared. It is shown that almost all low latitude high speed coronal mass ejections (CME's) were associated with shocks at HELIOS 1. Some suitably directed low speed CME's were clearly associated with shocks while others may have been associated with disturbed plasma (such as NCDE's) without shocks. A few opposite hemisphere CME's associated with great flares seem to be associated with shocks at HELIOS.

  8. The size dependence of sublimation rates for interplanetary ice particles

    NASA Technical Reports Server (NTRS)

    Patashnick, H.; Rupprecht, G.

    1975-01-01

    The sublimation rates for water ice have been computed as a function of particle size for various solar distances. Because of the size dependence of the absorption and emission properties of the particles, a sublimation-rate minimum evolves whose depth and position are sensitive to the spectral-absorption properties of the particle in combination with the spectral distribution of solar radiation. As a consequence, a quasistable size of interplanetary ice particles is predicted which is independent of solar distance.

  9. Ring torque of Saturn from interplanetary meteoroid impact

    SciTech Connect

    Ip, W.H.

    1984-12-01

    Reevaluation of the interplanetary meteoroid mass flux at 10 AU obtains a value of M of about 60,000 g/sec for the meteoroid mass loading rate to the rings of Saturn. This meteoroid impact flux suggests that a large change to the configuration of the ring system could occur in a relatively short time (less than about one million years). This new element thus should be taken into consideration in discussion of the dynamical evolution of the rings.

  10. Solar Energetic Particle transport along meandering interplanetary magnetic field lines

    NASA Astrophysics Data System (ADS)

    Laitinen, Timo; Kopp, Andreas; Effenberger, Frederic; Dalla, Silvia; Marsh, Mike

    2016-04-01

    Recent multi-spacecraft Solar Energetic Particle (SEP) observations have challenged the traditional view of SEP production and interplanetary transport. In several events, the SEP intensities rise fast even at 180 degree longitudinal distance from the flare location. For many events the anisotropy of the SEPs has been found to depend on the observer's longitude, being stronger at locations that are well magnetically connected to the assumed SEP source region, as compared to wider longitudinal reaches. This suggests that interplanetary transport is an important factor for the SEP cross-field extent. The traditional modelling approach, with diffusive cross-field propagation, however, requires diffusion across the mean magnetic field much faster than that supported by current theories. We study the temporal and spatial evolution of SEP intensities and anisotropy using a new SEP transport model, FP+FLRW, which incorporates field-line random walk (FLRW) into the Fokker-Planck (FP) transport modelling framework. The FP+FLRW model was introduced by Laitinen et al (2013), who found using full-orbit simulations that the cross-field propagation of particles early in an SEP event is not diffusive, but dominated by deterministic propagation along stochastically meandering turbulent field-lines. We have extended the FP+FLRW model to a Parker spiral geometry, and show that it is able to reproduce the observed fast access of SEPs to a wide range of longitudes. The observed Gaussian shaped distribution of peak intensities versus longitude, having a sigma=30-50 degrees, is reproduced already for a narrow source region, while using realistic interplanetary transport conditions. We compare the anisotropy evolution of an SEP event given by the FP+FLRW model to that given by the traditional FP approach, and discuss the implications of our findings for the SEP event origins, source width and the role of interplanetary turbulence in the interpretation of the SEP observations.

  11. Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2001-01-01

    The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results

  12. Superdiffusive shock acceleration and short acceleration times at interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Zimbardo, Gaetano

    2016-04-01

    The analysis of time profiles of particles accelerated at interplanetary shock waves has shown evidence for superdiffusive transport in the upstream region. Superdiffusive transport is characterized by a mean square displacement that grows faster than linearly in time and by non Gaussian statistics for the distribution of the particle jump lengths. In the superdiffusive framework it has been shown that particle time profiles upstream of a planar shock decay as power laws, at variance with exponential particle time profiles predicted in the case of diffusive transport. A large number of interplanetary shocks, including coronal mass ejection driven shocks, exhibit energetic particle time profiles that decay as power laws far upstream. In order to take this evidence into account, we have extended the standard theory of diffusive shock acceleration to the case of particle superdiffusive transport (superdiffusive shock acceleration). This has allowed us to derive both hard energy spectral indices and short acceleration times. This new theory has been tested for a number of interplanetary shock waves, observed by the Ulysses and the ACE spacecraft, and for the termination shock. The superdiffusive shock acceleration leads to a strong reduction of the acceleration times (even of about one order of magnitude) with respect to the diffusive shock acceleration. Thus, this new framework provides a substantial advancement in the understanding of the processes of particle acceleration and particle transport, which are among the main objectives of the new Solar Probe and Solar Orbiter space missions.

  13. Sensing CMEs Propagating in the Interplanetary Medium. MEXART IPS Observations

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; Romero Hernandez, E.; Aguilar-Rodriguez, E.; Ontiveros-Hernandez, V.; Rodriguez-Martinez, M. R.; Mejia-Ambriz, J. C.

    2014-12-01

    The Mexican Array Radiotelescope (MEXART) is a ground instrument fully dedicated to perform Interplanetary Scintillation (IPS) observations to track large-scale solar wind disturbances within the Sun and the Earth. The MEXART is located at Michoacan (19 degrees 48' North, 101 degrees 41' West) and has an operation frequency of 140 MHz. The IPS technique is based on the scintillations that interplanetary disturbances (e.g., ICMEs) causes on the signal of small diameter cosmic radio sources detected by a radiotelescope. We report the tracking of the first solar disturbances detected by the instrument during the maximum of solar cycle 24. We estimated solar wind velocities and scintillation indexes (m). We present the first curves of the variation of the scintillating index with respect to the heliocentric distance for some strong radio sources using IPS observations at 140 MHZ. We identified events associated with strong scintilltaion in our data. We combine the IPS data with white light chronograph observations to identify the first CMEs in the interplanetary medium detected by the instrument.

  14. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    NASA Astrophysics Data System (ADS)

    Graps, A. L.; Green, S. F.; McBride, N.; McDonnell, J. A. M.; Bunte, K.; Svedhem, H.; Drolshagen, G.

    2007-01-01

    In September 1996, a dust/debris detector: GORID was launched into the geostationary (GEO) region as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris to interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. While the physical characteristics of the GORID impacts alone are insufficient for a reliable distinction between debris and interplanetary dust, the temporal behavior of the impacts are strong enough indicators to separate the populations based on clustering. Non-cluster events are predominantly interplanetary, while cluster events are debris. The GORID mean flux distributions (at mass thresholds which are impact speed dependent) for IDPs, corrected for dead time, are 1.35 times 10^{-4} m^{-2} s^{-1} using a mean detection rate: 0.54 d^{-1 and for space debris are 6.1 times 10^{-4} m^{-2}s^{-1} using a mean detection rate: 2.5 d^{-1}. Beta-meteoroids were not detected. Clusters could be a closely-packed debris cloud or a particle breaking up due to electrostatic fragmentation after high charging.},

  15. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    NASA Astrophysics Data System (ADS)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  16. GEO Debris and interplanetary dust: fluxes and charging behavior

    NASA Astrophysics Data System (ADS)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the slag particles.

  17. Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin

    2016-04-01

    Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.

  18. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  19. Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; McAdams, James

    2011-01-01

    The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.

  20. Dynamics of the Solar Plasma Events and Their Interplanetary Consequences

    NASA Astrophysics Data System (ADS)

    Kaushik, Subhash Chandra

    2016-07-01

    In the present study we have analyzed the interplanetary plasma / field parameter, which have initiated the complex nature intense and highly geo-effective events in the magnetosphere. It is believed that Solar wind velocity V. interplanetary magnetic field (IMF) B and Bz are the crucial drivers of these activities. However, sometimes strong geomagnetic disturbance is associated with the interaction between slow and fast solar wind originating from coronal holes leads to create co-rotating plasma interaction region (CIR). Thus the dynamics of the magnetospheric plasma configuration is the reflection of measured solar wind and interplanetary magnetic field (IMF) conditions. While the magnetospheric plasma anomalies are generally represented by geomagnetic storms and sudden ionosphere disturbance (SIDs). The study considers geomagnetic storms associated with disturbance storm time (Dst) decreases of more than -50 nT to -300 nT, observed during solar cycle 23 and the ascending phase of solar cycle 24. These have been analyzed and studied statistically. The spacecraft data those provided by SOHO, ACE and geomagnetic stations like WDC-Kyoto are utilized in the study. It is observed that the yearly occurrences of geomagnetic storm are strongly correlated with 11-year sunspot cycle, but no significant correlation between the maximum and minimum phase of solar cycle have been found. It is also found that solar cycle-23 is remarkable for occurrence of intense geomagnetic storms during its declining phase. The detailed results are discussed in this paper.

  1. Joint conference of iMEC 2015 (2nd International Manufacturing Engineering Conference & APCOMS 2015 (3rd Asia-Pacific Conference on Manufacturing Systems)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    The iMEC 2015 is the second International Manufacturing Engineering Conference organized by the Faculty of Manufacturing, Universiti Malaysia Pahang (UMP), held from 12-14th November 2015 in Kuala Lumpur, Malaysia, with a theme "Materials, Manufacturing and Systems for Tomorrow". For the first time, iMEC is organized together with 3rd Asia- Pacific Conference on Manufacturing System (APCOMS 2015) which owned by Fakulti Teknologi Industri, Institut Teknologi Bandung (ITB), Indonesia. This is an extended collaboration between UMP and ITB to intensify knowledge sharing and experiences between higher learning institutions. This conference (iMEC & APCOMS 2015) is a platform for knowledge exchange and the growth of ideas, particularly in manufacturing engineering. The conference aims to bring researchers, academics, scientists, students, engineers and practitioners from around the world together to present their latest findings, ideas, developments and applications related to manufacturing engineering and other related research areas. With rapid advancements in manufacturing engineering, iMEC is an appropriate medium for the associated community to keep pace with the changes. In 2015, the conference theme is “Materials, Manufacturing and Systems for Tomorrow” which reflects the acceleration of knowledge and technology in global manufacturing. The papers in these proceedings are examples of the work presented at the conference. They represent the tip of the iceberg, as the conference attracted over 200 abstracts from Malaysia, Indonesia, Japan, United Kingdom, Australia, India, Bangladesh, South Africa, Turkey and Morocco and 151 full papers were accepted in these proceedings. The conference was run in four parallel sessions with 160 presenters sharing their latest finding in the areas of manufacturing process, systems, advanced materials and automation. The first keynote presentation was given by Prof. B. S. Murthy (IIT, Madras) on "Nanomaterials with Exceptional

  2. Stages of Geoinformation Evolution Related to the Territories Described in the Bible - from the 3Rd Millennium B.C. to Modern Times

    NASA Astrophysics Data System (ADS)

    Linsenbarth, Adam

    2012-09-01

    The paper presents consecutive stages of the evolution of geoinformation related to the territories of the events described in the Bible. Two geoinformation sources are presented: the Bible and non-Bible sources. In the Bible there is much, often some highly detailed information regarding terrain topography. The oldest non-Bible sources are incorporated in the ancient documents, which were discovered in Egypt and Mesopotamia. Some of them are related to the 3rd millen- nium B.C. The further stages are related to the onomasticons and itineraries written by travellers and pilgrims to the Holy Land. The most famous onomasticons include: onomasticons prepared by bishop Eusebius from Caesarea and those pre- pared by St. Jerome. One of the oldest maps of Palestine's territory is the so-called mosaic map of Madaba dated to 565. In the 15th century several Bible maps were edited. The most rapid evolution occurred in the 16th and 17* centuries, when the world famous cartographers such as Mercator and Ortelius edited several maps of Palestine's territory. Cartographers from several European countries edited more than 6,000 maps presenting the Biblical territories and Biblical events. Modem maps, based on detailed topographical surveys, were edited m the second half of the 19* and 20th centuries. W artykule przedstawiono kolejne etapy rozwoju geoinformacji dotyczącej terenówr biblijnych. Omówiono dwa źródła informacji, a mianowicie geoinformacje biblijne i pozabiblijne. W tekstach biblijnych można znaleźć wiele, często bardzo detalicznych informacji topograficznych. Najstarsze źródła pozabiblijne, to starożytne dokumenty odnalezione na terenach Egiptu i Mezopotamii. Niektóre z nich pochodzą z trzeciego milenium przed Chr. Kolejnym etapem geoinformacji były onomastikony oraz dzienniki podróży pisane przez podróżników i pielgrzymów do Ziemi Świętej. Do najbardziej znanych należy onomastikon sporządzony przez biskupa Euzebiusza z Cezarei oraz

  3. [Cold agglutinin disease -  no response to glucocorticoids and rituximab, what treatment is best for the 3rd line of therapy? Case report and review of the literature].

    PubMed

    Adam, Z; Pejchalová, A; Chlupová, G; Ríhová, L; Pour, L; Krejčí, M; Cervinek, L; Král, Z; Mayer, J

    2013-09-01

    in about one  half of treated patients and the remission duration median after rituximab administration is 11 months. A combination of rituximab with fludarabin was more effective, though more toxic; this combination, in a clinical study, led to 75% of patients responding to treatment, including 20% experiencing complete remission. The treatment response median reached over 66 months. In a small study (10 patients) an increase in the amount of rituximab administrations from 4 to 8 led to a treatment response in 6 patients in whom administration of 4 doses of rituximab had no response. When treating Waldenström macroglobulinemia, effectiveness of the following drugs and their combinations was proven: rituximab, chlorambucil, cyclophosphamide, fludarabin, bortezomib, lenalidomid, bendamustin and alemtuzumab. The same drugs and treatment procedures are used for the treatment of the cold agglutinin disease as for Waldenström macroglobulinemia. Successful treatment with vortezomibem, combinations of rituximab + bendamustin, rituximab + cyclophosphamide or rituximab + fludarabin + cyclophosphamide, were recorded in the form of a description as regards the cold agglutinin disease treatment. An important benefit is also shown through treatment with the monoclonal antibody antiC5, eculizumab, which is otherwise used for the treatment of paroxysmal nocturnal haemoglobinuria. Eculizumab blocks the C5 element of the component and thus stops haemolysis in a patient with cold agglutinin disease. As cold agglutinin disease is very rare, there are only a few clinical studies and when treating this rare disease we have no other option than to take into account the information contained in the descriptions of the particular cases of cold agglutinin disease and the experience of Waldenström macroglobulinemia disease treatment. The discussion seeks to solve the issue regarding what 3rd line treatment option to use in the described patient. PMID:24073955

  4. In-situ Measurements of Interplanetary and Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Grün, E.

    2008-09-01

    Dust is finely dispersed solid material in interplanetary space. It derives from a number of sources: larger meteoroids, comets, asteroids, the planets, and satellites, and there is interstellar dust sweeping through the solar system. These dust particles range in size from assemblages of a few molecules to tenth millimetre-sized grains. Dust particles absorb and scatter solar radiation and emit thermal radiation giving rise to Zodiacal light at visible and thermal emission at infrared wavelengths. Astronomical observations of both emissions provide information on the average properties of very large number of particles and their spatial distribution. Information on the physical and chemical properties and the orbital motion is obtained by direct methods. Direct methods include: (1) collection of dust particles (Fig. 1) on collectors on spacecraft returned to Earth and on airplanes in the stratosphere, (2) investigations of dust impacts craters on lunar samples and manmade impact plates returned from space, and (3) insitu measurements of individual particles by instruments on board satellites and space probes. Dust particles collected in the upper atmosphere provide the morphology and chemical and mineralogical composition of extraterrestrial particles of 5 to 50 microns in diameter but no information on the source of these particles is obtained. The NASA Stardust mission was the first space mission that returned dust from a comet. The study of impact craters on man-made and lunar surface samples exposed to space is used to characterize the flux of interplanetary micrometeoroids and their size distribution. Microcraters have been found ranging from 0.02 μm to millimetres in diameter. In-situ detectors on board of satellites and spaceprobes for the measurement of interplanetary dust have been used in the ecliptic plane from inside Mercury's orbit to the Kuiper belt and in space above and below the solar poles. Penetration detectors have a detection threshold of

  5. Magnetospheric Response to Interplanetary Field Enhancements: Coordinated Space-based and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Chi, Peter; Russell, Christopher; Lai, Hairong

    2014-05-01

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth's magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth's field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth's magnetopause. These ground stations spread across many

  6. Simulating Autonomous Telecommunication Networks for Space Exploration

    NASA Technical Reports Server (NTRS)

    Segui, John S.; Jennings, Esther H.

    2008-01-01

    Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.

  7. The "Approximate 150 Day Quasi-Periodicity" in Interplanetary and Solar Phenomena During Cycle 23

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    A"quasi-periodicity" of approx. 150 days in various solar and interplanetary phenomena has been reported in earlier solar cycles. We suggest that variations in the occurrence of solar energetic particle events, inter-planetary coronal mass ejections, and geomagnetic storm sudden commenceents during solar cycle 23 show evidence of this quasi-periodicity, which is also present in the sunspot number, in particular in the northern solar hemisphere. It is not, however, prominent in the interplanetary magnetic field strength.

