Science.gov

Sample records for 3rd interplanetary network

  1. CFDP for Interplanetary Overlay Network

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    The CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol for Interplanetary Overlay Network (CFDP-ION) is an implementation of CFDP that uses IO' s DTN (delay tolerant networking) implementation as its UT (unit-data transfer) layer. Because the DTN protocols effect automatic, reliable transmission via multiple relays, CFDP-ION need only satisfy the requirements for Class 1 ("unacknowledged") CFDP. This keeps the implementation small, but without loss of capability. This innovation minimizes processing resources by using zero-copy objects for file data transmission. It runs without modification in VxWorks, Linux, Solaris, and OS/X. As such, this innovation can be used without modification in both flight and ground systems. Integration with DTN enables the CFDP implementation itself to be very simple; therefore, very small. Use of ION infrastructure minimizes consumption of storage and processing resources while maximizing safety.

  2. Advanced routing in interplanetary backbone network

    NASA Astrophysics Data System (ADS)

    Xu, Ge; Sheng, Min; Wu, Chengke

    2007-11-01

    Interplanetary (IPN) Internet is a communication infrastructure providing communication services for scientific data delivery and navigation services for the explorer spacecrafts and orbiters of the future deep space missions. The interplanetary backbone network has the unique characteristics hence routing through the backbone network present many challenges that are not presented in traditional networks. Some routing algorithms have been proposed, in which, LPDB integrates the shortest path algorithm and the directional broadcast method to guarantee fast and reliable message delivery. Through this mutipath routing strategy, unpredictable link failures is addressed, but additional network overhead is introduced. In this paper, we propose an improvement of the LPDB named ALPDB in which the source could adaptively decide the next-hop nodes according to the link condition, hence reduce the network overhead. We model this algorithm on the network simulation platform of OPNET and compare it with other applicable algorithms in data passing ratio, data delay and network overhead. The result indicates that the ALPDB algorithm could not only guarantee reliable message delivery, but also decrease the cost significantly.

  3. The Spanish Fireball Network: Popularizing Interplanetary Matter

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; Castro-Tirado, A.; Llorca, J.; Fabregat, J.

    In order to increase in Spain the social interest in the study of interplanetary matter (asteroids, comets and meteoroids) we created the Spanish Photographic Meteor Network (SPMN) in 1997. This network has been dedicated to studying interplanetary matter with participation of researchers from three universities (Universitat Jaume I, Universitat de Barcelona and Universitat de València), the Institut d'Estudis Espacials de Catalunya (IEEC) and the Instituto de Astrofísica de Andalucía and it is also supported by the Atmospheric Sounding Station at El Arenosillo (INTA-CEDEA) and by the Experimental Station La Mayora (EELM-CSIC). In order to promote the participation of amateurs, our homepage (www.spmn.uji.es) presents public information about our research explains how amateur astronomers can participate in our network. In this paper we give some examples of the social role of a Fireball Network in order to give a coherent explanation to bright fireball events. Moreover, we also discuss the role of this kind of research project as a promoter of amateur participation and contribution to science. In fact, meteor astronomy can become an excellent area to form young researchers because systematic observation of meteors using photographic, video and CCD techniques has become one of the rare fields in astronomy in which amateurs can work together with professionals to make important contributions. We present here some results of the campaigns realized from the formation of the network. Finally, in a new step of development of our network, the all-sky CCD automatic cameras will be continuously detecting meteors and fireballs from four stations located in the Andalusia and Valencian communities by the end of 2005. Additionally, during important meteor showers we plan to develop fireball spectroscopy using medium field lenses.

  4. "Elderly Deafblindness." Proceedings of the European Conference of Deafblind International's Acquired Deafblindness Network (3rd, Marcelli di Numana, Italy, October 2-7, 1998).

    ERIC Educational Resources Information Center

    Deafblind International, London (England).

    This text includes all of the plenary presentations from the 3rd European Conference of Deafblind International's Acquired Deafblindness Network. This international conference was the first to focus specifically on older people with dual sensory impairment. Presentations addressed the awareness of the needs of older people with deafblind or dual…

  5. Interplanetary Overlay Network Bundle Protocol Implementation

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.

  6. Relays from Mars demonstrate international interplanetary networking

    NASA Astrophysics Data System (ADS)

    2004-08-01

    On 4 August at 14:24 CEST, as Mars Express flew over one of NASA’s Mars exploration rovers, Opportunity, it successfully received data previously collected and stored by the rover. The data, including 15 science images from the rover's nine cameras, were then downlinked to ESA’s European Space Operations Centre in Darmstadt (Germany) and immediately relayed to the Mars Exploration Rovers team based at the Jet Propulsion Laboratory in Pasadena, USA. NASA orbiters Mars Odyssey and Mars Global Surveyor have so far relayed most of the data produced by the rovers since they landed in January. Communication compatibility between Mars Express and the rovers had already been demonstrated in February, although at a low rate that did not convey much data. The 4 August session, at a transmit rate of 42.6 megabits in about six minutes, set a new mark for international networking around another planet. The success of this demonstration is the result of years of groundwork and was made possible because both Mars Express and the Mars rovers use the same communication protocol. This protocol, called Proximity-1, was developed by the international Consultative Committee for Space Data Systems, an international partnership for standardising techniques for handling space data. Mars Express was 1400 kilometres above the Martian surface during the 4 August session with Opportunity, with the goal of a reliable transfer of lots of data. Engineers for both agencies plan to repeat this display of international cooperation today, 10 August, with another set of Opportunity images. “We're delighted how well this has been working, and thankful to have Mars Express in orbit,” said Richard Horttor of NASA's Jet Propulsion Laboratory, Pasadena, California, project manager for NASA's role in Mars Express. JPL engineer Gary Noreen of the Mars Network Office said: “the capabilities that our international teamwork is advancing this month could be important in future exploration of Mars

  7. Proceedings of the Conference: Universities in World Network of Information and Communication (3rd, Dubrovnik, May 20-23, 1980).

    ERIC Educational Resources Information Center

    Soucek, Branko, Ed.

    1980-01-01

    The study, exploration, and debate of relations between universities, world information systems, and communication networks seeking to establish a sustainable system to handle recent developments in information and communication, utilizing universities as focal points, was continued at this third annual conference attended by 31 information…

  8. INTERPLANETARY NETWORK LOCALIZATIONS OF KONUS SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Pal'shin, V. D.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Oleynik, P. P.; Ulanov, M. V.; Hurley, K.; Cline, T.; Trombka, J.; McClanahan, T.; Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.; and others

    2013-08-15

    Between the launch of the Global Geospace Science Wind spacecraft in 1994 November and the end of 2010, the Konus-Wind experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emission). During this period, the Interplanetary Network (IPN) consisted of up to 11 spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. The short burst detection rate, {approx}18 yr{sup -1}, exceeds that of many individual experiments.

  9. The ENCCA-WP7/EuroSarc/EEC/PROVABES/EURAMOS 3rd European Bone Sarcoma Networking Meeting/Joint Workshop of EU Bone Sarcoma Translational Research Networks; Vienna, Austria, September 24-25, 2015. Workshop Report.

    PubMed

    Kager, Leo; Whelan, Jeremy; Dirksen, Uta; Hassan, Bass; Anninga, Jakob; Bennister, Lindsey; Bovée, Judith V M G; Brennan, Bernadette; Broto, Javier M; Brugières, Laurence; Cleton-Jansen, Anne-Marie; Copland, Christopher; Dutour, Aurélie; Fagioli, Franca; Ferrari, Stefano; Fiocco, Marta; Fleuren, Emmy; Gaspar, Nathalie; Gelderblom, Hans; Gerrand, Craig; Gerß, Joachim; Gonzato, Ornella; van der Graaf, Winette; Hecker-Nolting, Stefanie; Herrero-Martín, David; Klco-Brosius, Stephanie; Kovar, Heinrich; Ladenstein, Ruth; Lancia, Carlo; LeDeley, Marie-Cecile; McCabe, Martin G; Metzler, Markus; Myklebost, Ola; Nathrath, Michaela; Picci, Piero; Potratz, Jenny; Redini, Françoise; Richter, Günther H S; Reinke, Denise; Rutkowski, Piotr; Scotlandi, Katia; Strauss, Sandra; Thomas, David; Tirado, Oscar M; Tirode, Franck; Vassal, Gilles; Bielack, Stefan S

    2016-01-01

    This report summarizes the results of the 3rd Joint ENCCA-WP7, EuroSarc, EEC, PROVABES, and EURAMOS European Bone Sarcoma Network Meeting, which was held at the Children's Cancer Research Institute in Vienna, Austria on September 24-25, 2015. The joint bone sarcoma network meetings bring together European bone sarcoma researchers to present and discuss current knowledge on bone sarcoma biology, genetics, immunology, as well as results from preclinical investigations and clinical trials, to generate novel hypotheses for collaborative biological and clinical investigations. The ultimate goal is to further improve therapy and outcome in patients with bone sarcomas.

  10. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  11. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  12. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Valach, Fridrich; Bochníček, Josef; Hejda, Pavel; Revallo, Miloš

    2014-02-01

    The paper deals with the relation of the southern orientation of the north-south component Bz of the interplanetary magnetic field to geomagnetic activity (GA) and subsequently a method is suggested of using the found facts to forecast potentially dangerous high GA. We have found that on a day with very high GA hourly averages of Bz with a negative sign occur at least 16 times in typical cases. Since it is very difficult to estimate the orientation of Bz in the immediate vicinity of the Earth one day or even a few days in advance, we have suggested using a neural-network model, which assumes the worse of the possibilities to forecast the danger of high GA - the dominant southern orientation of the interplanetary magnetic field. The input quantities of the proposed model were information about X-ray flares, type II and IV radio bursts as well as information about coronal mass ejections (CME). In comparing the GA forecasts with observations, we obtain values of the Hanssen-Kuiper skill score ranging from 0.463 to 0.727, which are usual values for similar forecasts of space weather. The proposed model provides forecasts of potentially dangerous high geomagnetic activity should the interplanetary CME (ICME), the originator of geomagnetic storms, hit the Earth under the most unfavorable configuration of cosmic magnetic fields. We cannot know in advance whether the unfavorable configuration is going to occur or not; we just know that it will occur with the probability of 31%.

  13. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.

  14. Next-Generation Ground Network Architecture for Communications and Tracking of Interplanetary Smallsats

    NASA Astrophysics Data System (ADS)

    Cheung, K.-M.; Abraham, D.; Arroyo, B.; Basilio, E.; Babuscia, A.; Duncan, C.; Lee, D.; Oudrhiri, K.; Pham, T.; Staehle, R.; Waldherr, S.; Welz, G.; Wyatt, J.; Lanucara, M.; Malphrus, B.; Bellardo, J.; Puig-Suari, J.; Corpino, S.

    2015-08-01

    As small spacecraft venture out of Earth orbit, they will encounter challenges not experienced or addressed by the numerous low Earth orbit (LEO) CubeSat and smallsat missions staged to date. The LEO CubeSats typically use low-cost, proven CubeSat radios, antennas, and university ground stations with small apertures. As more ambitious yet cost-constrained space mission concepts to the Moon and beyond are being developed, CubeSats and smallsats have the potential to provide a more affordable platform for exploring deep space and performing the associated science. Some of the challenges that have, so far, slowed the proliferation of small interplanetary spacecraft are those of communications and navigation. Unlike Earth-orbiting spacecraft that navigate via government services such as North American Aerospace Defense Command's (NORAD's) tracking elements or the Global Positioning Satellite (GPS) system, interplanetary spacecraft would have to operate in a fundamentally different manner that allows the deep-space communications link to provide both command/telemetry and the radiometric data needed for navigation. Another challenge occurs when smallsat and CubeSat missions would involve multiple spacecraft that require near-simultaneous communication and/or navigation, but have a very limited number of ground antenna assets, as well as available spectrum, to support their links. To address these challenges, the Jet Propulsion Laboratory (JPL) and the Deep Space Network (DSN) it operates for NASA are pursuing the following efforts: (1) Developing a CubeSat-compatible, DSN-compatible transponder -- Iris -- which a commercial vendor can then make available as a product line. (2) Developing CubeSat-compatible high-gain antennas -- deployable reflectors, reflectarrays, and inflatable antennas. (3) Streamlining access and utilization processes for DSN and related services such as the Advanced Multi-Mission Operations System (AMMOS). (4) Developing methodologies for tracking

  15. Integrated RF/Optical Interplanetary Networking Preliminary Explorations and Empirical Results

    NASA Technical Reports Server (NTRS)

    Raible, Daniel E.; Hylton, Alan G.

    2012-01-01

    Over the last decade interplanetary telecommunication capabilities have been significantly expanded--specifically in support of the Mars exploration rover and lander missions. NASA is continuing to drive advances in new, high payoff optical communications technologies to enhance the network to Gbps performance from Mars, and the transition from technology demonstration to operational system is examined through a hybrid RF/optical approach. Such a system combines the best features of RF and optical communications considering availability and performance to realize a dual band trunk line operating within characteristic constraints. Disconnection due to planetary obscuration and solar conjunction, link delays, timing, ground terminal mission congestion and scheduling policy along with space and atmospheric weather disruptions all imply the need for network protocol solutions to ultimately manage the physical layer in a transparent manner to the end user. Delay Tolerant Networking (DTN) is an approach under evaluation which addresses these challenges. A multi-hop multi-path hybrid RF and optical test bed has been constructed to emulate the integrated deep space network and to support protocol and hardware refinement. Initial experimental results characterize several of these challenges and evaluate the effectiveness of DTN as a solution to mitigate them.

  16. Support for the Interplanetary Network of Gamma-Ray Burst Detectors

    NASA Astrophysics Data System (ADS)

    Hurley, Kevin

    This proposal requests two years of support for a portion of the Interplanetary Network (IPN). The network consists of nine spacecraft, each of which is in a different category with respect to NASA funding. One, AGILE, is an Italian mission which never received NASA support, while three others (Fermi, MESSENGER, and Swift) are NASA missions which are currently supported. Although their data are used in the network, they are not the object of this proposal. Financial support is requested for the remaining 5 missions (INTEGRAL, Odyssey, RHESSI, Suzaku, and Wind), some of which continue to have guest investigator (GI) programs, but none of which supports GI s financially. The data for all of them are public (Odyssey data are in NASA s Planetary Data System (PDS)). Gamma-ray burst data are received continuously by these missions, at a rate of 0.9 GRB/day. Because the IPN is a full-time, all-sky monitor of GRB activity, its data are well suited to the three particular projects proposed here: gravitational lensing, neutrino emission, and primordial black hole evaporation. The present proposal requests two years of support to analyze and publish data which have been archived up to the time of submission (i.e. data received up to May 2014). The PI has accepted GI proposals for INTEGRAL and Suzaku, and is an unfunded co-investigator with the Odyssey mission. All data are in the public domain and are archived.

  17. The Interplanetary Network Supplement to the Fermi GBM Catalog - An AO-2 and AO-3 Guest Investigator Project

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Briggs, M.; Connaughton, V.; Meegan, C.; von Kienlin, A.; Rau, A.; Zhang, X.; Golenetskii, S.; Aptekar, R.; Mazets, E.; Pal'shin, V.; Fredericks, D.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H. A.; Mitrofanov, I. G.; Golovin, D.; Litvak, M. L.; Sanin, A. B.; Boynton, W.; Fellows, C.; Harshman, K.; Starr, R.; Goldsten, J.

    2012-01-01

    In the first two years of operation of the Fermi GBM, the 9-spacecraft Interplanetary Network (IPN) detected 158 GBM bursts with one or two distant spacecraft, and triangulated them to annuli or error boxes. Combining the IPN and GBM localizations leads to error boxes which are up to 4 orders of magnitude smaller than those of the GBM alone. These localizations comprise the IPN supplement to the GBM catalog, and they support a wide range of scientific investigations.

  18. Investigation of primordial black hole bursts using interplanetary network gamma-ray bursts

    DOE PAGES

    Ukwatta, Tilan Niranjan; Hurley, Kevin; MacGibbon, Jane H.; ...

    2016-07-25

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected bymore » the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Furthermore, assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.« less

  19. Investigation of primordial black hole bursts using interplanetary network gamma-ray bursts

    SciTech Connect

    Ukwatta, Tilan Niranjan; Hurley, Kevin; MacGibbon, Jane H.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal'Shin, V. D.; Goldsten, J.; Boynton, W.; Kozyrev, A. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Connaughton, V.; Yamaoka, K.; Ohno, M.; Ohmori, N.; Feroci, M.; Cline, T.; Gehrels, N.; Krimm, H. A.; McTiernan, J.

    2016-07-25

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 1013–1018 cm (7–105 au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Furthermore, assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  20. Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.

    PubMed

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Leonor, I; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Aptekar, R L; Atteia, J L; Cline, T; Connaughton, V; Frederiks, D D; Golenetskii, S V; Hurley, K; Krimm, H A; Marisaldi, M; Pal'shin, V D; Palmer, D; Svinkin, D S; Terada, Y; von Kienlin, A

    2014-07-04

    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  1. Average Spatial Distribution of Cosmic Rays behind the Interplanetary Shock—Global Muon Detector Network Observations

    NASA Astrophysics Data System (ADS)

    Kozai, M.; Munakata, K.; Kato, C.; Kuwabara, T.; Rockenbach, M.; Dal Lago, A.; Schuch, N. J.; Braga, C. R.; Mendonça, R. R. S.; Jassar, H. K. Al; Sharma, M. M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.; Tokumaru, M.

    2016-07-01

    We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in the western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east-west asymmetry is more prominent in GMDN data responding to ˜60 GV GCRs than in NM data responding to ˜10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic-y component of the density gradient, G y , shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G z shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G z changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.

  2. Search for Gravitational Waves Associated with γ-ray Bursts Detected by the Interplanetary Network

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Augustus, H.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Croce, R. P.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Ha, J.; Hall, E. D.; Hamilton, W.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Holt, K.; Hopkins, P.; Horrom, T.; Hoske, D.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Ingram, D. R.; Inta, R.; Islas, G.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, S.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lam, P. K.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, P. J.; Leonardi, M.; Leong, J. R.; Leonor, I.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lopez, E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Ma, Y.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Omar, S.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Recchia, S.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Reula, O.; Rhoades, E.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S. B.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sankar, S.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schilman, M.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, J.; Tarabrin, S. P.; Taylor, R.; Tellez, G.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Tuennermann, H.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wolovick, N.; Worden, J.; Wu, Y.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; Aptekar, R. L.; Atteia, J. L.; Cline, T.; Connaughton, V.; Frederiks, D. D.; Golenetskii, S. V.; Hurley, K.; Krimm, H. A.; Marisaldi, M.; Pal'shin, V. D.; Palmer, D.; Svinkin, D. S.; Terada, Y.; von Kienlin, A.; LIGO Scientific Collaboration; Virgo Collaboration; IPN Collaboration

    2014-07-01

    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10-2M⊙c2 at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  3. The Interplanetary Network Supplement to the Fermi GBM Catalog of Cosmic Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Hurley, K.; Pal'shin, V. D.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Svinkin, D. S.; Briggs, M. S.; Connaughton, V.; Meegan, C.; Goldsten, J.; Boynton, W.; Fellows, C.; Harshman, K.; Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.; Rau, A.; von Kienlin, A.; Zhang, X.; Yamaoka, K.; Fukazawa, Y.; Hanabata, Y.; Ohno, M.; Takahashi, T.; Tashiro, M.; Terada, Y.; Murakami, T.; Makishima, K.; Barthelmy, S.; Cline, T.; Gehrels, N.; Cummings, J.; Krimm, H. A.; Smith, D. M.; Del Monte, E.; Feroci, M.; Marisaldi, M.

    2013-08-01

    We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least one other instrument in the nine-spacecraft IPN. Of the 427, the localizations of 149 could be improved by arrival time analysis (or "triangulation"). For any given burst observed by the GBM and one other distant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies between about 0.'4 and 32°, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. We find that the IPN localizations intersect the 1σ GBM error circles in only 52% of the cases, if no systematic uncertainty is assumed for the latter. If a 6° systematic uncertainty is assumed and added in quadrature, the two localization samples agree about 87% of the time, as would be expected. If we then multiply the resulting error radii by a factor of three, the two samples agree in slightly over 98% of the cases, providing a good estimate of the GBM 3σ error radius. The IPN 3σ error boxes have areas between about 1 arcmin2 and 110 deg2, and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two bursts in the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrial gamma flash, and in the other, its origin was given as "uncertain." We also discuss the sensitivity and calibration of the IPN.

  4. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by the Interplanetary Network

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackbum, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.; Slutsky, J.; Cline, T.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.

    2014-01-01

    We present the results of a search for gravitational waves associated with 223 gamma ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(exp-2) solar mass c(exp 2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  5. THE INTERPLANETARY NETWORK SUPPLEMENT TO THE FERMI GBM CATALOG OF COSMIC GAMMA-RAY BURSTS

    SciTech Connect

    Hurley, K.; Pal'shin, V. D.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Svinkin, D. S.; Briggs, M. S.; Connaughton, V.; Meegan, C.; Goldsten, J.; Boynton, W.; Fellows, C.; Harshman, K.; Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.; and others

    2013-08-15

    We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least one other instrument in the nine-spacecraft IPN. Of the 427, the localizations of 149 could be improved by arrival time analysis (or {sup t}riangulation{sup )}. For any given burst observed by the GBM and one other distant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies between about 0.'4 and 32 Degree-Sign , depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. We find that the IPN localizations intersect the 1{sigma} GBM error circles in only 52% of the cases, if no systematic uncertainty is assumed for the latter. If a 6 Degree-Sign systematic uncertainty is assumed and added in quadrature, the two localization samples agree about 87% of the time, as would be expected. If we then multiply the resulting error radii by a factor of three, the two samples agree in slightly over 98% of the cases, providing a good estimate of the GBM 3{sigma} error radius. The IPN 3{sigma} error boxes have areas between about 1 arcmin{sup 2} and 110 deg{sup 2}, and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two bursts in the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrial gamma flash, and in the other, its origin was given as ''uncertain''. We also discuss the sensitivity and calibration of the IPN.

  6. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.

    2006-01-01

    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  7. DDN New User Guide, 3rd Edition

    DTIC Science & Technology

    1993-04-05

    incomplete or incorrect address is returned to the sender with an error message. If a mail message is undeliverable due to network or machine problems, most... mail programs try to resend it several times before returning it to the sender . Many mail programs allow you to use a local text editor to revise or...username and password. These may be entered in either upper or lowercase. After a successful login, InfoMail notifies user of mail in his " Inbox ." INBOX

  8. WNN 92; Proceedings of the 3rd Workshop on Neural Networks: Academic/Industrial/NASA/Defense, Auburn Univ., AL, Feb. 10-12, 1992 and South Shore Harbour, TX, Nov. 4-6, 1992

    NASA Technical Reports Server (NTRS)

    Padgett, Mary L. (Editor)

    1993-01-01

    The present conference discusses such neural networks (NN) related topics as their current development status, NN architectures, NN learning rules, NN optimization methods, NN temporal models, NN control methods, NN pattern recognition systems and applications, biological and biomedical applications of NNs, VLSI design techniques for NNs, NN systems simulation, fuzzy logic, and genetic algorithms. Attention is given to missileborne integrated NNs, adaptive-mixture NNs, implementable learning rules, an NN simulator for travelling salesman problem solutions, similarity-based forecasting, NN control of hypersonic aircraft takeoff, NN control of the Space Shuttle Arm, an adaptive NN robot manipulator controller, a synthetic approach to digital filtering, NNs for speech analysis, adaptive spline networks, an anticipatory fuzzy logic controller, and encoding operations for fuzzy associative memories.

  9. Risk assessment of the extreme interplanetary shock of 23 July 2012 on low-latitude power networks

    NASA Astrophysics Data System (ADS)

    Zhang, J. J.; Wang, C.; Sun, T. R.; Liu, Y. D.

    2016-03-01

    Geomagnetic sudden commencements (SCs), characterized by a rapid enhancement in the rate of change of the geomagnetic field perturbation (dB/dt), are considered to be an important source of large geomagnetically induced currents (GICs) in middle- and low-latitude power grids. In this study, the extreme interplanetary shock of 23 July 2012 is simulated under the assumption that it had hit the Earth with the result indicating the shock-caused SC would be 123 nT. Based on statistics, the occurrence frequency of SCs with amplitudes larger than the simulated one is estimated to be approximately 0.2% during the past 147 years on the Earth. During this extreme event, the simulation indicates that dB/dt, which is usually used as a proxy for GICs, at a dayside low-latitude substation would exceed 100 nT/min; this is very large for low-latitude regions. We then assess the GIC threat level based on the simulated geomagnetic perturbations by using the method proposed by Marshall et al. (2011). The results indicate that the risk remains at "low" level for the low-latitude power network on a global perspective. However, the GIC risk may reach "moderate" or even "high" levels for some equatorial power networks due to the influence of the equatorial electrojet. Results of this study feature substantial implications for risk management, planning, and design of low-latitude electric power networks.

  10. The Ups and Downs of 3rd Grade

    ERIC Educational Resources Information Center

    Felton, Kelsey Augst; Akos, Patrick

    2011-01-01

    The transition from 2nd to 3rd grade has received little notice in education research--yet the authors' experience in elementary school counseling convinced them that most students undergo a seismic shift during this period. Third grade is not only the first year students will encounter standardized end-of-grade tests, but also a year in which…

  11. PREFACE: 3rd International Congress on Mechanical Metrology (CIMMEC2014)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    From October 14th to 16th 2014, The Brazilian National Institute of Metrology, Quality, and Technology (Inmetro) and the Brazilian Society of Metrology (SBM) organized the 3rd International Congress on Mechanical Metrology (3rd CIMMEC). The 3rd CIMMEC was held in the city of Gramado, Rio Grande do Sul, Brazil. Anticipating the interest and enthusiasm of the technical-scientific community, the Organizing Institutions invite people and organizations to participate in this important congress, reiterating the commitment to organize an event according to highest international standards. This event has been conceived to integrate people and organizations from Brazil and abroad in the discussion of advanced themes in metrology. Manufacturers and dealers of measuring equipment and standards, as well as of auxiliary accessories and bibliographic material, had the chance to promote their products and services in stands at the Fair, which has taken place alongside the Congress. The 3rd CIMMEC consisted of five Keynote Speeches and 116 regular papers. Among the regular papers, the 25 most outstanding ones, comprising a high quality content on Mechanical Metrology, were selected to be published in this issue of Journal of Physics: Conference Series. It is our great pleasure to present this volume of Journal of Physics: Conference Series to the scientific community to promote further research in Mechanical Metrology and related areas. We believe that this volume will be both an excellent source of scientific material in the fast evolving fields that were covered by CIMMEC 2014.

  12. PreK-3rd: How Superintendents Lead Change. PreK-3rd Policy Action Brief. No. Five

    ERIC Educational Resources Information Center

    Marietta, Geoff

    2010-01-01

    Leading change to create an integrated PreK-3rd education and connect early learning programs with the K-12 system is not easy. Superintendents require courage to take the first step, persistence and political skills to encourage organizational and community engagement, and a relentless focus on results to measure progress and build momentum. As a…

  13. PREFACE: 3rd International Meeting on Silicene (IMS-3)

    NASA Astrophysics Data System (ADS)

    Kara, Abdelkader; Enriquez, Hanna; Lemaire, Jean Louis; Oughaddou, Hamid

    2014-03-01

    . Historical summary Every two years, the STARM (science, technologie avanc\\'ee et recherche pour la Mediterran\\'ee, http://www.starm.emcmre.org/) society is organizing an international conference entitled Euro-Mediterranean Conference on Materials and Renewable Energies (EMCMRE, http://www.emcmre.org/) in countries across the Mediterranean Sea. It is in this framework that an international meeting dedicated to silicene is organized simultaneously since 2010: 1st International Meeting of Silicene (IMS-1), Safi, Morocco, 2010 2nd International Meeting of Silicene (IMS-2), Marrakech, Morocco, 2011 3rd International Meeting of Silicene (IMS-3), Istres-Marseille, France, 2013 Conference pictures are available in the PDF

  14. The InterPlanetary Network Supplement to the Second Fermi GBM Catalog of Cosmic Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Hurley, K.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Svinkin, D. S.; Pal’shin, V. D.; Briggs, M. S.; Meegan, C.; Connaughton, V.; Goldsten, J.; Boynton, W.; Fellows, C.; Harshman, K.; Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B.; Rau, A.; von Kienlin, A.; Zhang, X.; Yamaoka, K.; Fukazawa, Y.; Ohno, M.; Tashiro, M.; Terada, Y.; Barthelmy, S.; Cline, T.; Gehrels, N.; Cummings, J.; Krimm, H. A.; Smith, D. M.; Del Monte, E.; Feroci, M.; Marisaldi, M.

    2017-04-01

    InterPlanetary Network (IPN) data are presented for the gamma-ray bursts in the second Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 462 bursts in that catalog between 2010 July 12 and 2012 July 11, 428, or 93%, were observed by at least 1 other instrument in the 9-spacecraft IPN. Of the 428, the localizations of 165 could be improved by triangulation. For these bursts, triangulation gives one or more annuli whose half-widths vary between about 2.‧3° and 16°, depending on the peak flux, fluence, time history, arrival direction, and the distance between the spacecraft. We compare the IPN localizations with the GBM 1σ, 2σ, and 3σ error contours and find good agreement between them. The IPN 3σ error boxes have areas between about 8 square arcminutes and 380 square degrees, and are an average of 2500 times smaller than the corresponding GBM 3σ localizations. We identify four bursts in the IPN/GBM sample whose origins were given as “uncertain,” but may in fact be cosmic. This leads to an estimate of over 99% completeness for the GBM catalog.

  15. The 3rd Annual Controlled Structures Technology Symposium

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of presentations at the Controlled Structures Technology (CST) MIT Space Engineering Research Center 3rd Annual Symposium are included. Topics covered include optical interferometer testbed; active impedence matching of complex structural systems; application of CST to adaptive optics; middeck 0-G dynamics Experiment (MODE); inhibiting multiple mode vibration in controlled flexible systems; the middeck active control experiment (MACE); robust control for uncertain structures; cost averaging techniques for robust structural control; and intelligent structures technology.

  16. Nice observatory measurements of double stars (3rd series)

    NASA Astrophysics Data System (ADS)

    Thorel, J.-C.

    2000-12-01

    We present recent measurements of visual double stars made at the Nice Observatory (3rd series). We also report the discovery of a new double star: JCT 4. Moreover we give a more precise position of the double star DOO 35. Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  17. Joint Force Quarterly. Issue 66, 3rd Quarter 2012

    DTIC Science & Technology

    2012-07-01

    core combat systems are interactive with one another, creating a synergistic outcome and capability rather than providing an additive- segmented tool ...J o i n t F o r c e Q u a r t e r l y issue 66, 3rd Quarter 2012 Achieving Force Resilience Offensive Cyber Joint System Assessments Report...cross-pollination” of students on a large scale. At a joint-minded level, we need to rethink our Service personnel systems , which could enhance the

  18. Orbital motion (3rd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Roy, A. E.

    The fundamental principles of celestial mechanics are discussed in an introduction for students of astronomy, aerospace engineering, and geography. Chapters are devoted to the dynamic structure of the universe, coordinate and timekeeping systems, the reduction of observational data, the two-body problem, the many-body problem, general and special perturbations, and the stability and evolution of the solar system. Consideration is given to lunar theory, artificial satellites, rocket dynamics and transfer orbits, interplanetary and lunar trajectories, orbit determination and interplanetary navigation, binaries and other few-body systems, and many-body systems of stars. Diagrams, graphs, tables, and problems with solutions are provided.

  19. Precipitation Model Validation in 3rd Generation Aeroturbine Disc Alloys

    NASA Technical Reports Server (NTRS)

    Olson, G. B.; Jou, H.-J.; Jung, J.; Sebastian, J. T.; Misra, A.; Locci, I.; Hull, D.

    2008-01-01

    In support of application of the DARPA-AIM methodology to the accelerated hybrid thermal process optimization of 3rd generation aeroturbine disc alloys with quantified uncertainty, equilibrium and diffusion couple experiments have identified available fundamental thermodynamic and mobility databases of sufficient accuracy. Using coherent interfacial energies quantified by Single-Sensor DTA nucleation undercooling measurements, PrecipiCalc(TM) simulations of nonisothermal precipitation in both supersolvus and subsolvus treated samples show good agreement with measured gamma particle sizes and compositions. Observed longterm isothermal coarsening behavior defines requirements for further refinement of elastic misfit energy and treatment of the parallel evolution of incoherent precipitation at grain boundaries.

  20. Microstructure Modeling of 3rd Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program is to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool will be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishment achieved during the second year (2008) of the program is summarized. The activities of this year include final selection of multicomponent thermodynamics and mobility databases, precipitate surface energy determination from nucleation experiment, multiscale comparison of predicted versus measured intragrain precipitation microstructure in quench samples showing good agreement, isothermal coarsening experiment and interaction of grain boundary and intergrain precipitates, primary microstructure of subsolvus treatment, and finally the software implementation plan for the third year of the project. In the following year, the calibrated models and simulation tools will be validated against an independently developed experimental data set, with actual disc heat treatment process conditions. Furthermore, software integration and implementation will be developed to provide material engineers valuable information in order to optimize the processing of the 3rd generation gas turbine disc alloys.

  1. Designing a 3rd generation, authenticatable attribute measurement system

    SciTech Connect

    Thron, Jonathan; Karpius, Peter; Santi, Peter; Smith, Morag; Vo, Duc; Williams, Richard

    2009-01-01

    Attribute measurement systems (AMS) are designed to measure potentially sensitive items containing Special Nuclear Materials to determine if the items possess attributes which fall within an agreed-upon range. Such systems could be used in a treaty to inspect and verify the identity of items in storage without revealing any sensitive information associated with the item. An AMS needs to satisfy two constraints: the host party needs to be sure that none of their sensitive information is released, while the inspecting party wants to have confidence that the limited amount of information they see accurately reflects the properties of the item being measured. The former involves 'certifying' the system and the latter 'authenticating' it. Previous work into designing and building AMS systems have focused more on the questions of certifiability than on the questions of authentication - although a few approaches have been investigated. The next step is to build a 3rd generation AMS which (1) makes the appropriate measurements, (2) can be certified, and (3) can be authenticated (the three generations). This paper will discuss the ideas, options, and process of producing a design for a 3rd generation AMS.

  2. 3rd International Conference on X-ray Technique

    NASA Astrophysics Data System (ADS)

    Potrakhov, N. N.; Gryaznov, A. Yu; Lisenkov, A. A.; Kostrin, D. K.

    2017-02-01

    In this preface a brief history, modern aspects and future tendencies in development of the X-ray technique as seen from the 3rd International Conference on X-ray Technique that was held on 24–25 November 2016 in Saint Petersburg, Russia are described On 24–25 November 2016 in Saint Petersburg on the basis of Saint Petersburg State Electrotechnical University “LETI” n. a. V. I. Ulyanov (Lenin) was held the 3rd International Conference on X-ray Technique. The tradition to hold a similar conference in our country was laid in Soviet times. The last of them, the All-Union Conference on the Prospects of X-ray Tubes and Equipment was organized and held more than a quarter century ago – on 21–23 November 1999, at the initiative and under the leadership of the chief engineer of the Leningrad association of electronic industry “Svetlana” Borovsky Alexander Ivanovich and the chief of special design bureau of X-ray devices of “Svetlana” Shchukin Gennady Anatolievich. The most active part in the organization and work of the conference played members of the department of X-ray and electron beam instruments of Leningrad Electrotechnical Institute “LETI” (the former name of Saint Petersburg State Electrotechnical University “LETI”), represented by head of the department professor Ivanov Stanislav Alekseevich.

  3. 3rd grade English language learners making sense of sound

    NASA Astrophysics Data System (ADS)

    Suarez, Enrique; Otero, Valerie

    2013-01-01

    Despite the extensive body of research that supports scientific inquiry and argumentation as cornerstones of physics learning, these strategies continue to be virtually absent in most classrooms, especially those that involve students who are learning English as a second language. This study presents results from an investigation of 3rd grade students' discourse about how length and tension affect the sound produced by a string. These students came from a variety of language backgrounds, and all were learning English as a second language. Our results demonstrate varying levels, and uses, of experiential, imaginative, and mechanistic reasoning strategies. Using specific examples from students' discourse, we will demonstrate some of the productive aspects of working within multiple language frameworks for making sense of physics. Conjectures will be made about how to utilize physics as a context for English Language Learners to further conceptual understanding, while developing their competence in the English language.

  4. 3rd Pavia international symposium on advanced kidney cancer.

    PubMed

    Porta, Camillo; Bracarda, Sergio

    2012-02-01

    Kidney cancers' natural history has radically changed in the past few years, due to the development of novel targeted agents. Despite these improvements, several unanswered questions still remain on the table, regarding the best first-line treatment, the ideal sequence of treatments, the management of specific subgroups of patients (e.g., elderly patients or those with comorbidities) and the relevance of prognostic factors, among many others. To foster discussions among clinicians and investigators working in this field, and to exchange different viewpoints concerning the newest advances in kidney cancer pathogenesis and treatment, the 3rd Pavia International Symposium on Advanced Kidney cancer was held in Pavia (Italy) between 30 June and 1 July 2011. The aim of this report is to summarize the most significant advances in the different disciplines applied to advanced kidney cancer, which were presented and discussed during the meeting, and how these advances will be changing the perspective of patients with this disease.

  5. Results from the UK 3rd generation programme: Albion

    NASA Astrophysics Data System (ADS)

    McEwen, R. K.; Axcell, C.; Knowles, P.; Hoade, K. P.; Wilson, M.; Dennis, P. N. J.; Backhouse, P.; Gordon, N. T.

    2008-10-01

    Following the development of 1st Generation systems in the 1970s, thermal imaging has been in service with the UK armed forces for over 25 years and has proven itself to be a battle winning technology. More recently the wider accessibility to similar technologies within opposing forces has reduced the military advantage provided by these 1st Generation systems and a clear requirement has been identified by the UK MOD for thermal imaging sensors providing increased detection, recognition and identification (DRI) ranges together with a simplified logistical deployment burden and reduced through-life costs. In late 2005, the UK MOD initiated a programme known as "Albion" to develop high performance 3rd Generation single waveband infrared detectors to meet this requirement. At the same time, under a separate programme supporting higher risk technology, a dual waveband infrared detector was also developed. The development phase of the Albion programme has now been completed and prototype detectors are now available and have been integrated into demonstration thermal imaging cameras. The Albion programme has now progressed into the second phase, incorporating both single and dual waveband devices, focussing on low rate initial production (LRIP) and qualification of the devices for military applications. All of the detectors have been fabricated using cadmium mercury telluride material (CMT), grown by metal organic vapour phase epitaxy (MOVPE) on low cost, gallium arsenide (GaAs) substrates and bump bonded to the silicon read out circuit (ROIC). This paper discusses the design features of the 3rd Generation detectors developed in the UK together with the results obtained from the prototype devices both in the laboratory and when integrated into field deployable thermal imaging cameras.

  6. Microdrilling of PCB substrate using DPSS 3rd harmonic laser

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Chang, Won Seok; Yoon, Kyung Ku; Jeong, Sungho; Shin, Bo Sung; Whang, Kyung Hyun

    2003-02-01

    Micromachining using the DPSS 3rd Harmonic Laser (355nm) has outstanding advantages as a UV source in comparison with Excimer lasers in various aspects such as maintenance cost, maskless machining, high repetition rate and so on. It also has the greater absorptivity of many materials in contrast to other IR sources. In this paper, the process for micro-drilling of through and blind hope in Cu/PI/Cu substrate with the UV DPSSL and a scanning device is investigated by both experimental and numerical methods. It is known that there is a large gap between the ablation threshold of copper and that of PI. We use the multi path for through hole with high energy density and we use Archimedes spiral path for blind hole with different energy densities to ablate different material. Furthermore, Matlab simulations considering the energy threshold of material is performed to anticipate the ablation shape according to the duplication of pulse, and FEM thermal analysis is used to predict the ablation depth of copper. This study would be widely applicable to various laser micromachining applications including through and blind hole micro-drilling of PCB, and micromachining of semiconductor components, medical parts and printer nozzles amongst others.

  7. 80. GENERAL VIEW TO NORTH ON 3RD AVENUE EL AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. GENERAL VIEW TO NORTH ON 3RD AVENUE EL AT GUN HILL STATION. 7TH AVENUE EL EXPRESS IS VISIBLE ABOVE THE 3RD AVENUE EL WHICH JOINED ONTO THE SAME STRUCTURE AT GUN HILL ROAD. NOTE: GUN HILL ROAD IS THE NORTH TERMINUS OF THE 3RD AVENUE ELEVATED. TRAINS DID NOT CARRY PASSENGERS BEYOND THIS POINT, ALTHOUGH THE 3RD AVENUE TRACK DID EXTEND FURTHER NORTH FOR SWITCHING PURPOSES AND INTO THE YARDS. - Interborough Rapid Transit Company, Third Avenue Elevated Line, Borough of the Bronx, New York County, NY

  8. Bifurcation of limit cycles in 3rd-order Z2 Hamiltonian planar vector fields with 3rd-order perturbations

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Han, Maoan

    2013-04-01

    In this paper, we show that a Z2-equivariant 3rd-order Hamiltonian planar vector fields with 3rd-order symmetric perturbations can have at least 10 limit cycles. The method combines the general perturbation to the vector field and the perturbation to the Hamiltonian function. The Melnikov function is evaluated near the center of vector field, as well as near homoclinic and heteroclinic orbits.

  9. PREFACE: 3rd International Conference on Hadron Physics (TROIA'11)

    NASA Astrophysics Data System (ADS)

    Erkol, Güray; Küçükarslan, Ayşe; Özpineci, Altuğ

    2012-03-01

    The 3rd International Conference on Hadron Physics, TROIA'11 was held at Canakkale, Turkey on 22-25 August 2011. Ozyegin University, Middle East Technical University, Canakkale Onsekiz Mart University and HadronPhysics2 Consortium sponsored the conference. Its aim was to bring together the experts and young scientists working on experimental and theoretical hadron physics. About 60 participants from 12 countries attended the conference. The topics covered included: Chiral Perturbation Theory QCD Sum Rules Effective Field Theory Exotic Hadrons Hadron Properties from Lattice QCD Experimental Results and Future Perspectives Hadronic Distribution Amplitudes The conference presentations were organized such that the morning sessions contained invited talks and the afternoon sessions were devoted to contributed talks and poster presentations. The speakers of the invited talks were: D Melikhov, M Nielsen, M Oka, E Oset, S Scherer, T T Takahashi and R Wanke. The conference venue was a resort hotel near Canakkale. As a social program, a guided full-day excursion to the excavation site of the ancient town of Troia and Assos was organized. We believe that this conference provided a medium for young scientists and experts in the field to effectively communicate and share ideas. We would like to express our sincere thanks to all participants for their contributions and stimulating discussions. We are also grateful to the Scientific Secretary, Kadir Utku Can, and all other members of the Organizing Committee for their patience and efforts. 13 February 2012 The Editors Güray Erkol Ayşe Küçükarslan Altuğ Özpineci Conference photograph

  10. PREFACE: 3rd International Symposium ''Optics and its Applications''

    NASA Astrophysics Data System (ADS)

    Calvo, M. L.; Dolganova, I. N.; Gevorgyan, N.; Guzman, A.; Papoyan, A.; Sarkisyan, H.; Yurchenko, S.

    2016-01-01

    The SPIE.FOCUS Armenia: 3rd International Symposium ''Optics and its Applications'' (OPTICS-2015) http://rau.am/optics2015/ was held in Yerevan, Armenia, in the period October 1 - 5, 2015. The symposium was organized by the International Society for Optics and Photonics (SPIE), the Armenian SPIE student chapter with collaboration of the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-PYRKAL, and the Yerevan State University (YSU). The Symposium was co-organized by the SPIE & OSA student chapters of BMSTU, the Armenian OSA student chapter, and the SPIE student chapters of Lund University and Wroclaw University of Technology. The symposium OPTICS-2015 was dedicated to the International Year of Light and Light-Based Technologies. OPTICS-2015 was devoted to modern topics and optical technologies such as: optical properties of nanostructures, silicon photonics, quantum optics, singular optics & its applications, laser spectroscopy, strong field optics, biomedical optics, nonlinear & ultrafast optics, photonics & fiber optics, and mathematical methods in optics. OPTICS-2015 was attended by 100 scientists and students representing 17 countries: Armenia, China, Czech Republic, France, Georgia, Germany, India, Iran, Italy, Latvia, Mexico, Poland, Russia, Saudi Arabia, Sweden, Ukraine, and USA. Such a broad international community confirmed the important mission of science to be a uniting force between different countries, religions, and nations. We hope that OPTICS-2015 inspired and motivated students and young scientists to work in optics and in science in general. The present volume of Journal of Physics: Conference Series includes proceedings of the symposium covering various aspects of modern problems in optics. We are grateful to all people who were involved in the organization process. We gratefully acknowledge support from

  11. Potential for Significant Reductions in Dropout Rates: Analysis of an Entire 3rd Grade State Cohort

    ERIC Educational Resources Information Center

    Cratty, Dorothyjean

    2012-01-01

    Nineteen percent of 1997-98 North Carolina 3rd graders were observed to drop out of high school. A series of logits predict probabilities of dropping out on determinants such as math and reading test scores, absenteeism, suspension, and retention, at the following grade levels: 3rd, 5th, 8th, and 9th. The same cohort and variables are used to…

  12. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  13. The 1991 3rd NASA Symposium on VLSI Design

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.

    1991-01-01

    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2.

  14. 75 FR 55313 - Record of Decision (ROD) for Conversion of the 3rd Armored Cavalry Regiment (3rd ACR) to a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... conversion, the 3rd ACR will provide the Army with a force structure that has the flexibility to respond... Infantry BCTs and Heavy Armor BCTs augmented with the protection and versatility of an additional SBCT. The... socioeconomic impacts that would be associated with the stationing of the different types of Army BCTs...

  15. 15. OFFSHORE VIEW OF PIER, LOOKING EASTNORTHEAST, 3RD TEE, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. OFFSHORE VIEW OF PIER, LOOKING EAST-NORTHEAST, 3RD TEE, SHOWING RESTROOMS IN FOREGROUND WITH PUMPHOUSE AND TACKLE BOX BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  16. 19. OFFSHORE VIEW OF 3RD TEE, LOOKING NORTHWEST, SHOWING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. OFFSHORE VIEW OF 3RD TEE, LOOKING NORTHWEST, SHOWING SOUTHEAST SIDE OF TACKLE BOX IN FOREGROUND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  17. 19. MILL NO. 1, 3rd FLOOR, CEILING TRACKING WITH AIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. MILL NO. 1, 3rd FLOOR, CEILING TRACKING WITH AIR CLEANER (BLEW DUST/LINT DOWNWARD WHILE TRAVELING ON TRACK OVER MILL MACHINERY). - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  18. Adaptive interplanetary orbit determination

    NASA Astrophysics Data System (ADS)

    Crain, Timothy Price

    This work documents the development of a real-time interplanetary orbit determination monitoring algorithm for detecting and identifying changes in the spacecraft dynamic and measurement environments. The algorithm may either be utilized in a stand-alone fashion as a spacecraft monitor and hypothesis tester by navigators or may serve as a component in an autonomous adaptive orbit determination architecture. In either application, the monitoring algorithm serves to identify the orbit determination filter parameters to be modified by an offline process to restore the operational model accuracy when the spacecraft environment changes unexpectedly. The monitoring algorithm utilizes a hierarchical mixture-of-experts to regulate a multilevel bank organization of extended Kalman filters. Banks of filters operate on the hierarchy top-level and are composed of filters with configurations representative of a specific environment change called a macromode. Fine differences, or micromodes, within the macromodes are represented by individual filter configurations. Regulation is provided by two levels of single-layer neural networks called gating networks. A single top-level gating network regulates the weighting among macromodes and each bank uses a gating network to regulate member filters internally. Experiments are conducted on the Mars Pathfinder cruise trajectory environment using range and Doppler data from the Deep Space Network. The experiments investigate the ability of the hierarchical mixture-of-experts to identify three environment macromodes: (1) unmodeled impulsive maneuvers, (2) changes in the solar radiation pressure dynamics, and (3) changes in the measurement noise strength. Two methods of initializing the gating networks are examined in each experiment. One method gives the neurons associated with all filters equivalent synaptic weight. The other method places greater weight on the operational filter initially believed to model the spacecraft environment. The

  19. The 3^rd International Conference on Women in Physics: Global Perspectives, Common Concerns, Worldwide Views

    NASA Astrophysics Data System (ADS)

    Zastavker, Yevgeniya V.

    2009-03-01

    The 3^rd International Conference on Women in Physics (ICWIP), held in Seoul, Korea, in October 2008, brought together 300 participants from 57 countries, including a diverse 22-member U.S. Delegation, for a 3-day summit of stimulating discussions, thought-provoking presentations, inspirational posters, and networking. Held under the auspices of the Working Group on Women in Physics of the International Union of Pure and Applied Physics (IUPAP), this meeting built on the successes of the 1^st (Paris, 2002) and 2^nd (Rio de Janeiro, 2005) Conferences and further clarified the importance of diversifying the field of physics worldwide. Although considerable progress has been made since 2002, it was clear that the global scientific workforce is still under-utilizing a large percentage of the available female talent pool. If human society is to benefit to its fullest from various contributions that the field of physics can offer in addressing global issues of economic crisis, energy, environment, water, health, poverty, and hunger, women of all races and nationalities need to become fully included and engaged in the national and international physical community. To address these and many other issues, the ICWIP unanimously approved a five-part resolution to IUPAP recommending actions to promote the recruitment, retention, and advancement of women in physics and related fields.

  20. Survey of K-3rd-Grade Teachers' Knowledge of Ear Infections and Willingness to Participate in Prevention Programs

    ERIC Educational Resources Information Center

    Danhauer, Jeffrey L.; Johnson, Carole E.; Caudle, Abby T.

    2011-01-01

    Purpose: Ear infections are prevalent in kindergarten through 3rd-grade (K-3rd) children and can affect their performance at school. Chewing gum, when administered by parents and teachers, can help prevent ear infections in children. This pilot study surveyed K-3rd-grade teachers in the Santa Barbara School Districts to assess their knowledge…

  1. Mercury's sodium exosphere and interplanetary dust distribution

    NASA Astrophysics Data System (ADS)

    Kameda, S.; Watanabe, H.; Ogawa, G.; Yoshikawa, I.

    2009-12-01

    The interplanetary dust (IPD) distribution in the inner solar system is not yet well understood because of lack of direct dust measurements in the inner solar system and so one needs to rely on zodiacal light observations that are difficult to interpret. Mercury has a thin and unstable atmosphere, and the source processes of Na in its atmosphere are unclear. Results of past observations have revealed that the atmospheric Na density has no or low correlation with the solar flux, sunspot number, heliocentric distance, or solar radiation pressure. We show that the variability of Mercury’s atmospheric Na density depends strongly on the IPD distribution. That is, Na density is low (high) when Mercury is far away from (close to) the symmetry plane of IPD, and so one can infer the IPD distribution near Mercury orbit from the temporal variability of Na density in Mercury’s atmosphere. In this presentation, we report the new result of observation performed from 2008 to 2009, and the correlation between sodium density in Mercury's exosphere and interplanetary dust distribution near Mercury. Additionally, we plan to observe the emission from Mercury's exosphere at Okayama Astrophysical Observatory in Japan in the Messenger 3rd flyby. We will also report preliminary results (if we would succeed in the observation.)

  2. The interplanetary Internet

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    2000-01-01

    Architectural design of the interplanetary internet is now underway and prototype flight testing of some of the candidate protocols is anticipated within a year. This talk will describe the current status of the project.

  3. Physical characteristics of interplanetary space

    NASA Technical Reports Server (NTRS)

    Vernov, S. N.; Logachev, Y. I.; Pisarenko, N. F.

    1975-01-01

    The most important properties of the interplanetary medium are its interplanetary plasma (solar wind), magnetic field, galactic and solar cosmic rays, and micrometeorite material. Also considered is electromagnetic radiation from the sun, stars, and the galaxy.

  4. Plane stress yield function described by 3rd-degree spline curve and its application

    NASA Astrophysics Data System (ADS)

    Aamaishi, Toshiro; Tsutamori, Hideo; Iizuka, Eiji; Sato, Kentaro; Ogihara, Yuki; Matsui, Yohei

    2016-08-01

    In this study, a plane stress yield function which is described by 3rd-degree spline curve is proposed. This yield function can predict a material anisotropy with flexibility and consider evolution of anisotropy in terms of both r values and stresses. As an application, hole expanding simulation results are shown to discuss accuracy of the proposed yield function.

  5. Starting Young: Massachusetts Birth-3rd Grade Policies That Support Children's Literacy Development

    ERIC Educational Resources Information Center

    Cook, Shayna; Bornfreund, Laura

    2015-01-01

    Massachusetts is one of a handful of states that is often recognized as a leader in public education, and for good reason. The Commonwealth consistently outperforms most states on national reading and math tests and often leads the pack in education innovations. "Starting Young: Massachusetts Birth-3rd Grade Policies that Support Children's…

  6. Prediction of High School Dropout or Graduation from 3rd Grade Data.

    ERIC Educational Resources Information Center

    Lloyd, Dee Norman; Bleach, Gail

    Measures of background characteristics, school performance, and tested achievement were analyzed for four race-by-sex samples of 3rd graders who were known to have later become high school dropouts or graduates. Results showed that as early as five to eight years before leaving school, dropouts differed significantly from graduates in age, tested…

  7. Using Food as a Tool to Teach Science to 3rd Grade Students in Appalachian Ohio

    ERIC Educational Resources Information Center

    Duffrin, Melani W.; Hovland, Jana; Carraway-Stage, Virginia; McLeod, Sara; Duffrin, Christopher; Phillips, Sharon; Rivera, David; Saum, Diana; Johanson, George; Graham, Annette; Lee, Tammy; Bosse, Michael; Berryman, Darlene

    2010-01-01

    The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. In 2007 to 2008, a foods curriculum developed by professionals in nutrition and education was implemented in 10 3rd-grade classrooms in Appalachian Ohio; teachers in these…

  8. The Effect of Book Blogging on the Motivation of 3rd-Grade Students

    ERIC Educational Resources Information Center

    Swanson, Kristen N.; Legutko, Robert S.

    2008-01-01

    A Web 2.0 technology was implemented during reading instruction in one 3rd-grade classroom in suburban southeastern Pennsylvania. Trained preservice teachers provided feedback to students via the World Wide Web to enhance their performance and social connections. Motivation scores were measured before and after the intervention was implemented. A…

  9. Education Reform Starts Early: Lessons from New Jersey's PreK-3rd Reform Efforts

    ERIC Educational Resources Information Center

    Mead, Sara

    2009-01-01

    This report seeks to describe how New Jersey became a national leader in early education and PreK-3rd, identify its successes and challenges, draw lessons from its experience for policymakers in other states and nationally, and provide recommendations for New Jersey policymakers to translate progress to date into sustained, large scale learning…

  10. 75 FR 34450 - Filing Dates for the Indiana Special Election in the 3rd Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION Filing Dates for the Indiana Special Election in the 3rd Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Indiana has scheduled a...

  11. Evaluation of the "Respect Not Risk" Firearm Safety Lesson for 3rd-Graders

    ERIC Educational Resources Information Center

    Liller, Karen D.; Perrin, Karen; Nearns, Jodi; Pesce, Karen; Crane, Nancy B.; Gonzalez, Robin R.

    2003-01-01

    The purpose of this study was to evaluate the MORE HEALTH "Respect Not Risk" Firearm Safety Lesson for 3rd-graders in Pinellas County, Florida. Six schools representative of various socioeconomic levels were selected as the test sites. Qualitative and quantitative data were collected. A total of 433 matched pretests/posttests were used…

  12. 16. 3RD FLOOR, J.M. LEHMANN CO. FIVEROLL TOILET SOAP MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. 3RD FLOOR, J.M. LEHMANN CO. FIVE-ROLL TOILET SOAP MILL INSTALLED 1950, TO WEST; BUCKET CONVEYOR AT RIGHT MOVED WASTE FROM 2ND FLOOR SOAP PRESSES TO 5TH FLOOR RE-MANUFACTURE - Colgate & Company Jersey City Plant, Building No. B-14, 54-58 Grand Street, Jersey City, Hudson County, NJ

  13. Current Research in European Vocational Education and Human Resource Development. Proceedings of the Programme Presented By the Research Network on Vocational Education and Training (VETNET) at the European Conference of Educational Research (ECER) (3rd, Edinburgh, Scotland, September 20-23, 2000).

    ERIC Educational Resources Information Center

    Manning, Sabine, Ed.; Raffe, David, Ed.

    These 24 papers represent the proceedings of a program presented by the research network on vocational education and training (VET). They include "School-Arranged or Market-Governed Workplace Training?" (Ulla Arnell-Gustafsson); "Prospects for Mutual Learning and Transnational Transfer of Innovative Practice in European VET"…

  14. Foundational Skills to Support Reading for Understanding in Kindergarten through 3rd Grade. Educator's Practice Guide. NCEE 2016-4008

    ERIC Educational Resources Information Center

    Foorman, Barbara; Beyler, Nicholas; Borradaile, Kelley; Coyne, Michael; Denton, Carolyn A.; Dimino, Joseph; Furgeson, Joshua; Hayes, Lynda; Henke, Juliette; Justice, Laura; Keating, Betsy; Lewis, Warnick; Sattar, Samina; Streke, Andrei; Wagner, Richard; Wissel, Sarah

    2016-01-01

    The goal of this practice guide is to offer educators specific, evidence-based recommendations for teaching foundational reading skills to students in kindergarten through 3rd grade. This guide is a companion to the existing practice guide, "Improving Reading Comprehension in Kindergarten Through 3rd Grade", and as a set, these guides…

  15. Conference report: the 3rd Global CRO Council for Bioanalysis at the International Reid Bioanalytical Forum.

    PubMed

    Breda, Massimo; Garofolo, Fabio; Caturla, Maria Cruz; Couerbe, Philippe; Maltas, John; White, Peter; Struwe, Petra; Sangster, Timothy; Riches, Suzanne; Hillier, Jim; Garofolo, Wei; Zimmerman, Thomas; Pawula, Maria; Collins, Eileen; Schoutsen, Dick; Wieling, Jaap; Green, Rachel; Houghton, Richard; Jeanbaptiste, Bernard; Claassen, Quinton; Harter, Tammy; Seymour, Mark

    2011-12-01

    The 3rd Global CRO Council Closed Forum was held on the 3rd and 4th July 2011 in Guildford, United Kingdom, in conjunction with the 19th International Reid Bioanalytical Forum. In attendance were 21 senior-level representatives from 19 CROs on behalf of nine European countries and, for many of the attendees, this occasion was the first time that they had participated in a GCC meeting. Therefore, this closed forum was an opportunity to increase awareness of the aim of the GCC and how it works, share information about bioanalytical regulations and audit findings from different agencies, their policies and procedures and also to discuss some topics of interest and aim to develop ideas and provide recommendations for bioanalytical practices at future GCC meetings in Europe.

  16. 3rd Workshop on Semantic Ambient Media Experience (SAME) - In Conjunction with AmI-2010

    NASA Astrophysics Data System (ADS)

    Lugmayr, Artur; Stockleben, Bjoern; Kaario, Juha; Pogorelc, Bogdan; Risse, Thomas

    The SAME workshop takes place for the 3rd time in 2010, and it's theme in this year was creating the business value-creation, vision, media theories and technology for ambient media. SAME differs from other workshops due to its interactive and creative touch and going beyond simple powerpoint presentations. Several results will be published by AMEA - the AMbient Media Association (www.ambientmediaassociation.org.

  17. Insights from the 3rd World Congress on Integrated Computational Materials Engineering

    NASA Astrophysics Data System (ADS)

    Howe, D.; Goodlet, B.; Weaver, J.; Spanos, G.

    2016-05-01

    The 3rd World Congress on Integrated Computational Materials Engineering (ICME) was a forum for presenting the "state-of-the-art" in the ICME discipline, as well as for charting a path for future community efforts. The event concluded with in an interactive panel-led discussion that addressed such topics as integrating efforts between experimental and computational scientists, uncertainty quantification, and identifying the greatest challenges for future workforce preparation. This article is a summary of this discussion and the thoughts presented.

  18. 13. Photocopy of 1920 drawing titled: BUILDING 78, 3RD FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of 1920 drawing titled: BUILDING 78, 3RD FLOOR BALCONY AND FIRE ESCAPES, including plans for skylight and North Elevation. HABS photograph is an 8x10' contact print made from a high contrast negative of an enlargement made from microfiche. Original is in the collection of Department of Public Works, Puget Sound Naval Shipyard, Bremerton, WA. - Puget Sound Naval Shipyard, Administration Building, Farragut Avenue, Bremerton, Kitsap County, WA

  19. Interplanetary medium data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Unresolved questions on the physics of solar wind and its effects on magnetospheric processes and cosmic ray propagation were addressed with hourly averaged interplanetary plasma and magnetic field data. This composite data set is described with its content and extent, sources, limits of validity, and the mutual consistency studies and normalizations to which the input data were subjected. Hourly averaged parameters were presented in the form of digital listings and 27-day plots. The listings are contained in a separately bound appendix.

  20. Interplanetary charged particle environments

    NASA Technical Reports Server (NTRS)

    Divine, T. N.

    1973-01-01

    Current state-of-the-art knowledge of the solar wind, solar particle events, and galactic cosmic rays is reviewed for the development of space vehicle design criteria based on these interplanetary environments. These criteria are described quantitatively in terms of intensity, flux and fluence, and their dependences on time, position and energy, and the associated probabilities and related parameters, for electrons, protons and other ions.

  1. The Goodrich 3rd generation DB-110 system: successful flight test on the F-16 aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Davis; Iyengar, Mrinal; Maver, Larry; Dyer, Gavin; Francis, John

    2007-04-01

    The 3rd Generation Goodrich DB-110 system provides users with a three (3) field-of-view high performance Airborne Reconnaissance capability that incorporates a dual-band day and nighttime imaging sensor, a real time recording and a real time data transmission capability to support long range, medium range, and short range standoff and over-flight mission scenarios, all within a single pod. Goodrich developed their 3rd Generation Airborne Reconnaissance Pod for operation on a range of aircraft types including F-16, F-15, F-18, Euro-fighter and older aircraft such as the F-4, F-111, Mirage and Tornado. This system upgrades the existing, operationally proven, 2nd generation DB-110 design with enhancements in sensor resolution, flight envelope and other performance improvements. Goodrich recently flight tested their 3rd Generation Reconnaissance System on a Block 52 F-16 aircraft with first flight success and excellent results. This paper presents key highlights of the system and presents imaging results from flight test.

  2. Using Photographs to Probe Students' Understanding of Physical Concepts: The Case of Newton's 3rd Law

    NASA Astrophysics Data System (ADS)

    Eshach, Haim

    2010-08-01

    The starting point of the present research is the following question: since we live in an age that makes increasing use of visual representations of all sorts, is not the visual representation a learner constructs a window into his/her understanding of what is or is not being learned? Following this direction of inquiry, the present preliminary study introduces and evaluates a novel technique for pinpointing learners’ misconceptions, namely, one that has learners create and interpret their own photographs (CIP). 27 high-school students and 26 pre-service teacher trainees were asked to assume the role of textbook designers and create a display—photograph plus attached verbal explanation—which, in their opinion, best depicted Newton’s 3rd law. Subsequent analysis of the participants’ photographs yielded the following six misconception categories: 3rd law not depicted; 3rd law depicts a sequence of events; tendency to introduce irrelevant entities in explanations; the word ‘reaction’ used colloquially; tendency to restrict the application of the third law to dynamic situations; and informal explanations in which the word “force” is absent. The findings indicate that, indeed, the CIP method can be effectively employed to elicit, detect, and investigate learners’ misconceptions. The CIP method joins the growing efforts to utilize the yet relatively untapped potential of visual tools for science education purposes.

  3. Preface to Special Topic: Invited Papers of the 3rd International Conference on Ultrafast Structural Dynamics

    PubMed Central

    Johnson, S. L.

    2016-01-01

    The ability to visualize the real-time dynamics of atomic, magnetic, and electronic structure is widely recognized in many fields as a key element underpinning many important processes in chemistry, materials science, and biology. The need for an improved understanding of such processes becomes acute as energy conversion processes on fast time scales become increasingly relevant to problems in science and technology. This special issue, containing invited papers from participants at the 3rd International Conference on Ultrafast Structural Dynamics held June 10–12, 2015 in Zurich, Switzerland, discusses several recent developments in this area. PMID:27191008

  4. Overview of the 3rd isirv-Antiviral Group Conference – advances in clinical management

    PubMed Central

    Hurt, Aeron C; Hui, David S; Hay, Alan; Hayden, Frederick G

    2015-01-01

    This review highlights the main points which emerged from the presentations and discussions at the 3rd isirv-Antiviral Group Conference - advances in clinical management. The conference covered emerging and potentially pandemic influenza viruses and discussed novel/pre-licensure therapeutics and currently approved antivirals and vaccines for the control of influenza. Current data on approved and novel treatments for non-influenza respiratory viruses such as MERS-CoV, respiratory syncytial virus (RSV) and rhinoviruses and the challenges of treating immunocompromised patients with respiratory infections was highlighted. PMID:25399715

  5. [Modern surgical treatment of breast cancer. 3rd Breast Cancer Consensus Conference].

    PubMed

    Lázár, György; Bursics, Attila; Farsang, Zoltán; Harsányi, László; Kósa, Csaba; Maráz, Róbert; Mátrai, Zoltán; Paszt, Attila; Pavlovics, Gábor; Tamás, Róbert

    2016-09-01

    Therapy for breast cancer today is characterised by ever more precise diagnostic methods and ever more effective oncological treatments, a trend which will certainly continue into the future. Breast preservation and the application of oncoplastic principles are increasingly popular. A sentinel lymph node biopsy in the surgical treatment of the axilla is primary, with the indication for axillary block dissection (ABD) narrowing and radiation therapy becoming an alternative to ABD in certain cases. This publication summarises our recommendations on the surgical treatment of breast cancer based on the content of the 3rd Breast Cancer Consensus Conference and considering the latest international studies and professional recommendations.

  6. Preface to Special Topic: Invited Papers of the 3rd International Conference on Ultrafast Structural Dynamics.

    PubMed

    Johnson, S L

    2016-03-01

    The ability to visualize the real-time dynamics of atomic, magnetic, and electronic structure is widely recognized in many fields as a key element underpinning many important processes in chemistry, materials science, and biology. The need for an improved understanding of such processes becomes acute as energy conversion processes on fast time scales become increasingly relevant to problems in science and technology. This special issue, containing invited papers from participants at the 3rd International Conference on Ultrafast Structural Dynamics held June 10-12, 2015 in Zurich, Switzerland, discusses several recent developments in this area.

  7. Extreme and Local 3rd Harmonic Response of Niobium (Nb) Superconductor

    NASA Astrophysics Data System (ADS)

    Oripov, Bakhrom; Tai, Tamin; Anlage, Steven

    Superconducting Radio Frequency (SRF) cavities are being widely used in new generation particle accelerators. These SRF cavities are based on bulk Nb. Based on the needs of the SRF community to identify defects on Nb surfaces, a novel near-field magnetic microwave microscope was successfully built using a magnetic writer from a conventional magnetic recording hard-disk drive1. This magnetic writer can create an RF magnetic field, localized and strong enough to drive Nb into the vortex state. This probe enables us to locate defects through scanning and mapping of the local electrodynamic response in the multi-GHz frequency range. Recent measurements have shown that 3rd harmonic nonlinear response is far more sensitive to variations in input power and temperature then linear response, thus we mainly study the 3rd harmonic response. Moreover, the superconductor is usually the only source for nonlinear response in our setup, thus there is less chance of having noise or background signal. Understanding the mechanism responsible for this non-linear response is important for improving the performance of SRF cavities. Besides Nb we also study various other superconductors such as MgB2 and the cuprate Bi-Sr-Ca-Cu-O (BSCCO) for potential applications in SRF cavities. This work is funded by US Department of Energy through Grant # DE-SC0012036T and CNAM.

  8. The Third International Genomic Medicine Conference (3rd IGMC, 2015): overall activities and outcome highlights.

    PubMed

    Abu-Elmagd, Muhammad; Assidi, Mourad; Dallol, Ashraf; Buhmeida, Abdelbaset; Pushparaj, Peter Natesan; Kalamegam, Gauthaman; Al-Hamzi, Emad; Shay, Jerry W; Scherer, Stephen W; Agarwal, Ashok; Budowle, Bruce; Gari, Mamdooh; Chaudhary, Adeel; Abuzenadah, Adel; Al-Qahtani, Mohammed

    2016-10-17

    The Third International Genomic Medicine Conference (3(rd) IGMC) was organised by the Centre of Excellence in Genomic Medicine Research (CEGMR) at the King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia (KSA). This conference is a continuation of a series of meetings, which began with the first International Genomic Medicine Conference (1(st) IGMC, 2011) followed by the second International Genomic Medicine Conference (2(nd) IGMC, 2013). The 3(rd) IGMC meeting presented as a timely opportunity to bring scientists from across the world to gather, discuss, and exchange recent advances in the field of genomics and genetics in general as well as practical information on using these new technologies in different basic and clinical applications. The meeting undoubtedly inspired young male and female Saudi researchers, who attended the conference in large numbers, as evidenced by the oversubscribed oral and poster presentations. The conference also witnessed the launch of the first content for npj Genomic Medicine, a high quality new journal was established in partnership by CEGMR with Springer Nature and published as part of the Nature Partner Journal series. Here, we present a brief summary report of the 2-day meeting including highlights from the oral presentations, poster presentations, workshops, poster prize-winners and comments from the distinguished scientists.

  9. Editorial: 3rd Special Issue on behavior change, health, and health disparities

    PubMed Central

    Higgins, Stephen T.

    2017-01-01

    This Special Issue of Preventive Medicine (PM) is the 3rd that we have organized on behavior change, health, and health disparities. This is a topic of critical importance to improving U.S. population health. There is broad scientific consensus that personal behaviors such as cigarette smoking, other substance abuse, and physical inactivity/obesity are among the most important modifiable causes of chronic disease and its adverse impacts on population health. Hence, effectively promoting health-related behavior change needs to be a key component of health care research and policy. There is also broad recognition that while these problems extend throughout the population, they disproportionately impact economically disadvantaged populations and other vulnerable populations and represent a major contributor to health disparities. Thus, behavior change represents an essential step in curtailing health disparities, which receives special attention in this 3rd Special Issue. We also devote considerable space to the longstanding challenges of reducing cigarette smoking and use of other tobacco and nicotine delivery products in vulnerable populations, obesity, and for the first time food insecurity. Across each of these topics we include contributions from highly accomplished policymakers and scientists to acquaint readers with recent accomplishments as well as remaining knowledge gaps and challenges. PMID:27693562

  10. 3rd Circuit hints it may reconsider McNemar reasoning.

    PubMed

    1997-10-17

    The [name removed] v. The Disney Store ruling is under criticism and the 3rd U.S. Circuit Court of Appeals may reconsider its 1996 decision to not allow employees who receive disability benefits to sue under the Americans with Disabilities Act (ADA). A panel of 3rd Circuit judges, working on [name removed] v. American Sterilizer Co., asserts that the [name removed] decision should not be used to assume that an individual's ADA claims are barred because of prior representations of disability. [Name removed] is suing American Sterilizer under the retaliation provisions of the ADA. Other courts are criticizing the [name removed] decision, including the District of Columbia Court in [name removed] v. Washington Metropolitan Area Transit Authority. The [name removed] court assets that a statement made in the context of a disability application does not preclude an ADA claim brought by a worker for illegal discrimination because the ADA and the Social Security Act differ in their statutory intent. AIDS advocates state that the [name removed] decision places a plaintiff in the position of having to choose between asserting a legal right or maintaining an income. Alan Epstein, who represented [name removed], is pleased by the criticism but explains that [name removed], who died this summer, will not be vindicated.

  11. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  12. PREFACE: 3rd International Conference of Mechanical Engineering Research (ICMER 2015)

    NASA Astrophysics Data System (ADS)

    Mamat, Riazalman; Rahman, Mustafizur; Mohd. Zuki Nik Mohamed, Nik; Che Ghani, Saiful Anwar; Harun, Wan Sharuzi Wan

    2015-12-01

    The 3rd ICMER2015 is the continuity of the NCMER2010. The year 2010 represents a significant milestone in the history for Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP) Malaysia with the organization of the first and second national level conferences (1st and 2nd NCMER) at UMP on May 26-27 and Dec 3-4 2010. The Faculty then changed the name from National Conference on Mechanical Engineering Research (NCMER) to International Conference on Mechanical Engineering Research (ICMER) in 2011 and this year, 2015 is our 3rd ICMER. These proceedings contain the selected scientific manuscripts submitted to the conference. It is with great pleasure to welcome you to the "International Conference on Mechanical Engineering Research (ICMER2015)" that is held at Zenith Hotel, Kuantan, Malaysia. The call for papers attracted submissions of over two hundred abstracts from twelve different countries including Japan, Iran, China, Kuwait, Indonesia, Norway, Philippines, Morocco, Germany, UAE and more. The scientific papers published in these proceedings have been revised and approved by the technical committee of the 3rd ICMER2015. All of the papers exhibit clear, concise, and precise expositions that appeal to a broad international readership interested in mechanical engineering, combustion, metallurgy, materials science as well as in manufacturing and biomechanics. The reports present original ideas or results of general significance supported by clear reasoning and compelling evidence, and employ methods, theories and practices relevant to the research. The authors clearly state the questions and the significance of their research to theory and practice, describe how the research contributes to new knowledge, and provide tables and figures that meaningfully add to the narrative. In this edition of ICMER representatives attending are from academia, industry, governmental and private sectors. The plenary and invited speakers will present, discuss, promote and

  13. A two-pulse technique for extracting 3rd harmonic from ultrasound contrast agent echo signal.

    PubMed

    Song, Jae-hee; Kim, Sang-min; Song, Tai-kyong

    2008-01-01

    Multi-pulse techniques like CPS (contrast pulse sequence) and TPS (triplet pulse sequence) are the most popular methods for separating the 3rd harmonic signals from received signal. Those two methods, however, transmit a pulse at least three times along each scanline with different phase and amplitude, which results in the frame rate reduction. In this paper, we propose a technique using two pulses whose phase difference is 90 degrees and a simple digital filter. The second harmonic signal is eliminated by summing two received signals as their phase difference becomes 180 degrees and then the fundamental signals are eliminated by using a digital filter. Computer simulations are performed for different values of signal bandwidths and filter specifications. The results show the maximum error is -35.5 dB compared to TPS.

  14. Defining a new vision for the retinoblastoma gene: report from the 3rd International Rb Meeting.

    PubMed

    Rubin, Seth M; Sage, Julien

    2013-11-21

    The retinoblastoma tumor suppressor (Rb) pathway is mutated in most, if not all human tumors. In the G0/G1 phase, Rb and its family members p107 and p130 inhibit the E2F family of transcription factors. In response to mitogenic signals, Cyclin-dependent kinases (CDKs) phosphorylate Rb family members, which results in the disruption of complexes between Rb and E2F family members and in the transcription of genes essential for S phase progression. Beyond this role in early cell cycle decisions, Rb family members regulate DNA replication and mitosis, chromatin structure, metabolism, cellular differentiation, and cell death. While the RB pathway has been extensively studied in the past three decades, new investigations continue to provide novel insights into basic mechanisms of cancer development and, beyond cancer, help better understand fundamental cellular processes, from plants to mammals. This meeting report summarizes research presented at the recently held 3rd International Rb Meeting.

  15. Passive solar progress: a simplified guide to the 3rd national passive solar conference

    SciTech Connect

    Miller, H.; Howell, Y.; Richards, D.

    1980-10-01

    Some of the concepts and practices that have come to be known as passive solar heating and cooling are introduced, and a current picture of the field is presented. Much of the material presented is derived from papers given at the 3rd National Passive Solar Conference held in San Jose, California in January 1979 and sponsored by the US Department of Energy. Extracts and data from these papers have been integrated in the text with explanatory and descriptive material. In this way, it is attempted to present technical information in an introductory context. Topics include design considerations, passive and hybrid systems and applications, sizing methods and performance prediction, and implementation issues. A glossary is included. (WHK)

  16. [Methodology for an appreciative, dynamic and collaborative process: 3rd Canary Islands (Spain) Health Plan].

    PubMed

    O'Shanahan Juan, José Joaquín; Hernández Rodríguez, Miguel Ángel; Del Otero Sanz, Laura; Henríquez Suárez, José Andrés; Mahtani Chugani, Vinita

    The need for new approaches to strategic planning by incorporating the perspectives of professionals and inhabitants has led to a new model for the 3rd Canary Islands (Spain) Health Plan (IIIPSC). A dual-phase participatory process using qualitative techniques is proposed: 1) local phase: a quantitative and qualitative study based on training and a research-action-participation initiative; and 2) insular phase: health conferences with face-to-face discussion of results in each health area (island) and proposals for action. The process prioritises problems and establishes a specific action plan for each island through initiatives that are considered to be viable, grouped by themes and weighted according to the potential impact on priority problems. This process of interaction may help to guide planning model changes and health policy decision-making, and was included in the IIIPSC Project for its parliamentary procedure.

  17. John D. Rockefeller 3rd, statesman and founder of the Population Council.

    PubMed

    Dunlop, J

    2000-01-01

    This article presents a profile of John D. Rockefeller 3rd, statesman and founder of the Population Council. It is noted that Rockefeller took a broad view of population control as a means to address poverty and economic development rather than as an end in itself. In 1952 he initiated the convocation of the Conference on Population Problems held in Williamsburg, Virginia. The discussion focused on food supply, industrial development, depletion of natural resources, and political instability resulting from unchecked population growth. In 1967, Rockefeller initiated, lobbied for, and finally achieved a World Leaders' Statement signed by 30 heads of state including US President Lyndon Johnson. The document drew attention to population growth as a world problem and engendered political support for family planning as a solution. After 3 years the Commission on Population Growth and the American Future was established, and Rockefeller was made its chairman. Several issues were debated, including more safer fertility control and the legalization of abortion.

  18. Food: The Chemistry of Its Components, 3rd Edition (by T. P. Coultate)

    NASA Astrophysics Data System (ADS)

    Carandang, Rachelle; Ziegler, Greg

    1998-02-01

    Food: The Chemistry of Its Components, 3rd edition, by T. P. Coultate, is an excellent textbook in food chemistry for undergraduates. It is a concise version of the very detailed Food Chemistry by Fennema and similar to, but with advantages over, Mechanism and Theory in Food Chemistry by Wong and Principles of Food Chemistry by Deman. The book assumes knowledge of biochemistry and basic principles in organic chemistry, but presents very practical examples that allow the student to see the obvious link between theory and practice. The examples are described almost as if the author is performing a demonstration in a classvery vivid to the imagination. This is important because students are expected in the future to perform and put into practice their knowledge of food chemistry.

  19. Retrospective Dosimetry of Vver 440 Reactor Pressure Vessel at the 3RD Unit of Dukovany Npp

    NASA Astrophysics Data System (ADS)

    Marek, M.; Viererbl, L.; Sus, F.; Klupak, V.; Rataj, J.; Hogel, J.

    2009-08-01

    Reactor pressure vessel (RPV) residual lifetime of the Czech VVER-440 is currently monitored under Surveillance Specimens Programs (SSP) focused on reactor pressure vessel materials. Neutron fluence in the samples and its distribution in the RPV are determined by a combination of calculation results and the experimental data coming from the reactor dosimetry measurements both in the specimen containers and in the reactor cavity. The direct experimental assessment of the neutron flux density incident onto RPV and neutron fluence for the entire period of nuclear power plant unit operation can be based on the evaluation of the samples taken from the inner RPV cladding. The Retrospective Dosimetry was also used at Dukovany NPP at its 3rd unit after the 18th cycle. The paper describes methodology, experimental setup for sample extraction, measurement of activities, and the determination of the neutron flux and fluence averaged over the samples.

  20. FOREWORD: 3rd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2013)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2013-10-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 3rd International Workshop on New Computational Methods for Inverse Problems, NCMIP 2013 (http://www.farman.ens-cachan.fr/NCMIP_2013.html). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 22 May 2013, at the initiative of Institut Farman. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 (http://www.farman.ens-cachan.fr/NCMIP_2012.html). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational

  1. Laboratory studies of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1986-01-01

    Interplanetary dust particles (IDPs) are a form of primitive extraterrestrial material. In spite of the formidable experimental problems in working with particles that are too small to be seen with the naked eye, it has proven possible to obtain considerable information concerning their properties and possible origins. Dust particles collected in the stratosphere were reviewed. These particles are the best available samples of interplanetary dust and were studied using a variety of analytical techniques.

  2. Simulation of robustness of a new e-beam column with the 3 rd-order imaging technique

    NASA Astrophysics Data System (ADS)

    Takeya, K.; Fuse, T.; Kinoshita, H.; Parker, N. William

    2008-03-01

    We are now investigating a new concept column with the 3 rd-order imaging technique, in order to obtain fine resolution and high current density beams for electron beam direct writing (EBDW) suitable for below 32nm technology nodes. From the first experimental verification, it is found that the 3 rd-order imaging has a benefit of increasing the beam current compared with conventional Gaussian beam without any beam blurring. However, in order to realize such a column which can work stably in the sub 32nm technology node generations, it is important to clarify how robust the 3 rd-order imaging is against the mechanical tolerances in column manufacturing. This paper describes the tolerance analysis for errors of column manufacturing by simulation. The column has an electron gun with small virtual source and two (Gun and Main) lenses. A patterned beam defining aperture, which enables the 3 rd-order imaging, is set between the 1 st and the 2 nd lenses. The influences of errors such as concentricity, offset and tilt between optical parts on the beam shape, beam current density distribution, and beam edge acuity on a wafer is analyzed for this column. According to these results, the 3 rd-order imaging appears to have sufficiently large allowance compared to the error budget for column manufacturing required in the sub 32nm technology node patterning.

  3. Comparison of the large scale structure of the ISM in the 2nd and 3rd Galactic Quadrants

    NASA Astrophysics Data System (ADS)

    Könyves, V.; Kiss, Cs.

    2002-05-01

    In this paper we are questing the large scale structure of the interstellar medium (ISM) using IRAS/ISSA 60 and 100 mum maps in the 3rd Galactic Quadrant (GQ). Here we identified 41 loop-like intensity enhancements and analysed their far-infrared (FIR) properties. We found major differences in the distribution and characteristics of these features when comparing the results of the 2nd and the 3rd GQs. This discrepancy can be satisfactorily explained by basic differences of the structure of the ISM in these two Galactic Quadrants.

  4. Interplanetary Microlaser Transponders

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1999-01-01

    The feasibility of an asynchronous (i.e. independently firing) interplanetary laser transponder, capable of ranging between Earth and Mars and using the automated SLR2000 Satellite Laser Ranging (SLR) system as an Earth base station, has been suggested. Since that time, we have received a small amount of discretionary funding to further explore the transponder concept and to develop and test an engineering breadboard. Candidate operational scenarios for acquiring and tracking the opposite laser terminal over interplanetary distances have been developed, and breadboard engineering parameters were chosen to reflect the requirements of an Earth-Mars link Laboratory tests have been devised to simulate the Earth- Mars link between two independent SLR2000 transceivers and to demonstrate the transfer of range and time in single photon mode. The present paper reviews the concept of the asynchronous microlaser transponder, the transponder breadboard design, an operational scenario recently developed for an asteroid rendezvous, and the laboratory test setup. The optical head of the transponder breadboard fits within a cylinder roughly 15 cm in diameter and 32 cm in length and is mounted in a commercial two axis gimbal driven by two computer-controlled stepper motors which allows the receiver optical axis to be centered on a simulated Earth image. The optical head is built around a small optical bench which supports a 14.7 cm diameter refractive telescope, a prototype 2 kHz SLR2000 microlaser transmitter, a quadrant microchannel plate photomultiplier (MCP/PMT), a CCD array camera, spatial and spectral filters, assorted lenses and mirrors, and protective covers and sun shields. The microlaser is end-pumped by a fiber-coupled diode laser array. An annular mirror is employed as a passive transmit/receive (T/R) switch in an aperture-sharing arrangement wherein the transmitted beam passes through the central hole and illuminates only the central 2.5 cm of the common telescope

  5. The Power of PreK-3rd: How a Small Foundation Helped Push Washington State to the Forefront of the PreK-3rd Movement. FCD Case Study

    ERIC Educational Resources Information Center

    Nyhan, Paul

    2011-01-01

    The New School Foundation was not born from a commission, legislative mandate, research project, think tank, or even the mind of a leading education scholar. One of Washington state's pioneering PreK-3rd initiatives began as the brainchild of a wealthy Seattle businessman, Stuart Sloan, 20 years ago. The New School Foundation and its ideas were…

  6. Geysers Characteristics before and after Landslide of June 3-rd, 2007 (Geysers Valley, Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Droznin, V. A.; Kiryukhin, A. V.; Muraviev, J. D.

    2007-12-01

    Since 1990 cycling characteristics of five geysers (Maly, Bolshoy, Shel, Velican, Troynoy) were contentiously monitoring using automatic telemetric system (V A Drosnin, http://www.ch0103.emsd.iks.ru/ ). The most powerful geyser Velikan erupted steam clouds at 300 m height. 1:20 UTC June 3-rd, 2007 lower basin of the Geysers Valley was in a few minutes buried under 10 mln m3 of mud, debris, and blocks of rocks. Some indications were found, that landslide triggered by steam eruption in the upstream area of Vodopadny creek. As a result of this three famous geysers (Pervenets, Sakharny,Troynoy) located at lower elevations were sealed under 10-30 m thick caprock as well as Vodopadny hot creek, a rock dumb trap Geysernaya river and lifted water into 20 m deep lake, which flooded three famous geysers (Conus, Bolshoy and Maly) terminating their cycling activity. Nevertheless Bolshoy and Maly activity continues in a form of discharge of water circulated in the former geysers channels and a clear plume at a lake surface above exits observed. Shortly after landslide continuous monitoring of the cycling characteristics of the upper basin geysers, including Velikan and lake level, accomplished by temperature loggers - restarted. There are some indications time periods of the geysers cycling decrease.

  7. PREFACE: 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Webb, Jeff; Ding, Jun

    2015-05-01

    The 3rd International Conference on Manufacturing, Optimization, Industrial and Material Engineering (MOIME 2015) was held at the Sheraton Kuta, Bali, Indonesia, from 28 - 29 March 2015. The MOIME 2015 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. MOIME 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Material Engineering, Industrial Engineering and all areas that relate to Optimization. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program, as well as the invited and plenary speakers. This year, we received 99 papers and after rigorous review, 24 papers were accepted. The participants come from eight countries. There were four parallel sessions and two invited speakers. It is an honour to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of MOIME 2015. The Editors of the MOIME 2015 Proceedings Dr. Ford Lumban Gaol Jeff Webb, Ph.D Prof. Jun DING, Ph.D

  8. Visual, Critical, and Scientific Thinking Dispositions in a 3rd Grade Science Classroom

    NASA Astrophysics Data System (ADS)

    Foss, Stacy

    Many American students leave school without the required 21st century critical thinking skills. This qualitative case study, based on the theoretical concepts of Facione, Arheim, and Vygotsky, explored the development of thinking dispositions through the arts in science on the development of scientific thinking skills when used as a conceptual thinking routine in a rural 3rd grade classroom. Research questions examined the disposition to think critically through the arts in science and focused on the perceptions and experiences of 25 students with the Visual Thinking Strategy (VTS) process. Data were collected from classroom observations (n = 10), student interviews (n = 25), teacher interviews ( n = 1), a focus group discussion (n = 3), and artifacts of student work (n = 25); these data included perceptions of VTS, school culture, and classroom characteristics. An inductive analysis of qualitative data resulted in several emergent themes regarding disposition development and students generating questions while increasing affective motivation. The most prevalent dispositions were open-mindedness, the truth-seeking disposition, the analytical disposition, and the systematicity disposition. The findings about the teachers indicated that VTS questions in science supported "gradual release of responsibility", the internalization of process skills and vocabulary, and argumentation. This case study offers descriptive research that links visual arts inquiry and the development of critical thinking dispositions in science at the elementary level. A science curriculum could be developed, that emphasizes the development of thinking dispositions through the arts in science, which in turn, could impact the professional development of teachers and learning outcomes for students.

  9. The 3rd international intercomparison on EPR tooth dosimetry: Part 1, general analysis.

    PubMed

    Wieser, A; Debuyst, R; Fattibene, P; Meghzifene, A; Onori, S; Bayankin, S N; Blackwell, B; Brik, A; Bugay, A; Chumak, V; Ciesielski, B; Hoshi, M; Imata, H; Ivannikov, A; Ivanov, D; Junczewska, M; Miyazawa, C; Pass, B; Penkowski, M; Pivovarov, S; Romanyukha, A; Romanyukha, L; Schauer, D; Scherbina, O; Schultka, K; Shames, A; Sholom, S; Skinner, A; Skvortsov, V; Stepanenko, V; Tielewuhan, E; Toyoda, S; Trompier, F

    2005-02-01

    The objective of the 3rd International Intercomparison on Electron Paramagnetic Resonance (EPR) Tooth Dosimetry was the evaluation of laboratories performing tooth enamel dosimetry below 300 mGy. Participants had to reconstruct the absorbed dose in tooth enamel from 11 molars, which were cut into two halves. One half of each tooth was irradiated in a 60Co beam to doses in the ranges of 30-100 mGy (5 samples), 100-300 mGy (5 samples), and 300-900 mGy (1 sample). Fourteen international laboratories participated in this intercomparison programme. A first analysis of the results and an overview of the essential features of methods applied in different laboratories are presented. The relative standard deviation of results of all methods was better than 27% for applied doses in the range of 79-704 mGy. In the analysis of the unirradiated tooth halves 8% of the samples were identified as outliers with additional absorbed dose above background dose.

  10. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  11. SESAME, A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Einfeld, D.; Hasnain, S.S.; Sayers, Z.; Schopper, H.; Winick, H.; Al-Dmour, E.

    2004-05-12

    Developed under the auspices of UNESCO, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be a major international research centre in the Middle East and Mediterranean region. On 6th of January 2003, the official foundation of SESAME took place. The facility is located in Allan, Jordan, 30 km North-West of Amman. As of August 2003 the Founding Members are Bahrain, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey and United Arabic Emirates, representing a population of over 300 million. SESAME will be a 2.5 GeV 3rd Generation light source (emittance 24.6 nm.rad, circumference {approx}125m). About 40% of the circumference is available for insertion devices (average length 2.75m) in 13 straight sections. Beam lines are up to 36m. The site and a building are provided by Jordan. Construction started in August 2003. The scientific program will start with up to 6 beam lines: MAD Protein Crystallography, SAXS and WAXS for polymers and proteins, Powder Diffraction for material science, UV/VUV/SXR Photoelectron Spectroscopy and Photoabsorption Spectroscopy, IR Spectroscopy, and EXAFS.

  12. Test Review: C. Keith Conners "Conners 3rd Edition" Toronto, Ontario, Canada--Multi-Health Systems, 2008

    ERIC Educational Resources Information Center

    Kao, Grace S.; Thomas, Hillary M.

    2010-01-01

    "Conners 3rd Edition" is the most updated version of a series of measures for assessing attention deficit hyperactivity disorder (ADHD) and common comorbid problems/disorders in children and adolescents ranging from 6 to 18 years of age. Related problems that the test helps assess include executive dysfunction, learning problems, aggression, and…

  13. 3rd Annual PIALA Conference Saipan--Collecting, Preserving & Sharing Information in Micronesia. Conference Proceedings. October 13-15, 1993.

    ERIC Educational Resources Information Center

    Edmundson, Margaret, Ed.

    1993-01-01

    This PIALA 1993 Proceedings contains many of the papers presented at the 3rd annual conference of the Pacific Islands Association of Libraries and Archives. This publication is the first time papers from this Micronesian regional library and archives conference have ever been published. The conference addressed various topics of interest to…

  14. The Lived Experiences of 3rd Generation and beyond U.S.-Born Mexican Heritage College Students: A Qualitative Study

    ERIC Educational Resources Information Center

    Galvan, Richard

    2011-01-01

    The purpose of this study was to describe the psychosocial and identity challenges of 3rd generation and beyond U.S.-born (3GAB-USB) Mexican heritage college students. Alvarez (1973) has written about the psychosocial impact "hybridity" can have on a U.S.- born (USB) Mexican individual who incorporates two distinct cultures (American and…

  15. Exemplary Institute. Proceedings of the Annual Conference (3rd, Albuquerque, New Mexico, February 22-24, 1998).

    ERIC Educational Resources Information Center

    Native American Scholarship Fund, Inc., Albuquerque, NM.

    This proceedings contains presentations and workshop summaries from the 3rd Annual Exemplary Institute for educators of Native American students. Presentations include: "Quality in Learning: Romancing the Journey" (quality management at Mount Edgecumbe High School, Alaska) (Todd Bergman); "Creating a School-wide Literacy Climate" (Sig Boloz); "How…

  16. Predicting 3rd Grade and 10th Grade FCAT Success for 2007-08. Research Brief. Volume 0702

    ERIC Educational Resources Information Center

    Froman, Terry; Rubiera, Vilma

    2008-01-01

    For the past few years the Florida School Code has set the Florida Comprehensive Assessment Test (FCAT) performance requirements for promotion of 3rd graders and graduation for 10 graders. Grade 3 students who do not score at level 2 or higher on the FCAT SSS Reading must be retained unless exempted for special circumstances. Grade 10 students…

  17. Predicting 3rd Grade and 10th Grade FCAT Success for 2006-07. Research Brief. Volume 0601

    ERIC Educational Resources Information Center

    Froman, Terry; Rubiera, Vilma

    2006-01-01

    For the past few years the Florida School Code has set the Florida Comprehensive Assessment Test (FCAT) performance requirements for promotion of 3rd graders and graduation for 10th graders. Grade 3 students who do not score at level 2 or higher on the FCAT SSS Reading must be retained unless exempted for special circumstances. Grade 10 students…

  18. Iowa Acceleration Scale Manual: A Guide for Whole-Grade Acceleration K-8. (3rd Edition, Manual)

    ERIC Educational Resources Information Center

    Assouline, Susan G.; Colangelo, Nicholas; Lupkowski-Shoplik, Ann; Forstadt, Leslie; Lipscomb, Jonathon

    2009-01-01

    Feedback from years of nationwide use has resulted in a 3rd Edition of this unique, systematic, and objective guide to considering and implementing academic acceleration. Developed and tested by the Belin-Blank Center at the University of Iowa, the IAS ensures that acceleration decisions are systematic, thoughtful, well reasoned, and defensible.…

  19. Constancy and Variability: Dialogic Literacy Events as Sites for Improvisation in Two 3rd-Grade Classrooms

    ERIC Educational Resources Information Center

    Jordan, Michelle E.; Santori, Diane

    2015-01-01

    This multisite study investigates dialogic literacy events that revolved around narrative and informational texts in two 3rd-grade classrooms. The authors offer a metaphor of musical improvisation to contemplate dialogic literacy events as part of the repertoire of teaching and learning experiences. In literacy learning, where there is much…

  20. A Program Evaluation of ClassScape Used in 3rd Grade Classes in a Rural County in North Carolina

    ERIC Educational Resources Information Center

    Rogers, Misha Neely

    2012-01-01

    The research study will examine the impact of using the ClassScape program and targeted interventions on 3rd grade reading levels of performance. The conceptual and theoretical framework for the study suggests the need to connect formative, benchmark, and summative assessments in North Carolina. Furthermore, the review of the literature will…

  1. Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental Origins of Health and Disease (DOHaD) focuses on the earliest stages of human development, and provides a novel paradigm to complement other strategies for lifelong prevention of common chronic health conditions. The 3rd International Congress on DOHaD, held in 2005, retained the most ...

  2. Visual Arts Teaching in Kindergarten through 3rd-Grade Classrooms in the UAE: Teacher Profiles, Perceptions, and Practices

    ERIC Educational Resources Information Center

    Buldu, Mehmet; Shaban, Mohamed S.

    2010-01-01

    This study portrayed a picture of kindergarten through 3rd-grade teachers who teach visual arts, their perceptions of the value of visual arts, their visual arts teaching practices, visual arts experiences provided to young learners in school, and major factors and/or influences that affect their teaching of visual arts. The sample for this study…

  3. Interplanetary dust particles and impact erosion

    NASA Astrophysics Data System (ADS)

    Klacka, J.; Saniga, M.

    1992-11-01

    Consideration is given to the motion of interplanetary dust particles under the effect of collisions with much smaller interplanetary dust particles. The equation of motion is derived. Perturbation equations of celestial mechanics are also discussed. The results are compared with the Poynting-Robertson effect and the effect of solar wind on the motion of the interplanetary dust particles.

  4. 3 rd generation 1280 x 720 FPA development status at Raytheon Vision Systems

    NASA Astrophysics Data System (ADS)

    King, D. F.; Radford, W. A.; Patten, E. A.; Graham, R. W.; McEwan, T. F.; Vodicka, J. G.; Bornfreund, R. E.; Goetz, P. M.; Venzor, G. M.; Johnson, S. M.; Jensen, J. E.; Nosho, B. Z.; Roth, J. A.

    2006-05-01

    Raytheon Vision Systems (RVS) has developed and demonstrated the first-ever 1280 x 720 pixel dual-band MW/LWIR focal plane arrays (FPA) to support 3rd-Generation tactical IR systems under the U.S. Army's Dual-Band FPA Manufacturing (DBFM) program. The MW/LWIR detector arrays are fabricated from MBE-grown HgCdTe triple-layer heterojunction (TLHJ) wafers. The RVS dual-band FPA architecture provides highly simultaneous temporal detection in the MWIR and LWIR bands using time-division multiplexed integration (TDMI) incorporated into the readout integrated circuit (ROIC). The TDMI ROIC incorporates a high degree of integration and output flexibility, and supports both dual-band and single-band full-frame operating modes, as well as high-speed LWIR "window" operation at 480 Hz frame rate. The ROIC is hybridized to a two-color detector array using a single indium interconnect per pixel, which makes it highly producible for 20 μm unit cells and exploits mature fabrication processes currently used to produce single-color FPAs. High-quality 1280 x 720 MW/LWIR FPAs have been fabricated and excellent dual-band imagery produced at 60 Hz frame rate. The 1280 x 720 detector arrays for these FPAs have LWIR cutoff wavelengths >=10.5 μm at 78K. These FPAs have demonstrated high-sensitivity at 78K with MW NETD values < 20 mK and LW NETD values <30 mK with f/3.5 apertures. Pixel operability greater than 99.9% has been achieved in the MW band and greater than 98% in the LW band.

  5. Essential surgery: key messages from Disease Control Priorities, 3rd edition.

    PubMed

    Mock, Charles N; Donkor, Peter; Gawande, Atul; Jamison, Dean T; Kruk, Margaret E; Debas, Haile T

    2015-05-30

    The World Bank will publish the nine volumes of Disease Control Priorities, 3rd edition, in 2015-16. Volume 1--Essential Surgery--identifies 44 surgical procedures as essential on the basis that they address substantial needs, are cost effective, and are feasible to implement. This report summarises and critically assesses the volume's five key findings. First, provision of essential surgical procedures would avert about 1·5 million deaths a year, or 6-7% of all avertable deaths in low-income and middle-income countries. Second, essential surgical procedures rank among the most cost effective of all health interventions. The surgical platform of the first-level hospital delivers 28 of the 44 essential procedures, making investment in this platform also highly cost effective. Third, measures to expand access to surgery, such as task sharing, have been shown to be safe and effective while countries make long-term investments in building surgical and anaesthesia workforces. Because emergency procedures constitute 23 of the 28 procedures provided at first-level hospitals, expansion of access requires that such facilities be widely geographically diffused. Fourth, substantial disparities remain in the safety of surgical care, driven by high perioperative mortality rates including anaesthesia-related deaths in low-income and middle-income countries. Feasible measures, such as WHO's Surgical Safety Checklist, have led to improvements in safety and quality. Fifth, the large burden of surgical disorders, cost-effectiveness of essential surgery, and strong public demand for surgical services suggest that universal coverage of essential surgery should be financed early on the path to universal health coverage. We point to estimates that full coverage of the component of universal coverage of essential surgery applicable to first-level hospitals would require just over US$3 billion annually of additional spending and yield a benefit-cost ratio of more than 10:1. It would

  6. A collaborative study to establish the 3rd International Standard for tissue plasminogen activator.

    PubMed

    Sands, Dawn; Whitton, Colin M; Merton, R Elizabeth; Longstaff, Colin

    2002-08-01

    An international collaborative study was organised to replace the 2nd International Standard (IS) for tissue plasminogen activator (tPA). The 2nd IS for tPA (86/670) was used to calibrate the replacement Standard, which was selected from two candidate materials included in the collaborative study. Participants were provided with five sets of four samples (A, B, C, D) and asked to use sample A (2nd IS, 86/670, 850 IU/ml) to determine the activity of B (86/624, approximately 850 IU/ml), C and D (coded duplicates of the same material, 98/714 approximately 11,000 IU/ml). A total of 14 laboratories returned results from Europe, USA, Japan and Australia, providing data from 60 independent assays. Four laboratories used a reference method based on a published monograph from the European Pharmacopoeia for Alteplase for Injection, 1998, and the remaining 10 used their own method. Fibrin was used as promoter of tPA activity by 12 out of the 14 laboratories, the remaining two used kits where fibrinogen fragments were the promoter. Data from this collaborative study and the previous study to establish the 2nd IS for tPA show that tPA from melanoma cells and recombinant tPA from CHO cells are both suitable materials as International Standards. It was agreed that sample C, D, recombinant tPA, 98/714, be established as the 3rd International Standard for tPA with a potency of 10,000 IU per ampoule, calculated as the mean value from laboratories using fibrin as a promoter of tPA activity. The standard was established by WHO in November 2000.