  8. Effects of Deep Water Source-Sink Terms in 3rd generation Wave Model SWAN using different wind data in Black Sea

    NASA Astrophysics Data System (ADS)

    Kirezci, Cagil; Ozyurt Tarakcioglu, Gulizar

    2016-04-01

    Coastal development in Black Sea has increased in recent years. Therefore, careful monitoring of the storms and verification of numerical tools with reliable data has become important. Previous studies by Kirezci and Ozyurt (2015) investigated extreme events in Black Sea using different wind datasets (NCEP's CFSR and ECMWF's operational datasets) and different numerical tools (SWAN and Wavewatch III). These studies showed that significant effect to results is caused by the deep water source-sink terms (wave growth by wind, deep water dissipation of wave energy (whitecapping) and deep water non-linear wave-wave interactions). According to Timmermans(2015), uncertainty about wind forcing and the process of nonlinear wave-wave interactions are found to be dominant in numerical wave modelling. Therefore, in this study deep water source and sink term solution approaches of 3rd generation numerical tool (SWAN model) are tested, validated and compared using the selected extreme storms in Black Sea. 45 different storms and storm like events observed in Black Sea between years 1994-1999 are selected to use in the models. The storm selection depends on the instrumental wave data (significant wave heights, mean wave period and mean wave direction) obtained in NATO-TU Waves project by the deep water buoy measurements at Hopa, Sinop, Gelendzhik, and wind data (mean and peak wind speeds, storm durations) of the regarding events. 2 different wave growth by wind with the corresponding deep water dissipation terms and 3 different wave -wave interaction terms of SWAN model are used in this study. Wave growth by wind consist of two parts, linear growth which is explained by Cavaleri and Malanotte-Rizzoli(1981),and dominant exponential growth. There are two methods in SWAN model for exponential growth of wave, first one by Snyder et al. (1981), rescaled in terms of friction velocity by Komen et. al (1984) which is derived using driving wind speed at 10m elevation with related drag

  9. Effects of Deep Water Source-Sink Terms in 3rd generation Wave Model SWAN using different wind data in Black Sea

    NASA Astrophysics Data System (ADS)

    Kirezci, Cagil; Ozyurt Tarakcioglu, Gulizar

    2016-04-01

    Coastal development in Black Sea has increased in recent years. Therefore, careful monitoring of the storms and verification of numerical tools with reliable data has become important. Previous studies by Kirezci and Ozyurt (2015) investigated extreme events in Black Sea using different wind datasets (NCEP's CFSR and ECMWF's operational datasets) and different numerical tools (SWAN and Wavewatch III). These studies showed that significant effect to results is caused by the deep water source-sink terms (wave growth by wind, deep water dissipation of wave energy (whitecapping) and deep water non-linear wave-wave interactions). According to Timmermans(2015), uncertainty about wind forcing and the process of nonlinear wave-wave interactions are found to be dominant in numerical wave modelling. Therefore, in this study deep water source and sink term solution approaches of 3rd generation numerical tool (SWAN model) are tested, validated and compared using the selected extreme storms in Black Sea. 45 different storms and storm like events observed in Black Sea between years 1994-1999 are selected to use in the models. The storm selection depends on the instrumental wave data (significant wave heights, mean wave period and mean wave direction) obtained in NATO-TU Waves project by the deep water buoy measurements at Hopa, Sinop, Gelendzhik, and wind data (mean and peak wind speeds, storm durations) of the regarding events. 2 different wave growth by wind with the corresponding deep water dissipation terms and 3 different wave -wave interaction terms of SWAN model are used in this study. Wave growth by wind consist of two parts, linear growth which is explained by Cavaleri and Malanotte-Rizzoli(1981),and dominant exponential growth. There are two methods in SWAN model for exponential growth of wave, first one by Snyder et al. (1981), rescaled in terms of friction velocity by Komen et. al (1984) which is derived using driving wind speed at 10m elevation with related drag

  10. Physical properties of interplanetary dust: laboratory and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hadamcik, Edith; Lasue, Jeremie; Levasseur-Regourd, Anny-Chantal; Renard, Jean-Baptiste; Buch, Arnaud; Carrasco, Nathalie; Cottin, Hervé; Fray, Nicolas; Guan, Yuan Yong; Szopa, Cyril

    Laboratory light scattering measurements with the PROGRA2 experiment, in A300-CNES and ESA dedicated microgravity flights or in ground based configurations, offer an alternative to models for exploring the scattering properties of particles with structures too complex to be easily handled by computer simulations [1,2]. The technique allows the use of large size distributions (nanometers to hundreds of micrometers) and a large variety of materials, similar to those suspected to compose the interplanetary particles [3]. Asteroids are probably the source of compact particles, while comets have been shown to eject compact and fluffy materials [4]. Moreover giant planets provide further a small number of interplanetary particles. Some interstellar particles are also present. To choose the best samples and size distributions, we consider previous numerical models for the interplanetary particles and their evolution with solar distance. In this model, fluffy particles are simulated by fractal aggregates and compact particles by ellipsoids. The materials considered are silicates and carbonaceous compound. The silicate grains can be coated by the organics. Observations are fitted with two parameters: the size distribution of the particles and the ratio of silicates over carbonaceous compounds. From the light scattering properties of the particles, their equilibrium temperature can be calculated for different structures and composition. The variation of their optical properties and temperatures are studied with the heliocentric distance [5,6]. Results on analogs of cometary particles [7] and powdered meteorites as asteroidal particles will be presented and compared to numerical simulations as well as observations. Organics on cometary grains can constitute distributed sources if degraded by solar UV and heat [8, 9]. The optical properties of CxHyNz compounds are studied after thermal evolution [10]. As a first approach, they are used to simulate the evolution of cometary or

  11. The pioneers of interplanetary communication: From Gauss to Tesla

    NASA Astrophysics Data System (ADS)

    Raulin-Cerceau, Florence

    2010-12-01

    The present overview covers the period from 1820 to the beginning of the 20th century. Emphasis is laid on the latter half of the 19th century because many efforts have been done at that time to elaborate schemes for contacting our neighboring planets by interplanetary telegraphy. This period knew many advances not only in planetary studies but also in the nascent field of telecommunications. Such a context led astronomers who were also interested in the problem of planetary habitability, to envisage that other planets could be contacted, especially the planet Mars. Interplanetary communication using a celestial telegraphy was planned during this period of great speculations about life on Mars. This paper focuses on four authors: the Frenchmen C. Flammarion, Ch. Cros, A. Mercier and the Serbian N. Tesla, who formulated early proposals to communicate with Mars or Venus. The first proposals (which remained only theoretical) showed that an initial reflection had started as early as the second part of the 19th century on the type of language that could be both universal and distinguishable from a natural signal. Literary history of interplanetary communication preceded by far the scientific one. Authors of the 1900s were very prolific on this topic. French fictions are mentioned in this paper as examples of such a literature. This incursion into selected texts stresses the fact that the problem of techniques and messages employed to communicate with other planets goes beyond the strict scientific framework. Finally, this paper aims to highlight the similarities as well as the differences between the different proposals and to underline what that could possibly help present SETI research to define messages supposed to be sent to other planetary systems.

  12. A Study of Geoeffective Magnetic Clouds in the Interplanetary Medium

    NASA Astrophysics Data System (ADS)

    Lago, Alisson Dal

    1999-01-01

    Magnetic clouds are interplanetary structures whose origins are related to Coronal Mass Ejections (CUE). Their features are: strong magnetic field intensity (typically > 10nT (nano Tesla)), a large rotation in the magnetic field angle as the cloud crosses the spacecraft, low proton temperature and Beta (thermal pressure/magnetic pressure) values (approximately 0.1). For a set of previously published magnetic cloud events and another set of clouds identified in the whole year of 1979 we present a study of plasma and magnetic field parameters. We have shown the existence of a relationship between the peak magnetic field strength and peak velocity value of the cloud, with a tendency that clouds which move at higher speeds also possess higher core magnetic field strengths. There is also an indication that this relationship is peculiar to magnetic clouds, whereas other types of non-cloud driver gas, or ICME , events do not seam to show a similar relationship. Both parameters, velocity and magnetic field strength, are related to Magnetic Storms. It is also addressed the interaction between magnetic clouds and other features in the interplanetary medium by calculating the Total Static Pressure, Magnetic plus Thermal, and the Dynamic Pressure relative to other structures surrounding the cloud, investigating their possible relation to magnetic cloud field enhancement. This work contributes to: (1) Space Weather Forecasting, through the calculation of the magnetic cloud field strengths by knowing their velocities (the latter can be remotely measured by sequences of coronograph images); (2) the study of the relation between magnetic clouds and magnetic storms; and (3) the study of the interaction between magnetic clouds and other interplanetary structures surrounding it.

  13. Magnetic Reconnection in the Interior of Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Fermo, R. L.; Opher, M.; Drake, J. F.

    2014-07-01

    Recent in situ observations of interplanetary coronal mass ejections (ICMEs) found signatures of reconnection exhausts in their interior or trailing edge. Whereas reconnection on the leading edge of an ICME would indicate an interaction with the coronal or interplanetary environment, this result suggests that the internal magnetic field reconnects with itself. In light of this data, we consider the stability properties of flux ropes first developed in the context of astrophysics, then further elaborated upon in the context of reversed field pinches (RFPs). It was shown that the lowest energy state of a flux rope corresponds to ∇×B=λB with λ a constant, the so-called Taylor state. Variations from this state will result in the magnetic field trying to reorient itself into the Taylor state solution, subject to the constraints that the toroidal flux and magnetic helicity are invariant. In reversed field pinches, this relaxation is mediated by the reconnection of the magnetic field, resulting in a sawtooth crash. If we likewise treat the ICME as a flux rope, any deviation from the Taylor state will result in reconnection within the interior of the flux tube, in agreement with the observations by Gosling et al. Such a departure from the Taylor state takes place as the flux tube cross section expands in the latitudinal direction, as seen in magnetohydrodynamic (MHD) simulations of flux tubes propagating through the interplanetary medium. We show analytically that this elongation results in a state which is no longer in the minimum energy Taylor state. We then present magnetohydrodynamic simulations of an elongated flux tube which has evolved away from the Taylor state and show that reconnection at many surfaces produces a complex stochastic magnetic field as the system evolves back to a minimum energy state configuration.

  14. Solar events and their influence on the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Joselyn, Jo Ann

    The Workshop on Solar Events and Their Influence on the Interplanetary Medium very successfully met its goal “to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances.” Organized by the National Oceanic and Atmospheric Administration Space Environment Laboratory and funded by the national Aeronautics and Space Administration (NASA) Solar Maximum Mission Principal Investigators and the Space Environment Laboratory, this meeting was held held September 8—11, 1986, in Estes Park, Colo. A total of 94 scientists, including representatives from Argentina, Germany, Japan, France, Scotland, England, Australia, Poland, Israel, Greece, China and the United States attended. A novel meeting schedule was adopted, with no formal presentations other than a keynote address by Rainer Schwenn of the Max Planck Institut fur Aeronomie (Federal republic of Germany), entitled “Transients on the Sun and Their Effects on the Interplanetary Medium: An Interdisciplinary Challenge” a Gordon A. Newkirk Memorial talk on “Early History of the Coronagraph” by John Eddy of the University Corporation for Atmospheric Research Office of Interdisciplinary Earth Studies (Boulder, Colo.); and introductory and summary statements by working group leaders. Instead, there were three working groups, which met either independently or with one of the other groups according to a prearranged plan. Suggested roundtable discussion topics were distributed in advance to the members of each group, but primarily, each group was expected to think of questions for the other groups and respond to requests for information from them. As may be expected, for some topics there was group consensus. Other topics were contentious.

  15. Interplanetary Alfven waves and auroral (substorm) activity: IMP 8

    SciTech Connect

    Tsurutani, B.T.; Gould, T.; Goldstein, B.E. ); Gonzalez, W.D. ); Sugiura, Masahisa )

    1990-03-01

    Almost year of IMP 8 interplanetary magnetic field and plasma data (Days 1-312, 1979) have been examined to determine the interplanetary causes of geomagnetic AE activity. The nature of the interplanetary medium (Alfvenic or non-Alfvenic) and the B{sub 2} correlation with AE were examined over 12-hour increments throughout the study. It is found that Alfvenic wave intervals (defined as V{sub x}-B{sub x} cross-correlation coefficients of >0.6) are present over 60% of the time and the southward component of the Alfven waves is well correlated with AE (average peak correlation coefficient 0.62), with a median lag of 43 min. The most probable delay of AE from B{sub s} is considerably shorter, about 20-25 min. Southward magnetic fields during non-Alfvenic intervals (V{sub x}-B{sub x} cross-correlation coefficients of < 0.4) are equally effective in producing geomagnetic activity. Peak correlation coefficients and lags are similar to those of Alfvenic intervals. From this statistical study, no major differences in the magnetospheric response to Alfvenic and non-Alfvenic intervals were obvious. The high-intensity long-duration continuous AE activity (HILDCAA) events discussed previously by Tsurutani and Gonzalez (1987) are demosntrated to be caused by the southward components of the Alfven waves, presumably through the process of magnetic reconnection. The lag times of AE from B{sub s} were variable from event to event (and at different times within the Alfven wave train), ranging from 45 min to as little as 0 min. The cause of this variable delay is somewhat surprising and is not presently well understood.

  16. Energetic Particle Pressure at Interplanetary Shocks: STEREO-A Observations

    NASA Astrophysics Data System (ADS)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-11-01

    We study periods of elevated energetic particle intensities observed by STEREO-A when the partial pressure exerted by energetic (≥83 keV) protons (PEP) is larger than the pressure exerted by the interplanetary magnetic field (PB). In the majority of cases, these periods are associated with the passage of interplanetary shocks. Periods when PEP exceeds PB by more than one order of magnitude are observed in the upstream region of fast interplanetary shocks where depressed magnetic field regions coincide with increases of energetic particle intensities. When solar wind parameters are available, PEP also exceeds the pressure exerted by the solar wind thermal population (PTH). Prolonged periods (>12 hr) with both PEP > PB and PEP > PTH may also occur when energetic particles accelerated by an approaching shock encounter a region well upstream of the shock characterized by low magnetic field magnitude and tenuous solar wind density. Quasi-exponential increases of the sum PSUM = PB + PTH + PEP are observed in the immediate upstream region of the shocks regardless of individual changes in PEP, PB, and PTH, indicating a coupling between PEP and the pressure of the background medium characterized by PB and PTH. The quasi-exponential increase of PSUM implies a radial gradient ∂PSUM/∂r > 0 that is quasi-stationary in the shock frame and results in an outward force applied to the plasma upstream of the shock. This force can be maintained by the mobile energetic particles streaming upstream of the shocks that, in the most intense events, drive electric currents able to generate diamagnetic cavities and depressed solar wind density regions.

  17. Analysis of Interplanetary Dust Experiment Detectors and Other Witness Plates

    NASA Technical Reports Server (NTRS)

    Griffis, D. P.; Wortman, J. J.

    1992-01-01

    The development of analytical procedures for identifying the chemical composition of residue from impacts that occurred on the Interplanetary Dust Experiment (IDE) detectors during the flight of Long Duration Exposure Facility (LDEF) and the carrying out of actual analysis on IDE detectors and other witness plates are discussed. Two papers on the following topics are presented: (1) experimental analysis of hypervelocity microparticle impact sites on IDE sensor surfaces; and (2) contaminant interfaces with secondary Ion Mass Spectrometer (SIMS) analysis of microparticle impactor residues on LDEF surfaces.

  18. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  19. Hydrated interplanetary dust particle linked with carbonaceous chondrites?

    NASA Technical Reports Server (NTRS)

    Tomeoka, K.; Buseck, P. R.

    1985-01-01

    The results of transmission electron microscope observations of a hydrated interplanetary dust particle (IDP) containing Fe-, Mg-rich smectite or mica as a major phase are reported. The sheet silicate appears to have formed by alteration of anhydrous silicates. Fassaite, a Ca, Al clinopyroxene, also occurs in this particle, and one of the crystals exhibits solar-flare tracks, clearly indicating that it is extraterrestrial. Fassaite is a major constituent of the Ca-, Al-rich refractory inclusions found in the carbonaceous chondrites, so its presence in this particle suggests that there may be a link between hydrated IDPs and carbonaceous chondrites in the early history of the solar system.

  20. Interplanetary crew exposure estimates for galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Cucinotta, Francis A.; Wilson, John W.