  7. 3rd hand smoking; heterogeneous oxidation of nicotine and secondary aerosol formation in the indoor environment

    NASA Astrophysics Data System (ADS)

    Petrick, Lauren; Dubowski, Yael

    2010-05-01

    Tobacco smoking is well known as a significant source of primary indoor air pollutants. However, only recently has it been recognized that the impact of Tobacco smoking may continue even after the cigarette has been extinguished (i.e., third hand smoke) due to the effect of indoor surfaces. These surfaces may affect the fate of tobacco smoke in the form of secondary reactions and pollutants, including secondary organic aerosol (SOA) formation. Fourier Transform Infrared spectrometry with Attenuated Total Reflection (FTIR-ATR) in tandem with a Scanning Mobility Particle Sizing (SMPS) system was used to monitor the ozonation of cellulose sorbed nicotine and resulting SOA formation. SOA formation began at onset of ozone introduction ([O3] = 60 ± 5 ppb) with a size distribution of dp ≤ 25 nm, and was determined to be a result of heterogeneous reaction (opposed to homogeneous). SOA yield from reacted surface nicotine was on the order of 10 %. Simultaneous to SOA monitoring, FTIR-ATR spectra showed surface changes in the nicotine film as the reaction progressed, revealing a pseudo first-order surface reaction rate of 0.0026 ± 0.0008 min-1. Identified surface oxidation products included: cotinine, myosmine, methylnicotinamide and nicotyrine. Surface reaction rate was found to be partially inhibited at high relative humidity. Given the toxicity of some of the identified products (e.g., cotinine has shown potential mutagenicity and teratogenicity) and that small particles may contribute to adverse health effects, the present study indicates that exposure to 3rd hand smoke ozonation products may pose additional health risks.

  8. Catalysis in the 3rd Dimension: How Organic Molecules May be Formed

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Catalysis is often little more than a word to phenomenologically describe the fact that a reaction follows a pat1 that leads to products of an unexpected kind or of unexpected yield. Low activation energy barriers for intermediates are recognized as the most likely cause why a system deviates from the thermodynamic pull towards minimizing its free energy and ends up in a metastable state. Seldom is the mechanism known. This i: particularly true for heterogeneous catalysis under hydrothermal conditions with minerals as catalysts. It is commonly assumed that catalytic action takes place across solid-fluid interfaces and that, on the atomic level, interfaces are just 2-dimensional contacts. This makes it difficult to understand, for instance, the assembly of long-chain carboxylic (fatty) acids. 3y studying single crystals that grew from a melt in the presence of H2O and CO2, we can show: (1) that numerals take up the fluid components into solid solution, (2) that some-thing happens converting them to -educedH and C, (3) that C atoms segregate into dislocations and tie C-C bonds. The products are medium-to-long chain Cn protomolecules, with some C-H attached, pre-assembled in the dislocations. Upon solvent extraction, these proto-molecules turn into carboxylic and dicarboxylic acids. This observation suggests that, in a very elementary step, catalysis under hydrothermal conditions leading to fatty acids involves the pre-assembly of Cn entities in the interface that is not 2-D but extends into the 3rd dimension, with dislocations as synthesis sites.

  9. PREFACE: 3rd International Youth Conference "Interdisciplinary Problems of Nanotechnology, Biomedicine and Nanotoxicology" (Nanobiotech 2015)

    NASA Astrophysics Data System (ADS)

    Refsnes, Magne, Prof; Gusev, Alexander, Dr; Godymchuk, Anna, Dr; Bogdan, Anna

    2015-11-01

    The 3rd International Youth Conference "Interdisciplinary Problems of Nanotechnology, Biomedicine and Nanotoxicology" (Nanobiotech2015) was held on 21-22 May 2015 in Tambov, Russia, and was jointly organized by Tambov Derzhavin State University (Russia), the Norwegian Institute of Public Health (Norway), the National University of Science and Technology MISiS (Russia), Tomsk Polytechnic University (Russia) and Tomsk State University. The conference gathered experienced and young researchers, post-docs and students, working in the fieldof nanotechnologies, nanomedicine, nano(eco)toxicology and risk assessment of nanomaterials, in order to facilitate the aggregation and sharing of interests and results for better collaboration and visibility of activity. The goal of Nanobiotech2015 was to bring researchers and practitioners together to share the latest knowledge on nanotechnology-specific risks to occupational and environmental health and assessing how to reduce these potential risks. The main objective of the conference is to identify, systematize and solve current scientific problems inthe sphere of nanobiotechnologies, nanomedicine and nanotoxicology, in order to join forces todetermine prospective areas and compose working groups of interested co-workers for carrying out interdisciplinary research projects. The topics of Nanobiotech2015 were: (1) Nanotechnologies in pharmaceutics and medicine; (2) Sources and mechanisms of nanoparticle release into the environment; (3) Ecological and biological effects of nanoparticles; (4) (Eco)toxicology of nanomaterials; (5) Methods for detection of nanoparticles in the environment and in biological objects; and (6) Physico-chemical properties of nanoparticles in the environment. We want to thank the Organizing Committee, the universities and sponsors supporting the conference,and everyone who contributed to the organization of this meeting, for their contribution towards the conference and for their contributions to these

  10. Building monument materials during the 3rd-4rd millennium (Portugal)

    NASA Astrophysics Data System (ADS)

    Moita, Patricia; Pedro, Jorge; Boaventura, Rui; Mataloto, Rui; Maximo, Jaime; Almeida, Luís; Nogueira, Pedro

    2014-05-01

    Dolmens are the most conspicuous remains of the populations of the 4th and first half of 3rd millennia BCE. These tombs are impressive not only for their monumentality, but also because of the socioeconomic investment they represent for those Neolithic communities, namely from the Central-South of Portugal, who built them. Although dolmens have been studied for their funerary content and typologies, an interdisciplinary approach toward the geological characterization and sourcing of stones used in these constructions has not received enough attention from researchers. With MEGAGEO project a multidisciplinary group of geologist and archaeologists intends to assess the relationship between the distribution of dolmens in Central-South Portugal, their source materials, and the geological landscape. GIS will map the information gathered and will be used to analyse these relationships. The selection of the areas, with distinctive geologies (limestone vs granite), will allow to verify if human patterns of behaviour regarding the selection of megaliths are similar or different regionally. Geologically the first target area (Freixo, Alentejo) is dominated by a small intrusion of gabbro mingled/mixed within a granodioritic intrusion both related with variscan orogeny. Granodiorite exhibit several enclaves of igneous and metamorphic nature attesting the interaction between both igneous rocks as well with enclosing gneisses. Despite Alentejo region have a reduced number of outcrops the granodiorite provides rounded to tabular metric blocks. The gabbro is very coarse grained, sometimes with a cumulate texture, and their fracturing and weathering provide very fresh tabular blocks. The five studied dolmens (Quinta do Freixo #1 to #5) are implanted in a large granodioritic intrusion, around the gabbroic rocks, within an area of approximately 9km2. The medium grained granodiorite is ubiquity in all the dolmens slabs and occasionally it can be observed features of mixing and

  11. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member

  12. PREFACE: 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"

    NASA Astrophysics Data System (ADS)

    Yamada, Taiichi; Kanada-En'yo, Yoshiko

    2014-12-01

    The 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3) was held at KGU Kannai Media Center, Kanto Gakuin University, Yokohama, Japan, from May 26 to 30, 2014. Yokohama is the second largest city in Japan, about 25 km southeast of Tokyo. The first workshop of the series was held in Strasbourg, France, in 2008 and the second one was in Brussels, Belgium, in 2010. The purpose of SOTANCP3 was to discuss the present status and future perspectives of the nuclear cluster physics. The following nine topics were selected in order to cover most of the scientific programme and highlight an area where new ideas have emerged over recent years: (1) Cluster structures and many-body correlations in stable and unstable nuclei (2) Clustering aspects of nuclear reactions and resonances (3) Alpha condensates and analogy with condensed matter approaches (4) Role of tensor force in cluster physics and ab initio approaches (5) Clustering in hypernuclei (6) Nuclear fission, superheavy nuclei, and cluster decay (7) Cluster physics and nuclear astrophysics (8) Clustering in nuclear matter and neutron stars (9) Clustering in hadron and atomic physics There were 122 participants, including 53 from 17 foreign countries. In addition to invited talks, we had many talks selected from contributed papers. There were plenary, parallel, and poster sessions. Poster contributions were also presented as four-minute talks in parallel sessions. This proceedings contains the papers presented in invited and selected talks together with those presented in poster sessions. We would like to express our gratitude to the members of the International Advisory Committee and those of the Organizing Committee for their efforts which made this workshop successful. In particular we would like to present our great thanks to Drs. Y. Funaki, W. Horiuchi, N. Itagaki, M. Kimura, T. Myo, and T. Yoshida. We would like also to thank the following organizations for their sponsors: RCNP

  13. SESAME — A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Å°lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ˜133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  14. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    U˝Lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ~133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  15. ic-cmtp3: 3rd International Conference on Competitive Materials and Technology Processes

    NASA Astrophysics Data System (ADS)

    2016-04-01

    Competitiveness is one of the most important factors in our lives and it plays a key role in the efficiency both of organizations and societies. The more scientifically advanced and prepared organizations develop more competitive materials with better physical, chemical, and biological properties, and the leading companies apply more competitive equipment and technological processes. The aims of the 3rd International Conference on Competitive Materials and Technology Processes (ic-cmtp3), and the 1st International Symposium on Innovative Carbons and Carbon Based Materials (is-icbm1) and the 1st International Symposium on Innovative Construction Materials (is-icm1) organized alongside are the following: —Promote new methods and results of scientific research in the fields of material, biological, environmental and technological sciences; —Exchange information between the theoretical and applied sciences as well as technical and technological implementations; —Promote communication and collaboration between the scientists, researchers and engineers of different nations, countries and continents. Among the major fields of interest are advanced and innovative materials with competitive characteristics, including mechanical, physical, chemical, biological, medical and thermal, properties and extreme dynamic strength. Their crystalline, nano - and micro-structures, phase transformations as well as details of their technological processes, tests and measurements are also in the focus of the ic-cmtp3 conference and the is-scbm1 and is-icm1 symposia. Multidisciplinary applications of material science and the technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industries, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance with the program of the ic-cmtp3 conference and is-icbm1 and is-icm1 symposia we have received more

  16. PREFACE: 3rd International Workshop on Statistical Physics and Mathematics for Complex Systems (SPMCS 2012)

    NASA Astrophysics Data System (ADS)

    Tayurskii, Dmitrii; Abe, Sumiyoshi; Alexandre Wang, Q.

    2012-11-01

    The 3rd International Workshop on Statistical Physics and Mathematics for Complex Systems (SPMCS2012) was held between 25-30 August at Kazan (Volga Region) Federal University, Kazan, Russian Federation. This workshop was jointly organized by Kazan Federal University and Institut Supérieur des Matériaux et Mécaniques Avancées (ISMANS), France. The series of SPMCS workshops was created in 2008 with the aim to be an interdisciplinary incubator for the worldwide exchange of innovative ideas and information about the latest results. The first workshop was held at ISMANS, Le Mans (France) in 2008, and the third at Huazhong Normal University, Wuhan (China) in 2010. At SPMCS2012, we wished to bring together a broad community of researchers from the different branches of the rapidly developing complexity science to discuss the fundamental theoretical challenges (geometry/topology, number theory, statistical physics, dynamical systems, etc) as well as experimental and applied aspects of many practical problems (condensed matter, disordered systems, financial markets, chemistry, biology, geoscience, etc). The program of SPMCS2012 was prepared based on three categories: (i) physical and mathematical studies (quantum mechanics, generalized nonequilibrium thermodynamics, nonlinear dynamics, condensed matter physics, nanoscience); (ii) natural complex systems (physical, geophysical, chemical and biological); (iii) social, economical, political agent systems and man-made complex systems. The conference attracted 64 participants from 10 countries. There were 10 invited lectures, 12 invited talks and 28 regular oral talks in the morning and afternoon sessions. The book of Abstracts is available from the conference website (http://www.ksu.ru/conf/spmcs2012/?id=3). A round table was also held, the topic of which was 'Recent and Anticipated Future Progress in Science of Complexity', discussing a variety of questions and opinions important for the understanding of the concept of

  17. Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders.

    PubMed

    Meyer, M L; Salimpoor, V N; Wu, S S; Geary, D C; Menon, V

    2010-04-01

    The contribution of the three core components of working memory (WM) to the development of mathematical skills in young children is poorly understood. The relation between specific WM components and Numerical Operations, which emphasize computation and fact retrieval, and Mathematical Reasoning, which emphasizes verbal problem solving abilities in 48 2nd and 50 3rd graders was assessed using standardized WM and mathematical achievement measures. For 2nd graders, the central executive and phonological components predicted Mathematical Reasoning skills; whereas the visuo-spatial component predicted both Mathematical Reasoning and Numerical Operations skills in 3rd graders. This pattern suggests that the central executive and phonological loop facilitate performance during early stages of mathematical learning whereas visuo-spatial representations play an increasingly important role during later stages. We propose that these changes reflect a shift from prefrontal to parietal cortical functions during mathematical skill acquisition. Implications for learning and individual differences are discussed.

  18. Plant chromatin warms up in Madrid: meeting summary of the 3rd European Workshop on Plant Chromatin 2013, Madrid, Spain.

    PubMed

    Jarillo, José A; Gaudin, Valérie; Hennig, Lars; Köhler, Claudia; Piñeiro, Manuel

    2014-04-01

    The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC.

  19. Numerical simulation of interplanetary dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun

    This dissertation discusses investigations into the physics of the propagation of solar generated disturbances in the interplanetary medium. The motivation to initiate this study was two-fold: (1) understanding the fundamental physics of the nonlinear interactions of solar generated MHD shocks and non-homogeneous interplanetary medium, and (2) understanding the physics of solar generated disturbance effects on the Earth's environment, (i.e. the solar connection to the geomagnetic storm). In order to achieve these goals, the authors employed two numerical models to encompass these studies. In the first part, a one-dimensional MHD code with adaptive grids is used to study the evolution of interplanetary slow shocks (ISS), the interaction of a forward slow shock with a reverse slow shock, and the interaction of a fast shock with a slow shock. Results show that the slow shocks can be generated by a decreasing density, velocity or temperature perturbation or by a pressure pulse by following a forward fast shock and that slow shocks can propagate over 1 AU; results also show that the ISS never evolves into fast shocks. Interestingly, it is also found that an ISS could be 'eaten up' by an interplanetary fast shock (IFS) catching up from behind. This could be a reason that the slow shock has been difficult to observe near 1 AU. In addition, a forward slow shock could be dissipated by following a strong forward fast shock (Mach number greater than 1.7). In the second part, a fully three-dimensional (3D), time-dependent, MHD interplanetary global model (3D IGM) is used to study the relationship between different forms of solar activity and transient variations of the north-south component, Bx, of the interplanetary magnetic field, IMF, at 1 AU. One form of solar activity, the flare, is simulated by using a pressure pulse at different locations near the solar surface and observing the simulated IMF evolution of Btheta (= -Bx) at 1 AU. Results show that, for a given pressure

  20. Proceedings of the 3rd IDA-CIISS Workshop: Challenges and Opportunities of Common Security and the Business of Defense

    DTIC Science & Technology

    2009-01-01

    Workshop: Challenges and Opportunities of Common Security and the Business of Defense Stephen J. Balut, IDA Project Leader Larry D. Welch, IDA David L...3693 Proceedings of the 3rd IDA-CIISS Workshop: Challenges and Opportunities of Common Security and the Business of Defense Stephen J. Balut, IDA...Welch on “ Challenges and Opportunities of Common Security for the United States and China.” Also included are presentations by Senior Colonel Jiang

  1. Does 3rd Age + 3rd World = 3rd Class?

    ERIC Educational Resources Information Center

    Tout, Ken

    1992-01-01

    Demographic changes, migration, and industrialization are having drastic effects on older adults in developing nations. Local programs such as Pro Vida in Colombia, supported by Help Age International, rely on the support of volunteers to improve the quality of life for elderly people. (SK)

  2. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  3. Interplanetary medium data book, appendix

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Computer generated listings of hourly average interplanetary plasma and magnetic field parameters are given. Parameters include proton temperature, proton density, bulk speed, an identifier of the source of the plasma data for the hour, average magnetic field magnitude and cartesian components of the magnetic field. Also included are longitude and latitude angles of the vector made up of the average field components, a vector standard deviation, and an identifier of the source of magnetic field data.

  4. Interstellar neutrals in interplanetary space

    SciTech Connect

    Hovestadt, D.; Moebius, E. )

    1989-03-01

    The solar system is moving through the interstellar medium with a velocity of about 20 km/s. The neutral interstellar gas, which thereby penetrates the heliosphere, is subject to ionization by solar UV radiation, charge exchange with the solar wind, and electron collisions. The newly created ions are then picked by the solar wind through interaction of interstellar neutrals with the interplanetary magnetic field. The pick-up ions with their peculiar elemental composition probably also constitute the source particles of the Anomalous Cosmic Ray Component (ACR). In this report descriptions of the interaction with the solar wind are reviewed. While most of the constituents are already ionized far beyond the orbit of the Earth, neutral helium (because of its high ionization potential) approaches the Sun to {lt}1 AU. The pick-up of interstellar He{sup +} ions has recently been directly observed for the first time. The observed velocity distribution of He{sup +} extending up to twice the solar wind velocity can be explained in terms of pitch angle scattering of the ions probably by interplanetary Alven waves and subsequent adiabatic cooling in the expanding solar wind. Thermal coupling of the He{sup +} to the solar wind is negligible in the inner heliosphere. Detailed studies of the pick-up distribution provide a method to investigate the interplanetary propagation parameters and the state of the local interstellar medium.

  5. The interplanetary exchange of photosynthesis.

    PubMed

    Cockell, Charles S

    2008-02-01

    Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

  6. A global drought climatology for the 3rd edition of the World Atlas of Desertification (WAD)

    NASA Astrophysics Data System (ADS)

    Spinoni, Jonathan; Carrao, Hugo; Naumann, Gustavo; Antofie, Tiberiu; Barbosa, Paulo; Vogt, Jürgen

    2013-04-01

    A new version of the World Atlas of Desertification (WAD) is being compiled in the framework of cooperation between the Joint Research Centre (JRC) of the European Commission and the United Nations Environment Programme (UNEP). This initiative aims at mapping the global land degradation and desertification, as well as introducing the reader with complex interactions of geo-physical, socio-economic, and political aspects that affect the environmental sustainability. Recurrent extreme events resulting from climate change, such as more severe droughts, combined with non-adapted land use practices can affect the resilience of ecosystems tipping them into a less productive state. Thus, to describe the effects of climatological hazards on land degradation and desertification processes, we computed a World drought climatology that will be part of the 3rd edition of the WAD and will replace and update to 2010 the results presented in the 2nd edition in 1997. This paper presents the methodology used to compute three parameters included in the WAD drought climatology, i.e. drought frequency, intensity and duration, and discusses their spatio-temporal patterns both at global and continental scales. Because drought is mainly driven and triggered by a rainfall deficit, we chose the Standardized Precipitation Index (SPI) as the drought indicator to estimate our climatological parameters. The SPI is a statistical precipitation-based drought indicator widely used in drought-related studies. We calculated the SPI on three different accumulation periods: 3 months (SPI-3), 6 months (SPI-6), and 12 months (SPI-12), in order to take into account meteorological, agricultural, and hydrological drought-related features. Each quantity has been calculated on a monthly basis using the baseline period between January 1951 and December 2010. As data input, we used the Full Data Reanalysis Version 6.0 (0.5˚x0.5˚) of gridded monthly precipitation provided by the Global Precipitation

  7. PREFACE: 3rd Workshop on Theory, Modelling and Computational Methods for Semiconductors (TMCSIII)

    NASA Astrophysics Data System (ADS)

    Califano, Marco; Migliorato, Max; Probert, Matt

    2012-05-01

    These conference proceedings contain the written papers of the contributions presented at the 3rd International Conference on Theory, Modelling and Computational Methods for Semiconductor materials and nanostructures. The conference was held at the School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK on 18-20 January 2012. The previous conferences in this series took place in 2010 at St William's College, York and in 2008 at the University of Manchester, UK. The development of high-speed computer architectures is finally allowing the routine use of accurate methods for calculating the structural, thermodynamic, vibrational, optical and electronic properties of semiconductors and their hetero- and nano-structures. The scope of this conference embraces modelling, theory and the use of sophisticated computational tools in semiconductor science and technology, where there is substantial potential for time-saving in R&D. Theoretical approaches represented in this meeting included: Density Functional Theory, Tight Binding, Semiempirical Pseudopotential Methods, Effective Mass Models, Empirical Potential Methods and Multiscale Approaches. Topics included, but were not limited to: Optical and Transport Properties of Quantum Nanostructures including Colloids and Nanotubes, Plasmonics, Magnetic Semiconductors, Graphene, Lasers, Photonic Structures, Photovoltaic and Electronic Devices. This workshop ran for three days, with the objective of bringing together UK and international leading experts in the theoretical modelling of Group IV, III-V and II-VI semiconductors, as well as students, postdocs and early-career researchers. The first day focused on providing an introduction and overview of this vast field, aimed particularly at students, with several lectures given by recognised experts in various theoretical approaches. The following two days showcased some of the best theoretical research carried out in the UK in this field, with several

  8. PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-07-01

    The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo International Symposium, and jointly with MANA Workshop on Materials Processing by External Stimulation, and JSPS CORE Program of Construction of the World Center on Electromagnetic Processing of Materials. At the end of MAP3 it was decided that the next MAP4 will be held in Atlanta, USA in 2010. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. MAP3 focused on the magnetic field interactions involved in the study and processing of materials in all disciplines ranging from physics to chemistry and biology: Magnetic field effects on chemical, physical, and biological phenomena Magnetic field effects on electrochemical phenomena Magnetic field effects on thermodynamic phenomena Magnetic field effects on hydrodynamic phenomena Magnetic field effects on crystal growth Magnetic processing of materials Diamagnetic levitation Magneto-Archimedes effect Spin chemistry Application of magnetic fields to analytical chemistry Magnetic orientation Control of structure by magnetic fields Magnetic separation and purification Magnetic field-induced phase transitions Materials properties in high magnetic fields Development of NMR and MRI Medical application of magnetic fields Novel magnetic phenomena Physical property measurement by Magnetic fields High magnetic field generation> MAP3 consisted of 84 presentations including 16 invited talks. This volume of Journal of Physics: Conference Series contains the proceeding of MAP3 with 34 papers that provide a scientific record of the topics covered by the conference with the special topics (13 papers) in

  9. LDEF (Prelaunch), AO201 : Interplanetary Dust Experiment, Tray B12

    NASA Technical Reports Server (NTRS)

    1984-01-01

    (6) orthogonal faces of the LDEF was correlated, the Interplanetary Dust Experiment clock could be precisely calibrated. The center 1/3rd tray cover is a chromic anodized aluminum plate that protects the IDE data conditioning and control electronics mounted underneath. The cover plate also serves as a mounting platform for ten (10) individual specimen holders provided by one of the IDE investigators.The material specimen, consisting of germanium, sapphire and zinc sulfide of different sizes, shapes and colors, are bonded to the specimen holders with an RTV adhesive. The specimen holders are attached to the cover plate with stainless steel non-magnetic fasteners. The 1/3rd tray cover plate in the right hand end of the experiment tray is an aluminum plate painted white with Chemglaze II A-276 paint and used as a thermal cover for the Experiment Power and Data System (EPDS). The EPDS is a system provided by the LDEF Project Office that processes and stores, on magnetic tape, the orbital experiment and housekeeping data from six (6) experiment locations on the LDEF.

  10. Assessment of human exposure to 3rd generation cephalosporin resistant E. coli (CREC) through consumption of broiler meat in Belgium.

    PubMed

    Depoorter, P; Persoons, D; Uyttendaele, M; Butaye, P; De Zutter, L; Dierick, K; Herman, L; Imberechts, H; Van Huffel, X; Dewulf, J

    2012-09-17

    Acquired resistance of Escherichia coli to 3rd generation cephalosporin antimicrobials is a relevant issue in intensive broiler farming. In Belgium, about 35% of the E. coli strains isolated from live broilers are resistant to 3rd generation cephalosporins while over 60% of the broilers are found to be carrier of these 3rd generation cephalosporin resistant E. coli (CREC) after selective isolation. A model aimed at estimating the exposure of the consumer to CREC by consumption of broiler meat was elaborated. This model consists of different modules that simulate the farm to fork chain starting from primary production, over slaughter, processing and distribution to storage, preparation and consumption of broiler meat. Input data were obtained from the Belgian Food Safety agencies' annual monitoring plan and results from dedicated research programs or surveys. The outcome of the model using the available baseline data estimates that the probability of exposure to 1000 colony forming units (cfu) of CREC or more during consumption of a meal containing chicken meat is ca. 1.5%, the majority of exposure being caused by cross contamination in the kitchen. The proportion of CREC (within the total number of E. coli) at primary production and the overall contamination of broiler carcasses or broiler parts with E. coli are dominant factors in the consumer exposure to CREC. The risk of this exposure for human health cannot be estimated at this stage given a lack of understanding of the factors influencing the transfer of cephalosporin antimicrobial resistance genes from these E. coli to the human intestinal bacteria and data on the further consequences of the presence of CREC on human health.

  11. The Telephone in Education. Book II. Annual International Communications Conference (3rd).

    ERIC Educational Resources Information Center

    Parker, Lorne A., Comp.; Riccomini, Betsy, Comp.

    This report of a conference on the use of telephone technology in education includes 33 papers which deal with such areas as the use of the telephone in the administration of a telephone network or conference system, support services, program evaluation in telecommunication, program planning, teleconferencing, computer control of teleconferencing,…

  12. Interplanetary Lyman-beta emissions

    NASA Technical Reports Server (NTRS)

    Paresce, F.

    1973-01-01

    Derivation of the intensity of the diffuse hydrogen Lyman-beta glow at 1025 A which is due to resonance scattering of the solar H I 1025 A line by interstellar and interplanetary hydrogen. Two sources of neutral hydrogen are considered: the local interstellar medium interacting with the solar system, and the dust deionization of the H(+) component of the solar wind. It is shown that if the dust geometrical factor is less than or equal to five quintillionths per cm, observations of backscattered Lyman-beta radiation will provide a unique determination of the density and temperature of the local interstellar medium.

  13. 3rd Quarter Transportation Report FY2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis B.

    2015-07-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments.

  14. A 3rd Generation Advanced High-Strength Steel (AHSS) Produced by Dual Stabilization Heat Treatment (DSHT)

    NASA Astrophysics Data System (ADS)

    Qu, Hao; Michal, Gary M.; Heuer, Arthur H.

    2013-10-01

    A 3rd generation advanced high-strength steel containing, in wt pct, 0.3 C, 4.0 Mn, 1.5 Al, 2.1 Si, and 0.5 Cr has been produced using a dual stabilization heat treatment—a five stage thermal processing schedule compatible with continuous galvanized steel production. In excess of 30 vol pct retained austenite containing at least 0.80 wt pct C was achieved with this alloy, which had tensile strengths up to 1650 MPa and tensile elongations around 20 pct.

  15. Tunnelling of the 3rd kind: A test of the effective non-locality of quantum field theory

    NASA Astrophysics Data System (ADS)

    Gardiner, Simon A.; Gies, Holger; Jaeckel, Joerg; Wallace, Chris J.

    2013-03-01

    Integrating out virtual quantum fluctuations in an originally local quantum field theory results in an effective theory which is non-local. In this letter we argue that tunnelling of the 3rd kind —where particles traverse a barrier by splitting into a pair of virtual particles which recombine only after a finite distance— provides a direct test of this non-locality. We sketch a quantum-optical setup to test this effect, and investigate observable effects in a simple toy model.

  16. Gavel to Gavel: A Guide to the Televised Proceedings of Congress. 3rd Edition.

    ERIC Educational Resources Information Center

    Green, Alan

    C-SPAN is a non-profit public service television network created by the U.S. cable television industry to provide viewers live gavel-to-gavel access to the proceedings of the U.S. House of Representatives and the U.S. Senate, and to other forums where public policy is discussed, debated, and decided. This guide presents a brief history of how…

  17. Multipoint study of interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, Xochitl; Kajdic, Primoz; Russell, Christopher T.; Aguilar-Rodriguez, Ernesto; Jian, Lan K.; Luhmann, Janet G.

    2016-04-01

    Interplanetary (IP) shocks are driven in the heliosphere by Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs). These shocks perturb the solar wind plasma, and play an active role in the acceleration of ions to suprathermal energies. Shock fronts evolve as they move from the Sun. Their surfaces can be far from uniform and be modulated by changes in the ambient solar wind (magnetic field orientation, flow velocity), shocks rippling, and perturbations upstream and downstream from the shocks, i.e., electromagnetic waves. In this work we use multipoint observations from STEREO, WIND, and MESSENGER missions to study shock characteristics at different helio-longitudes and determine the properties of the waves near them. We also determine shock longitudinal extensions and foreshock sizes. The variations of geometry along the shock surface can result in different extensions of the wave and ion foreshocks ahead of the shocks, and in different wave modes upstream and downtream of the shocks. We find that the ion foreshock can extend up to 0.2 AU ahead of the shock, and that the upstream region with modified solar wind/waves can be very asymmetric.

  18. Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.

    PubMed

    Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei

    2013-09-18

    The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.

  19. Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: preparation, in vitro and in vivo evaluation.

    PubMed

    He, Zhijian; Schulz, Anita; Wan, Xiaomeng; Seitz, Joshua; Bludau, Herdis; Alakhova, Daria Y; Darr, David B; Perou, Charles M; Jordan, Rainer; Ojima, Iwao; Kabanov, Alexander V; Luxenhofer, Robert

    2015-06-28

    The clinically and commercially successful taxanes, paclitaxel and docetaxel suffer from two major drawbacks, namely their very low aqueous solubility and the risk of developing resistance. Here, we present a method that overcomes both drawbacks in a very simple manner. We formulated 3rd generation taxoids, able to avoid common drug resistance mechanisms with doubly amphiphilic poly(2-oxazoline)s (POx), a safe and highly efficient polymer for the formulation of extremely hydrophobic drugs. We found excellent solubilization of different 3rd generation taxoids irrespective of the drug's chemical structures with essentially quantitative drug loading and final drug to polymer ratios around unity. The small, highly loaded micelles with a hydrodynamic diameter of less than 100nm are excellently suited for parenteral administration. Moreover, a selected formulation with the taxoid SB-T-1214 is about one to two orders of magnitude more active in vitro than paclitaxel in the multidrug resistant breast cancer cell line LCC6-MDR. In contrast, in wild-type LCC6, no difference was observed. Using a q4d×4 dosing regimen, we also found that POx/SB-T-1214 significantly inhibits the growth of LCC6-MDR orthotropic tumors, outperforming commercial paclitaxel drug Taxol and Cremophor EL formulated SB-T-1214.

  20. Montpellier Infectious Diseases - Pôle Rabelais (MID) 3rd annual meeting (2014).

    PubMed

    Besteiro, Sébastien; Blanc-Potard, Anne; Bonazzi, Matteo; Briant, Laurence; Chazal, Nathalie; Cornillot, Emmanuel; Lentini, Gaëlle; Matkovic, Roy; Sanosyan, Armen; Tuaillon, Edouard; Van de Perre, Philippe

    2015-06-01

    For the third time, teams belonging to the "Montpellier Infectious Diseases" network in the Rabelais BioHealth Cluster held their annual meeting on the 27th and 28th of November in Montpellier, France. While the 2012 meeting was focused on the cooperation between the local force tasks in biomedical and medical chemistry and presented the interdisciplinary research programs designed to fight against virus, bacteria and parasites, the 2014 edition of the meeting was focused on the translational research in infectious diseases and highlighted the bench-to-clinic strategies designed by academic and private research groups in the Montpellier area.

  1. Magnetic sails and interplanetary travel

    SciTech Connect

    Zubrin, R.M.; Andrews, D.G.

    1989-01-01

    A new concept, the magnetic sail, or 'magsail' is proposed which propels spacecraft by using the magnetic field generated by a loop of superconducting cable to deflect interplanetary or interstellar plasma winds. The performance of such a device is evaluated using both a plasma particle model and a fluid model, and the results of a series of investigations are presented. It is found that a magsail sailing on the solar wind at a radius of one astronautical unit can attain accelerations on the order of 0.01 m/sec squared, much greater than that available from a conventional solar lightsail, and also greater than the acceleration due to the sun's gravitational attraction. A net tangential force, or 'lift' can also be generated. Lift to drag ratios of about 0.3 appear attainable. Equations are derived whereby orbital transfers using magsail propulsion can be calculated analytically.

  2. Ion bombardment of interplanetary dust

    SciTech Connect

    Johnson, R.E.; Lanzerotti, L.J.

    1986-06-01

    It is thought that a fraction of the interplanetary dust particles (IDP's) collected in the stratosphere by high-flying aircraft represent materials ejected from comets. An investigation is conducted regarding the effects of ion bombardment on these particles, taking into account information on ion tracks and carbon in IDP's and laboratory data on charged particle bombardment of surfaces. It is found that the observational discovery of particle tracks in certain IDP's clearly indicates the exposure of these particles to approximately 10,000 years of 1-AU equivalent solar-particle fluences. If some erasure of the tracks occurs, which is likely when an IDP enters the upper atmosphere, then somewhat longer times are implied. The effects of the erosion and enhanced adhesion produced by ions are considered. 46 references.

  3. Modeling Interplanetary Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Riley, Pete

    2004-01-01

    Heliospheric models of Coronal Mass Ejection (CME) propagation and evolution provide an important insight into the dynamics of CMEa and are a valuable tool for interpreting interplanetary in situ observations. Moreover, they represent a virtual laboratory for exploring conditions and regions of space that are not conveniently or currently accessible by spacecraft. In this review I summarize recent advances in modeling the properties and evolution of CMEs in the solar wind. In particular, I will focus on: (1) the types of ICME models; (2) the boundary conditions that are imposed, (3) the role of the ambient solar wind; (4) predicting new phenomena; and (5) distinguishing between competing CME initiation mechanisms. I will conclude by discussing what topics will likely be important for models to address in the future.

  4. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  5. Interplanetary magnetic field and geomagnetic Dst variations.

    NASA Technical Reports Server (NTRS)

    Patel, V. L.; Desai, U. D.

    1973-01-01

    The interplanetary magnetic field has been shown to influence the ring current field represented by Dst. Explorer 28 hourly magnetic field observations have been used with the hourly Dst values. The moderate geomagnetic storms of 60 gammas and quiet-time fluctuations of 10 to 30 gammas are correlated with the north to south change of the interplanetary field component perpendicular to the ecliptic. This change in the interplanetary field occurs one to three hours earlier than the corresponding change in the Dst field.

  6. Use of 2nd and 3rd Level Correlation Analysis for Studying Degradation in Polycrystalline Thin-Film Solar Cells

    SciTech Connect

    Albin, D. S.; del Cueto, J. A.; Demtsu, S. H.; Bansal, S.

    2011-03-01

    The correlation of stress-induced changes in the performance of laboratory-made CdTe solar cells with various 2nd and 3rd level metrics is discussed. The overall behavior of aggregated data showing how cell efficiency changes as a function of open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) is explained using a two-diode, PSpice model in which degradation is simulated by systematically changing model parameters. FF shows the highest correlation with performance during stress, and is subsequently shown to be most affected by shunt resistance, recombination and in some cases voltage-dependent collection. Large decreases in Jsc as well as increasing rates of Voc degradation are related to voltage-dependent collection effects and catastrophic shunting respectively. Large decreases in Voc in the absence of catastrophic shunting are attributed to increased recombination. The relevance of capacitance-derived data correlated with both Voc and FF is discussed.

  7. THE 3rd SCHIZOPHRENIA INTERNATIONAL RESEARCH SOCIETY CONFERENCE, 14-18 APRIL 2012, FLORENCE, ITALY: SUMMARIES OF ORAL SESSIONS

    PubMed Central

    Abbs, Brandon; Achalia, Rashmin M; Adelufosi, Adegoke O; Aktener, Ahmet Yiğit; Beveridge, Natalie J; Bhakta, Savita G; Blackman, Rachael K; Bora, Emre; Byun, MS; Cabanis, Maurice; Carrion, Ricardo; Castellani, Christina A; Chow, Tze Jen; Dmitrzak-Weglarz, M; Gayer-Anderson, Charlotte; Gomes, Felipe V; Haut, Kristen; Hori, Hiroaki; Kantrowitz, Joshua T; Kishimoto, Taishiro; Lee, Frankie HF; Lin, Ashleigh; Palaniyappan, Lena; Quan, Meina; Rubio, Maria D; Ruiz de Azúa, Sonia; Sahoo, Saddichha; Strauss, Gregory P; Szczepankiewicz, Aleksandra; Thompson, Andrew D; Trotta, Antonella; Tully, Laura M; Uchida, Hiroyuki; Velthorst, Eva; Young, Jared W; O’Shea, Anne; DeLisi, Lynn E.

    2013-01-01

    The 3rd Schizophrenia International Research Society Conference was held in Florence, Italy, April 14-18, 2012.and this year had as its emphasis, “The Globalization of Research”. Student travel awardees served as rapporteurs for each oral session and focused their summaries on the most significant findings that emerged and the discussions that followed. The following report is a composite of these summaries. We hope that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research. PMID:22910407

  8. 3rd Tech DeltaSphere-3000 Laser 3D Scene Digitizer infrared laser scanner hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-02-01

    A laser hazard analysis and safety assessment was performed for the 3rd Tech model DeltaSphere-3000{reg_sign} Laser 3D Scene Digitizer, infrared laser scanner model based on the 2000 version of the American National Standard Institute's Standard Z136.1, for the Safe Use of Lasers. The portable scanner system is used in the Robotic Manufacturing Science and Engineering Laboratory (RMSEL). This scanning system had been proposed to be a demonstrator for a new application. The manufacture lists the Nominal Ocular Hazard Distance (NOHD) as less than 2 meters. It was necessary that SNL validate this NOHD prior to its use as a demonstrator involving the general public. A formal laser hazard analysis is presented for the typical mode of operation for the current configuration as well as a possible modified mode and alternative configuration.

  9. Palaeocommunity dynamics across the Lower to Middle Miocene 3rd order sequence boundary of the Central Paratethys

    NASA Astrophysics Data System (ADS)

    Zuschin, Martin; Harzhauser, Mathias; Mandic, Oleg

    2010-05-01

    The 3rd order sequence boundary from the Lower to the Middle Miocene of the Paratethys is characterized by a well-known major change of the molluscan fauna. This change was mainly studied based on regional species lists, which suggest a transition from low-diversity Karpatian (Upper Burdigalian) to highly diverse Badenian (Langhian and Lower Serravallian) assemblages. Here, we present quantitative data from 4 Karpatian and 6 Badenian localities to capture the anatomy of this faunal transition by comparing species-abundance patterns of local assemblages. 223 bulk samples, comprising more than 65,000 shells, were taken from shell beds; all molluscs > 1mm were studied quantitatively and sorted into 496 species. Independent sources (e.g., palaeogeographic position of localities and environmental data from foraminifera) suggest a water depth ranging from the intertidal to several tens of meters for the studied assemblages. Ordination methods indicate that benthic assemblages in the study area developed along the same depth-related environmental gradient across the 3rd order sequence boundary. Due to strong facies shifts at the boundary, the Karpatian faunas are mostly preserved in nearshore settings, but the Badenian faunas range from intertidal to shelf depth. Statistical analyses indicate that differences between the total of Karpatian and the total of Badenian assemblages are smaller than any differences among individual localities. The striking differences among the studied localities are most likely due to heterogeneous environments present on the Lower and Middle Miocene shelf of the Central Paratethys. Clearly, the immigration of several thermophilic molluscan families and superfamilies (e.g., Strombidae, Tonnoidea, Isognomonidae, and Carditidae) reflects climatic changes at the onset of the Langhian transgression. Our quantitative approach, however, favours the strong facies shift at the Lower / Middle Miocene boundary as the main reason for the pretended faunal

  10. Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.

    1977-01-01

    A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.

  11. Analysis of the contact graph routing algorithm: Bounding interplanetary paths

    NASA Astrophysics Data System (ADS)

    Birrane, Edward; Burleigh, Scott; Kasch, Niels

    2012-06-01

    Interplanetary communication networks comprise orbiters, deep-space relays, and stations on planetary surfaces. These networks must overcome node mobility, constrained resources, and significant propagation delays. Opportunities for wireless contact rely on calculating transmit and receive opportunities, but the Euclidean-distance diameter of these networks (measured in light-seconds and light-minutes) precludes node discovery and contact negotiation. Propagation delay may be larger than the line-of-sight contact between nodes. For example, Mars and Earth orbiters may be separated by up to 20.8 min of signal propagation time. Such spacecraft may never share line-of-sight, but may uni-directionally communicate if one orbiter knows the other's future position. The Contact Graph Routing (CGR) approach is a family of algorithms presented to solve the messaging problem of interplanetary communications. These algorithms exploit networks where nodes exhibit deterministic mobility. For CGR, mobility and bandwidth information is pre-configured throughout the network allowing nodes to construct transmit opportunities. Once constructed, routing algorithms operate on this contact graph to build an efficient path through the network. The interpretation of the contact graph, and the construction of a bounded approximate path, is critically important for adoption in operational systems. Brute force approaches, while effective in small networks, are computationally expensive and will not scale. Methods of inferring cycles or other librations within the graph are difficult to detect and will guide the practical implementation of any routing algorithm. This paper presents a mathematical analysis of a multi-destination contact graph algorithm (MD-CGR), demonstrates that it is NP-complete, and proposes realistic constraints that make the problem solvable in polynomial time, as is the case with the originally proposed CGR algorithm. An analysis of path construction to complement hop

  12. Interplanetary Field Enhancements: The Interaction between Solar Wind and Interplanetary Dusty Plasma Released by Interplanetary Collisions

    NASA Astrophysics Data System (ADS)

    Lai, Hairong

    Interplanetary field enhancements (IFEs) are unique large-scale structures in the solar wind. During IFEs, the magnetic-field strength is significantly enhanced with little perturbation in the solar-wind plasma. Early studies showed that IFEs move at nearly the solar-wind speed and some IFEs detected at 0.72AU by Pioneer Venus Orbiter (PVO) are associated with material co-orbiting with asteroid Oljato. To explain the observed IFE features, we develop and test an IFE formation hypothesis: IFEs result from interactions between the solar wind and clouds of nanoscale charged dust particles released in interplanetary collisions. This hypothesis predicts that the magnetic field drapes and the solar wind slows down in the upstream. Meanwhile the observed IFE occurrence rate should be comparable with the detectable interplanetary collision rate. Based on this hypothesis, we can use the IFE occurrence to determine the spatial distribution and temporal variation of interplanetary objects which produce IFEs. To test the hypothesis, we perform a systematic survey of IFEs in the magnetic-field data from many spacecraft. Our datasets cover from 1970s to present and from inner than 0.3AU to outer than 5 AU. In total, more than 470 IFEs are identified and their occurrences show clustering features in both space and time. We use multi-spacecraft simultaneous observations to reconstruct the magnetic-field geometry and find that the magnetic field drapes in the upstream region. The results of a superposed epoch study show that the solar wind slows down in the upstream and there is a plasma depletion region near the IFE centers. In addition, the solar-wind slowdown and plasma depletion feature are more significant in larger IFEs. The mass contained in IFEs can be estimated by balancing the solar-wind pressure force exerted on the IFEs against the solar gravity. The solar-wind slowdown resultant from the estimated mass is consistent with the result in superposed epoch study. The

  13. Early acute antibody-mediated rejection of a negative flow crossmatch 3rd kidney transplant with exclusive disparity at HLA-DP.

    PubMed

    Mierzejewska, Beata; Schroder, Paul M; Baum, Caitlin E; Blair, Annette; Smith, Connie; Duquesnoy, Rene J; Marrari, Marilyn; Gohara, Amira; Malhotra, Deepak; Kaw, Dinkar; Liwski, Robert; Rees, Michael A; Stepkowski, Stanislaw

    2014-08-01

    Donor-specific alloantibodies (DSA) to HLA-DP may cause antibody-mediated rejection (AMR), especially in re-transplants. We describe the immunization history of a patient who received 3 kidney transplants; the 3rd kidney was completely matched except at DPA1 and DPB1. Prior to the 3rd transplant, single antigen bead analysis (SAB) showed DSA reactivity against DPA1 shared by the 1st and 3rd donors, but B and T flow crossmatch (FXM) results were negative. Within 11 days the 3rd transplant underwent acute C4d+ AMR which coincided with the presence of complement (C1q)-binding IgG1 DSA against donor DPA1 and DPB1. Using HLAMatchmaker and SAB, we provide evidence that eplet (epitope) spreading on DPA1 and eplet sharing on differing DPB1 alleles of the 1st and 3rd transplants was associated with AMR. Since weak DSA to DPA1/DPB1 may induce acute AMR with negative FXM, donor DPA1/DPB1 high resolution typing should be considered in sensitized patients with DP-directed DSA.

  14. Hypersonic Interplanetary Flight: Aero Gravity Assist

    NASA Technical Reports Server (NTRS)

    Bowers, Al; Banks, Dan; Randolph, Jim

    2006-01-01

    The use of aero-gravity assist during hypersonic interplanetary flights is highlighted. Specifically, the use of large versus small planet for gravity asssist maneuvers, aero-gravity assist trajectories, launch opportunities and planetary waverider performance are addressed.

  15. Operating CFDP in the Interplanetary Internet

    NASA Technical Reports Server (NTRS)

    Burleigh, S.

    2002-01-01

    This paper examines the design elements of CCSDS File Delivery Protocol and Interplanetary Internet technologies that will simplify their integration and discusses the resulting new capabilities, such as efficient transmission of large files via multiple relay satellites operating in parallel.

  16. Volatiles in interplanetary dust particles - A review

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K., Jr.

    1992-01-01

    The paper presents a review of the volatiles found within interplanetary dust particles. These particles have been shown to represent primitive material from early in the solar system's formation and also may contain records of stellar processes. The organogenic elements (i.e., H, C, N, O, and S) are among the most abundant elements in our solar system, and their abundances, distributions, and isotopic compositions in early solar system materials permit workers to better understand the processes operating early in the evolutionary history of solar system materials. Interplanetary dust particles have a range of elemental compositions, but generally they have been shown to be similar to carbonaceous chondrites, the solar photosphere, Comet Halley's chondritic cores, and matrix materials of chondritic chondrites. Recovery and analysis of interplanetary dust particles have opened new opportunities for analysis of primitive materials, although interplanetary dust particles represent major challenges to the analyst because of their small size.

  17. Mars Reconnaissance Orbiter Interplanetary Cruise Navigation

    NASA Technical Reports Server (NTRS)

    You, Tung-Han; Graat, Eric; Halsell, Allen; Highsmith, Dolan; Long, Stacia; Bhat, Ram; Demcak, Stuart; Higa, Earl; Mottinger, Neil; Jah, Moriba

    2007-01-01

    Carrying six science instruments and three engineering payloads, the Mars Reconnaissance Orbiter (MRO) is the first mission in a low Mars orbit to characterize the surface, subsurface, and atmospheric properties with unprecedented detail. After a seven-month interplanetary cruise, MRO arrived at Mars executing a 1.0 km/s Mars Orbit Insertion (MOI) maneuver. MRO achieved a 430 km periapsis altitude with the final orbit solution indicating that only 10 km was attributable to navigation prediction error. With the last interplanetary maneuver performed four months before MOI, this was a significant accomplishment. This paper describes the navigation analyses and results during the 210-day interplanetary cruise. As of August 2007 MRO has returned more than 18 Terabits of scientific data in support of the objectives set by the Mars Exploration Program (MEP). The robust and exceptional interplanetary navigation performance paved the way for a successful MRO mission.

  18. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  19. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The facilities, programming system, and monitor and control system for the deep space network are described. Ongoing planetary and interplanetary flight projects are reviewed, along with tracking and ground-based navigation, communications, and network and facility engineering.

  20. New interplanetary proton fluence model

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1990-01-01

    A new predictive engineering model for the interplanetary fluence of protons with above 10 MeV and above 30 MeV is described. The data set used is a combination of observations made from the earth's surface and from above the atmosphere between 1956 and 1963 and observations made from spacecraft in the vicinity of earth between 1963 and 1985. The data cover a time period three times as long as the period used in earlier models. With the use of this data set the distinction between 'ordinary proton events' and 'anomalously large events' made in earlier work disappears. This permitted the use of statistical analysis methods developed for 'ordinary events' on the entire data set. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. At energies above 30 MeV, the old and new models agree. In contrast to earlier models, the results do not depend critically on the fluence from any one event and are independent of sunspot number. Mission probability curves derived from the fluence distribution are presented.

  1. Electron heating at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Zwickl, R. D.

    1982-01-01

    Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures, T/sub e/(d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T/sub e/(d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T/sub p/(d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T/sub e/(d/u) and T/sub p/(d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons relatively more efficiently than they heat the electrons.

  2. Development of partially-coherent wavefront propagation simulation methods for 3rd and 4th generation synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Fluerasu, Andrei; Hulbert, Steve; Idir, Mourad; Kaznatcheev, Konstantine; Shapiro, David; Shen, Qun; Baltser, Jana

    2011-09-01

    Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, is of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using "Synchrotron Radiation Workshop" (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.

  3. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis

    2014-09-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  4. The 3rd Canadian Symposium on Hepatitis C Virus: Expanding care in the interferon-free era

    PubMed Central

    MacParland, Sonya A; Bilodeau, Marc; Grebely, Jason; Bruneau, Julie; Cooper, Curtis; Klein, Marina; Sagan, Selena M; Choucha, Norma; Balfour, Louise; Bialystok, Frank; Krajden, Mel; Raven, Jennifer; Roberts, Eve; Russell, Rodney; Houghton, Michael; Tyrrell, D Lorne; Feld, Jordan J

    2014-01-01

    Hepatitis C virus (HCV) currently infects approximately 250,000 individuals in Canada and causes more years of life lost than any other infectious disease in the country. In August 2011, new therapies were approved by Health Canada that have achieved higher response rates among those treated, but are poorly tolerated. By 2014/2015, short-course, well-tolerated treatments with cure rates >95% will be available. However, treatment uptake is poor due to structural, financial, geographical, cultural and social barriers. As such, ‘Barriers to access to HCV care in Canada’ is a crucial topic that must be addressed to decrease HCV disease burden and potentially eliminate HCV in Canada. Understanding how to better care for HCV-infected individuals requires integration across multiple disciplines including researchers, clinical services and policy makers to address the major populations affected by HCV including people who inject drugs, baby boomers, immigrants and Aboriginal and/or First Nations people. In 2012, the National CIHR Research Training Program in Hepatitis C organized the 1st Canadian Symposium on Hepatitis C Virus (CSHCV) in Montreal, Quebec. The 2nd CSHCV was held in 2013 in Victoria, British Columbia. Both symposia were highly successful, attracting leading international faculty with excellent attendance leading to dialogue and knowledge translation among attendees of diverse backgrounds. The current article summarizes the 3rd CSHCV, held February 2014, in Toronto, Ontario. PMID:25314353

  5. From bottom to top: Identification to precision measurement of 3rd-generation quarks with the atlas detector

    NASA Astrophysics Data System (ADS)

    Sapp, Kevin

    The 3rd-generation quarks, bottom ( b) and top (t), are recent additions to the Standard Model of particle physics, and precise characterization of their properties have important implications to searching for new physics phenomena. This thesis presents two analyses which use 4.6 fb-1 of pp collision data at √s = 7 TeV collected by the ATLAS detector at the Large Hadron Collider (LHC) to measure their properties. The first is an analysis which measures our ability to identify jets originating from b quarks with machine-learning algorithms applied to simulated and real data, so the result in simulation can be corrected to match that in data. This measurement has implications for our ability to identify processes with b quarks in their final state; t quarks decay to a b quark and a weak vector boson W more than 99% of the time. The second analysis presented measures properties of the t → Wb decay channel associated with phenomena not predicted by the Standard Model, through a set of effective couplings which preserve Lorentz covariance. The kinematic information of the final-state particles is used to construct an event-specific coordinate system, and probability density is estimated as a function of solid angle in these coordinates. A parameterization of the effective couplings is extracted via a novel unfolding method, finding their values consistent with the Standard Model expectation, contributing the first measurement of the correlation between the parameters, and improving on previous limits.