    1992-01-01

    Using the Langley Research Center galactic cosmic-ray transport computer code and the Computerized Anatomical Man model, initial estimates of interplanetary exposure of astronauts to galactic cosmic rays, during periods of solar minimum activity, are made for a realistic human geometry shielded by various thicknesses of spacecraft aluminum shielding. Conventional dose assessment in terms of total absorbed dose and dose equivalent is made for the skin, ocular lens, and bone marrow. Included in the analyses are separate evaluations of the contributions from the incident primary ions, from subsequent-generation fragmentation products, and from target fragments. In all cases considered, the equivalent sphere approximation yielded conservative overestimates for the actual organ exposures.

  1. Interplanetary medium data book, supplement 4, 1985-1988

    NASA Technical Reports Server (NTRS)

    King, Joseph H.

    1989-01-01

    An extension is presented of the series of Interplanetary Medium Data Books and supplements which have been issued by the National Space Science Data Center since 1977. This volume contains solar wind magnetic field (IMF) and plasma data from the IMP 8 spacecraft for 1985 to 1988, and 1985 IMF data from the Czechoslovakian Soviet Prognoz 10 spacecraft. The normalization of the MIT plasma density and temperature, which has been discussed at length in previous volumes, is implemented as before, using the same normalization constants for 1985 to 1988 data as for the earlier data.

  2. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C03

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C03 The IDE mounting plate and the detector frames are coated with a brown stain similiar to that seen on the other experiments in this and other trays located nearby. The stain seems to be slightly darker along the lower edge of the solar sensor mounting plate. The colors and designs seen on the detectors are reflections of the surrounding area. The thin brown film on the detectors metallic surface has resulted in a duller reflection of a technician, in the upper left, and other items.

  3. Capture of interplanetary and interstellar dust by the jovian magnetosphere.

    PubMed

    Colwell, J E; Horányi, M; Grün, E

    1998-04-01

    Interplanetary and interstellar dust grains entering Jupiter's magnetosphere form a detectable diffuse faint ring of exogenic material. This ring is composed of particles in the size range of 0. 5 to 1.5 micrometers on retrograde and prograde orbits in a 4:1 ratio, with semimajor axes 3 < a < 20 jovian radii, eccentricities 0. 1 < e < 0.3, and inclinations i less, similar 20 degrees or i greater, similar 160 degrees. The size range and the orbital characteristics are consistent with in situ detections of micrometer-sized grains by the Galileo dust detector, and the measured rates match the number densities predicted from numerical trajectory integrations. PMID:9525863

  4. Coronal mass ejections and magnetic flux ropes in interplanetary space

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1990-01-01

    Coronal mass ejections (CMEs) are formed in the solar corona by the ejection of material from closed field regions that were not previously participating in the solar wind expansion. CMEs commonly exhibit a signature consisting of a counterstreaming flux of suprathermal electrons with energies above about 80 eV, indicating closed field structures that are either rooted at both ends in the sun or entirely disconnected from it. About 30 percent of all CME events at 1 AU exhibit large, coherent internal field rotations typical of magnetic flux ropes. It is suggested that interplanetary magnetic flux ropes form as a result of reconnection within rising, previously sheared coronal magnetic loops.

  5. A decametric wavelength radio telescope for interplanetary scintillation observations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.

    1975-01-01

    A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.

  6. Capture of interplanetary and interstellar dust by the jovian magnetosphere.

    PubMed

    Colwell, J E; Horányi, M; Grün, E

    1998-04-01

    Interplanetary and interstellar dust grains entering Jupiter's magnetosphere form a detectable diffuse faint ring of exogenic material. This ring is composed of particles in the size range of 0. 5 to 1.5 micrometers on retrograde and prograde orbits in a 4:1 ratio, with semimajor axes 3 < a < 20 jovian radii, eccentricities 0. 1 < e < 0.3, and inclinations i less, similar 20 degrees or i greater, similar 160 degrees. The size range and the orbital characteristics are consistent with in situ detections of micrometer-sized grains by the Galileo dust detector, and the measured rates match the number densities predicted from numerical trajectory integrations.

  7. Kinematical properties of interplanetary coronal mass ejections detected by interplanetary scintillation observations during the solar cycle 23

    NASA Astrophysics Data System (ADS)

    Iju, T.; Tokumaru, M.; Fujiki, K.

    2011-12-01

    We report kinematical properties of interplanetary coronal mass ejections (ICMEs) detected by interplanetary scintillation (IPS) observations. The IPS observations have been carried out since the early 1980s using the 327MHz radio-telescope system of the Solar-Terrestrial Environment Laboratory, Nagoya University. These observations allow us to probe into the solar wind between 0.2 and 1 AU with a cadence of 24 hours. In this study, we analyzed the data of solar wind disturbance factor (g-value) derived from IPS observations in 1997-2009 corresponding to the whole period of the solar cycle 23. From this analysis, we made a list of IPS disturbance event days (IDEDs) in the period. Further, we compare our list with that of near-Earth ICMEs compiled by Richardson and Cane [2010] with an assumption that an ICME cause an IDED. From this comparison, we identified 50 ICMEs, which are detected at three locations, i.e. near-Sun, interplanetary space, and near-Earth. Our statistical analyses for kinematical properties of these events yield following results: (1) fast ICMEs are rapidly decelerated, while slow ICMEs are accelerated, and consequently radial speeds converge on the speed of background solar wind during their outward propagation; (2) both of the accelerated and decelerated motions almost finish by 0.8AU with 490km/s of the critical speed for zero acceleration; (3) for the fast ICMEs, aave=k(V-Vbg) is more suited than aave=k(V-Vbg)|V-Vbg| to describes the relationship between average accelerations and speed differences, where aave, k, V, and Vbg are the average acceleration, coefficient, ICME speed, and speed of background solar wind, respectively. These results support a hypothesis that the radial motion of ICME is governed by drag force caused by an interaction with the background solar wind. Our results also suggest that stokes drag is a predominant force for the propagation of fast ICME.

  8. Interplanetary gas. XXII - Plasma tail disconnection events in comets - Evidence for magnetic field line reconnection at interplanetary sector boundaries

    NASA Technical Reports Server (NTRS)

    Niedner, M. B., Jr.; Brandt, J. C.

    1978-01-01

    Attention is focused on a form of cometary activity which has been known for some time but is poorly understood: the discarding of a plasma tail by a comet. A link is found between plasma-tail rejections and conditions in the solar wind. A model is presented in which a disconnected tail is the end result of magnetic-field-line reconnection in the cometary ionosphere caused by the traversal of a magnetic sector boundary. Observations of plasma tails appear to be the best and only method at present of mapping the interplanetary sector structure out of the ecliptic plane.

  9. An interplanetary magnetic field ensemble at 1 AU

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.; King, J. H.

    1985-01-01

    A method for calculation ensemble averages from magnetic field data is described. A data set comprising approximately 16 months of nearly continuous ISEE-3 magnetic field data is used in this study. Individual subintervals of this data, ranging from 15 hours to 15.6 days comprise the ensemble. The sole condition for including each subinterval in the averages is the degree to which it represents a weakly time-stationary process. Averages obtained by this method are appropriate for a turbulence description of the interplanetary medium. The ensemble average correlation length obtained from all subintervals is found to be 4.9 x 10 to the 11th cm. The average value of the variances of the magnetic field components are in the approximate ratio 8:9:10, where the third component is the local mean field direction. The correlation lengths and variances are found to have a systematic variation with subinterval duration, reflecting the important role of low-frequency fluctuations in the interplanetary medium.

  10. Solar and Interplanetary Disturbances Causing Moderate Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Pratap Yadav, Mahendra; Kumar, Santosh

    2003-07-01

    The effect of solar and interplanetary disturbances on geomagnetospheric conditions leading to one hundred twenty one moderate geomagnetic storms (MGSs) with planetary index, Ap ≥ 20 and horizontal component of earth's magnetic field, H ≤ 250γ have been investigated using solar geophysical data (SGD), solar wind plasma (SWP) and interplanetary magnetic field (IMF) data during the period 1978-99. It is observed statistically that 64%, 36%, MGSs have occurred during maximum and minimum phase of solar cycle 21st and 22nd respectively. Further, it is observed that Hα, X-ray solar flares and active prominences and disapp earing filaments (APDFs) have occurred within lower helio latitude region associated with larger number of MGSs. No significant correlation between the intensity of GMSs and importance of Hα, X-ray solar flares have been observed. Maximum number of MGSs are associated with solar flares of lower importance of solar flare faint (SF). The lower importance in association with some specific characteristics i.e. location, region, duration of occurrence of event may also cause MGSs. The correlation coefficient between MGSs and sunspot numbers (SSNs) using Karl Pearson method, has been obtained 0.37 during 1978-99.

  11. Effects of interplanetary transport on derived energetic particle source strengths

    NASA Astrophysics Data System (ADS)

    Chollet, E. E.; Giacalone, J.; Mewaldt, R. A.

    2010-06-01

    We study the transport of solar energetic particles (SEPs) in the inner heliosphere in order to relate observations made by an observer at 1 AU to the number and total energy content of accelerated particles at the source, assumed to be near the Sun. We use a numerical simulation that integrates the trajectories of a large number of individual particles moving in the interplanetary magnetic field. We model pitch angle scattering and adiabatic cooling of energetic ions with energies from 50 keV nucleon-1 to 100 MeV nucleon-1. Among other things, we determine the number of times that particles of a given energy cross 1 AU and the average energy loss that they suffer because of adiabatic deceleration in the solar wind. We use a number of different forms of the interplanetary spatial diffusion coefficient and a wide range of scattering mean-free paths and consider a number of different ion species in order to generate a wide range of simulation results that can be applied to individual SEP events. We apply our simulation results to observations made at 1 AU of the 20 February 2002 solar energetic particle event, finding the original energy content of several species. We find that estimates of the source energy based on SEP measurements at 1 AU are relatively insensitive to the mean-free path and scattering scheme if adiabatic cooling and multiple crossings are taken into account.

  12. Effects of Interplanetary Transport on Derived Energetic Particle Source Strengths

    NASA Astrophysics Data System (ADS)

    Chollet, E. E.; Giacalone, J.; Mewaldt, R. A.

    2009-12-01

    We study the transport of solar energetic particles (SEPs) in the inner heliosphere in order to relate observations made by an observer at 1 AU to the total energy content of particles at the source, assumed to be near the Sun. We use a numerical simulation that integrates the trajectories of a large number of individual particles moving in the interplanetary magnetic field. We model pitch-angle scattering and adiabatic cooling of energetic ions with energies from 50 keV/nucleon to 100 MeV/nucleon. Among other things, we determine the number of times that particles of a given energy cross 1 AU and the average energy loss that they suffer due to adiabatic deceleration in the solar wind. We use a number of different forms of the interplanetary spatial diffusion coefficient, a wide range of scattering mean-free paths, and consider a number of different ion species in order to generate a wide range of simulation results that can be applied to individual SEP events. Our results are used to estimate the total energy needed to accelerate particles for an event on 20 February 2002 based on observations made at 1 AU. We find that estimates of the source energy based on SEP measurements at 1 AU are relatively insensitive to mean free path and scattering scheme.

  13. The Ring Current Response to Solar and Interplanetary Storm Drivers

    NASA Astrophysics Data System (ADS)

    Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.

    2014-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.

  14. Helicity transport from solar convection zone to interplanetary space

    NASA Astrophysics Data System (ADS)

    Zhang, Mei

    2013-07-01

    Magnetic helicity is a physical quantity that describes field topology. It is also a conserved quantity as Berger in 1984 demonstrated that the total magnetic helicity is still conserved in the corona even when there is a fast magnetic reconnection. It is generally believed that solar magnetic fields, together with their helicity, are created in the convection zone by various dynamo processes. These fields and helicity are transported into the corona through solar photosphere and finally released into the interplanetary space via various processes such as coronal mass ejections (CMEs) and solar winds. Here I will give a brief review on our recent works, first on helicity observations on the photosphere and how to understand these observations via dynamo models. Mostly, I will talk about what are the possible consequences of magnetic helicity accumulation in the corona, namely, the formation of magnetic flux ropes, CMEs taking place as an unavoidable product of coronal evolution, and flux emergences as a trigger of CMEs. Finally, I will address on in what a form magnetic field in the interplanetary space would accommodate a large amount of magnetic helicity that solar dynamo processes have been continuously producing.

  15. Magnetic field line lengths inside interplanetary magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Hu, Qiang; Qiu, Jiong; Krucker, Sam

    2015-07-01

    We report on the detailed and systematic study of field line twist and length distributions within magnetic flux ropes embedded in interplanetary coronal mass ejections (ICMEs). The Grad-Shafranov reconstruction method is utilized together with a constant-twist nonlinear force-free (Gold-Hoyle) flux rope model to reveal the close relation between the field line twist and length in cylindrical flux ropes, based on in situ Wind spacecraft measurements. We show that the field line twist distributions within interplanetary flux ropes are inconsistent with the Lundquist model. In particular, we utilize the unique measurements of magnetic field line lengths within selected ICME events as provided by Kahler et al. () based on energetic electron burst observations at 1 AU and the associated type III radio emissions detected by the Wind spacecraft. These direct measurements are compared with our model calculations to help assess the flux rope interpretation of the embedded magnetic structures. By using the different flux rope models, we show that the in situ direct measurements of field line lengths are consistent with a flux rope structure with spiral field lines of constant and low twist, largely different from that of the Lundquist model, especially for relatively large-scale flux ropes.

  16. Heliocentric distance dependence of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.

    1977-01-01

    Recent and ongoing planetary missions have provided extensive observations of the variations of the Interplanetary Magnetic Field (IMF) both in time and with heliocentric distance from the sun. Large time variations in both the IMF and its fluctuations were observed. These are produced predominantly by dynamical processes in the interplanetary medium associated with stream interactions. Magnetic field variations near the sun are propagated to greater heliocentric distances, also contributing to the observed variablity of the IMF. Temporal variations on a time-scale comparable to or less than the corotation period complicate attempts to deduce radial gradients of the field and its fluctuations from the various observations. However, recent measurements inward to 0.46 AU and outward to 5 AU suggest that the radial component of the field on average decreases approximately as r to the minus second power, while the azimuthal component decreases more rapidly than the r to the minum first power dependence predicted by simple theory. This, and other observations, are discussed.

  17. Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR

    NASA Astrophysics Data System (ADS)

    Fallows, R. A.; Bisi, M. M.; Forte, B.; Ulich, Th.; Konovalenko, A. A.; Mann, G.; Vocks, C.

    2016-09-01

    Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan et al. presenting observations using the Murchison Widefield Array (MWA) reports evidence of nightside IPS on two radio sources within their field of view. However, the low time cadence of 2 s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To check this assumption, this Letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of nightside IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a coronal mass ejection expected to be observed in another.

  18. Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; MacDonald, Mark A.; McElrath, Timothy P.; Landau, Damon F.; Lantoine, Gregory; Hack, Kurt J.; Lopez, Pedro

    2016-01-01

    NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts.

  19. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  20. Spectral analysis of magnetohydrodynamic fluctuations near interplanetary schocks

    NASA Technical Reports Server (NTRS)

    Vinas, A. F.; Goldstein, M. L.; Acuna, M. H.

    1983-01-01

    Evidence for two types of relatively large amplitude MHD waves upstream and downstream of quasi-parallel forward and reverse interplanetary shocks is presented. The first mode is an Alfven wave with frequencies (in the spacecraft frame) in the range of 0.025 to 0.07 Hz. This is a left-hand polarized mode and propagates within a few degrees of the ambient magnetic field. The second is a fast MHD mode with frequencies in the range of 0.025 to 0.17 Hz, right-hand polarization and propagating along the magnetic field. These waves are detected principally in association with quasi-parallel shock. The Alfven waves are found to have plasma rest frame frequencies in the range of 1.1 to 6.3 mHz with wavelengths in the order of 4.8 x 10 to the 8th power to 2.7 x 10 to the 9th power cm. Similarly, the fast MHD modes have rest frame frequencies in the range 1.6 to 26 mHz with typical wavelengths about 2.19 x 10 to the 8th power cm. The magnetic field power spectrum in the vicinity of these interplanetary shocks is much steeper than f to the -s/3 at high frequencies. The observed spectra have a high frequency dependence of f to the -2/5 to f to the -4.

  1. Counterstreaming electrons in small interplanetary magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  2. First Taste of Hot Channel in Interplanetary Space

    NASA Astrophysics Data System (ADS)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.

    2015-04-01

    A hot channel (HC) is a high temperature (˜10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (˜1-2 MK). In this paper, we report a high temperature structure (HTS, ˜1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ⊙ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.

  3. First Taste of Hot Channel in Interplanetary Space

    NASA Astrophysics Data System (ADS)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.

    2015-04-01

    A hot channel (HC) is a high temperature (∼10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (∼1–2 MK). In this paper, we report a high temperature structure (HTS, ∼1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ȯ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.