  6. Altered differential hemocyte count in 3rd instar larvae of Drosophila melanogaster as a response to chronic exposure of Acephate

    PubMed Central

    Rajak, Prem; Dutta, Moumita

    2015-01-01

    Acephate, an organophosphate (OP) pesticide, was used to investigate the effects of its chronic exposure on hemocyte abundance in a non-target dipteran insect Drosophila melanogaster. For this purpose, six graded concentrations ranging from 1 to 6 μg/ml were selected, which are below the reported residual values (up to 14 μg/ml) of the chemical. 1st instar larvae were fed with these concentrations up to the 3rd instar stage and accordingly hemolymph smears from these larvae were prepared for differential hemocyte count. Three types of cells are found in Drosophila hemolymph, namely, plasmatocytes, lamellocytes and crystal cells. Plasmatocyte count was found to decrease with successive increase in treatment concentrations. Crystal cells showed an increasing trend in their number. Though the number of lamellocytes was very low, a bimodal response was noticed. Lamellocyte number was found to increase with the initial three concentrations, followed by a dose dependent reduction in their number. As hemocytes are directly linked to the immune system of fruit flies, fluctuations in normal titer of these cells may affect insect immunity. Hemocytes share homologies in their origin and mode of action with the immune cells of higher organisms including man. Thus the present findings suggest that immune cells of humans and other organisms may be affected adversely under chronic exposure to Acephate. PMID:27486365

  7. Organizational Support for the 3rd Summer Institute on Complex Plasmas, July 30 – August 8, 2012

    SciTech Connect

    Lopez, Jose L.

    2012-07-01

    This grant provided partial funds for American graduate students to attend the 3rd Graduate Summer Institute on Complex Plasmas, which was held from July 30 to August 8, 2012 at Seton Hall University in South Orange, New Jersey. The Graduate Summer Institute is a topical series of instructional workshops held bi-annually on the emerging field of complex plasmas that is jointly organized through a collaboration between American and German-European Union plasmas researchers. This specialized program brings together many of the world's leading researchers in the specialized area of complex plasmas, who freely provide instructional lectures and tutorials on the most recent research and discoveries done in this branch of plasma science. The partial funds provided by this grant helped support the travel and accommodation expenses of the participating American students and tutorial instructors. Partial funds further supported the travel and accommodation of three renown American plasma researchers that provided educational tutorials to the thirty-eight participating students from the United States, Europe, and Asia. The organized program afforded a unique opportunity for the participating American graduate students to learn about and engage more deeply in an area of plasma science that is not studied in any of the graduate educational curriculums provided by universities in the United States of America. The educational experience offered by this program provided the necessary knowledge needed by future American plasma researchers to keep the national plasma research effort on the cutting-edge and keep the national plasma community as a global leader.

  8. The Relationship between Perceived and Ideal Body Size and Body Mass Index in 3rd-Grade Low Socioeconomic Hispanic Children

    ERIC Educational Resources Information Center

    Fisher, Allison; Lange, Mary Anne; Young-Cureton, Virginia; Canham, Daryl

    2005-01-01

    Very little is known about body satisfaction among minority children. This study examined the relationship between perceived and actual body size and Body Mass Index among 43 low-socioeconomic Hispanic 3rd-graders. Researchers measured participants' Body Mass Index; students self-reported Perceived Ideal Self Image and Perceived Actual Self Image…

  9. Midwest Child-Parent Center (CPC) PreK-3rd Grade School Reform Model: Impacts on Child and Family Outcomes over Time

    ERIC Educational Resources Information Center

    Gaylor, Erika; Spiker, Donna; Wei, Xin; Lease, Erin; Reynolds, Arthur

    2015-01-01

    This presentation reports on the goals and preliminary outcomes of the Child-Parent Centers (CPC) Expansion Project, which is a PreK to 3rd grade school reform model aimed at improving the short- and long-term outcomes of participating children and families. The model provides continuous education and family support services to schools serving a…

  10. PREFACE: Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Granados, Xavier; Sánchez, Àlvar; López-López, Josep

    2012-10-01

    The development of superconducting applications and superconducting engineering requires the support of consistent tools which can provide models for obtaining a good understanding of the behaviour of the systems and predict novel features. These models aim to compute the behaviour of the superconducting systems, design superconducting devices and systems, and understand and test the behavior of the superconducting parts. 50 years ago, in 1962, Charles Bean provided the superconducting community with a model efficient enough to allow the computation of the response of a superconductor to external magnetic fields and currents flowing through in an understandable way: the so called critical-state model. Since then, in addition to the pioneering critical-state approach, other tools have been devised for designing operative superconducting systems, allowing integration of the superconducting design in nearly standard electromagnetic computer-aided design systems by modelling the superconducting parts with consideration of time-dependent processes. In April 2012, Barcelona hosted the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors (HTS), the third in a series of workshops started in Lausanne in 2010 and followed by Cambridge in 2011. The workshop reflected the state-of-the-art and the new initiatives of HTS modelling, considering mathematical, physical and technological aspects within a wide and interdisciplinary scope. Superconductor Science and Technology is now publishing a selection of papers from the workshop which have been selected for their high quality. The selection comprises seven papers covering mathematical, physical and technological topics which contribute to an improvement in the development of procedures, understanding of phenomena and development of applications. We hope that they provide a perspective on the relevance and growth that the modelling of HTS superconductors has achieved in the past 25 years.

  11. Interplanetary medium data book, supplement, 1975 - 1978

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1979-01-01

    Since the issurance of the Interplanetary Medium Data Book (NSSDC/WDC-A-R&S 77-04, 1977) which contains plots and listings of hourly average interplanetary field and plasma parameters covering the period November 27, 1963 through December 30, 1975, additional data are available which fill some 1975 data gaps and which extend the data coverage well into 1978. This supplement contains all the presently available data for the years 1975-1978, Interplanetary magnetic field (IMF) data are from the IMP 8 triaxial fluxgate magnetometer experiment. Derived plasma parameters are form the IMP 7 and IMP 8 instruments. Some of the early 1975 IMF data are from a HEOS 1 experiment.

  12. International Launch Vehicle Selection for Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  13. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  14. Interplanetary Space Weather and Its Planetary Connection

    NASA Astrophysics Data System (ADS)

    Crosby, Norma; Bothmer, Volker; Facius, Rainer; Grießmeier, Jean-Mathias; Moussas, Xenophon; Panasyuk, Mikhail; Romanova, Natalia; Withers, Paul

    2008-01-01

    Interplanetary travel is not just a science fiction scenario anymore, but a goal as realistic as when our ancestors started to cross the oceans. With curiosity driving humans to visit other planets in our solar system, the understanding of interplanetary space weather is a vital subject today, particularly because the physical conditions faced during a space vehicle's transit to its targeted solar system object are crucial to a mission's success and vital to the health and safety of spacecraft crew, especially when scheduling planned extravehicular activities.

  15. Mars Science Laboratory Interplanetary Navigation Performance

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Kruizinga, Gerhard; Wong, Mau

    2013-01-01

    The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission.

  16. When should orthostatic blood pressure changes be evaluated in elderly: 1st, 3rd or 5th minute?

    PubMed

    Soysal, Pinar; Aydin, Ali Ekrem; Koc Okudur, Saadet; Isik, Ahmet Turan

    2016-01-01

    Detection of orthostatic hypotension (OH) is very important in geriatric practice, since OH is associated with mortality, ischemic stroke, falls, cognitive failure and depression. It was aimed to determine the most appropriate time for measuring blood pressure in transition from supine to upright position in order to diagnose OH in elderly. Comprehensive geriatric assessment (CGA) including Head up Tilt Table (HUT) test was performed in 407 geriatric patients. Orthostatic changes were assessed separately for the 1st, 3rd and 5th minutes (HUT1, HUT3 and HUT5, respectively) taking the data in supine position as the basis. The mean age, recurrent falls, presence of dementia and Parkinson's disease, number of drugs, alpha-blocker and anti-dementia drug use, and fasting blood glucose levels were significantly higher in the patients with versus without OH; whereas, albumin and 25-hydroxy vitamin D levels were significantly lower (p<0.05). However, different from HUT3 and HUT5, Charlson Comorbidity Index and the prevalence of diabetes mellitus were higher, the use of antidiabetics, antipsychotics, benzodiazepine, opioid and levodopa were more common (p<0.05). Statistical significance of the number of drugs and fasting blood glucose level was prominent in HUT1 as compared to HUT3 (p<0.01, p<0.05). Comparison of the patients that had OH only in HUT1, HUT3or HUT5 revealed no difference in terms of CGA parameters. These results suggests that orthostatic blood pressure changes determined at the 1st minute might be more important for geriatric practice. Moreover, 1st minute measurement might be more convenient in the elderly as it requires shorter time in practice.

  17. Differences in risk factors for 2nd and 3rd degree hypospadias in the National Birth Defects Prevention Study

    PubMed Central

    in 't Woud, Sander Groen; van Rooij, Iris A.L.M.; van Gelder, Marleen M.H.J.; Olney, Richard S.; Carmichael, Suzan L.; Roeleveld, Nel; Reefhuis, Jennita

    2015-01-01

    Background Hypospadias is a frequent birth defect with three phenotypic subtypes. With data from the National Birth Defects Prevention Study, a large, multi-state, population-based, case-control study, we compared risk factors for second and third degree hypospadias. Methods A wide variety of data on maternal and pregnancy-related risk factors for isolated second and third degree hypospadias was collected via computer-assisted telephone interviews to identify potential etiological differences between the two phenotypes. Logistic regression was used to calculate odds ratios including a random effect by study center. Results In total, 1547 second degree cases, 389 third degree cases, and 5183 male controls were included in our study. Third degree cases were more likely to have a non-Hispanic black or Asian/Pacific Islander mother, be delivered preterm, have a low birth weight, be small for gestational age, and be conceived with fertility treatments than second degree cases and controls. Associations with both second and third degree hypospadias were observed for maternal age, family history, parity, plurality, and hypertension during pregnancy. Risk estimates were generally higher for third degree hypospadias except for family history. Conclusions Most risk factors were associated with both or neither phenotype. Therefore, it is likely that the underlying mechanism is at least partly similar for both phenotypes. However, some associations were different between 2nd and 3rd degree hypospadias, and went in opposite directions for second and third degree hypospadias for Asian/Pacific Islander mothers. Effect estimates for subtypes of hypospadias may be over- or underestimated in studies without stratification by phenotype. PMID:25181604

  18. [Level of smoking of 3rd and 4th grade students studying health and related factors: follow-up study].

    PubMed

    Göktalay, Tuğba; Cengiz Özyurt, Beyhan; Sakar Coşkun, Ayşin; Celik, Pinar

    2011-01-01

    The levels of smoking of 1st and 2nd year students at Faculty of Medicine and Manisa School of Health at Celal Bayar University were investigated in 2006-2007. This study is carried out in order to see if there is a change in the same students' level of smoking while they are in 3rd and 4th year. In addition, the study aimed to examine the factors affecting the level of use and attitudes towards the law effectuated in July 19, 2009. This is a follow-up study with 80.42% return rate. A 26-item structured questionnaire was administered. The participants filled out the questionnaires under supervision of the researchers in their classrooms. The University Institutional Review Board approved the study. The total of participants (263) of the follow-up study included 189 female and 74 male. The rate of experimenting with smoking was 49% with the mean age of 15.7 (SD= 4.01 years). The mean age of experimenting with smoking was the earliest on male students studying at faculty of medicine. The level of smoking was found to be the most on females, studying at faculty of medicine and staying at the dormitory, with smoking parents (p< 0.05). The most important reason to begin smoking was curiosity (55.2%) while bad breath and yellowing of teeth were the reasons to quit (91.7%). 83.3% of the students thought that the law will be effective on quit smoking. The level of both experimenting and use of smoking has been increased over time. It is suggested that medical students' awareness about the danger of smoking should be raised at earlier grades. In addition, lectures should be offered to students at School of Health and they should be encouraged to unite in order to fight with smoking.

  19. The interplanetary pioneers. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1972-01-01

    The Pioneer Space Probe Project is explained to document the events which occurred during the project. The subjects discussed are: (1) origin and history of interplanetary Pioneer program, (2) Pioneer system development and design, (3) Pioneer flight operations, and (4) Pioneer scientific results. Line drawings, circuit diagrams, illustrations, and photographs are included to augment the written material.

  20. Interplanetary monitoring platform engineering history and achievements

    NASA Technical Reports Server (NTRS)

    Butler, P. M.

    1980-01-01

    In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.

  1. Interplanetary shocks preceded by solar filament eruptions

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Kahler, S. W.; Sheeley, N. R., Jr.

    1986-01-01

    The solar and interplanetary characteristics of six interplanetary shock and energetic particle events associated with the eruptions of solar filaments lying outside active regions are discussed. The events are characterized by the familiar double-ribbon H-alpha brightenings observed with large flares, but only very weak soft X-ray and microwave bursts. Both impulsive phases and metric type II bursts are absent in all six events. The energetic particles observed near the earth appear to be accelerated predominantly in the interplanetary shocks. The interplanetary shock speeds are lower and the longitudinal extents considerably less than those of flare-associated shocks. Three of the events were associated with unusual enhancements of singly-ionized helium in the solar wind following the shocks. These enhancements appear to be direct detections of the cool filament material expelled from the corona. It is suggested that these events are part of a spectrum of solar eruptive events which include both weaker events and the large flares. Despite their unimpressive and unreported solar signatures, the quiescent filament eruptions can result in substantial space and geophysical disturbances.

  2. Hummingbird: Dramatically Reducing Interplanetary Mission Cost

    NASA Astrophysics Data System (ADS)

    Wertz, J. R.; Van Allen, R. E.; Sarzi-Amade, N.; Shao, A.; Taylor, C.

    2012-06-01

    The Hummingbird interplanetary spacecraft has an available delta V of 2 to 4 km/sec and a recurring cost of 2 to 3 million, depending on the payload and configuration. The baseline telescope has a resolution of 30 cm at a distance of 100 km.

  3. PREFACE: 3rd International Conference on Geological, Geographical, Aerospace and Earth Science 2015 (AeroEarth 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2016-02-01

    The 3rd International Conferences on Geological, Geographical, Aerospaces and Earth Sciences 2015 (AeroEarth 2015), was held at The DoubleTree Hilton, Jakarta, Indonesia during 26 - 27 September 2015. The 1st AeoroEarth was held succefully in Jakarta in 2013. The success continued to The 2nd AeroEarth 2014 that was held in Kuta Bali, Indonesia. The publications were published by EES IOP in http://iopscience.iop.org/1755-1315/19/1 and http://iopscience.iop.org/1755-1315/23/1 respectively. The AeroEarth 2015 conference aims to bring together researchers, engineers and scientists from around the world. Through research and development, Earth's scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. The theme of AeroEarth 2015 is ''Earth and Aerospace Sciences : Challenges and Opportunities'' Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 78 papers and after rigorous review, 18 papers were accepted. The participants

  4. Effect on Physical Activity of a Randomized Afterschool Intervention for Inner City Children in 3rd to 5th Grade

    PubMed Central

    Crouter, Scott E.; de Ferranti, Sarah D.; Whiteley, Jessica; Steltz, Sarah K.; Osganian, Stavroula K.; Feldman, Henry A.; Hayman, Laura L.

    2015-01-01

    Background Less than 45% of U.S. children meet the 60 min.d-1 physical activity (PA) guideline. Structured after-school PA programing is one approach to help increase activity levels. This study aimed to evaluate the feasibility and short-term impact of a supervised after-school PA and nutrition education program on activity levels. Methods Forty-two 3rd-5th graders from an inner-city school in Boston, MA were randomly assigned to a 10-wk after-school program of either: 1) weekly nutrition education, or 2) weekly nutrition education plus supervised PA 3 d.wk-1 at a community-based center. At baseline and follow-up, PA was measured using accelerometry and fitness (VO2max) was estimated using the PACER 15-m shuttle run. Additional measures obtained were non-fasting finger stick total cholesterol (TC) and glucose levels, waist circumference (WC), body mass index (BMI), percent body fat (%BF), and blood pressure (BP). Values are presented as mean±SE, unless noted otherwise. Results Thirty-six participants completed the study (mean±SD; age 9.7±0.9 years). Participants attended >80% of the sessions. After adjusting for accelerometer wear time and other design factors, light and moderate-to-vigorous PA (MVPA) increased in the nutrition+PA group (+21.5±14.5 and +8.6±8.0 min.d-1, respectively) and decreased in the nutrition only group (-35.2±16.3 and -16.0±9.0 min.d-1, respectively); mean difference between groups of 56.8±21.7 min.d-1 (light PA, p = 0.01) and 24.5±12.0 min.d-1 (MVPA, p = 0.04). Time spent in sedentary behaviors declined in the nutrition+PA group (-14.8±20.7 min.d-1) and increased in the nutrition only group (+55.4±23.2 min.d-1); mean difference between groups of -70.2±30.9 min.d-1 (p = 0.02). Neither group showed changes in TC, BP, WC, %BF, BMI percentile, or fitness (p>0.05). Conclusions The supervised afterschool community-based nutrition and PA program was well accepted and had high attendance. The changes in light PA and MVPA has potential

  5. In vitro cultivation of Hysterothylacium aduncum (Nematoda: Anisakidae) from 3rd-stage larvae to egg-laying adults.

    PubMed

    Iglesias, L; Valero, A; Gálvez, L; Benítez, R; Adroher, F J

    2002-11-01

    This is the first demonstration of the in vitro development of the 3rd-stage larvae (L3) of Hysterothylacium aduncum to the adult. This was achieved in a semi-defined medium that is easy to prepare and to reproduce. The L3, collected from the peritoneal cavity of horse mackerel (Trachurus trachurus), were individually inoculated into RPMI-1640 medium +20% heat-inactivated fetal bovine serum (IFBS). It has been demonstrated that the optimum temperature for development is around 13 degrees C and is stimulated by the presence of 5% CO2 in the growth atmosphere, increasing the percentage moulting to the 4th larval stage (L4) by 1.9-fold (from 44 to 82%) and the average survival of the nematodes by 1.6 times (from 60 to 96 days). When the larvae were grown at different pHs, optimum development occurred at pH 4.0. Under these conditions, all the larvae moulted to the L4 and more than two-thirds transformed to the adult stage--in which 25-30% of the females laid eggs--and reached an average survival of over 4 months. When this medium was supplemented with 1% (w/v) of commercial pepsin, all the larvae reached the adult stage, at least 45% of the females oviposited, laying around 12-fold more eggs per female than in the medium without pepsin. The mean size of the eggs (non-fertilized) obtained was 56.8 x 47.6 microm. The mean length of the adult males obtained was between 3.2 and 5.2 cm and the females were between 3.0 and 6.5 cm. The adult specimens were morphologically identified as Hysterothylacium aducum aduncum. This culture medium (RPMI-1640+20% (v/v) IFBS+1 commercial pepsin, at pH 4.0, 13 degrees C and 5% CO2 in air) could facilitate the identification of at least some of the larvae of the genus Hysterothylacium--and perhaps other anisakids--for which the specific identification and the biological study of these parasites is often difficult.

  6. PREFACE: 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2015-06-01

    The 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015), was held at The Westin Resort Nusa Dua, Bali on 31 January - 1 February 2015. The ScieTech 2015 conference is aimed to bring together researchers, engineers and scientists from around the world. ScieTech 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics. As we already know that science and technology have brought tremendous benefits for human civilization. People are becoming healthier, wealthier, better educated, more peaceful, increasingly connected, and living longer. Of course, science and technology provide many answers to global challenges, but we will face more complex problems in the next decade due to increasing world population, limitation of energy, and climate change. Therefore, researchers should be more active in conducting research that enables collaboration between one and the others. Interdisciplinary cooperation is absolutely necessary in order to create a smart system for solving the global problems. We need a global and general long-term view of the future with long-range goals for solving complex problems in next decade. Therefore the conference was held to be a forum for researchers from different disciplines to start collaborating and conducting research that provides a solution to the global issues. The theme of ScieTech 2015 was ''The interdisciplinary Application between Mathematics, Chemistry and Physics to enhance the Quality of Life''. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting conference program as well as the invited and plenary speakers. This year, we received 197 papers and after rigorous review, 59 papers were accepted. The participants came from 19

  7. A Low Distortion 3rd-Order Continuous-Time Delta-Sigma Modulator for a Worldwide Digital TV-Receiver

    NASA Astrophysics Data System (ADS)

    Obata, Koji; Matsukawa, Kazuo; Mitani, Yosuke; Takayama, Masao; Tokunaga, Yusuke; Sakiyama, Shiro; Dosho, Shiro

    This paper presents a low distortion 3rd-order continuous-time delta-sigma modulator for a worldwide digital TV-receiver whose peak SNDR is 69.8dB and SNR is 70.2dB under 1V power supply. To enhance SNDR performance, the mechanisms to occur harmonic distortions at feedback current-steering DAC and flash ADC have been analyzed. A low power tuning system using RC-relaxation oscillator has been developed in order to achieve high yield against PVT variations. A 3rd-order modulator with modified single opamp resonator contributes to cost reduction by realizing a very compact circuit. Reduction schemes of the distortions enabled the modulator to achieve FOM of 0.18pJ/conv-step.

  8. The temperature field and heat transfer in the porthole of the Space Shuttle - Outer surface under the 3rd kind nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Tan, Heping; Yu, Qizheng; Zhang, Jizhou

    In this paper, the transient combined heat transfer in the silicon glass porthole of Space Shuttle is studied by control volume method, ray tracing method and spectral band model. The temperature field in the silicon glass and heat flux entering the space cabin are given under the 3rd kind nonlinear boundary condition. The computational results show, if the radiation in the silicon glass is omitted, the errors for temperature fields are not too evident, but for heat flux are quite large.

  9. Internet Librarian '99. Proceedings of the Internet Librarian Conference (3rd, San Diego, California, November 8-10, 1999).

    ERIC Educational Resources Information Center

    Nixon, Carol, Comp.; Burmood, Jennifer, Comp.

    These Proceedings of the Third Internet Librarian Conference include the following papers: (1) "Networking the Network: What Information Technology Fluency Can Do for You" (Jose Aguinaga, Kitty Little, and C.D. McLean); (2) "Moving Out of HTML into Database Solutions for the Web" (Kristin Antelman); (3) "Creating Your Own…

  10. Tin in a chondritic interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1989-01-01

    Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.

  11. Earth orbital operations supporting manned interplanetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.

    1989-01-01

    The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.

  12. Tin in a chondritic interplanetary dust particle

    SciTech Connect

    Rietmeijer, F.J.M. )

    1989-03-01

    Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn{sub 2}O{sub 3} and Sn{sub 3}O{sub 4}. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust. 27 refs.

  13. Preliminary performance analysis of an interplanetary navigation system using asteroid based beacons

    NASA Technical Reports Server (NTRS)

    Jee, J. Rodney; Khatib, Ahmad R.; Muellerschoen, Ronald J.; Williams, Bobby G.; Vincent, Mark A.

    1988-01-01

    A futuristic interplanetary navigation system using transmitters placed on selected asteroids is introduced. This network of space beacons is seen as a needed alternative to the overly burdened Deep Space Network. Covariance analyses on the potential performance of these space beacons located on a candidate constellation of eight real asteroids are initiated. Simplified analytic calculations are performed to determine limiting accuracies attainable with the network for geometric positioning. More sophisticated computer simulations are also performed to determine potential accuracies using long arcs of range and Doppler data from the beacons. The results from these computations show promise for this navigation system.

  14. Interplanetary shocks and solar wind extremes

    NASA Astrophysics Data System (ADS)

    Vats, Hari

    The interplanetary shocks have a very high correlation with the annual sunspot numbers during the solar cycle; however the correlation falls very low on shorter time scale. Thus poses questions and difficulty in the predictability. Space weather is largely controlled by these interplanetary shocks, solar energetic events and the extremes of solar wind. In fact most of the solar wind extremes are related to the solar energetic phenomena. It is quite well understood that the energetic events like flares, filament eruptions etc. occurring on the Sun produce high speed extremes both in terms of density and speed. There is also high speed solar wind steams associated with the coronal holes mainly because the magnetic field lines are open there and the solar plasma finds it easy to escape from there. These are relatively tenuous high speed streams and hence create low intensity geomagnetic storms of higher duration. The solar flares and/or filament eruptions usually release excess coronal mass into the interplanetary medium and thus these energetic events send out high density and high speed solar wind which statistically found to produce more intense storms. The other extremes of solar wind are those in which density and speed are much lower than the normal values. Several such events have been observed and are found to produce space weather consequences of different kind. It is found that such extremes are more common around the maximum of solar cycle 20 and 23. Most of these have significantly low Alfven Mach number. This article is intended to outline the interplanetary and geomagnetic consequences of observed by ground based and satellite systems for the solar wind extremes.

  15. Dusty Plasma Effects in the Interplanetary Medium?

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Belheouane, Soraya

    Cosmic dust particles exist in a variety of compositions and sizes in the interplanetary medium. There is little direct information on the composition, but those interplanetary dust particles that are collected in the upper Earth’s atmosphere and can be studied in the laboratory typically have an irregular, sometimes porous structure on scales <100 nm. They contain magnesium-rich silicates and silicon carbide, iron-nickel and iron-sulfur compounds, calcium- and aluminum oxides, and chemical compounds that contain a large mass fraction of carbon (e.g. carbonaceous species). A fraction of the dust originates from comets, but because of their bulk material temperature of about 280 K near 1 AU, most icy compounds have disappeared. The dust particles are embedded in the solar wind, a hot plasma with at 1 AU kinetic temperatures around 100 000 K and flow direction nearly radial outward from the Sun at supersonic bulk velocities around 400 km/s. Since the dust particles carry an electric surface charge they are subject to electromagnetic forces and the nanodust particles are efficiently accelerated to velocities of order of solar wind speed. The acceleration of the nanodust is similar, but not identical to the formation of pick-up ions. The S/WAVES radio wave instrument on STEREO measured a flux of nanodust at 1 AU [1]. The nanodust probably forms in the region inward of 1 AU and is accelerated by the solar wind as discussed. We also discuss the different paths of dust - plasma interactions in the interplanetary medium and their observations with space experiments. Comparing these interactions we show that the interplanetary medium near 1 AU can in many cases be described as “dust in plasma" rather than "dusty plasma”. [1] S. Belheouane, N. Meyer-Vernet, K. Issautier, G. Le Chat, A. Zaslavsky, Y. Zouganelis, I. Mann, A. Czechowski: Dynamics of nanoparticles detected at 1 AU by S/WAVES onboard STEREO spacecraft, in this session.

  16. Storm Sudden Commencements Without Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Park, Wooyeon; Lee, Jeongwoo; Yi, Yu; Ssessanga, Nicholas; Oh, Suyeon

    2015-09-01

    Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism ? Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than ?30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.

  17. Interplanetary causes of middle latitude ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Verkhoglyadova, Olga P.

    The solar and interplanetary causes of major middle latitude ionospheric disturbances are reviewed. Solar flare photons can cause abrupt (within ˜5 min), 30% increases in ionospheric total electron content, a feature that can last for tens of minutes to hours, depending on the altitude of concern. Fast interplanetary coronal mass ejection sheath fields and magnetic clouds can cause intense magnetic storms if the field in either region is intensely southward for several hours or more. If the field conditions in both regions are southward, "double storms" will occur. Multiple interplanetary fast forward shocks "pump up" the sheath magnetic field, leading to conditions that can lead to superstorms. Magnetic storm auroral precipitation and Joule heating cause pressure waves that propagate from subauroral latitudes to middle and equatorial latitudes. Shocks can create middle latitude dayside auroras as well as trigger nightside subauroral supersubstorms. Solar wind ram pressure increases after fast shocks can lead to the formation of new radiation belts under proper conditions. Prompt penetration electric fields can cause a dayside ionospheric superfountain, leading to plasma transport from the equatorial region to middle latitudes. The large amplitude Alfvén waves present in solar wind high-speed streams cause sporadic magnetic reconnection, plasma injections, and electromagnetic chorus wave generation. Energetic electrons interacting with chorus (and PC5) waves are accelerated to hundreds of keV up to MeV energies.

  18. Discovery of nuclear tracks in interplanetary dust

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Brownlee, D. E.

    1984-01-01

    Prior to capture by the Earth's atmosphere individual interplanetary dust particles (IDP's) have allegedly spent up to 10 to the 5th power years as discrete bodies within the interplanetary medium. Observation of tracks in IDP's in the form of solar flare tracks would provide hitherto unknown data about micrometeorites such as: (1) whether an IDP existed in space as an individual particle or as part of a larger meteroid; (2) the degree to which a particle was heated during the trauma of atmospheric entry; (3) residence time of an IDP within the interplanetary medium; and (4) possible hints as to the pre-accretional exposure of component mineral grains to solar or galactic irradiation. Using transmission electron microscopy tracks in several micrometeorites have been successfully identified. All of the studied particles had been retrieved from the stratosphere by U-2 aircraft. Three pristine IDP's (between 5 and 15 micro m diameter) have so far been searched for solar flare tracks, and they have been found in the two smaller particles U2-20B11 (11 micro m) and U2-20B37 (8 micro m).

  19. Coronal and interplanetary magnetic field models

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    1999-06-01

    We provide an historical perspective of coronal and interplanetary field models. The structure of the interplanetary medium is controlled by the coronal magnetic field from which the solar wind emanates. This field has been described with ``Source Surface'' (SS) and ``Heliospheric Current Sheet'' (HCS) models. The ``Source Surface'' model was the first to open the solar field into interplanetary space using volumetric coronal currents, which were a ``source'' for the IMF. The Heliospheric Current Sheet (HCS) model provided a more physically realistic solution. The field structure was primarily a dipole, however, without regard to sign, the shape appeared to be a monopole pattern (uniform field stress). Ulysses has observed this behavior. Recently, Sheeley and Wang have utilized the HCS field model to calculate solar wind structures fairly accurately. Fisk, Schwadron, and Zurbuchen have investigated small differences from the SS model. These differences allow field line motions reminiscent of a ``timeline'' or moving ``streakline'' in a flow field, similar to the smoke pattern generated by a skywriting plane. Differences exist in the magnetic field geometry, from the Parker ``garden hose'' model affecting both the ``winding angle'' as well as the amount of latitudinal ``wandering.''

  20. Manned interplanetary missions: prospective medical problems.

    PubMed

    Grigoriev, A I; Svetaylo, E N; Egorov, A D

    1998-12-01

    The present review aimed to suggest approaches to prospective medical problems related to the health maintenance of space crews during future manned interplanetary, particularly Martian, missions up to 2-3 years with a possible stay on a planet with gravity different from that on Earth. The approaches are based on knowledge so far obtained from our analysis of the medical support of long-term orbital flights up to one year, as well as on the consideration of specific conditions of interplanetary missions. These specific conditions include not only long-term exposure to microgravity, but also a prolonged stay of unpredictable duration (2-3 years) on board a spacecraft or on a planet without direct contact with Earth, and living in a team with a risk of psychological incompatibility and the impossibility of an urgent return to Earth. These conditions necessitate a highly trained medical person in the crew, diagnostic tools and equipment, psychophysiological support, countermeasures, as well as the means for urgent, including surgical, treatment on board a spacecraft or on a planet. In this review, the discussion was focused on the following predictable medical problems during an interplanetary mission; 1) unfavorable effects of prolonged exposure to microgravity, 2) specific problems related to Martian missions, 3) medical monitoring, 4) countermeasures, 5) psychophysiological support and 6) the medical care system.

  1. Remote radio tracking of interplanetary CMEs

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Kaiser, M. L.; Fainberg, J.; Bougeret, J.-L.; Stone, R. G.

    1997-01-01

    Two examples of type 2 radio emissions associated with the propagation of earth-directed coronal mass ejections (CMEs) through the interplanetary medium are illustrated and compared. The two type 2 radio events were observed by WIND/WAVES in January and May of 1997 and exhibit very different radio characteristics. The analyses presented here use the novel approach of presenting the radio data as a function of the inverse of the frequency and time, which facilitates remote radio tracking of the CME through the interplanetary medium. It is demonstrated unequivocally that for the May 1997 event, the radio emissions were generated at the fundamental, and harmonic of the plasma frequency in the ambient plasma upstream of the CME-driven shock. For the January 1997 event, evidence is presented that some of the radio emissions were generated while the CME-driven shock passed through a corotating interaction region (CIR). This is the first time that type 2 radio emissions were shown to originate in a specific interplanetary structure.

  2. Integrated shielding systems for manned interplanetary spaceflight

    NASA Astrophysics Data System (ADS)

    George, Jeffrey A.

    1992-01-01

    The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.

  3. Contributions to global earth sciences integration. A special issue on the 3rd Young Earth Scientists Congress

    NASA Astrophysics Data System (ADS)

    Cónsole-Gonella, Carlos; Yidana, Sandow Mark

    2016-10-01

    The Young Earth Scientists (YES) Network is an association of early-career geoscientists who are primarily under the age of 35 years from universities, geoscience organizations and companies from across the world (http://www.networkyes.org)

  4. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Friis-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    In order to infer the interplanetary sector polarity from polar geomagnetic field diurnal variations, measurements were carried out at Godhavn and Thule (Denmark) Geomagnetic Observatories. The inferred interplanetary sector polarity was compared with the polarity observed at the same time by Explorer 33 and 35 magnetometers. It is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar cap geomagnetic fields.

  5. UNISIST Working Group on Technology of Systems Interconnection. Meeting (3rd, Quezon City, Philippines, October 17-20, 1983).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Paris (France). General Information Programme.

    Participants in the meeting summarized in this report advised and made recommendations on appropriate activities and programs conducive to the development of cooperative networks and the exchange of information and experience in science and technology in the Asia Pacific Region. Invited in their personal capacity as experts, the 14 participants…

  6. Proceedings 3rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems (FAABS-III)

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael (Editor); Rash, James (Editor); Truszkowski, Walt (Editor); Rouff, Christopher (Editor)

    2004-01-01

    These preceedings contain 18 papers and 4 poster presentation, covering topics such as: multi-agent systems, agent-based control, formalism, norms, as well as physical and biological models of agent-based systems. Some applications presented in the proceedings include systems analysis, software engineering, computer networks and robot control.

  7. High resolution three-dimensional (256 to the 3rd) spatio-temporal measurements of the conserved scalar field in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Dahm, Werner J. A.; Buch, Kenneth A.

    Results from highly resolved three-dimensional spatio-temporal measurements of the conserved scalar field zeta(x,t) in a turbulent shear flow. Each of these experiments consists of 256 to the 3rd individual point measurements of the local instantaneous conserved scalar value in the flow. The spatial and temporal resolution of these measurements reach beyond the local Kolmogorov scale and resolve the local strain-limited molecular diffusion scale in the flow. The results clearly show molecular mixing occurring in thin strained laminar diffusion layers in a turbulent flow.

  8. Efficacy studies of Vectobac 12as and Teknar HP-D larvicides against 3rd-instar Ochlerotatus taeniorhynchus and Culex quinquefasciatus in small plot field studies.

    PubMed

    Floore, T G; Petersen, J L; Shaffer, K R

    2004-12-01

    Efficacy studies were conducted with VectoBac 12AS and Teknar HP-D larvicides against 3rd-instar Ochlerotatus taeniorhynchus and Culex quinquefasciatus in small field test plots. The products were obtained off the shelf from distributors and had different lot numbers. They were evaluated over a 2-year period in spring 2002 and 2003. Application rates were 0.29, 0.58, and 1.10 liter/ha and evaluations were made 24 and 48 h after treatment. Both products performed well in these studies, with VectoBac 12AS being more effective at the 0.29 liter/ha rate.

  9. Polarization of the Interplanetary Dust Medium

    NASA Astrophysics Data System (ADS)

    Lasue, J.; Levasseur-Regourd, A. C.; Hadamcik, E.

    2015-12-01

    The interplanetary dust cloud is visible through its scattered light (the zodiacal light) at visible wavelengths. Brightness observations lead to equilibrium temperature and albedo of the particles and their variation as a function of the heliocentric distance. The light scattered by this optically thin medium is linearly polarized with negative values of the degree of linear polarization, PQ, in the backscattering region. We will review the zodiacal light photopolarimetric observations from the whole line-of-sight integrated values to the local values retrieved by inversion. Whenever available, the local PQ variation as a function of the phase angle presents a phase curve with a small negative branch and large positive branch similar to comets or asteroids. PQ does not seem to show a wavelength variation. The maximum of polarization decreases with decreasing heliocentric distance. A circular polarization signal may be present in parts of the sky. Both numerical simulations and laboratory experiments of light scattering by irregular particles have been performed to constrain the interplanetary dust properties based on their polarimetric signature. These studies indicate that mixtures of low-absorption (Mg-silicates) and high-absorption (carbonaceous) particles can explain the intensity and polarimetric observations of the zodiacal cloud. The variations with the heliocentric distance may be due to decreasing carbonaceous content of the dust cloud. Such models would favor a significant proportion of aggregates and absorbing particles in the interplanetary dust medium, indicative of a major cometary dust contribution. The exact origin (asteroidal, cometary, interstellar) and physical properties of the dust particles contributing to the zodiacal cloud is still debated and will be more constrained with future observations. New high-resolution systems will monitor the zodiacal light from the ground and new results are expected from upcoming space missions.

  10. Mineralogy of chondritic interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    MacKinnon, I. D. R.; Rietmeijer, F. J. M.

    1987-08-01

    This paper presents a synopsis of current investigations on the mineralogy of chondritic micrometeorites obtained from the lower stratosphere using flat-plate collection surfaces attached to high-flying aircraft. A compilation of detailed mineralogical analyses for 30 documented chondritic interplanetary dust particles indicates a wide variety of minerals present in assemblages which, as yet, are poorly defined. Two possible assemblages are: (1) carbonaceous phases and layer silicates and (2) carbonaceous and chain silicates or nesosilicates. Particles with both types of silicate assemblages are also observed.

  11. Analysis and design of aeroassisted interplanetary missions

    NASA Astrophysics Data System (ADS)

    Johnson, Wyatt R.

    An aeroassisted mission uses atmospheric forces to effect a spacecraft delta-V, which could allow for substantial propellant savings. This research focuses on aero-maneuvers useful for interplanetary flight. The aerogravity assist maneuver uses aerodynamic lift to achieve a greater delta-V than with gravity alone. Aerobraking and aerocapture both use aerodynamic drag to supplement or replace propulsive planetary captures. Optimal aerogravity assist trajectories are found, using a combination of analytic and graphical techniques. Simple control schemes are developed to manage angular momentum during aerobraking and to guide a spacecraft to a desired final orbit during aerocapture.

  12. Discovery of nuclear tracks in interplanetary dust

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Brownlee, D. E.; Fraundorf, P.

    1984-01-01

    Nuclear tracks have been identified in interplanetary dust particles (IDP's) collected from the stratosphere. The presence of tracks unambiguously confirms the extraterrestrial nature of IDP's, and the high track densities (10 to the 10th to 10 to the 11th per square centimeter) suggest an exposure age of approximately 10,000 years within the inner solar system. Tracks also provide an upper temperature limit for the heating of IDP's during atmospheric entry, thereby making it possible to distinguish between pristine and thermally modified micrometeorites.

  13. Coronal and interplanetary Type 2 radio emission

    NASA Astrophysics Data System (ADS)

    Cane, H. V.

    1987-09-01

    Several observations suggest that the disturbances which generate coronal (meter wavelength) type II radio bursts are not driven by coronal mass ejections (CMEs). A new analysis using a large sample of metric radio bursts and associated soft X-ray events provides further support for the original hypothesis that type II-producing disturbances are blast waves generated at the time of impulsive energy release in flares. Interplanetary (IP) shocks, however, are closely associated with CMEs. The shocks responsible for IP type II events (observed at kilometer wavelengths) are associated with the most energetic CMEs.

  14. Interplanetary exploration-A challenge for photovoltaics

    NASA Technical Reports Server (NTRS)

    Stella, P. M.

    1985-01-01

    Future U.S. interplanetary missions will be less complex and costly than past missions such as Voyager and the soon to be launched, Galileo. This is required to achieve a balanced exploration program that can be sustained within the context of a limited budget. Radioisotope thermoelectric generators (RTGs) have served as the power source for missions beyond the orbit of Mars. It is indicated that the cost to the user of these power sources will significantly increase. Solar arrays can provide a low cost alternative for a number of missions. Potential missions are identified along with concerns for implementation, and some array configurations under present investigation are reviewed.

  15. Problems of Interplanetary and Interstellar Trade

    NASA Astrophysics Data System (ADS)

    Hickman, John

    2008-01-01

    If and when interplanetary and interstellar trade develops, it will be novel in two respects. First, the distances and time spans involved will reduce all or nearly all trade to the exchange of intangible goods. That threatens the possibility of conducting business in a genuinely common currency and of enforcing debt agreements, especially those involving sovereign debt. Second, interstellar trade suggests trade between humans and aliens. Cultural distance is a probable obstacle to initiating and sustaining such trade. Such exchange also threatens the release of new and potentially toxic memes.

  16. Nonthermal Radiation Processes in Interplanetary Plasmas

    NASA Astrophysics Data System (ADS)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large

  17. Regulation of the interplanetary magnetic flux

    SciTech Connect

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.

    1991-01-01

    In this study we use a recently developed technique for measuring the 2-D magnetic flux in the ecliptic plane to examine (1) the long term variation of the magnetic flux in interplanetary space and (2) the apparent rate at which coronal mass ejections (CMEs) may be opening new flux from the Sun. Since there is a substantial variation ({approximately}50%) of the flux in the ecliptic plane over the solar cycle, we conclude that there must be some means whereby new flux can be opened from the Sun and previously open magnetic flux can be closed off. We briefly describe recently discovered coronal disconnections events which could serve to close off previously open magnetic flux. CMEs appear to retain at least partial magnetic connection to the Sun and hence open new flux, while disconnections appear to be likely signatures of the process that returns closed flux to the Sun; the combination of these processes could regulate the amount of open magnetic flux in interplanetary space. 6 refs., 3 figs.

  18. Interplanetary proton cumulated fluence model update

    NASA Astrophysics Data System (ADS)

    Glover, A.; Hilgers, A.; Rosenqvist, L.; Bourdarie, S.

    2008-11-01

    Solar particle events leading to important increase of particle fluxes at energies of order of magnitude ranging from MeV to GeV constitute an important hazard for space missions. They may lead to effects seen in microelectronics or damage to solar cells and constitute a potential hazard for manned missions. Cumulative damage is commonly expressed as a function of fluence which is defined as the integral of the flux over time. A priori deterministic estimates of the expected fluence cannot be made because over the time scale of a space mission, the fluence can be dominated by the contribution of a few rare and unpredictable high intensity events. Therefore, statistical approaches are required in order to estimate fluences likely to be encountered by a space mission in advance. This paper extends work done by Rosenqvist et al. [Rosenqvist, L., Hilgers, A., Evans, H., Daly, E., Hapgood, M., Stamper, R., Zwickl, R., Bourdarie, S., Boscher, D. Toolkit for updating interplanetary proton-cumulated fluence models. J. Spacecraft Rockets, 42(6), 1077 1090, 2005] to describe an updated predictive engineering model for the proton interplanetary fluence with energies >30 MeV. This model is derived from a complete list of solar proton fluences based on data from a number of calibrated sources covering almost three solar cycles.

  19. Size and energy distributions of interplanetary magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Feng, H. Q.; Wu, D. J.; Chao, J. K.

    2007-02-01

    In observations from 1995 to 2001 from the Wind spacecraft, 144 interplanetary magnetic flux ropes were identified in the solar wind around 1 AU. Their durations vary from tens of minutes to tens of hours. These magnetic flux ropes include many small- and intermediate-sized structures and display a continuous distribution in size. Energies of these flux ropes are estimated and it is found that the distribution of their energies is a good power law spectrum with an index ~-0.87. The possible relationship between them and solar eruptions is discussed. It is suggested that like interplanetary magnetic clouds are interplanetary coronal mass ejections, the small- and intermediate-sized interplanetary magnetic flux ropes are the interplanetary manifestations of small coronal mass ejections produced in small solar eruptions. However, these small coronal mass ejections are too weak to appear clearly in the coronagraph observations as an ordinary coronal mass ejection.

  20. 3rd Annual Earth System Grid Federation and 3rd Annual Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Face-to-Face Meeting Report December 2013

    SciTech Connect

    Williams, Dean N.

    2014-02-21

    The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed and simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.

  1. Interplanetary meteoroid debris in LDEF metal craters

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Horz, F.; Bradley, J.

    1992-01-01

    The extraterrestrial meteoroid residue found lining craters in the Long Duration Exposure Facility (LDEF) aluminum and gold targets is highly variable in both quantity and type. In typical craters only a minor amount of residue is found and for these craters it is evident that most of the impacting projectile was ejected during crater formation. Less than 10 percent of the craters greater than 100 microns contain abundant residue consistent with survival of a major fraction of the projectile. In these cases the residue can be seen optically as a dark liner and it can easily be analyzed by SEM-EDX techniques. Because they are rare, the craters with abundant residue must be a biased sampling of the meteoroids reaching the earth. Factors that favor residue retention are low impact velocity and material properties such as high melting point. In general, the SEM-EDX observations of crater residues are consistent with the properties of chondritic meteorites and interplanetary dust particles collected in the stratosphere. Except for impacts by particles dominated by single minerals such as FeS and olivine, most of the residue compositions are in broad agreement with the major element compositions of chondrites. In most cases the residue is a thin liner on the crater floor and these craters are difficult to quantitatively analyze by EDX techniques because the electron beam excites both residue and underlying metal substrate. In favorable cases, the liner is thick and composed of vesicular glass with imbedded FeNi, sulfide and silicate grains. In the best cases of meteoroid preservation, the crater is lined with large numbers of unmelted mineral grains. The projectiles fragmented into micron sized pieces but the fragments survived without melting. In one case, the grains contain linear defects that appear to be solar flare tracks. Solar flare tracks are common properties of small interplanetary particles and their preservation during impact implies that the fragments were

  2. Investigation of interplanetary dust from out-of-ecliptic space probes. [astronomical models of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Fechtig, H.; Giese, R. H.; Hanner, M. S.; Zook, H. A.

    1976-01-01

    Measurements of interplanetary dust via zodiacal light observations and direct detection are discussed for an out-of-ecliptic space probe. Particle fluxes and zodiacal light brightnesses were predicted for three models of the dust distribution. These models predict that most of the information will be obtained at space probe distances less than 1 A.U. from the ecliptic plane. Joint interpretation of the direct particle measurements and the zodiacal light data can yield the best knowledge of the three-dimensional particle dynamics, spatial distribution, and physical characteristics of the interplanetary dust. Such measurements are important for an understanding of the origin and role of the dust in relation to meteoroids, asteroids, and comets, as well as the interaction of the dust with solar forces.

  3. Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III

    2012-01-01

    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves.

  4. Solar Implications of ULYSSES Interplanetary Field Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    1995-07-01

    Recent observations by the Ulysses magnetometer team have shown that the strength of the radial interplanetary field component, |Br| , is essentially independent of latitude, a result which implies that the heliospheric currents are confined entirely to thin sheets. Using such a current sheet model, we extrapolate the observed photospheric field to 1 AU and compare the predicted magnitude and sign of Br with spacecraft measurements during 1970--1993. Approximate agreement can be obtained if the solar magnetograph measurements in the Fe I lambda 5250 line are scaled upward by a latitude-dependent factor, similar to that derived by Ulrich from a study of magnetic saturation effects. The correction factor implies sharply peaked polar fields near sunspot minimum, with each polar coronal hole having a mean field strength of 10 G.

  5. Suprathermal ions upstream from interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.; Russell, C. T.

    1984-01-01

    Low energy (10 eV-30 keV) observations of suprathermal ions ahead of outward propagating interplanetary shock waves (ISQ) are reported. The data were taken with the fast plasma experiment on ISEE 1 and 2 during 17 events. Structure was more evident in the suprathermal ion distribution in the earth bow shock region than in the upstream region. Isotropic distributions were only observed ahead of ISW, although field alignment, kidney-bean distributions, ion shells in velocity space and bunches of gyrating ions were not. The data suggest that the solar wind ions are accelerated to suprathermal energies in the vicinity of the shocks, which feature low and subcritical Mach numbers at 1 AU.

  6. Interplanetary Particle Environment. Proceedings of a Conference

    NASA Technical Reports Server (NTRS)

    Feynman, Joan (Editor); Gabriel, Stephen (Editor)

    1988-01-01

    A workshop entitled the Interplanetary Charged Particle Environment was held at the Jet Propulsion Laboratory (JPL) on March 16 and 17, 1987. The purpose of the Workshop was to define the environment that will be seen by spacecraft operating in the 1990s. It focused on those particles that are involved in single event upset, latch-up, total dose and displacement damage in spacecraft microelectronic parts. Several problems specific to Magellan were also discussed because of the sensitivity of some electronic parts to single-event phenomena. Scientists and engineers representing over a dozen institutions took part in the meeting. The workshop consisted of two major activities, reviews of the current state of knowledge and the formation of working groups and the drafting of their reports.

  7. Fractal structure of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Klein, L. W.

    1985-01-01

    Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.

  8. Laser-fusion rocket for interplanetary propulsion

    SciTech Connect

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  9. Interplanetary approach optical navigation with applications

    NASA Technical Reports Server (NTRS)

    Jerath, N.

    1978-01-01

    The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.

  10. IPShocks: Database of Interplanetary Shock Waves

    NASA Astrophysics Data System (ADS)

    Isavnin, Alexey; Lumme, Erkka; Kilpua, Emilia; Lotti, Mikko; Andreeova, Katerina; Koskinen, Hannu; Nikbakhsh, Shabnam

    2016-04-01

    Fast collisionless shocks are one of the key interplanetary structures, which have also paramount role for solar-terrestrial physics. In particular, coronal mass ejection driven shocks accelerate particles to high energies and turbulent post-shock flows may drive intense geomagnetic storms. We present comprehensive Heliospheric Shock Database (ipshocks.fi) developed and hosted at University of Helsinki. The database contains currently over 2000 fast forward and fast reverse shocks observed by Wind, ACE, STEREO, Helios, Ulysses and Cluster spacecraft. In addition, the database has search and sort tools based on the spacecraft, time range, and several key shock parameters (e.g., shock type, shock strength, shock angle), data plots for each shock and data download options. These features allow easy access to shocks and quick statistical analyses. All current shocks are identified visually and analysed using the same procedure.

  11. Interplanetary space transport using inertial fusion propulsion

    SciTech Connect

    Orth, C.D.

    1998-04-20

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts.

  12. Nearedge Absorption Spectroscopy of Interplanetary Dust Particles

    SciTech Connect

    Brennan, S.; Luening, K.; Pianetta, P.; Bradley, J.; Graham, G.; Westphal, A.; Snead, C.; Dominguez, G.; /SLAC, SSRL

    2006-10-25

    Interplanetary Dust Particles (IDPs) are derived from primitive Solar System bodies like asteroids and comets. Studies of IDPs provide a window onto the origins of the solar system and presolar interstellar environments. We are using Total Reflection X-ray Fluorescence (TXRF) techniques developed for the measurement of the cleanliness of silicon wafer surfaces to analyze these particles with high detection sensitivity. In addition to elemental analysis of the particles, we have collected X-ray Absorption Near-Edge spectra in a grazing incidence geometry at the Fe and Ni absorption edges for particles placed on a silicon wafer substrate. We find that the iron is dominated by Fe{sub 2}O{sub 3}.

  13. Fine-scale characteristics of interplanetary sector

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Neubauer, F. M.; Barnstoff, H.

    1980-01-01

    The structure of the interplanetary sector boundaries observed by Helios 1 within sector transition regions was studied. Such regions consist of intermediate (nonspiral) average field orientations in some cases, as well as a number of large angle directional discontinuities (DD's) on the fine scale (time scales 1 hour). Such DD's are found to be more similar to tangential than rotational discontinuities, to be oriented on average more nearly perpendicular than parallel to the ecliptic plane to be accompanied usually by a large dip ( 80%) in B and, with a most probable thickness of 3 x 10 to the 4th power km, significantly thicker previously studied. It is hypothesized that the observed structures represent multiple traversals of the global heliospheric current sheet due to local fluctuations in the position of the sheet. There is evidence that such fluctuations are sometimes produced by wavelike motions or surface corrugations of scale length 0.05 - 0.1 AU superimposed on the large scale structure.

  14. Tailoring dynamic qualification tests for interplanetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kern, D. L.

    1984-01-01

    It is pointed out that the word 'tailoring' has become quite popular in the past few years. Thus, two recently revised environmental test documents make frequent mention of test tailoring. 'Tailoring' is defined by MIL STD 810D (Environmental Test Methods and Engineering Guidelines). The word refers to 'the process of choosing or altering test procedures, conditions, values, tolerances, measures of failure, etc., to simulate or exaggerate the effects of one or more forcing functions to which an item will be subjected during its life cycle...'. This paper is concerned with requirement level test tailoring. Attention is given to examples of dynamic qualification test tailoring for an interplanetary spacecraft program. These examples are to provide ideas for test tailoring which can be applied to other space flight programs.

  15. Early Solar Nebula Grains - Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    This chapter examines the compositions, mineralogy, sources, and geochemical significance of interplanetary dust particles (IDPs). Despite their micrometer-scale dimensions and nanogram masses, it is now possible, primarily as a result of advances in small particle handling techniques and analytical instrumentation, to examine IDPs at close to atomic-scale resolution. The most widely used instruments for IDP studies are presently the analytical electron microscope, synchrotron facilities, and the ion microprobe. These laboratory analytical techniques are providing fundamental insights about IDP origins, mechanisms of formation, and grain processing phenomena that were important in the early solar system and presolar environments. At the same time, laboratory data from IDPs are being compared with astronomical data from dust in comets, circumstellar disks, and the interstellar medium. The direct comparison of grains in the laboratory with grains in astronomical environments is known as "astromineralogy."

  16. Infrared Spectroscopy of Anhydrous Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Flynn, G. J.

    2003-01-01

    Infrared (IR) spectroscopy is the primary means of mineralogical analysis of materials outside our solar system. The identity and properties of circumstellar grains are inferred from spectral comparisons between astronomical observations and laboratory data from natural and synthetic materials. These comparisons have been facilitated by the Infrared Space Observatory (ISO), which obtained IR spectra from numerous astrophysical objects over a wide spectral range (out to 50/cm) where crystalline silicates and other phases have distinct features. The anhydrous interplanetary dust particles (IDPs) are particularly important comparison materials because some IDPs contain carbonaceous material with non-solar D/H and N-15/N-14 ratios and amorphous and crystalline silicates with non-solar 0- isotopic ratios, demonstrating that these IDPs contain preserved interstellar material. Here, we report on micro- Fourier transform (FT) IR spectrometry of IDPs, focusing on the inorganic components of primitive IDPs (FTIR spectra from the organic/carbonacecous materials in IDPs are described elsewhere).

  17. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  18. Adaptive and Effortful Control and Academic Self-efficacy Beliefs on Achievement: A Longitudinal Study of 1st through 3rd Graders

    PubMed Central

    Liew, Jeffrey; McTigue, Erin; Barrois, Lisa; Hughes, Jan

    2009-01-01

    The linkages between self-regulatory processes and achievement were examined across three years in 733 children beginning at 1st grade (M = 6.57 years, SD = .39 at 1st grade) who were identified as lower achieving in literacy. Accounting for consistencies in measures (from one year prior) and for influences of child’s age, gender, IQ, ethnicity and economic adversity on achievement, results indicate that adaptive/effortful control at 1st grade contributed to both academic self-efficacy beliefs at 2nd grade, and reading (but not math) achievement at 3rd grade. Although academic self-efficacy did not partially mediate the linkage between adaptive/effortful control and achievement, academic self-efficacy beliefs were positively correlated with reading and math. Results support the notion that early efforts to promote children’s self-regulatory skills would enhance future academic self-beliefs and achievement, particularly in literacy. PMID:19169387

  19. X-ray holographic microscopy with zone plates applied to biological samples in the water window using 3rd harmonic radiation from the free-electron laser FLASH.

    PubMed

    Gorniak, T; Heine, R; Mancuso, A P; Staier, F; Christophis, C; Pettitt, M E; Sakdinawat, A; Treusch, R; Guerassimova, N; Feldhaus, J; Gutt, C; Grübel, G; Eisebitt, S; Beyer, A; Gölzhäuser, A; Weckert, E; Grunze, M; Vartanyants, I A; Rosenhahn, A

    2011-06-06

    The imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome resolution limits set by radiation damage. One current challenge is to match both the desired energy and the intensity of the light source. We present the first images of dehydrated biological material acquired with 3rd harmonic radiation from FLASH by digital in-line zone plate holography as one step towards the vision of imaging hydrated biological material with photons in the water window. We also demonstrate the first application of ultrathin molecular sheets as suitable substrates for future free-electron laser experiments with biological samples in the form of a rat fibroblast cell and marine biofouling bacteria Cobetia marina.

  20. Variations in the geomagnetic field strength in the 5th 3rd centuries BC in the eastern Mediterranean (according to narrowly dated ceramics)

    NASA Astrophysics Data System (ADS)

    Nachasova, I. E.; Burakov, K. S.; Il'Ina, T. A.

    2008-06-01

    The magnetization of ceramics from the eastern Mediterranean dated within a short period (mostly shorter than ±20 years) has been studied, which made it possible to specify the geomagnetic field variations on the time interval 5th 3rd centuries BC. The 11-year time series of the geomagnetic field strength values has been constructed. The field strength changes have been considered, which indicated that the centennial variation with a characteristic time of ˜130 years (according to the obtained data) is observed on this time interval as well as during the last two millennia. The ceramic material from the Mayskaya Gora archeological site (Taman), the preparation succession of which was established based on the shape of pottery but the problem of absolute dating was not solved, has been dated.

  1. Knowledge and institutional requirements to promote land degradation neutrality in drylands - An analysis of the outcomes of the 3rd UNCCD scientific conference

    NASA Astrophysics Data System (ADS)

    Akhtar-Schuster, Mariam; Safriel, Uriel; Abraham, Elena; de Vente, Joris; Essahli, Wafa; Escadafal, Richard; Stringer, Lindsay

    2015-04-01

    Achieving land degradation neutrality (LDN) through sustainable land management (SLM) targets the maintenance or restoration of the productivity of land, and therefore has to include decision-makers, knowledge generators and knowledge holders at the different relevant geographic scales. In order to enhance the implementation of the Convention, the Conference of the Parties (COP) of the United Nations Convention to Combat Desertification therefore decided that each future session of its Committee on Science and Technology (CST) would be organized in a predominantly scientific and technical conference-style format. This contribution will outline the major outcomes of UNCCD's 3rd scientific conference that will be held in Cancún, Mexico, from 9 to 12 March 2015, on addressing desertification, land degradation and drought issues (DLDD) for poverty reduction and sustainable development. The conference follows an exceptional new round table conference format that will allow the various stakeholders to discuss scientific as well as the contribution of traditional knowledge and practices in combating land degradation. This format should provide two-way communication and enable deeper insight into the availability and contribution of all forms of knowledge for achieving LDN through the assessment of: • the vulnerability of lands to DLDD and climate change and the adaptive capacities of socio-ecosystems; • best examples of adapted, knowledge-based practices and technologies; • monitoring and assessment methods to evaluate the effectiveness of adaptation practices and technologies. The outcomes of UNCCD's 3rd scientific conference will serve as a basis for discussing: • contributions of science to diagnose the status of land; • research gaps that need to be addressed to achieve LDN for poverty reduction; • additional institutional requirements to optimally bridge knowledge generation, knowledge maintenance and knowledge implementation at the science

  2. Limbic system development underlies the emergence of classical fear conditioning during the 3rd and 4th weeks of life in the rat

    PubMed Central

    Deal, Alex L.; Erickson, Kristen J.; Shiers, Stephanie I.; Burman, Michael A.

    2016-01-01

    Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the 3rd or 4th weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the 3rd and 4th weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. PMID:26820587

  3. Scintillation of spacecraft radio signals on the interplanetary plasma

    NASA Astrophysics Data System (ADS)

    Molera Calves, Guifre; Pogrebenko, Sergei; Cimo, Giuseppe; Duev, Dmitry; Bocanegra, Tatiana

    2015-04-01

    Observations of planetary spacecraft radio signals within the solar system give a unique opportunity to study the temporal and spatial behaviour of the signal's phase fluctuations caused by its propagation through the interplanetary plasma and the Earth's ionosphere. The phase scintillation of the telemetry signal of the European Space Agency's (ESA) Venus Express (VEX) and Mars Express (MEX) spacecraft was observed at X-band with a number of radio telescopes of the European VLBI Network (EVN) in the period 2008-15, within the scope of Planetary Radio Interferometry and Doppler Experiment (PRIDE) project. It was found that the phase scintillation spectra follow a Kolmogorov distribution with nearly constant spectral index of -2.42 for a full range of Venus orbital phases, from superior to inferior conjunctions and back. The solar wind plasma dominates the scintillation index and Doppler noise along the orbit from superior conjunction to the greatest elongation. Here, I will present the latest results of these observations, while approaching the inferior conjunction, where the Earth ionosphere starts to dominate, and also at the superior conjunction. Empirical coefficients for both contributions were estimated and compared for VEX and MEX.

  4. Interplanetary flux enhancements - Comparison with cometary models and observations

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Phillips, J. L.; Luhmann, J. G.; Fedder, J. A.

    1986-01-01

    Interplanetary field enhancements (IFE's) are unusual nearly symmetric increases in the strength of the interplanetary magnetic field lasting tens of minutes to hours. Examples of interplanetary field enhancements are compared with MHD models and with the data obtained by the ICE spacecraft at Giacobini-Zinner. These comparisons suggest that the varying properties of IFE's are due to the fact that some events are due to passages in front of the nucleus, others in the near tail and yet others in the distant tail.

  5. Aquarius, a reusable water-based interplanetary human spaceflight transport

    NASA Astrophysics Data System (ADS)

    Adamo, Daniel R.; Logan, James S.

    2016-11-01

    Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.

  6. Interplanetary and near-Jupiter meteoroid environments - Preliminary results from the meteoroid detection experiment

    NASA Technical Reports Server (NTRS)

    Kinard, W. H.; O'Neal, R. L.; Alvarez, J. M.; Humes, D. H.

    1974-01-01

    Data on interplanetary and near-Jupiter micrometer-sized particle encounters from the meteoroid-detection experiment on Pioneer 10 indicate that Jupiter is much 'dustier' than interplanetary space. Whereas the near-earth particulate flux showed very little increase over the interplanetary flux, the near-Jupiter penetration flux was over two orders of magnitude higher than the interplanetary flux.

  7. Zodiacal light as an indicator of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Weinberg, J. L.; Sparrow, J. G.

    1978-01-01

    The most striking feature of the night sky in the tropics is the zodiacal light, which appears as a cone in the west after sunset and in the east before sunrise. It is caused by sunlight scattered or absorbed by particles in the interplanetary medium. The zodiacal light is the only source of information about the integrated properties of the whole ensemble of interplanetary dust. The brightness and polarization in different directions and at different colors can provide information on the optical properties and spatial distribution of the scattering particles. The zodiacal light arises from two independent physical processes related to the scattering of solar continuum radiation by interplanetary dust and to thermal emission which arises from solar radiation that is absorbed by interplanetary dust and reemitted mainly at infrared wavelengths. Attention is given to observational parameters of zodiacal light, the methods of observation, errors and absolute calibration, and the observed characteristics of zodiacal light.

  8. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Eriss-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    With the use of a prediction technique it is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar geomagnetic field.

  9. High Amplitude Events in relation to Interplanetary disturbances

    NASA Astrophysics Data System (ADS)

    Mishra, Rajesh Kumar; Agarwal Mishra, Rekha

    2012-07-01

    The Sun emits the variable solar wind which interacts with the very local interstellar medium to form the heliosphere. Hence variations in solar activity strongly influence interplanetary space, from the Sun's surface out to the edge of the heliosphere. Superimposed on the solar wind are mass ejections from the Sun and/or its corona which, disturb the interplanetary medium - hence the name "interplanetary disturbances". Interplanetary disturbances are the sources of large-scale particle acceleration, of disturbances in the Earth's magnetosphere, of modulations of galactic cosmic rays in short, they are the prime focus for space weather studies. The investigation deals with the study of cosmic ray intensity, solar wind plasma and interplanetary magnetic field parameters variation due to interplanetary disturbances (magnetic clouds) during an unusual class of days i.e. high amplitude anisotropic wave train events. The high amplitude anisotropic wave train events in cosmic ray intensity has been identified using the data of ground based Goose Bay neutron monitor and studied during the period 1981-94. Even though, the occurrence of high amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds. But the possibility of occurrence of these events cannot be overlooked during the periods of interplanetary magnetic cloud events. It is observed that solar wind velocity remains higher (> 300) than normal and interplanetary magnetic field B remains lower than normal on the onset of interplanetary magnetic cloud during the passage of these events. It is also noted from the superposed epoch analysis of cosmic ray intensity and geomagnetic activity for high amplitude anisotropic wave train events during the onset of interplanetary magnetic clouds that the increase in cosmic ray intensity and decrease in geomagnetic activity start not at the onset of magnetic clouds but after few days. The north south component of IMF (Bz), IMF (B), proton

  10. The interplanetary and solar magnetic field sector structures, 1962 - 1968

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1972-01-01

    The interplanetary magnetic field sector structure was observed from late 1962 through 1968. During this time it has been possible to study the manner in which the sector pattern and its relation to the photospheric magnetic field configuration changes from solar minimum to solar maximum. Observations were also made relating sector boundaries to specific regions on the solar disk. These and other observations related to the solar origin of the interplanetary field are briefly reviewed.

  11. Shielding Structures for Interplanetary Human Mission

    NASA Astrophysics Data System (ADS)

    Tracino, Emanuele; Lobascio, Cesare

    2012-07-01

    Since the end of Apollo missions, human spaceflight has been limited to the Low Earth Orbit (LEO), inside the protective magnetic field of the Earth, because astronauts are, to the largest degree, protected from the harsh radiation environment of the interplanetary space. However, this situation will change when space exploration missions beyond LEO will become the real challenge of the human exploration program. The feasibility of these missions in the solar system is thus strongly connected to the capability to mitigate the radiation-induced biological effects on the crew during the journey and the permanence on the intended planet surface. Inside the International Space Station (ISS), the volumes in which the crew spends most of the time, namely the crew quarters are the only parts that implement dedicated additional radiation shielding made of polyethylene tiles designed for mitigating SPE effects. Furthermore, specific radiation shielding materials are often added to the described configuration to shield crew quarters or the entire habitat example of these materials are polyethylene, liquid hydrogen, etc. but, increasing the size of the exploration vehicles to bring humans beyond LEO, and without the magnetosphere protection, such approach is unsustainable because the mass involved is a huge limiting factor with the actual launcher engine technology. Moreover, shielding against GCR with materials that have a low probability of nuclear interactions and in parallel a high ionizing energy loss is not always the best solution. In particular there is the risk to increase the LET of ions arriving at the spacecraft shell, increasing their Radio-Biological Effectiveness. Besides, the production of secondary nuclei by projectile and target fragmentation is an important issue when performing an engineering assessment of materials to be used for radiation shielding. The goal of this work is to analyze different shielding solutions to increase as much as possible the

  12. Global Magnetospheric Response to an Interplanetary Shock: THEMIS Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Sibeck, David G.; Zong, Q.-G.; McFadden, James P.; Larson, Davin; Glassmeier, K.-H.; Angelopoulos, V.

    2011-01-01

    We investigate the global response of geospace plasma environment to an interplanetary shock at approx. 0224 UT on May 28, 2008 from multiple THEMIS spacecraft observations in the magnetosheath (THEMIS B and C) and the mid-afternoon (THEMIS A) and dusk magnetosphere (THEMIS D and E). The interaction of the transmitted interplanetary shock with the magnetosphere has global effects. Consequently, it can affect geospace plasma significantly. After interacting with the bow shock, the interplanetary shock transmitted a fast shock and a discontinuity which propagated through the magnetosheath toward the Earth at speeds of 300 km/s and 137 km/s respectively. THEMIS A observations indicate that the plasmaspheric plume changed significantly by the interplanetary shock impact. The plasmaspheric plume density increased rapidly from 10 to 100/ cubic cm in 4 min and the ion distribution changed from isotropic to strongly anisotropic distribution. Electromagnetic ion cyclotron (EMIC) waves observed by THEMIS A are most likely excited by the anisotropic ion distributions caused by the interplanetary shock impact. To our best knowledge, this is the first direct observation of the plasmaspheric plume response to an interplanetary shock's impact. THEMIS A, but not D or E, observed a plasmaspheric plume in the dayside magnetosphere. Multiple spacecraft observations indicate that the dawn-side edge of the plasmaspheric plume was located between THEMIS A and D (or E).

  13. Interplanetary Circumstances of Quasi-Perpendicular Interplanetary Shocks in 1996-2005

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2010-01-01

    The angle (theta(sub Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(sub Bn) greater than or equal to 80 degrees and/or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(sub Bn) than shocks outside ICMEs.

  14. A Kinesthetic Learning Approach to Earth Science for 3rd and 4th Grade Students on the Pajarito Plateau, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.

    2010-12-01

    Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We

  15. Mars interplanetary trajectory design via Lagrangian points

    NASA Astrophysics Data System (ADS)

    Eapen, Roshan Thomas; Sharma, Ram Krishan

    2014-09-01

    With the increase in complexities of interplanetary missions, the main focus has shifted to reducing the total delta-V for the entire mission and hence increasing the payload capacity of the spacecraft. This paper develops a trajectory to Mars using the Lagrangian points of the Sun-Earth system and the Sun-Mars system. The whole trajectory can be broadly divided into three stages: (1) Trajectory from a near-Earth circular parking orbit to a halo orbit around Sun-Earth Lagrangian point L2. (2) Trajectory from Sun-Earth L2 halo orbit to Sun-Mars L1 halo orbit. (3) Sun-Mars L1 halo orbit to a circular orbit around Mars. The stable and unstable manifolds of the halo orbits are used for halo orbit insertion. The intermediate transfer arcs are designed using two-body Lambert's problem. The total delta-V for the whole trajectory is computed and found to be lesser than that for the conventional trajectories. For a 480 km Earth parking orbit, the total delta-V is found to be 4.6203 km/s. Another advantage in the present approach is that delta-V does not depend upon the synodic period of Earth with respect to Mars.

  16. Impact angle control of interplanetary shock geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Oliveira, D. M.; Raeder, J.

    2014-10-01

    We use Open Geospace General Circulation Model global MHD simulations to study the nightside magnetospheric, magnetotail, and ionospheric responses to interplanetary (IP) fast forward shocks. Three cases are presented in this study: two inclined oblique shocks, hereafter IOS-1 and IOS-2, where the latter has a Mach number twice stronger than the former. Both shocks have impact angles of 30° in relation to the Sun-Earth line. Lastly, we choose a frontal perpendicular shock, FPS, whose shock normal is along the Sun-Earth line, with the same Mach number as IOS-1. We find that, in the IOS-1 case, due to the north-south asymmetry, the magnetotail is deflected southward, leading to a mild compression. The geomagnetic activity observed in the nightside ionosphere is then weak. On the other hand, in the head-on case, the FPS compresses the magnetotail from both sides symmetrically. This compression triggers a substorm allowing a larger amount of stored energy in the magnetotail to be released to the nightside ionosphere, resulting in stronger geomagnetic activity. By comparing IOS-2 and FPS, we find that, despite the IOS-2 having a larger Mach number, the FPS leads to a larger geomagnetic response in the nightside ionosphere. As a result, we conclude that IP shocks with similar upstream conditions, such as magnetic field, speed, density, and Mach number, can have different geoeffectiveness, depending on their shock normal orientation.

  17. Impact Angle Control of Interplanetary Shock Geoeffectiveness

    NASA Astrophysics Data System (ADS)

    Oliveira, D.; Raeder, J.

    2014-12-01

    We use OpenGGCM global MHD simulations to study the nightside magnetospheric/ magnetotail/ ionospheric responses to interplanetary (IP) fast foward shocks. Three cases are presented in this study: two inclined oblique shocks, hereafter IOS-1 and IOS-2, where the latter has a Mach number twice stronger than the former. Both shocks have impact angles of 30o in relation to the Sun-Earth line. Lastly, we choose a frontal perpendicular shock, FPS, whose shock normal is along th Sun-Earth line, with the same Mach number as IOS-1. We find that, in the IOS-1 case, due to the north-south asymmetry, the magnetotail is deflected southward, leading to a mild compression. The geomagnetic activity observed in the nightside ionosphere is then weak. On the other hand, in the head-on case, the FPS compresses the magnetotail on both sides symmetrically. This compression triggers a substorm allowing a larger amount of stored energy in the magnetotail to be released to the nightside ionosphere, resulting in a larger geomagnetic activity there. By comparing IOS-2 and FPS, we find that, despite the IOS-2 having a larger Mach number, the FPS leads to larger geomagnetic responses in the ionosphere nightside. As a result, we conclude that IP shocks with similar upstream conditions, such as magnetic field, speed, density, and even Mach number, can be differently geoeffective, depending on their shock normal orientation.

  18. Raman observations on individual interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Wopenka, B.

    1988-05-01

    A Raman study of 20 representative interplanetary dust particles (IDPs) belonging to different infrared spectral classes is discussed. Six different groups of Raman spectra were discerned among the IDPs studied. Groups 1-5 exhibit the Raman signature of poorly crystallized carbonaceous material, with the degree of disorder of this material increasing from group 1 (most ordered) to group 5 (least ordered). Group 1 contains IDPs that have infrared spectra characteristic of olivines, and are deuterium depleted, while those in groups 2, 3, and 4 contain less ordered carbonaceous material and are deuterium enriched, suggesting different carbonaceous carrier phases for deuterium depletions and enrichments. Groups 5 and 6 contain little or no carbonaceous material, with an abundance of deuterium. No obvious relationship was found between Raman groups and infrared classes based on the 10 micron absorption band due to silicates. Because silicates are known to be present, but are not seen, it is presumed that silicate grains are coated with and/or imbedded in carbonaceous material. Several IDPs show broad visible laser-induced photoluminescence, probably produced by a carbonaceous component.

  19. Inward electrostatic precipitation of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.

    1993-01-01

    An inward precipitator collects particles initially dispersed in a gas throughout either a cylindrical or spherical chamber onto a small central planchet. The instrument is effective for particle diameters greater than about 1 micron. One use is the collection of interplanetary dust particles (IDPs) which are stopped in a noble gas (xenon) by drag and ablation after perforating the wall of a thin-walled spacecraft-mounted chamber. First, the particles are positively charged for several seconds by the corona production of positive xenon ions from inward facing needles placed on the chamber wall. Then an electric field causes the particles to migrate toward the center of the instrument and onto the planchet. The collection time (on the order of hours for a 1 m radius spherical chamber) is greatly reduced by the use of optimally located screens which reapportion the electric field. Some of the electric field lines terminate on the wires of the screens so a fraction of the total number of particles in the chamber is lost. The operation of the instrument is demonstrated by experiments which show the migration of carbon soot particles with radius of approximately 1 micron in a 5 cm diameter cylindrical chamber with a single field enhancing screen toward a 3.2 mm central collection rod.

  20. Mars Science Laboratory Interplanetary Navigation Analysis

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Kruizinga, Gerard L.; Wong, Mau C.

    2011-01-01

    The Mars Science Laboratory (MSL) is a NASA rover mission that will be launched in late 2011 and will land on Mars in August of 2012. This paper describes the analyses performed to validate the navigation system for launch, interplanetary cruise, and approach. MSL will use guidance during its descent into Mars in order to minimize landing dispersions, and therefore will be able to use smaller landing zones that are closer to terrain of high scientific interest. This will require a more accurate delivery of the spacecraft to the atmospheric entry interface, and a late update of the state of the spacecraft at entry. During cruise and approach the spacecraft may perform up to six trajectory correction maneuvers (TCMs), to target to the desired landing site with the required flight path angle at entry. Approach orbit determination covariance analyses have been performed to evaluate the accuracy that can be achieved in delivering the spacecraft to the entry interface point, and to determine how accurately the state of the spacecraft can be predicted to initialize the guidance algorithm. In addition, a sensitivity analysis has been performed to evaluate which factors most contribute to the improvement or degradation of the navigation performance, for both entry flight path angle delivery and entry state knowledge.

  1. Volatiles in interplanetary dust particles and aerogels

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Harmetz, C. P.

    1991-01-01

    Volatiles measured in 25 interplanetary dust particles (IDPs) are a mixture of both indigenous materials and contaminants associated with the collection and processing of the ODPs prior to analysis. Most IDPs have been collected in the stratosphere using a silicone oil/freon mixture (20:1 ratio) coated on collector plates. Studies have shown that silicone oil, freon and hexane residues remain with the ODPs, despite attempts to clean the IDPs. Analysis of the IDPs with the LMMS-technique produces spectra with a mixture of indigeneous and contaminants components. The contamination signal can be identified and removed; however, the contamination signal may obscure some of the indigeneous component's signal. Employing spectra stripping techniques, the indigenous volatile constituents associated with the IDPs can be identified. Volatiles are similar to those measured in CI or CM carbonaceous chondrites. Collection of IDPs in low-Earth orbit utilizing a Cosmic Dust Collection Facility attached to Space Station Freedom has been proposed. The low-density material aerogel has been proposed as a collection substrate for IDPs. Our studies have concentrated on identifying volatile contaminants that are associated with aerogel. We have found that solvents used for the preparation of aerogel remain in aerogel and methods must be developed for removing the entrapped solvents before aerogels can be used for an IDP collection substrate.

  2. Energetic solar electrons in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1985-01-01

    Results are given of ISEE-3 measurements of energetic solar electrons extending down to 2 keV energy. Such measurements have provided a new perspective on energetic solar electrons in the interplanetary medium. Impulsive solar electron events are observed, on the average, several times a day near solar maximum, with about 40 percent detected only below about 15 keV. The electron energy spectra have a nearly power-law shape extending smoothly down to 2 keV, indicating that the origin of these events is high in the corona. In large solar flares which accelerate electrons and ions to relativistic energies, the electron spectrum appears to be modified by a second acceleration which results in a double power-law shape above about 10 keV with a break near 100 keV and flattening from about 10-100 keV. Solar type-III radio bursts are produced by the escaping 2-100 keV electrons through a beam-plasma instability.

  3. Water and organics in interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Bradley, John

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at 90 km altitude and settle to the Earths surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earths surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend 104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.

  4. Anatomy of Depleted Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B., IV

    2017-01-01

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE/SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C6+/C5+ and O7+/O6+ depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  5. Radioisotopic heater units warm an interplanetary spacecraft

    SciTech Connect

    Franco-Ferreira, E.A.; Rinehart, G.H.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA`s last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini`s 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn`s atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft.

  6. Distributions of the interplanetary magnetic field revisited

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Ruzmaikin, Alexander

    1994-01-01

    The adequacy of the power spectrum to characterize the variations of a parameter depends on whether or not the parameter has a Gaussian distribution. We here perform very simple tests of Gaussianity on the distribution. We here perform very simple tests of Gaussianity on the distributions of the magnitudes of the interplanetary magnetic field, and on the distributions of the components; that is, we find the first four cumulants of the distributions (mean, variance, skewness, and kurtosis) and their solar cycle variations. We find, consistent with other recent analyses, that the traditional distributions of the 1-hour averaged magnitude are not distributed normally or lognomally as has often been assumed and the 1-hour averaged z component is found to have a nonzero kurtosis. Thus the power spectrum is insufficient to completely characterize these variations and polyspectra are needed. We have isolated variations in the 1/f frequency region of the spectrum and show that the distributions of the magnitudes have nonzero skewness and kurtosis, the magnitudes are not distributed lognormally, and the distributions of the components have nonzero kurtosis. Thus higher-order spectra are again needed for a full characterization.

  7. Optimizing interplanetary trajectories with deep space maneuvers

    NASA Astrophysics Data System (ADS)

    Navagh, John

    1993-09-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  8. Origins and Dynamics of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    2005-01-01

    This is a final report for research supported by the National Aeronautics and Space Administration issued through the Office of Space Science Planetary Geology and Geophysics Program, covering all relevant activities during its 3-year period of funding from 02/01/2002 through to 01/31/2005. The ongoing aim of the research supported through this grant, and now through a successor award, is to investigate the origin of interplanetary dust particles (IDPs) and their dynamical and collisional evolution, in order to: (1) understand the provenance of zodiacal cloud particles and their transport from their source regions to the inner solar system; (2) produce detailed models of the zodiacal cloud and its constituent components; (3) determine the origin of the dust particles accreted by the Earth; (4) ascertain the level of temporal variations in the dust environment of the inner solar system and the accretion rate of IDPs by the Earth, and evaluate potential effects on global climate; and to (5) exploit this research as a basis for interpreting the structure observed in exozodiacal clouds that may result from the collisional evolution of planetesimals and the presence of unseen planets.

  9. The interplanetary magnetic field associated with the propagation of solar relativistic particles

    NASA Astrophysics Data System (ADS)

    Masson, Sophie; Dasso, Sergio; Demoulin, Pascal

    The origin and the propagation of relativistic solar particles (450 MeV-few GeV) in the inter-planetary medium remains a complex topic. These particles, detected at the Earth by neutron monitors (called Ground level enhancement, GLE), have been previously accelerated close to the Sun. Before being detected at the Earth, these relativistic particles have to travel along an interplanetary magnetic field (IMF) connecting the acceleration site and the Earth. Generally, the nominal Parker spiral (SP), is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions (ARs) associated to the GLEs are not always located close to the footprint of the nominal Parker spiral. If it is not the nominal Parker spiral, which IMF connects the acceleration site and the Earth during the GLEs? A possible explanation of relativistic particles propagation under these circumstances are transient magnetic structures, travelling in the IMF as Interplanetary coronal mass ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium in which 10 GLEs of the last solar cycle propagate. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. Those included obvious cases of propagation in an ICME, as well as some cases consistent with a Parker Spiral. But, we also found cases correponding to the propagation of relativistic particles in a highly disturbed Parker like IMF. In an independant approach we applied the velocity dispersion method (VDA) to energetic protons measured by SoHO/ERNE and relativistic particles measured by the neutron monitor network. We determined the path length travelled by energetic particles. These lengths are fully consistent with the IMF shape determined previously. Thus, the length associated to particles propagating along the nominal Parker spiral is of the order of 1-1.2 AU

  10. The Safety of Artemisinin Derivatives for the Treatment of Malaria in the 2nd or 3rd Trimester of Pregnancy: A Systematic Review and Meta-Analysis

    PubMed Central

    van Eijk, Anna Maria; Sevene, Esperanca; Dellicour, Stephanie; Weiss, Noel S.; Emerson, Scott; Steketee, Richard; ter Kuile, Feiko O.; Stergachis, Andy

    2016-01-01

    Given the high morbidity for mother and fetus associated with malaria in pregnancy, safe and efficacious drugs are needed for treatment. Artemisinin derivatives are the most effective antimalarials, but are associated with teratogenic and embryotoxic effects in animal models when used in early pregnancy. However, several organ systems are still under development later in pregnancy. We conducted a systematic review and meta-analysis of the occurrence of adverse pregnancy outcomes among women treated with artemisinins monotherapy or as artemisinin-based combination therapy during the 2nd or 3rd trimesters relative to pregnant women who received non-artemisinin antimalarials or none at all. Pooled odds ratio (POR) were calculated using Mantel-Haenszel fixed effects model with a 0.5 continuity correction for zero events. Eligible studies were identified through Medline, Embase, and the Malaria in Pregnancy Consortium Library. Twenty studies (11 cohort studies and 9 randomized controlled trials) contributed to the analysis, with 3,707 women receiving an artemisinin, 1,951 a non-artemisinin antimalarial, and 13,714 no antimalarial. The PORs (95% confidence interval (CI)) for stillbirth, fetal loss, and congenital anomalies when comparing artemisinin versus quinine were 0.49 (95% CI 0.24–0.97, I2 = 0%, 3 studies); 0.58 (95% CI 0.31–1.16, I2 = 0%, 6 studies); and 1.00 (95% CI 0.27–3.75, I2 = 0%, 3 studies), respectively. The PORs comparing artemisinin users to pregnant women who received no antimalarial were 1.13 (95% CI 0.77–1.66, I2 = 86.7%, 3 studies); 1.10 (95% CI 0.79–1.54, I2 = 0%, 4 studies); and 0.79 (95% CI 0.37–1.67, I2 = 0%, 3 studies) for miscarriage, stillbirth and congenital anomalies respectively. Treatment with artemisinin in 2nd and 3rd trimester was not associated with increased risks of congenital malformations or miscarriage and may be was associated with a reduced risk of stillbirths compared to quinine. This study updates the reviews

  11. Veterinary Microbiology, 3rd Edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary Microbiology, Third Edition is organized into four sections and begins with an updated and expanded introductory section on infectious disease pathogenesis, diagnosis and clinical management. The second section covers bacterial and fungal pathogens, and the third section describes viral d...

  12. Stable isotope and trace element studies on gladiators and contemporary Romans from Ephesus (Turkey, 2nd and 3rd Ct. AD)--mplications for differences in diet.

    PubMed

    Lösch, Sandra; Moghaddam, Negahnaz; Grossschmidt, Karl; Risser, Daniele U; Kanz, Fabian

    2014-01-01

    The gladiator cemetery discovered in Ephesus (Turkey) in 1993 dates to the 2nd and 3rd century AD. The aim of this study is to reconstruct diverse diet, social stratification, and migration of the inhabitants of Roman Ephesus and the distinct group of gladiators. Stable carbon, nitrogen, and sulphur isotope analysis were applied, and inorganic bone elements (strontium, calcium) were determined. In total, 53 individuals, including 22 gladiators, were analysed. All individuals consumed C3 plants like wheat and barley as staple food. A few individuals show indication of consumption of C4 plants. The δ13C values of one female from the gladiator cemetery and one gladiator differ from all other individuals. Their δ34S values indicate that they probably migrated from another geographical region or consumed different foods. The δ15N values are relatively low in comparison to other sites from Roman times. A probable cause for the depletion of 15N in Ephesus could be the frequent consumption of legumes. The Sr/Ca-ratios of the gladiators were significantly higher than the values of the contemporary Roman inhabitants. Since the Sr/Ca-ratio reflects the main Ca-supplier in the diet, the elevated values of the gladiators might suggest a frequent use of a plant ash beverage, as mentioned in ancient texts.

  13. Stable Isotope and Trace Element Studies on Gladiators and Contemporary Romans from Ephesus (Turkey, 2nd and 3rd Ct. AD) - Implications for Differences in Diet

    PubMed Central

    Lösch, Sandra; Moghaddam, Negahnaz; Grossschmidt, Karl; Risser, Daniele U.; Kanz, Fabian

    2014-01-01

    The gladiator cemetery discovered in Ephesus (Turkey) in 1993 dates to the 2nd and 3rd century AD. The aim of this study is to reconstruct diverse diet, social stratification, and migration of the inhabitants of Roman Ephesus and the distinct group of gladiators. Stable carbon, nitrogen, and sulphur isotope analysis were applied, and inorganic bone elements (strontium, calcium) were determined. In total, 53 individuals, including 22 gladiators, were analysed. All individuals consumed C3 plants like wheat and barley as staple food. A few individuals show indication of consumption of C4 plants. The δ13C values of one female from the gladiator cemetery and one gladiator differ from all other individuals. Their δ34S values indicate that they probably migrated from another geographical region or consumed different foods. The δ15N values are relatively low in comparison to other sites from Roman times. A probable cause for the depletion of 15N in Ephesus could be the frequent consumption of legumes. The Sr/Ca-ratios of the gladiators were significantly higher than the values of the contemporary Roman inhabitants. Since the Sr/Ca-ratio reflects the main Ca-supplier in the diet, the elevated values of the gladiators might suggest a frequent use of a plant ash beverage, as mentioned in ancient texts. PMID:25333366

  14. The perceptions of professional soccer players on the risk of injury from competition and training on natural grass and 3rd generation artificial turf

    PubMed Central

    2014-01-01

    Background The purpose of this study was to describe professional soccer players’ perceptions towards injuries, physical recovery and the effect of surface related factors on injury resulting from soccer participation on 3rd generation artificial turf (FT) compared to natural grass (NG). Methods Information was collected through a questionnaire that was completed by 99 professional soccer players from 6 teams competing in Major League Soccer (MLS) during the 2011 season. Results The majority (93% and 95%) of the players reported that playing surface type and quality influenced the risk of sustaining an injury. Players believed that playing and training on FT increased the risk of sustaining a non-contact injury as opposed to a contact injury. The players identified three surface related risk factors on FT, which they related to injuries and greater recovery times: 1) Greater surface stiffness 2) Greater surface friction 3) Larger metabolic cost to playing on artificial grounds. Overall, 94% of the players chose FT as the surface most likely to increase the risk of sustaining an injury. Conclusions Players believe that the risk of injury differs according to surface type, and that FT is associated with an increased risk of non-contact injury. Future studies should be designed prospectively to systematically track the perceptions of groups of professional players training and competing on FT and NG. PMID:24581229

  15. Trends in the nature of provision in ophthalmology services and resources and barriers to education in ophthalmic nursing: 3rd National UK survey.

    PubMed

    Czuber-Dochan, Wladyslawa J; Waterman, Christine G; Waterman, Heather A

    2006-04-01

    Over the last decade in the United Kingdom (UK), the roles of nurses have become increasingly specialised to support a more efficient and effective health service. In ophthalmology, the changes are most visible in the growing number of patients being treated as day case and the greater nursing contribution to patient outcomes. To support this change there is a continuing need for educational institutions to create opportunities to meet the training needs of nurses working in both specialised areas and at the advance level of practice. This article reports on a 3rd national survey the aims of which were to investigate trends in the nature and provision of ophthalmic services and the resources and barriers to education in ophthalmic nursing. The results demonstrate that over the three surveys there has been a significant increase of pre-operative assessment units and a significant decrease of designated ophthalmic wards. Between the second and third survey, the results indicate fewer difficulties with funding but there has been an increase of respondents stating a lack of training institutions offering ophthalmic courses. The survey shows that at a time when nurses need to acquire ophthalmic nursing skills and knowledge there appear to be fewer opportunities for them to access ophthalmic courses.

  16. Evidence of human-induced morphodynamic changes along the Campania coastal areas (southern Italy) since the 3rd-4th cent. AD

    NASA Astrophysics Data System (ADS)

    Russo Ermolli, Elda; Romano, Paola; Liuzza, Viviana; Amato, Vincenzo; Ruello, Maria Rosaria; Di Donato, Valentino

    2014-05-01

    Campania has always offered suitable climatic and physiographic conditions for human settlements since prehistoric times. In particular, many Graeco-Roman towns developed along its coasts starting from the 7th-6th cent. BC. In the last decade, geoarchaelogical surveys have been carried out in the archaeological excavations of Neapolis, Paestum and Elea-Velia allowing the main steps of the landscape evolution around these towns to be defined in detail. The greek town of Neapolis rose in the late 6th cent. BC [1] on a terrace overlooking a low-relief rocky coast surrounded by volcanic hills. Port activities developed in a protected bay facing the town from the 4th-2nd cent. BC up to the 4th cent. AD, as testified by the discovery of structures and shipwrecks [2, 3, 4]. Starting from the 3rd cent. AD a spit bar formed at the bay entrance causing the progressive establishment of a lagoon which was gradually filled up by alluvial inputs and completely closed in the 5th cent. AD. During the same period, episodes of increased alluvial inputs were also recorded further west along the coast, where a narrow sandy beach formed at the cliff toe. The greek town of Poseidonia, renamed Paestum by the Romans, was founded in the 540 BC on a travertine terrace facing the sandy littoral of a prograding coastal plain [5]. In front of the main town door, a coastal lagoon developed thanks to the growth of a dune ridge and was probably used for harbor activities [5]. After this period the shoreline shifted seawards, another dune ridge formed and the back-ridge depression was filled with fluvial-marshy deposits, slowly drying up. Phases of travertine deposition, which characterized the SE sector of the plain all along the Holocene, were recorded in the northern and southern quarters of the town in historical times and were connected to the abandonment of the town in the early Medieval times. The greek colony of Elea-Velia was located on top of a siliciclastic promontory where the ruins of

  17. The origin of anomalous 3rd neighbor exchange in 2D triangular magnets (NiGa2S4 and others)

    NASA Astrophysics Data System (ADS)

    Mazin, Igor

    2008-03-01

    2D magnetic materials with triangular lattices have been attracting much interest. Among them one finds the parent compound of an exotic superconductor, NaxCoO2.yH2O, A-type antiferromagnets like NaNiO2, in-plane antiferromagnetism (LiCrO2), spin-liquid type materials (NiGa2S4), charge-order (AgNiO2). The main structural motif in all of them is the AB2 plane, where A is a transition metal and B is oxygen or sulfur. Experiments and calculations inevitably find anomalously strong 3rd neighbor exchange coupling in all these triangular planes, despite different band fillings and different magnetic ground states. I will explain why this happens, why this effect is so universal, and why it can be understood entirely on a one-electron level. I will use as an example NiGa2S4, with a reference to NaxCoO2 as well.

  18. Sunphotometric Measurement of Columnar H2O and Aerosol Optical Depth During the 3rd Water Vapor IOP in Fall 2000 at the SGP ARM Site

    NASA Technical Reports Server (NTRS)

    Schmid, B; Eilers, J. A.; McIntosh, D. M.; Longo, K.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Braun, J.; Rocken, C.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    We conducted ground-based measurements with the Ames Airborne Tracking 6-channel Sunphotometer (AATS-6) during the 3rd Water Vapor IOP (WVIOP3), September 18 - October 8, 2000 at the SGP ARM site. For this deployment our primary result was columnar water vapor (CWV) obtained from continuous solar transmittance measurements in the 0.94-micron band. In addition, we simultaneously measured aerosol optical depth (AOD) at 380, 450, 525, 864 and 1020 nm. During the IOP, preliminary results of CWV and AOD were displayed in real-time. The result files were made available to other investigators by noon of the next day. During WVIOP3 those data were shown on the daily intercomparison plots on the IOP web-site. Our preliminary results for CWV fell within the spread of values obtained from other techniques. After conclusion of WVIOP3, AATS-6 was shipped directly to Mauna Loa, Hawaii for post-mission calibration. The updated calibration, a cloud screening technique for AOD, along with other mostly cosmetic changes were applied to the WVIOP3 data set and released as version 0.1. The resulting changes in CWV are small, the changes in AOD and Angstrom parameter are more noticeable. Data version 0.1 was successfully submitted to the ARM External Data Center. In the poster we will show data examples for both CWV and AOD. We will also compare our CWV results with those obtained from a GPS (Global Positioning System) slant path method.

  19. The elemental abundances in interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Arndt, Peter; Bohsung, Jörg; Maetz, Mischa; Jessberger, Elmar K.

    1996-11-01

    We compiled a table of all major, minor, and trace-element abundances in 89 interplanetary dust particles (IDPs) that includes data obtained with proton-induced x-ray emission (PIXE), synchroton x-ray fluorescence (SXRF), and secondary ion mass spectrometry (SIMS). For the first time, the reliability of the trace-element abundances in IDPs is tested by various crosschecks. We also report on the results of cluster analyses that we performed on IDP compositions. Because of the incompleteness of the data set, we included only the elements Cr, Mn, Ni, Cu, and Zn, normalized to Fe and CI chondrite abundances, that are determined in 73 IDPs. The data arrange themselves in four rather poorly defined groups that we discuss in relation to CI chondrites following the assumption that on the average CI abundances are most probable. The largest group (chondritic), with 44 members, has close to CI abundances for many refractory and moderately refractory elements (Na, Al, Si, P, K, Sc, Ti, V, Cr, Co, Ge, Sr). It is slightly depleted in Fe and more in Ca and S, while the volatile elements (Cl, Cu, Zn, Ga, Se, Rb) are enriched by =1.7 × CI and Br by 21 × CI. The low-Zn group, with 12 members, is very similar to the chondritic group except for its Zn-depletion, stronger Ca-depletion and Fe-enrichment. The low-Ni group, with 11 members, has Ni/Fe = 0.03 × CI and almost CI-like Ca, but its extraterrestrial origin is not established. The last group (6 members) contains non-systematic particles of unknown origin. We found that Fe is inhomogeneously distributed on a micron scale. Furthermore, the abundances of elements that are measured near their limits of detection are easily overestimated. These biases involved, the incomplete data set and possible contaminating processes prevent us from obtaining information on the specific origin(s) of IDPs from elemental abundances.

  20. Evolution of Fourier spectra through interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Pitna, Alexander; Safrankova, Jana; Nemecek, Zdenek; Nemec, Frantisek; Goncharov, Oleksandr

    2014-05-01

    Well established nearly isothermic solar wind expansion requires an additional heating. A dissipation of large scale variations of the solar wind kinetic energy into the thermal energy via turbulence cascades is thought to be an important source of this heating, although the exact mechanism is yet to be found. For this reason, the turbulence in the solar wind is a subject of extensive theoretical and experimental studies on different time scales ranging from years to minutes. The frequency spectrum of magnetic field fluctuations can be divided into several domains differing by spectral indices - the lowest frequencies are controlled by the solar activity, MHD activity shapes the spectrum at higher (up to 0.1 Hz) frequencies, whereas the ion and electron kinetic effects dominate at the high frequency end of the spectra. Interplanetary shocks of various origins are a part of solar wind turbulence naturally occurring in the solar wind and the BMSW instrument onboard the Spektr-R spacecraft has detected tens of them in course of the 2011-2013 years. Based on its high-time resolution of the ion flux, density and velocity measurements reaching 31 ms, we study an evolution of the frequency spectra on MHD and kinetic scales across fast forward low Mach number shocks. We have found that the power of downstream fluctuations rises by an order of magnitude in a broad range of frequencies independently of its upstream value but the slope of the spectrum on the kinetic scale (≡3-8 Hz) has been found to be statistically steeper downstream than upstream of the shock. The time needed to a full relaxation to the pre-shock spectral shape is as long as several hours. A combination of the ion flux power spectra obtained by BMSW with fast magnetic field observations of other spacecraft enhances our understanding of dissipation mechanisms.

  1. Medusa: Nuclear explosive propulsion for interplanetary travel

    NASA Astrophysics Data System (ADS)

    Solem, Johndale C.

    1993-01-01

    Because of the deleterious effects of galactic cosmic radiation, solar flares, zero gravity and psychological stress, there is strong motivation to develop high-specific-impulse and high-thrust spacecraft for rapid transport of astronauts between planets. A novel spacecraft design is presented using a large lightweight sail (spinnaker) driven by pressure pulses from a series of nuclear explosions. The spacecraft appears to be a singularly competent and economical vehicle for high-speed interplanetary travel. The mass of the spinnaker is theoretically independent of the size of its canopy or the length of its tethers. Consequently, the canopy can be made very large to minimize radiation damage from the nuclear explosions and the tethers can be made very long to mitigate radiation hazard to the crew. The pressure from the nuclear explosion imparts a large impulsive acceleration to the lightweight spinnaker, which must be translated to a small smooth acceleration of the space capsule either by using the elasticity of the tethers or a servo winch in the space capsule, or a combination of the two. If elasticity alone is used, the maximum acceleration suffered by the space capsule is inversely propotional to the tether length. The use of very long tethers allows the spacecraft to achieve high velocities without using an exceedingly large number of bombs, a feature unavailable to previous forms of nuclear-explosive propulsion. Should the political questions connected with an unconventional use of nuclear explosives be favorably resolved, the proposal will be a good candidate for propulsion in the Mars mission.

  2. The Astromineralogy of Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Bradley, J.

    Some chondritic interplanetary dust particles (IDPs) collected in the stratosphere are from comets. Because comets accreted at heliocentric distances beyond the giant planets, presolar grains or "astrominerals" both with solar and non-solar isotopic compositions are expected to be even more abundant in cometary IDPs than in primitive meteorites. Non-solar D/H and 15N/14N isotopic enrichments in chondritic IDPs are associated with a carbonaceous carrier. These H and N enrichments are attributed to extreme mass fractionation during chemical reactions in cold (10-100 K), dense interstellar molecular clouds. Nano-diamonds appear to be systematically depleted or even absent in some IDPs suggesting that some meteoritic nano-diamonds may not be (presolar) astrominerals. Enstatite (MgSiO3) and forsterite (Mg2SiO4) crystals in IDPs are physically and compositionally similar to enstatite and forsterite grains detected around young and old stars by the Infrared Space Observatory (ISO), and large non-solar oxygen isotopic compositions recently measured in an IDP forsterite establish that they are presolar circumstellar silicates. The compositions, mineralogy, and optical properties of GEMS are consistent with those of interstellar amorphous silicates. Submicrometer FeNi sulfide astrominerals like those found in IDPs may be responsible for a broad char 126 23.5 mum feature observed around protostars and protoplanetary discs by ISO. The first returned samples of contemporary interstellar dust as well as dust from comet Wild-2 will be returned to Earth in 2006 by the STARDUST mission, providing a mother lode of astrominerals for future laboratory investigations.