  4. Active shielding for long duration interplanetary manned missions

    NASA Astrophysics Data System (ADS)

    Spillantini, Piero

    The problem of protecting astronauts from the cosmic rays action in unavoidable and was therefore preliminary studied by many space agencies. In Europe, in the years 2002-2004, ESA supported two works on this thematic: a topical team in the frame of the ‘life and physical sciences' and a study, assigned by tender, of the ‘radiation exposure and mission strategies for interplanetary manned missions to Moon and Mars'. In both studies it was concluded that, while the protection from solar cosmic rays can relay on the use of passive absorbers, for long duration missions the astronauts must be protected from the much more energetic galactic cosmic rays during the whole duration of the mission. This requires the protection of a large habitat where they could live and work, and not a temporary small volume shelter, and the use of active shielding is therefore mandatory. The possibilities offered by using superconducting magnets were discussed, and the needed R&D recommended. The technical development occurred in the meantime and the evolution of the panorama of the possible interplanetary missions in the near future require to revise these pioneer studies and think of the problem at a scale allowing long human permanence in ‘deep' space, and not for a relatively small number of dedicated astronauts but also for citizens conducting there ‘normal' activities.

  5. Astrobiology studies of microorganisms in simulated interplanetary and planetary environments

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    For laboratory studies on the responses of resistant life forms to simulated interplanetary space conditions, testbeds are available that simulate the parameters of space, such as vacuum, solar electromagnetic and cosmic ionizing radiation, temperature extremes and reduced gravity that can be applied separately, or in selected combinations. Appropriate biological test systems are extremophiles, i.e. microorganisms that are adapted to grow, or survive in extreme conditions of our biosphere. Examples are airborne microbes, epilithic, endolithic or endoevaporitic microbial communities, or bacterial endospores. Such studies contribute to answer several questions pertinent to astrobiology, such as (i) the role of solar UV radiation in genetic stability, (ii) the role of gravity in basic biological functions, (iii) the probability and limits for interplanetary transfer of life, (iv) strategies of adaptation to environmental extremes, and (v) the needs for planetary protection. In addition, studies on the responses of extremophile microbial communities to simulated planetary surface and subsurface conditions are an essential prerequisite in preparation of space missions to Mars, icy moons or asteroids, searching for signature of life.

  6. Implementing efficient and sustainable collaboration between National Immunization Technical Advisory Groups: Report on the 3rd International Technical Meeting, Paris, France, 8-9 December 2014.

    PubMed

    Perronne, Christian; Adjagba, Alex; Duclos, Philippe; Floret, Daniel; Houweling, Hans; Le Goaster, Corinne; Lévy-Brühl, Daniel; Meyer, François; Senouci, Kamel; Wichmann, Ole

    2016-03-01

    Many experts on vaccination are convinced that efforts should be made to encourage increased collaboration between National Immunization Technical Advisory Groups on immunization (NITAGs) worldwide. International meetings were held in Berlin, Germany, in 2010 and 2011, to discuss improvement of the methodologies for the development of evidence-based vaccination recommendations, recognizing the need for collaboration and/or sharing of resources in this effort. A third meeting was held in Paris, France, in December 2014, to consider the design of specific practical activities and an organizational structure to enable effective and sustained collaboration. The following conclusions were reached: (i) The proposed collaboration needs a core functional structure and the establishment or strengthening of an international network of NITAGs. (ii) Priority subjects for collaborative work are background information for recommendations, systematic reviews, mathematical models, health economic evaluations and establishment of common frameworks and methodologies for reviewing and grading the evidence. (iii) The programme of collaborative work should begin with participation of a limited number of NITAGs which already have a high level of expertise. The amount of joint work could be increased progressively through practical activities and pragmatic examples. Due to similar priorities and already existing structures, this should be organized at regional or subregional level. For example, in the European Union a project is funded by the European Centre for Disease Prevention and Control (ECDC) with the aim to set up a network for improving data, methodology and resource sharing and thereby supporting NITAGs. Such regional networking activities should be carried out in collaboration with the World Health Organization (WHO). (iv) A global steering committee should be set up to promote international exchange between regional networks and to increase the involvement of less experienced

  7. Implementing efficient and sustainable collaboration between National Immunization Technical Advisory Groups: Report on the 3rd International Technical Meeting, Paris, France, 8-9 December 2014.

    PubMed

    Perronne, Christian; Adjagba, Alex; Duclos, Philippe; Floret, Daniel; Houweling, Hans; Le Goaster, Corinne; Lévy-Brühl, Daniel; Meyer, François; Senouci, Kamel; Wichmann, Ole

    2016-03-01

    Many experts on vaccination are convinced that efforts should be made to encourage increased collaboration between National Immunization Technical Advisory Groups on immunization (NITAGs) worldwide. International meetings were held in Berlin, Germany, in 2010 and 2011, to discuss improvement of the methodologies for the development of evidence-based vaccination recommendations, recognizing the need for collaboration and/or sharing of resources in this effort. A third meeting was held in Paris, France, in December 2014, to consider the design of specific practical activities and an organizational structure to enable effective and sustained collaboration. The following conclusions were reached: (i) The proposed collaboration needs a core functional structure and the establishment or strengthening of an international network of NITAGs. (ii) Priority subjects for collaborative work are background information for recommendations, systematic reviews, mathematical models, health economic evaluations and establishment of common frameworks and methodologies for reviewing and grading the evidence. (iii) The programme of collaborative work should begin with participation of a limited number of NITAGs which already have a high level of expertise. The amount of joint work could be increased progressively through practical activities and pragmatic examples. Due to similar priorities and already existing structures, this should be organized at regional or subregional level. For example, in the European Union a project is funded by the European Centre for Disease Prevention and Control (ECDC) with the aim to set up a network for improving data, methodology and resource sharing and thereby supporting NITAGs. Such regional networking activities should be carried out in collaboration with the World Health Organization (WHO). (iv) A global steering committee should be set up to promote international exchange between regional networks and to increase the involvement of less experienced

  8. Critical component of the interplanetary magnetic field responsible for large geomagnetic effects in the polar cap.

    NASA Technical Reports Server (NTRS)

    Friis-Christensen, E.; Lassen, K.; Wilhjelm, J.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1972-01-01

    An observed influence of the interplanetary magnetic-sector structure on the geomagnetic variations in the polar cap appears to be due to the component of the interplanetary magnetic field near the ecliptic perpendicular to the earth-sun direction. This suggests that the observed effect on the ground originates in the front of the magnetosphere.

  9. Critical component of the interplanetary magnetic field responsible for large geomagnetic effects in the polar cap

    NASA Technical Reports Server (NTRS)

    Friis-Christensen, E.; Lassen, K.; Wilhjelm, J.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1972-01-01

    An observed influence is studied of the interplanetary magnetic sector structure on the geomagnetic variations in the polar cap which appears to be due to the component of the interplanetary magnetic field near the ecliptic perpendicular to the earth-sun direction. It is suggested that the observed effect on the ground originates in the front of the magnetosphere.

  10. Criteria of interplanetary parameters causing intense magnetic storms (Dst less than -100nT)

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Tsurutani, Bruce T.

    1987-01-01

    Ten intense storms occurred during the 500 days of August 16, 1978 to December 28, 1979. From the analysis of ISEE-3 field and plasma data, it is found that the interplanetary cause of these storms are long-duration, large and negative IMF B sub Z events, associated with interplanetary duskward-electric fields greater than 5 mV/m. Because a one-to-one relationship was found between these interplanetary events and intense storms, it is suggested that these criteria can, in the future, be used as predictors of intense storms by an interplanetary monitor such as ISEE-3. These B sub Z events are found to occur in association with large amplitudes of the IMF magnitude within two days after the onset of either high-speed solar wind streams or of solar wind density enhancement events, giving important clues to their interplanetary origin. Some obvious possibilities will be discussed. The close proximity of B sub Z events and magnetic storms to the onset of high speed streams or density enhancement events is in sharp contrast to interplanetary Alfven waves and HILDCAA events previously reported, and thus the two interplanetary features corresponding geomagnetic responses can be thought of as being complementary in nature. An examination of opposite polarity B sub Z events with the same criteria show that their occurrence is similar both in number as well as in their relationship to interplanetary disturbances, and that they lead to low levels of geomagnetic activity.

  11. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.

  12. Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase II. Progress report, 3rd year continuation proposal, and work plan

    SciTech Connect

    Wilson, J.L.

    1994-05-01

    Small scale laboratory experiments, equipped with an ability to actually observe behavior on the pore level using microscopy, provide an economical and easily understood scientific tool to help us validate concepts and assumptions about the transport of contaminants, and offers the propensity to discover heretofore unrecognized phenomena or behavior. The main technique employs etched glass micromodels, composed of two etched glass plates, sintered together, to form a two dimensional network of three dimensional pores. Flow and transport behavior is observed on a pore or pore network level, and recorder on film and video tape. This technique is coupled with related column studies. These techniques have been used to study multiphase flow, colloid transport and most recently bacteria transport. The project has recently moved to the Bacteria Transport Subprogram, and efforts have been redirected to support that Subprogram and its collaborative field experiment. We proposed to study bacteria transport factors of relevance to the field experiment, using micromodels and other laboratory techniques. Factors that may be addressed include bacteria characteristics (eg, hydrophobicity), pore size and shape, permeability heterogeneity, surface chemistry (eg, iron oxide coatings), surface chemistry heterogeneity, active versus resting cell bacteria, and mixed bacteria populations. In other work we will continue to examine the effects of fluid-fluid interfaces on bacteria transport, and develop a new assay for bacteria hydrophobicity. Finally we will collaborate on characterization of the field site, and the design, operation, and interpretation of the field experiment.

  13. The Social Network Classroom

    NASA Astrophysics Data System (ADS)

    Bunus, Peter

    Online social networking is an important part in the everyday life of college students. Despite the increasing popularity of online social networking among students and faculty members, its educational benefits are largely untested. This paper presents our experience in using social networking applications and video content distribution websites as a complement of traditional classroom education. In particular, the solution has been based on effective adaptation, extension and integration of Facebook, Twitter, Blogger YouTube and iTunes services for delivering educational material to students on mobile platforms like iPods and 3 rd generation mobile phones. The goals of the proposed educational platform, described in this paper, are to make the learning experience more engaging, to encourage collaborative work and knowledge sharing among students, and to provide an interactive platform for the educators to reach students and deliver lecture material in a totally new way.

  14. Ion Flux Environments for Exposed Spacecraft Surfaces in Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard; NeergaardParker, Linda; Skipworth, William

    2004-01-01

    Spacecraft surfaces in interplanetary space are exposed to solar wind ions. The bulk of the ions exhibit energies of a few kilovolts and are important only to surface interactions while a fraction of the solar wind extends to greater energies and may penetrate below the material surface. The importance of including solar wind ions in analysis of space environment effects on spacecraft is becoming more important as new spacecraft designs are considered which include systems such as sunshades, solar sail propulsion systems, and other mission critical features based on very thin materials. This paper provides a status report on development of solar wind ion environments to support engineering analysis of materials exposed to the space environment including techniques for reconstructing ion environments from solar wind plasma moments and energetic flux measurements and comparison of statistical flux environments to integrated mission fluence.

  15. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  16. Observations of the spectrum of the interplanetary dust emission

    NASA Astrophysics Data System (ADS)

    Salama, A.; de Bernardis, P.; Masi, S.; Moreno, G.

    Published data from satellite (IRAS), rocket-borne (ZIP), and balloon-borne (ARGO) spectroscopic observations of interplanetary dust emission in the FIR are compiled and analyzed, extending the spatial-distribution results of Salama et al. (1986) to evaluate the possible role of silicate and graphite grains in determining the FIR spectrum. The zodiacal dust spectra in the ecliptic plane at solar elongations epsilon = 45 and 90 deg are calculated on the basis of theoretical models and compared with the observations. A model based on a flat distribution of 10-micron-diameter silicate grains is shown to reproduce the observed spectrum at epsilon = 45 deg but not at epsilon = 90 deg, where a model with a mixture of silicate and graphite grains gives a better, but still unsatisfactory fit to the observations.

  17. Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study

    NASA Technical Reports Server (NTRS)

    Szabo, A.; Koval, A.; Merka, J.; Narock, T.

    2010-01-01

    The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed

  18. Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study

    NASA Technical Reports Server (NTRS)

    Szabo, A.; Koval, A.; Merka, J.; Narock, T.

    2011-01-01

    The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the 2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed

  19. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  20. Solar radiation induced rotational bursting of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.

    1975-01-01

    It is suggested that the magnitudes of the two radiation-induced rotational bursting mechanisms (Radzieskii effect and windmill effect) have been overestimated and that they do not work significantly faster than the Poynting-Robertson effect in removing interplanetary particles. These two mechanisms are described, and serious doubts are raised regarding the derivation of their radiation pressure-torque proportionality constants, which are required for calculating their magnitudes. It is shown that both mechanisms will cause the alignment of elongated particles and, consequently, the polarization of zodiacal light. Since no positive polarization has been measured at the antisolar point, it is concluded that the magnitudes of the rotational bursting mechanisms are smaller than that of the Poynting-Robertson effect.

  1. Effects of interstellar particles upon the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Coleman, P. J., Jr.; Winter, E. M.

    1972-01-01

    The flow of interstellar neutral particles into the interplanetary medium and their subsequent ionization in the presence of the electromagnetic field of the solar wind can cause a loss of field angular momentum by the solar wind. One effect of this loss of field angular momentum is a significant unwinding of the spiral field. This effect is evaluated using simple models for neutral density and ion production. For a free-stream interstellar medium with a neutral hydrogen density of 1 per cubic centimeter and a velocity relative to the sun of 10 to 20 km per second, the spiral angle at the orbit of Jupiter will be less than its nominal value of 45 deg at the orbit of the earth.

  2. Heliocentric distance dependence of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.

    1978-01-01

    Numerous spacecraft measurements bearing on the heliocentric distance dependencies of both large- and small-scale properties of the interplanetary magnetic field (IMF) are assembled and compared. These data tend to indicate that the average of the radial field component varies as the inverse square of distance. However, the azimuthal component is rather strongly a function of time, being influenced by both the time-dependent solar wind speed and the evolution of the source field at the sun. Thus, unless the solar wind speed dependence is taken into account, individual sets of measurements by a single spacecraft give an azimuthal component gradient which is steeper than the inverse distance dependence predicted from the Parker spiral model. A least squares fit to the composite (five spacecraft) solar rotation average data set gives a result close to the inverse distance dependence. Preliminary Helios results suggest general consistency with the spiral model.

  3. The Interplanetary Internet: a communications infrastructure for Mars exploration

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard

    2003-01-01

    A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  4. The use of the Earth's gravitational potential for interplanetary flights

    NASA Astrophysics Data System (ADS)

    Fedotov, G. G.

    2007-04-01

    An efficient scheme of the use of the Earth’s gravity in interplanetary flights is suggested, which opens up new opportunities for exploration of the solar system. The scheme of the gravitational maneuver allows one to considerably reduce the spacecraft mass consumption for a flight and the time of flight. An algorithm of the gravitational maneuver is suggested that takes into account the restriction on the altitude of a planet flyby. Estimates are made of transport capabilities for delivery of a spacecraft to the orbits of Jupiter, Saturn, and Uranus. The spacecraft is based on a middle-class carrier launcher of the Soyuz type and includes chemical and electric plasma jet engines of the SPD-140 type, which use solar energy.

  5. Interaction between solar energetic particles and interplanetary grains

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Calcagno, L.; Foti, G.; Sheng, K. L.

    Some laboratory-studied effects induced by the fluence of fast ions on frosts of astrophysical interest are summarized. The results are applied to the interaction between energetic solar ions and interplanetary dust grains assumed to be cometary debris which spends about one-million yr before being collected in the earth's atmosphere or colliding on the moon's surface. The importance of erosion by particles to the stability of ice grains is confirmed. The build up of carbonaceous material by ion fluence on hydrocarbon containing grains is discussed. It is suggested that these new materials could be the glue which cements submicron silicate particles to form a complex agglomeration whose density increases with increasing proton fluence (packing effect). The IR spectra of laboratory synthesized carbonaceous material are compared with those observed in some carbonaceous meteoritic extracts.

  6. Clay minerals in primitive meteorites and interplanetary dust 1

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Keller, L. P.

    1991-01-01

    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  7. Planetary and interplanetary environmental models for radiation analysis

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; Cucinotta, F. A.

    In this introductory talk the essence of environmental modeling is presented as suited for radiation analysis purposes. The variables of fundamental importance for radiation environmental assessment are discussed. The characterization is performed by dividing modeling into three areas, namely the interplanetary medium, the circumplanetary environment, and the planetary or satellite surface. In the first area, the galactic cosmic rays (GCR) and their modulation by the heliospheric magnetic field as well as solar particle events (SPE) are considered, in the second area the magnetospheres are taken into account, and in the third area the effect of the planetary environment is also considered. Planetary surfaces and atmospheres are modeled based on results from the most recent targeted spacecraft. The results are coupled with suited visualization techniques and radiation transport models in support of trade studies of spacecraft and crew health risks for future exploration missions.