  3. LDEF Interplanetary Dust Experiment (IDE) results

    NASA Technical Reports Server (NTRS)

    Oliver, John P.; Singer, S. F.; Weinberg, J. L.; Simon, C. G.; Cooke, W. J.; Kassel, P. C.; Kinard, W. H.; Mulholland, J. D.; Wortman, J. J.

    1995-01-01

    The Interplanetary Dust Experiment (IDE) provided high time resolution detection of microparticle impacts on the Long Duration Exposure Facility satellite. Particles, in the diameter range from 0.2 microns to several hundred microns, were detected impacting on six orthogonal surfaces of the gravity-gradient stabilized LDEF spacecraft. The total sensitive surface area was about one square meter, distributed between LDEF rows 3 (Wake or West), 6 (South), 9 (Ram or East), 12 (North), as well as the Space and Earth ends of LDEF. The time of each impact is known to an accuracy that corresponds to better than one degree in orbital longitude. Because LDEF was gravity-gradient stabilized and magnetically damped, the direction of the normal to each detector panel is precisely known for each impact. The 11 1/2 month tape-recorded data set represents the most extensive record gathered of the number, orbital location, and incidence direction for microparticle impacts in low Earth orbit. Perhaps the most striking result from IDE was the discovery that microparticle impacts, especially on the Ram, South, and North surfaces, were highly episodic. Most such impacts occurred in localized regions of the orbit for dozens or even hundreds of orbits in what we have termed Multiple Orbit Event Sequences (MOES). In addition, more than a dozen intense and short-lived 'spikes' were seen in which impact fluxes exceeded the background by several orders of magnitude. These events were distributed in a highly non-uniform fashion in time and terrestrial longitude and latitude.

  4. STEREO database of interplanetary Langmuir electric waveforms

    NASA Astrophysics Data System (ADS)

    Briand, C.; Henri, P.; Génot, V.; Lormant, N.; Dufourg, N.; Cecconi, B.; Nguyen, Q. N.; Goetz, K.

    2016-02-01

    This paper describes a database of electric waveforms that is available at the Centre de Données de la Physique des Plasmas (CDPP, http://cdpp.eu/). This database is specifically dedicated to waveforms of Langmuir/Z-mode waves. These waves occur in numerous kinetic processes involving electrons in space plasmas. Statistical analysis from a large data set of such waves is then of interest, e.g., to study the relaxation of high-velocity electron beams generated at interplanetary shock fronts, in current sheets and magnetic reconnection region, the transfer of energy between high and low frequencies, the generation of electromagnetic waves. The Langmuir waveforms were recorded by the Time Domain Sampler (TDS) of the WAVES radio instrument on board the STEREO mission. In this paper, we detail the criteria used to identify the Langmuir/Z-mode waves among the whole set of waveforms of the STEREO spacecraft. A database covering the November 2006 to August 2014 period is provided. It includes electric waveforms expressed in the normalized frame (B,B × Vsw,B × (B × Vsw)) with B and Vsw the local magnetic field and solar wind velocity vectors, and the local magnetic field in the variance frame, in an interval of ±1.5 min around the time of the Langmuir event. Quicklooks are also provided that display the three components of the electric waveforms together with the spectrum of E∥, together with the magnitude and components of the magnetic field in the 3 min interval, in the variance frame. Finally, the distribution of the Langmuir/Z-mode waves peak amplitude is also analyzed.

  5. Interplanetary navigation using a continental baseline large antenna arrays

    NASA Technical Reports Server (NTRS)

    Haeberle, Dennis W.; Spencer, David B.; Ely, Todd A.

    2004-01-01

    Navigation is a key component of interplanetary missions and must continue to be precise with the changing landscape of antenna design. Improvements for the Deep Space Network (DSN) may include the use of antenna arrays to simulate the power of a larger single antenna at much lower operating and construction costs. Therefore, it is necessary to test the performance of arrayed antennas from a navigational point-of-view. This initial investigation focuses on the performance of arrayed antennas from a navigational point-of-view. This initial investigation focuses on the performance of delta one-way range measurements using a shorter baseline with more data collection then current systems use. With all other parameter equal, the longer the baseline, the better the accuracy for navigation making the number of data packets very important. This trade study compares baseline distances ranging from 1 to 1000km with an in use baseline, looking at a due east baseline, a due north baseline at 45 degrees East of North. The precision of the baseline systems can be found through a simulated created for this purpose using the Jet Propulsion Lab based Monte navigation and mission design tool. The simulation combines the delta one-way range measurements with two-range and two-way Doppler measurements and puts the measurements through a Kalman filter to determine an orbit solution. Noise is added along with initial errors to give the simulation realism. This study is an important step towards the assessment of the utility of arrays for navigational purposes. The preliminary results have showed a decrease in reliability as the baseline is shortened but the larger continental baselines show comparable results t that of the current Goldstone to Canberra.

  6. Does 3rd age plus 3rd world equal 3rd class?

    PubMed

    Tout, K

    1992-04-01

    The patterns of care of the aged population are being influenced by demographic changes, migration, and industrialization in developing countries. There is no longer a secure place for the elders in the community as chiefs, sages, or useful members of the household. In very large mega-cities the aged living in an extended family are more prone to psychological problems than in a lone living situation. There are many variations in the degree of abandonment or loss of dignity, which are described in examples from Vilcabamba, Potosi, Lima, and Belize. For example in Belize, there are no cities to migrate to so people leave to seek their fortunes in the US or the UK. Solutions are possible within the community. The experiences of HelpAge International are reported for Pro Vida, Colombia; India; and Sri Lanka. In Colombia efforts were made to acquire a bakery so that the elderly could be employed in bread baking, donating loaves to institutions, and selling half the loaves on the street. Other projects involved improving living conditions for lone old people in shanty towns and training social workers. The institutional aim was to concentrate on a locale. Attention was given to providing instruction in classrooms to enlighten youth about the needs of the elderly. HelpAge in India concentrated on eye problems of the elderly in remote areas through awareness and fundraising campaigns. HelpAge Sri Lanka has set up seminars and training programs which have been models for similar programs in Thailand. Shared experience with the problems of aged beggars suggests that funding must come from nongovernmental agencies. The cultivation and sale of herbs by the elderly was promoted in Vilcabamba; in Jamaica a memory bank was established for preserving cultural traditions. Abandoned industries have been revived. The needs of the organizers, who are primarily volunteers, are organization skills. Governments can supplement meager funds by enhancing traditional life, by removing obstacles to foreign aid, and by avoiding spending on prestige projects and questionable projects imported from Western countries. Reinforcement of families and of local community groups is needed.

  7. Metabolic engineering of E.coli for the production of a precursor to artemisinin, an anti-malarial drug [Chapter 25 in Manual of Industrial Microbiology and Biotechnology, 3rd edition

    SciTech Connect

    Petzold, Christopher; Keasling, Jay

    2011-07-18

    This document is Chapter 25 in the Manual of Industrial Microbiology and Biotechnology, 3rd edition. Topics covered include: Incorporation of Amorpha-4,11-Diene Biosynthetic Pathway into E. coli; Amorpha-4,11-Diene Pathway Optimization; "-Omics" Analyses for Increased Amorpha-4,11-Diene Production; Biosynthetic Oxidation of Amorpha-4,11-Diene.

  8. CME dynamics using coronagraph and interplanetary ejecta observations

    NASA Astrophysics Data System (ADS)

    Dal Lago, Alisson; Demítrio Gonzalez Alarcon, Walter; da Silva, Marlos; de Lucas, Aline; Braga, Carlos Roberto; Ramos Vieira, Lucas

    One of the key issues of Space Weather is the dynamics of coronal mass ejections, from their release from the Sun, their propagation throughout the interplanetary space, eventually im-pacting the earth and other planets. These impacts of CMEs are the most important drivers of space weather phenomena. A number of empirical and analytical studies have addressed this point so far, using observations from coronagraphs and interplanetary monitors, in order to correlate CMEs observed near the Sun and in situ (e.g. earth vincity). However, results are far from conclusive. Error bars in CME travel time predictions from the Sun to earth, are of the order of 1 day, which is considerably big for the typical time scale of 1 to 3 days of their travel time. After many years of intensive investigations of CMEs observed with the Large An-gle and Spectrometric Coronagraph (LASCO), abord the Solar and Heliospheric Observatory (SOHO), we found that the subset of interplanetary counterparts of CMEs, the ICMEs, with a well defined ejecta structure are those with best predictable behaviour. The prediction of these interplanetary ejecta travel time to earth, using coronagraph observations is the one with lowest error bar among other sets of events, such as interplanetary shock. We present a statistic study of all the CME-ejecta events observed by SOHO and by the Advanced Composition Explorer (ACE) satellite since 1997.

  9. Interplanetary MeV electrons of Jovian origin

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Mcdonald, F. B.; Trainor, J. H.; Webber, W. R.; Roelof, E. C.

    1974-01-01

    Observations of low energy electron increases observed in interplanetary space on Pioneer 10 are reported as it approached Jupiter. These discrete bursts were several hundred times the normal quiet-time electron flux, and became more frequent as one approached Jupiter resulting in the quasi-continuous presence of large fluxes of these electrons in interplanetary space. It is noted that the integrated flux from quiet-time electrons is comparable to the integrated ambient electron flux itself. In addition, the spectrum of electrons observed in Jupiter's magnetosphere, on Pioneer 10 in interplanetary space near Jupiter, for the quiet-time increases near the earth, and for the ambient electron spectrum are all remarkably similar. These two lines of evidence suggest the possibility that Jupiter could be the source of most of the ambient electrons at low energies.

  10. Interplanetary magnetic field effects on high latitude ionospheric convection

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1985-01-01

    Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.

  11. Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1983-01-01

    An extended discussion is conducted concerning the origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large scale dynamics of the solar wind. The solar wind is at present the preeminent medium for the study of hydromagnetic waves and turbulence, providing an opportunity for advancement of understanding of the most fundamental processes of the astrophysical plasmas. All interplanetary fluctuations whose time scale is observed to be greater than 1 sec can be regarded as hydromagnetic fluctuations. It has been found to be simplest, and generally very satisfactory, to model interplanetary variations as fluctuations in an MHD fluid. Attention is given to the classification of wave modes, geometrical hydromagnetics, Alfven wave pressure, rugged invariants, and the kinetic theory of collisionless processes.

  12. A novel amperometric alcohol biosensor developed in a 3rd generation bioelectrode platform using peroxidase coupled ferrocene activated alcohol oxidase as biorecognition system.

    PubMed

    Chinnadayyala, Somasekhar R; Kakoti, Ankana; Santhosh, Mallesh; Goswami, Pranab

    2014-05-15

    Alcohol oxidase (AOx) with a two-fold increase in efficiency (Kcat/Km) was achieved by physical entrapment of the activator ferrocene in the protein matrix through a simple microwave based partial unfolding technique and was used to develop a 3rd generation biosensor for improved detection of alcohol in liquid samples. The ferrocene molecules were stably entrapped in the AOx protein matrix in a molar ratio of ~3:1 through electrostatic interaction with the Trp residues involved in the functional activity of the enzyme as demonstrated by advanced analytical techniques. The sensor was fabricated by immobilizing ferrocene entrapped alcohol oxidase (FcAOx) and sol-gel chitosan film coated horseradish peroxidase (HRP) on a multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode through layer-by-layer technique. The bioelectrode reactions involved the formation of H2O2 by FcAOx biocatalysis of substrate alcohol followed by HRP-catalyzed reduction of the liberated H2O2 through MWCNT supported direct electron transfer mechanism. The amperometric biosensor exhibited a linear response to alcohol in the range of 5.0 × 10(-6) to 30 × 10(-4)mol L(-1) with a detection limit of 2.3 × 10(-6) mol L(-1), and a sensitivity of 150 µA mM(-1) cm(-2). The biosensor response was steady for 28 successive measurements completed in a period of 5h and retained ~90% of the original response even after four weeks when stored at 4 °C. The biosensor was successfully applied for the determination of alcohol in commercial samples and its performance was validated by comparing with the data obtained by GC analyses of the samples.

  13. Non-destructive measurement of demineralization and remineralization in the occlusal pits and fissures of extracted 3rd molars with PS-OCT

    NASA Astrophysics Data System (ADS)

    Lee, Chulsung; Hsu, Dennis J.; Le, Michael H.; Darling, Cynthia L.; Fried, Daniel

    2009-02-01

    Previous studies have demonstrated that Polarization Sensitive Optical Coherence Tomography (PS-OCT) can be used to image the remineralization of early artificial caries lesion on smooth enamel surfaces of human and bovine teeth. However, most new dental decay is found in the pits and fissures of the occlusal surfaces of posterior dentition and it is in these high risk areas where the performance of new caries imaging devices need to be investigated. The purpose of this study was to demonstrate that PS-OCT can be used to measure the subsequent remineralization of artificial lesions produced in the pits and fissures of extracted 3rd molars. A PS-OCT system operating at 1310-nm was used to acquire polarization resolved images of occlusal surfaces exposed to a demineralizing solution at pH-4.5 followed by a fluoride containing remineralizing solution at pH-7.0 containing 2-ppm fluoride. The integrated reflectivity was calculated to a depth of 200-µm in the entire lesion area using an automated image processing algorithm. Although a well-defined surface zone was clearly resolved in only a few of the samples that underwent remineralization, the PS-OCT measurements indicated a significant (p<0.05) reduction in the integrated reflectivity between the severity of the lesions that were exposed to the remineralization solution and those that were not. The lesion depth and mineral loss were also measured with polarized light microscopy and transverse microradiography after sectioning the teeth. These results show that PS-OCT can be used to non-destructively monitor the remineralization potential of anti-caries agents in the important pits and fissures of the occlusal surface.

  14. Stellar Occultations by Large TNOs on 2012: The February 3rd by (208996) 2003 AZ84, and the February 17th by (50000) Quaoar

    NASA Astrophysics Data System (ADS)

    Braga Ribas, Felipe; Sicardy, B.; Ortiz, J. L.; Duffard, R.; Camargo, J. I. B.; Lecacheux, J.; Colas, F.; Vachier, F.; Tanga, P.; Sposetti, S.; Brosch, N.; Kaspi, S.; Manulis, I.; Baug, T.; Chandrasekhar, T.; Ganesh, S.; Jain, J.; Mohan, V.; Sharma, A.; Garcia-Lozano, R.; Klotz, A.; Frappa, E.; Jehin, E.; Assafin, M.; Vieira Martins, R.; Behrend, R.; Roques, F.; Widemann, T.; Morales, N.; Thirouin, A.; Mahasena, P.; Benkhaldoun, Z.; Daassou, A.; Rinner, C.; Ofek, E. O.

    2012-10-01

    On February 2012, two stellar occultation's by large Trans-neptunian Objects (TNO's) were observed by our group. On the 3rd, an event by (208996) 2003 AZ84 was recorded from Mont Abu Observatory and IUCAA Girawali Observatory in India and from Weizmann Observatory in Israel. On the 17th, a stellar occultation by (50000) Quaoar was observed from south France and Switzerland. Both occultations are the second observed by our group for each object, and will be used to improve the results obtained on the previous events. The occultation by 2003 AZ84 is the first multi-chord event recorded for this object. From the single chord event on January 8th 2011, Braga-Ribas et al. 2011 obtained a lower limit of 573 +/- 21 km. From the 2012 occultation the longest chord has a size of 662 +/- 50 km. The other chords will permit to determine the size and shape of the TNO, and derive other physical parameters, such as the geometric albedo. The Quaoar occultation was observed from south of France (Observatoire de la Côte d'Azur, TAROT telescope and Valensole) and from Gnosca, Switzerland. Unfortunately, all three sites in France are almost at the same Quaoar's latitude, so in practice, we have two chords that can be used to fit Quaoar's limb. The resulting fit will be compared with the results obtained by Braga-Ribas et al. 2011. Braga-Ribas F., Sicardy B., et al. 2011, EPSC-DPS2011, 1060.Ribas F., Sicardy B., et al. 2011, EPSC-DPS2011, 1060.

  15. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities

  16. INTERPLANETARY SHOCKS LACKING TYPE II RADIO BURSTS

    SciTech Connect

    Gopalswamy, N.; Kaiser, M. L.; Xie, H.; Maekelae, P.; Akiyama, S.; Yashiro, S.; Howard, R. A.; Bougeret, J.-L.

    2010-02-20

    We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks ({approx}34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed {approx}535 km s{sup -1}) and only {approx}40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km s{sup -1} and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration {approx}+6.8 m s{sup -2}), while those associated with RL shocks were decelerating (average acceleration {approx}-3.5 m s{sup -2}). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is predominant

  17. Interplanetary Shocks Lacking Type 2 Radio Bursts

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Maekela, P.; Akiyama, S.; Yashiro, S.; Kaiser, M. L.; Howard, R. A.; Bougeret, J.-L.

    2010-01-01

    We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks (approximately 34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed approximately 535 km/s) and only approximately 40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km/s and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration approximately +6.8 m/s (exp 2)), while those associated with RL shocks were decelerating (average acceleration approximately 3.5 m/s (exp 2)). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is

  18. Conceptual Design For Interplanetary Spaceship Discovery

    NASA Astrophysics Data System (ADS)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  19. Whistler Waves Associated with Weak Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.

    2012-01-01

    We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 < Beta < 10). We have compared the waves properties upstream and downstream of the shocks. In the upstream region the waves are mainly circularly polarized, and in most of the cases (approx. 75%) they propagate almost parallel to the ambient magnetic field (<30 deg.). In contrast, the propagation angle with respect to the shock normal varies in a broad range of values (20 deg. to 90 deg.), suggesting that they are not phase standing. We find that the whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to

  20. Water and organics in interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Bradley, John P.

    2015-08-01

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at ~90 km altitude and settle to the Earth’s surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earth’s surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend ~104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.Affiliations:a University of Hawaii at Manoa, Hawaii Institute of Geophysics and Planetology, 1680 East-West Road, Honolulu, HI 96822, USA.b National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.c Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.d Department of Materials Science & Engineering, University of California

  1. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 3: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. Here, information is given on the IPOST code.

  2. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  3. Interplanetary dust and debris, as observed from the Moon

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. Chantal

    1994-06-01

    The visible trace of the interplanetary dust cloud, so-called the zodiacal light, has already been photographed from the Moon, more than twenty years ago (part 1). The interplanetary dust grains do not only scatter solar light; they produce a thermal emission in the near infrared domain; also they may impact the Earth and Moon system as they spiral towards the Sun (part 2). The main problems which can be anticipated for Moon based observations of faint astronomical sources are likely to be due to zodiacal light and zodiacal emission; the induced contamination would however be reduced by appropriate choices in the periods of observation (part 3).

  4. Optical spectroscopy of interplanetary dust collected in the earth's stratosphere

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Shirck, J.; Walker, R. M.; Freeman, J. J.

    1980-01-01

    Optical absorption spectra of interplanetary dust particles 2-30 microns in size collected in the atmosphere at an altitude of 20 km by inertial impactors mounted on NASA U-2 aircraft are reported. Fourier transform absorption spectroscopy of crushed samples of the particles reveals a broad feature in the region 1300-800 kaysers which has also been found in meteorite and cometary dust spectra, and a weak iron crystal field absorption band at approximately 9800 kaysers, as is observed in meteorites. Work is currently in progress to separate the various components of the interplanetary dust particles in order to evaluate separately their contributions to the absorption.

  5. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  6. The deep space network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  7. Autonomous structural health monitoring technique for interplanetary drilling applications using laser Doppler velocimeters

    NASA Astrophysics Data System (ADS)

    Statham, Shannon M.

    The research work presented in this thesis is devoted to the formulation and field testing of a dynamics-based structural health monitoring system for an interplanetary subsurface exploration drill system. Structural health monitoring is the process of detecting damage or other types of defects in structural and mechanical systems that have the potential to adversely affect the current or future performance of these systems. Interplanetary exploration missions, specifically to Mars, involve operations to search for water and other signs of extant or past life. Such missions require advanced robotic systems that are more susceptible to structural and mechanical failures, which motivates a need for structural health monitoring techniques relevant to interplanetary exploration systems. Strict design requirements for interplanetary exploration missions create unique research problems and challenges compared with structural health monitoring procedures and techniques developed to date. These challenges include implementing sensors and devices that will not interfere with the drilling operation, producing "real-time" diagnostics of the drilling condition, and developing an automation procedure for complete autonomous operations. The first research area involves modal analysis experiments to understand the dynamic characteristics of interplanetary drill structural systems in operation. These experiments also validate the use of Laser Doppler Velocimeter sensors in real-time structural health monitoring and prove the drill motor system adequately excites the drill for dynamic measurements and modal analysis while the drill is in operation. The second research area involves the development of modal analysis procedures for rotating structures using a Chebyshev signal filter to remove harmonic component and other noise from the rotating drill signal. This filter is necessary to accurately analyze the condition of the rotating drill auger tube while in operation. The third

  8. Migration of Interplanetary Dust and Comets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from <0.0004 to 0.4. For silicates, such values correspond to particle diameters between >1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles

  9. CLIpSAT for Interplanetary Missions: Common Low-cost Interplanetary Spacecraft with Autonomy Technologies

    NASA Astrophysics Data System (ADS)

    Grasso, C.

    2015-10-01

    Blue Sun Enterprises, Inc. is creating a common deep space bus capable of a wide variety of Mars, asteroid, and comet science missions, observational missions in and near GEO, and interplanetary delivery missions. The spacecraft are modular and highly autonomous, featuring a common core and optional expansion for variable-sized science or commercial payloads. Initial spacecraft designs are targeted for Mars atmospheric science, a Phobos sample return mission, geosynchronous reconnaissance, and en-masse delivery of payloads using packetized propulsion modules. By combining design, build, and operations processes for these missions, the cost and effort for creating the bus is shared across a variety of initial missions, reducing overall costs. A CLIpSAT can be delivered to different orbits and still be able to reach interplanetary targets like Mars due to up to 14.5 km/sec of delta-V provided by its high-ISP Xenon ion thruster(s). A 6U version of the spacecraft form fits PPOD-standard deployment systems, with up to 9 km/s of delta-V. A larger 12-U (with the addition of an expansion module) enables higher overall delta-V, and has the ability to jettison the expansion module and return to the Earth-Moon system from Mars orbit with the main spacecraft. CLIpSAT utilizes radiation-hardened electronics and RF equipment, 140+ We of power at earth (60 We at Mars), a compact navigation camera that doubles as a science imager, and communications of 2000 bps from Mars to the DSN via X-band. This bus could form the cornerstone of a large number asteroid survey projects, comet intercept missions, and planetary observation missions. The TugBot architecture uses groups of CLIpSATs attached to payloads lacking innate high-delta-V propulsion. The TugBots use coordinated trajectory following by each individual spacecraft to move the payload to the desired orbit - for example, a defense asset might be moved from GEO to lunar transfer orbit in order to protect and hide it, then returned

  10. Interplanetary density models as inferred from solar Type III bursts

    NASA Astrophysics Data System (ADS)

    Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert

    2016-04-01

    We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.

  11. Transport in the interplanetary medium of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Romero-Salazar, L.; Ventura, A.

    2008-07-01

    Coronal mass ejections (CMEs) are large scale structures of plasma and magnetic field expelled from the Sun to the interplanetary medium and generally observed in white light coronagraphs. During their travel, in the interplanetary medium these structures named interplanetary coronal mass ejections (ICMEs), suffer acceleration or deceleration due to the interaction with the ambient solar wind. This process can be understood as a transference of momentum between the interplanetary CME (ICME) and the solar wind. This process seems to be fundamentally different for `slow' and `fast' ICMEs (compared with the ambient solar wind velocity). In this work, we approach the problem from the fluid dynamics point of view and consider the ICMEs - solar wind system as two interacting fluids under the action of viscous forces. We note that this interaction is a special case of interaction between low density plasmas. Using these viscous forces in the Newtons Second Law, we obtained an analytical solution for the ICME velocity as a function of time. By comparing our analytic results with empirical models found in recent literature, we suggested values for the viscosity and drag parameters in this system. In this first approximation we have neglected the magnetic field.

  12. Microcharacterization of interplanetary dust collected in the Earth's stratosphere

    NASA Astrophysics Data System (ADS)

    Fraundorf, P. B.

    The internal structure of thirteen 10 micrometer aggregates were examined using selected techniques from the field now known as analytical electron microscopy. The aggregates were collected in the Earth's stratosphere at 20 km altitude by impactors mounted on NASA U-2 aircraft. Eleven of them exhibited relative major element abundances similar to those found in chondritic meteorities. For this and other reasons, these eleven particles are believed to represent relatively unaltered interplanetary dust. Interplanetary dust is thought to be of cometary origin, and comets in turn provide the most promising reservoir for unaltered samples of materials present during the collapse of the solar nebula. It is shown that the chondritic aggregates probably contain important information on a wide range of processes in the early solar system. The observations are consistent with the hypotheses that: (1) the particles represent fragments of interplanetary dust; (2) some of them have not been significantly altered by thermal or radiation processes since their assembly; (3) interplanetary dust is of cometary origin; and (4) the dust parent materials consist of a wide range of relatively unaltered leftovers from the collapse of the solar nebula.

  13. [Informational technologies in medical support to an interplanetary mission crew].

    PubMed

    Zaval'niuk, V P; Morgun, V V; Simaeva, L M; Gentselev, V N; Poliakov, V V

    2004-01-01

    Plans to send humans to Mars dictate revision of the whole crew medical support system. Autonomy of the mission will extend crew responsibilities for all dimensions of medical support. The article compares and contrasts medical support of crews on orbital and interplanetary missions, and considers the place and functionality of medical informational technologies in a mission to Mars.

  14. Towards an interplanetary internet: a proposed strategy for standardization

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    2002-01-01

    This paper reviews the current set of standard data communications capabilities that exist to support advanced missions, discusses the architectural concepts for the future Interplanetary Internet, and suggests how a standardized set of space communications protocols that can grow to support future scenarios where human intelligence is widely distributed across the Solar System.

  15. 3-D model of ICME in the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  16. Understanding Magnetic Eruptions in the Sun and Their Interplanetary Consequences

    DTIC Science & Technology

    2006-04-30

    the Sun and their interplanetary consequences. This project is motivated by the fact that the Sun drives the most violent space weather events. The mechanisms that trigger and drive these eruptions are the least understood aspects of space weather. A better physical understanding of how magnetic eruptions occur and how these disturbances propagate will surely lead to more accurate and longer range

  17. Interplanetary space-A new laboratory for rarefied gas dynamics

    NASA Technical Reports Server (NTRS)

    Spreiter, J. R.; Rizzi, A. R.

    1974-01-01

    Interplanetary space provides simultaneously the best vacuum available to man and, because of the solar wind, a tenuous and unsteady high-speed outflow of predominantly hydrogen gas from the sun, a remarkable variety of rarefied gasdynamics phenomena, to observe. A review is provided of these phenomena, and of the way in which the present level of understanding has been achieved.

  18. ICOM2012: 3rd International Conference on the Physics of Optical Materials and Devices (Belgrade, Serbia, 2-6 September 2012)

    NASA Astrophysics Data System (ADS)

    Dramićanin, Miroslav D.; Antić, Željka; Viana, Bruno

    2013-11-01

    The 3rd International Conference on the Physics of Optical Materials and Devices (ICOM2012) was held in Belgrade (Serbia) from 2 to 6 September 2012 (figure 1). The conference was organized by the Vinča Institute of Nuclear Sciences, University of Belgrade (Serbia) and the Laboratoire de Chimie de la Matière Condensée de Paris (France), and supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia and Optical Society of America. ICOM2012 was a follow-up to the two previous, successful ICOM conferences held in Herceg Novi in 2006 and 2009. The conference aimed at providing a forum for scientists in optical materials to debate on: • Luminescent materials and nanomaterials • Hybrid optical materials (organic/inorganic) • Characterization techniques of optical materials • Luminescence mechanisms and energy transfers • Theory and modeling of optical processes • Ultrafast-laser processing of materials • Optical sensors • Medical imaging • Advanced optical materials in photovoltaics and biophotonics • Photothermal and photoacoustic spectroscopy and phenomena The conference stressed the value of a fundamental scientific understanding of optical materials. A particular accent was put on wide band-gap materials in crystalline, glass and nanocrystalline forms. The applications mainly involved lasers, scintillators and phosphors. Rare earth and transition metal ions introduced as dopants in various hosts were considered, and their impact on the optical properties were detailed in several presentations. This volume contains selected contributions of speakers and participants of the ICOM2012 conference. The conference provided a unique opportunity for about 200 scientists from 32 countries to discuss recent progress in the field of optical materials. During the three and half days, 21 invited talks and 52 contributed lectures were given, with a special event in memory of our dear colleague Professor Dr Tsoltan

  19. Rosse, 3rd Earl of [William Parsons, Lord Rosse, Lord Oxmantown] (1800-67) and Rosse, 4th Earl of [Laurence Parsons, Lord Rosse, Lord Oxmantown] (1840-1908)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Irish astronomer and landowner, the 3rd Lord Rosse was educated at Trinity College, Dublin and Oxford as a mathematician. He became interested in astronomy and made at the family castle in Birr a 36 in reflector with the same design as William Herschel's (see HERSCEL FAMILY). Mapped the Moon, and observed nebulae with the intent to resolve them into stars. He developed the technology at Birr Cast...

  20. Crossing the Intercultural Borders into 3rd Space Culture(s): Implications for Teacher Education in the Twenty-First Century

    ERIC Educational Resources Information Center

    Dooly, Melinda Ann

    2011-01-01

    This article looks at a year-long network-based exchange between two groups of student-teachers in Spain and the USA, who were involved in various network-based collaborative activities as part of their teaching education. Their online interaction was facilitated through diverse communicative modes such as Skype, Moodle, Voicethread and Second…

  1. Stages of Geoinformation Evolution Related to the Territories Described in the Bible - from the 3Rd Millennium B.C. to Modern Times

    NASA Astrophysics Data System (ADS)

    Linsenbarth, Adam

    2012-09-01

    The paper presents consecutive stages of the evolution of geoinformation related to the territories of the events described in the Bible. Two geoinformation sources are presented: the Bible and non-Bible sources. In the Bible there is much, often some highly detailed information regarding terrain topography. The oldest non-Bible sources are incorporated in the ancient documents, which were discovered in Egypt and Mesopotamia. Some of them are related to the 3rd millen- nium B.C. The further stages are related to the onomasticons and itineraries written by travellers and pilgrims to the Holy Land. The most famous onomasticons include: onomasticons prepared by bishop Eusebius from Caesarea and those pre- pared by St. Jerome. One of the oldest maps of Palestine's territory is the so-called mosaic map of Madaba dated to 565. In the 15th century several Bible maps were edited. The most rapid evolution occurred in the 16th and 17* centuries, when the world famous cartographers such as Mercator and Ortelius edited several maps of Palestine's territory. Cartographers from several European countries edited more than 6,000 maps presenting the Biblical territories and Biblical events. Modem maps, based on detailed topographical surveys, were edited m the second half of the 19* and 20th centuries. W artykule przedstawiono kolejne etapy rozwoju geoinformacji dotyczącej terenówr biblijnych. Omówiono dwa źródła informacji, a mianowicie geoinformacje biblijne i pozabiblijne. W tekstach biblijnych można znaleźć wiele, często bardzo detalicznych informacji topograficznych. Najstarsze źródła pozabiblijne, to starożytne dokumenty odnalezione na terenach Egiptu i Mezopotamii. Niektóre z nich pochodzą z trzeciego milenium przed Chr. Kolejnym etapem geoinformacji były onomastikony oraz dzienniki podróży pisane przez podróżników i pielgrzymów do Ziemi Świętej. Do najbardziej znanych należy onomastikon sporządzony przez biskupa Euzebiusza z Cezarei oraz

  2. Joint conference of iMEC 2015 (2nd International Manufacturing Engineering Conference & APCOMS 2015 (3rd Asia-Pacific Conference on Manufacturing Systems)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    The iMEC 2015 is the second International Manufacturing Engineering Conference organized by the Faculty of Manufacturing, Universiti Malaysia Pahang (UMP), held from 12-14th November 2015 in Kuala Lumpur, Malaysia, with a theme "Materials, Manufacturing and Systems for Tomorrow". For the first time, iMEC is organized together with 3rd Asia- Pacific Conference on Manufacturing System (APCOMS 2015) which owned by Fakulti Teknologi Industri, Institut Teknologi Bandung (ITB), Indonesia. This is an extended collaboration between UMP and ITB to intensify knowledge sharing and experiences between higher learning institutions. This conference (iMEC & APCOMS 2015) is a platform for knowledge exchange and the growth of ideas, particularly in manufacturing engineering. The conference aims to bring researchers, academics, scientists, students, engineers and practitioners from around the world together to present their latest findings, ideas, developments and applications related to manufacturing engineering and other related research areas. With rapid advancements in manufacturing engineering, iMEC is an appropriate medium for the associated community to keep pace with the changes. In 2015, the conference theme is “Materials, Manufacturing and Systems for Tomorrow” which reflects the acceleration of knowledge and technology in global manufacturing. The papers in these proceedings are examples of the work presented at the conference. They represent the tip of the iceberg, as the conference attracted over 200 abstracts from Malaysia, Indonesia, Japan, United Kingdom, Australia, India, Bangladesh, South Africa, Turkey and Morocco and 151 full papers were accepted in these proceedings. The conference was run in four parallel sessions with 160 presenters sharing their latest finding in the areas of manufacturing process, systems, advanced materials and automation. The first keynote presentation was given by Prof. B. S. Murthy (IIT, Madras) on "Nanomaterials with Exceptional

  3. Modeling solar wind with boundary conditions from interplanetary scintillations

    DOE PAGES

    Manoharan, P.; Kim, T.; Pogorelov, N. V.; ...

    2015-09-30

    Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AUmore » to 1 AU with the boundary conditions based on both Ooty and WSA data.« less

  4. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray H11

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray H11 The Interplanetary Dust Experiment hardware has a thin brown stain on the exposed surfaces. A deeper brown stain, probably from the material underneath the small electrical cover plate of the detector frame, can be seen in the upper right corner of some of the detectors. Stain that was seen on the solar sensor base plate in the flight photograph cannot be seen because of reflected light. The colors seen in the detector's mirror like surface are reflections of the surrounding area. A dark spot seen on a detector in the third row from the top in the flight photograph, was not found in a postflight inspection. A close inspection of this photograph does reveal several impact damage locations.

  5. Modeling solar wind with boundary conditions from interplanetary scintillations

    SciTech Connect

    Manoharan, P.; Kim, T.; Pogorelov, N. V.; Arge, C. N.

    2015-09-30

    Interplanetary scintillations make it possible to create three-dimensional, time- dependent distributions of the solar wind velocity. Combined with the magnetic field observations in the solar photosphere, they help perform solar wind simulations in a genuinely time-dependent way. Interplanetary scintillation measurements from the Ooty Radio Astronomical Observatory in India provide directions to multiple stars and may assure better resolution of transient processes in the solar wind. In this paper, we present velocity distributions derived from Ooty observations and compare them with those obtained with the Wang-Sheeley-Arge (WSA) model. We also present our simulations of the solar wind flow from 0.1 AU to 1 AU with the boundary conditions based on both Ooty and WSA data.

  6. The earth's bow shock in an oblique interplanetary field.

    NASA Technical Reports Server (NTRS)

    Shen, W.-W.

    1972-01-01

    The pressure, magnetic field, temperature, particle density, and stream velocity throughout the magnetosheath have been calculated in the plane containing the interplanetary field and solar wind velocity vector for various orientations of the interplanetary magnetic field and various assumed ratios of specific heats of the compressed solar wind. Jump conditions at the bow shock gave initial conditions in the shocked plasma from which the appropriate hydromagnetic equations (for blunt bodies in the subsonic region near the subsolar point and for the method of characteristics in the supersonic region back in the tail) were integrated numerically back to the surface of the magnetosphere. Explicit consideration of the magnetic field shows that a net asymmetrical force on the magnetopause produces a side force, or 'lift' in addition to the well-known drag on the magnetosphere.

  7. Type 2 radio bursts, interplanetary shocks and energetic particle events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Stone, R. G.

    1982-01-01

    Using the ISEE-3 radio astronomy experiment data 37 interplanetary (IP) type II bursts have been identified in the period September 1978 to December 1981. These events and the associated phenomena are listed. The events are preceded by intense, soft X ray events with long decay times (LDEs) and type II and/or type IV bursts at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range results in the occurrence of a shock accelerated (SA) event. The majority of the interplanetary type II bursts are associated with energetic particle events. These results support other studies which indicate that energetic solar particles detected at 1 A.U. are generated by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients.

  8. Study of Interplanetary Dust from ULYSSES and SOHO Observations

    NASA Astrophysics Data System (ADS)

    Mann, I.; Hillebrand, P.; Wehry, A.

    The Ulysses spacecraft has for the first time performed in situ measurements in the out of ecliptic regions of the solar system. The dust experiment on-board Ulysses has detected the high latitude flux of interplanetary dust particles (cf. Grun et al. 1994). With the SOHO satellite, on the other hand, the measurements of the LASCO coronagraph (cf. Bruckner et al. 1995) provide data of the brightness of the white light corona, which includes a component of light from scattering at interplanetary dust particles, i.e., the F-coronal brightness. Although Ulysses provides data about local dust fluxes from 1 AU outward and white light observations give the integrated line of sight brightness from 1 AU inward, we show, that some comparison of the different results is possible. We will discuss namely the dynamics and orbital distribution in the dust cloud, as well as its size distribution.

  9. Study of Travelling Interplanetary Phenomena (STIP) workshop travel

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1986-01-01

    Thirty six abstracts are provided from the SCOSTEP/STIP Symposium on Retrospective Analyses and Future Coordinated Intervals held in Switzerland on June 10 to 12, 1985. Six American scientists participated in the symposium and their abstracts are also included. The titles of their papers are: (1) An analysis of near surface and coronal activity during STIP interval 12, by T. E. Gergely; (2) Helios images of STIP intervals 6, B. V. Jackson; (3) Results from the analysis of solar and interplanetary observations during STIP interval 7, S. R. Kane; (4) STIP interval 19, E. Cliver; (5) Hydrodynamic buoyancy force in the solar atmosphere, T. Yeh; and (6) A combined MHD modes for the energy and momentum transport from solar surface to interplanetary space, S. T. Wu.

  10. Origin of Interplanetary Dust through Optical Properties of Zodiacal Light

    NASA Astrophysics Data System (ADS)

    Yang, Hongu; Ishiguro, Masateru

    2015-11-01

    This study investigates the origin of interplanetary dust particles (IDPs) through the optical properties, albedo and spectral gradient, of zodiacal light. The optical properties were compared with those of potential parent bodies in the solar system, which include D-type (as analogs of cometary nuclei), C-type, S-type, X-type, and B-type asteroids. We applied Bayesian inference to the mixture model composed of the distribution of these sources, and found that >90% of the IDPs originate from comets (or their spectral analogs, D-type asteroids). Although some classes of asteroids (C-type, X-type, and B-type) may make a moderate contribution, ordinary chondrite-like particles from S-type asteroids occupy a negligible fraction of the interplanetary dust cloud complex. The overall optical properties of the zodiacal light were similar to those of chondritic porous IDPs, supporting the dominance of cometary particles in the zodiacal cloud.

  11. The solar origins of two high-latitude interplanetary disturbances

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Acton, L. W.; Alexander, D.; Harvey, K. L.; Kurokawa, H.; Kahler, S.; Lemen, J. R.

    1995-01-01

    Two extremely similar interplanetary forward/reverse shock events, with bidirectional electron streaming were detected by Ulysses in 1994. Ground-based and Yohkoh/SXT observations show two strikingly different solar events that could be associated with them: an LDE flare on 20 Feb. 1994, and a extremely large-scale eruptive event on 14 April 1994. Both events resulted in geomagnetic storms and presumably were associated with coronal mass ejections. The sharply contrasting nature of these solar events argues against an energetic causal relationship between them and the bidirectional streaming events observed by Ulysses during its S polar passage. We suggest instead that for each pair of events. a common solar trigger may have caused independent instabilities leading to the solar and interplanetary phenomena.

  12. Raman spectroscopy of ion-irradiated interplanetary carbon dust analogues

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Mennella, V.; Brucato, J. R.; Colangeli, L.; Leto, G.; Palumbo, M. E.; Strazzulla, G.

    Interplanetary dust particles (IDPs) and meteorites provide an unique opportunity to study extraterrestrial materials in laboratory. Different Raman studies have shown that most of IDPs exhibit the characteristic amorphous carbon Raman feature. Different degrees of order have been recognised in the amorphous carbon phase of IDPs testifying either to different origin or to different processing under different physical conditions (temperature, pressure etc.). This paper presents a comparison between the amorphous carbon Raman features of IDPs, and those of carbon dust analogues obtained in the laboratory by ion irradiation of carbon containing frozen gases and by arc discharge. We propose a possible mechanism able to induce an "evolution" of IDPs. In particular amorphous carbon with different degrees of order could be indicative of different irradiation doses by solar wind particles and fast solar protons, suffered by IDPs in the interplanetary medium before collection in the Earth's atmosphere.

  13. Interplanetary and ionosphere scintillation produced by ICME 20 December 2015

    NASA Astrophysics Data System (ADS)

    Chashei, I. V.; Tyul'bashev, S. A.; Shishov, V. I.; Subaev, I. A.

    2016-09-01

    Observational data of scintillation monitoring with typical time about 1 s at the frequency 111 MHz are presented for the period between 18 and 23 December when interplanetary coronal mass ejection (ICME) of flare origin resulted in the geomagnetic storm on 20-21 December 2015 with Dst ≈ -200 nT. Our estimates show that the mean ICME speed between the solar corona and the start of interplanetary scintillation enhancement is close to the mean speed between the corona and the Earth. The strong increase of the nighttime scintillation level is observed after ICME coming to the Earth. Scintillation analysis of the individual radio sources shows that the 1 s night scintillation is of ionospheric origin and can be explained by an order increase of irregularity drift speed in the disturbed ionosphere.

  14. On the limitations of geomagnetic measures of interplanetary magnetic polarity

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Rosenberg, R. L.

    1974-01-01

    The maximum attainable accuracy in inferring the interplanetary magnetic polarity from polar cap magnetograms is about 88%. This is achieved in practice, when high-latitude polar cap stations are used during local summer months, and the signature in the ground records is strong. An attempt by Svalgaard (1972) to use this effect to infer an index of interplanetary magnetic polarity back to 1926 has not been so successful. Furthermore, some of the properties of the index have changed with time. Prior to 1963, the inferred polarities are strongly dependent on geomagnetic activity, while after this time they are not. Thus, this index should not be used to separate solar-magnetic from solar-activity effects prior to 1963.

  15. Infrared spectroscopy of interplanetary dust in the laboratory

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Freeman, J. J.

    1981-01-01

    A mount containing three crushed chondritic interplanetary dust particles (IDPs) collected in the earth's stratosphere and subjected to infrared spectroscopic measurements shows features near 1000 and 500/cm, suggesting crystalline pyroxene rather than crystalline olivine, amorphous olivine, or meteoritic clay minerals. Chondritic IDP structural diversity and atmospheric heating effects must be considered when comparing this spectrum with interplanetary and cometary dust astrophysical spectra. TEM and infrared observations of one member of the rare subset of IDPs resembling hydrated carbonaceous chondrite matrix material shows a close infrared spectrum resemblance between 4000 and 400/cm to the C2 meteorite Murchison. TEM observations suggest that this class of particles may be used as an atmospheric entry heating-process thermometer.

  16. Development of coronal mass ejections and association with interplanetary events

    NASA Technical Reports Server (NTRS)

    Pick, M.; Maia, D.; Howard, R.; Thompson, B.; Lanzerotti, L. J. L.; Bothmer, V.; Lamy, P.

    1997-01-01

    Results are presented on the development of two coronal mass ejections (CMEs) obtained by comparing the observations of the large angle spectroscopic coronagraph (LASCO) and the extreme ultraviolet imaging telescope (EIT) instrument onboard the SOHO with those of the Nancay radioheliograph. The radioheliograph provides images at five levels in the corona. An excellent spatial association is found between the position and extent of the type 4 radio sources and the CMEs seen by LASCO. One result is the existence for these two events of discrete successive phases in their development. For these events, Ulysses and SOHO missions measured interplanetary particles of coronal origin. The coronal acceleration site was attempted to be identified, as well as the path of these particles from the corona to the interplanetary medium.

  17. Interplanetary medium data book: Supplement 3A, 1977-1985

    NASA Technical Reports Server (NTRS)

    Couzens, David A.; King, Joseph H.

    1986-01-01

    Supplement 3 of the Interplanetary Medium Data Book contains a detailed discussion of a data set compilation of hourly averaged interplanetary plasma and magnetic field parameters. The discussion addresses data sources, systematic and random differences, time shifting of ISEE 3 data, and plasma normalizations. Supplement 3 also contains solar rotation plots of field and plasma parameters. Supplement 3A contains computer-generated listings of selected parameters from the composite data set. These parameters are bulk speed (km/sec), density (per cu cm), temperature (in units of 1000 K) and the IMF parameters: average magnitude, latitude and longitude angles of the vector made up of the average GSE components, GSM Cartesian components, and the vector standard deviation. The units of field magnitude, components, and standard deviation are gammas, while the units of field direction angles and degrees.

  18. Interplanetary shock waves and the structure of solar wind disturbances

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.

    1972-01-01

    Observations and theoretical models of interplanetary shock waves are reviewed, with emphasis on the large-scale characteristics of the associated solar wind disturbances and on the relationship of these disturbances to solar activity. The sum of observational knowledge indicates that shock waves propagate through the solar wind along a broad, roughly spherical front, ahead of plasma and magnetic field ejected from solar flares. Typically, the shock front reaches 1 AU about two days after its flare origin, and is of intermediate strength. Not all large flares produce observable interplanetary shock waves; the best indicator of shock production appears to be the generation of both type 2 and type 4 radio bursts by a flare. Theoretical models of shock propagation in the solar wind can account for the typically observed shock strength, transit time, and shape.

  19. Fractal signatures in analogs of interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Katyal, Nisha; Banerjee, Varsha; Puri, Sanjay

    2014-10-01

    Interplanetary dust particles (IDPs) are an important constituent of the earths stratosphere, interstellar and interplanetary medium, cometary comae and tails, etc. Their physical and optical characteristics are significantly influenced by the morphology of silicate aggregates which form the core in IDPs. In this paper we reinterpret scattering data from laboratory analogs of cosmic silicate aggregates created by Volten et al. (2007) [1] to extract their morphological features. By evaluating the structure factor, we find that the aggregates are mass fractals with a mass fractal dimension dm≃1.75. The same fractal dimension also characterizes clusters obtained from diffusion limited aggregation (DLA). This suggests that the analogs are formed by an irreversible aggregation of stochastically transported silicate particles.

  20. The interplanetary and near-Jupiter meteoroid environments

    NASA Technical Reports Server (NTRS)

    Humes, D. H.; Alvarez, J. M.; Oneal, R. L.; Kinard, W. H.

    1974-01-01

    The meteoroid penetration detectors on the Pioneer 10 spacecraft recorded 67 meteoroid penetrations through the 25-micron stainless steel test material while the spacecraft was between 1.0 and 5.1 AU. Ten of these penetrations occurred during the encounter with Jupiter. The cumulative spatial density of meteoroids with masses greater than 2 nanograms has been calculated from these data for interplanetary space and for the near-Jupiter space. The spatial density is found to be essentially constant in interplanetary space between 1 and 5 AU, approximately 1 meteoroid per cubic km, and 1-2 orders of magnitude greater near Jupiter. There was no increase in the spatial density of meteoroids in the asteroid belt and hence no evidence that there is a significant asteroidal component of 2-nanogram meteoroids. It is uncertain whether the meteoroids detected near Jupiter were in orbit about Jupiter or were gravitationally focused toward the planet from solar orbits.

  1. Atypical Particle Heating at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn B., III

    2010-01-01

    We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  2. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    NASA Astrophysics Data System (ADS)

    Temmer, M.; Reiss, M. A.; Nikolic, L.; Hofmeister, S. J.; Veronig, A. M.

    2017-02-01

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind models (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s‑1. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.

  3. Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2001-01-01

    The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results

  4. Associations between coronal mass ejections and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Howard, R. A.; Koomen, M. J.; Michels, D. J.; Schwenn, R.; Muhlhauser, K. H.; Rosenbauer, H.

    1983-01-01

    Nearly continuous complementary coronal observations and interplanetary plasma measurements for the years 1979-1982 are compared. It is shown that almost all low latitude high speed coronal mass ejections (CME's) were associated with shocks at HELIOS 1. Some suitably directed low speed CME's were clearly associated with shocks while others may have been associated with disturbed plasma (such as NCDE's) without shocks. A few opposite hemisphere CME's associated with great flares seem to be associated with shocks at HELIOS.

  5. Interplanetary planar magnetic structures associated with expanding active regions

    NASA Technical Reports Server (NTRS)

    Nakagawa, Tomoko; Uchida, Yutaka

    1995-01-01

    Planar magnetic structures are interplanetary objects whose magnetic field cannot be explained by Parker's solar wind model. They are characterized by two-dimensional structure of magnetic field that are highly variable and parallel to a plane which is inclined to the ecliptic plane. They appeared independently of interplanetary compression, solar flares, active prominences nor filament disappearances, but the sources often coincided with active regions. On the other hand, it has been discovered by the Yohkoh Soft X-ray telescope that active-region corona expand outwards at speeds of a few to a few tens of km/s near the Sun. The expansions occurred repeatedly, almost continually, even in the absence of any sizable flares. In the Yohkoh Soft X-ray images, the active-region corona seems to expand out into interplanetary space. Solar sources of interplanetary planar magnetic structures observed by Sakigake were examined by Yohkoh soft X-ray telescope. During a quiet period of the Sun from January 6 to November 11, 1993, there found 5 planar magnetic structures according to the criteria (absolute value of Bn)/(absolute value of B) less than 0.1 for planarity and (dB)/(absolute value of B) greater than 0.7 for variability of magnetic field, where Bn, dB, and the absolute value of B are field component normal to a plane, standard deviation, and average of the magnitude of the magnetic field, respectively. Sources of 4 events were on low-latitude (less than 5 degrees) active regions from which loop-like structures were expanding. The coincidence, 80%, is extremely high with respect to accidental coincidence, 7%, of Sakigake windows of solar wind observation with active regions. The last source was on loop-like features which seemed to be related with a mid-latitude (20 degrees) active region.