  8. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C09 The postflight photograph was taken prior to the experiment tray being removed from the LDEF. The tray corner clamp blocks are un-anodized aluminum and that alone accounts for the major difference in color between the corner clamp blocks and the center clamp blocks. The IDE mounting plate and the detector frames and detectors seem to be in excellent condition. Close inspection of the photograph reveals several locations where impacts on detector surfaces are visible. A faint gold or tan stain can be seen around several of the fasteners and in a rectangular configuration, near the center, along the bottom edge of the detector mounting plate. Stains can also be seen near the top right edge of the solar sensor, on the mounting plate, and around the extreme edges of the solar sensor baseplate. The colors and designs seen on the detectors are reflections of the surrounding area.

  9. The Nature and Origin of Interplanetary Dust: High Temperature Components

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2004-01-01

    The specific parent bodies of individual interplanetary dust particles (IDPs) are un-known, but the anhydrous chondritic-porous (CP) sub-set has been linked directly to cometary sources [1]. The CP IDPs escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. Their origin in the outer regions of the solar system suggests they should retain primitive chemical and physical characteristics from the earliest stages of solar system formation (including abundant presolar materials). Indeed, CP IDPs are the most primitive extraterrestrial materials available for laboratory studies based on their unequilibrated mineralogy [2], high concentrations of carbon, nitrogen and volatile trace elements relative to CI chondrites [3, 4, 5], presolar hydrogen and nitrogen isotopic signatures [6, 7] and abundant presolar silicates [8].

  10. Characterizing Interplanetary Structures of Long-Lasting Ionospheric Storm Events

    NASA Astrophysics Data System (ADS)

    Tandoi, C.; Dong, Y.; Ngwira, C. M.; Damas, M. C.

    2015-12-01

    Geomagnetic storms can result in periods of heightened TEC (Total Electron Content) in Earth's ionosphere. These periods of change in TEC (dTEC) can have adverse impacts on a technological society, such as scintillation of radio signals used by communication and navigation satellites. However, it is unknown which exact properties of a given storm cause dTEC. We are comparing different solar wind properties that result in a significant long-lasting dTEC to see if there are any patterns that remain constant in these storms. These properties, among others, include the interplanetary magnetic field By and Bz components, the proton density, and the flow speed. As a preliminary investigation, we have studied 15 solar storms. Preliminary results will be presented. In the future, we hope to increase our sample size and analyze over 80 different solar storms, which result in significant dTEC.

  11. IPS limits on very low frequency VLBI. [Interplanetary Scintillation

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.; Williamson, Robert S., III

    1990-01-01

    The ability of a space-based radio interferometer array to make high resolution images at frequencies of only a few MHz will be limited by interplanetary scintillation. Numerical simulations have been used to study the severity of interferometer phase fluctuations caused by the density fluctuations in the solar wind over a range of frequencies and solar elongation angles. The impact of these fluctuations on the quality of radio images produced has also been investigated. The results show that, for baselines up to 100 km, accurate imaging should be possible when nu sin (epsilon/2) is equal to or greater than 2.5, where nu is the observing frequency in MHz and epsilon is the solar elongation angle.

  12. The wavelet transform function to analyze interplanetary scintillation observations

    NASA Astrophysics Data System (ADS)

    Aguilar-Rodriguez, E.; Rodriguez-Martinez, M.; Romero-Hernandez, E.; Mejia-Ambriz, J. C.; Gonzalez-Esparza, J. A.; Tokumaru, M.

    2014-05-01

    Interplanetary scintillation (IPS) observations are useful to remotely sense the inner heliosphere. We present a new technique to analyze IPS observations using a wavelet transform (WT) function. This technique allows us to derive, in a straightforward way, a simple method to obtain the scintillation index (m). We tested this WT technique to analyze IPS observations obtained by the Solar-Terrestrial Environment Laboratory (STEL) radio telescope. The analysis of the m index of the radio source 3C48 detected by STEL over the year 2012 shows the expected decrease with solar elongation reported in previous studies. The WT technique has a great potential for future solar wind studies using IPS observations from contemporary radio telescopes.

  13. Plasma field characteristics of directional discontinuities in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Solodyna, C. V.; Belcher, J. W.; Sari, J. W.

    1977-01-01

    The paper examines plasma and magnetic-field changes occurring across 1359 directional discontinuities taken from interplanetary data spanning almost four solar rotations. The plasma field characteristics of these events exhibit a distinct variation with large-scale solar-wind velocity. At low velocities, tangential discontinuities appear to predominate. At higher velocities, a substantial and increasing fraction of directional discontinuities exhibits the plasma field properties expected of outwardly propagating rotational discontinuities. The results of Sari (1972, 1975) and of the present study suggest that in the calculation of propagation diffusion coefficients for low-energy cosmic rays, the effects of directional discontinuities should be subtracted from the magnetic fluctuation spectrum during relatively quiet wind conditions. It is not clear that such subtraction is necessary during more disturbed periods.

  14. Periodicities of Interplanetary Solar Type III radio bursts occurrence

    NASA Astrophysics Data System (ADS)

    Maksimovic, Milan; Navrer-Agasson, Anyssa; Sperone-Longin, Damien; Bonnin, Xavier

    2015-04-01

    We have analyzed 15 years of solar radio observations by the Wind spacecraft in order to detect automatically the Interplanetary Solar Type III radio bursts occurrence. We then compare the daily number of type III radio emissions with the daily number of sunspots. We find, as expected, a very good correlation between the two quantities. We investigate then for periodicities in the daily occurrence of type III bursts by applying a wavelet analysis and compare these periodicities to the ones obtained with the sunspots. We observe a typical Rieger-Type period of about 150 days for both the Type IIIs and the sunspots, with a temporal location of the maximum of this periodicity which is however different for the two data sets. We discuss this difference and compare our results to previous similar studies applied on ground based observations of Type III activity.

  15. Anomalous Ion Charge State Behavior In Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.

    2015-12-01

    A recent analysis of solar wind charge state composition measurements from the ACE/SWICS instrument showed that the expected correlation between the frozen-in values of the O7/O6 and C6/C5 ratios was violated in ~5% of the slow solar wind in the 1998-2011 period (Zhao et al. 2015). In this work we determine that such anomalous behavior is also found in over 40% of Interplanetary Coronal Mass Ejections (ICMEs), as identified by Richardson and Cane (2010). An analysis of the plasma composition during these events reveals significant depletions in densities of fully stripped ions of Carbon, Oxygen, and Nitrogen. We argue that these events are indicators of ICME plasma acceleration via magnetic reconnection near the freeze-in region of Carbon and Oxygen above the solar corona.

  16. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  17. Nitrogen Isotopic Anomalies in a Hydrous Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Smith, J. B.; Dai, Z. R.; Weber, P. K.; Graham, G. A.; Hutcheon, I. D.; Bajt, S.; Ishii, H.; Bradley, J. P.

    2005-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere are the fine-grained end member (5 - 50 microns in size) of the meteoritic material available for investigation in the laboratory. IDPs are derived from either cometary or asteroidal sources. Some IDPs contain cosmically primitive materials with isotopic signatures reflecting presolar origins. Recent detailed studies using the NanoSIMS have shown there is a wide variation of isotopic signatures within individual IDPs; grains with a presolar signature have been observed surrounded by material with a solar isotopic composition. The majority of IDPs studied have been anhydrous. We report here results from integrated NanoSIMS/FIB/TEM/Synchrotron IR studies of a hydrous IDP, focused on understanding the correlations between the isotopic, mineralogical and chemical compositions of IDPs.

  18. Three-dimensional interplanetary stream magnetism and energetic particle motion

    NASA Technical Reports Server (NTRS)

    Barouch, E.; Burlaga, L. F.

    1976-01-01

    Cosmic rays interact with mesoscale configurations of the interplanetary magnetic field. A technique is presented for calculating such configurations in the inner solar system, which are due to streams and source conditions near the sun, and maps of magnetic field are constructed for some plausible stream and source conditions. One effect of these mesoscale configurations on galactic cosmic rays is shown to be an out-of-the-ecliptic gradient drift sufficient to explain Forbush decreases. The effects on solar energetic particles include small polar drifts due to the field gradients and a possibly large modification of the time-intensity profiles and anisotropy characteristics due to the formation of mirror configurations in space. If a diffusion model is applicable to solar particles, the true diffusion coefficient will be masked by the effects of streams. A conceptual model which incorporates these ideas and those of several other models is presented.

  19. Doppler frequency in interplanetary radar and general relativity

    NASA Technical Reports Server (NTRS)

    Mcvittie, G. C.

    1972-01-01

    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  20. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  1. Interplanetary double-shock ensembles with anomalous electrical conductivity

    NASA Technical Reports Server (NTRS)

    Dryer, M.

    1972-01-01

    Similarity theory is applied to the case of constant velocity, piston-driven, shock waves. This family of solutions, incorporating the interplanetary magnetic field for the case of infinite electric conductivity, represents one class of experimentally observed, flare-generated shock waves. This paper discusses the theoretical extension to flows with finite conductivity (presumably caused by unspecified modes of wave-particle interactions). Solutions, including reverse shocks, are found for a wide range of magnetic Reynolds numbers from one to infinity. Consideration of a zero and nonzero ambient flowing solar wind (together with removal of magnetic considerations) enables the recovery of earlier similarity solutions as well as numerical simulations. A limited comparison with observations suggests that flare energetics can be reasonably estimated once the shock velocity, ambient solar wind velocity and density, and ambient azimuthal Alfven Mach number are known.

  2. Effects of Standard and Modified Gravity on Interplanetary Ranges

    NASA Astrophysics Data System (ADS)

    Iorio, L.

    We numerically investigate the impact on the two-body range of several Newtonian and non-Newtonian dynamical effects for some Earth-planet (Mercury, Venus, Mars, Jupiter, Saturn) pairs, in view of the expected cm-level accuracy in some future planned or proposed interplanetary ranging operations. The general relativistic gravitomagnetic Lense-Thirring effect should be modeled and solved for in future accurate ranging tests of Newtonian and post-Newtonian gravity, because it falls within their measurability domain. It could a priori "imprint" the determination of some of the target parameters of the tests considered. Moreover, the ring of the minor asteroids, Ceres, Pallas, Vesta (and also many other asteroids if Mars is considered) and the trans-Neptunian objects (TNOs) act as sources of nonnegligible systematic uncertainty on the larger gravitoelectric post-Newtonian signals from which it is intended to determine the parameters γ and β of the parametrized post-Newtonian (PPN) formalism with very high precision (several orders of magnitude better than the current 10-4-10-5 levels). Also, other putative, nonconventional gravitational effects, like a violation of the strong equivalence principle (SEP), a secular variation of the Newtonian constant of gravitation G, and the Pioneer anomaly, are considered. The presence of a hypothetical, distant planetary-sized body X could be detectable with future high-accuracy planetary ranging. Our analysis can, in principle, be extended to future interplanetary ranging scenarios in which one or more spacecrafts in heliocentric orbits are involved. The impact of fitting the initial conditions, and of the noise in the observations, on the actual detectability of the dynamical signatures investigated, which may be partly absorbed in the estimation process, should be quantitatively addressed in further studies.

  3. Preliminary Design of Low-Thrust Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.; Flanagan, Steve N.

    1997-01-01

    For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.

  4. Predicting cosmic ray fluxes for the interplanetary space missions needs.

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho

    One of the main claims for the planning forthcoming interplanetary missions is the prediction of radiation threatening that effects on both astronauts and onboard instrumentation. It is caused by the SEP and GCR particle fluxes which always present in space and depend on solar activity level. The GCR and SEP fluxes' quantitative models developed at moment in Moscow University are based on the analysis of experimental data set for the four previous solar cycles, and establish a connection between particle fluxes and solar activity (Wolf numbers) for noted radiation fields. The GCR fluxes model (see for example, International Standard ISO 15390, Space environment (natural and artificial) - Galactic cosmic ray model) establishes an accordance between GCR fluxes and smoothed (over 13 months) month-averaged Wolf numbers. For the SEP fluxes which subordinates to quite defined statistical laws, the model developed enables to calculate a total fluxes that to be occurred probably with some given probability during a long time period under any solar activity level. This report presents examples of GCR and SEP fluxes occurred under different solar activity levels as well as energy spectra calculated for various probabilities of SEP flux occurrences. The data presented shows that SEP fluxes observed and their spectra are never exceed the bounds of probabilities, set by the model input. Thus, the MSU's models of GCR and SEP fluxes allows one to take account of solar activity effect on the probable value of fluxes that formed by radiation environment particles for an interplanetary mission of any period. The accuracy of such a prediction depends above all on the solar activity's (e.g., Wolf numbers)prediction reliability.

  5. ENERGETIC CHARGED PARTICLES ASSOCIATED WITH STRONG INTERPLANETARY SHOCKS

    SciTech Connect

    Giacalone, Joe

    2012-12-10

    We analyze observations of energetic charged particles associated with many strong interplanetary shocks seen by Advanced Composition Explorer. We focus primarily on 47-187 keV suprathermal protons and restrict our analysis to strong interplanetary shocks (Alfven Mach number >3 and the shock density compression >2.5). Eighteen shocks meeting this criterion from 1998 to 2003 were analyzed. All 18 had enhancements of the 47-65 keV proton intensity above the intensity seen one day before the shock. In 17 events, the particle intensity either rose to a quasi-plateau or peaked within 10 minutes of the shock. Most had intensities at the shock exceeding 100 times more than that seen the day before the shock arrived. The time-intensity profiles of the energetic proton events in many cases reveal a rise before the shock passage reaching a quasi-plateau or local peak at the shock, followed by a gradual decline. This suggests that the shock itself is the source of energetic particles. Energy spectra behind the shock were fit to an assumed power law over the interval from 46 to 187 keV, and the resulting spectral index was compared to the plasma density jump across each shock. Most events agree with the prediction of diffusive shock acceleration theory to within the observational uncertainties. We also analyzed a few selected events to determine the particle spatial diffusion coefficients and acceleration timescales. We find that the time to accelerate protons to {approx}50 keV is of the order of an hour.

  6. Space Travel is Utter Bilge: Early Ideas on Interplanetary Exploration

    NASA Astrophysics Data System (ADS)

    Yeomans, D. K.

    2003-12-01

    Until a few decades ago, interplanetary travel was the stuff of dreams but the dreamers often turned out to be farsighted while the predictions of some eminent scientists were far too conservative. The prescient dreamers include the Russian schoolteacher, Konstanin Tsiolkovsky who, in 1883, was the first to note that only rockets could serve the needs of space travel. In 1923, Herman Oberth published a treatise discussing various aspects of interplanetary travel including the impulse necessary to escape the Earth's gravitational pull. In his spare time, a German civil engineer, Walter Hohmann, established in 1925 that the optimal energy transfer orbit between planets is an ellipse that is tangent to the orbits of both bodies. Four year later, an Austrian army officer, Hermann Potocnik outlined the benefits of space stations including those in geosynchronous orbits. Whereas Tsiolkovsky, Oberth, Hohmann, and Potocnik provided ideas and theories, the American, Robert H. Goddard, was testing liquid fueled rockets by as early as 1925. By the time he was finished in 1941, Goddard flew liquid fueled rockets that reached speeds of 700 mph and altitudes above 8,000 feet. In direct contrast to the advances by these mostly amateur engineers, many respected authorities scoffed at space travel because of the insurmountable technological difficulties. One year prior to the launch of Sputnik, the British Astronomer Royal, Sir Richard Wooley, declared, "space travel is utter bilge." While the theories of space travel were well developed by the late 1920's, space travel technology was still a poorly funded, mostly amateur, endeavor until the German army hired Oberth's student, Werner von Braun, and others to develop long range rockets for military purposes. In the early 1940's, Von Braun's team developed the rocket propulsion and guidance systems that would one day form the basis of the American space program.

  7. Networks.

    ERIC Educational Resources Information Center

    Cerf, Vinton G.

    1991-01-01

    The demands placed on the networks transporting the information and knowledge generated by the increased diversity and sophistication of computational machinery are described. What is needed to support this increased flow, the structures already in place, and what must be built are topics of discussion. (KR)

  8. On the origin of burst Pc1 pulsations produced in interaction with an oblique interplanetary shock

    NASA Astrophysics Data System (ADS)

    Parkhomov, V. A.; Dmitriev, A. V.; Tsegmed, B.

    2015-05-01

    We examined the features of bursts of unstructured Pc1 geomagnetic pulsations recorded with period in the range T=2-5 s on 19 November 2007 using simultaneous observations by the geosynchronous satellites GOES-10, 11, 12, a constellation of high-apogee satellites THEMIS and by the CARISMA ground-based network of magnetometers. The pulsation excitation resulted from contact of an oblique interplanetary shock wave (ISW) with the magnetosphere. At geosynchronous orbit, we found eastward drift of the source of Pc1 bursts observed first by GOES-11 (~09 MLT), then by GOES-12 (~13 MLT) and, finally, by GOES-10 (~14 MLT). Ground-based observatories with ~40° longitudinal separation observed the excitation of oscillations with a delay to the west and east as compared with the median Fort Simpson observatory. An increase in frequency, seen at the sharp leading edge of oscillations, lasted for about 150 s. We determined the propagation velocity of the pulsations' source from the difference between the first observations of the pulsations by the satellites and at the Earth. In order to interpret the observed patterns of pulsation we considered different mechanisms such as: (1) Eastward drifting clouds of energetic electrons accelerated due to compression of the magnetosphere; (2) Plasmaspheric bulges (or detached plasma); (3) Magnetopause surface waves generated in the region of contact with the ISW and resulting in undulation of the region of developing the cyclotron instability.

  9. Size distribution of interplanetary iron and stony particles related with deep-sea spherules

    NASA Technical Reports Server (NTRS)

    Matsuzaki, H.; Yamakoshi, K.

    1993-01-01

    To study origin and evolution of the interplanetary dust, it is very important to investigate the size distribution. Here the changes of the size distributions of meteoroid particles due to the ablative effects during atmospheric entry were investigated by numerical computer simulation. Using the results, the pre-atmospheric size distributions of the interplanetary dust particles could be estimated from that of ablated spherules taken from deep-sea sediments. We are now analyzing deep-sea spherules from some aspects and examining if we could get any information about the interplanetary dust.

  10. Differential measurement of cosmic-ray gradient with respect to interplanetary current sheet

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Cummings, A. C.; Stone, E. C.; Behannon, K. W.; Burlaga, L. F.

    1985-01-01

    Simultaneous magnetic field and charged particle measurements from the Voyager spacecraft at heliographic latitude separations from 10 deg. to 21 deg. are used to determine the latitude gradient of the galactic cosmic ray flux with respect to the interplanetary current sheet. By comparing the ratio of cosmic ray flux at Voyager 1 to that a Voyager 2 during periods when both spacecraft are first nort and then south of the interplanetary current sheet, we find an estimate of the latitudinal gradient with respect to the current sheet of approximately -0.15 + or 0.05% deg under restricted interplanetary conditions.

  11. Lucky guess or knowledge: a cross-sectional study using the Bland and Altman analysis to compare confidence-based testing of pharmacological knowledge in 3rd and 5th year medical students.

    PubMed

    Kampmeyer, Daniela; Matthes, Jan; Herzig, Stefan

    2015-05-01

    Multiple-choice-questions are common in medical examinations, but guessing biases assessment results. Confidence-based-testing (CBT) integrates indicated confidence levels. It has been suggested that correctness of and confidence in an answer together indicate knowledge levels thus determining the quality of a resulting decision. We used a CBT approach to investigate whether decision quality improves during undergraduate medical education. 3rd- and 5th-year students attended formative multiple-choice exams on pharmacological issues. Students were asked to indicate their confidence in a given answer. Correctness of answers was scored binary (1-correct; 0-wrong) and confidence levels were transformed to an ordinal scale (guess: 0; rather unsure: 0.33; rather sure: 0.66; very sure: 1). 5th-year students gave more correct answers (73 ± 16 vs. 49 ± 13 %, p < 0.05) and were on average more confident regarding the correctness of their answers (0.61 ± 0.18 vs. 0.46 ± 0.13, p < 0.05). Correlation of these parameters was stronger for 5th-year students (r = 0.81 vs. r = 0.52), but agreement of confidence and correctness ('centration') was lower. By combining the Bland-and-Altman approach with categories of decision-quality we found that 5th-year students were more likely to be 'well-informed' (41 vs. 5 %), while more 3rd-students were 'uninformed' (24 vs. 76 %). Despite a good correlation of exam results and confidence in given answers increased knowledge might be accompanied by a more critical view at the own abilities. Combining the statistical Bland-and-Altman analysis with a theoretical approach to decision-quality, more advanced students are expected to apply correct beliefs, while their younger fellows are rather at risk to hesitate or to act amiss.

  12. Real-World Use of 3rd Line Therapy for Multiple Myeloma in Austria: An Austrian Myeloma Registry (AMR) Analysis of the Therapeutic Landscape and Clinical Outcomes prior to the Use of Next Generation Myeloma Therapeutics

    PubMed Central

    Willenbacher, Ella; Weger, Roman; Rochau, Ursula; Siebert, Uwe; Willenbacher, Wolfgang

    2016-01-01

    Objective Clinical trials demonstrate improving survival in patients with multiple myeloma (MM) after treatment. However, it is unclear whether increased survival translates to a similar benefit in a real world setting. Methods We analyzed the overall survival of 347 multiple myeloma patients in Austria by means of a national registry (AMR), focused on results from 3rd and later lines of therapy. This benchmark was chosen to define a baseline prior to the broad application of upcoming 2nd generation drugs (carfilzomib, pomalidomide). Results Projected 10 years survival for patients with MM in Austria is estimated to be 56% in patients diagnosed in between the years 2011–2014, 21% in patients with a diagnosis made between 2000–2005, and 39% in those with a diagnosis made between 2006–2010). For the same intervals a significant increase in the use of both bortezomib, lenalidomide and thalidomide—so called IMiDs (from 2005 onwards) and their simultaneous use in combination therapies (from 2010 onwards) could be shown. The use of autologous transplantation (ASCT) remained more or less constant at ~ 35% of patients in the 1st line setting over the whole period, comparing well to international practice patterns, while the use of 2nd line ASCT increased from 5.5% to 18.7% of patients. Patients in 3rd or later line treatment (n = 105), showed that even in relapsed and refractory disease median survival was 27 months with a considerable proportion of long-term survivors (~20%). Conclusion & Perspective With the expected emergence of additional active anti-myeloma compounds, we aim to assess survival in patients with relapsed and refractory MM. PMID:26937956

  13. Determination of the pitch-angle distribution and transverse anisotropy of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1985-01-01

    A method to determine the directional differential intensity (d.d.i.), expressed in terms of spherical harmonics, from sectored particle data, concurrent interplanetary magnetic field (IMF) and solar wind velocity is presented.

  14. The impact of interplanetary transport on the charge spectra of heavy ions accelerated in SEP events

    NASA Astrophysics Data System (ADS)

    Kartavykh, J.; Kovaltsov, G.; Ostryakov, V.; Droege, W.

    We investigate the effects of interplanetary propagation on charge spectra of heavy ions observed at 1 AU. A Monte-Carlo approach is applied to solve the transport equation which takes into account spatial diffusion as well as convection and adiabatic deceleration. It is shown that interplanetary propagation results in a shift of charge spectra towards lower energies due to adiabatic deceleration. This fact should be taken into account when experimental data are interpreted. A broadening of charge distributions caused by interplanetary propagation might explain rather wide charge distributions observed in a number of SEP events. We explain the available charge spectra of iron for several impulsive SEP events making use of our model of interplanetary propagation assuming different values of the mean free path.

  15. Energetic protons associated with interplanetary active regions 1-5 AU from the sun

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Van Allen, J. A.; Goertz, C. K.

    1978-01-01

    Pioneer 11 has yielded data on approximately 100 energetic proton events at heliocentric distances between 1 and 2 AU. Measurements of absolute intensities, anisotropies, and crude energy spectra are studied in connection with interplanetary active regions (IAR's). It is found that in close vicinity to IAR's, the number of events observed per unit time interval is 10 times greater than in other areas of interplanetary space, and that the frequency of events has a maximum at plus or minus 5 hours of the time IAR edges are crossed. It is also noted that events in IAR vicinity have greater particle densities, softer energy spectra, and smaller time widths than other events. For many events associated with IAR's, particle anisotropies correspond to the net flow of particles along the interplanetary magnetic field toward the sun. This suggests that a mechanism in MHD shocks is responsible for local acceleration in the interplanetary medium.

  16. A tiny event producing an interplanetary type III burst

    NASA Astrophysics Data System (ADS)

    Alissandrakis, C. E.; Nindos, A.; Patsourakos, S.; Kontogeorgos, A.; Tsitsipis, P.

    2015-10-01

    Aims: We investigate the conditions under which small-scale energy release events in the low corona gave rise to strong interplanetary (IP) type III bursts. Methods: We analyzed observations of three tiny events, detected by the Nançay Radio Heliograph (NRH), two of which produced IP type III bursts. We took advantage of the NRH positioning information and of the high cadence of AIA/SDO data to identify the associated extreme-UV (EUV) emissions. We measured positions and time profiles of the metric and EUV sources. Results: We found that the EUV events that produced IP type III bursts were located near a coronal hole boundary, while the one that did not was located in a closed magnetic field region. In all three cases tiny flaring loops were involved, without any associated mass eruption. In the best observed case, the radio emission at the highest frequency (435 MHz) was displaced by ~55'' with respect to the small flaring loop. The metric type III emission shows a complex structure in space and in time, indicative of multiple electron beams, despite the low intensity of the events. From the combined analysis of dynamic spectra and NRH images, we derived the electron beam velocity as well as the height, ambient plasma temperature, and density at the level of formation of the 160 MHz emission. From the analysis of the differential emission measure derived from the AIA images, we found that the first evidence of energy release was at the footpoints, and this was followed by the development of flaring loops and subsequent cooling. Conclusions: Even small energy release events can accelerate enough electrons to give rise to powerful IP type III bursts. The proximity of the electron acceleration site to open magnetic field lines facilitates the escape of the electrons into the interplanetary space. The offset between the site of energy release and the metric type III location warrants further investigation. The movie is available in electronic form at http://www.aanda.org

  17. Interplanetary plasma scintillation parameters measurements retrieved from the spacecraft observations.

    NASA Astrophysics Data System (ADS)

    Molera Calvés, Guifré; Pogrebenko, S. V.; Wagner, J.; Maccaferri, G.; Colucci, G.; Kronschnabl, G.; Scilliro, F.; Bianco, G.; Pérez Ayúcar, M.; Cosmovici, C. B.

    2010-05-01

    Measurement of the Interplanetary Scintillations (IPS) of radio signals propagating through the plasma in the Solar System by the radio astronomical instruments is a powerful tool to characterise and study the spatial and temporal variation of the electron density in the Solar wind. Several techniques based on the observation of natural and artificial radio sources have been developed during the last 50 years. Here we report our results of the IPS parameters measurement based on the multi-station observations of the planetary mission spacecraft. The ESA Venus Express spacecraft was observed at X-band (8.4 GHz) by several European VLBI stations - Metsähovi Radio Observatory (Aalto University , FI), Medicina (INAF-RA, IT), Matera (ASI, IT), Wettzell (BKG, DE), Noto (INAF-IRA, IT) and Yebes (OAN-IGN, ES) during a 2008-2010 campaign in a framework of the PRIDE (Planetary Radio Interferometry and Doppler Experiments) project as a preparatory stage for the European Radio Astronomy VLBI facilities participation in the planned ESA planetary missions (EJSM, TESM, EVE and others). Observational data were processed at Metsähovi Radio Observatory with the on-purpose developed high performance, ultra-high spectral resolution and spacecraft tracking capable software spectrometer-correlator and analysed at the Joint Institute for VLBI in Europe (JIVE, NL). High quality of acquired and analysed data enables us to study and define several parameters of the S/C signal and accompanying "ranging" tones with milli-Hz accuracy, among which the phase fluctuations of the spacecraft signal carrier line can be used to characterise the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales at different Solar elongations and which exhibits a near-Kolmogorov spectrum. Such essential parameters as the phase scintillation index and bandwidth of scintillations and their dependence on the solar elongation, distance to the target

  18. Optimization of interplanetary trajectories to Mars via electrical propulsion

    NASA Astrophysics Data System (ADS)

    Williams, Powtawche Neengay

    Although chemical rocket propulsion is widely used in space transportation, large amounts of propellant mass limit designs for spacecraft missions to Mars. Electrical propulsion, which requires a smaller propellant load, is an alternative propulsion system that can be used for interplanetary flight. After the recent successes of the NASA Deep Space 1 spacecraft and the ESA SMART 1 spacecraft, which incorporate an electrical propulsion system, there is a strong need for trajectory tools to support these systems. This thesis describes the optimization of interplanetary trajectories from Earth to Mars for spacecraft utilizing low-thrust electrical propulsion systems. It is assumed that the controls are the thrust direction and the thrust setting. Specifically, the minimum time and minimum propellant problems are studied and solutions are computed with the sequential gradient-restoration algorithm (SGRA). The results indicate that, when the thrust direction and thrust setting are simultaneously optimized, the minimum time and minimum propellant solutions are not identical. For minimum time, it is found that the thrust setting must be at the maximum value; also, the thrust direction has a normal component with a switch at midcourse from upward to downward. This changes the curvature of the trajectory, has a beneficial effect on time, but a detrimental effect on propellant mass; indeed, the propellant mass ratio of the minimum time solution is about twice that of the Hohmann transfer solution. Thus, the minimum time solution yields a rather inefficient trajectory. For minimum propellant consumption, it is found that the best thrust setting is bang-zero-bang (maximum thrust, followed by coasting, followed by maximum thrust) and that the best thrust direction is tangent to the trajectory. This is a rather efficient trajectory; to three significant digits, the associated mass ratio is the same as that of the Hohmann transfer solution, even for thrust-to-weight ratios of

  19. The emergence of different polarity photospheric flux as the cause of CMEs and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Bravo, S.

    1995-01-01

    Here we discuss the effect that the emergence of flux with a polarity opposed to that previously established in a certain photospheric region. can have on the magnetic structure of the solar atmosphere. We show that such a flux emergence may lead to the ejection of coronal material into the interplanetary medium (a CME) and also to a rapid change in the velocity of the solar wind from the region, which may eventually lead to the formation of an interplanetary shock.

  20. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  1. Harmonic Measuring Approach Based on Quantum Neural Network

    NASA Astrophysics Data System (ADS)

    Li, Yueling; Wu, Xinghua

    Develop a quantum neural network with more effective study and generalized ability. A method proposed to measure the parameters of harmonic is three lays quantum neural networks. With the example of 3rd and 5th harmonic parameters, elaborates the composition of the training method and training sample in the quantum neuron networks. A simulation which trains the quantum neutron network with training samples firstly, then measures untrained samples, is performed by Matlab programs. And the results of the simulation show the validity of the method.

  2. New Directions in Space Operations Services in Support of Interplanetary Exploration

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.

    2005-01-01

    To gain access to the necessary operational processes and data in support of NASA's Lunar/Mars Exploration Initiative, new services, adequate levels of computing cycles and access to myriad forms of data must be provided to onboard spacecraft and ground based personnel/systems (earth, lunar and Martian) to enable interplanetary exploration by humans. These systems, cycles and access to vast amounts of development, test and operational data will be required to provide a new level of services not currently available to existing spacecraft, on board crews and other operational personnel. Although current voice, video and data systems in support of current space based operations has been adequate, new highly reliable and autonomous processes and services will be necessary for future space exploration activities. These services will range from the more mundane voice in LEO to voice in interplanetary travel which because of the high latencies will require new voice processes and standards. New services, like component failure predictions based on data mining of significant quantities of data, located at disparate locations, will be required. 3D or holographic representation of onboard components, systems or family members will greatly improve maintenance, operations and service restoration not to mention crew morale. Current operational systems and standards, like the Internet Protocol, will not able to provide the level of service required end to end from an end point on the Martian surface like a scientific instrument to a researcher at a university. Ground operations whether earth, lunar or Martian and in flight operations to the moon and especially to Mars will require significant autonomy that will require access to highly reliable processing capabilities, data storage based on network storage technologies. Significant processing cycles will be needed onboard but could be borrowed from other locations either ground based or onboard other spacecraft. Reliability will

  3. Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Koval, A.; Szabo, Adam; Breneman, A.; Cattell, C. A.; Goetz, K.; Kellogg, P. J.; Kersten, K.; Kasper, J. C.; Maruca, B. A.; Pulupa, M.

    2012-01-01

    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(sub ci) < f much < f(sub ce) and wave numbers 0.02 approx < k rho (sub ce) approx <. 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Al though the precursors can have delta B/B(sub o) as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events.

  4. An analysis of whistler waves at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Farrell, W. M.; Stone, R. G.; Balogh, A.; Forsyth, R.