  6. Orbital and angular motion construction for low thrust interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  7. Workshop on the Analysis of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E. (Editor)

    1994-01-01

    Great progress has been made in the analysis of interplanetary dust particles (IDP's) over the past few years. This workshop provided a forum for the discussion of the following topics: observation and modeling of dust in the solar system, mineralogy and petrography of IDP's, processing of IDP's in the solar system and terrestrial atmosphere, comparison of IDP's to meteorites and micrometeorites, composition of IDP's, classification, and collection of IDP's.

  8. Use of Reference Frames for Interplanetary Navigation at JPL

    NASA Technical Reports Server (NTRS)

    Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue

    2010-01-01

    Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.

  9. Advanced planning activity. [for interplanetary flight and space exploration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Selected mission concepts for interplanetary exploration through 1985 were examined, including: (1) Jupiter orbiter performance characteristics; (2) solar electric propulsion missions to Mercury, Venus, Neptune, and Uranus; (3) space shuttle planetary missions; (4) Pioneer entry probes to Saturn and Uranus; (5) rendezvous with Comet Kohoutek and Comet Encke; (6) space tug capabilities; and (7) a Pioneer mission to Mars in 1979. Mission options, limitations, and performance predictions are assessed, along with probable configurational, boost, and propulsion requirements.

  10. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  11. Active shielding for long duration interplanetary manned missions

    NASA Astrophysics Data System (ADS)

    Spillantini, Piero

    2010-04-01

    For long duration interplanetary manned missions the protection of astronauts from cosmic radiation is an unavoidable problem that has been considered by many space agencies. In Europe, during 2002-2004, the European Space Agency supported two research programs on this thematic: one was the constitution of a dedicated study group (on the thematic 'Shielding from cosmic radiation for interplanetary missions: active and passive methods') in the framework of the 'life and physical sciences' report, and the other an industrial study concerning the 'radiation exposure and mission strategies for interplanetary manned missions to Moon and Mars'. Both programs concluded that, outside the protection of the magnetosphere and in the presence of the most intense and energetic solar events, the protection cannot rely solely on the mechanical structures of the spacecraft, but a temporary shelter must be provided. Because of the limited mass budget, the shelter should be based on the use of superconducting magnetic systems. For long duration missions the astronauts must be protected from the much more energetic galactic cosmic rays during the whole mission period. This requires the protection of a large habitat where they could live and work, and not the temporary protection of a small volume shelter. With passive absorbers unable to play any significant role, the use of active shielding is mandatory. The possibilities offered by superconducting magnets are discussed, and recommendations are made about the needed R&D. The technical developments that have occurred in the meanwhile and the evolving panorama of possible near future interplanetary missions, require revising the pioneering studies of the last decades and the adoption of a strategy that considers long lasting human permanence in 'deep' space, moreover not only for a relatively small number of dedicated astronauts but also for citizens conducting there 'normal' activities.

  12. Inferring the interplanetary dust properties. from remote observations and simulations

    NASA Astrophysics Data System (ADS)

    Lasue, J.; Levasseur-Regourd, A. C.; Fray, N.; Cottin, H.

    2007-10-01

    Context: Since in situ studies and interplanetary dust collections only provide a spatially limited amount of information about the interplanetary dust properties, it is of major importance to complete these studies with properties inferred from remote observations of scattered and emitted light, with interpretation through simulations. Aims: Physical properties of the interplanetary dust in the near-ecliptic symmetry surface, such as the local polarization, temperature, and composition, together with their heliocentric variations, may be derived from scattered and emitted light observations, giving clues to the respective contribution of the particle sources. Methods: A model of light scattering by a cloud of solid particles constituted by spheroidal grains and aggregates thereof is used to interpret the local light-scattering data. Equilibrium temperature of the same particles allows us to interpret the temperature heliocentric variations. Results: A good fit of the local polarization phase curve, Pα, near 1.5 AU from the Sun is obtained for a mixture of silicates and more absorbing organic material (≈40% in mass) and for a realistic size distribution typical of the interplanetary dust in the 0.2 μm to 200 μm size range. The contribution of dust particles of cometary origin is at least 20% in mass. The same size distribution of particles gives a dependence of the temperature with the solar distance, R, in R-0.45 that is different than the typical black body behavior. The heliocentric dependence of Pα=90° is interpreted as a progressive disappearance of solid organic (such as HCN polymers or amorphous carbon) towards the Sun.

  13. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  14. Magnetohydrodynamic Modelling of Solar Disturbances in the Interplanetary Medium.

    DTIC Science & Technology

    1985-12-01

    and interplanetary portion of the physical linkage: real time observations from the SOON/ RSTN sites plus satellites (GOES-NEXT, SAMSAT) would provide...various papers are categorized with a description of their main points and conclusions. A set of representative figures, together with extensive... descriptive captions, is also included for the reader interested in some additional details. This work was prepared with partial support from various AFOL

  15. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  16. Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin

    2016-04-01

    Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.

  17. Solar events and their influence on the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Joselyn, Joann

    1987-09-01

    Aspects of a workshop on Solar events and their influence on the interplanetary medium, held in September 1986, are reviewed, the goal of which was to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances. The workshop consisted of three working groups: (1) flares, eruptives, and other near-Sun activity; (2) coronal mass ejections; and (3) interplanetary events. Each group discussed topics distributed in advance. The flares-eruptives group members agreed that pre-event energy is stored in stressed/sheared magnetic fields, but could not agree that flares and other eruptive events (e.g., eruptive solar prominences) are aspects of the same physical phenomenon. In the coronal mass ejection group, general agreement was reached on the presence of prominences in CMEs, and that they have a significant three-dimensional structure. Some topics identified for further research were the aftermath of CMEs (streamer deflections, transient coronal holes, possible disconnections), identification of the leading edge of CMEs, and studies of the range and prevalence of CME mass sizes and energies.

  18. Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; McAdams, James

    2011-01-01

    The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.

  19. Dynamics of the Solar Plasma Events and Their Interplanetary Consequences

    NASA Astrophysics Data System (ADS)

    Kaushik, Subhash Chandra

    2016-07-01

    In the present study we have analyzed the interplanetary plasma / field parameter, which have initiated the complex nature intense and highly geo-effective events in the magnetosphere. It is believed that Solar wind velocity V. interplanetary magnetic field (IMF) B and Bz are the crucial drivers of these activities. However, sometimes strong geomagnetic disturbance is associated with the interaction between slow and fast solar wind originating from coronal holes leads to create co-rotating plasma interaction region (CIR). Thus the dynamics of the magnetospheric plasma configuration is the reflection of measured solar wind and interplanetary magnetic field (IMF) conditions. While the magnetospheric plasma anomalies are generally represented by geomagnetic storms and sudden ionosphere disturbance (SIDs). The study considers geomagnetic storms associated with disturbance storm time (Dst) decreases of more than -50 nT to -300 nT, observed during solar cycle 23 and the ascending phase of solar cycle 24. These have been analyzed and studied statistically. The spacecraft data those provided by SOHO, ACE and geomagnetic stations like WDC-Kyoto are utilized in the study. It is observed that the yearly occurrences of geomagnetic storm are strongly correlated with 11-year sunspot cycle, but no significant correlation between the maximum and minimum phase of solar cycle have been found. It is also found that solar cycle-23 is remarkable for occurrence of intense geomagnetic storms during its declining phase. The detailed results are discussed in this paper.

  20. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  1. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-03-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  2. Solar events and their influence on the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Aspects of a workshop on Solar events and their influence on the interplanetary medium, held in September 1986, are reviewed, the goal of which was to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances. The workshop consisted of three working groups: (1) flares, eruptives, and other near-Sun activity; (2) coronal mass ejections; and (3) interplanetary events. Each group discussed topics distributed in advance. The flares-eruptives group members agreed that pre-event energy is stored in stressed/sheared magnetic fields, but could not agree that flares and other eruptive events (e.g., eruptive solar prominences) are aspects of the same physical phenomenon. In the coronal mass ejection group, general agreement was reached on the presence of prominences in CMEs, and that they have a significant three-dimensional structure. Some topics identified for further research were the aftermath of CMEs (streamer deflections, transient coronal holes, possible disconnections), identification of the leading edge of CMEs, and studies of the range and prevalence of CME mass sizes and energies.

  3. Effects of Deep Water Source-Sink Terms in 3rd generation Wave Model SWAN using different wind data in Black Sea

    NASA Astrophysics Data System (ADS)

    Kirezci, Cagil; Ozyurt Tarakcioglu, Gulizar

    2016-04-01

    Coastal development in Black Sea has increased in recent years. Therefore, careful monitoring of the storms and verification of numerical tools with reliable data has become important. Previous studies by Kirezci and Ozyurt (2015) investigated extreme events in Black Sea using different wind datasets (NCEP's CFSR and ECMWF's operational datasets) and different numerical tools (SWAN and Wavewatch III). These studies showed that significant effect to results is caused by the deep water source-sink terms (wave growth by wind, deep water dissipation of wave energy (whitecapping) and deep water non-linear wave-wave interactions). According to Timmermans(2015), uncertainty about wind forcing and the process of nonlinear wave-wave interactions are found to be dominant in numerical wave modelling. Therefore, in this study deep water source and sink term solution approaches of 3rd generation numerical tool (SWAN model) are tested, validated and compared using the selected extreme storms in Black Sea. 45 different storms and storm like events observed in Black Sea between years 1994-1999 are selected to use in the models. The storm selection depends on the instrumental wave data (significant wave heights, mean wave period and mean wave direction) obtained in NATO-TU Waves project by the deep water buoy measurements at Hopa, Sinop, Gelendzhik, and wind data (mean and peak wind speeds, storm durations) of the regarding events. 2 different wave growth by wind with the corresponding deep water dissipation terms and 3 different wave -wave interaction terms of SWAN model are used in this study. Wave growth by wind consist of two parts, linear growth which is explained by Cavaleri and Malanotte-Rizzoli(1981),and dominant exponential growth. There are two methods in SWAN model for exponential growth of wave, first one by Snyder et al. (1981), rescaled in terms of friction velocity by Komen et. al (1984) which is derived using driving wind speed at 10m elevation with related drag

  4. Magnetospheric Response to Interplanetary Field Enhancements: Coordinated Space-based and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Chi, Peter; Russell, Christopher; Lai, Hairong

    2014-05-01

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth's magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth's field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth's magnetopause. These ground stations spread across many

  5. Magnetic Field-Line Lengths in Interplanetary Coronal Mass Ejections Inferred From Energetic Electron Events (Postprint)

    DTIC Science & Technology

    2012-05-03

    AFRL-RV-PS- AFRL-RV-PS- TP-2012-0026 TP-2012-0026 MAGNETIC FIELD -LINE LENGTHS IN INTERPLANETARY CORONAL MASS EJECTIONS INFERRED FROM... Magnetic Field -Line Lengths in Interplanetary Coronal Mass Ejections Inferred 5a. CONTRACT NUMBER In-House From Energetic Electron Events... MAGNETIC FIELD -LINE LENGTHS IN INTERPLANETARY CORONAL MASS EJECTIONS INFERRED FROM ENERGETIC ELECTRON EVENTS S. W. Kahler1, D. K. Haggerty2, and I. G

  6. The 4th International Symposium for Arctic Science and the 3rd International Conference for Arctic Research Planning, the science symposium of Arctic Science Summit Week 2015 (ISAR-4/ICARPIII)

    NASA Astrophysics Data System (ADS)

    Wadhams, Peter; Kodama, Yuji; Yamanouchi, Takashi

    2016-09-01

    The 4th International Symposium for Arctic Research (ISAR-4) with the theme of "Rapid change of the Arctic climate system and its global influence" was held as the science symposium of the Arctic Science Summit Week 2015, together with the 3rd International Conference for Arctic Research Planning (ICARPIII) with the theme of "Integrating Arctic Research: a Roadmap for the Future," in Toyama, Japan, from April 27 to April 30, 2015. There were 340 oral and 177 poster presentations, totalling 511 presentations. Among them, 38 papers were submitted to this special issue and 30 were accepted. 16 sessions in which those accepted papers were presented are described.

  7. Type 1 Diabetes and NKT Cells: A Report on the 3rd International Workshop on NKT Cells and CD1-Mediated Antigen Presentation, September 2004, Heron Island, QLD, Australia

    PubMed Central

    Fletcher, Julie M.; Jordan, Margaret A.; Baxter, Alan G.

    2004-01-01

    NKT cells play a major role in regulating the vigor and character of a broad range of immune responses. Defects in NKT cell numbers and function have been associated with type 1 diabetes, especially in the NOD mouse model. The 3rd International Workshop on NKT Cells and CD1-Mediated Antigen Presentation provided an opportunity for researchers in the field of NKT cell biology to discuss their latest results, many of which have direct relevance to understanding the etiology and pathogenesis of diabetes. PMID:17491677

  8. Simulating Autonomous Telecommunication Networks for Space Exploration

    NASA Technical Reports Server (NTRS)

    Segui, John S.; Jennings, Esther H.

    2008-01-01

    Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.

  9. Implementing efficient and sustainable collaboration between National Immunization Technical Advisory Groups: Report on the 3rd International Technical Meeting, Paris, France, 8-9 December 2014.

    PubMed

    Perronne, Christian; Adjagba, Alex; Duclos, Philippe; Floret, Daniel; Houweling, Hans; Le Goaster, Corinne; Lévy-Brühl, Daniel; Meyer, François; Senouci, Kamel; Wichmann, Ole

    2016-03-08

    Many experts on vaccination are convinced that efforts should be made to encourage increased collaboration between National Immunization Technical Advisory Groups on immunization (NITAGs) worldwide. International meetings were held in Berlin, Germany, in 2010 and 2011, to discuss improvement of the methodologies for the development of evidence-based vaccination recommendations, recognizing the need for collaboration and/or sharing of resources in this effort. A third meeting was held in Paris, France, in December 2014, to consider the design of specific practical activities and an organizational structure to enable effective and sustained collaboration. The following conclusions were reached: (i) The proposed collaboration needs a core functional structure and the establishment or strengthening of an international network of NITAGs. (ii) Priority subjects for collaborative work are background information for recommendations, systematic reviews, mathematical models, health economic evaluations and establishment of common frameworks and methodologies for reviewing and grading the evidence. (iii) The programme of collaborative work should begin with participation of a limited number of NITAGs which already have a high level of expertise. The amount of joint work could be increased progressively through practical activities and pragmatic examples. Due to similar priorities and already existing structures, this should be organized at regional or subregional level. For example, in the European Union a project is funded by the European Centre for Disease Prevention and Control (ECDC) with the aim to set up a network for improving data, methodology and resource sharing and thereby supporting NITAGs. Such regional networking activities should be carried out in collaboration with the World Health Organization (WHO). (iv) A global steering committee should be set up to promote international exchange between regional networks and to increase the involvement of less experienced

  10. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  11. Energetic electron response to interplanetary shocks at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zong, Q.-G.

    2015-06-01

    Interplanetary (IP) shocks have great impacts on Earth's magnetosphere, especially in causing global dynamic changes of energetic particles. In order to study the response of energetic electrons (50keV-1.5MeV) at geosynchronous orbit to IP shocks, we have systematically analyzed 215 IP shock events based on ACE, GOES, and LANL observations during 1998-2007. Our study shows that after the shock arrival low-energy electron fluxes increase at geosynchronous orbit. However, in higher energy channels fluxes show smaller increases and eventually become unchanged or even decrease. The oscillations of electron fluxes following the shock arrival have also been studied in this paper. Statistical analysis revealed a frequency preference for 2.2 mHz and 3.3 mHz oscillations of energetic electron fluxes. The amplitude of these oscillations is larger under southward interplanetary magnetic field (IMF) than under northward IMF. Furthermore, oscillations from high-energy and low-energy electron fluxes show different phase characteristics and power distributions. The phase angles of the oscillations are the same in the dawn, dusk, and noon sectors for low-energy channels (50-500keV), while they have a π/2 difference between two adjacent local time sectors for high-energy channels (0.5-1.5MeV). The wave power distribution of electron fluxes shows different dawn-dusk asymmetries for low-energy channels and high-energy channels. The results presented in this paper provide an energetic particle point of view of the magnetospheric response to the interplanetary shock impact.

  12. The auroral ionosphere TEC response to an interplanetary shock

    NASA Astrophysics Data System (ADS)

    Jin, Yaqi; Zhou, Xiaoyan; Moen, Jøran I.; Hairston, Marc

    2016-03-01

    This letter investigates the global total electron content (TEC) response in the auroral ionosphere to an interplanetary shock on 8 March 2012, using GPS TEC data from three pierce point chains. One is a longitudinal chain along ~65° magnetic latitude (MLAT) from ~19 magnetic local time (MLT) through dayside to 03 MLT clockwise; one meridional chain is around 14 MLT from 88° to 59° MLAT; and the third one is a chain along ~75° MLAT from ~14 to 00 MLT clockwise. The first chain clearly presents a TEC signal propagation away from ~14 MLT, indicating the shock impact location. Such a propagation is well consistent with the diffuse shock aurora propagation, and the impact location is well predicted by the shock normal direction calculated using the Geotail solar wind and interplanetary magnetic field data. The meridional chain reveals a very fast TEC signal equatorward expansion at ~45 km/s, which is the manifestation of the shock impact and further compression near the subsolar magnetopause. While TEC along the high-latitude chain varies randomly, lacking any pattern, it is consistent with the discrete aurora dynamics along the poleward boundary of the auroral oval. These findings strongly support the shock aurora mechanisms of adiabatic compression and field-aligned current establishment or enhancement, suggest that due to the same mechanisms a shock-generated TEC variation is a "duplication" of the shock aurora from the global picture to the auroral forms and their dynamics, and open the door for the TEC to be an important tool to understand the solar wind and geospace coupling. These results, for the first time, reveal the prompt, intense, and global ionospheric TEC response to the interplanetary fast-forward shock.

  13. Magnetic Reconnection in the Interior of Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Fermo, R. L.; Opher, M.; Drake, J. F.

    2014-07-01

    Recent in situ observations of interplanetary coronal mass ejections (ICMEs) found signatures of reconnection exhausts in their interior or trailing edge. Whereas reconnection on the leading edge of an ICME would indicate an interaction with the coronal or interplanetary environment, this result suggests that the internal magnetic field reconnects with itself. In light of this data, we consider the stability properties of flux ropes first developed in the context of astrophysics, then further elaborated upon in the context of reversed field pinches (RFPs). It was shown that the lowest energy state of a flux rope corresponds to ∇×B=λB with λ a constant, the so-called Taylor state. Variations from this state will result in the magnetic field trying to reorient itself into the Taylor state solution, subject to the constraints that the toroidal flux and magnetic helicity are invariant. In reversed field pinches, this relaxation is mediated by the reconnection of the magnetic field, resulting in a sawtooth crash. If we likewise treat the ICME as a flux rope, any deviation from the Taylor state will result in reconnection within the interior of the flux tube, in agreement with the observations by Gosling et al. Such a departure from the Taylor state takes place as the flux tube cross section expands in the latitudinal direction, as seen in magnetohydrodynamic (MHD) simulations of flux tubes propagating through the interplanetary medium. We show analytically that this elongation results in a state which is no longer in the minimum energy Taylor state. We then present magnetohydrodynamic simulations of an elongated flux tube which has evolved away from the Taylor state and show that reconnection at many surfaces produces a complex stochastic magnetic field as the system evolves back to a minimum energy state configuration.

  14. Helium at Interplanetary Discontinuities: ACE STEREO Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Moebius, E.; Kucharek, H.; Allegrini, F.; Desai, M.; Klecker, B.; Popecki, M.; Farrugia, C.; Galvin, A.; Bochsler, P.; Karrer, R.; Opitz, A.; Simunac, K.

    2007-12-01

    ACE/SEPICA observations showed that, on average, energetic He+ is after H+ and He2+ the third most abundant energetic particle species in the heliosphere. Depending on the type of the energetic population the He+/He2+ ratio can reach unusually high values in the energy range 250 - 800keV/n ratios up to unity. As a major source of energetic He+ interplanetary pickup ions have been identified that are preferentially accelerated at co-rotating interaction regions (CIRs), transient interaction regions (TIRs), and interplanetary traveling shocks. Most recent data from STEREO/PLASTIC in the energy range of 0.2-80keV/Q show clear evidence of abundant He+ at interplanetary discontinuities. Thus PLASTIC extends the energy range into injection region of the source. Furthermore, ACE/ULEIS and ACE/SEPICA measurements showed that very often 3He2+ and He+ are also accelerated simultaneously at CME-driven IP shocks. This is surprising because, these to species originate from different sources. However, this may indicate that the injection, or the acceleration efficiency of the accelerator for different source population may be similar. From observations, however, this cannot be differentiated easily. In numerical simulations this can be done because there is control over species and distribution functions. In a numerical study we applied test particle simulations and multi-dimensional hybrid simulations to address the contribution of source, injection and acceleration efficiency at shocks to the variability of the helium ratio. These, simulations with and without superimposed turbulence in the shock region will be compared with observations.

  15. A Study of Geoeffective Magnetic Clouds in the Interplanetary Medium

    NASA Astrophysics Data System (ADS)

    Lago, Alisson Dal

    1999-01-01

    Magnetic clouds are interplanetary structures whose origins are related to Coronal Mass Ejections (CUE). Their features are: strong magnetic field intensity (typically > 10nT (nano Tesla)), a large rotation in the magnetic field angle as the cloud crosses the spacecraft, low proton temperature and Beta (thermal pressure/magnetic pressure) values (approximately 0.1). For a set of previously published magnetic cloud events and another set of clouds identified in the whole year of 1979 we present a study of plasma and magnetic field parameters. We have shown the existence of a relationship between the peak magnetic field strength and peak velocity value of the cloud, with a tendency that clouds which move at higher speeds also possess higher core magnetic field strengths. There is also an indication that this relationship is peculiar to magnetic clouds, whereas other types of non-cloud driver gas, or ICME , events do not seam to show a similar relationship. Both parameters, velocity and magnetic field strength, are related to Magnetic Storms. It is also addressed the interaction between magnetic clouds and other features in the interplanetary medium by calculating the Total Static Pressure, Magnetic plus Thermal, and the Dynamic Pressure relative to other structures surrounding the cloud, investigating their possible relation to magnetic cloud field enhancement. This work contributes to: (1) Space Weather Forecasting, through the calculation of the magnetic cloud field strengths by knowing their velocities (the latter can be remotely measured by sequences of coronograph images); (2) the study of the relation between magnetic clouds and magnetic storms; and (3) the study of the interaction between magnetic clouds and other interplanetary structures surrounding it.

  16. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    NASA Astrophysics Data System (ADS)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  17. The pioneers of interplanetary communication: From Gauss to Tesla

    NASA Astrophysics Data System (ADS)

    Raulin-Cerceau, Florence

    2010-12-01

    The present overview covers the period from 1820 to the beginning of the 20th century. Emphasis is laid on the latter half of the 19th century because many efforts have been done at that time to elaborate schemes for contacting our neighboring planets by interplanetary telegraphy. This period knew many advances not only in planetary studies but also in the nascent field of telecommunications. Such a context led astronomers who were also interested in the problem of planetary habitability, to envisage that other planets could be contacted, especially the planet Mars. Interplanetary communication using a celestial telegraphy was planned during this period of great speculations about life on Mars. This paper focuses on four authors: the Frenchmen C. Flammarion, Ch. Cros, A. Mercier and the Serbian N. Tesla, who formulated early proposals to communicate with Mars or Venus. The first proposals (which remained only theoretical) showed that an initial reflection had started as early as the second part of the 19th century on the type of language that could be both universal and distinguishable from a natural signal. Literary history of interplanetary communication preceded by far the scientific one. Authors of the 1900s were very prolific on this topic. French fictions are mentioned in this paper as examples of such a literature. This incursion into selected texts stresses the fact that the problem of techniques and messages employed to communicate with other planets goes beyond the strict scientific framework. Finally, this paper aims to highlight the similarities as well as the differences between the different proposals and to underline what that could possibly help present SETI research to define messages supposed to be sent to other planetary systems.

  18. A decametric wavelength radio telescope for interplanetary scintillation observations

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.

    1975-01-01

    A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.

  19. Interplanetary scintillation observations with the Cocoa Cross radio telescope

    NASA Technical Reports Server (NTRS)

    Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.

    1976-01-01

    Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.

  20. The Interplanetary Internet: a communications infrastructure for Mars exploration.

    PubMed

    Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard

    2003-01-01

    A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine.

  1. Analysis of Interplanetary Dust Experiment Detectors and Other Witness Plates

    NASA Technical Reports Server (NTRS)

    Griffis, D. P.; Wortman, J. J.

    1992-01-01

    The development of analytical procedures for identifying the chemical composition of residue from impacts that occurred on the Interplanetary Dust Experiment (IDE) detectors during the flight of Long Duration Exposure Facility (LDEF) and the carrying out of actual analysis on IDE detectors and other witness plates are discussed. Two papers on the following topics are presented: (1) experimental analysis of hypervelocity microparticle impact sites on IDE sensor surfaces; and (2) contaminant interfaces with secondary Ion Mass Spectrometer (SIMS) analysis of microparticle impactor residues on LDEF surfaces.

  2. Analytical electron microscopy of a hydrated interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Bunch, T. E.; Mardinly, A. J.; Echer, C. J.

    1988-01-01

    Properties of a hydrated interplanetary dust particle (IDP), Ames-Dec86-11, were investigated using TEM and analytical electron microscopy. The particle was found to have mineralogy and chondritic composition indicating an absence of direct kinship with known carbonaceous chondrites. The available data on the Ames-Dec86-11 suggest that at least one aqueous alteration event took place in this hydrated IDP, during which fine-grained material, possibly glass, was transformed to smectite. This event appears to be unique to hydrated IDPs.

  3. Analytical electron microscopy of a hydrated interplanetary dust particle

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Mardinly, A. J.; Echer, C. J.; Bunch, T. E.

    Properties of a hydrated interplanetary dust particle (IDP), Ames-Dec86-11, were investigated using TEM and analytical electron microscopy. The particle was found to have mineralogy and chondritic composition indicating an absence of direct kinship with known carbonaceous chondrites. The available data on the Ames-Dec86-11 suggest that at least one aqueous alteration event took place in this hydrated IDP, during which fine-grained material, possibly glass, was transformed to smectite. This event appears to be unique to hydrated IDPs.

  4. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C03

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C03 The IDE mounting plate and the detector frames are coated with a brown stain similiar to that seen on the other experiments in this and other trays located nearby. The stain seems to be slightly darker along the lower edge of the solar sensor mounting plate. The colors and designs seen on the detectors are reflections of the surrounding area. The thin brown film on the detectors metallic surface has resulted in a duller reflection of a technician, in the upper left, and other items.

  5. Interplanetary medium data book, supplement 4, 1985-1988

    NASA Technical Reports Server (NTRS)

    King, Joseph H.

    1989-01-01

    An extension is presented of the series of Interplanetary Medium Data Books and supplements which have been issued by the National Space Science Data Center since 1977. This volume contains solar wind magnetic field (IMF) and plasma data from the IMP 8 spacecraft for 1985 to 1988, and 1985 IMF data from the Czechoslovakian Soviet Prognoz 10 spacecraft. The normalization of the MIT plasma density and temperature, which has been discussed at length in previous volumes, is implemented as before, using the same normalization constants for 1985 to 1988 data as for the earlier data.

  6. Capture of interplanetary and interstellar dust by the jovian magnetosphere.

    PubMed

    Colwell, J E; Horányi, M; Grün, E

    1998-04-03

    Interplanetary and interstellar dust grains entering Jupiter's magnetosphere form a detectable diffuse faint ring of exogenic material. This ring is composed of particles in the size range of 0. 5 to 1.5 micrometers on retrograde and prograde orbits in a 4:1 ratio, with semimajor axes 3 < a < 20 jovian radii, eccentricities 0. 1 < e < 0.3, and inclinations i less, similar 20 degrees or i greater, similar 160 degrees. The size range and the orbital characteristics are consistent with in situ detections of micrometer-sized grains by the Galileo dust detector, and the measured rates match the number densities predicted from numerical trajectory integrations.

  7. Hydrated interplanetary dust particle linked with carbonaceous chondrites?

    NASA Technical Reports Server (NTRS)

    Tomeoka, K.; Buseck, P. R.

    1985-01-01

    The results of transmission electron microscope observations of a hydrated interplanetary dust particle (IDP) containing Fe-, Mg-rich smectite or mica as a major phase are reported. The sheet silicate appears to have formed by alteration of anhydrous silicates. Fassaite, a Ca, Al clinopyroxene, also occurs in this particle, and one of the crystals exhibits solar-flare tracks, clearly indicating that it is extraterrestrial. Fassaite is a major constituent of the Ca-, Al-rich refractory inclusions found in the carbonaceous chondrites, so its presence in this particle suggests that there may be a link between hydrated IDPs and carbonaceous chondrites in the early history of the solar system.

  8. Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase II. Progress report, 3rd year continuation proposal, and work plan

    SciTech Connect

    Wilson, J.L.

    1994-05-01

    Small scale laboratory experiments, equipped with an ability to actually observe behavior on the pore level using microscopy, provide an economical and easily understood scientific tool to help us validate concepts and assumptions about the transport of contaminants, and offers the propensity to discover heretofore unrecognized phenomena or behavior. The main technique employs etched glass micromodels, composed of two etched glass plates, sintered together, to form a two dimensional network of three dimensional pores. Flow and transport behavior is observed on a pore or pore network level, and recorder on film and video tape. This technique is coupled with related column studies. These techniques have been used to study multiphase flow, colloid transport and most recently bacteria transport. The project has recently moved to the Bacteria Transport Subprogram, and efforts have been redirected to support that Subprogram and its collaborative field experiment. We proposed to study bacteria transport factors of relevance to the field experiment, using micromodels and other laboratory techniques. Factors that may be addressed include bacteria characteristics (eg, hydrophobicity), pore size and shape, permeability heterogeneity, surface chemistry (eg, iron oxide coatings), surface chemistry heterogeneity, active versus resting cell bacteria, and mixed bacteria populations. In other work we will continue to examine the effects of fluid-fluid interfaces on bacteria transport, and develop a new assay for bacteria hydrophobicity. Finally we will collaborate on characterization of the field site, and the design, operation, and interpretation of the field experiment.

  9. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2016-01-01

    This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.

  10. Interplanetary scintillation observations of the solar wind close to the Sun and out of the ecliptic

    NASA Technical Reports Server (NTRS)

    Sime, D. G.

    1983-01-01

    A brief review is given of recent developments in the observation of the solar wind by the method of interplanetary scintillation. The emphasis is on observations of the velocity structure, the electron density and the effect of propagating disturbances in the interplanetary medium as detected principally by intensity and phase scintillation and by spectral broadening.

  11. Criteria of interplanetary parameters causing intense magnetic storms (Dst less than -100nT)

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Tsurutani, Bruce T.

    1987-01-01

    Ten intense storms occurred during the 500 days of August 16, 1978 to December 28, 1979. From the analysis of ISEE-3 field and plasma data, it is found that the interplanetary cause of these storms are long-duration, large and negative IMF B sub Z events, associated with interplanetary duskward-electric fields greater than 5 mV/m. Because a one-to-one relationship was found between these interplanetary events and intense storms, it is suggested that these criteria can, in the future, be used as predictors of intense storms by an interplanetary monitor such as ISEE-3. These B sub Z events are found to occur in association with large amplitudes of the IMF magnitude within two days after the onset of either high-speed solar wind streams or of solar wind density enhancement events, giving important clues to their interplanetary origin. Some obvious possibilities will be discussed. The close proximity of B sub Z events and magnetic storms to the onset of high speed streams or density enhancement events is in sharp contrast to interplanetary Alfven waves and HILDCAA events previously reported, and thus the two interplanetary features corresponding geomagnetic responses can be thought of as being complementary in nature. An examination of opposite polarity B sub Z events with the same criteria show that their occurrence is similar both in number as well as in their relationship to interplanetary disturbances, and that they lead to low levels of geomagnetic activity.

  12. The Heliocentric Variation of the Properties of Interplanetary Field Enhancement

    NASA Astrophysics Data System (ADS)

    Lai, H.; Russell, C. T.; Wei, H.; Zhang, T.

    2013-05-01

    Interplanetary Field Enhancements (IFEs) are increases of the interplanetary magnetic field usually to a sharp maximum and containing a current sheet near the center of the event. They have been observed at Helios and MESSENGER as close as 0.3 AU to the Sun, at VEX and PVO at 0.72 AU; at STEREO, ACE, Wind, Geotail, ARTEMIS at 1 AU and Ulysses from 1 to 5 AU. Our model for the physical mechanism for creating these disturbances is that collisions of bodies in the size range 10 - 1000m are catastrophically disrupted by a collision with a fast moving smaller object. The rate of detection of IFEs is dependent on heliocentric range increasing closer to the Sun. There are several possible reasons for this increase which we explore. The mass of the dust cloud that is picked up is significant about 108kg. The magnetic gradient force of the IFE is large enough to lift this mass through the Sun's gravitational potential wall. The momentum transfer that enables this outward transport is a small fraction of the solar wind momentum flux but this transfer can be detected using superposed epoch studies of the solar wind, and is consistent with the hypothesis. We note that the rate of IFE observations in the Helios and MESSENGER data at 0.3 AU is less than expected from extrapolating the observations at and beyond 0.7 AU. This result can soon be extended closer to the Sun with Solar Orbiter and Solar Probe Plus.

  13. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    SciTech Connect

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  14. Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; MacDonald, Mark A.; McElrath, Timothy P.; Landau, Damon F.; Lantoine, Gregory; Hack, Kurt J.; Lopez, Pedro

    2016-01-01

    NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts.

  15. Density Fluctuations Upstream and Downstream of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream-stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  16. Multispacecraft study of interplanetary shocks at 1 AU.

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, X.; Kajdic, P.; Russell, C. T.; Aguilar-Rodriguez, E.; Jian, L.; Luhmann, J. G.

    2015-12-01

    Interplanetary (IP) shocks propagate through the heliosphere perturbing the solar wind plasma. They can be driven by Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs). They play an active role in the acceleration of ions to suprathermal energies. Shock fronts evolve as they move from the Sun. Their surfaces can be far from uniform and be modulated by changes in the solar wind (magnetic field orientation, flow velocity), and perturbations upstream and downstream from the shocks, i.e., electromagnetic waves. In this work we use multispacecraft data (STEREO, WIND, ACE) to study shock characteristics at different helio-longitudes and determine the properties of the waves near them. We also determine shock longitudinal extensions and foreshock sizes. The variations of geometry along the shock surface can result in different extensions of the wave and ion foreshocks ahead of the shocks, and in different wave modes upstream and downtream of the shocks. Thus, the region with modified solar wind ahead of the shocks can be very asymmetric.

  17. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  18. Interplanetary dust flux to the outer planet atmospheres

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.; Moses, J. I.

    2013-12-01

    It is now well established that an influx of external material is depositing significant amounts of oxygen into the atmospheres of the giant planets and Titan, which in turn impacts the energy budget, photochemistry, and structure of each body's atmosphere. While other sources (ie. Enceladus and/or the main ring system at Saturn, cometary impacts, etc.) also contribute, interplanetary dust grains are a significant source of external material to the outer planet atmospheres. In this talk, we present results from an interplanetary dust dynamics model used to calculate the distribution(s) of dust grains in the outer solar system that arise from Edgeworth-Kuiper Belt objects, Jupiter-family comets, and Halley-type comets. We constrain the densities of these distributions using in-situ measurements by the Pioneer meteoroid detectors and the New Horizons Student Dust Counter. In turn, we calculate the total dust influx distribution to each outer planet atmosphere, including any temporal or compositional variability and spatial anisotropies. Finally, we compare our influx estimates with those derived from extrapolating dust fluxes at 1 AU to the outer solar system and discuss implications for the outer planet atmospheres.

  19. Solar cycle variations in the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Smith, E. J.

    1983-01-01

    ISEE 3 interplanetary magnetic field measurements have been used to extend the NSSDC hourly averaged IMF composite data set through mid-1982. Most of sunspot cycle 20 (start:1964) and the first half of cycle 21 (start:1976) are now covered. The average magnitude of the field was relatively constant over cycle 20 with approx. 5-10% decreases in 1969 and 1971, when the Sun's polar regions changed polarity, and a 20% decrease in 1975-6 around solar minimum. Since the start of the new cycle, the total field strength has risen with the mean for the first third of 1982 being about 40% greater than the cycle 20 average. As during the previous cycle, an approx. 10% drop in IMF magnitude accompanied the 1980 reversal of the solar magnetic field. While the interplanetary magnetic field is clearly stronger during the present solar cycle, another 5-7 years of observations will be needed to determine if cycle 21 exhibits the same modest variations as the last cycle. Accordingly, it appears at this time that intercycle changes in IMF magnitude may be much larger than the intracycle variations.

  20. Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR

    NASA Astrophysics Data System (ADS)

    Fallows, R. A.; Bisi, M. M.; Forte, B.; Ulich, Th.; Konovalenko, A. A.; Mann, G.; Vocks, C.

    2016-09-01

    Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan et al. presenting observations using the Murchison Widefield Array (MWA) reports evidence of nightside IPS on two radio sources within their field of view. However, the low time cadence of 2 s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To check this assumption, this Letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of nightside IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a coronal mass ejection expected to be observed in another.

  1. Magnetic field line lengths inside interplanetary magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Hu, Qiang; Qiu, Jiong; Krucker, Sam

    2015-07-01

    We report on the detailed and systematic study of field line twist and length distributions within magnetic flux ropes embedded in interplanetary coronal mass ejections (ICMEs). The Grad-Shafranov reconstruction method is utilized together with a constant-twist nonlinear force-free (Gold-Hoyle) flux rope model to reveal the close relation between the field line twist and length in cylindrical flux ropes, based on in situ Wind spacecraft measurements. We show that the field line twist distributions within interplanetary flux ropes are inconsistent with the Lundquist model. In particular, we utilize the unique measurements of magnetic field line lengths within selected ICME events as provided by Kahler et al. () based on energetic electron burst observations at 1 AU and the associated type III radio emissions detected by the Wind spacecraft. These direct measurements are compared with our model calculations to help assess the flux rope interpretation of the embedded magnetic structures. By using the different flux rope models, we show that the in situ direct measurements of field line lengths are consistent with a flux rope structure with spiral field lines of constant and low twist, largely different from that of the Lundquist model, especially for relatively large-scale flux ropes.

  2. CME dynamics using coronagraph and interplanetary ejecta data

    NASA Astrophysics Data System (ADS)

    Dal Lago, Alisson; Gonzalez, Walter D.; De Lucas, Aline; Braga, Carlos Roberto; Vieira, Lucas Ramos; Stekel, Tardelli Ronan Coelho; Rockenbach, Marlos

    2013-05-01

    In this work, we present a study of the coronal mass ejection (CME) dynamics using LASCO coronagraph observations combined with in-situ ACE plasma and magnetic field data, covering a continuous period of time from January 1997 to April 2001, complemented by few extreme events observed in 2001 and 2003. We show, for the first time, that the CME expansion speed correlates very well with the travel time to 1 AU of the interplanetary ejecta (or ICMEs) associated with the CMEs, as well as with their preceding shocks. The events analyzed in this work are a subset of the events studied in Schwenn et al. (2005), from which only the CMEs associated with interplanetary ejecta (ICMEs) were selected. Three models to predict CME travel time to Earth, two proposed by Gopalswamy et al. (2001) and one by Schwenn et al. (2005), were used to characterize the dynamical behavior of this set of events. Extreme events occurred in 2001 and 2003 were used to test the prediction capability of the models regarding CMEs with very high LASCO C3 speeds.

  3. First Taste of Hot Channel in Interplanetary Space

    NASA Astrophysics Data System (ADS)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.

    2015-04-01

    A hot channel (HC) is a high temperature (˜10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (˜1-2 MK). In this paper, we report a high temperature structure (HTS, ˜1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ⊙ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.

  4. Counterstreaming electrons in small interplanetary magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  5. Spectral analysis of magnetohydrodynamic fluctuations near interplanetary schocks

    NASA Technical Reports Server (NTRS)

    Vinas, A. F.; Goldstein, M. L.; Acuna, M. H.

    1983-01-01

    Evidence for two types of relatively large amplitude MHD waves upstream and downstream of quasi-parallel forward and reverse interplanetary shocks is presented. The first mode is an Alfven wave with frequencies (in the spacecraft frame) in the range of 0.025 to 0.07 Hz. This is a left-hand polarized mode and propagates within a few degrees of the ambient magnetic field. The second is a fast MHD mode with frequencies in the range of 0.025 to 0.17 Hz, right-hand polarization and propagating along the magnetic field. These waves are detected principally in association with quasi-parallel shock. The Alfven waves are found to have plasma rest frame frequencies in the range of 1.1 to 6.3 mHz with wavelengths in the order of 4.8 x 10 to the 8th power to 2.7 x 10 to the 9th power cm. Similarly, the fast MHD modes have rest frame frequencies in the range 1.6 to 26 mHz with typical wavelengths about 2.19 x 10 to the 8th power cm. The magnetic field power spectrum in the vicinity of these interplanetary shocks is much steeper than f to the -s/3 at high frequencies. The observed spectra have a high frequency dependence of f to the -2/5 to f to the -4.

  6. The topology of intrasector reversals of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1996-11-01

    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  7. Solar sail time-optimal interplanetary transfer trajectory design

    NASA Astrophysics Data System (ADS)

    Gong, Sheng-Pin; Gao, Yun-Feng; Li, Jun-Feng

    2011-08-01

    The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables, which are normalized within a unit sphere. The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit. A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories. For the cases where no time-optimal transfer trajectories exist, first-order necessary conditions of the optimal control are proposed to obtain feasible solutions. The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration. For a solar sail with a small lightness number, the transfer time may be evaluated analytically for a three-phase transfer trajectory. The analytical results are compared with previous results and the associated numerical results. The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.

  8. Magnetohydrodynamic Shocks in the Interplanetary Space: a Theoretical Review

    NASA Astrophysics Data System (ADS)

    Oliveira, D. M.

    2017-02-01

    I discuss in this brief review some properties of magnetohydrodynamic (MHD) discontinuities in the interplanetary space. My emphasis is on a special case of MHD discontinuity, namely interplanetary (IP) shocks, and those that are found at 1 AU. I derive the Rankine-Hugoniot (RH) equations to evaluate plasma parameters in the downstream region (shocked plasma) in relation to the upstream region (unshocked plasma). These properties are used to classify IP shocks in terms of their geometry and their direction of propagation in relation to the Sun. The shock geometry is determined in terms of two angles: θ _{Bn}, the angle between the upstream magnetic field and the shock normal, and θ _{xn}, the angle between the shock normal and the Sun-Earth line. Sources of IP shocks frequently found in the solar wind at Earth's orbit are presented. Then the RH equations are solved for two categories of IP shocks in a special case: perpendicular shocks, when θ _{Bn} is 90 ∘, and oblique shocks, when that angle is 45 ∘. Finally, I highlight the importance of knowing the shock geometry, mainly the impact angle θ _{xn}, specially whether the shock is frontal or inclined, for space weather-related investigations. IP shocks are known to be more geoeffective if they strike the Earth's magnetosphere frontally, or with impact angle nearly null. These results have been reported both by modeling and experimental studies in the literature.

  9. Interplanetary dust influx to the Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    Poppe, Andrew R.

    2015-01-01

    The influx of interplanetary dust grains (IDPs) to the Pluto-Charon system is expected to drive several physical processes, including the formation of tenuous dusty rings and/or exospheres, the deposition of neutral material in Pluto's atmosphere through ablation, the annealing of surface ices, and the exchange of ejecta between Pluto and its satellites. The characteristics of these physical mechanisms are dependent on the total incoming mass, velocity, variability, and composition of interplanetary dust grains; however, our knowledge of the IDP environment in the Edgeworth-Kuiper Belt has, until recently, remained rather limited. Newly-reported measurements by the New Horizons Student Dust Counter combined with previous Pioneer 10 meteoroid measurements and a dynamical IDP tracing model have improved the characterization of the IDP environment in the outer Solar System, including at Pluto-Charon. Here we report on this modeling and data comparison effort, including a discussion of the IDP influx to Pluto and its moons, and the implications thereof.

  10. Heliocentric distance dependence of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.

    1977-01-01

    Recent and ongoing planetary missions have provided extensive observations of the variations of the Interplanetary Magnetic Field (IMF) both in time and with heliocentric distance from the sun. Large time variations in both the IMF and its fluctuations were observed. These are produced predominantly by dynamical processes in the interplanetary medium associated with stream interactions. Magnetic field variations near the sun are propagated to greater heliocentric distances, also contributing to the observed variablity of the IMF. Temporal variations on a time-scale comparable to or less than the corotation period complicate attempts to deduce radial gradients of the field and its fluctuations from the various observations. However, recent measurements inward to 0.46 AU and outward to 5 AU suggest that the radial component of the field on average decreases approximately as r to the minus second power, while the azimuthal component decreases more rapidly than the r to the minum first power dependence predicted by simple theory. This, and other observations, are discussed.

  11. In situ observations of coronal mass ejections in interplanetary space

    SciTech Connect

    Gosling, J.T.

    1991-01-01

    Coronal mass ejections, CMEs, in the solar wind at 1 AU generally have distinct plasma and field signatures by which they can be distinguished from the ordinary solar wind. These include one or more of the following: helium abundance enhancements, ion and electron temperature depressions, unusual ionization states, strong magnetic fields, low plasma beta, low magnetic field variance, coherent field rotations, counterstreaming (along the field) energetic protons, and counterstreaming suprathermal electrons. The most reliable of these appears to be counterstreaming electrons, which indicates that CMEs at 1 AU typically are closed field structures either rooted at both ends in the Sun or entirely disconnected from it as plasmoids. About 1/3 of all CMEs have sufficiently high speeds to produce transient interplanetary shock disturbances at 1 AU; the remainder simply ride along with the solar wind. The frequency of occurrence of CMEs in the ecliptic plane, as distinguished by the counterstreaming electron signature, varies roughly in phase and amplitude with the 11-yr solar activity cycle. Near solar maximum they account for {approximately} 15% of all solar wind measurements, while near solar minimum they account for less than 1% of all the measurements. All but one of the 37 largest geomagnetic storms near the last solar maximum were associated with Earth-passage of interplanetary disturbances driven by fast CMEs; that is, CMEs are the prime link between solar and geomagnetic activity. However, more than half of all earthward directed CMEs are relatively ineffective in a geomagnetic sense. 19 refs., 6 figs.

  12. The Ring Current Response to Solar and Interplanetary Storm Drivers

    NASA Astrophysics Data System (ADS)

    Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.

    2014-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.

  13. Acceleration of 3HE and heavy ions at interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Mason, G. M.; Dwyer, J. R.; Mazur, J. E.; Smith, C. W.; Koug, R. M.

    2001-08-01

    We have surveyed the 0.5-2.0 MeV nucleon-1 ion composition of 56 interplanetary shocks (IP) observed with the Ultra-Low-Energy Isotope Spectrometer (ULEIS) on board the Advanced Composition Explorer (ACE) from 1997 October 1 through 2000 November 30. Our results show the first ever measurement (25 cases) of 3 He ions being accelerated at IP shocks. The 3 He/4 He ratio at the 25 shocks exhibited a wide range of values between 0.00140.24; the ratios were enhanced between factors of ~3-600 over the solar wind value. During the survey period, the occurrence probability of 3 He-rich shocks increased with rising solar activity as measured in terms of the daily occurrence rates of sunspots and X-ray flares. The 3 He enhancements at IP shocks cannot be attributed to rigidity dependent acceleration of solar wind ions and are better explained if the shocks accelerate ions from multiple sources, one being remnant impulsive solar flare material enriched in 3 He ions. Our results also indicate that the contribution of impulsive flares to the seed population for IP shocks varies from event to event, and that the interplanetary medium is being replenished with impulsive material more frequently during periods of increased solar activity. 1. Introduction Enhancements in the intensities of energetic ions associated with transient interplanetary (IP) shocks have been observed routinely at 1 AU since the 1960's (e.g., Reames 1999). It is presently believed that the majority of such IP shocks are driven by fast coronal mass ejections or CMEs as they propagate through interplanetary space (e.g., Gosling 1993), and that the associated ion intensity enhancements are due to diffusive shock acceleration of solar wind ions (Lee 1983; Jones and Ellison 1991; Reames 1999). However, the putative solar wind origin of the IP-shock accelerated ions is based on composition measurements associated with a very limited number of individual IP shocks (Klecker et al. 1981; Hovestadt et al. 1982; Tan et

  14. Networking.

    ERIC Educational Resources Information Center

    Duvall, Betty

    Networking is an information giving and receiving system, a support system, and a means whereby women can get ahead in careers--either in new jobs or in current positions. Networking information can create many opportunities: women can talk about how other women handle situations and tasks, and previously established contacts can be used in…

  15. Current practice of epidemiology in Africa: highlights of the 3rd conference of the African epidemiological association and 1st conference of the Cameroon society of epidemiology, Yaoundé, Cameroon, 2014.

    PubMed

    Nkwescheu, Armand Seraphin; Fokam, Joseph; Tchendjou, Patrice; Nji, Akindeh; Ngouakam, Hermann; Andre, Bita Fouda; Joelle, Sobngwi; Uzochukwu, Benjamin; Akinroye, Kingsley; Mbacham, Wilfred; Colizzi, Vittorio; Leke, Rose; Victora, Cesar

    2015-01-01

    As the study of disease occurrence and health indicators in human populations, Epidemiology is a dynamic field that evolves with time and geographical context. In order to update African health workers on current epidemiological practices and to draw awareness of early career epidemiologists on concepts and opportunities in the field, the 3(rd) African Epidemiology Association and the 1st Cameroon Society of Epidemiology Conference was organized in June 2-6, 2014 at the Yaoundé Mont Febe Hotel, in Cameroon. Under the theme«Practice of Epidemiology in Africa: Stakes, Challenges and Perspectives», the conference attracted close to five hundred guest and participants from all continents. The two main programs were the pre-conference course for capacity building of African Early Career epidemiologists, and the conference itself, providing a forum for scientific exchanges on recent epidemiological concepts, encouraging the use of epidemiological methods in studying large disease burden and neglected tropical diseases; and highlighting existing opportunities.

  16. ENERGETIC PARTICLE PRESSURE AT INTERPLANETARY SHOCKS: STEREO-A OBSERVATIONS

    SciTech Connect

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-11-10

    We study periods of elevated energetic particle intensities observed by STEREO-A when the partial pressure exerted by energetic (≥83 keV) protons (P{sub EP}) is larger than the pressure exerted by the interplanetary magnetic field (P{sub B}). In the majority of cases, these periods are associated with the passage of interplanetary shocks. Periods when P{sub EP} exceeds P{sub B} by more than one order of magnitude are observed in the upstream region of fast interplanetary shocks where depressed magnetic field regions coincide with increases of energetic particle intensities. When solar wind parameters are available, P{sub EP} also exceeds the pressure exerted by the solar wind thermal population (P{sub TH}). Prolonged periods (>12 hr) with both P{sub EP} > P{sub B} and P{sub EP} > P{sub TH} may also occur when energetic particles accelerated by an approaching shock encounter a region well upstream of the shock characterized by low magnetic field magnitude and tenuous solar wind density. Quasi-exponential increases of the sum P{sub SUM} = P{sub B} + P{sub TH} + P{sub EP} are observed in the immediate upstream region of the shocks regardless of individual changes in P{sub EP}, P{sub B}, and P{sub TH}, indicating a coupling between P{sub EP} and the pressure of the background medium characterized by P{sub B} and P{sub TH}. The quasi-exponential increase of P{sub SUM} implies a radial gradient ∂P{sub SUM}/∂r > 0 that is quasi-stationary in the shock frame and results in an outward force applied to the plasma upstream of the shock. This force can be maintained by the mobile energetic particles streaming upstream of the shocks that, in the most intense events, drive electric currents able to generate diamagnetic cavities and depressed solar wind density regions.