    1994-01-01

    We present an analysis of whistler wave magnetic and electric field amplitude ratios from which we compute wave propagation angles and energies of electrons in resonance with the waves. To do this analysis, we compute the theoretical dependence of ratios of wave components on the whistler wave propagation angle Theta for various combinations of orthogonal wave components. Ratios of wave components that would be observed by a spinning spacecraft are determined, and the effects of arbitrary inclinations of the spacecraft to the ambient magnetic field and to the whistler wave vector are studied. This analysis clearly demonstrates that B/E, the ratio of magnetic to electric field amplitudes, cannot be assumed to be the wave index of refraction, contrary to assumptions of some earlier studies. Therefore previous interpretations of whistler wave observations based on this assumption must be reinvestigated. B/E ratios derived using three orthogonal wave components can be used to unambiguously determine Theta. Using spin plane observations alone, a significant uncertainty occurs in the determination of Theta. Nevertheless, for whistler waves observed downstream of several interplanetary shocks by the Ulysses plasma wave experiment we find that Theta is highly oblique. We suggest that the analysis of wave amplitude ratios used in conjunction with traditional stability analyses provide a promising tool for determining which particle distributions and resonances are likely to be dominant contributors to wave growth.

  5. New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Palma, R. L.; Pepin, R. O.; Kloeck, W.; Zolensky, M. E.; Messenger, S.

    2008-01-01

    Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5].

  6. Energetic Particle Abundances as Probes of an Interplanetary Shock Wave

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; Tylka, A. J.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We examine the unique abundance variations of Fe/O and He/H in solar energetic particles from a W09 event of 2001 April 10, that have leaked through the flank of an interplanetary shock launched from W04 on April 9. Shock waves from both events reach the Wind spacecraft on April 11. During the second event, both Fe/O and He/H begin at low values and rise to maxima near the time of passage of the shock waves, indicating greater scattering for the species with the highest rigidity at a given velocity. Strong modulation of Fe/O suggests preferential scattering and trapping of Fe by the wave spectrum near and behind the intermediate shock. A significant factor may be the residual proton-generated waves from the very hard proton spectrum accelerated by the early shock wave prior to the onset of the second event. Thus, ion abundances from the later event probe the residual wave spectrum at the earlier shock.

  7. The energy source of the interplanetary medium and the heliosphere

    NASA Technical Reports Server (NTRS)

    Parker, Eugene N.

    1987-01-01

    The activity of the interplanetary medium arises from occasional transient outbursts of the active corona and, for the most part, from the interaction of fast and slow streams in the solar wind. The basic driver is the heat input to the corona, both transient and steady. The fast streams issue from coronal holes where the heat input may be Alfven waves with root mean squared (rms) fluid velocities of nearly 100 km/sec or may be wholly or in part the waves refracted into the hole from neighboring active regions. If the latter, then the character of the wind from the coronal hole depends upon the proximity and vigor of active regions, with significant differences between the polar and low altitude solar wind. In any case, there is no observational support for any of these ideas, so that the primary cause of the wind from the Sun, as well as any other similar star is not without mystery. It is to be hoped that ground-based observations together with the input from the Solar Optical Telescope and the International Solar Polar Mission may in time succeed in clearing up some of the basic questions.

  8. Magnetic shielding of interplanetary spacecraft against solar flare radiation

    NASA Technical Reports Server (NTRS)

    Cocks, Franklin H.; Watkins, Seth

    1993-01-01

    The ultimate objective of this work is to design, build, and fly a dual-purpose, piggyback payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field (1) to protect spacecraft against solar flare protons, (2) to produce a thrust of sufficient magnitude to stabilize low satellite orbits against orbital decay from atmospheric drag, and (3) to test the magsail concept. These all appear to be capable of being tested using the same deployed high temperature superconducting coil. In certain orbits, high temperature superconducting wire, which has now been developed to the point where silver-sheathed high T sub c wires one mm in diameter are commercially available, can be used to produce the magnetic moments required for shielding without requiring any mechanical cooling system. The potential benefits of this concept apply directly to both earth-orbital and interplanetary missions. The usefulness of a protective shield for manned missions needs scarcely to be emphasized. Similarly, the usefulness of increasing orbit perigee without expenditure of propellant is obvious. This payload would be a first step in assessing the true potential of large volume magnetic fields in the US space program. The objective of this design research is to develop an innovative, prototype deployed high temperature superconducting coil (DHTSC) system.

  9. Measurement of polycyclic aromatic hydrocarbon (PAHs) in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M.

    1993-01-01

    We report here the first definitive measurements of specific organic molecules (polycyclic aromatic hydrocarbons (PAH's)) in interplanetary dust particles (IDP's). An improved version of the microbeam-two-step laser mass spectrometer was used for the analysis. Two IDP's gave similar mass spectra showing an abundance of PAH's. Control samples, including particles of probable terrestrial origin from the same stratospheric collector, gave either null results or quite different spectra. We conclude that the PAH's are probably indigenous to the IDP's and are not terrestrial contaminants. The instrument used to study the particles is a two-step laser mass spectrometer. Constituent neutral molecules of the sample are first desorbed with a pulsed infrared laser beam focussed to 40 micrometers. In the second step, PAH's in the desorbed plume are preferentially ionized by a pulsed UV laser beam. Resulting ions produced by resonant absorption are extracted into a reflectron time-of-flight mass spectrometer. This instrument has high spatial resolution, high ion transmission, unlimited mass range, and multichannel detection of all ion masses from a single laser shot.

  10. Dynamics of interplanetary dust in the F corona

    SciTech Connect

    Rusk, E.T.

    1986-01-01

    Dynamical mechanisms in interplanetary space and in the F corona were studied by numerical simulations. An expression for the radiation pressure force due to a rotating spherical source of radiation was derived. Also, expressions relating the variation in inclination and the longitude of the ascending node to the solar magnetic field were derived. These expressions are based on the spherical source surface model of the solar magnetic field. Simulations of particles released during perihelion passages of comet Encke show that cometary particles have lifetimes shorter than the lifetime calculated by Wyatt and Whipple in 1950. These simulations also resulted in higher eccentricities and a definite alignment of the particles' aphelia toward a direction 20/sup 0/ east of the vernal equinox. An expression relating the size of a planet's zone of influence to perturbations on particles in solar orbits based on the closest approach between the planet and the particle show that the expression for the size of planet's zone of influence is not singular, but varies with the particular orbital element which is being studied.

  11. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Hildner, E.

    1983-01-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.

  12. Interplanetary medium data book, supplement 5, 1988-1993

    NASA Technical Reports Server (NTRS)

    King, Joseph H.; Papitashvili, Natalia E.

    1994-01-01

    This publication represents an extension of the series of Interplanetary Medium Data Books and supplements that have been issued by the National Space Science Data Center since 1977. This volume contains solar wind magnetic field and plasma data from the IMP 8 spacecraft for 1988 through the end of 1993. The normalization of the MIT plasma density and temperature, which has been discussed at length in previous volumes, is implemented as before, using the same normalization constants for 1988-1993 data as for the earlier data. Owing to a combination of non-continuity of IMP 8 telemetry acquisition and IMP's being out of the solar wind for about 40 percent of its orbit, the annual solar wind coverage for 1988-1993 is 40 plus or minus 5 percent. The plots and listings of this supplement are in essentially the same format as in previous supplements. Days for which neither IMF nor plasma data were available for any hours are omitted from the listings.

  13. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray G10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray G10 The IDE experiment appears to be in excellent condition in the postflight photograph. All bond joints seem to have survived the space environment and the experiment hardware seems to be intact. The direction and intensity of the artificial light source has caused hot spots and reflections that tend to wash out the brown stain on the exposed surfaces. A close inspection of individual detectors reveal locations where impacts have occurred and damage is present. In the detector layout in the lower left corner of the tray, two detectors continue to show the discolorations observed in the flight photograph. A triangular shape can be seen in the detector located in the second horizontal row from the bottom and the second vertical row from the left. The other detector, located in the third horizontal row from the bottom and the fourth vertical row from the left has an irregular shaped, very faint, discolora tion. The blue color in the detectors metallic surface is caused by reflections of the surrounding area.

  14. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.

    2014-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often may thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  15. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The methods is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  16. PARTICLE ENERGY SPECTRA AT TRAVELING INTERPLANETARY SHOCK WAVES

    SciTech Connect

    Reames, Donald V.

    2012-09-20

    We have searched for evidence of significant shock acceleration of He ions of {approx}1-10 MeV amu{sup -1} in situ at 258 interplanetary traveling shock waves observed by the Wind spacecraft. We find that the probability of observing significant acceleration, and the particle intensity observed, depends strongly upon the shock speed and less strongly upon the shock compression ratio. For most of the 39 fast shocks with significant acceleration, the observed spectral index agrees with either that calculated from the shock compression ratio or with the spectral index of the upstream background, when the latter spectrum is harder, as expected from diffusive shock theory. In many events the spectra are observed to roll downward at higher energies, as expected from Ellison-Ramaty and from Lee shock-acceleration theories. The dearth of acceleration at {approx}85% of the shocks is explained by (1) a low shock speed, (2) a low shock compression ratio, and (3) a low value of the shock-normal angle with the magnetic field, which may cause the energy spectra that roll downward at energies below our observational threshold. Quasi-parallel shock waves are rarely able to produce measurable acceleration at 1 AU. The dependence of intensity on shock speed, seen here at local shocks, mirrors the dependence found previously for the peak intensities in large solar energetic-particle events upon speeds of the associated coronal mass ejections which drive the shocks.

  17. An interplanetary dust particle with links to CI chondrites

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Thomas, Kathie L.; Mckay, David S.

    1992-01-01

    W7013F5 is a chondritic, hydrated interplanetary dust particle whose composition and mineralogy is nearly identical to that found in the CI chondrites. Transmission electron microscope observations show that the phyllosilicates in W7013F5 consist largely of a coherent undergrowth of Mg-Fe serpentine and Fe-bearing saponite on the unitcell scale. This distinctive intergrowth of phyllosilicates has only been observed previously in the CI chondrites. Other secondary minerals in W7013F5 include Mg-Fe carbonates, magnetite, and pentlandite. The mineral assemblage in W7013F5 is generally not as oxidized as that in the CI chondrites. The presence of kamacite in W7013F5 indicates that the particle is extraterrestrial, and a thin amorphous rim surrounding the particle provides evidence that it is not a piece of a meteorite that fragmented during transit through the atmosphere. The apparent lack of hydrated IDPs with CI mineralogy and chemistry may indicate that CI-type dust-producing asteroids are uncommon in the asteroid belt.

  18. Interplanetary Dust Particles as Samples of Icy Asteroids

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Brunetto, R.; Demeo, F. E.; Djouadi, Z.; Dumas, C.; Merouane, S.; Mousis, O.; Zanda, B.

    2015-06-01

    Meteorites have long been considered as reflections of the compositional diversity of main belt asteroids and consequently they have been used to decipher their origin, formation, and evolution. However, while some meteorites are known to sample the surfaces of metallic, rocky and hydrated asteroids (about one-third of the mass of the belt), the low-density icy asteroids (C-, P-, and D-types), representing the rest of the main belt, appear to be unsampled in our meteorite collections. Here we provide conclusive evidence that the surface compositions of these icy bodies are compatible with those of the most common extraterrestrial materials (by mass), namely anhydrous interplanetary dust particles (IDPs). Given that these particles are quite different from known meteorites, it follows that the composition of the asteroid belt consists largely of more friable material not well represented by the cohesive meteorites in our collections. In the light of our current understanding of the early dynamical evolution of the solar system, meteorites likely sample bodies formed in the inner region of the solar system (0.5-4 AU) whereas chondritic porous IDPs sample bodies that formed in the outer region (>5 AU).

  19. Power spectral signatures of interplanetary corotating and transient flows

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Burlaga, L. F.; Matthaeus, W. H.

    1984-01-01

    Studies of the time behavior of the galactic cosmic ray intensity have concluded that long term decreases in the intensity are generally associated with systems of interplanetary flows that contain flare generated shock waves, magnetic clouds and other transient phenomena. The magnetic field power spectral signatures of such flow systems are compared to power spectra obtained during times when the solar wind is dominated by stable corotating streams that do not usually produce long-lived reduction in the cosmic ray intensity. The spectral signatures of these two types of regimes (transient and corotating) are distinct. However, the distinguishing features are not the same throughout the heliosphere. In data collected beyond 1 AU the primary differences are in the power spectra of the magnitude of the magnetic field rather than in the power in the field components. Consequently, decreases in cosmic ray intensity are very likely due to magnetic mirror forces and gradient drifts rather than to small angle scattering due to cyclotron wave-particle interactions.

  20. Reference Design for a Simple, Durable and Refuelable Interplanetary Spacecraft

    NASA Astrophysics Data System (ADS)

    McConnell, B. S.; Tolley, A. M.

    This article describes a reference design for interplanetary vessels, composed mostly of water, that utilize simplified RF engines for low thrust, long duration propulsion, and hydrogen peroxide for short duration, high thrust burns. The electrothermal engines are designed to heat a wide range of liquid materials, possibly also milled solids or surface dusts. The system emphasizes simple components and processes based on older technologies, many well known since the 1960s, that are understandable, can process a variety of materials, and are easily serviced in flight. The goal is to radically simplify systems and their inter-dependencies, to a point where a reasonably skilled person can learn to operate these vessels, not unlike a sailboat, and to eliminate many design and testing bottlenecks in their construction. The use of water, or hydrogen peroxide generated in situ from that water, is multiply advantageous because it can be used for structure, consumption, irrigation, radiation and debris shielding, and thermal regulation, and thus greatly reduce dead weight by creating an almost fully consumable ship. This also enables the ship to utilize a wide range of in situ materials, and eventually obtain reaction mass from lower gravity sites. The ability to switch between low thrust, constant power and high thrust, short duration maneuvers will enable these ships to travel freely and reach many interesting destinations throughout the solar system. One can think of them as “spacecoaches”, not unlike the prairie schooners of the Old West, which were rugged, serviceable by tradesmen, and easily maintained.

  1. Impact angle control of interplanetary shock geoeffectiveness: A statistical study

    NASA Astrophysics Data System (ADS)

    Oliveira, Denny M.; Raeder, Joachim

    2015-06-01

    We present a survey of interplanetary (IP) shocks using Wind and ACE satellite data from January 1995 to December 2013 to study how IP shock geoeffectiveness is controlled by IP shock impact angles. A shock list covering one and a half solar cycle is compiled. The yearly number of IP shocks is found to correlate well with the monthly sunspot number. We use data from SuperMAG, a large chain with more than 300 geomagnetic stations, to study geoeffectiveness triggered by IP shocks. The SuperMAG SML index, an enhanced version of the familiar AL index, is used in our statistical analysis. The jumps of the SML index triggered by IP shock impacts on the Earth's magnetosphere are investigated in terms of IP shock orientation and speed. We find that, in general, strong (high speed) and almost frontal (small impact angle) shocks are more geoeffective than inclined shocks with low speed. The strongest correlation (correlation coefficient R = 0.78) occurs for fixed IP shock speed and for varied IP shock impact angle. We attribute this result, predicted previously with simulations, to the fact that frontal shocks compress the magnetosphere symmetrically from all sides, which is a favorable condition for the release of magnetic energy stored in the magnetotail, which in turn can produce moderate to strong auroral substorms, which are then observed by ground-based magnetometers.

  2. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  3. [Problems of ensuring human radiation safety during interplanetary flights].

    PubMed

    Ushakov, I B; Petrov, V M; Shafirkin, A V; Shtemberg, A S

    2011-01-01

    The work contains the analyses and discussion of the main sources of space radiation specified for interplanetary flights, the dosimetric functionals used for describing the processes of radiation lesions and reparation of the organism in the conditions of the complex radiation impact with a broad charge composition of cosmic rays and a peculiar spatial and temporal dose behavior. It represents the results of calculations of the radiation risks during the flight and the total lifelong radiation risk with taking into account all the delayed unfavorable biological consequences. The main uncertainties in the calculated values of radiation risk leading to its undervaluation are analyzed. In addition, also provided is the range of theoretical and experimental investigations necessary for the adjustment of coefficient values used in the algorithm of radiation risk calculations, as well as in the nomenclature of experiments for estimating the individual resistance of man to the extreme influence and investigations aimed at estimating and increasing the reliability of the operator activity of cosmonauts. PMID:22279772

  4. LDEF (Flight), AO201 : Interplanetary Dust Experiment, Tray G10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO201 : Interplanetary Dust Experiment, Tray G10 The flight/on-orbit photograph of the G10 experi ment tray was taken from the Orbiter aft flight deck during the LDEF retrieval. A light brown stain can be seen on the experiment tray flanges and to a lesser degree on the IDE Chemglaze Z tained their integrity. A light tan stain on the solar sensor base plate, located in the center of the tray, is more easily seen than that on the IDE mounting plate. Surface defects are highly visible due to the lighting conditions existing at the time the photograph was taken. The lighting angle is such that many impact craters can be seen. Two (2) detectors, located in the twenty (20) detector layout in the lower left corner of the tray, seem to have defects. A triangular shaped discoloration appears on the second detector from the left and in the second row from the bottom. Another irregular shaped discoloration can be seen on the fourth detector from the left and in the third row from the bottom. These discolorations appear to be due to material and/or fabrication defects and not reflected light. The blue colors on the detector's mirror like surface are caused by reflections of the LDEF surroundings.

  5. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Spann, J.

    2014-01-01

    We outline a plan to develop a physics based predictive toolset RISCS to describe the interplanetary energetic particle and radiation environment throughout the inner heliosphere, including at the Earth. To forecast and "nowcast" the radiation environment requires the fusing of three components: 1) the ability to provide probabilities for incipient solar activity; 2) the use of these probabilities and daily coronal and solar wind observations to model the 3D spatial and temporal heliosphere, including magnetic field structure and transients, within 10 AU; and 3) the ability to model the acceleration and transport of energetic particles based on current and anticipated coronal and heliospheric conditions. We describe how to address 1) - 3) based on our existing, well developed, and validated codes and models. The goal of RISCS toolset is to provide an operational forecast and "nowcast" capability that will a) predict solar energetic particle (SEP) intensities; b) spectra for protons and heavy ions; c) predict maximum energies and their duration; d) SEP composition; e) cosmic ray intensities, and f) plasma parameters, including shock arrival times, strength and obliquity at any given heliospheric location and time. The toolset would have a 72 hour predicative capability, with associated probabilistic bounds, that would be updated hourly thereafter to improve the predicted event(s) and reduce the associated probability bounds. The RISCS toolset would be highly adaptable and portable, capable of running on a variety of platforms to accommodate various operational needs and requirements.

  6. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  7. The British Interplanetary Society - Val Cleaver and Wernher von Braun

    NASA Astrophysics Data System (ADS)

    Willhite, I. P.

    This article is concerned with the early relationship between Wernher von Braun and the British Interplanetary Society (BIS). The BIS/Wernher von Braun/Val Cleaver correspondence files located here at the US Space & Rocket Center in Huntsville, Alabama are unparalleled. As one reads the stimulating comments between Cleaver and von Braun, the need to share their thoughts prevails. Following is an excerpt from one letter that whets ones appetite for more. 10 June 1951 Cleaver writes, “I'm so glad you enjoyed my last letter, and look forward to your promised further contribution to our discussion of the ethics of science in general and astronautics in particu- lar. As regards the one particular point on which you found yourself unable to hold your fire, I should say there are really two distinct issues at stake:. . .” This article attempts to represent the best of the letters as they goad each other on scientific principles, means to prevent wars, and other philosophic ideas.

  8. Multi-Spacecraft Observations of Interplanetary Shock Accelerated Particle Events

    NASA Technical Reports Server (NTRS)

    Ho, G. C.; Lario, D.; Decker, R. B.; Desai, M. I.; Hu, Q.; Kasper, J.

    2006-01-01

    We use simultaneous measurements from the Wind and ACE spacecraft to determine the spatial properties of both interplanetary (IP) shocks and the shock-associated energetic particle events. We combine plasma, magnetic field and energetic particle data from ACE and Wind for 124 energetic storm particle (ESP) events from 1998 to 2003 and examine the spatial and temporal variations of these events in the Earth's vicinity. We find that even though the two spacecraft were occasionally separated by more than 400 RE, the plasma, field, and energetic particle time-intensity profiles during the events were very similar. In addition, we find that the ion composition and energy spectra in individual IP shock events are identical at the two spacecraft locations. We also use the fitted shock velocity along the normal from ACE and estimate the shock transit time to Wind location. In general, there is poor agreement between the estimated transit time and the actual measured transit time. Hence, our assumptions that a) the IP shock at 1 AU propagates radially, and/or b) the IP shock is spherically symmetric at 1 AU are not valid. In this paper, we will also study, for the first time, the anisotropy measurements of low-energy IP shock-associated ions at both ACE and Wind. We will then compare these new anisotropy analyses with locally measured shock parameters and identify possible signatures of different shock acceleration processes as predicted by the first-order Fermi and shock-drift models.

  9. Kilometric type III radio bursts and interplanetary transients

    SciTech Connect

    MacDowall, R.J.

    1988-01-01

    The first detailed observations and analysis of interplanetary (IP) type III bursts which undergo sudden intensity changes are presented. Two major even categories are studied: cutoffs in which the type III intensity is abruptly reduced (by a factor of 10 or more) at some frequency and remains at the reduced level for all lower frequencies, and narrowband intensifications which frequently occur on the high-frequency edge of a cutoff. Based on their apparent radial velocities as well as their occurrence at the same frequencies as kilometric type II emission, a subset of the sudden intensity change events are demonstrated to be associated with IP shocks. Consequently, they provide a new tool for shock detection in the inner heliosphere. Two causes proposed for the shock associated type III burst cutoffs are enhanced levels of background electrons and pitch-angle scattering. In the vicinities of IP shocks, the observed background levels of electrons with energies greater than 2 keV are frequently enhanced by up to 2 orders of magnitude over ambient levels. The magnetic field fluctuations observed downstream of many shocks are effective in pitch-angle scattering type III electrons. Either of these mechanisms may reduce the effective height of the bump-on-tail distribution, and thereby influence the Langmuir wave growth and evolution. The pre-cutoff intensifications are shown to arise in regions of radial extent {Delta}R/R {approx} 0.1. Consequently, they are not the result of processes local to the shock.

  10. Operational Experience with Autonomous Star Trackers on ESA Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Lauer, Mathias; Jauregui, Libe; Kielbassa, Sabine

    2007-01-01

    Mars Express (MEX), Rosetta and Venus Express (VEX) are ESA interplanetary spacecrafts (S/C) launched in June 2003, March 2004 and November 2005, respectively. Mars Express was injected into Mars orbit end of 2003 with routine operations starting in spring 2004. Rosetta is since launch on its way to rendezvous comet Churyumov-Gerasimenko in 2014. It has completed several test and commissioning activities and is performing several planetary swingbys (Earth in spring 2005, Mars in spring 2007, Earth in autumn 2007 and again two years later). Venus Express has also started routine operations since the completion of the Venus orbit insertion maneuver sequence beginning of May 2006. All three S/C are three axes stabilized with a similar attitude and orbit control system (AOCS). The attitude is estimated on board using star and rate sensors and controlled using four reaction wheels. A bipropellant reaction control system with 10N thrusters serves for wheel off loadings and attitude control in safe mode. Mars Express and Venus Express have an additional 400N engine for the planetary orbit insertion. Nominal Earth communication is accomplished through a high gain antenna. All three S/C are equipped with a redundant set of autonomous star trackers (STR) which are based on almost the same hardware. The STR software is especially adapted for the respective mission. This paper addresses several topics related to the experience gained with the STR operations on board the three S/C so far.

  11. Interplanetary Exchange of Meteoritic Material: From Europa to the Earth

    NASA Astrophysics Data System (ADS)

    Ayala-Loera, C.; Reyes-Ruiz, M.; Chavez, C. E.; Aceves, H.

    2014-03-01

    We examine the dynamics of high-speed ejecta launched to interplanetary space from theJovian satellite Europa, possibly as a result of a giant impact. In particular we consider this as a mechanism for material exchange between Europa and other Solar System bodies. Numerical simulations of a large collection of test particles, taken to represent the different conditions of ejected debris, are carried out for 3,000 yr using the Mercury 6.5 code. We include in the integration the Sun, the planets from Venus to Uranus, the Moon and, on account of their astrobiological importance, Saturn’s major moons, Encelladus and Titan, and the major Jovian satellites Io, Callysto and Ganymede. We assume that debris is ejected with such velocity that it gets out of range of Europa’s gravitational influence. Particles are ejected from Europa isotropically and several ejection velocities are considered. We find that ejection from Europa’s surface with speeds greater than 10.10 km/s are enough to overcome the gravitational influence of Jupiter and they are captured in heliocentric orbits or escape from the Solar System. For suitable conditions, particles reach orbits with perihelia smaller than 1 AU, in principle, they could collide with Earth. On the basis of our results we estimate the collision probability of such ejecta with other bodies in the Solar System.

  12. MiniCOR: A miniature coronagraph for an interplanetary CUBESAT

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Korendyke, C.; Liewer, P. C.; Cutler, J.; Howard, R.; Plunkett, S. P.; Thernisien, A. F.

    2015-12-01

    Coronagraphs occupy a unique place in Heliophysics, critical to both NAA and NOAA programs. They are the primary means for the study of the extended solar coorna and its short/long term activity. In addition coronagraphs are the only instrument that can image coronal mass ejections (CMEs) leaving the Sun and provide ciritical information for space weather forecasting. We descirbe a low cost miniaturzied CubeSat coronagraph, MiniCOR, designed to operate in deep space which will returndata with higher cadence and sensitivity than that from the SOHO/LASCO coronagraphs. MiniCOR is a six unit (6U) science craft with a tightly integrated, single instrument interplanetary flight system optiized for science. MiniCOR fully exploits recent technology advance in CubeSat technology and active pixel sensors. With a factor of 2.9 improvement in light gathering power over SOHO and quasi-continuous data collection, MiniCOR can observe the slow solar wind, CMEs and shocks with sufficient signal-to-noise ratio (SNR) to open new windows on our understanding of the inner Heliosphere. An operating Minic'OR would prvide coornagraphic observations in support of the upcoming Solar Probe Plus (SPP) and Solar Orbiter (SO) missions.

  13. Evolution of Interplanetary Shocks and their CME Drivers

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2010-01-01

    Shock-driving coronal mass ejections (CMEs) constitute the most energetic phenomena in the heliosphere. The shocks can be identified in a number of ways based on remote-sensing and in situ observations. Type II radio bursts are the earliest indicators of shocks that accelerate electrons to energies up to -10 keV. Solar energetic particle (SEP) events are always accompanied by long wavelength type II bursts indicating that the same shock accelerates ions and electrons. A recent investigation involving a large number of interplanetary (IP) shocks revealed that about 35% of them do not produce type II bursts (radio quiet, RQ) or SEPs. Comparison of the RQ shocks with the radio loud (RL) ones revealed some interesting results such as: (1) the lack of evidence for blast waves,(2) energetic particle enhancement in the shock front in -20% of RQ shocks, and (3) determination of the difference between the RQ and RL shocks in terms of the different kinematic properties of the associated CMEs. On the other hand the shock properties measured at I AU are not too different for the RQ and RL cases. This can be attributed to the interaction with the IP medium, which seems to erase the difference. Implications of this evolution for the geoeffectiveness is also discussed.

  14. Magnetopause shape under a radial interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Grygorov, Kostiantyn; Nemecek, Zdenek; Safrankova, Jana; Shue, Jih-Hong; Pi, Gilbert

    2016-07-01

    The orientation of the interplanetary magnetic field (IMF) is the most important factor influencing the magnetopause processes and, consequently, a transfer of solar wind mass and momentum into the magnetosphere. A role of the north-south IMF component is more or less well understood in terms of changes of a location of the reconnection site(s) on the magnetopause surface that leads to the changes of the magnetopause location and flaring angle. A very rarely observed radial IMF results in a shift of magnetopause locations up to several radii farther from the Earth and probably leads to a specific magnetopause shape. We present several case studies of magnetopause crossings observed by the fleet of THEMIS spacecraft under a long lasting radial IMF and analyze the difference between observed magnetopause positions and those which are predicted by empirical magnetopause models. We use the data propagated from the L1 point as well as observations of near-Earth solar wind monitors (if available) as a model input. We discuss possible processes that can lead to the magnetopause displacement and to changes of its shape.

  15. Effects of Interplanetary Shock Inclinations on Nightside Auroral Power Intensity

    NASA Astrophysics Data System (ADS)

    Oliveira, D. M.; Raeder, J.; Tsurutani, B. T.; Gjerloev, J. W.

    2016-02-01

    We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectiveness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and Wind spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanced versions of the traditional geomagnetic indices. The SuperMAG auroral electroject SME index, an enhanced version of the traditional AE index, is used as an auroral power (AP) indicator. AP intensity jumps triggered by shock impacts are correlated with both shock speed and impact angle. It is found that high AP intensity events typically occur when high speed IP shocks impact the Earth's magnetosphere with the shock normal almost parallel to the Sun-Earth line. This result suggests that symmetric and strong magnetospheric compression leads to favorable conditions for intense auroral power release, as shown previously by simulations and observations. Some potential mechanisms will be discussed.

  16. Combining Electric and Sail Propulsion for Interplanetary Sample Return

    SciTech Connect

    Noble, Robert

    2003-02-04

    Fast sample return from the outer Solar System would open an entirely new avenue for space science, but the vast distances make this a daunting task. The achievable transit velocity and the need for extra propellant on the return trip limit the feasibility of returning extraterrestrial samples to Earth. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher velocities. High specific impulse, electric propulsion reduces the propellant required for the outbound and return trips, but decelerating the spacecraft at the inner Solar System from high velocity still involves a long, inward spiral trajectory. The use of solar sails to rapidly decelerate incoming sample capsules and eliminate propellant is explored in this paper. The sail is essentially a ''solar parachute'' used for braking at the end of the interplanetary return flight, permitting a higher transit speed and truncating the deceleration spiral. In this application the sail is relatively small and manageable since only the sample capsule and its sail are decelerated. A comparison is made between using all-electric propulsion versus combining electric propulsive acceleration with sail deceleration for sample return from the distances of Saturn, Uranus, and Pluto. Solar-sail braking dramatically reduces the return flight time by one-third or more compared to using electric rocket deceleration. To elucidate the technology requirements, wide ranges for both the loaded sail density and electric propulsion specific mass are considered in this initial parametric study.

  17. Fullerenes and interplanetary dust at the Permian-Triassic boundary.

    PubMed

    Poreda, Robert J; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).

  18. North-south asymmetry of the interplanetary magnetic helicity

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Bieber, John W.

    1995-01-01

    Previous analyses of the north-south asymmetry of the interplanetary magnetic helicity have used the omnitape dataset and have shown that there exists a persistent and statistically significant asymmetry in the handedness of the magnetic fluctuations at 1 AU. This asymmetry is concentrated in fluctuations with spacecraft frame frequencies less than 10-5 Hz (periods greater than 30 hours) at 1 AU. Attempts to extend these analyses to include data collected in the outer heliosphere require that we consider spacecraft frame periods many times greater than 30 hours. This raises interesting questions regarding homogeneity and stationarity of the datasets at this scale and brings into question the possible breakdown of the computed correlation functions due to the sector structure of the solar wind. The likely geometry of magnetic fluctuations in the outer heliosphere provides yet another complication in the analysis. These issues will be discussed in detail and the latest results from our studies of the Voyager 1 & 2 and Pioneer 10 & 11 datasets will be presented. The analysis of Pioneer-Venus Orbiter observations will be shown as well. The potential asymmetry between the magnetic helicity of the two hemispheres has significant and measurable implications for cosmic ray propagation in the heliosphere and these implications will be reviewed in light of the new results.

  19. Extermophylic microorganisms: issue of interplanetary transfer on external spacecraft surfaces.

    NASA Astrophysics Data System (ADS)

    Novikova, N.; Deshevaya, E.; Polykarpov, N.; Svistunova, Y.; Grigoriev, A.

    Interplanetary transfer of terrestrial microbes capable of surviving in extreme environments and planetary protection from accidental biocontamination by them are the issues of major practical rather than hypothetical value The natural resistance of microbes to extreme environments and a possibility of their transfer beyond geographical barriers of Earth on external spacecraft surfaces have brought forward a need in profound research into the likelihood of their survival in outer space Hardware and a program have been developed at the State Scientific Research Center of the Russian Federation -- Institute for Biomedical Problems with the goal of carrying out a space experiment Biorisk The experiment was aimed at assessing the possibility of long-term comparable with the duration of the Martian flight survival of microorganisms in outer space on materials used in space industry Samples of materials were contaminated with test cultures of bacteria Bacillus and fungi Aspergillus Penicillium Cladosporium known to be common residents of various environments on Earth and resistant to multiple alternation of high and low temperatures Materials used in the construction of external spacecraft surfaces such as steel aluminium alloy heat-insulating coating were chosen as test samples for the experiment Containers with materials and test microorganisms were placed on the external side of the Russian segment of the ISS Unique data have been accumulated after a 204 day exposure on the external side of the ISS which have proved that

  20. Proceedings of the Symposium on the Study of the Sun and Interplanetary Medium in Three Dimensions. [space mission planning and interplanetary trajectories by NASA and ESA to better observe the sun and solar system

    NASA Technical Reports Server (NTRS)

    Fisk, L. A. (Editor); Axford, W. I. (Editor)

    1976-01-01

    A series of papers are presented from a symposium attended by over 200 European and American scientists to examine the importance of exploring the interplanetary medium and the sun by out-of-the-ecliptic space missions. The likely scientific returns of these missions in the areas of solar, interplanetary, and cosmic ray physics is examined. Theoretical models of the solar wind and its interaction with interplanetary magnetic fields are given.