  17. A quantitative study of the geoeffectiveness of interplanetary structures

    NASA Astrophysics Data System (ADS)

    Vieira, L. A.

    2001-05-01

    The time-integrated values of the injection function F(E) necessary to observe variations in the Dst index during the main phase of intense magnetic storms at levels of -50, -75, -100, -125 and -150 nT, were estimated for a set of 12 interplanetary coronal mass ejections events. The dataset was classified into four groups concerning the occurrence of sheath fields just behind the shock and the polarity of the magnetic clouds: (i) magnetic clouds with polarity NS, (ii) magnetic clouds with SN polarity, (iii) magnetic clouds with southward field (Y polarity) and (iv) sheath fields. The injection function was estimated using two models of the evolution of the Dst. The time-integrated values estimated for the subset of Y clouds were found to be greater than for the other subsets. This occurs as a consequence of the slow increase of the Bs for Y clouds that leads to a smaller difference between the energy injection and the loss in the ring current that for the other groups. It is important to remember that while the energy injection is driven by the dawn-dusk component of the interplanetary electric field, the energy loss is proportional to the ring current population, with a decay time τ that varies from 3 to 20 h. The time-integrated values estimated for the subset of NS were found to be high. This is also associated to the profile of the Bs. Otherwise, sheath field and the SN magnetic cloud events seems to have shorter time-integrated values as a consequence of the sharp variation of the Bs component. In this case the energy injection is much greater than the loss energy during the main phase. These results have shown that, for the dataset studied, different structures of the interplanetary events are associated to different main phase development of the ring current. We would like to acknowledge the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo for the financial support. Project numbers 98/04734-4 and 98/15959-0.

  18. The Social Network Classroom

    NASA Astrophysics Data System (ADS)

    Bunus, Peter

    Online social networking is an important part in the everyday life of college students. Despite the increasing popularity of online social networking among students and faculty members, its educational benefits are largely untested. This paper presents our experience in using social networking applications and video content distribution websites as a complement of traditional classroom education. In particular, the solution has been based on effective adaptation, extension and integration of Facebook, Twitter, Blogger YouTube and iTunes services for delivering educational material to students on mobile platforms like iPods and 3 rd generation mobile phones. The goals of the proposed educational platform, described in this paper, are to make the learning experience more engaging, to encourage collaborative work and knowledge sharing among students, and to provide an interactive platform for the educators to reach students and deliver lecture material in a totally new way.

  19. Nitrogen Isotopic Anomalies in a Hydrous Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Smith, J. B.; Dai, Z. R.; Weber, P. K.; Graham, G. A.; Hutcheon, I. D.; Bajt, S.; Ishii, H.; Bradley, J. P.

    2005-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere are the fine-grained end member (5 - 50 microns in size) of the meteoritic material available for investigation in the laboratory. IDPs are derived from either cometary or asteroidal sources. Some IDPs contain cosmically primitive materials with isotopic signatures reflecting presolar origins. Recent detailed studies using the NanoSIMS have shown there is a wide variation of isotopic signatures within individual IDPs; grains with a presolar signature have been observed surrounded by material with a solar isotopic composition. The majority of IDPs studied have been anhydrous. We report here results from integrated NanoSIMS/FIB/TEM/Synchrotron IR studies of a hydrous IDP, focused on understanding the correlations between the isotopic, mineralogical and chemical compositions of IDPs.

  20. Effects of interstellar particles upon the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Coleman, P. J., Jr.; Winter, E. M.

    1972-01-01

    The flow of interstellar neutral particles into the interplanetary medium and their subsequent ionization in the presence of the electromagnetic field of the solar wind can cause a loss of field angular momentum by the solar wind. One effect of this loss of field angular momentum is a significant unwinding of the spiral field. This effect is evaluated using simple models for neutral density and ion production. For a free-stream interstellar medium with a neutral hydrogen density of 1 per cubic centimeter and a velocity relative to the sun of 10 to 20 km per second, the spiral angle at the orbit of Jupiter will be less than its nominal value of 45 deg at the orbit of the earth.

  1. Multielement analysis of interplanetary dust particles using TOF-SIMS

    NASA Technical Reports Server (NTRS)

    Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.

    1993-01-01

    Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.

  2. The Nature and Origin of Interplanetary Dust: High Temperature Components

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2004-01-01

    The specific parent bodies of individual interplanetary dust particles (IDPs) are un-known, but the anhydrous chondritic-porous (CP) sub-set has been linked directly to cometary sources [1]. The CP IDPs escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. Their origin in the outer regions of the solar system suggests they should retain primitive chemical and physical characteristics from the earliest stages of solar system formation (including abundant presolar materials). Indeed, CP IDPs are the most primitive extraterrestrial materials available for laboratory studies based on their unequilibrated mineralogy [2], high concentrations of carbon, nitrogen and volatile trace elements relative to CI chondrites [3, 4, 5], presolar hydrogen and nitrogen isotopic signatures [6, 7] and abundant presolar silicates [8].

  3. The far magnetotail response to an interplanetary shock arrival

    NASA Astrophysics Data System (ADS)

    Grygorov, K.; Přech, L.; Šafránková, J.; Němeček, Z.; Goncharov, O.

    2014-11-01

    We present a study of the impact of the December 7, 2003 fast forward interplanetary (IP) shock on the distant tail of the Earth's magnetosphere. Using the data from the several spacecraft located in the solar wind/magnetosheath upstream to the Earth, we monitor a propagation of the IP shock from the L1 point to the magnetosphere. A behavior of the far magnetotail is inferred from the Wind observations at XGSM≈-230 RE. Shortly after the shock arrival, Wind crossed consequentially southern and northern lobes and observed a flux rope and the tailward fast plasma flow (≈780 km/s) within the plasmasheet. Moreover, a change of the solar wind VZ component across the shock creates a huge kink of the tail magnetosphere that propagates down the tail with the IP shock.

  4. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  5. Aqueous alteration in five chondritic porous interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.

    1991-02-01

    Results are presented on AEM observations carried out on chondritic porous (CP) interplanetary dust particles (IDPs), which include data on alkali-rich layer silicates and new observations of nonstoichiometric plagioclase and alkali feldspars in individual CP IDPs. The compositional similarities found between the feldspar minerals and the layer silicates suggest that the latter have formed from these feldspars during low-temperature aqueous alterations at a stage of diagenesis in the CP IDP parent bodies. Small, but persistent, amounts of layer silicates, carbonates, and barite found in several nominally anhydrous CP IDPs support the suggestion of incipient aqueous alterations in their parent bodies, which may include short-period comet nuclei and outer-belt asteroids.

  6. Analysis of chondritic interplanetary dust thin-sections

    NASA Astrophysics Data System (ADS)

    Bradley, J. P.

    1988-04-01

    Chondritic interplanetary dust particles (IDPs) are heterogeneous aggregates of predominantly submicron mineral grains and carbonaceous material, whose bulk compositions agree within a factor of two with type CI/CM carbonaceous chondrites. The mineralogy and petrography of 25 such particles were studied by analytical electron microscopic examination of ultramicrotomed thin sections (500-1000 A thick). Four classes of chondritic IDPs were recognized, referred to as pyroxene, olivine, smectite, and serpentine, and their relative abundances were 9:4:10:2, respectively. Quantitative thin-film analyses indicate that pyroxene particles most closely resemble material emitted from comet Halley. Smectite particles may have formed from pyroxene particles by aqueous alteration of glass and enstatite crystals. Serpentine particles are the only class that are similar to the matrices of carbonaceous chondrites, but these are the least abundant chondritic IDPs. Collectively, chondritic particles are a mineralogically diverse group of extraterrestrial materials.

  7. Transport of solar electrons in the turbulent interplanetary magnetic field

    SciTech Connect

    Ablaßmayer, J.; Tautz, R. C.; Dresing, N.

    2016-01-15

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.

  8. Interplanetary dust distribution and temporal variability of Mercury's atmospheric Na

    NASA Astrophysics Data System (ADS)

    Kameda, Shingo; Yoshikawa, Ichiro; Kagitani, Masato; Okano, Shoichi

    2009-08-01

    The interplanetary dust (IPD) distribution in the inner solar system is not yet well understood because of lack of direct dust measurements in the inner solar system and so one needs to rely on zodiacal light observations that are difficult to interpret. Mercury has an unstable atmosphere, and the source processes of Na in its atmosphere are unclear. Results of past observations have revealed that the atmospheric Na density has no or low correlation with the solar flux, sunspot number, heliocentric distance, or solar radiation pressure. We show that the variability of Mercury's atmospheric Na density depends strongly on the IPD distribution. That is, Na density is low (high) when Mercury is far away from (close to) the symmetry plane of IPD, and so one can infer the IPD distribution near Mercury orbit from the temporal variability of Na density in Mercury's atmosphere.

  9. Characterizing Interplanetary Structures of Long-Lasting Ionospheric Storm Events

    NASA Astrophysics Data System (ADS)

    Tandoi, C.; Dong, Y.; Ngwira, C. M.; Damas, M. C.

    2015-12-01

    Geomagnetic storms can result in periods of heightened TEC (Total Electron Content) in Earth's ionosphere. These periods of change in TEC (dTEC) can have adverse impacts on a technological society, such as scintillation of radio signals used by communication and navigation satellites. However, it is unknown which exact properties of a given storm cause dTEC. We are comparing different solar wind properties that result in a significant long-lasting dTEC to see if there are any patterns that remain constant in these storms. These properties, among others, include the interplanetary magnetic field By and Bz components, the proton density, and the flow speed. As a preliminary investigation, we have studied 15 solar storms. Preliminary results will be presented. In the future, we hope to increase our sample size and analyze over 80 different solar storms, which result in significant dTEC.

  10. Small minded - The characterization of interplanetary dust by electron microscopy

    NASA Astrophysics Data System (ADS)

    Pillinger, C. T.

    1981-12-01

    The collection and analysis of Brownlee particles, interplanetary dust found in the atmosphere, are discussed. The particles are usually around 10 microns in diameter and have slowed to terminal velocity at altitudes near 100 km, having been heated to 550 C for not more than two seconds. Electron microscopy and neutron activation analysis have been employed, noting that the samples are collected by NASA from regions of concentration of one particle per 1000 cu cm. Chondritic compositions have been observed, although inter- and intra-grain abundance ratios do not display a distinct chondritic grouping. Single and polycrystal diffraction studies have identified magnetite, pyroxene, olivine, pyrohotite, taenite, and cohenite. The possibility that the dust particles are of cometary origin will be examined with data from the ESA Halley mission.

  11. Origin of the hydrocarbon component of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Wdowiak, Thomas J.; Lee, Wei

    1994-01-01

    Using experiments as a basis, we have developed a scenario for the origin of the hydrocarbon material of carbonaceous chondrites. This scenario can also serve as an explanation for the origin of the hydrocarbon component of interplanetary dust particles (IDP's). The formation of polycyclic aromatic hydrocarbon (PAH) molecules in the atmospheres of C stars undergoing a late stage of stellar evolution is indicated by the observed unidentified infrared (UIR) emission bands. Those molecules are then transported through interstellar space where they become enriched with D through ion molecule reactions when passing through cold, dark clouds. Many of those PAH molecules are subsequently hydrogenated and cracked in a H-dominated plasma such as would have occurred in the solar nebula. The resulting mixture of alkanes and residual D-rich PAH molecules was then incorporated into the mineral fraction of the parent bodies of carbonaceous chondrites and IDP's.

  12. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  13. Planetary and Interplanetary Environmental Models for Radiation Analysis

    NASA Technical Reports Server (NTRS)

    DeAngelis, G.; Cucinotta, F. A.

    2005-01-01

    The essence of environmental modeling is presented as suited for radiation analysis purposes. The variables of fundamental importance for radiation environmental assessment are discussed. The characterization is performed by dividing modeling into three areas, namely the interplanetary medium, the circumplanetary environment, and the planetary or satellite surface. In the first area, the galactic cosmic rays (GCR) and their modulation by the heliospheric magnetic field as well as and solar particle events (SPE) are considered, in the second area the magnetospheres are taken into account, and in the third area the effect of the planetary environment is also considered. Planetary surfaces and atmospheres are modeled based on results from the most recent targeted spacecraft. The results are coupled with suited visualization techniques and radiation transport models in support of trade studies of health risks for future exploration missions.

  14. Three-dimensional interplanetary stream magnetism and energetic particle motion

    NASA Technical Reports Server (NTRS)

    Barouch, E.; Burlaga, L. F.

    1976-01-01

    Cosmic rays interact with mesoscale configurations of the interplanetary magnetic field. A technique is presented for calculating such configurations in the inner solar system, which are due to streams and source conditions near the sun, and maps of magnetic field are constructed for some plausible stream and source conditions. One effect of these mesoscale configurations on galactic cosmic rays is shown to be an out-of-the-ecliptic gradient drift sufficient to explain Forbush decreases. The effects on solar energetic particles include small polar drifts due to the field gradients and a possibly large modification of the time-intensity profiles and anisotropy characteristics due to the formation of mirror configurations in space. If a diffusion model is applicable to solar particles, the true diffusion coefficient will be masked by the effects of streams. A conceptual model which incorporates these ideas and those of several other models is presented.

  15. Low voltage scanning electron microscopy of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bunch, T. E.; Reilly, T. W.; Brownlee, D. E.

    1987-01-01

    The resolution of available low-voltage SEM (LVSEM) models used in the characterization of interplanetary dust particles (IDPs) is limited by a number of factors including energy spread in the electron source, beam brightness, scanning electron detector geometry, and various lens aberrations. This paper describes an improved model of LVSEM which offers an increased resolution at low voltage. The improvements include a cold cathode FE source which has an extremely low inherent energy spread and high brightness, a second condenser lens to converge the beam and maintain an optimum aperture half-angle, and a detector optimized for low-voltage scanning-electron collection. To reduce lens aberrations, the specimen is immersed in the objective lens field. The features of several IDP samples observed using the images obtained with this LVSEM model are described.

  16. The Interplanetary Internet: a communications infrastructure for Mars exploration

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard

    2003-01-01

    A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  17. On interplanetary coronal mass ejection identification at 1 AU

    NASA Astrophysics Data System (ADS)

    Mulligan, T.; Russell, C. T.; Gosling, J. T.

    1999-06-01

    Coronal mass ejections are believed to be produced in the corona from closed magnetic regions not previously participating in the solar wind expansion. At 1 AU their interplanetary counterparts (ICMEs) generally have a number of distinct plasma and field signatures that distinguish them from the ambient solar wind. These include heat flux dropouts, bi-directional streaming, enhanced alpha particle events, times of depressed proton temperatures, intervals of distorted or enhanced magnetic field, and times of large magnetic field rotations characteristic of magnetic clouds. The first three of these signatures are phenomena that occur at some point within the ICME, but do not necessarily persist throughout the entire ICME. The large scale magnetic field rotations, distortions and enhancements, and the proton temperature depressions tend to mark more accurately the beginning and end of the ICME proper. We examine herein the reliability with which each of these markers identifies ICMEs utilizing ISEE-3 data from 1978-1980.

  18. Doppler frequency in interplanetary radar and general relativity

    NASA Technical Reports Server (NTRS)

    Mcvittie, G. C.

    1972-01-01

    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  19. Origins of the low energy relativistic interplanetary electrons

    NASA Technical Reports Server (NTRS)

    Eraker, J. H.; Simpson, J. A.

    1981-01-01

    Electron measurements in the energy range 2-25 MeV on the Pioneer 10 spacecraft are studied from 1 to 21.5 AU. It is found that in this radial range, interplanetary low energy electron fluxes are of Jovian origin, based on the decreasing electron intensity from about 6 to 21.5 AU, a negative gradient from about 11 to 21.5 AU, and the constant spectral index observed from 1 to 21.5 AU. The upper limit of the galactic flux is estimated at 12 MeV and standard assumptions are applied to solar modulation. It is found that at 1 AU, the expected flux of galactic origin is a factor 300 or more below the observed quiet time flux, and the extrapolated interstellar flux level is consistent with estimates based on galactic diffuse radio and gamma-ray emissions.

  20. Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study

    NASA Technical Reports Server (NTRS)

    Szabo, A.; Koval, A.; Merka, J.; Narock, T.

    2011-01-01

    The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the 2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed

  1. Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study

    NASA Technical Reports Server (NTRS)

    Szabo, A.; Koval, A.; Merka, J.; Narock, T.

    2010-01-01

    The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed

  2. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C09 The postflight photograph was taken prior to the experiment tray being removed from the LDEF. The tray corner clamp blocks are un-anodized aluminum and that alone accounts for the major difference in color between the corner clamp blocks and the center clamp blocks. The IDE mounting plate and the detector frames and detectors seem to be in excellent condition. Close inspection of the photograph reveals several locations where impacts on detector surfaces are visible. A faint gold or tan stain can be seen around several of the fasteners and in a rectangular configuration, near the center, along the bottom edge of the detector mounting plate. Stains can also be seen near the top right edge of the solar sensor, on the mounting plate, and around the extreme edges of the solar sensor baseplate. The colors and designs seen on the detectors are reflections of the surrounding area.

  3. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  4. Radiation shielding of spacecraft in manned interplanetary flights.

    PubMed

    Spillantini, P; Taccetti, F; Papini, P; Rossi, L

    2000-04-01

    During the interplanetary flights the crewmembers will be exposed to cosmic ray radiation with great risk for their health. The absorbed dose due to CR depends on the galactic (GCR) or solar (SCR) origin. GCRs are isotropic and relatively high in energy and deliver a dose nearly constant with time that can be reduced only by means of "heavy" passive protection. The outer walls of the spacecraft usually shield the SCRs up to a few tens of MeV, but during some exceptional solar bursts, a great number of particles, mainly protons, are ejected at higher energies. In this case the dose delivered in a few hours by a solar burst can easily exceed 1 year cumulated dose by GCRS. The high-energy component of SCRs is quasi-directional so that a shielding system based on a superconductive magnetic lens can reduce the daily dose of SCRs to the level delivered by GCRS.

  5. Clay minerals in primitive meteorites and interplanetary dust 1

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Keller, L. P.

    1991-01-01

    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  6. Space Travel is Utter Bilge: Early Ideas on Interplanetary Exploration

    NASA Astrophysics Data System (ADS)

    Yeomans, D. K.

    2003-12-01

    Until a few decades ago, interplanetary travel was the stuff of dreams but the dreamers often turned out to be farsighted while the predictions of some eminent scientists were far too conservative. The prescient dreamers include the Russian schoolteacher, Konstanin Tsiolkovsky who, in 1883, was the first to note that only rockets could serve the needs of space travel. In 1923, Herman Oberth published a treatise discussing various aspects of interplanetary travel including the impulse necessary to escape the Earth's gravitational pull. In his spare time, a German civil engineer, Walter Hohmann, established in 1925 that the optimal energy transfer orbit between planets is an ellipse that is tangent to the orbits of both bodies. Four year later, an Austrian army officer, Hermann Potocnik outlined the benefits of space stations including those in geosynchronous orbits. Whereas Tsiolkovsky, Oberth, Hohmann, and Potocnik provided ideas and theories, the American, Robert H. Goddard, was testing liquid fueled rockets by as early as 1925. By the time he was finished in 1941, Goddard flew liquid fueled rockets that reached speeds of 700 mph and altitudes above 8,000 feet. In direct contrast to the advances by these mostly amateur engineers, many respected authorities scoffed at space travel because of the insurmountable technological difficulties. One year prior to the launch of Sputnik, the British Astronomer Royal, Sir Richard Wooley, declared, "space travel is utter bilge." While the theories of space travel were well developed by the late 1920's, space travel technology was still a poorly funded, mostly amateur, endeavor until the German army hired Oberth's student, Werner von Braun, and others to develop long range rockets for military purposes. In the early 1940's, Von Braun's team developed the rocket propulsion and guidance systems that would one day form the basis of the American space program.

  7. Multi-Spacecraft Observations of Interplanetary Shocks Near Earth

    NASA Astrophysics Data System (ADS)

    Kajdic, P.; Blanco-Cano, X.; Lavraud, B.

    2014-12-01

    Space missions around Earth have been continuously monitoring solar wind and interplanetary magnetic field for many years now. They have detected a large number of interplanetary (IP) shocks. These have been observed with multiple spacecraft at separations ranging from 103 km to several 105. Comparing observations of IP shocks at different locations in space can provide us with important insights on micro-physical processes that take place near or within the shock transitions. We have compiled a database of about 50 IP shocks detected between 2001 and 2014 with several missions. In the first part of our research we calculated local normals of IP shocks by using different one-spacecraft methods and also the 4-spacecraft method, when possible. In some cases we were able to compare the results of the latter method for different inter-spacecraft separations. This is the first time that comparison of IP shock profiles is also performed systematically on small inter-spacecraft separations of several 100 km (Cluster and Themis observations). Shock normals obtained by using different spacecraft configurations may differ. We find that spacecraft observe different shock profiles even when the their separations are only ~1000 km and the detection times differ by less than a second. The four-spacecraft method is less reliable when the detection times are small, since the changing shock profiles and uncertainties related to timing of the shock arrivals may distort the calculations. We also study regions upstream and downstream of IP shocks - we analyze the properties of suprathermal particles and magnetic perturbations there.

  8. An Alternative Method for Identifying Interplanetary Magnetic Cloud Regions

    NASA Astrophysics Data System (ADS)

    Ojeda-Gonzalez, A.; Mendes, O.; Calzadilla, A.; Domingues, M. O.; Prestes, A.; Klausner, V.

    2017-03-01

    Spatio-temporal entropy (STE) analysis is used as an alternative mathematical tool to identify possible magnetic cloud (MC) candidates. We analyze Interplanetary Magnetic Field (IMF) data using a time interval of only 10 days. We select a convenient data interval of 2500 records moving forward by 200 record steps until the end of the time series. For every data segment, the STE is calculated at each step. During an MC event, the STE reaches values close to zero. This extremely low value of STE is due to MC structure features. However, not all of the magnetic components in MCs have STE values close to zero at the same time. For this reason, we create a standardization index (the so-called Interplanetary Entropy, IE, index). This index is a worthwhile effort to develop new tools to help diagnose ICME structures. The IE was calculated using a time window of one year (1999), and it has a success rate of 70% over other identifiers of MCs. The unsuccessful cases (30%) are caused by small and weak MCs. The results show that the IE methodology identified 9 of 13 MCs, and emitted nine false alarm cases. In 1999, a total of 788 windows of 2500 values existed, meaning that the percentage of false alarms was 1.14%, which can be considered a good result. In addition, four time windows, each of 10 days, are studied, where the IE method was effective in finding MC candidates. As a novel result, two new MCs are identified in these time windows.

  9. Differential measurement of cosmic-ray gradient with respect to interplanetary current sheet

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Cummings, A. C.; Stone, E. C.; Behannon, K. W.; Burlaga, L. F.

    1985-01-01

    Simultaneous magnetic field and charged particle measurements from the Voyager spacecraft at heliographic latitude separations from 10 deg. to 21 deg. are used to determine the latitude gradient of the galactic cosmic ray flux with respect to the interplanetary current sheet. By comparing the ratio of cosmic ray flux at Voyager 1 to that a Voyager 2 during periods when both spacecraft are first nort and then south of the interplanetary current sheet, we find an estimate of the latitudinal gradient with respect to the current sheet of approximately -0.15 + or 0.05% deg under restricted interplanetary conditions.

  10. Size distribution of interplanetary iron and stony particles related with deep-sea spherules

    NASA Technical Reports Server (NTRS)

    Matsuzaki, H.; Yamakoshi, K.

    1993-01-01

    To study origin and evolution of the interplanetary dust, it is very important to investigate the size distribution. Here the changes of the size distributions of meteoroid particles due to the ablative effects during atmospheric entry were investigated by numerical computer simulation. Using the results, the pre-atmospheric size distributions of the interplanetary dust particles could be estimated from that of ablated spherules taken from deep-sea sediments. We are now analyzing deep-sea spherules from some aspects and examining if we could get any information about the interplanetary dust.

  11. The role of CMEs and interplanetary shocks in IMF winding angle statistics

    NASA Astrophysics Data System (ADS)

    Smith, Charles W.; Phillips, John L.

    1996-07-01

    We examine the possible role of CMEs and interplanetary shocks in past analyses of the large-scale winding of the IMF by extracting CME and shock observations from the ISEE-3 dataset and analyzing periods of the disturbed and undisturbed solar wind separately. We use the full ISEE-3 dataset representing the entire L1 mission (1978-1982). We conclude that CMEs, the shocks upstream of CMEs and other interplanetary shocks are responsible for the apparent overwinding of the IMF spiral relative to the Parker prediction. The IMF winding angle asymmetry appears to be preserved after the removal of the interplanetary disturbances.

  12. Solar sources of interplanetary southward Bz events responsible for major magnetic storms (1978-1979)

    NASA Technical Reports Server (NTRS)

    Tang, Frances; Tsurutani, Bruce T.; Smith, Edward J.; Gonzalez, Walter D.; Akasofu, Syun I.

    1989-01-01

    The solar sources of interplanetary southward Bz events responsible for major magnetic storms observed in the August 1978-December 1979 period were studied using a full complement of solar wind plasma and field data from ISEE 3. It was found that, of the ten major storms observed, seven were initiated by active region flares, and three were associated with prominence eruptions in solar quiet regions. Nine of the storms were associated with interplanetary shocks. However, a comparison of the solar events' characteristics and those of the resulting interplanetary shocks indicated that standard solar parameters did not correlate with the strengths of the resulting shocks at 1 AU.

  13. Observation of Two Slow Shocks Associated with Magnetic Reconnection Exhausts in the Interplanetary Space

    NASA Astrophysics Data System (ADS)

    Feng, HengQiang; Li, QiuHuan; Wang, JieMin; Zhao, GuoQing

    2017-04-01

    In the Petschek magnetic reconnection model, two groups of slow shocks play an important role in the energy release. In the past half century, a large number of slow shocks were observed in the geomagnetic tail, and many slow shocks were associated with magnetic reconnection events in the geomagnetic tail. Slow shocks in the interplanetary space are rarer than in the geomagnetic tail. We investigated whether slow shocks associated with interplanetary reconnection exhausts are rare. We examined the boundaries of 50 reconnection exhausts reported by Phan, Gosling, and Davis (Geophys. Res. Lett. 36:L09108, 2009) in interplanetary space to identify slow shocks by fitting the Rankine-Hugoniot relations. Two slow shocks associated with magnetic reconnection exhausts were found and evaluated using observations from Wind and the Advanced Composition Explorer. The observed slow shocks associated with interplanetary reconnection exhausts are rarer than the observed slow shocks associated with geomagnetic tail reconnection exhausts.

  14. Genesis of Interplanetary Intermittent Turbulence: A Case Study of Rope&enrope Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Chian, Abraham C.-L.; Feng, Heng Q.; Hu, Qiang; Loew, Murray H.; Miranda, Rodrigo A.; Muñoz, Pablo R.; Sibeck, David G.; Wu, De J.

    2016-12-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad-Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope-rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  15. Plasma processes in the expansion of the solar wind and in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1975-01-01

    Recent research into plasma processes involved in the expansion of the solar wind and the interplanetary medium is reviewed. Emphasized topics deal primarily with processes that drive the solar wind, the gross expansion of the interplanetary medium between 0.5 and 5 AU, recent observational results in the vicinity of 1 AU, and the microstructure of the interplanetary medium. Satellite measurements of the radial profile of the interplanetary medium out to 5 AU are discussed together with model calculations of the solar wind and its possible driving mechanisms. Studies of Alfven and magnetoacoustic waves in the solar wind are summarized. Possible roles are considered for thermal conduction in coronal energy transport, and observations of ion velocity distributions near 1 AU are described.

  16. MeV Ion Anisotropies in the Vicinity of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; Cane, H. V.; von Rosenvinge, T. T.

    2007-05-01

    The anticipated signatures of interplanetary shock acceleration to be found in energetic ion anisotropies in the vicinity of interplanetary shocks include near-isotropic particle distributions consistent with of diffusive shock acceleration, "pancake" distributions indicative of shock drift acceleration, and flow reversals suggestive of a particle acceleration region passing by the observing spacecraft. In practice, while clear examples of these phenomena exist, more typically, particle anisotropies near interplanetary shocks show considerable variation in time and space, both in individual events and from event to event. We investigate the properties of MeV/n ions in the vicinity of a number of interplanetary shocks associated with the largest energetic particle events of solar cycle 23, and previous cycles, including their intensity-time profiles, anisotropies, and relationship with local solar wind structures, using observations from the IMP 8, ISEE-3, Helios 1 and 3 spacecraft. The aim is to help to understand the role of shocks in major solar energetic particle events.

  17. Tongues, bottles, and disconnected loops: The opening and closing of the interplanetary magnetic field

    SciTech Connect

    McComas, D.J.

    1994-06-01

    For years the field of Space Physics has had a problem, a really big problem for it occurs on the largest spatial scales in Space physics -- across the entire region under the Sun`s influence, the heliosphere. The problem is that the Sun appears to keep opening new magnetic flux into interplanetary space with no obvious way for this flux to close back off again. This state of affairs, without some previously unknown method for closing the open interplanetary magnetic field (IMF), leads to an ever growing amount of magnetic flux in interplanetary space: the magnetic flux catastrophe. Recently, considerable progress has been made in understanding why this catastrophic state is not the observed state of the heliosphere. This brief article paints the newly emerging picture of the opening and closing of the IMF and how these processes may account for the observed variation in the amount of magnetic flux in interplanetary space over the solar cycle.

  18. V are Interplanetary Coronal Mass Ejections Observed with the SOlar Mass Ejection Imager

    DTIC Science & Technology

    2007-01-01

    SUBTITLE V arc interplanetary coronal mass ejections observed with the Solar Mass Ejection Imager 5a. CONTRACT NUMBER 5b. GRANT NUMBER a. 5c...doi: 10.1029/2007JA012358 14. ABSTRACT Since February 2003, The Solar Mass Ejection Imager (SMEI) has been observing interplanetary- coronal mass...ejections (ICMEs) at solar elongation angles ^ > 20 degrees. The ICMEs generally appear as loops or arcs in the sky, but five show distinct outward

  19. The emergence of different polarity photospheric flux as the cause of CMEs and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Bravo, S.

    1995-01-01

    Here we discuss the effect that the emergence of flux with a polarity opposed to that previously established in a certain photospheric region. can have on the magnetic structure of the solar atmosphere. We show that such a flux emergence may lead to the ejection of coronal material into the interplanetary medium (a CME) and also to a rapid change in the velocity of the solar wind from the region, which may eventually lead to the formation of an interplanetary shock.

  20. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  1. Optimization of interplanetary trajectories to Mars via electrical propulsion

    NASA Astrophysics Data System (ADS)

    Williams, Powtawche Neengay

    Although chemical rocket propulsion is widely used in space transportation, large amounts of propellant mass limit designs for spacecraft missions to Mars. Electrical propulsion, which requires a smaller propellant load, is an alternative propulsion system that can be used for interplanetary flight. After the recent successes of the NASA Deep Space 1 spacecraft and the ESA SMART 1 spacecraft, which incorporate an electrical propulsion system, there is a strong need for trajectory tools to support these systems. This thesis describes the optimization of interplanetary trajectories from Earth to Mars for spacecraft utilizing low-thrust electrical propulsion systems. It is assumed that the controls are the thrust direction and the thrust setting. Specifically, the minimum time and minimum propellant problems are studied and solutions are computed with the sequential gradient-restoration algorithm (SGRA). The results indicate that, when the thrust direction and thrust setting are simultaneously optimized, the minimum time and minimum propellant solutions are not identical. For minimum time, it is found that the thrust setting must be at the maximum value; also, the thrust direction has a normal component with a switch at midcourse from upward to downward. This changes the curvature of the trajectory, has a beneficial effect on time, but a detrimental effect on propellant mass; indeed, the propellant mass ratio of the minimum time solution is about twice that of the Hohmann transfer solution. Thus, the minimum time solution yields a rather inefficient trajectory. For minimum propellant consumption, it is found that the best thrust setting is bang-zero-bang (maximum thrust, followed by coasting, followed by maximum thrust) and that the best thrust direction is tangent to the trajectory. This is a rather efficient trajectory; to three significant digits, the associated mass ratio is the same as that of the Hohmann transfer solution, even for thrust-to-weight ratios of

  2. A tiny event producing an interplanetary type III burst

    NASA Astrophysics Data System (ADS)

    Alissandrakis, C. E.; Nindos, A.; Patsourakos, S.; Kontogeorgos, A.; Tsitsipis, P.

    2015-10-01

    Aims: We investigate the conditions under which small-scale energy release events in the low corona gave rise to strong interplanetary (IP) type III bursts. Methods: We analyzed observations of three tiny events, detected by the Nançay Radio Heliograph (NRH), two of which produced IP type III bursts. We took advantage of the NRH positioning information and of the high cadence of AIA/SDO data to identify the associated extreme-UV (EUV) emissions. We measured positions and time profiles of the metric and EUV sources. Results: We found that the EUV events that produced IP type III bursts were located near a coronal hole boundary, while the one that did not was located in a closed magnetic field region. In all three cases tiny flaring loops were involved, without any associated mass eruption. In the best observed case, the radio emission at the highest frequency (435 MHz) was displaced by ~55'' with respect to the small flaring loop. The metric type III emission shows a complex structure in space and in time, indicative of multiple electron beams, despite the low intensity of the events. From the combined analysis of dynamic spectra and NRH images, we derived the electron beam velocity as well as the height, ambient plasma temperature, and density at the level of formation of the 160 MHz emission. From the analysis of the differential emission measure derived from the AIA images, we found that the first evidence of energy release was at the footpoints, and this was followed by the development of flaring loops and subsequent cooling. Conclusions: Even small energy release events can accelerate enough electrons to give rise to powerful IP type III bursts. The proximity of the electron acceleration site to open magnetic field lines facilitates the escape of the electrons into the interplanetary space. The offset between the site of energy release and the metric type III location warrants further investigation. The movie is available in electronic form at http://www.aanda.org

  3. Interplanetary plasma scintillation parameters measurements retrieved from the spacecraft observations.

    NASA Astrophysics Data System (ADS)

    Molera Calvés, Guifré; Pogrebenko, S. V.; Wagner, J.; Maccaferri, G.; Colucci, G.; Kronschnabl, G.; Scilliro, F.; Bianco, G.; Pérez Ayúcar, M.; Cosmovici, C. B.

    2010-05-01

    Measurement of the Interplanetary Scintillations (IPS) of radio signals propagating through the plasma in the Solar System by the radio astronomical instruments is a powerful tool to characterise and study the spatial and temporal variation of the electron density in the Solar wind. Several techniques based on the observation of natural and artificial radio sources have been developed during the last 50 years. Here we report our results of the IPS parameters measurement based on the multi-station observations of the planetary mission spacecraft. The ESA Venus Express spacecraft was observed at X-band (8.4 GHz) by several European VLBI stations - Metsähovi Radio Observatory (Aalto University , FI), Medicina (INAF-RA, IT), Matera (ASI, IT), Wettzell (BKG, DE), Noto (INAF-IRA, IT) and Yebes (OAN-IGN, ES) during a 2008-2010 campaign in a framework of the PRIDE (Planetary Radio Interferometry and Doppler Experiments) project as a preparatory stage for the European Radio Astronomy VLBI facilities participation in the planned ESA planetary missions (EJSM, TESM, EVE and others). Observational data were processed at Metsähovi Radio Observatory with the on-purpose developed high performance, ultra-high spectral resolution and spacecraft tracking capable software spectrometer-correlator and analysed at the Joint Institute for VLBI in Europe (JIVE, NL). High quality of acquired and analysed data enables us to study and define several parameters of the S/C signal and accompanying "ranging" tones with milli-Hz accuracy, among which the phase fluctuations of the spacecraft signal carrier line can be used to characterise the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales at different Solar elongations and which exhibits a near-Kolmogorov spectrum. Such essential parameters as the phase scintillation index and bandwidth of scintillations and their dependence on the solar elongation, distance to the target

  4. Collaborative study for the establishment of the WHO 3(rd) International Standard for Endotoxin, the Ph. Eur. endotoxin biological reference preparation batch 5 and the USP Reference Standard for Endotoxin Lot H0K354.

    PubMed

    Findlay, L; Desai, T; Heath, A; Poole, S; Crivellone, M; Hauck, W; Ambrose, M; Morris, T; Daas, A; Rautmann, G; Buchheit, K H; Spieser, J M; Terao, E

    2015-01-01

    An international collaborative study was organised jointly by the World Health Organization (WHO)/National Institute for Biological Standards and Control (NIBSC), the United States Pharmacopeia (USP) and the European Directorate for the Quality of Medicines & HealthCare (EDQM/Council of Europe) for the establishment of harmonised replacement endotoxin standards for these 3 organisations. Thirty-five laboratories worldwide, including Official Medicines Control Laboratories (OMCLs) and manufacturers enrolled in the study. Three candidate preparations (10/178, 10/190 and 10/196) were produced with the same material and same formulation as the current reference standards with the objective of generating a new (3(rd)) International Standard (IS) with the same potency (10 000 IU/vial) as the current (2(nd)) IS, as well as new European Pharmacopoeia (Ph. Eur.). and USP standards. The suitability of the candidate preparations to act as the reference standard in assays for endotoxin performed according to compendial methods was evaluated. Their potency was calibrated against the WHO 2(nd) IS for Endotoxin (94/580). Gelation and photometric methods produced similar results for each of the candidate preparations. The overall potency estimates for the 3 batches were comparable. Given the intrinsic assay precision, the observed differences between the batches may be considered unimportant for the intended use of these materials. Overall, these results were in line with those generated for the establishment of the current preparations of reference standards. Accelerated degradation testing of vials stored at elevated temperatures supported the long-term stability of the 3 candidate preparations. It was agreed between the 3 organisations that batch 10/178 be shared between WHO and EDQM and that batches 10/190 and 10/196 be allocated to USP, with a common assigned value of 10 000 IU/vial. This value maintains the continuity of the global harmonisation of reference materials and

  5. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong; Wang, Rui

    2017-03-01

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses, interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO/LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses, and magnetohydrodynamic propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.

  6. The 3rd International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Compiler)

    1995-01-01

    This Conference Publication contains 71 papers presented at the Third International Microgravity Combustion Workshop held in Cleveland, Ohio, from April 11 to 13, 1995. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  7. 3rd Brazilian Consensus on Helicobacter pylori.

    PubMed

    Coelho, Luiz Gonzaga; Maguinilk, Ismael; Zaterka, Schlioma; Parente, José Miguel; do Carmo Friche Passos, Maria; Moraes-Filho, Joaquim Prado P

    2013-04-01

    Signicant progress has been obtained since the Second Brazilian Consensus Conference on Helicobacter pylori Infection held in 2004, in São Paulo, SP, Brazil, and justify a third meeting to establish updated guidelines on the current management of H. pylori infection. The Third Brazilian Consensus Conference on H pylori Infection was organized by the Brazilian Nucleus for the Study of Helicobacter, a Department of the Brazilian Federation of Gastroenterology and took place on April 12-15, 2011, in Bento Gonçalves, RS, Brazil. Thirty-one delegates coming from the five Brazilian regions and one international guest, including gastroenterologists, pathologists, epidemiologists, and pediatricians undertook the meeting. The participants were allocated in one of the five main topics of the meeting: H pylori, functional dyspepsia and diagnosis; H pylori and gastric cancer; H pylori and other associated disorders; H pylori treatment and retreatment; and, epidemiology of H pylori infection in Brazil. The results of each subgroup were submitted to a final consensus voting to all participants. Relevant data were presented, and the quality of evidence, strength of recommendation, and level of consensus were graded. Seventy per cent and more votes were considered as acceptance for the final statement. This article presents the main recommendations and conclusions to guide Brazilian doctors involved in the management of H pylori infection.

  8. Radiation Therapy Physics, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Hendee, William R.; Ibbott, Geoffrey S.; Hendee, Eric G.

    2004-08-01

    The Third Edition of Radiation Therapy Physics addresses in concise fashion the fundamental diagnostic radiologic physics principles as well as their clinical implications. Along with coverage of the concepts and applications for the radiation treatment of cancer patients, the authors have included reviews of the most up-to-date instrumentation and critical historical links. The text includes coverage of imaging in therapy planning and surveillance, calibration protocols, and precision radiation therapy, as well as discussion of relevant regulation and compliance activities. It contains an updated and expanded section on computer applications in radiation therapy and electron beam therapy, and features enhanced user-friendliness and visual appeal with a new, easy-to-follow format, including sidebars and a larger trim size. With its user-friendly presentation and broad, comprehensive coverage of radiotherapy physics, this Third Edition doubles as a medical text and handy professional reference.

  9. Coal mine ground control. 3rd ed.

    SciTech Connect

    Peng, S.S.

    2008-09-15

    The third edition not only completely revises and updates the original subject areas, but also is broadened to include a number of new topics such as high horizontal stresses, computer modeling, and highwall stability. The subject areas covered in this book define the current field of coal mine ground control, except for the recently emerging topic of mine seals and some conventional subjects such as coal/rock cutting and impoundment dams. It contains 1,134 references from all published sources, and archived since 1876.

  10. Presenting the 3rd edition of WRB

    NASA Astrophysics Data System (ADS)

    Schad, Peter

    2014-05-01

    The third edition of the international soil classification system "World Reference Base for Soil Resources" (WRB) will be presented during der 20th World Congress of Soil Science, Jeju, Korea, June 9-12. The second edition was published in 2006 and the first in 1998, which, in turn, was based on the Legends of the FAO Soil Map of the World. Now, after eight years of experience with the second edition, time was due for a revision. The major changes are: 1. The second edition had two different qualifier sequences for naming soils (IUSS Working Group WRB, 2006, update 2007) and for creating map legends (Guidelines for creating small-scale map legends using the WRB; IUSS Working Group WRB, 2010). The third edition has one sequence for both. The qualifiers for every Reference Soil Group are subdivided into a small number of main qualifiers that are ranked and a larger number of additional qualifiers that are not ranked and given in an alphabetical order. The name of a pedon must comprise all applying qualifiers. The name of a map unit comprises a specified small number of main qualifiers, depending on scale, whereas all other qualifiers are optional. 2. For some soils, problems have been reported. Albeluvisols are difficult to detect in the field and cover only small surfaces. They have been replaced by Retisols, which have a broader definition that is easier to identify in the field. 3. The use of some diagnostics was difficult. Examples are: The argic horizon had too low limit values, so we had much more soils with argic horizons than justified. The definitions of the cambic horizon and the gleyic and stagnic properties were not precise enough. Organic material, mollic and umbric horizons had an unnecessary complicated definition. 4. Some changes in the key to the Reference Soil Groups seemed to be justified. Fluvisols were moved further down, Durisols and Gypsisols switched their position, also Arenosols and Cambisols. The soils with an argic horizon were brought into a new sequence. 5. The umbrella function of WRB aims to allow the allocation of soil classes existing in a national classification system within the WRB. Characteristics that in a national system are regarded to be important must be considered in WRB - not necessarily at the highest level, but at least somewhere. The third edition of WRB allows a better accommodation of soil types, e.g., of the Australian and the Brazilian system. 6. Some environments or even ecoregions had not been well represented in WRB. The third edition allows a better accommodation of soils of ultra-continental permafrost regions, acid-sulphate soils and Technosols. 7. How to explain complicated sets of characteristics? For the third edition, efforts were made to give better structured definitions that can be more easily grasped. The editors of the third edition are convinced that the new WRB allows a more precise classification of soils including both, a better naming of pedons and a better elaboration of soil map legends.

  11. Elementary Science Guide -- 3rd Grade.

    ERIC Educational Resources Information Center

    Wieland, Anne; And Others

    Presented is a resource book to be used with instructional kits for elementary school science students, grade 3. The individual units at this grade level are based on curriculum which has been developed by the National Science Foundation in the 1960s and revised to meet student and teacher identified needs in Anchorage, Alaska. Six units are…

  12. Spacecraft Systems Engineering, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Fortescue, Peter; Stark, John; Swinerd, Graham

    2003-03-01

    Following on from the hugely successful previous editions, the third edition of Spacecraft Systems Engineering incorporates the most recent technological advances in spacecraft and satellite engineering. With emphasis on recent developments in space activities, this new edition has been completely revised. Every chapter has been updated and rewritten by an expert engineer in the field, with emphasis on the bus rather than the payload. Encompassing the fundamentals of spacecraft engineering, the book begins with front-end system-level issues, such as environment, mission analysis and system engineering, and progresses to a detailed examination of subsystem elements which represent the core of spacecraft design - mechanical, electrical, propulsion, thermal, control etc. This quantitative treatment is supplemented by an appreciation of the interactions between the elements, which deeply influence the process of spacecraft systems design. In particular the revised text includes * A new chapter on small satellites engineering and applications which has been contributed by two internationally-recognised experts, with insights into small satellite systems engineering. * Additions to the mission analysis chapter, treating issues of aero-manouevring, constellation design and small body missions. In summary, this is an outstanding textbook for aerospace engineering and design students, and offers essential reading for spacecraft engineers, designers and research scientists. The comprehensive approach provides an invaluable resource to spacecraft manufacturers and agencies across the world.

  13. Teaching Visually Impaired Children. 3rd Edition

    ERIC Educational Resources Information Center

    Bishop, Virginia E.

    2004-01-01

    In this exceptional new third edition, the author has retained much of the practical "how to" approach of the previous editions, but adds depth in two dimensions: learning theory and the educational process. This book is "so comprehensive in scope and complete in detail that it would be the most likely recommended" (from the foreword by Dr.…

  14. BOOK REVIEW: Modern Physics, 3rd edn

    NASA Astrophysics Data System (ADS)

    Lovett, David

    1999-09-01

    The number of broadly based physics texts written at a level corresponding to second year and above of UK physics degrees is limited. This is such a book thoroughly updated in a third edition, the first edition having been published 20 years ago. The book is unusual in that the reader is referred to the Freeman website www.whfreeman.com/physics for some additional sections. It will be interesting to see whether this proves to be an attractive feature. The coverage reflects the US emphasis on topics and contains both theoretical and experimental details. It should not be regarded as an introductory text although it is clearly written. Thus the first two chapters take the reader straight into relativity, concentrating mainly on special relativity but going on to general relativity. From here the reader is led to ideas of quantization of charge, light and energy, followed by an exploration of the nuclear atom, wavelike properties of particles and Schrödinger's equation. Solution of this equation for the hydrogen atom introduces a section on spectroscopy. The next chapter on statistical physics includes Fermi-Dirac and Bose-Einstein statistics and brings to a close Part 1, which concentrates on the theoretical groundwork. Consistent with its title, the book does not cover traditional aspects of thermodynamics and electromagnetic theory. Part 2 is entitled `Applications' and begins with a chapter on molecular structure and spectra. Lasers and masers are included here but geometrical, physical and nonlinear optics get limited or no coverage. Solid state physics follows but, despite the title of the book, there is little on modern devices, although the section on superconductivity mentions high temperature materials. The chapters on nuclear physics, fission, fusion reactors and medical applications and a chapter on particle physics are comprehensive. Finally a chapter on astrophysics and cosmology is referred to, but the reader must find this at the website. As this is an attractive chapter it is a pity that it is not printed within the book. Although viewing the chapter on the Web gives the benefit of full colour, it is not easy to read the textual information off the screen. Within the printed material, there are good diagrams with the addition of a single colour, burgundy, a colour that is wasted on those of us who are red-green colour-blind! Each chapter is provided with an impressive number of graded problems (it is not easy to provide such a comprehensive range of problems at this level) and numerical answers are given in the back for every third problem. There is a student solution manual available for these problems and a complete instructor's solution manual has also been produced. It is therefore a useful book for both students and lecturers.

  15. Cerebral computed tomography, 3rd Edition

    SciTech Connect

    Weisberg, L.; Nice, C.

    1988-01-01

    This book is an introduction to the utilization of computed tomography in evaluating patients with intracranial and orbital disorders. It features clinical correlations and provides an overview of general principles, performance, and normal anatomy of CT. It covers evaluation of specific neurologic signs and symptoms, including stroke, metastatic disease, increased intracranial pressure, head injury, pediatric conditions, and more.

  16. Peace Corps. 3rd Annual Report.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC.

    Projects, operations, and future plans are covered in this annual report for the third year of the Peace Corps. An introduction comments on returning volunteers and presents regional maps with tables for Latin America, Africa, Near East and South Asia, and Far East. Section 1 contains letters and reports from volunteers in Peru, Ivory Coast,…

  17. 3RD Symposium on Applied Surface Analysis.

    DTIC Science & Technology

    1982-03-01

    lithium -- a condition which occurs during under-potential discharge. The surface studies of lithium on carbon showed lithium to be much more mobile in...of surface chemistry. The talk will begin with a summary of results for carbon monoxide chemisorbed on supported Rh as studied by transmission... lithium anode and the high surface-area Shawinigan Black current collector of the Li-LiAsF6 -AN-SO2 battery system have been ana- lyzed by XPS, SAM and

  18. New Directions in Space Operations Services in Support of Interplanetary Exploration

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.

    2005-01-01

    To gain access to the necessary operational processes and data in support of NASA's Lunar/Mars Exploration Initiative, new services, adequate levels of computing cycles and access to myriad forms of data must be provided to onboard spacecraft and ground based personnel/systems (earth, lunar and Martian) to enable interplanetary exploration by humans. These systems, cycles and access to vast amounts of development, test and operational data will be required to provide a new level of services not currently available to existing spacecraft, on board crews and other operational personnel. Although current voice, video and data systems in support of current space based operations has been adequate, new highly reliable and autonomous processes and services will be necessary for future space exploration activities. These services will range from the more mundane voice in LEO to voice in interplanetary travel which because of the high latencies will require new voice processes and standards. New services, like component failure predictions based on data mining of significant quantities of data, located at disparate locations, will be required. 3D or holographic representation of onboard components, systems or family members will greatly improve maintenance, operations and service restoration not to mention crew morale. Current operational systems and standards, like the Internet Protocol, will not able to provide the level of service required end to end from an end point on the Martian surface like a scientific instrument to a researcher at a university. Ground operations whether earth, lunar or Martian and in flight operations to the moon and especially to Mars will require significant autonomy that will require access to highly reliable processing capabilities, data storage based on network storage technologies. Significant processing cycles will be needed onboard but could be borrowed from other locations either ground based or onboard other spacecraft. Reliability will

  19. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  20. Layer silicates in a chondritic porous interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Mackinnon, I. D. R.

    1985-01-01

    Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300 C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25 C) after aggregate formation.